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Introducción 

Si se hiciera un muestreo entre los profesionales para que con­
feccionaran una lista de los diez matemáticos más importantes 
e influyentes de la historia, estamos seguros de que casi todos 
ellos incluirían a Carl Friedrich Gauss. Esta conjetura (como 
veremos en este libro, hacer conjeturas es un método de tra­
bajo muy propio de matemáticos) está fundamentada en dos 
motivos. El primero es la enorme importancia de sus aportacio­
nes matemáticas. Para evitar que se nos acuse de constatar lo 
obvio, conviene señalar que la valoración de la importancia de 
los resultados científicos es un ejercicio siempre subjetivo, aun 
en el caso de una ciencia tan objetiva como las matemáticas. 
Y, sin embargo, las matemáticas creadas por Gauss resisten cual­
quier tipo de valoración, y su influencia es unánimemente reco­
nocida. El segundo motivo es la amplitud de los temas a los que 
Gauss dedicó con enorme éxito su curiosidad. En la actualidad 
las matemáticas son tan vastas que los que se dedican a ellas 
conocen en profundidad solo la parte cercana a su campo de 
investigación. La genialidad de Gauss, sin embargo, le permitió 
avanzar en casi todas las ramas de las matemáticas. En conse­
cuencia, tanto los especialistas en análisis matemático como los 
de análisis numérico, tanto los geómetras como los algebristas, 
los estadísticos o incluso los físico-matemáticos ven en Gauss a 
«uno de los nuestros». 
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Con excesiva frecuencia se usan adjetivos como niño prodi­
gio o genio de las matemáticas, pero pocos matemáticos tendrían 
algo que objetar al hecho de que tales calificativos se atribuyan a 
Gauss. El simple número de ideas nuevas y descubrimientos que 
produjo el matemático alemán, incluso antes de cumplir los vein­
ticinco años, parece inexplicable. 

Hijo de padres pobres, Gauss tuvo la suerte de poder sacar 
provecho de su talento matemático. Había nacido en una época 
en la que las matemáticas eran todavía una actividad privilegiada, 
financiada por cortesanos y mecenas, o practicada a ratos libres 
por aficionados como Pierre de Fermat. El protector de Gauss fue 
Karl Wilhelm Ferdinand, duque de Brunswick, que le permitió de­
dicarse a su vocación sin el apremio de tener que ganarse el sus­
tento con alguna otra ocupación más rentable económicamente. 
En un acto de gratitud, Gauss le dedicó su primer libro, las Dis­
quisitiones Arithmeticae (1801), con lo que el duque vio aso­
ciado así su nombre a uno de los volúmenes capitales de la 
historia de las matemáticas. 

Gauss vivió en un período de extraordinario desarrollo polí­
tico y social. Su adolescencia coincidió con la Revolución fran­
cesa, pues tenía doce años cuando se tomó la Bastilla. Vivió el 
apogeo de Napoleón en su madurez y su derrota en Waterloo con 
treinta y ocho años. Alcanzó a ver la Revolución liberal de Alema­
nia de 1848 con más de setenta años. Durante ese período tuvo. 
lugar la primera Revolución industrial, que tan grandes efectos 
tuvo en la vida política y social europea. El desarrollo de la indus­
tria permitió llevar a cabo experimentos impensables hasta ese 
momento, con telescopios y otros instrumentos ópticos mejores 
y más eficaces. Como veremos, la vida de Gauss estuvo influida 
por todos estos suc;esos. 

Por fortuna, su colección de trabajos ha permanecido bas­
tante completa; mucha de la correspondencia relevante de Gauss 
ha sido publicada. Sin embargo, Gauss era muy celoso de sus des­
cubrimientos matemáticos y usaba un lenguaje cifrado para pro­
tegerlos. En opinión de algunos, la falta de difusión de sus trabajos 
ha provocado un retraso de medio siglo en el desarrollo de las 
matemáticas: si Gauss se hubiera preocupado de divulgar la mitad 
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de lo que descubrió y no hubiera sido tan críptico en sus explica­
ciones, quizá las matemáticas habrían avanzado más rápidamente. 
Su diario matemático no pasó de manos de su familia al conoci­
miento público hasta el año 1898. Su estudio confirmó que Gauss 
había probado, sin publicarlos, muchos resultados que otros ma­
temáticos intentaron demostrar hasta bien entrado el siglo xrx. 
Sostuvo siempre que las matemáticas eran corno una obra arqui­
tectónica: un arquitecto no dejaría jamás los andamios para que la 
gente viera cómo se había construido el edificio. Desde luego, esta 
filosofía no ayudó a sus colegas contemporáneos a la compren­
sión de su obra. 

La estructura lógica del tratamiento de los problemas mate­
máticos propuesta por Gauss, en la que se enuncian los resulta­
dos o teoremas, se procede a su demostración y se culmina con 
las consecuencias o corolarios, sigue siendo en la actualidad el 
modo aceptado de presentar los resultados matemáticos. El ma­
temático alemán se negaba a anunciar resultados no demostra­
dos, y esta renuncia supuso un punto de inflexión en la historia 
de las matemáticas. Si bien los antiguos griegos habían introdu­
cido la idea de la importancia de la demostración corno compo­
nente indispensable del proceso matemático, antes de la época 
de Gauss los matemáticos se interesaban mucho más por la espe­
culación científica sobre su disciplina; si las matemáticas funcio­
naban, no se preocupaban demasiado de justificar de forma rigu­
rosa por qué lo hacían. 

Cuando Gauss se ocupó de la aritmética y de la teoría de nú­
meros, estas disciplinas estaban constituidas por colecciones ais­
ladas de resultados sin conexión entre ellos. Gauss recopiló· los 
conocimientos existentes y los aunó en un marco común, seña­
lando y corrigiendo los errores existentes. Llevó a las matemáti­
cas del siglo xrx a cumbres insospechadas unos años antes; y elevó 
la aritmética superior a la cima de las matemáticas. Citando sus 
propias palabras: «Las matemáticas son la reina de las ciencias y 
la aritmética es la reina de las matemáticas». 

Su primer gran resultado, cuando aún no había cumplido los 
diecinueve años, fue el descubrimiento del método para construir 
con regla y compás el polígono de 17 lados: el heptadecágono. 
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La construcción de polígonos regulares había ocupado a los ma­
temáticos desde la época de la Grecia clásica, con resultados irre­
gulares, de forma que h<l:bía polígonos, especialmente el de 7 lados 
o heptágono, para los cuales no existía una técnica que permitiese 
su construcción exacta usando solo regla y compás. Según el pro­
pio Gauss, que se sintió muy orgulloso de este descubrimiento 
durante toda su vida: «La casualidad no tuvo nada que ver en ello, 
ya que fue fruto de esforzadas meditaciones. Antes de levantarme 
de la can1a tuve la suerte de ver con la mayor claridad toda esta 
correlación, de forma que en el mismo sitio e inmediatamente 
apliqué al heptadecágono la correspondiente confirmación numé­
rica». Gauss no solo resolvió este problema, sino que encontró el 
método general para decidir si un polígono era o no susceptible 
de ser construido con regla y compás. En su testamento, Gauss 
pidió que se grabase en la lápida de su tumba un polígono de 
17 lados construido de acuerdo a su método. Sin embargo, no lo 
consiguió. 

Pero, sin duda, el resultado que le dio la fan1a entre sus con­
temporáneos fue el cálculo de la órbita de Ceres, un planeta enano 
descubierto en 1801 por Giuseppe Piazzi desde un observatorio de 
Palem10. Este reconocimiento popular le llevó a adentrarse en la 
astronomía, y llegó a ser director del observatorio de Gotinga. Es 
más que posible que sus observaciones astronómicas lo distraje­
ran de su trabajo matemático puro, en el que era más difícil encon­
trar la fan1a. Para las matemáticas, como ciencia, la determinación 
de la órbita de Ceres puede ser un hecho anecdótico, pero el mé­
todo usado para su cálculo fue fundan1ental para su desarrollo: el 
método de mínimos cuadrados. En este caso es más importante 
el procedimiento usado para llegar al resultado que el resultado 
mismo. En la atribución de la autoría de este método a Gauss 
hubo cierta polémica, puesto que Adrien-Marie Legendre, veinti­
cinco años mayor que Gauss, tan1bién argumentó su primacía en 
dicho descubrimiento. Esta rivalidad con Legendre perduró du­
rante muchos años y se extendió a numerosos can1pos de las ma­
temáticas. Ocurría con mucha frecuencia que si Legendre afirmaba 
haber descubierto una nueva verdad matemática, Gauss lo rebatía 
arguyendo que él ya la conocía y que había usado tal resultado. En 
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una carta escrita por Gauss el 30 de julio de 1806 a un colega as­
trónomo llamado Schumacher, al que le unía una gran amistad, 
comentaba: «Parece como si yo estuviese destinado a coincidir 
con Legendre en casi todos mis trabajos teóricos». Este tipo de 
rivalidades eran muy comunes y se explican por los métodos de 
trabajo y divulgación de resultados de los matemáticos de aquella 
época. Durante toda su vida, Gauss fue reacio a meterse en gue­
rras abiertas sobre la precedencia de sus descubrimientos. Solo 
cuando, tras su muerte, se estudiaron sus notas y su correspon­
dencia, quedó claro que la razón estaba de su parte. De lo que no 
cabe duda es de que el método de mínimos cuadrados se reveló 
como una herramienta de gran utilidad para abordar numerosos 
problemas en los que se trataba de establecer la función que mejor 
se adaptara o aproximara a un coajunto de datos con un criterio 
de minimización. Las aplicaciones más importantes se encuentran 
en estadística, donde alcanzan la cumbre en la estimación de pa­
rámetros poblacionales a través de una muestra, en un resultado 
conocido como teorema de Gauss-Markov. Como anécdota cu­
riosa queda el hecho de que el nombre de Gauss está comúnmente 
asociado en estadística a la tan conocida campana de Gauss, 
cuando en realidad el descubrimiento de dicha distribución se 
debe a Abrahan1 de Moivre. 

Gauss abordó desde muy temprano el llamado teorema fun­
damental del álgebra, que básicamente establece que un polino­
mio tiene tantas raíces, o valores donde el polinomio vale cero, 
como indica su grado. Este problema fue el tema de su tesis de 
licenciatura. A lo largo de su vida presentó varias demostracio­
nes de este resultado cada vez más afinadas y comprensibles. Al 
igual que en su descubrimiento de la órbita de Ceres, Gauss, en 
su búsqueda de una demostración adecuada, encontró construc­
ciones matemáticas novedosas y de gran utilidad, como fueron 
los números complejos. Gauss demostró en 1799 que valiéndose 
de un número muy especial, la raíz de - 1 (o número i), los mate­
máticos podían resolver cualquier ecuación polinómica que se 
les pusiera por delante. 

El análisis numérico y, especialmente, el estudio de los nú­
meros primos es quizá la parte de la obra de Gauss más conocida 
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y a la que dedicó más tiempo. Cuando Gauss era joven recibió 
como regalo una tabla de números primos que contenía varios 
millares. Para Gauss, aquellos números aparecían desordenada­
mente. Cuando escrutaba sus tablas numéricas, Gauss no conse­
guía determinar ninguna regla que le indicara cuánto tenía que 
saltar para encontrar el siguiente número primo. Aparentemente, 
no existía dicha regla. Gauss no podía aceptar semejante idea: la 
motivación primaria de la vida de un matemático es determinar 
estructuras ordenadas, descubrir y explicar las reglas que están 
en los cimientos de la naturaleza y prever qué sucederá a conti­
nuación. Este pensamiento, que llegó a ser obsesivo, le llevó a 
formular algunas de las más grandes conjeturas de la distribución 
de los números primos y su creación por procedimientos mate­
máticos. El problema de la determinación de números primos es 
de gran actualidad hoy día, ya que muchos de los procesos de 
encriptación de información están basados en las propiedades de 
dichos números. 

Entre 1818 y 1832 Gauss dirigió un vasto proyecto para to­
pografiar el Reino de Hannover. Se trataba de un enorme encargo 
con implicaciones políticas y militares, además de las científicas. 
Gauss no fue solo un director nominal, sino que se implicó en los 
trabajos de campo, lo que le detrajo un tiempo muy importante 
que podía haber dedicado a investigaciones matemáticas de tipo 
más teórico. Por otro lado, este trabajo permitió a Gauss el plan­
teamiento de nuevos tipos de geometría, no basada en los axio­
mas de Euclides, dando forma a ideas que llevaba madurando en 
su mente desde sus años de estudiante. Los trabajos de medición 
de la Tierra, encuadrados dentro de la geodesia, también le dieron 
la oportunidad de hacer grandes contribuciones a la geometría 
diferencial. En los últimos años de su vida se interesó por proble­
mas relacionados con la física aplicada gracias a su relación con 
Weber, especialmente de óptica, mecánica y electricidad. 

La influencia de Gauss en los matemáticos posteriores es 
enorme: baste señalar que fue profesor de Bernhard Riemann y 
Julius Wilhelm Richard Dedekind, dos de los más grandes mate­
máticos del siglo XIX. Sus aportaciones se produjeron, como ya se 
ha apuntado anteriormente, en todos los campos de las matemá-
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ticas, tanto puras corno aplicadas. Además, también merece un 
puesto de honor en la física, y sus contribuciones en magnetismo, 
óptica y geodesia se encuentran entre las más destacadas de su 
época. 

Así pues, no es exagerado el título póstumo que recibió de 
«Príncipe de los matemáticos» y que el rey Jorge V de Hannover 
hizo acuñar en una moneda conmemorativa. Según el historiador 
matemático Eric Temple Bell, en opinión compartida por la mayo­
ría de sus colegas, Gauss ocupa, junto a Arquímedes y Newton, el 
pódiurn de los grandes genios de las matemáticas. 
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1777 Nace Car! Friedrich Gauss en 1805 Se casa con Johanna Oshoff, con la 
Brunswick, Alemania, único hijo del que tendrá tres hijos: Joseph, Minna 
matrimonio formado por Gerhard y Louis, que mo1iría con pocos meses. 
Dietrich Gauss y Dorothea Benze. 

1809 Fallece la primera esposa de Gauss. 
1784 Entra en la escuela elemental de Publica su obra más importante de 

Brunswick. Tiene por profesores contenido astronómico: Theoria motus 
a J.G. Büttner y Martín Bartels, que corporum coelestium in sectionibus 
reconocen su capacidad y lo estimulan. conicis solem ambientium. 

1791 Es presentado al duque de Brunswick, 1810 Gauss contrae matrimonio por segunda 
que será su protector. vez, con Minna Waldeck, con la que 

tendrá tres hijos: Eugen, Wilhelm y 
1795 Gauss deja Brunswick y se traslada Therese. Su matrimonio dura hasta 

a la Universidad de Gotinga, donde 1831, cuando Gauss vuelve a enviudar. 
comienza sus estudios universitarios. 

1818 El gobierno de Hannover encarga a 
1796 Descubre el método de construcción Gauss la triangulación y medición del 

del polígono de 17 caras con regll;!- y reino, lo que le llevó varios años de 
compás. Este éxito hace que se decida dedicación a la geodesia. 
por las matemáticas como su 
dedicación principal. 1827 Publica Disquisitiones generales 

circa superficies curvas, su obra 
1799 Presenta su tesis de licenciatura fundan1ental en geometría diferencial, 

en la Universidad de Helmstedt. la cual incluye el Theorema egregium. 
En dicho trabajo proporciona la 
primera demostración del teorema 1831 Weber se instala en Gotinga, iniciando 
fundan1ental del álgebra. una fructífera relación con Gauss en 

física. 
1801 Publica Disquisitiones arithmeticae, 

su mayor aportación a la teoría de 1849 Gauss presenta una nueva 
números. En la obra recoge sus demostración del teorema fundamental 
investigaciones de años anteriores, del álgebra con motivo del 50º 
entre ellas las relativas a la aritmética aniversario de su tesis de licenciatura. 
modular, los números complejos 

. y la ley de reciprocidad cuadrática. 1855 Muere la madrugada del 23 de febrero 
Detemlina la órbita de Ceres por mientras dormía plácidan1ente, 
el método de mínimos cuadrados. a la edad de setenta y siete años. 

INTRODUCCIÓN 15 





CAPÍTULO 1 

Primeros destellos de un prodigio 
de los números 

Gauss destacó, desde muy pequeño, por poseer 
unas cualidades que admiten pocas comparaciones 

en la historia y que le grartjearon la atención de varias 
personas que le ayudaron a potenciarlas. Ya desde los inicios 
de su carrera científica se interesó por casi todas las ramas 

de las matemáticas, a las que aportó no solo grandes 
descubrimientos sino también una concepción de la 
disciplina basada en el rigor en las demostraciones. 





Solo se conocen unos pocos hechos interesantes de la infancia y 
juventud de Gauss. La mayor fuente específica de información de 
ese periodo es el propio Gauss, a través de las historias de su in­
fancia que quiso contar, ya mayor, a sus estudiantes y amigos. 

Johann Friedrich Carl Gauss nació en Brunswick, la principal 
ciudad del ducado de Brunswick-Wolfenbüttel, el 30 de abril de 
1777. Fue el único hijo del matrimonio entre Gerhard Dietrich 
Gauss, nacido en 1744, y Dorothea Benze. Su padre ya tenía un 
hijo de un matrimonio anterior. Gauss nunca utilizó su primer 
nombre de Johann y alteró el orden de los otros dos, de manera 
que siempre firmó sus trabajos como Carl Friedrich Gauss, que es 
como fue conocido por la posteridad. 

Su nacimiento tuvo lugar en una pequeña calle llamada Wer­
dengraben. Más tarde, la familia se mudó al número 30 de Wilhelm­
strasse, cerca del canal de la ciudad, lo que dio lugar a una de las 
historias más conocidas de su infancia: cuando tenía tres o cuatro 
años de edad cayó al agua del canal, aunque por fo1tuna fue res­
catado de inmediato por un labrador que pasaba por allí casual­
mente. La ciencia de las matemáticas tiene una deuda impagable 
con ese anónimo campesino. 

La familia paterna del padre, originalmente pequeños granje­
ros, se mudó a Brunswick hacia 1740. Ello significó para la fami­
lia Gauss unas expectativas de prosperidad y la promesa de un 
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futuro mejor en un período en el que el viejo feudalismo alemán 
estaba siendo sustituido por un nuevo estilo de gobiernos abso­
lutistas. En cualquier caso, no había forma fácil de prosperar: los 
gremios, que desde la Edad Media controlaban el acceso a los 
oficios, dominaban gran parte de la vida de la ciudad y no permi­
tían su expansión económica. El padre de Gauss, en su condición 
de recién llegado a la ciudad, tuvo que ganarse la vida con diver­
sos trabajos, tales como jardinero, carnicero ambulante o conta­
ble de una funeraria. El objetivo familiar era adquirir una casa 
propia dentro de la ciudad que les diese acceso a los derechos de 
ciudadanía. Lo curioso es que poco después de conseguirlo, el 
mundo donde vivía la familia Gauss se vino abajo con la invasión 
de los estados alemanes, entre los que se incluyó Brunswick, por 
las tropas de Napoleón. 

Se sabe que el padre de Gauss era un hombre brusco, escru­
pulosamente honrado, cuya rudeza para con su hijo algunas ve­
ces lindaba en la brutalidad. Su honradez y tenacidad le permitie­
ron cierto grado de comodidades, pero su vida jamás fue fácil. 
No ayudó a Gauss a hacer una carrera científica, y no entendió la 
necesidad de que su hijo adquiriera una educación adecuada a su 
capacidad. Si la opinión del padre hubiera prevalecido, el inte­
ligente muchacho habría seguido una de las profesiones fami­
liares, y fue tan solo una serie de felices incidentes la que salvó 
a Gauss de ser jardinero o albañil. Siendo niño era respetuoso 
y obediente, y aunque jamás criticó a su padre en su vida poste­
rior, se comprende que nunca sintiera por él verdadero afecto. 
Gerhard murió en 1806. 

La familia de la madre procedía de Velpke, una pequeña ciu­
dad de la Baja Sajonia cercana a Brunswick. Dorothea Benze era 
una mujer despierta, de espíritu alegre y fuerte carácter. Vivió 
hasta la muy avanzada edad de noventa y siete años, cuidada por 
su hijo, con el que convivió los veinte últimos años de su vida 
en Gotinga. Siempre alentó a Gauss en sus estudios y se mostró 
muy orgullosa de sus logros científicos. Se cuenta que cuando 
Wolfgang Bolyai (1775-1856), uno de los mejores amigos de Gauss, 
le aseguró que su hijo pasaría a la historia como uno de los más 
grandes de entre todos los matemáticos, lloró de emoción. 
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Ninguno de los padres de Gauss tenía una gran educación: el 
padre, como se deduce de sus ocupaciones, al menos sabía leer y 
escribir y alguna aritmética elemental. Gauss, ya anciano, acos­
tumbraba alardear de haber aprendido a contar antes que a escri­
bir y de haber aprendido a leer por sí mismo, deletreando las 
letras de parientes y amigos de la familia. Él mismo contaba la 
anécdota que lo coloca entre los más precoces matemáticos: 
cuando tenía tres años, una mañana de un sábado de verano, 
mientras su padre procedía a efectuar las cuentas para abonar los 
salarios de los operarios que tenía a su cargo, el niño le sorprendió 
afirmando que la suma estaba mal hecha y dando el resultado co­
rrecto. El repaso posterior de Gerhard dio la razón al niño. Nadie 
le había enseñado los números y menos a sumar. Posiblemente su 
madre sabía leer con dificultad, pero no escribir. Gauss nunca se 
sintió cercano a su padre, y durante toda su vida afirmó que sus 
capacidades las había heredado de su madre. 

«No es el conocimiento, sino el acto de aprendizaje, 
y no la posesión, sino el acto de llegar allí, 

lo que concede el mayor disfrute.» 
- CA.RL FRIEDRICH GAUSS. 

La información más fiable disponible sobre el matemático 
alemán empieza en el año 1784, cuando el joven Carl entró en la 
escuela elemental. No todos los niños de su edad iban a la es­
cuela en aquella época, pero para aquellos que crecían en las 
ciudades generalmente había mayores oportunidades, y en ese 
sentido Gauss tuvo mucha suerte. También la tuvo en otro sen­
tido muy diferente; nos referimos a encontrar a un profesor que 
lo encaminase en sus primeros pasos académicos, Büttner, 
que era inusualmente competente. Büttner tuvo el mérito de re­
conocer la enorme capacidad del joven Gauss y distinguirlo con 
un interés personal de entre sus más de cincuenta condiscípulos. 
En 1786 solicitó y obtuvo de Hamburgo textos aritméticos espe­
ciales para tan excepcional estudiante, que pagó él mismo de su 
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bolsillo. El asistente de Büttner durante aquellos años era Martín 
Bartels (1769-1836), que posteriormente sería profesor de mate­
máticas en la Universidad de Kazán y era solo ocho años mayor 
que Carl Friedrich. Él también reconoció rápidamente el genio 
de Gauss y le dedicó enorme atención. Ambos estudiaban juntos, 
se ayudaban para descifrar y entender los manuales de los que 
disponían sobre álgebra y análisis elemental. Durante esos años 
se empezaron a gestar algunas de las ideas y formas de ver las 
matemáticas que caracterizaron posteriormente a Gauss. En los 
libros de Bartels, Gauss se familiarizó con el binomio de Newton 
para exponentes no enteros y con las series infinitas, e inició los 
primeros pasos por el análisis matemático. Es curioso reseñar 
que, en la Universidad de Kazán, Bartels fue profesor de Nikolái 
Lobachevski (1792-1856), que sería uno de los matemáticos que 
desarrollarían la geometría no euclídea, área cuyo iniciador fue 
Gauss. 

MEJORANDO A NEWTON 

En colaboración con su profesor J.C. Martín Bartels, el joven Gauss consiguió 
una nueva demostración del binomio de Newton con coeficientes naturales, 
que es una fórmula que permite desarrollar la potencia de un binomio: 

donde 

( 
n ) n! 
k • k!(n-k)! 

es el número combinatorio n sobre k, y n! - fl~j se llama factorial de un 
número, y es el producto del número natural por todos aquellos que son me­
nores que él. 
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PRECOCIDAD ARITMÉTICA 

Hay una anécdota que ilustra la precocidad y facilidad de Gauss 
para los cálculos aritméticos. Cuando tenía nueve años, su profe­
sor Büttner propuso a sus alumnos que sumaran los cien primeros 
números naturales, con la seguridad de que tardarían en resolverlo 
el tiempo suficiente para que él pudiera tomarse un merecido des­
canso. La costumbre dictaba que a medida que los alumnos termi­
naban el problema se levantaban y ponían su pizarra con la 
solución delante del maestro. Mientras los demás alumnos apenas 
se habían puesto a la tarea, en pocos segundos Gauss había dejado 
ya su pizarra sobre el escritorio del maestro, a la vez que excla­
maba Ligget se! («¡Ahí está!»). Büttner pensó que Gauss estaba 
siendo insolente, pero cuando miró la pizarra vio que la respuesta, 
5 050, estaba allí, sin un solo paso de cálculo. El profesor pensó que 
había hecho trampa de alguna manera hasta que el jovencito Carl 
le explicó su razonamiento. Gauss no había abordado el problema . 
directamente, acumulando sumas cada vez mayores y, por tanto, 
susceptibles de error, sino que se había aproximado a él «lateral­
mente». Se había dado cuenta de que la primera cifra (uno) y la 
última (cien) sumadas daban la misma cantidad (ciento uno) que 
la segunda y la penúltima, y el razonamiento se podía proseguir sin 
problema, o sea, 1+ 100=2+99=3+98= ... = 50 + 51 = 101, con lo 
que tenía 50 parejas de números que sumaban 101 y cuyo producto 
es 5050. 

Gauss había aplicado, por supuesto sin saberlo, la fórmula de 
la suma de los términos de una progresión aritmética. En matemá­
ticas, una progresión aritmética es una serie de números tales que 
la diferencia de dos términos sucesivos cualesquiera de la secuen­
cia es una constante, cantidad llamada diferencia de la progre­
sión, diferencia simplemente o razón. En el caso del problema 
propuesto a Gauss, la diferencia era l. La expresión de la suma 
de una progresión aritmética es bastante sencilla: si los términos de 
nuestra sucesión son a¡, a2, ••• , a,,, la suma S,. es: 

S,, = n(a1 +a,,). 
2 
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En el caso de la suma de los n primeros números naturales, 
Tn, queda: 

T,, = n(n + l). 
2 

Si sustituimos en la fórmula anterior n = 100, obtenemos 5 050, 
como era de esperar. 

La demostración de la fórmula se puede hacer por varios pro­
cedimientos, algunos tan intuitivos como el uso de parejas que 
sumen igual, tal y como es posible que hiciera Gauss, pero para 
una demostración más formal se suele aplicar el llamado princi­
pio de inducción. Este método consiste en probar que un número 
natural n posee unas determinadas propiedades, y a continuación 
demostrar que si un natural cualquiera las posee, el siguiente lo 
hará también. 

La fuerza de la demostración matemática es que podemos 
afirmar que esa fórmula es cierta para la suma de cualquier serie 
de números naturales; no hay necesidad de más comprobacio­
nes. Sin embargo, si pusiésemos los más rápidos ordenadores 
actuales a realizar esas sumas y comprobáramos que siempre se 
verificaba la fórmula, ello no supondría una verdad universal. 
Siempre sería posible pensar que nos quedaban números con los 
que comprobar lo que afirmamos y en alguno podría fallar. Pues 
bien, esa fue una de las grandes aportaciones de Gauss a las ma­
temáticas: la necesidad de la prueba rigurosa. Antes de sus tra­
bajos, se hacía mucha matemática especulativa, con afirmacio­
nes basadas en ejemplos concretos, con lagunas conceptuales y 
pruebas incompletas. Sin embargo, Gauss, que no publicaba sus 
trabajos hasta tener para sí mismo la demostración más rigurosa 
posible, en sus escritos no solía incluir las demostraciones com­
pletas de sus resultados, dificultando su comprensión por sus 
contemporáneos. Su idea de los trabajos matemáticos era pre­
sentarlos perfectos, y pensaba que las demostraciones detalla­
das quitaban brillantez a la obra. Para él era como mostrar un 
edificio en que todavía estuviesen los andamios que habían per­
mitido su construcción. 
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EL PRINCIPIO DE INDUCCIÓN 

El principio de inducción aplicado a la demostración de la fórmula de la suma 
de los n números naturales tiene las tres premisas básicas siguientes: 

a) Comprobamos la validez de nuestra hipótesis para el caso n = l. 
b) Suponemos que es cierto para n-1. 
c) Basándonos en a) y b), lo probamos para n. 

Si consegu imos probar c) usando a) y b), entonces la afirmación es cierta para 
todos los números naturales. La idea que subyace en b) y c) es que si es cier­
to para un número, también lo es para el siguiente. Como lo probamos para 
n = 1 en a), el resto es inmediato. Ap liquemos el principio de inducción a la 
fórmula de la suma de los n primeros números naturales: 

a) Para n = 1, tenemos: 

T = n(n+ 1) 
n 2 . 

T, = l(l + l) = l. Cierto. 
2 

Suponemos que para n - 1 la suma va le: 

(n-l)n 
T i =---. n- 2 

c) Así, la suma Tn = Tn_, + n, con lo que aplicando b) tenemos que: 

(n-l)n (n-l)n 2n (n - l)n+2n n2 -n+2n n2 +n n(n+l) 
T =---+n=---+-=~~--=----=--=---

n 2 2 2 2 2 2 2' 

que completa la demostración. 

LOS NÚMEROS TRIANGULARES 

La anécdota de la suma de los cien primeros números naturales y 
la fórmula general que hemos probado sirve también para intro­
ducir un tema al que Gauss dedicó mucho tiempo en su juventud: 
los números triangulares. De hecho, el matemático británico Mar-
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Un número 
triangular es 

aquel que puede 
expresarse 

en forma 
de triángulo. 

Aquí aparecen 
representados los 

seis primeros. 
Gauss descubrió 

que cualquier 
número entero 
positivo puede 

representarse 
como la suma de, 

como máximo, 
tres números 
triangulares. 

• 

• •• ••• •••• 
10 
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cus du Sautoy en su libro La música de los números primos 
(2003), incluye una novedosa explicación del modo en que Gauss 
llegó al resultado de 5 050, usando números triangulares. 

Un número triangular es aquel cuyas unidades pueden recom­
ponerse en la forma de un triángulo equilátero (por convención, 
el primer número triangular es el 1 ). El concepto de número trian­
gular fue introducido por Pitágoras, que estudió algunas de sus 
propiedades. Los pitagóricos estaban muy interesados en las cua­
lidades estéticas de los números. En la figura se muestran los seis 
primeros números triangulares. 

Si se observa con atención el valor de los primeros números 
triangulares, se puede ver que coincide con el valor de la serie Tn 
de la suma de los n primeros números naturales. Obviamente, no 
es casualidad, pues en la construcción de un número triangular 
cada fila tiene un elemento más que la anterior, y la primera em­
pieza por l. Así, saber si un número cualquiera es triangular equi­
vale a comprobar que dicho número coincide con el valor de T,. 
para algún n. Así pues, cada número triangular T,. está definido 
por la siguiente fórmula: 

T = n(n+l) 
" 2 

Por tanto, el problema de la suma propuesto a Gauss sería 
equivalente a calcular el número triangular cuya fila de la base 
valiera 100. La mejor forma de hacer este cálculo sin grandes co­
nocimientos matemáticos es tomar otro triángulo igual, darle la 

• •• 
3 

• •• ••• •••• ••••• 
15 

• • • • •• 
6 

• •• • •• • ••• • •••• •••••• 
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vuelta y ponerlo al lado del pri-
mero. En este caso tenemos un 
rectángulo de 100 unidades de 
largo y 101 de ancho. Para que la 
transformación quede clara hemos 
de cambiar previamente los trián­
gulos equiláteros por triángulos 
rectángulos ( con uno de sus ángu­
los recto) sin más que desplazar 
las filas. Cuando tenemos un rec-
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tángulo, el cálculo del número total de unidades es muy sencillo, 
pues se trata del producto de sus lados 100 x 101 = 10100. Por 
tanto, un único triángulo contiene la mitad de las unidades, o sea 
5 050. La figura siguiente ayuda a comprender la construcción del 
rectángulo a partir de dos números triangulares iguales. Porrazo­
nes de espacio, trabajaremos con T

3 
en vez de T100, ya que eso no 

afecta al razonamiento. Para mayor claridad notaremos por X las 
unidades del primer número triangular, y por Z, las del segundo. 

X 
XX 

XXX 
+ 

z 
zz 

zzz 
X 
XX+ 
XXX 

zzz 
zz 

z 
= 

xzzz 
xxzz 
X X X Z 

Como vemos, queda un rectángulo de 4 x 3, como era de espe­
rar. Y, en general, la suma de dos números triangulares T,. da lugar 
a un rectángulo n x ( n + 1 ), con lo que para saber el número de 
elementos de T,. basta con dividir por 2, obteniéndose de nuevo, y 
por otro razonamiento distinto, que la fórmula de construcción de 
números triangulares es: 

T,, = n(n+l). 
2 

Es difícil precisar cuál de los dos tipos de razonamiento fue 
usado por el joven Gauss, pero no es descartable que hubiera 
comprendido que lo que se le pedía era calcular el número trian­
gular de base 100 unidades, habida cuenta del interés que desde 
muy joven demostró por los números triangulares y sus propieda­
des. Así, en su diario matemático hay una entrada del 18 de julio 
de 1796 que dice literalmente: «¡Eureka! num =!),,+!),,+!),,»,lo cual, 
una vez traducido su críptico lenguaje, equivale a uno de sus teore­
mas más conocidos, el que afirma que todo entero positivo puede 
representarse como la suma de un máximo de tres números trian­
gulares. Démonos cuenta de que este teorema no implica que los 
números triangulares tengan que ser diferentes ( como ocurre en el 
caso de 20 = 10 + 10), ni tampoco que deba haber una solución con 
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exactamente tres números triangulares, sino que ese es el número 
máximo de números triangulares que necesitaremos, pues en el 
ejemplo anterior nos basta con dos y, evidentemente, si el número 
es triangular basta con uno, que es el propio número. La alegría 
estaba más que justificada El joven Gauss acababa de resolver uno 
de los retos del viejo Fermat (1601-1665). Y no un reto cualquiera ... 
Hasta el gran Leonhard Euler ( 1707-1783) se había estrellado con 
él. Más adelante hablaremos de Fermat y Euler de manera más ex­
tensa, porque sus trabajos volverían a tener coincidencias con los 
de Gauss. Esta vez Gauss iba a ser el primero de la historia que 
proporcionara la respuesta a una de las célebres coajeturas de Fer­
mat. En matemáticas, una cof\ietura no es más que un resultado que 
aparentemente es cierto, pero que no se ha podido probar de fom1a 
rigurosa y analítica, pero para el que tampoco se ha podido encon­
trar un contraejemplo que lo desmienta. 

Este resultado no sería publicado por Gauss hasta 1801 en su 
·libro Disquisitiones arithmeticae. Gauss no publicaba sus resul­
tados inmediatamente después de obtenerlos, sino que esperaba 
algunos años hasta tener los contenidos matemáticos suficientes 
para editar un libro. Esta forma de actuar fue fuente de diversas 
polémicas acerca de la primacía de Gauss en algunos descubri­
mientos matemáticos. De hecho, hubo resultados que Gauss en­
contró en primer lugar, pero que fueron publicados antes por 
otros matemáticos. No quiere decir que fuesen copiados, sino que 
simplemente habían llegado a resultados parecidos o iguales de 
forma independiente y sin conocer los avances de Gauss. Muchas 
de estas polémicas ni siquiera pudieron resolverse hasta muchos 
años después, cuando se pudo estudiar toda la correspondencia y 
los apuntes científicos de Gauss. 

El teorema de los números triangulares recuerda a la fa­
mosa conjetura de ·Goldbach, enunciada por Christian Goldbach 
(1690-1764), que afirma que todo número natural par mayor que 2 
se puede expresar como suma de dos números primos, lo que 
significa que todo número impar mayor que 5 se puede poner 
como suma de tres primos o menos, pues si no es directamente 
primo, basta con sumar el primo 3 a un número par tres unida­
des menor. Sin embargo, Gauss consiguió demostrar su resul-
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tacto, mientras que la conjetura de Goldbach sigue sin haber 
sido probada de forma rigurosa. Este ejemplo explica el motivo 
por el cual las matemáticas dan tanto valor a la demostración 
de un aserto. La conjetura de Goldbach ha sido verificada para 
todos los números menores que 1014, que es un número inimagi­
nable por su magnitud, pero no está aceptada como resultado 
matemático y no ha alcanzado la categoría de teorema, quedán­
dose en simple conjetura. 

FORMACIÓN ACADÉMICA DE GAUSS 

Con once años de edad, en 1788, Gauss consiguió, con la ayuda 
de su mentor Büttner, que lo admitieran en el Gymnasium Catha­
rineum - la escuela secundaria- , a pesar de las reticencias de 
su padre a que continuase sus estudios. Fueron los esfuerzos 
de su madre y de su tío paterno los que lograron que el padre re­
nunciara a la ayuda de su hijo en su trabajo y lograra una educa­
ción superior. Las lecciones en la nueva escuela eran ordenadas 
y regulares, y el número de alumnos en las clases, razonable. Allí 
estudió latín y griego, requisito indispensable para alcanzar una 
enseñanza superior y una carrera académica. El latín era en aquel 
tiempo la lengua franca de la ciencia. Al cabo de dos años accedió 
al grado superior de la enseñanza secundaria. 

Su fama se empezó entonces a extender por los círculos cul­
tivados de Brunswick-Wolfenbüttel hasta que llegó a oídos del 
duque Karl Wilhelm Ferdinand (1735-1806), a quien fue presen­
tado en 1791. El título de duque de Brunswick fue mantenido, des­
de 1235 en adelante, por varios miembros de la Casa de Welf, que 
gobernaron diversos pequeños territorios en el noroeste de Ale­
mania. El elemento unificador de estos territorios era que estaban 
gobernados por un descendiente del duque, pero solo por la línea 
masculina, porque existía una ley sálica que impedía que las mu­
jeres accedieran al poder. Impresionado por el joven Gauss, el 
duque le asignó un estipendio anual para que pudiera proseguir 
sus estudios. Recompensas como esas no eran habituales en ese 
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tiempo, especialmente en un estado pequeño como Brunswick, lo 
que permitió a Gauss superar las barreras sociales a las que se 
encontraba sujeto por su humilde nacimiento. De hecho, Gauss no 
habría progresado nunca como lo hizo sin la ayuda de personas 
interesadas en promover su enorme talento. Una de las ayudas 
más importantes la recibió de E.A.W. Zimmerman (1743-1815), 
profesor del Collegium Carolinum y consejero provincial del 
duque, al que instó a ayudar al joven y talentoso Gauss. La bené­
fica influencia del duque se extendió hasta 1806, año en el que fa­
lleció a consecuencia de las heridas sufridas en la batalla de Jena, 
donde las tropas francesas derrotaron a Prusia y sus aliados, entre 
los que se encontraba el estado de Brunswick. Un año después de 
la muerte del duque y de que Gauss perdiera su ayuda económica, 
logró ser nombrado director del observatorio de Gotinga, con lo 
que pudo seguir manteniéndose ec.onómicamente. Así pues, con 
el impulso de Zimmerman, Gauss pasó a ser estudiante del Colle­
gium Carolinum, donde fue alumno desde 1792 hasta el año 1795. 
La amistad entre Gauss y Zimmerman se mantuvo hasta la muerte 
de este último enjulio de 1815. 

Academias como el Collegium Carolinum no eran raras en 
Alemania, país que en aquel momento estaba formado por esta­
dos gobernados de forma independiente. Eran un paso interme­
dio entre los llamados Gymnasium, en los que los niños recibían 
una educación elemental, y la universidad. Futuros oficiales del 
ejército, arquitectos, ingenieros, mecánicos y comerciantes en­
contraban en las academias la oportunidad de conseguir una 
mejor educación general que les permitiera desarrollar sus traba­
jos en el futuro. Por otro lado, empezaban también a tener una 
cierta especialización dentro de las áreas de su interés. En estas 
academias se enseñaba lenguas antiguas y modernas, moral y 
dogmas cristianos, filosofía, historia y literatura, estadística, le­
yes, matemáticas, física e historia natural. También se incluían 
clases de dibujo y se potenciaban las cualidades artísticas de los 
estudiantes. Había también un nuevo espíritu de enseñanza: se 
trataba de formar personas y no solo de impartir conocimientos. 
En general, los alumnos tenían mucha libertad para estudiar con 
más profundidad aquellos temas por los que se sentían más atraí-
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dos. Por naturaleza eran elitistas y muchos de los más conocidos 
escritores y científicos de finales del siglo XVIII y principios del XIX 

se educaron en ellas. La educación pública de Brunswick fue una 
de las áreas donde los progresos del siglo XVIII fueron más eviden­
tes, y la carrera académica de Gauss es un ejemplo de hasta qué 
punto era factible que una persona de origen humilde alcanzara 
estudios superiores. 

La librería del Collegium Carolinum era inusualmente buena 
y contenía la mayoría de la literatura clásica matemática. Gauss 
permaneció en el collegium hasta 1795. Allí estudió lenguas clá­
sicas, literatura, filosofía y, por supuesto, matemáticas superiores, 
siendo un alumno brillante en todas ellas. Entre sus lecturas de 
matemáticas de esa época están los Principia Mathematica 
de Newton (1642-1727), el Ars Conjectandi de Jakob Bernoulli 
(1654-1705), los trabajos de Lagrange (1736-1813) y algunas de 
las memorias de Euler. Se sintió especialmente atraído por los 
trabajos de Newton, al que consideraba un genio de las matemá­
ticas y un ejemplo a seguir. 

En el Collegium Carolinum, Gauss iniciará alguna de sus fu­
turas investigaciones matemáticas, según sus propias confesio­
nes posteriores, como la distribución de los números primos o 
los fundamentos de la geometría. Los progresos de Gauss debie­
ron de satisfacer al duque, que aumentó año a año las cantidades 
que debían serle pagadas. 

En el otoño de 1795, a la edad de dieciocho años, Gauss dejó 
su Brunswick natal y se trasladó a la Universidad Georgia Augusta 
de Gotinga, una pequeña ciudad situada a unos cien kilómetros al 
sur, dentro del Estado de Hannover. 

Gauss escogió esta universidad en contra de los deseos del 
duque de Brunswick, que quería que su protegido continuase sus 
estudios en la universidad local de Helmstedt, aunque de todas 
formas mantuvo su apoyo financiero. La Universidad de Gotinga 
se llamó Georgia Augusta en honor del rey Jorge II de Inglaterra, 
que también era príncipe de Hannover. Fue concebida según el 
modelo de Oxford y Cambridge, lo que la dotó de mayor indepen­
dencia de la influencia eclesiástica y aumentó la calidad de la en­
señanza. Gauss recibió mucha libertad para la organización de sus 
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GOTINGA 

Gottingen, el nombre alemán de Gotinga, es mencionado por primera vez 
como Gutingi en un documento del emperador Otón I del Sacro Imperio Ro­
mano. Para comienzos del siglo x1 11, Gotinga ya poseía derechos de ciudad. 
A partir de 1584, perteneció al principado de Brunswick-Wolfenbüttel y en 
1692, finalmente, al principado electoral de Hannover, siendo regida por un 
duque. A raíz de la muerte sin descendencia de la reina Ana de Gran Bretaña 
en 1714, el elector de Hannover se convirtió en rey de Gran Bretaña bajo el 
nombre de Jorge l. Desde ese momento, y hasta 1837, los intereses de Han­
nover y de Gran Bretaña caminaron conjuntamente bajo una unión dinástica, 
con un período de excepción que ocupó las guerras napoleónicas. En 1806 
estuvo brevemente bajo control prusiano, y en 1807 pasó al reino napoleóni­
co de Westfalia. Estas disposiciones territoriales se anularon después de la 
derrota de Napoleón, y en 1813 volvió bajo el control de Hannover, que sería 
elevado a reino en 1814. Fuera de este período de guerras, la ciudad donde 
vivió Gauss siempre fue tranquila, rodeada por las murallas medievales. Aun­
que la Teología había dominado los primeros años de la universidad, cuando 
Gauss fue nombrado profesor de astronomía y director del observatorio de 
la ciudad en 1807, ya era la ciencia la disciplina que más destacaba. Ni que 
decir tiene que el impulso de Gauss fue lo que hizo más famosa a esta univer­
sidad, atrayendo a estudiantes y científicos. 

Auditorio de la Universidad de Gotinga, donde Gauss estudió y luego fue profesor. 
Grabado en madera a partir de un dibujo de Robert Gaissler, 1865. 
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obligaciones académicas y tenía manga ancha para escoger sus 
clases y tutores, lo que fue muy beneficioso para su formación. 

El profesor principal de matemáticas de la universidad era 
Gotthelf Abraham Kastner (1719-1800), que tenía por entonces se­
tenta y seis años, pero como su dedicación a la investigación ma­
temática había sido nula, Gauss no lo tuvo nunca como referente. 
En la universidad tuvo contactos sociales con numerosos pro­
fesores, entre los que destacan el físico Georg C. Lichtenberg 
(17 42-1799), el astrónomo Karl F. Seyffer (1762-1822) y el lingüista 
Christian Gottlob Heyne (1729-1812). Sin embargo no hizo muchas 
amistades entre los estudiantes, si exceptuamos el caso de Wolf­
gang von Bolyai, un noble de Transilvania, provincia que terúa una 
nutrida minoria alemana. El resultado más importante de esta aso­
ciación es la correspondencia entre ambos, que se extiende du­
rante más de cincuenta años, desde 1799, durante una temporada 
de ausencia de Gauss de Gotinga, hasta 1853, dos años antes de la 
muerte de Gauss. 

Gauss llegó a afirmar que Bolyai fue el «espíritu más compli­
cado que jamás conocí». Bolyai es más explícito al hablar de su 
amistad: «Nos unía la pasión por las matemáticas y nuestra con­
ciencia moral, y así paseábamos durante largas horas en silencio, 
cada uno ocupado en sus propios pensamientos». 

«Bolyai fue el único que supo interpretar mis criterios 
metafísicos sobre matemáticas.» 
- CARL FRIEDRICH GAUSS SOBRE SU AMIGO WOLFGANG VON BOLYAI. 

34 

Durante estos tres años en Gotinga, Gauss estudió enteramen­
te a su manera. A finales de 1798 abandonó la universidad por ra­
zones que no están claras, pero ya había desarrollado las más 
importantes ideas matemáticas que publicaría en los siguientes 
veinticinco años. Gauss dejó Gotinga sin haber conseguido un 
diploma. A petición del duque, tal y como se recoge en la corres­
pondencia con Bolyai, Gauss remitió su disertación doctoral a la 
Universidad de Helmstedt en 1799. El grado fue concedido in ab­
sentia, sin el usual examen oral. 
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FARKAS BOLYAI 

También conocido en Alemania como 
Wolfgang von Bolyai (1775-1856), fue un 
matemático húngaro, reputado sobre 
todo por sus trabajos en geometría. Su 
obra principal, conocida como el Tenta­
men (Tentamen iuventutem studiosam 
en elementa matheosos introducendi), 
fue un intento de dar una base rigurosa 
y sistemática a la geometría, la aritméti­
ca, el álgebra y el análisis. En este traba­
jo expuso procedimientos iterativos para 
resolver ecuaciones. El problema de los 
procesos iterativos de resolución de pro­
blemas matemáticos es que no siempre 
puede garantizarse que e l número de 
iteraciones sea finito; cuando un método 
puede asegurarlo se dice que es conver­
gente. Los procedimientos que expuso 
Bolyai eran de este tipo. Otra aportación 
importante de su obra fue incluir una de­
finición de igualdad entre dos figuras 
planas si las dos podían ser divididas en un número finito de partes equiva­
lentes, dando lugar al teorema de Bolyai-Gerwien. Fue padre del también 
matemático János Bolyai, al que anin;ió en sus trabajos de geometría no euclí­
dea. Gauss reconoció que muchas de sus ideas sobre geometría las había 
discutido y mejorado con Wolfgang Bolyai. 

CONSTRUCCIÓN CON REGLA Y COMPÁS 
DEL POLÍGONO REGULAR DE 17 LADOS 

Desde su llegada a Gotinga, el joven Gauss siguió desarrollando 
de forma autónoma sus investigaciones sobre números que había 
iniciado en el Collegium. Sin duda más fruto de estas investigacio­
nes que de las enseñanzas de Kastner, cuando Gauss estaba en su 
casa de Brunswick se produjo un descubrimiento que será clave, 
no solo en la carrera de Gauss, sino en el futuro .de las matemáti-
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EL DIARIO CIENTÍFICO DE GAUSS Y SU INTERPRETACIÓN 

La construcción del heptadecágono en 1796 hizo que Gauss comprendiera 
que podría sacar el mayor partido de su talento si se dedicaba a las mate­
máticas en lugar de a la filosofía. Cuando se dio cuenta de la importancia de 
su descubrimiento, que daba solución a uno de los problemas de construc­
ción con regla y compás que más tiempo había ocupado a los matemáticos, 
lo escribió en un pequeño diario científico y esa fue su primera anotación. 
Se inició así uno de los documentos matemáticos más interesantes de la 
historia de esta ciencia. La última anotación la hizo el 9 de julio de 1814. Son 
solo 19 páginas y contienen 146 entradas muy breves con descubrimientos 
o resultados de cálculos. El diario no tuvo circulación científica hasta 1898, 
cuarenta y tres años después de la muerte de Gauss, cuando la Sociedad 
Real de Gotinga le pidió al nieto del matemático que prestase el libro para 
su estudio crítico, lo que permit ió desentrañar la mayoría de los resultados 
que Gauss había encontrado y dirimir polémicas sobre la autoría de descu­
brimientos matemáticos. Este método de t rabajo le permitía escribir de ma­
nera rápida todas las ideas que pasaban por su mente en un período extraor­
dinariamente prolífico. Gauss escribía el resultado final, pero no incluía la 
demostración matemática. Ni siquiera el enunciado era evidente. Su forma 
de escribir era muy personal, con abreviaturas de las que solo él conocía el 
significado; algunas incluso no incluyen notación matemática. La mayoría se 
han logrado descifrar porque son resultados que más tarde Gauss publicó 
de manera más formal. Por ejemplo, las referidas a los números triangulares, 
al método de mínimos cuadrados o a la geometría diferencial. En el caso del 
teorema referido a números triangulares aparece en el diario como: 

EYPHKA! núm = ó + ó + ó 

El resultado lo publicó Gauss más tarde en su libro Disquisitiones arithmeti­
cae en 1801, enunciado como que todo número se puede escribir como suma 
de, como mucho, tres números triangulares. Pero hay algunas anotaciones 
tan crípticas que no se han llegado a descifrar. El 11 de octubre de 1796, Gauss 
escribió «Vicimus GEGAN» («Vencimos al dragón»). No se tiene idea de cuál 
era el dragón al que se refería. El 8 de abril de 1799 escribió «REV. GALEN» 
dentro de un rectángulo y ha sido imposib le hacer coincidir esa anotación 
con ninguno de los resultados conocidos de Gauss. 
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cas: el método de construcción con regla y compás del polígono 
regular de 17 lados. 

La importancia para las matemáticas de este descubrimiento 
deriva del hecho de que hizo que Gauss decidiera dedicar su vida 
a esta disciplina. Al día siguiente, el 30 de marzo, justo un mes 
antes de cumplir los diecinueve años, Gauss hizo su primera ano­
tación en su diario de notas, el diario científico más importante 
de la historia de las matemáticas, en el que iría apuntando, a veces de 
forma críptica, pues ya sabemos lo reservado que era Gauss con 
sus descubrimientos, los resultados matemáticos que le iban vi­
niendo a la cabeza. Por ese diario desfilaría un alto porcentaje de 
los descubrimientos matemáticos del siglo XIX, pero no fueron 
recogidos todos los descubrimientos de Gauss en el período pro­
lífico de 1796 a 1814. Muchos de los resultados anotados bastarían 
para establecer la prioridad de Gauss en campos donde algunos 
de sus contemporáneos se niegan a creer que les precediera. La 
anotación del 19 de marzo de 1797 muestra que Gauss había ya 
descubierto la doble periodicidad de ciertas funciones elípticas. 
Las funciones elípticas, que son una generalización de funciones 
trigonométricas como seno y coseno, eran interesantes porque 
estaban relacionadas con el cálculo de la medida de un arco de 
una elipse ( de ahí su nombre), lo que a su vez resulta fundamental 
para los cálculos astronómicos. Gauss tenía entonces veinte años. 
Además, otra anotación muestra que el matemático alemán reco­
noció la doble periodicidad en el caso general. Este descubri­
miento, por sí solo, de haber sido publicado, podría haberle hecho 
famoso inmediatan1ente, pero jamás lo publicó. 

Otros muchos hallazgos que quedaron enterrados durante dé­
cadas en ese diario habrían encumbrado a media docena de gran­
des matemáticos de haber sido publicados. Algunos jamás se 
hicieron públicos durante la vida de Gauss, y nunca pretendió la 
prioridad cuando otros autores se le anticiparon, pues era dema­
siado orgulloso para entrar en ese tipo de disputas. Hablando de 
sí mismo, Gauss dice que emprendía sus estudios científicos tan 
solo como una respuesta a los impulsos más profundos de la na­
turaleza, y para él era algo completamente secundario publicarlos 
para el conocimiento de los demás. 
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Otra de las ideas de Gauss, comunicada en una ocasión a un 
amigo, explica tanto la existencia de su diario como la lentitud en 
la publicación. Gauss afirmaba que cuando tenía veinte años era 
tal la cantidad de nuevas ideas que pasaban por su mente que di­
fícilmente podía recogerlas todas de manera extensa, y solo dis­
ponía para ello de brevísimo tiempo. El diario contiene tan solo 
los juicios breves finales de los resultados de complicadas inves­
tigaciones, algunas de las cuales le ocuparon durante semanas. 
Cuando siendo joven contemplaba la serie de pruebas sintéticas 
que habían encadenado las inspiraciones de Arquímedes y New­
ton, Gauss resolvió seguir su gran ejemplo, y tan solo dejar obras 
de arte perfectas y completas, a las que nada pudiera ser añadido 
y a las que nada pudiera ser restado sin desfigurar el coitjunto. La 
obra por sí debe ser completa, sencilla y convincente, sin que 
pueda encontrarse signo alguno que indique el trabajo que ha cos­
tado lograrla. Una catedral, decía, no es una catedral hasta que ha 
desaparecido de la vista el último andamio. Trabajando con ese 
ideal, Gauss prefería pulir una obra maestra varias veces, en vez 
de publicar los amplios esquemas de muchas de ellas, como pudo 
fácilmente hacer. Su sello, un árbol con pocos frutos, lleva el lema 
Pauca sed matura ( «pocos, pero maduros»). Y ese fue el lema de 
su vida científica en lo relativo a publicaciones. Como veremos, el 
diario sirvió para dirimir algunas controversias, especialmente las 
tenidas con Legendre. 

La construcción con regla y compás, que tenía una larga tra­
dición en los trabajos matemáticos, consiste en el trazado de pun­
tos, segmentos de recta y ángulos usando exclusivamente una 
regla y un compás idealizados. A la regla se le supone longitud 
infinita y carencia de marcas que permitan medir o trasladar dis­
tancias. Al compás se le supone que se cierra cada vez que se 
separa del papel, de manera que no puede utilizarse directamente 
para trasladar distancias, porque «olvida» la separación de sus 
puntas en cuanto termina de trazar la circunferencia. La geome­
tría griega impuso esa norma para las construcciones y se ha man­
tenido invariable desde entonces. Esta restricción del compás 
parece muy incómoda para los usuarios de compases reales, pero 
no supone un grave inconveniente, porque el traslado de distan-
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cias se puede realizar de forma 
indirecta, aunque con un mayor 
número de pasos. Esta norma es 
la que explica que, por ejemplo, la 
construcción del hexágono, que 
parece trivial con regla y compás 
-dado que toda circunferencia 
contiene un hexágono inscrito con 
lado igual al radio de la circunfe­
rencia- , necesite mayor elabora­
ción de la que en principio pudiera 
pensarse. 

.----------

Así, usando las reglas antes 
citadas, la construcción del hexá­
gono con regla y compás es la ex- L _ ----'---­
presada en la figura. 

Trazamos dos rectas paralelas verticales y otra perpendicular 
a las primeras. Con radio AB trazamos circunferencias con centro 
A y B. Tomamos uno de los puntos de corte, digamos O. Ese es el 
centro del hexágono. Trazamos ahora la circunferencia de centro 
O y radio OA. Obtenemos los puntos P y Q como cortes con las 
circunferencias anteriores y los puntos R y S como corte de las 
rectas verticales con la circunferencia que acabamos de trazar. 
Uniendo los vértices obtenemos el hexágono regular buscado. 

Después de la definición de las reglas que hicieron los griegos, 
la pregunta inmediata que surge es evidente: ¿es posible construir 
cualquier polígono regular, es decir, aquel que tiene todos sus 
lados y ángulos iguales, con regla y compás? La respuesta es que 
depende de en qué polígono estemos interesados. A partir de la 
construcción del hexágono es trivial la del triángulo equilátero, 
sin más que unir los vértices alternos. Otro problema clásico en 
las construcciones de regla y compás es trazar la bisectriz de un 
ángulo. Combinando los dos procesos podemos afirmar que pode­
mos construir, al menos en teoría, todos los polígonos regulares 
con un número de lados que pueda expresarse de la forma 3 x 2", 
donde n es un número natural. Así, paran= 2 tenemos el dodecá­
gono o polígono de doce lados, y para n = 3, el de 24 lados, y así 
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Construcción de 
un hexágono con 
regla y compás 
idealizados, 
siguiendo la 
tradición de los 
antiguos griegos. 
Gauss se sintió 
atraído por la 
construcción 
de estas figura s, 
y a los diecinueve 
años demostró 
que se puede 
dibujar un 
polígono regular 
de 17 lados 
siguiendo este 
método. 
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podemos seguir sin más que aumentar el tamaño de n. Esta solu­
ción parcial dista mucho de contestar a la pregunta de forma sa­
tisfactoria. Y veremos que es un caso particular del caso general 
demostrado por Gauss. 

Los griegos encontraron soluciones para el caso del pentá­
gono, pero el problema general no avanzó mucho, ya que no se 
encontraba el método para la construcción del polígono de siete 
lados (ni de otros de los de menos de veinte). De hecho, ni si­
quiera se sabía si tales procedimientos existían. Y así estaba el 
tema cuando Gauss se interesó por la cuestión y logró construir 
el heptadecágono. Él mismo, muchos años más tarde, recorda­
ría el momento, en una carta dirigida a Gerling, fechada el 6 de 
enero de 1819: 

Fue el día 29 de marzo de 1796, durante unas vacacionés en Bruns­
wick, y la casualidad no tuvo la menor participación en ello ya que 
fue fruto de esforzadas meditaciones; en la mañana del citado día, 
antes de levantarme de la cama, tuve la suerte de ver con la mayor 
claridad toda esta correlación, de forma que en el mismo sitio e in­

mediatamente apliqué al heptadecágono la correspondiente confir­
mación numérica 

Gauss dio una gran importancia a este logro que, como di­
jimos, lo convenció de que en las matemáticas estaba su futuro. 
Además incluyó este resultado en la sección VII de las Disqui­
sitiones arithmeticae, de la que hablaremos posteriormente. 
Puede ser que sea esa la razón por la que mandó que se grabara 
un heptadecágono en su tumba, aunque al final el albañil encar­
gado del asunto, al ver la dificultad de la construcción y que ape­
nas se distinguiría de un círculo, terminó grabando una estre­
lla de diecisiete picos. En su tumba actual tampoco aparece el 
heptadecágono. 

Gauss no solo encontró el método de construcción del hepta­
decágono, sino que trató de responder a la pregunta fundamental 
de si era posible la construcción de cualquier polígono regular con 
regla y compás. Dicho problema está muy relacionado con la divi­
sión de la circunferencia, que preocupó a Gauss en numerosas 
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ocasiones y sobre la que publicaría varios resultados. Gauss de­
mostró, en 1801, que un polígono regular de n lados puede cons­
truirse con regla y compás utilizando los llamados números pri­
mos de Fermat ( o también números de Fermat). 

PIERRE DE FERMAT 

Fermat (1601-1665) fue un jurista y ma­
temático francés apodado por E.T. Bell 
«Príncipe de los aficionados a las mate­
máticas». El sobrenombre se debe a 
que nunca se dedicó en exclusiva a di ­
cha ciencia, que consideraba más bien 
un pasatiempo, y sin embargo Fermat 
fue, junto con René Descartes (1595-
1650), uno de los principales matemá­
ticos de la primera mitad del siglo xv11. 
Un campo en el que realizó destacadas 
aportaciones fue el de la teoría de nú­
meros, en la que empezó a interesarse 
tras consultar una edición de la Aritmé­
tica de Diofanto. En el margen de una 
página de dicha edición fue donde ano­
tó el célebre teorema que fue conocido 
como el «último teorema de Fermat», 
nombre que no era correcto por tratarse solo de una conjetura. Dicha conje­
tura afirmaba que no existían números enteros x, y, z de forma que fuera 
posible la ecuación x n + y n = z n, con n :o 3. Obviamente para n = 2 sí es posible, 
pues basta considerar 3 2 + 42 = 52 • Gauss jamás se dedicó al último teorema de 
Fermat y tenía sus razones . En 1816, la Academia de París propuso, como 
premio para el período 1816-1818, la prueba (o la negación) de la conjetura de 
Fermat. El 7 de marzo de 1816 Olbers, astrónomo amigo de Gauss, incitó al 
matemático alemán a presentarse: «Me parece justo, querido Gauss, que os 
ocupéis de ello»; pero Gauss resistió a la tentación. Al contestar, dos meses 
más tarde, expuso su opinión acerca del último teorema de Fermat. «Os estoy 
muy obligado por vuestras noticias respecto al premio en París pero confieso 
que el teorema de Fermat como proposición aislada tiene muy escaso interés 
para mí, pues fácilmente puedo encontrar una multitud de proposiciones se­
mejantes que no es posible probar ni desechar.» El famoso enunciado no fue 
demostrado por completo hasta 1995 por el británico Andrew Wiles. 
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Un número de Fermat, llamado así en honor a Pierre de Fer­
mat, el primero que los estudió, es un número de la forma siguiente: 

2" F,, = 2 +l, 

donde n es un número natural. 
Fermat había definido sus números primos con una intención 

muy distinta de la de resolver los problemas de construcción de 
polígonos con regla y compás ( de hecho, se pudo comprobar pos­
teriom1ente que no era cierto que todos los números de esa forma 
fuesen primos). 

Gauss probó que para que fuese posible construir un polígono 
regular de n lados con regla y compás era necesario que los facto­
res primos impares de n fuesen primos de Ferrnat distintos. Es 
decir, que un polígono regular es construible si el número de lados 
del mismo es una potencia de 2, un primo de Fermat o producto 
de una cierta potencia de 2 ( admitiendo 1 como potencia de 2) y 
varios primos de Fermat distintos. Esto es lo que en matemáticas 
se conoce como una condición suficiente. Así, si un polígono es 
de la forma dada por Gauss, es posible construirlo. La pregunta 
que surge de forma natural es si esa condición es también necesa­
ria. O sea, verificar si solo es posible construir con regla y compás 
los polígonos de esa forma. 

Pierre Wantzel, matemático francés, probó en 1837 que efec­
tivamente la condición dada por Gauss también era necesaiia, lo 
que convirtió el teorema en una caracterización de los polígonos 
regulares que se pueden construir con regla y compás. Lo que los 
matemáticos llaman un si y solo si. Es decir, tenemos totalmente 
detem1inados los polígonos regulares que podemos construir con 
regla y compás. Así el triángulo (3 = 2

20 
+ 1 ), el cuadrado ( 4 = 2i ), 

.,. ? 1 2° el pentágono (5 = 2- + 1), y el hexágono (6 = 2 · (2 + 1)) son cons-
truibles con regla y compás, pero el heptágono regular 
(7 "' 22

" + 1 Vn) no lo es. Continuando, el octógono regular (8 = 23
) 

sí es construible, pero el eneágono regular (9 = 32 "'22
" + 1 Vn) no 

lo es. Obviamente, el polígono de 17 lados construido por Gauss 
es un ejemplo de polígonos en que su número de lados coincide 
exactamente con un número de Fermat, pues F2 = 222 + 1 = 1 7. 
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Eso no significa que no existan personas que dediquen su 
tiempo y energía, obviamente sin éxito, a tratar de encontrar mé­
todos de construcción de heptágonos o a cualquiera de las cons­
trucciones que las matemáticas han demostrado que son imposi­
bles con regla y compás, como son la cuadratura del círculo, la 
trisección de un ángulo o la duplicación del cubo. A la primera de 
ellas se dedicó con una pasión que le duraría toda su vida nada 
más y nada menos que Napoleón. Se trata de una batalla que, a 
diferencia de las mantenidas con los prusianos, Napoleón no 
pudo, ni hubiera podido nunca, ganar. 
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CAPÍTULO 2 

«Disquisitiones arithmeticae» 

Gauss es el padre de la teoría de números, 
tal y como se la concibe hoy en día. Entre otros 

muchísimos logros, dio un empuje decisivo al uso de los 
números complejos, legándonos así la herramienta que 

permite abordar la resolución de cualquier tipo de ecuación 
polinómica. Su obra fundamental en este ámbito son 

las Disquisitiones arithmeticae, donde recogió 
sus numerosas investigaciones de juventud. 





Gauss llevó a las matemáticas del siglo XIX a metas insospechadas 
poco tiempo antes, y dedicó sus mayores esfuerzos a la aritmética 
superior o teoria de números. Su primera gran aportación al álge­
bra fue su tesis de licenciatura, que como ya hemos dicho pre­
sentó in absentia en 1799, en la Universidad de Helmstedt, 
siendo dispensado del examen oral. El director del trabajo fue 
Johann Friedrich Pfaff (1765-1825), uno de los grandes matemá­
ticos de la época, que siempre lo trató con especial atención. 
Durante la época que Gauss pasó en Helmstedt, consultando su 
biblioteca y preparando su tesis, vivió como arrendatario de Pfaff. 
Gauss y Pfaff fueron excelentes amigos, aunque la familia 
Pfaff pocas veces vio a su huésped. Pfaff pensaba que era su 
deber cuidarse de que su joven amigo hiciera algún ejercicio y él 
y Gauss paseaban juntos durante la tarde hablando de matemá­
ticas. Como Gauss no solo era modesto, sino también reservado 
acerca de su propia obra, Pfaffprobablemente no aprendió tanto 
como hubiera podido de ser diferente el carácter de Gauss. Este 
admiraba mucho al profesor, que era entonces el mejor matemá­
tico de Alemania, no solo por su excelente labor, sino por su 
carácter sencillo y abierto. Con el tiempo Gauss lo superaría y 
hay una anécdota que así lo refleja. El barón Alexander von 
Humboldt (1769-1859), famoso viajero y amante de las ciencias, 
con . el que Gauss llegó a colaborar en estudios de geomagne-
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tismo, preguntó a Pierre Simon Laplace (1749-1827), uno de los 
matemáticos franceses más destacados, quién era el matemático 
más grande de Alemania; Laplace respondió: «Pfaff». «¿ Y Gauss?», 
preguntó asombrado Von Humboldt, quien apoyaba a Gauss para 
el cargo de director del observatorio de Gotinga. «Oh -dijo La­
place-, Gauss es el matemático más grande del mundo.» 

«Las matemáticas son la reina de las ciencias y la aritmética 
es la reina de las matemáticas.» 
- CARL FRIEDRICH GAUSS. 

48 

El título de la tesis de Gauss es Demonstratio nova theore­
matis omnem functionem algebraicam rationalem integram 
unius variabilis in factores reales primi vel secundi gradus 
resolví posse («Nueva demostración del teorema que dice que 
toda función algebraica racional puede descomponerse en facto­
res de primer o segundo grado con coeficientes reales»). El título 
contiene un ligero error que hizo aún más grande al joven Gauss 
dado que, lejos de ser «nueva», se trata en realidad de la primera 
demostración completa de la histo1ia del teorema fundamental del 
álgebra. 

Dicho teorema, en la versión que estudió Gauss (pues poste­
riormente fue generalizado), enuncia que todo polinomio en una 
variable tiene tantas raíces como indica su grado, aun admitiendo 
que algunas de estas raíces pueden ser múltiples. Un polinomio P 
es una expresión de la forma P( x) = a,,.x" + a,,_

1
x'i-1 + ... + a

1
x + a

0
, 

donde los coeficientes a,., a,._1, . .. , a¡, a0, son números reales. El 
grado de Pes el exponente mayor al que se eleva la variable x, que 
con nuestra notación es n. Las raíces del polinomio son los puntos 
donde se anula, o sea los puntos x, tales que P(x) = O. Como con­
secuencia natural del teorema se deduce que todo polinomio de 
grado n con n raíces, no necesariamente todas diferentes, que 
notaremos por rl' r 2, ••• , r,,, se puede descomponer en producto de 
monomios de la forma: 

P(x) = (x-r
1
) • (x - r

2
) • ... • (x - r,,) 
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La resolución de este tipo de problemas, que se encuentran 
de forma natural en nuestra vida diaria, ha ocupado a los matemá­
ticos desde los inicios de esta ciencia. Obviamente los problemas 
del tipo x - 3 = O tienen una única raíz, que es 3. Si consideramos el 
polinomio x + 3 = O, para resolverlo tendremos que considerar los 
números negativos, ya que la solución es -3. Es por ello que se vio 
la necesidad de ampliar el conjunto de los números naturales al 
conjunto de los números enteros, que incluyen también los nega­
tivos. Babilonios y egipcios se dieron cuenta de que la resolución 
de ecuaciones simples de grado 1 necesitaba de una nueva amplia­
ción, en este caso las fracciones, puesto que la solución de la 
ecuación 3x- 2 =0 es la fracción 2/3. Al conjunto que incluía las 
fracciones se le denominó conjunto de los números racionales. 

Cuando se eleva el exponente del polinomio, las cosas se 
complican y una ecuación tan simple como x2 - 2 = O llevó a los 
griegos a un gran desconcierto, puesto que su solución no era 
posible expresarla en fom1a de fracción. De hecho encontraron 
una demostración analítica que probaba que .J2 no era un número 
racional por medio de la reducción al absurdo. 

✓2 NO ES RACIONAL 

Los matemáticos griegos encontraron una demostración ingeniosa y fácil ­
mente comprensible de la irracionalidad de ✓2, usando la reducción al absur­
do, que consiste en suponer lo contrario de lo que queremos probar y llegar 
a una contradicción lógica. Supongamos que ✓2 es racional, o sea, que se 
puede expresar mediante una fracción cualquiera p/q. Supongamos ahora, 
sin pérdida de generalidad, que la fracción es irreducible, o sea que p y q son 
primos entre sí. En otro caso, bastaría dividir los dos elementos de la fracción 
por el máxi mo común divisor. Como ✓2 = p / q, tenemos que, elevando al 
cuadrado los dos términos, 2 = p 2 / q 2 , por lo que 2 q 2 = p 2 , o sea que p 2 es un 
número par y, por tanto, también lo es p . Como p es par, entonces existe 
un número k natural de manera que p=2k. Si sustituimos el nuevo valor de p 
en nuestra ecuación, tenemos 2q 2 = 4k2

, lo que implica que q 2 = 2k2
, o sea que 

q también es par, lo que contradice que la fracción de la que partimos era 
irreduc ible, y por tanto la hipótesis de que ✓2 es racional es falsa. 
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Ante la imposibilidad de expresar números como J2 en forma 
de fracción, los matemáticos les asignaron el apelativo de irracio­
nales. A pesar de las dificultades para describirlos de manera 
exacta, los números irracionales poseen un significado real, ya 
que se pueden ver como puntos marcados en la recta numérica. 
La raíz de 2 está entre 1,4 y 1,5 y si se construye un triángulo rec­
tángulo cuyos dos catetos midan 1, sabemos que su hipotenusa es 
la raíz de 2, aplicando simplemente el teorema de Pitágoras. Al 
cortjunto de números que incluía ambos tipos de números, los 
racionales y los irracionales, se le llamó números reales y se re­
presentan en la recta real. 

El problema de la búsqueda de raíces de un polinomio se 
complicaba cuando se trataba de encontrar soluciones para ecua­
ciones tan aparentemente sencillas como x 2 + 1 = O. Parecía evi­
dente que ningún número elevado al cuadrado puede dar un 
número negativo, tanto si es positivo como negativo. Así pues se 
tuvo que crear un nuevo tipo de números que resolvieran esas 
ecuaciones. El nuevo número,~' se llamó número imaginario 
y fue notado como i. El crear aparentemente de la nada una solu­
ción para esta ecuación parece un engaño, ¿por qué no aceptar 
que la ecuación no tiene soluciones? La respuesta es que esa solu­
ción aporta enormes avances aritméticos y no comporta contra­
dicciones lógicas. Sin ir más lejos, los aviones no habrían alzado 
jamás el vuelo si los ingenieros no hubieran entrado en el mundo 
de los números imaginarios. Así pues, si utilizamos la nueva nota­
ción y resolvemos x 2 + 1 = O, que es la ecuación de un polinomio 
cuadrático de la forma ax2 + bx +e= O, con la conocida fórmula de 
las ecuaciones de segundo grado: 

-b ± ✓b2 
- 4ac ± -✓-4 ±2~ ±2i 

X = 2a =-2-=-2-=2, 

lo que da lugar a las raíces i y -i, por tanto, tenemos que 
x2- + 1 = (x + i) • (x - i ), de acuerdo con el teorema fundamental del 
álgebra. 

El primero en usar los números imaginarios, también llamados 
complejos, fue el matemático italiano Girolamo Cardano (1501-1576), 
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EL REPARTO DE LA RECTA REAL ENTRE RACIONALES E IRRACIONALES 

La recta real está formada por números racionales, o que se pueden repre­
sentar mediante fracciones, e irrac iona les, aque llos para los que esto no es 
posible. La pregunta que nos podemos hacer es: ¿cómo se reparten los dos 
conjuntos en la recta? ¿Hay un reparto equilibrado que hace que la convi­
vencia de los dos subconjuntos en los reales sea sencilla? Para responder a 
esta pregunta tenemos que hacer varias reflexiones, algunas muy sorpren­
dentes. Dados dos números cua lesqu iera del conjunto de los números ra­
ciona les, que se suele notar por IQ, siempre se puede encontrar otro núme­
ro racional que esté entre ellos. Ello es bastante ev idente. Si q,, q 2 EIQ 
entonces 

ql +q2 E IQl 
2 

y es un número que está entre los dos anteriores por construcción. Y pode­
mos construir un número racional que esté entre el que hemos ca lcu lado y 
alguno de los anteriores, iterando el proceso tantas veces como queramos. 
Como consecuencia podemos afirmar entonces que entre dos números ra­
cionales cualesquiera existen infinitos números racionales, no importa lo 
próx imos que escojamos los números iniciales. Ello da una idea de que los 
racionales son números que están tan cerca unos de los otros como nosotros 
deseemos. Esta propiedad recibe en matemáticas un nombre bastante ilus­
trativo de lo que significa, y es que se dice que IQl es denso en el conjunto de 
los números reales. O sea, si x es un número real y es el centro de un inter­
va lo de la recta real, dicho interva lo contendrá números racionales por pe­
queño que sea dicho intervalo. Nos podemos preguntar entonces ¿quedan 
huecos en la recta real para los números irrac ionales? La respuesta es sor­
prendente: el conjunto de los números raciona les es de medida nula.¿ Y eso 
qué significa? Entre otras cosas, algo que podemos en tender con faci lidad: 
la probab ilidad de que, al situarnos al azar en un pu nto de la recta real, d icho 
punto sea racional es cero. Y los matemát icos reservan la probab ilidad cero 
solo para los sucesos imposibles. Lo que sorprende y es algo frustrante es 
que se dedique tanto tiempo de nuestra vida esco lar a dominar la aritméti­
ca de un conjunto que es tan minoritario en la recta real. 

quien los usó en la fórmula para resolver las ecuaciones cúbicas, 
pero el término «número complejo» fue introducido por Gauss en 
la demostración del teorema fundamental del álgebra en su tesis. 
Además Gauss comprendió en profundidad los números comple-
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jos y las implicaciones que podían tener en el futuro. La cuestión a 
la que también respondió Gauss era: ¿necesitaremos los matemá­
ticos crear nuevos números para cada nueva ecuación que apa­
rezca?, ¿y si quisiéramos resolver una ecuación como x 4 + 1 = O, 
tendríamos que buscar nuevos números para resolverla? Gauss 
probó que no era necesario: usando el número i, los matemáticos 
podrían resolver cualquier ecuación polinómica que se les pusie­
ra por delante. Las soluciones eran una combinación de los habi­
tuales números reales y de este nuevo número i . Gauss descubrió 
que los números imaginarios no eran más que añadir una nueva 
dimensión a la habitual recta de los reales, por lo que cada número 
imaginario corresponde a un punto en el plano, al igual que cada 
número real corresponde a un punto de la recta. Además, Gauss 
creó una nueva forma de representarlos mediante un eje de coor­
denadas, tal y como vemos en la figura siguiente: 

,- - II 

1 

1 

1 

l 

z =a+ bi 
b t------------------,..., 

o a 

Así, un número imaginario z sería de la forma a+ bi, como el 
punto de coordenadas ( a,b) del plano según se aprecia en la figura. 
El eje lR se usa para la parte real y el eje Il para la parte imaginaria. 
Además, Gauss dotó a los números complejos de una aritmética 
que iba a permitir llevar a cabo toda clase de operaciones con ellos. 

A pesar de tratarse de una representación muy eficaz, Gauss 
mantuvo escondido este «mapa del mundo» de los números imagi-
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narios. Una vez concluida la demostración, como era su costum­
bre, retiró los «andamios» gráficos de manera que no quedara ras­
tro de su visión. En esta ocasión era consciente, además, de que los 
matemáticos eran muy dados a mirar las gráficas con cierta sospe­
cha; se prefería el lenguaje de las fórmulas y las ecuaciones, pues 
existía la idea de que las gráficas podían inducir a error. Gauss 
sabía que su representación gráfica de los números imaginarios 
hubiera sido vista con desconfianza y por ese motivo la excluyó de 
su demostración, lo que la hizo bastante incomprensible para mu­
chos de sus contemporáneos. Tal es así que en algunos libros de 
historia de las matemáticas se dice que la primera demostración 
del teorema por parte del matemático alemán es errónea, cuando 
lo correcto sería decir incompleta. Y tal fallo se encuentra en la 
demostración que publicó,_ no en la que él mismo había construido. 

EL CUERPO DE LOS COMPLEJOS 

Los números complejos tienen la estructura algebraica de cuerpo con las 
operaciones de la suma y el producto. Para ello es necesario definirlas previa­
mente y comprobar que son operaciones internas, es decir, que obtenemos 
números complejos al operar con ellos. 

- Suma: (a + bi) + (e + di) = a + e + (b + d) i. 
- Producto: (a+ bi) •(e+ di)= ac + adi + bci + bdi2 = ac - bd +(be+ ad)i. 

Pues bien, así definidas las operaciones tienen las propiedades necesarias para 
tener estructura algebraica de cuerpo: 

- Asociativa para las dos operaciones. 
- Conmutativa para las dos operaciones. 
- Existencia de neutro (O para la suma y 1 para el producto). 
- Existencia de opuesto para la suma e inverso para el producto. 
- Propiedad distributiva. 

La demostración de estas propiedades es elemental a partir de las definiciones, 
pero tener estructura de cuerpo permite trabajar con los números complejos 
con toda la comodidad y la potencia que da el álgebra. 
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La idea predominante en esa época era que los números eran 
entidades para ser sumadas y multiplicadas, no para ser dibuja­
das. Tuvieron que pasar cincuenta años hasta que Gauss se deci­
diera a revelar el andamiaje gráfico que había usado en su tesis 
doctoral. Y es que este teorema cautivó a Gauss de tal manera que 
llegó a realizar hasta tres demostraciones más del mismo. La se­
gunda fue un año después de la defensa de su tesis y completaba 
algunas lagunas, pero difería un poco de la primera. Y la tercera, 

LEONHARD PAUL EULER 

Euler (1707-1783) fue un matemático y físico suizo. Se trata del principal ma­
temático del sig lo xv111 y uno de los más grandes de todos los tiempos. Vivió 
durante muchos años en Rusia, donde fue ilustre invitado de Catalina I y sus 
sucesores (en aquel la época, en Rusia, existía la tradición de invi tar a los más 
grandes científicos de la época a su Academia de Ciencias). Euler realizó 
importantes descubrimientos en áreas tan diversas como el cálculo o la teoría 
de grafos (los grafos son la modelización matemática de un conjunto de nodos 
y sus uniones mediante aristas orientadas o no; son de gran utilidad para re­
presentar una red de carreteras o el plano de una ciudad). También introdujo 
gran parte de la moderna terminología y notación matemática, en particular 
para el área del análisis matemático, como por ejemplo la noción de función 
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matemática. Definió el número e, una de 
las constantes de más utilidad y que dio 
lugar a los logaritmos neperianos. Asi­
mismo se lo conoce por sus trabajos en 
los campos de la mecánica, la óptica y la 
astronomía. Euler ha sido uno de los ma­
temáticos más prolíficos, y se calcula que 
sus obras completas reunidas podrían 
ocupar entre sesenta y ochenta volúme­
nes. De hecho, cincuenta años después 
de su muerte, la Academ ia de San Pe­
tersburgo aú n estaba publicando artícu­
los de Euler que guardaba en sus archi­
vos. Una afirmación atribuida a Laplace 
expresa su influencia en los matemáticos 
posteriores: «Lean a Euler, lean a Euler, 
él es el maestro de todos nosotros». 



en 1815, basada en las ideas de Euler, rehúye los planteamientos 
geométricos y es el primer intento serio de una demostración ex­
clusivamente algebraica, utilizando expresamente los números 
complejos. De paso realiza una crítica a los intentos de otros ma­
temáticos basados en métodos analíticos. La última demostra­
ción, realizada en 1849 con motivo del cincuentenario de su tesis 
y el homenaje que recibió de la Universidad de Gotinga, es muy 
similar a la primera, pero en ella Gauss sí da todas las pistas de su 
construcción geométrica de la demostración. Para entender la im­
portancia de la tesis de Gauss, baste señalar que el teorema había 
derrotado, entre otros, a Euler, Lagrange y Laplace, tres de los 
matemáticos más capaces de la historia. 

A partir de los trabajos de Gauss se pudo abordar la bús­
queda de las raíces de un polinomio de grado n cualquiera. Hasta 
las ecuaciones de quinto grado (n = 5) se habían hallado fórmu­
las para encontrar sus raíces usando los coeficientes del propio 
polinomio, lo que se llama resolver por radicales. Las fórmulas 
eran del tipo de la que hemos usado para resolver las ecuaciones 
de segundo grado. Sin embargo, las llamadas quínticas o polino­
mios de quinto grado se resistían a desvelar una fórmula con sus 
coeficientes que las resolviera. La solución vino de un jovencí­
simo matemático francés, Evariste Galois (1811-1832), que murió 
en un duelo con apenas veintiún años. Galois probó que no era 
posible la resolución de las ecuaciones de quinto grado usando 
los coeficientes del propio polinomio, y encontró métodos alter­
nativos para encontrar sus raíces, usando los resultados previos 
de Gauss. 

Galois presentó sus resultados matemáticos, conocidos por 
teoría de Galois, a la Academia de Ciencias de París en 1830, para 
optar al premio en Matemáticas. Dicho trabajo nunca fue eva­
luado, pues tras pasar por las manos de Augustin Louis Cauchy 
(1789-1857), que se declaró incompetente parajuzgarlo, fue remi­
tido aJoseph Fourier (1768-1830) que, como secretario de la Aca­
demia, debía encontrar un nuevo especialista que juzgase el tra­
bajo. La mue1te sorprendió a Fourier antes de realizar esta tarea 
y el artículo de Galois se perdió y nunca se hizo público. Es por 
ello que la noche antes de su duelo Galois, que sabía que era muy 
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difícil que sobreviviera a ese trance y conocía la importancia de 
sus descubrimientos, escribió unas notas apresuradas que resu­
mían la conocida corno teoría de Galois sobre resolución de ecua­
ciones. Y ese legado escrito incompleto es el que pasó a la histo­
ria, y permitió a matemáticos posteriores reconstruir los resulta­
dos de Galois. Bien es cierto que ese año el premio de la Academia 
recayó en Niels Henrik Abel (1802-1829) y Carl Gustav Jakob Ja­
cobi (1804-1851), dos de los más talentosos matemáticos de su 
época, por lo que siempre quedará la duda de quién hubiera sido 
el ganador de no haberse perdido el trabajo original de Galois. 
Ciertamente, la precocidad de Galois en matemáticas solo es com­
parable a la del mismo Gauss. 

LAS «DISQUISITIONES ARITHMETICAE» 

Gauss inició sus investigaciones sobre la teoría de números du­
rante su estancia en el Collegiurn Carolinurn, en 1795. Pero acome­
tió la elaboración de la que será su obra fundamental, Disqui­
sitiones arithmeticae (Disquisiciones aritméticas), a lo largo 
de su estancia en la Universidad de Gotinga entre 1795 y 1798. 
Lo sabernos gracias a su diario científico en el que ya en 1796 
aparecen dos de sus resultados más brillantes: la descomposición 
de todo número entero en tres triangulares y la construcción del 
heptadecágono regular, de los que ya hemos hablado en el primer 
capítulo. Ambos están recogidos en las Disquisitiones, que vie­
ron la luz en Leipzig durante el verano de 1801, tres años después 
de la vuelta de Gauss a su ciudad natal de Brunswick. Corno ve­
rnos, de nuevo Gauss retrasó la publicación de sus resultados has­
ta poder hacerlo en el formato de libro. 

Con las Disquisitiones, Gauss dio una nueva orientación a la 
teoría de números, dejando de ser esta una acumulación de resul­
tados anecdóticos aislados para convertirse en una rama de las 
matemáticas tan importante corno el análisis o la geometría. 

La obra está dividida en siete capítulos o secciones. De 
ellas, las tres primeras son introductorias, las secciones IV a VI 
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ARITHMETI C AE 

D. C.~ROLO FRIDERICO GAUSS. 
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1801, 
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El joven Gauss 
tuvo la fortuna 
de contar con la 
ayuda económica 
del duque de 
Brunswick (arriba, 
a la Izquierda), 
quien sufragó 
su educación 
y mantuvo su 
protección hasta 
su muerte en 
1806. Gracias 
a la influencia 
del duque, Gauss 
accedió en 1791 
al Collegium 
Carolinum (abajo), 
donde inició 
algunas de sus 
investigaciones 
matemáticas 
más importantes, 
que reflejó en 
sus Disquisitiones 
aríthmeticae, 
cuya portada se 
reproduce arriba 
a la derecha. 
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forman la parte central del trabajo y la VII es una pequeña mo­
nografía dedicada a un terna relacionado, pero separado de los 
anteriores. 

La sección I, de solo cinco páginas, introduce los conceptos 
elementales, tales como las reglas de divisibilidad para 3, 9 y 11. 
Además da la definición de congruencias que desarrollará en la 
sección 11: dados dos números enteros a y b, si su diferencia 
( a- b o b - a) es exactamente divisible por el número m, decimos 
que a, b son congruentes respecto al módulo m, y simbolizamos 
esto escribiendo a=b (modm). Así, 56=6 (mod5) o 47'"' 14 
(modll). 

Las congruencias son un hallazgo fundamental en las mate­
máticas y ayudan a todo tipo de cálculos. La idea de las congruen­
cias surge del mismo principio que los relojes convencionales, 
y de hecho también son conocidas como calculadoras de reloj. Si 
un reloj analógico convencional marca las 9 y pasan 4 horas, las 
manecillas se colocarán en la l. Por así decirlo 13 = 1 (rnod 12). Un 
cálculo como 72 = 7 • 7 da como resultado 1 en módulo 12, puesto 
que 49 dividido entre 12 da de resto l. El resultado de la congruen­
cia es siempre el resto que queda al dividir el número por el deno­
minado módulo. 

La potencia del sistema se pone de manifiesto cuando se trata 
de cálculos más complejos. Si se quiere calcular 7 3 = 7 • 7 • 7, en 
lugar de multiplicar 49 por 7, Gauss podía limitarse a multiplicar 
7 por la última congruencia obtenida, es decir 1, cuyo producto es 
obviamente 7. Así Gauss sabía que el producto se trataba de un 
número que dividido por 12 daba un resto 7. El método permite 
utilizarlo con grandes números, que sobrepasaban su capacidad 
de cálculo. Incluso sin tener ni idea del valor de r m, las congruen­
cias le decían que el número dividido por 12 daba 7 corno resto. 
Los estudios de Gauss sobre este tipo de aritmética revoluciona­
ron las matemáticas de principios del siglo XIX, ayudando a los 
matemáticos a descubrir estructmas que habían permanecido 
ocultas. Hoy en día, la aritmética de congruencias, también lla­
mada modular , es fundamental para la seguridad de Internet, 
donde se utilizan congruencias con cantidades que superan la de 
átomos del universo. 
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Además, la ventaja de esta notación es que recuerda la forma 
en que escribimos las ecuaciones algebraicas. Trata la divisibi­
lidad aritmética, cuya descripción puede ser engorrosa, con una 
breve notación y permite sumar, restar y multiplicar congruen­
cias, con tal de que el módulo sea el mismo en todas, para obtener 
otras congruencias. Y permite estudiar ecuaciones con congruen­
cias: ax+b =c (mod m). 

Como colofón a las dos primeras secciones, Gauss aplicó 
estos métodos a problemas históricos como el cálculo de la céle­
bre función cp de Euler (también llamadafunción indicatriz de 
Euler). La función cp (N) se define como el número de enteros po­
sitivos menores o iguales a N y coprimos con N. En matemáticas 
dos números se dicen coprimos si no tienen factores primos co­
munes, es decir, su máximo común divisor es l. Por ejemplo 9 = 32 

es coprimo con 1 O= 5 · 2, y habría que contarlo a la hora del cálculo 
de cp (10). El conjunto cp (10) tiene por tanto cuatro elementos 
11, 3, 7 y 9) y, en consecuencia, cp(lO) = 4. 

Gauss dio una fórmula general para el cálculo de cp(N). Si 
hacemos la descomposición de Nen primos p 1, p 2 •.. p" se obtiene 
N = p¡'\ p;"2 

• ... • p;;", donde los pi son primos y m i son sus multi­
plicidades, y la fórmula queda: 

cp( N) = N . P1 - 1. P2 - 1 .. .. . Pn - l. 
Pi P2 Pn 

Aplicando la fórmula a N = 10, 

2 - 1 5 - 1 
cp(lO) = 10 · -

2
- · -

5
- = 4, 

como era de esperar. 
La fórmula depende de los primos en que se descompone N, 

no de sus multiplicidades. En el caso de N= 180, tenemos que 
180 = 2 2 -3 2 -5, por lo que 

cp(l80) = 180 · 2 - l. 3 - l. 5 -l = 48. 
2 3 5 
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La sección termina con la demostración del teorema funda­
mental de las congruencias polinómicas. Una congruencia de 
gradom, 

a X"' + a X"'º1 + ... +a X + b '"' o (mod p) m 1n- l 1 ' 

cuyo módulo p es un primo que no divide a,,., no puede resolverse 
más que de m maneras diferentes o no puede tener más de m 
raíces no congruentes con relación a p. 

La sección III, titulada «De residuis Potestatum» ( «El resto 
de las potencias»), aborda los residuos cuadráticos y de potencias 
superiores. Dados m y n números enteros, donde m no es divisible 
por n, si existe un número x tal que x2 = m (mod n), decimos que 
m es un residuo cuadrático de n; en caso contrario, decimos 
que m es un no-residuo cuadrático de n. Por ejemplo: 13 es resi­
duo cuadrático de 17, pues la ecuación x 2 = 13 (mod 17) tiene 
como soluciones x = 8, 25, 42, ya que 82 = 64, que dividido por 1 7 
da 13 de resto, 252 = 625, que dividido entre 17 da, de nuevo, resto 
13 y lo mismo ocurre con 422 = 1 764. 

La base de la sección es la demostración del pequeño teorema 
de Fermat que dice nP-1 a 1 (mod p ), donde p es un primo que no 
divide a n. O sea, que si p es un número primo que no divide a n, 
entonces nP-1-1 es siempre divisible por p. Para el caso n = 8 y 
p = 5, tenemos que 84 -1 = 4 095, que es divisible por 5. Para este 
resultado Gauss usó la fórmula del binomio de Newton adaptada a 
congruencias. Como consecuencia obtiene también el teorema de 
Wilson, que dice que dado un número primo p, entonces se tiene: 

1- 2 .3 ... . • (p-1) = (p-1) ! •-1 (modp). 

O sea, el producto de todos los números menores que un nú­
mero primo dado, aumentado en una unidad es siempre divisible 
por dicho número. Si por ejemplo escogemos 7, entonces 6! = 720, 
y 721 es divisible por 7. 

Esencialmente las tres primeras secciones constituyen una 
introducción sistemática a la teoría de números y preparan el te­
rreno para las secciones IV y V. 

El resultado central de la sección IV es la conocida como ley 
de reciprocidad cuadrática. El teorema (como conjetura) fue 
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enunciado inicialmente por Euler en 17 42 en una carta a Gold­
bach. Alrededor de medio siglo después, en 1798, Legendre pu­
blicó una demostración que se basaba en argumentos no proba­
dos. Así que la primera demostración correcta del resultado fue la 
de Gauss, que lo tenía en gran estima y lo denominó el teorema 
áureo. Dicho teorema se puede enunciar de la siguiente forma, 
que es tal y como aparece en el libro de Gauss: 

Si p es primo de la forma 4n + 1, entonces + p será un residuo ( o un no­
residuo) de todo primo que tomado positivamente sea un residuo ( o un 
no-residuo) de p. Si p es de la forma 4n + 3, -p tiene la misma propiedad. 

Los paréntesis del teorema indican que el resultado puede 
leerse excluyendo el contenido de los paréntesis o incluyéndolos, 
sustituyendo a la expresión inmediatamente anterior. O dicho 
de un modo menos técnico: existe una reciprocidad entre el par de 
congruencias x 2 =q (mod p) y x 2 =P (mod q), en la que tanto 
p como q son primos. O sea, si podemos verificar la primera 
congruencia (x 2 = q (modp)), entonces se verifica la segunda con­
gruencia (x 2 =p(modq)) necesariamente; y si la primera no es 
cierta, la segunda tampoco lo es. Lo cual significa que ambas son 
ciertas o ambas son falsas. Hay una excepción, y es que tanto p 
como q den de resto 3 cuando se dividen por cuatro, en cuyo caso 
una, y solo una, de las congruencias es cierta. 

La demostración de Gauss empieza con consideraciones 
heurísticas y prueba la ley para determinados números primos. 
Después procedió, por inducción, a probar el caso general. Esta 
demostración de Gauss es muy laboriosa y trata de manera se­
parada ocho diferentes casos. Peter Gustav Dirichlet, que fue 
alumno del matemático alemán y uno de los mayores estudiosos 
de este libro, simplificó la demostración, reduciendo el número de 
casos a dos. Gauss termina la sección con otros resultados que se 
deducen de su teorema. Solo por esta demostración Gauss ya de­
bería ser considerado como uno de los matemáticos más impor­
tantes de la época. Pero habría más, y dentro de la misma obra. 

La sección V es la parte central del libro. Está dedicada a las 
expresiones del tipo F= ax2 + 2bxy + cy2, donde a, b, e son números 
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enteros; estas expresiones fueron bautizadas por Euler como for­
mas cuadráticas. Una parte sustancial de esta sección no es ori­
ginal y trata de reunir y urúficar los resultados de Lagrange sobre 
la cuestión. 

El problema que resuelve Gauss es determinar qué nú­
meros enteros M pueden representarse con la expresión 
ax 2 + 2bxy + cy 2 =M, donde x e y son números enteros. El inverso, 
y más interesante, que tan1bién resolvió, consiste en dados M y 
a, b y c, encontrar los valores de x e y que toman el valor M en la 
forma cuadrática. Para ello Gauss necesitó clasificar las formas 
cuadráticas y tratarlas de fonna diferenciada. Con este propósito, 
utiliza dos propiedades básicas algebraicas de una forma cuadrá­
tica. Gauss estableció una clasificación de las formas cuadráticas 
y sus propiedades a partir de los discrinlinantes. 

Esta sección también incluye la demostración del teorema 
referido a números triangulares, del que ya hemos hablado. 

La sección VI presenta numerosas aplicaciones importantes 
de los conceptos desarrollados en la sección anterior. Las princi­
pales cuestiones tratadas son las fracciones parciales; esto es, la 

DISCRIMINANTE DE UN POLINOMIO 

En álgebra, el discriminante de un polinomio es una cierta expresión de los 
coeficientes de dicho polinomio que es igual a cero, si y solo si, el polinomio 
tiene raíces múltiples. Por ejemplo, el discriminante del polinomio cuadrático 
ax2 + bx + e es b 2 - 4ac, ya que la fórmula de la raíz de dicho polinomio es la 
siguiente: 

con lo que basta que el discriminante, tal y como lo hemos definido, sea cero 
para tener una única solución doble. Así, en el caso del polinomio x 2 - 4x + 4, 
como tiene determinante nulo, tenemos una única raíz doble (2), por lo que 
aplicando el teorema fundamental del álgebra, tenemos x 2 

- 4x + 4 = (x - 2)2. 
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descomposición de una fracción en una suma de fracciones con 
los factores primos del denominador de la fracción original como 
denominadores de los sumandos. Esta técnica es de gran utilidad 
para la integración de funciones racionales, que son aquellas que 
se pueden representar como el cociente de polinomios. También 
trata de números decimales periódicos y resolución de congruen­
cias por métodos propios de Gauss. Otro tema interesante es la 
búsqueda de criterios que permitan distinguir los números primos 
sin cálculos muy tediosos. Como veremos, el estudio de los núme­
ros primos fue una constante en toda su vida y lo estudiaremos de 
forma separada. 

La sección VII es la parte más popular de las Disquisitiones. 
Su influencia histórica fue enorme. En esta sección trató de la di­
visión del círculo con regla y compás, que era un tema clásico en 
las matemáticas. Obviamente este tema está relacionado con la 
construcción de polígonos regulares, así que incluyó su famo­
sa construcción del polígono de 17 lados, encontrando la condi­
ción suficiente para que un polígono regular pudiese ser construido 
con regla y compás. 

En el mundo matemático todos reconocen que las Disquisi­
tiones arithmeticae no son un simple compendio de observacio­
nes sobre números, sino que suponen el anuncio del nacimiento 
de la teoría de números como disciplina independiente. Su publi­
cación hizo de la teoría de números la reina de las matemáticas, 
como siempre le gustó a Gauss definirla. A pesar de ello, esta obra 
no fue muy bien recibida por la Academia de Matemáticas de 
París, que la consideró oscura y densa. Una de las causas de 
que las Disquisitiones no recibieran el aplauso inmediato es que 
Gauss se mantuvo voluntariamente críptico, eliminando o escon­
diendo las pistas que le habían llevado a sus descubrimientos. 
Desde luego esta filosofía no ayudó a que los matemáticos com­
prendieran la obra de Gauss. Tal es así que la obra ha sido llamada 
un «libro de siete sellos» por su hermetismo. Su lectura es difícil 
hasta para los especialistas, pero los tesoros que contiene, y en 
parte oculta en sus concisas demostraciones sintéticas, son ahora 
accesibles a todo el que desee participar de ellos, gracias especial­
mente a los trabajos de Dirichlet, que fue el primero que rompió 
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los siete sellos. Se cuenta que Dirichlet utilizaba como almohada 
el libro de Gauss, con el fin de que por la noche algunos de los co­
nocimientos pasaran a su cabeza. 

Lagrange también alabó el libro sin reservas. En una carta a 
Gauss del 31 de mayo de 1804, le dice: 

Vuestras Disquisitiones os han elevado rápidamente a la categ01ia 
de los primeros matemáticos, y considero que la última sección con­
tiene el más bello descubrimiento analítico que ha sido hecho desde 
hace largo tiempo [ .. . ]. Creo, señor, que nadie aplaude más sincera­
mente vuestros triunfos que yo. 

Si se recapacita en el hecho de que todos los resultados 
expuestos fueron conseguidos por un Gauss con menos de treinta 
años, no hay más remedio que quedar asombrado. Es muy posible 
que por el ejemplo de Gauss, la medalla Fields, que es el galardón 
más importante que puede recibir un matemático, solo se entre­
gue a personajes menores de cuarenta años. La consecuencia es 
que, a diferencia de los Nobel, que acostumbran concederse a 
científicos que se acercan al fin de su carrera, las medallas Fields 
están reservadas a jóvenes. 

PRIMER Y SEGUNDO MATRIMONIOS 

A finales de 1 798, Gauss volvió a Brunswick, donde vivió hasta 
1807. Es obvio que estos años fueron críticos en su carrera. En un 
principio Gauss temió perder el favor del duque al terminar sus 
estudios en la Universidad de Gotinga, pero en enero de 1799 
Gauss le contó a Wolfgang Bolyai que el duque seguía mante­
niendo su estipendio, el cual le permitía vivir dedicado a sus inves­
tigaciones. Es obvio que en esa época Gauss estaba satisfecho de 
sus logros matemáticos y que estaba colmando las expectativas 
que había puestas en él, particularmente las del duque: no solo 
había completado con brillantez sus estudios en la Universidad de 
Gotinga, sino que había resuelto el problema de la construcción 

«DISQUISI TIONES ARITHMETICAE» 



JOHANN PETER GUSTAV LEJEUNE DIRICHLET 

Dirichlet (1805-1859) fue un matemá­
tico alemán del siglo x1x. Se educó en 
Alemania, y después en Francia, don­
de aprendió de muchos de los más 
renombrados matemáticos de su 
tiempo, relacionándose con algunos, 
como Fourier. Tras graduarse, fue pro­
fesor en las universidades de Breslau 
(1826-1828), Berlín (1828-18S5) y Go­
tinga, en donde ocupó la cátedra de­
jada por Gauss tras su muerte. Dedicó 
muchos de sus trabajos a completar la 
obra de Gauss, aportando demostra­
ciones completas a sus resultados de 
forma que fuesen más accesibles a las 
generaciones futuras de matemáticos. 
Sus aportaciones más relevantes se 
centraron en el campo de la teoría de 
números, prestando especial atención 
al estudio de las series, y desarrolló la 
teoría de las ser ies de Fourier. Su primera publicación comprendió una 
demostración particular del teorema de Fermat, para el caso n = 5, que tam­
bién fue completada por Adrien-Marie Legendre, uno de sus revisores . Di­
richlet completó su propia prueba casi al mismo tiempo; más adelante com­
pletó también la prueba para n = 14. Aplicó las funciones analíticas al 
cálculo de problemas aritméticos y estableció criterios de convergencia 
para las series. En el campo del análisis matemático perfeccionó la definición 
y concepto de función . De hecho, se atribuye a Dirichlet el concepto mo­
derno de función en matemáticas. 

del polígono regular de 17 lados. Durante este segundo período en 
Brunswick se puede observar una enorme expansión de los inte­
reses científicos de Gauss; por primera vez se dedicó sistemática­
mente a cuestiones de matemáticas aplicadas específicamente a 
la astronomía teórica y práctica. 

Su vida personal también cambió en esta época, puesto que 
al final del período cortejó a Johanna Oshoff, con la que se casó 
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LOS NOBEL DE LA MATEMÁTICA 

La medalla Fields es la mayor distinción 
que puede recibir un matemático y es 
concedida por la Unión Matemát ica In­
ternacional cada cuatro años. Viene a ser 
un honor que se corresponde con el de 
recibir un premio Nobel. Y es que no 
existe el premio Nobel de Matemáticas. 
Alfred Nobel , cuando creó los premios 
que llevan su nombre, excluyó de forma 
explícita las matemáticas. Es por ello por 
lo que, aunque la Fundación Nobel tiene 
potestad para admitir nuevas ramas de 
las ciencias en las que premiar a los cien­
tíficos y, por ejemplo, existe un premio 

Nobel en Economía que se creó en 1969, no puede conceder un premio en 
Matemáticas. La razón hay que buscarla en la creencia de Alfred Nobel de que 
las matemáticas no eran una ciencia aplicada y práctica. Existen otras expli­
caciones que hablan de que el hecho deriva del enfado del creador de los 
premios con el gremio de los matemáticos por los amores de su esposa con 
el matemático sueco Gósta Mittag-Leffler (1846-1927), pero nada indica que 
esta explicación, muy extendida , se ajuste a la verdad, sobre todo porque 
Nobel nunca estuvo casado. La primera medalla Fields se concedió en 1936, 
pero la Segunda Guerra Mundial hizo que no se reanudara su concesión has­
ta 1950. El nombre formal del premio es Medalla Internacional para Descubri­
mientos Sobresalientes en Matemáticas (aunque es mucho más conocida por 
el nombre de medalla Fields) . El origen de su nombre hay que buscarlo en el 
matemático John Charles Fields (1863-1932), que fue el que desarrolló la idea. 

Solo a los jóvenes 
Como características propias de este galardón hay que citar que únicamente 
se concede a matemáticos con edades no superiores a los cuarenta años y su 
entrega tiene una periodicidad de cuatro. El premio en metálico que lo acom­
paña, unos 10 000 euros, está muy alejado de las cantidades que distribuye el 
Nobel. Los ganadores en cada edición pueden ser hasta cuatro, pero en raras 
ocasiones el premio ha sido tan generoso. Físicamente la medalla está chapa­
da en oro y fue diseñada por Robert T. McKenzie en 1933. En el anverso tiene 
la cabeza del matemático griego Arquímedes y la inscripción «Transire suum 
pectus mundoque potiri» («Ir más allá de uno mismo y dominar el mundo»). 
En el reverso figura una esfera inscrita en un cilindro y la inscripción «Congre­
gati ex toto orbe mathematici ob scrita insignia tribuere» («Los matemáticos 
de todo el mundo se reunieron para dar esta medalla por escritos excelentes»). 
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en 1805. Ella fue la primera de sus dos esposas. Johanna, que era 
la hija de un curtidor, tenía tres años menos que Gauss y su familia 
había estado muy ligada a la de la madre de Gauss, ya que esta 
había trabajado para la familia de la futura esposa. De pequeño, 
Gauss había visitado con frecuencia la casa de los parientes de su 
nueva esposa y, cuando volvió a Brunswick, retomó la relación 
con ellos. Así es como conoció a Johanna. 

Es difícil saber algo de la vida privada de la pareja, pues los 
únicos documentos que la mencionan son las cartas que Gauss 
mandó a sus amigos y ni tan siquiera ha quedado un retrato suyo. 
En cualquier caso, su apariencia era muy similar a la de la única 
hija que tuvieron ambos en común. En 1806, en una carta a W olf­
gang Bolyai, describió a su esposa como inteligente y dulce, pero 
también inexperta y con escasa formación cultural. 

A finales de 1809, menos de dos años después de haberse mu­
dado a Gotinga, con Gauss como director del observatmio astro­
nómico, Johanna murió a consecuencia de su tercer parto, un mes 
después de que este se produjera. El matrimonio Gauss tenía dos 
hijos anteriores: Joseph y Minna. El último hijo de Johanna, el 
pobre Louis, como acostumbraba llamarlo su padre, siguió a su 
madre pocos meses después, sumiendo al padre en el desconsuelo 
y la depresión. Gauss había sido bastante feliz en su primer matri­
monio; un año antes de que Johanna falleciera, describió su vida 
familiar en una nueva carta a su amigo Bolyai: 

Los días discurren felizmente dentro del curso uniforme de nuestra 
vida doméstica: cuando a la niña le sale un nuevo diente o el chico 
aprende nuevas palabras, eso es más importante que el descubri­
miento de una nueva estrella o una nueva verdad matemática. 

Gauss era un hombre poco práctico en su vida diaria y el es­
tado de viudedad le creaba numerosos problemas. Así, pocos 
meses después de la muerte de Louis, anunció el compromiso con 
Wilhelmine (Minna) Waldeck, la hija de un profesor de Derecho 
de la universidad. La señorita Waldeck había sido amiga de Jo­
hanna Gauss, pero no se sabe si esta amistad significaba mucho 
más que la relación convencional entre la hija de un profesor y la 
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esposa de un joven colega de su padre. Cuando Gauss se le, de­
claró, ella acababa de romper otro compromiso por razones que 
se desconocen. Gauss y Minna W aldeck se casaron con bastante 
rapidez, pero su compromiso no se desarrolló sin problemas. La 
urgencia y el deseo de formar una nueva unión tan pronto como 
fuera posible, para olvidar la tragedia de la muerte de Johanna y 
proporcionar a los niños una nueva madre, parece que tuvieron 
más peso que el afecto que se tenían los esposos en este segundo 
matrimonio. El papel de pretendiente impetuoso y anhelante de 
un nuevo matrimonio disgustó a Gauss, que no se sentía cómodo 
en esa situación. De hecho, las cartas que se cruzaron los dos 
prometidos son bastante frías y carentes de emociones. 

Minna W aldeck era de una extracción social muy diferente a 
la de Gauss y eso también dificultó el matrimonio, ya que la fami­
lia de la novia no estaba muy contenta de que su hija, que provenía 
de un profesor de la universidad, se casase con alguien de familia 
tan hunúlde como la de Gauss. De hecho, en una carta que Gauss 
dirige a su futura esposa con motivo de un viaje a Brunswick para 
conocer a su madre, le advierte del nivel cultural de su familia: 

Una cosa más, la razón por la que no he escrito a mi madre es que 
quería darle una sorpresa y también porque mi madre no puede leer 
algunas cosas de las que le escribo y usted no querrá que ella tenga 
que mostrarlas a personas ajenas. 

En agosto de 1810, Gauss se convirtió en yerno del presti­
gioso profesor y miembro del Consejo Privado del Estado, Johann 
Pe ter W aldeck, y los dos hijos supervivientes del primer matrimo­
nio consiguieron una nueva madre. Gauss fue padre nuevan1ente 
con su nueva esposa, en 1811 y en 1813, años en que nacieron 
Eugen y Wilhem, respectivamente, y en 1816 su hija Therese, que 
se haría cargo de su padre hasta su muerte cuando quedó viudo 
de nuevo. 

Durante sus primeros años en Gotinga, Gauss recibió invita­
ciones para instalarse en otras universidades, especialmente des­
de Rusia y Berlín. La propuesta rusa fue descartada porque a 
Gauss no le agradaba el clima del país. La segunda propuesta puso 
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a Gauss en contacto por primera vez con Alexander von Hum­
boldt, uno de los líderes del renacimiento de Prusia después de la 
caída de Napoleón. 

Gauss se vio afectado en su vida, como no podía ser de otra 
manera, por el período de guerras que le tocó vivir. En 1808, el 
Gobierno francés, tras las derrotas de Prusia en las batallas de 
Austerlitz y Jena a manos de Napoleón, exigió unas enormes in­
demnizaciones por los gastos de guerra, como era lo normal en los 
armisticios firmados durante ese período. Gauss, como miembro 
de la universidad, también debía contribuir con 2 000 francos, lo 
que era una cantidad muy considerable para un profesor recién 
llegado y que todavía no cobraba su sueldo de forma regular. Sin 
que él lo hubiera solicitado, Laplace, desde París, y Olbers, desde 
Bremen, le ofrecieron su ayuda, pero Gauss no quiso aceptar nin­
gún dinero. Al final, la contribución fue pagada anónimamente, 
aunque años después se supo que el benefactor había sido el 
obispo de Frankfurt, lo que da idea de la creciente fama de Gauss. 
De hecho, Gauss, ya anciano, contaba que Napoleón se había abs­
tenido de bombardear Gotinga para no poner en peligro su vida, 
lo que parece algo exagerado por su parte. Lo que sí es seguro y 
está documentado es que la matemática francesa Sophie Germain 
intercedió ante Napoleón para que la vida de Gauss, al que apre­
ciaba enormemente por su talento para las matemáticas, fuera 
respetada. 

En 1810, solo dos años después, Gauss ganó una medalla del 
Instituto de Matemáticas de Francia, pero rechazó el premio en 
metálico que la acompañaba, entre otras cosas porque no le agra­
daban los franceses, pues en ese momento tenían sometida su 
tierra y eran ya varios los años que llevaban en guerra. Sin em­
bargo, aceptó el reloj astronómico que había elegido para él So­
phie Germain, matemática con la que mantenía una relación epis­
tolar. Con algunas excepciones dignas de mención, en el siglo XIX 

había pocas mujeres que se dedicaran a las matemáticas. De 
hecho, Sophie Germain mantuvo correspondencia con Gauss fin­
giendo que era un hombre para evitar que sus ideas fueran des- · 
cartadas directamente. Había descubierto un tipo particular de 
números primos, ligados al último teorema de Fermat - por esa 
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época todavía una conjetura-, que hoy reciben el nombre de 
números primos de Germain. Gauss estaba impresionado por 
las cartas que recibía de un tal Monsieur Le Blanc y quedó mara­
villado al enterarse, tras larga correspondencia, de que el Mon­
sieur era en realidad una Mademoiselle. Gauss no solo no demos­
tró ningún prejuicio en contra de las mujeres, sino que lo valoró 
especialmente y le escribió en una carta: 

El gusto por los misterios de los números es raro. La fascinación de 
esta ciencia sublime se revela en toda su belleza solo a aquellos que 
tienen el valor de desentrañarla. Pero cuando una mujer, que a cau­
sa de su sexo es víctima de nuestras costumbres y prejuicios, supe­
ra estos impedimentos y penetra en lo más profundo, es indudable 
que está dotada de un coraje notabilísimo, de un talento extraordi­
nario y de un genio superior. 

Gauss intentó convencer a la Universidad de Gotinga para 
que concediera a Sophie un doctorado honoris causa, pero Ger­
main murió antes de que Gauss lo consiguiera. 

Más significativo de la importancia de Gauss entre sus con­
temporáneos que cualquier distinción o premio fue la forma en 
que el Gobierno de Westfalia, en ese momento en manos de los 
ocupantes franceses, se esforzó en cumplir su promesa de cons­
truir un nuevo observatorio. Se destinaron ingentes fondos para 
tal fin y en 1814, cuando el reino de Westfalia dejó de existir, se 
habían hecho notables progresos en un tiempo marcado por las 
grandes restricciones económicas, pues recordemos que Prusia 
había sido derrotada por Francia. Incluso con esas limitaciones, 
Gauss siempre pudo adquirir el material que consideraba nece­
sario para sus investigaciones. Durante su estancia en la univer­
sidad, Gauss consiguió dotar becas para estudiantes, entre los 
que se encuentran Christian Ludwig Gerling (1788-1864) y August 
Méibius (1790-1868), creador de la famosa cinta que lleva su nom­
bre. El primero fue un físico de gran valía, y el segundo, un reco­
nocido matemático y astrónomo. 

Se ha apuntado con frecuencia que Gauss no estaba intere­
sado en la enseñanza, y que su esfuerzo estaba mucho más orien-
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MARIE·SOPHIE GERMAIN 

Germain (1776-1831) fue una matemática 
francesa que hizo importantes contribu­
ciones a la teoría de números. Una de las 
atribuciones más notables fue el estu­
dio de los que, posteriormente, fueron 
nombrados como números primos de 
Germain (números primos cuyo doble 
incrementado en una unidad es también 
un número primo), por ejemplo, 11 y 23. 
Germain tuvo un interés especial en las 
enseñanzas de Joseph-Louis Lagrange 
y, bajo el seudónimo de Monsieur Le 
Blanc, uno de los antiguos estudiantes 
de Lagrange, le envió varios artículos. El 
matemático francés se impresionó tan­
to por estos artículos que le pidió a Le 
Blanc una entrevista y Germain se vio 
forzada a revelarle su ident idad. Lagran­
ge reconoció el talento matemático por 
encima de los prejuicios y decidió convertirse en su mentor. Germain tam­
bién usó la misma estratagema para mantener correspondencia con Gauss. 
Una de las mayores contribuciones de Germain a la teoría de números fue la 
demostración matemática de proposiciones que permitían restringir de ma­
nera considerable las soluciones posibles de la famosa conjetura de Fermat. 
Algunos de estos resultados fueron presentados por primera vez en cartas 
dirigidas a Gauss. 

tado a la investigación. Tal generalización es engañosa. Hay que 
tener en cuenta que al tipo de universidad donde Gauss impartió 
docencia muchos estudiantes llegaban más por sus relaciones 
sociales que por su valía intelectual. La mayoría de los estudian­
tes que conoció no estaban demasiado interesados en aprender, 
tenían poca motivación y les faltaban conocimientos elementa­
les. En una carta que escribió en 1810 a su íntimo amigo el astró­
nomo y matemático Friedrich Wilhelm Bessel (1784-1846), Gauss 
afirmaba: 

«DISQUISITIONES ARITHMETICAE» 71 



72 

Este invierno estoy dando dos cursos de conferencias a tres estu­
diantes, de los cuales uno está regularmente preparado, el otro me­
nos que regularmente, y el tercero carece de preparación y capaci­
dad. Tales son las cargas de una cátedra de Matemáticas. 

Cuando Gauss encontró estudiantes que eran capaces de 
aprovechar sus enseñanzas, se interesó enormemente por sus pro­
gresos y su correspondencia está llena de cartas y de consejos, 
explicando las cosas en detalle y repetidamente. Lo que sí es 
cierto es que demostraba poca paciencia con los incapaces o des­
motivados. Gauss siempre esperaba que sus alumnos pudieran 
trabajar y pensar de forma autónoma. Sus propios esfuerzos, más 
que las clases o explicaciones de los profesores, debían ser el cen­
tro de sus estudios. Esta actitud no fue bien comprendida y entró 
en conflicto con las ideas pedagógicas del siglo XIX. Esa es una de 
las razones del retrato convencional de Gauss como un mal pro­
fesor, solo preocupado por sus propias investigaciones. Solo el 
hecho de haber sido maestro y mentor de Bernhard Riemann 
(1826-1866), acaso el matemático más notable de la segunda mitad 
del siglo XIX, ya debería haberlo redimido de cualquier acusación 
de no haber transmitido su saber a las nuevas generaciones. 
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CAPÍTULO 3 

Un método para 
encontrar planetas 

Aunque con apenas veinticinco años Gauss había 
hecho ya notables aportaciones a las matemáticas, 

el resultado que le otorgó la fama en todo el continente 
fue de naturaleza astronómica: el cálculo de la órbita 

de Ceres. Gauss se sirvió para ello del método de 
mínimos cuadrados, uno de los descubrimientos 
matemáticos más relevantes de toda su carrera. 





Desde muy joven, Gauss era muy conocido y respetado por sus 
colegas y profesores y había obtenido el mecenazgo del duque de 
Brunswick. Sin embargo, la fama internacional no llegó hasta que 
consiguió su primer éxito en el campo de la astronomía. Todo se 
lo debió al cálculo de la órbita del que en aquel entonces se pen­
saba que era el planeta Ceres. En la actualidad está catalogado 
como un planeta enano. 

La idea de que un planeta frío desconocido existiera entre las 
órbitas de Marte y Júpiter fue sugerida por Johann Elert Bode 
(17 4 7-1826) en 1768. Sus consideraciones se basaban en la ley de 
Titius-Bode, una teoría propuesta por Johann Daniel Titius (1729-
1796) en 1766. Desde Copérnico se había puesto de manifiesto que 
la distancia entre Marte y Júpiter era anormalmente grande. Por 
ello, a medida que se fue adquiriendo un mejor conocimiento de 
las órbitas planetarias, los astrónomos intentaban encontrar una 
ley que explicara las distancias de dichas órbitas y con ella se 
pudieran descubrir nuevos planetas. La primera ley de este tipo, 
aunque desde un punto de vista riguroso debería llamarse regla, 
fue propuesta por el físico alemán Johann Daniel Titius, cuando 
solo se conocían los planetas del sistema solar hasta Saturno. 
Según esta ley, la distancia de cada planeta al Sol en unidades 
astronómicas (UA, que es la distancia de la Tierra al Sol) viene 
dada por la regla: 
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n+4 
a= --10 ) 

siendo n = O, 3, 6, 12, 24, 48, o sea, cada valor de n a partir de 3 es 
doble que el anterior, y a representa el semieje mayor de la órbita. 
Dicha ley la usó posteriormente el director del observatorio de 
Berlín, Johann Bode, de ahí que sea conocida por ley de Titius­
Bode. Si generamos los ocho primeros números de la serie, se 
obtiene la siguiente tabla: 

n a (en UA) 

o 0,4 

3 0,7 

6 1 

12 1,6 

24 2,8 

48 5,2 

96 10 

192 19,6 

Al confrontar dichos cálculos con las distancias conocidas de 
los planetas descubiertos hasta entonces se obtenía la siguiente 
tabla: 

Planeta n Distancia ley T-B Distancia real 

Mercurio o 0,4 0,39 

Venus 3 0,7 0,72 

Tierra 6 1 1 

Marte 12 1,6 1,52 

24 2,8 

Júpiter 48 5,2 5,2 

Saturno 96 10 9,54 

192 19,6 
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El ajuste, como se puede comprobar, es bueno, aunque se 
pensó que podría ser una coincidencia, puesto que Titius no dio 
explicaciones que sustentaran su regla. Sin embargo, el descubri­
miento de un nuevo planeta, Urano, en 1781 por Willian1 Herschel 
(1738-1822) otorgó renovado crédito a la ley de Titius-Bode. Y es 
que Urano estaba a 19,18 UA del Sol cuando la regla hacía una 
estimación de 19,6. Herschel recibió por su descubrimiento 200 
libras al año y el título de caballero. 

Corno consecuencia del descubrimiento de Urano, los astróno­
mos empezaron a buscar un nuevo planeta a 2,8 UA del Sol, que era 
el que correspondía a n = 24. En el congreso astronómico de Gotha 
de 1800, en la actual Alemania, el francés Joseph Lalande (1732-
1807) recomendó su búsqueda. En ese año, el astrónomo Franz 
Xaver (1754-1832), barón Von Zach, editor de la revistaMonatliche 
Korrespondenz (Correspondencia Mensual), la publicación ale­
mana más importante en astronomía en aquel momento, reunió en 
Lilienthal a veinticuatro astrónomos con el objeto de organizar una 
búsqueda sistemática de ese hipotético planeta del sistema solar. 
Para ello dividieron el cielo en veinticuatro zonas y cada astrónomo 
quedó encargado de observar una de ellas. Sin embargo, la suerte 
no estuvo del lado del grupo de Lilienthal, aunque consiguieron 
otras notables observaciones astronómicas. El honor le correspon­
dió a Giuseppe Piazzi (1746-1826), que difundió el 1 de enero de 
1801, desde el observatorio de Palem10, que había descubierto un 
nuevo planeta, que llamó Ceres Ferdinandea, por Ceres, la diosa 
romana de la agricultura y el an1or maternal y patrona de Sicilia, y 
por el rey Femando IV de Nápoles y Sicilia, patrón de su obra. El 
apellido Ferdinandea se eliminó posteriormente por razones polí­
ticas. Piazzi dictaminó que Ceres giraba alrededor del Sol en una 
órbita que aparentemente le correspondía por la ley de Titius-Bode 
a n = 24. El descubrimiento de Ceres desató un entusiasmo gene­
ralizado y fue considerado un maravilloso augurio para el futuro de 
la nueva ciencia en el siglo que empezaba. Se pensó que era el pla­
neta que se buscaba con tanto interés y que la humanidad era 
capaz de interpretar la naturaleza y hacer predicciones científicas. 

Para entender la importancia que se le dio a este descubri­
miento hay que situar el estado general de la ciencia en ese mo-
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mento. Durante milenios, la humanidad se había creído gobernada 
por reglas caprichosas e inescrutables. La voluntad humana podía 
poco contra el capricho de los dioses y los portentos sobrenatura­
les. Sin embargo, los avances científicos del siglo XVIII situaron al 
hombre de nuevo en el centro del universo y dueño de su destino. 
Los efectos de la naturaleza que observaban sus sentidos tenían 
una causa que se podía estudiar y además podríamos predecir el 
futuro y controlarlo. Lo desconocido e imprevisible terminaría por 
ser dominado por la técnica humana cuando los avances científi­
cos lo hicieran posible. Esa era la idea que recorría Europa a prin­
cipios del siglo XIX, donde cada vez que se verificaba un avance 
científico se estaba seguro de que nos acercábamos al momento 
en que el hombre podría comprender, controlar y predecir la na­
turaleza en su totalidad. En la actualidad sabemos que, si bien los 
avances científicos nos permiten entender mejor el mundo que 
nos rodea, existirá siempre un componente aleatorio e imprede­
cible que nos impedirá alcanzar tan elevado objetivo. 

El entusiasmo se convirtió en decepción pocas semanas des­
pués, cuando el planeta desapareció de la vista. Durante 42 días, 
hasta la noche del 11 de febrero, Piazzi había realizado el segui­
miento del nuevo objeto en su viaje por el espacio. Pero una gripe 
lo mantuvo alejado del telescopio las noches siguientes, y cuando 
se reincorporó a la observación el astro había dejado de ser visible 
durante la noche. Sencillamente había desaparecido ocultado por 
el Sol. El corto período de observaciones no le permitió fijar la ór­
bita de Ceres y predecir dónde volvería a aparecer en el cielo noc­
turno. Sus datos abarcaban solo un arco de 9 grados de la órbita. 

Los astrónomos del siglo XIX no disponían de suficientes ins­
trumentos matemáticos para calcular su órbita completa a partir . 
de la breve trayectoria que habían seguido durante las primeras 
semanas del siglo. Las observaciones de Ceres habían sido objeto 
de intercambio epistolar entre Piazzi, Bode y Lalande, que eran de 
los más afamados astrónomos de la época, lo que dio a la cuestión 
de la órbita de Ceres un carácter general. Von Zach convocó en 
Lilienthal una reunión con otros cinco astrónomos (Schroeder, 
Harding, Olbers, Von Ede y Gildemeister), para tratar el tema de 
la determinación de la órbita del nuevo objeto celeste. 
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UN MÉTODO PARA ENCONTRAR PLANETAS 

FOTO SUPERIOR: 

Gauss empleó 
su método 
de mínimos 
cuadrados para 
calcular la órbita 
de Ceres, un 
objeto celeste 
que acababa 
de descubrirse y 
considerado hoy 
un planeta enano. 
La recreación 
permite comparar 
los tamaños de 
la Tierra, la Luna 
y Ceres (abajo, 
a la izquierda). 

FOTO INFERIOR: 

Gauss en el 
Observatorio 
de Gotinga,. del 
que fue director 
desde 1807 hasta 
su muerte. 
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Cuando los datos de sus observaciones se analizaron, un he-
. cho parecía claro: la distancia heliocéntrica del objeto lo situaba 

entre Marte y Júpiter, tal y como se esperaba. En el mes de junio 
de ese mismo año el grupo convocado por Franz von Zach, utili­
zando los datos de Piazzi, realizó un estudio previo de la órbita, 
sin ningún éxito. 

Como el supuesto planeta no aparecía por ninguna parte del 
firmamento, Von Zach envió los datos a un joven matemático de 
veinticuatro años afincado en Gotinga, cuya fama se empezaba a 
extender por toda Alemania para que .realizara su propia estima­
ción de la órbita. Se trataba de Gauss, que anunció, tras realizar 
sus cálculos matemáticos, que sabía dónde debían los astróno­
mos buscar el objeto perdido. A falta de previsiones alternativas 
a su disposición, y aunque la posición del astro que se deducía de 
los cálculos de Gauss distaba mucho de todas las demás, Zach 
decidió por fin probar con las predicciones de Gauss: muy cerca 
de donde sus cálculos teóricos situaban el deseado objeto, apa­
reció un pequeño punto brillante; era la noche del 7 de diciembre. 
Las observaciones se prolongaron todas las noches de diciem­
bre, al menos todas en las que las condiciones meteorológicas lo 
permitieron, y por fin, el 1 de enero de 1802, otro astrónomo, que 
pertenecía al grupo de trabajo creado por Von Zach, Heinrich 
Olbers, en Bremen, pudo afirmar con toda certeza que el objeto 
observado encajaba a la perfección con los datos de las observa­
ciones de Piazzi de un año atrás y con la órbita prevista teórica­
mente por Gauss. 

Esta predicción asombrosa, sin precedentes en la astronomía, 
había sido hecha por un matemático que había identificado un 
orden allí donde otros habían visto simplemente un minúsculo e 
imprevisible planeta, usando para ello una herramienta matemá­
tica que se demostraría con los años como una de las más fructí­
feras a la hora de calcular órbitas planetarias: la ley de mínimos 
cuadrados, descubierta por Gauss unos seis años antes y que man­
tuvo sin publicar hasta 1809. Las aplicaciones de dicho método, 
más allá de la astronomía, fueron enormes, hasta el punto de que 
su aplicación al cálculo de la trayectoria de Ceres no deja de ser 
anecdótica. Sin embargo, gracias a dicho descubrimiento, Gauss 
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,POR QUÉ ES NEGRA LA NOCHE? 

El astrónomo alemán Heinrich Olbers 
(1758-1849) fue médico en la ciudad de 
Bremen durante cuarenta años. Apasio­
nado al mismo tiempo por la ciencia de 
la astronomía, pasaba gran parte de las 
noches observando el firmamento con 
un pequeño telescopio colocado en el 
tejado de su casa. En 1779 elaboró un 
nuevo método, llamado método de 0/­
bers, para calcular la órbita de un come­
ta. El método demostró su eficacia en 
algunos casos particulares de órbitas 
circulares o parabólicas, pero fue ine­
ficaz para la determinación de la órbita 
de Ceres, que era de tipo elíptico. El 
1 de enero de 1802 Olbers localizó Ceres 
en la posición prevista por Gauss. Poco 
después descubrió Palas, y propuso que 
ambos objetos astronómicos estaban 
relacionados con los fragmentos de un 
cuerpo más grande, lo que lo llevó a 
buscar otros fragmentos en el f irmamento. Para el cálculo de la órbita de 
Palas invitó a Bremen al matemático alemán, que permaneció en dicha ciu­
dad durante tres semanas, y Olbers fue testigo de la aplicación de sus no­
vedosos métodos materT)áticos, especialmente del método de mínimos cua­
drados. Durante el resto de su v ida, Olbers mantuvo relación con Gauss. 

La paradoja de Olbers 
En la actualidad se recuerda a Olbers fundamentalmente por proponer en 
el año 1823 la famosa paradoja que lleva su nombre, según la cual, en un 
universo euclídeo, infinito, estático y uniformemente poblado de estrellas, 
el cielo nocturno debería brillar como la superficie solar. Las explicaciones 
que se han propuesto para dar una solución a esta paradoja han consistido 
históricamente en negar que el universo sea infinito, o esté ocupado por 
estrellas de una manera uniforme. La teoría de la relatividad encuentra una 
razón evidente, ya que las galaxias alejadas de la Tierra en más de 14 000 
millones de años luz (que es la edad que se le supone al universo) no han 
podido todavía hacernos llegar su luz, debido a la ve locidad finita de esta . 
Eso significa que, al menos por lo que respecta a la luz de las galaxias que 
vemos, el universo es finito. Por otro lado, el universo está en expansión, por 
lo que no es estático. 
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se convirtió de inmediato en una estrella de primera magnitud en 
la comunidad científica internacional. 

Su gesta fue un símbolo del poder de la predicción de las 
matemáticas en un período, la primera mitad del siglo XIX, en el 
que, como ya se ha comentado anteriom1ente, la ciencia estaba 
en plena eclosión. Si bien es cierto que los astrónomos habían 
descubierto el planeta por casualidad, un matemático había 
puesto en juego la capacidad analítica necesaria para explicar 
qué ocurriría en el futuro. Gracias a la predicción de la órbita del 
planeta Ceres, al final del primer año del nuevo siglo Gauss era, 
además de uno de los matemáticos más notables, el astrónomo 
más popular de Europa. 

En marzo de 1802, Olbers descubrió Palas, otro objeto astro" 
nómico de tamaño menor que Ceres, y le planteó a Gauss la fija­
ción de su órbita durante su estancia de tres semanas en Bremen 
por invitación del propio Olbers. El método de los mínimos cua­
drados volvió a manifestar su potencia y Olbers fue testigo del uso 
que hacía Gauss de las técnicas matemáticas. Cuando surgieron 
las disputas sobre la precedencia de la invención del método de 
mínimos cuadrados, Gauss pondría a Olbers como testigo de que 
él usaba el método desde principios de siglo. 

En noviembre el joven Gauss, que contaba veinticinco años, 
fue nombrado miembro de la Real Sociedad de Ciencias de Go­
tinga. El éxito le trajo a Gauss muchos más honores, entre ellos 
la invitación para dirigir el observatorio astronómico de la Aca­
demia de Ciencias de San Petersburgo. Rusia· tenía una gran tradi­
ción de invitar a investigadores extranjeros a instituciones 
científicas propias, como en el caso de Leonhard Euler. En 1802, 
cuando Gauss aún no había decidido nada acerca de la invitación, 
Olbers alertó a su amigo Van Heeren, un profesor en la Universi­
dad de Gotinga y asesor del gobierno de Hannover. Olbers no 
quería que Gauss dejase Alemania y movió los hilos necesarios 
para que le propusieran a Gauss la dirección del nuevo observa­
torio de Gotinga, aún por construir. Las negociaciones para el 
traslado de Gauss de nuevo a Gotinga no entraron en una fase 
seria hasta 1804 y concluyeron con éxito en 1807, cuando final­
mente se hizo efectivo su retomo. 
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EL MÉTODO DE MÍNIMOS CUADRADOS 

El problema que le propusieron a Gauss sobre el cálculo de tra­
yectorias de planetas a partir de un número mínimo de observa­
ciones ( al menos tres) era de una extraordinaria dificultad mate­
mática, puesto que había que resolver seis ecuaciones con seis 
incógnitas. Estas ecuaciones son tan complicadas que hay que 
aproximar las soluciones, no es posible calcularlas con precisión. 
La dificultad estriba en que el sistema de ecuaciones no es lineal, 
ya que la resolución de un sistema lineal de un problema con el 
mismo número de incógnitas que ecuaciones puede ser arduo, 
pero no ofrece dificultades técnicas. El cálculo original de la ór­
bita de Ceres incluía, como casi todos los cálculos de Gauss, un 
uso habilísimo de interpolaciones y aproximaciones sucesivas. 
Cabe destacar el pragmatismo de Gauss, que usaba cualquier he­
rramienta matemática disponible. Introdujo muchas ideas cuya 
justificación completa dista de ser trivial, pero que aplicó, sin em­
bargo, de manera maestra. 

En un primer paso, había que determinar la posible órbita, y 
a continuación, aún más complicado, la corrección gradual de la 
órbita. Básican1ente hay tres tipos de órbitas posibles: elípticas, 
parabólicas e hiperbólicas. Las técnicas existentes antes de Gauss 
habían obtenido algunos éxitos, como la determinación de la ór­
bita de Urano, pero esta era particularmente sencilla, porque la 
suposición inicial de que era circular alrededor del Sol era bas­
tante buena, ya que su excentricidad es muy pequeña, y además 
existían numerosas observaciones que podían corregir cualquier 
error. Con Ceres, Gauss solo contaba con 41 días de observación; 
además, su órbita presentaba un alto grado de excentricidad, por 
lo que la hipótesis circular en la que se basaron Olbers y Von Zach 
no era válida y de hecho les condujo a error. Gauss, al contrario 
que sus contemporáneos, no hizo ninguna suposición inicial. Su 
método de trabajo estaba basado solo en las observaciones que 
tenía, sin ninguna hipótesis adicional, y para su solución usaba 
métodos heurísticos, o sea haciendo mejoras de sus estimaciones 
paso a paso. En los métodos heurísticos se usa un método itera­
tivo de manera que las soluciones parciales enco.ntradas sirven de 
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base para encontrar nuevas soluciones más cercanas a la solución 
real del problema. 

El método de mínimos cuadrados creado por Gauss es una 
técnica de análisis numérico encuadrada dentro de la optimiza­
ción matemática. El objetivo es encontrar la función que mejor 
se ajuste a unos datos dados. La idea matemática es la siguiente: 
sean (x¡, y¡), (x2, y2), . • . , (x

11
, Y,) unas parejas de datos obtenidos 

de observaciones reales de una variable X y otra Y. Suponemos 
ahora que entre la variable X e Y existe una relación definida por 
una función!, de forma quef(xJ =Yi· Para el caso del planeta 
Ceres que estudió Gauss, las parejas estaban formadas por la 
situación en el espacio (variable Y) y el tiempo (variable X). 
Determinar la trayectoria del planeta era equivalente a encon­
trar la forma de la función f, de manera que introduciendo el 
dato del tiempo (x), pudiésemos calcular su situación (y) , a 
partir del valor def(x). Lo que busca el método es encontrar la 
función que haga mínimos los errores o residuos, que se definen 
como la diferencia entre el valor real de la variable Y (la posi­
ción del planeta) y su estimación por medio de la función f. Di­
chos errores se notan como e;= yi- f (xJ La idea es que la suma 
de estos errores sea lo menor posible. Para que los errores no se 
compensen entre los negativos y los positivos, lo que se hace es 
elevarlos al cuadrado, procedimiento que cuenta con la ventaja 
adicional de que reduce la importancia de los errores más pe­
queños, la mayoría de ellos debidos a imprecisiones en la toma 
de datos. Así pues, el problema de los mínimos cuadrados se 
reduce a encontrar la función f de manera que se minimice la 
suma de los cuadrados de los residuos, o sea que: 

" " 2 ¿e;= ¿(Yi -f(xJ) sea mínima. 
i-1 i-1 

Este problema es equivalente a encontrar el mínimo del error 
cuadrático medio, es decir, minimizar la función: 

fe; = I ~-1 (Yi - f (x;))2 
;.1 n n 
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Este planteamiento es algo más simple del que realmente 
abordó Gauss, porque por simplicidad hemos supuesto que la si­
tuación del planeta Ceres se podía representar por una sola varia­
ble, cuando en realidad se necesita un sistema de coordenadas y 
por tanto la variable es múltiple, lo que afecta a la dificultad de los 
cálculos y al número de incógnitas con las que hay que trabajar, 
pero no a su planteamiento teórico. 

POLÉMICA CON LEGENDRE 

La autoría del desarrollo del método de mínimos cuadrados dio 
lugar a una gran polémica con el matemático francés Adrien­
Marie Legendre. Dicha polémica se debió a los métodos de trabajo 
de los matemáticos de principios del siglo XIX y especialmente a 
los de Gauss. La producción de matemática de Gauss iba a una 
mayor velocidad que sus publicaciones. Gauss, como otros mu­
chos matemáticos contemporáneos, no publicaba de forma inme­
diata sus descubrimientos en artículos cortos, como se hace hoy 
en día, sino que esperaba a tener una gran colección de ellos para 
editar un libro completo con sus avances. A ello se unía su afán 
por no dar demasiadas pistas sobre su trabajo. En el caso del pla­
neta Ceres dio la solución, que se reveló exacta, pero no explicó 
el método usado para llegar a las conclusiones que le dieron fama. 
Gauss no publicó sus trabajos sobre el método de mínimos cua­
drados hasta 1809 en su Theoria motus corporum coelestium in 
sectionibus conicis solem ambientium (El movimiento de las 
secciones cónicas de cuerpos celestes del sistema solar), casi una 
década después de usarlo en el cálculo de la órbita de Ceres. En 
esa publicación discute el método y alude a una publicación de 
Adrien-Marie Legendre sobre el tema. De hecho, Legendre, aun­
que no fue el primero en utilizar el método, sí que fue el primero 
en publicarlo en Nouvelles méthodes pour la détermination des 
orbites des cometes (Nuevos métodos para la determinación de 
órbitas de cometas), que se publicó en 1805 (cuatro años antes 
de la publicación de Gauss) y fue el que le puso el nombre con el 

UN MÉTODO PARA ENCONTRAR PLANETAS 85 



86 

que se lo conoce hoy en día. Por ello, Legendre, a raíz de la publi­
cación del libro de Gauss, le dirigió una carta de enhorabuena, 
reivindicando no obstante la autoria del método de los mínimos 
cuadrados. 

En 1820, Legendre publicó un suplemento a su memoria de 
1805, atacando de nuevo a Gauss por la prioridad de los mínimos 
cuadrados. El estudio posterior del cuaderno de notas de Gauss y 
el testimonio de Olbers, que aseguró que Gauss le había enseñado 
las notas del método en 1802, cuando ambos trabajaban en la de­
terminación de la órbita de Palas, dan la razón a Gauss en la polé­
mica. No fue la última vez en que estos dos grandes matemáticos 
polemizaron sobre la autoría de resultados matemáticos. 

La disputa redundó en perjuicio del desarrollo de la matemá­
tica, pues Legendre contagió sus injustificadas sospechas de ser 
copiado por Gauss a su alumno más ilustre, Carl Gustav Jakob 
Jacobi, e impidió que este matemático, que más tarde iba a desa­
rrollar las funciones elípticas, colaborara con Gauss, quien desde 
muy joven, como demuestra su cuaderno de notas, había traba­
jado en esas funciones. En este tema, y en otros que veremos pos­
teriormente, Gauss marchó a la cabeza de Legendre. Sin embargo, 
cuando Legendre le inculpó de haber procedido mal, Gauss acusó 
el golpe. En una carta al astrónomo Heinrich Christian Schuma­
cher (1780-1850) de 1806, se quejó de que: 

Parece que es mi destino coincidir en casi todos mis trabajos teóricos 
con Legendre. Así ha ocurrido en aritmética superior, en las investi­
gaciones sobre las funciones trascendentes relacionadas con la rec­
tificación [ el proceso de encontrar la longitud del arco de una curva] 
de la elipse, en los fundamentos de la geometría, y ahora otra vez 
aquí en el método de los mínimos cuadrados. 

Con la publicación detallada de los trabajos póstumos de 
Gauss y de gran parte de su correspondencia de los últimos años, 
todas estas antiguas disputas han sido resueltas en favor del ma­
temático alemán. 

Este tipo de polémicas era muy frecuente entre los matemá­
ticos de la época, puesto que, además del retraso en la publicación 
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de resultados, la comunicación entre científicos, mediante cartas, 
podía ser dificultosa, lo que daba lugar a que varios de ellos estu­
vieran trabajando en el mismo problema y llegaran de manera in­
dependiente a los mismos resultados. En la actualidad, con la 
ayuda de los medios electrónicos, especialmente Internet, y con 
la exigencia de publicar los resultados lo más rápido posible, un 
investigador matemático puede estar al día del trabajo de sus co­
legas de forma inmediata, evitando este tipo de discusiones. 

ADRIEN-MARIE LEGENDRE 

Legendre (1752 -1 833) protagonizó con 
Laplace, Lagrange y Cauchy la edad de 
oro de la matemática francesa. Recibió 
una excelente educación en el Collége 
Mazarin de París, donde se doctoró en 
física y matemáticas en 1770. Desde 
1775 hasta 1780 enseñó en la escuela 
mil itar y desde 1795 en la École Normal. 
En 1782 le fue concedido el premio ofre­
cido por la Academia de Berlín por su 
estudio sobre proyectiles. Hizo impor­
tantes contribuciones a la estadística, la 
teoría de números y el análisis matemá­
tico. Sus trabajos sirvieron de base para 
posteriores avances matemáticos. Los 

trabajos del noruego Niels Henrik Abel Legendre caricaturizado por el artista 

en las funciones elípticas se construye- francés Julien-Leopold Boilly hacia 1020. 

ron sobre los postulados elaborados 
por Legendre, que realizó una labor 
fundamental en este ámbito, incluyendo la clasificación de las integrales 
elípticas. Su obra en este campo fue completada por su alumno Carl Gustav 
Jakob Jacobi. Parte de la obra de Gauss sobre estadística y teoría de núme­
ros complementaba la de Legendre, con el que tuvo diversas polémicas a lo 
largo de su vida sobre la preeminencia de los descubrimientos. En 1830 
presentó una demostración para n = 5 de la entonces conjetura de Fermat. 
También realizó trabajos pioneros en la distribución de los números primos 
y en la aplicación del análisis a la teoría de números, en los que de nuevo 
coincidió con Gauss. 

UN MÉTODO PARA ENCONTRAR PLANETAS 87 



88 

APLICACIÓN DEL MÉTODO DE 
MÍNIMOS CUADRADOS A LA ESTADÍSTICA 

Además de para el cálculo de órbitas espaciales, el método de míni­
mos cuadrados tiene una gran potencialidad en otros muchos cam­
pos de la matemática, especialmente en la estadística, como vere­
mos. La resolución de las ecuaciones del método de mínimos 
cuadrados depende del conocimiento que tengamos de la función!, 
que liga a las variables de las que tenemos los datos, y de la comple­
jidad de dicha función. El caso más sencillo es aquel en que la fun­
ción es una recta, o sea Y= a+ bX. El cálculo de los parámetros a y 
b se obtiene con un cálculo sencillo a partir de n parejas de datos 
bidimensionales (x1, y 1), (x2, y2), . . . , (x,., Y,.). Aplicando la técnica de 
mínimos cuadrados obtenemos, después de derivar e igualar a cero, 
unas ecuaciones conocidas por el nombre de ecuaciones normales: 

n n 

2,Yi =na+b"j,xi 
i-1 i -1 

n n n 

"j,yixi = a 2,xi + b "j,x¡, 
i - 1 i -1 i - 1 

de donde se despejan los valores de a y b: 

· b = Cov(X,Y) 
s; 

a=y-bx, 

donde Cov(X,Y) es la covarianza de las variables y Sx2 y x es la va­
rianza y la media de la variable X, respectivamente, e y es la media 
de la variable Y. A la recta resultante se la conoce como recta de re­
gresión. Este tipo de cálculos nos puede ayudar a determinar el valor. 
posible de una variable a partir del valor conocido de otra. Imagine­
mos que seleccionamos a n individuos en los cuales la proporción 
entre peso y estatura es la adecuada. A partir de esas n parejas de 
datos hacemos los cálculos de la recta de regresión correspondiente. 
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Con esa ecuación estamos en disposición de determinar el peso 
medio esperado de una persona conociendo su estatura, lo que es un 
cálculo que recibirnos de manera habitual cuando nos medirnos en 
una farmacia. Consideremos la siguiente tabla de datos: 

Estatura Peso 

170 68 

172 70 

174 71 

175 72 

177 73 

180 76 

182 80 

185 82 

186 83 

187 84 

190 85 

193 85 

194 86 

Efectuando los cálculos para averiguar la recta de regresión, 
nos queda que Y = 0,808X - 68,921, donde Y es el peso y Xla altura. 
En la gráfica de la página siguiente se representan los puntos rea­
les y la recta de regresión, calculada por el método de mínimos 
cuadrados. La recta nos permite hacer una predicción sobre cuál 
es el peso medio que le correspondería a una persona que midiese 
179 centímetros: Y= 0,808 • 179 - 68,921 = 75, 71. 

Cuanto más compleja sea la función!, más difíciles serán los 
cálculos, pero mayor precisión obtendremos en los resultados. 

Una parte fundamental de la estadística es hacer inferencias, 
o sea, sacar conclusiones de los parámetros de una población a 
partir de una muestra representativa. Estas conclusiones se ex­
traen mediante una función de la muestra llamada estimador (y 
que se supone estima el comportamiento de la población obje­
tivo). Pues bien, dentro de la inferencia estadística tiene un papel 

UN MÉTODO PARA ENCONTRAR PLANETAS 89 



Representación de 
los puntos y la 

recta de regresión 
calculada por el 

método de los 
mínimos 

cuadrados. 

90 

fundamental el teorema de Gauss-Markov. Dicho teorema afirma 
que, bajo determinadas hipótesis, el estimador obtenido por el 
método de mínimos cuadrados es óptimo. 

Peso (kg) 

90 ,---+.-------~--~-
85 _____ _,... ___ _ 

80 f-----+---+---

75 

70 

65 , ____ _ 

1 60+--------'--------------'----'-
165 170 175 180 185 190 195 200 

Al tura (cm) 

LA «THEORIA MOTUS CORPORUM COELESTIUM» 

Como ya hemos dicho, en 1807 Gauss volvió a Gotinga con el cargo 
de director del observatolio astronómico. Aunque estuvo intere­
sado por la astrononúa toda su vida, y de hecho eso mermó su po­
sibilidad de hacer más aportaciones a la matemática tradicional, es 
en estos plimeros años en Gotinga cuando dedicó sus mayores es­
fuerzos a la recopilación de sus trabajos previos sobre astrononúa 
y a realizar nuevas aportaciones. Así, en 1809, Gauss publicó su obra 
más importante de contenido astronómico: Theoria motus corpo­
rum coelestium in sectionibus conicis Solem ambientium. Contie­
ne los resultados obtenidos por Gauss, pero corno es habitual, no 
siempre incluye los métodos usados para llegar a sus conclusiones. 

El libro se publicó en latín, aunque la plirnera versión de Gauss 
había sido esclita en alemán, pero el editor consideró que era más 
fácil de vender en latín por ser posible una mayor difusión. La rna-
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GAUSS Y SU CAMPANA 

Gauss no fue el descubridor de la curva que lleva su nombre. La distribución 
normal o curva de Gauss, como pasó a conocerse, también conocida por 
campana de Gauss en estadística, fue presentada por primera vez por Abra­
ham de Moivre (1667-1754) en un artículo del año 1733, bastantes años antes 
de que Gauss viera la luz. La función de densidad de una distribución normal 
(que describe la probabilidad de que encontremos valores de la variable en 
un determinado conjunto), que aparece de manera natural en el estudio del 
comportamiento de fenómenos reales, es: 

1 _(x-µ)' 

f(x)---e 2o' 
aJ2;, 

donde µ y 0 2 son la media y la varianza de la distribución. Su representación 
aparece en la figura siguiente, con µ=O. 

Los motivos por los que Gauss aparece en el nombre de esta distribución son 
dos: por una parte, usó profusamente la distribución normal en el análisis de 
errores de experimentos cuando analizaba datos astronómicos, y, por otra, 
existe un tipo de funciones denominadas gaussianas (en honor de Gauss), de 
las cuales la distribución normal no es más que un caso particular con los 
valores de 

1 
a• -r::-, b=µ y c=o. 

ov2rt · · 

En la distribución normal la mayoría de los valores de la variable se agrupan 
en torno a los valores centrales, por lo que la gráfica alcanza mayor altura. 
Cuanto más nos alejemos de estos valores, menos probable es encontrar 
datos, por lo que la gráfica es decreciente al separarnos del valor de la media. 
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teria principal de la obra es la determinación de las órbitas elípti­
cas e hiperbólicas de los planetas y cometas, usando solo un nú­
mero mínimo de observaciones y sin suposiciones adicionales. En 
el prefacio, Gauss recuerda el ejemplo de Ceres, que tanta fama le 
había procurado. El libro tiene un marcado carácter pedagógico, 
con numerosos ejemplos de aplicación. Está dividido en dos par­
tes: una primera que contiene el material preliminar y otra con las 
soluciones del problema general. Es la prin1era aplicación rigurosa 
de las leyes de Kepler para el cálculo de las órbitas de los cuerpos 
celestiales. Hasta los métodos descubiertos por Gauss, como el de 
los mínimos cuadrados, los astrónomos usaban métodos que varia­
ban caso a caso sin buscar una regla general. La contribución esen­
cial de Gauss es una combinación de conocimientos teóricos, una 
facilidad inusual para los cálculos algebraicos y su experiencia 
práctica en astronorrúa. A diferencia de sus predecesores (inclu­
yendo a Isaac Newton, que había resuelto problemas similares me­
diante una aproximación geométrica), Gauss no presupone el co­
nocimiento del tipo de órbita del objeto observado. Esto complica 
los cálculos, pero permite abordar el problema sin saber si el ob­
jeto estudiado es un planeta, un cometa o un asteroide, lo que no 
siempre es fácil con pocas observaciones. 

Las cuatro secciones de la primera parte del libro describen 
los movimientos de un cuerpo celestial alrededor del Sol. La sec­
ción I contiene muchas de las definiciones necesarias, como radio 
o excentricidad, por ejemplo, además de las fórmulas trigonomé­
tricas para describir la posición de un cuerpo en un punto dado de 
su órbita. También aporta consejos prácticos sobre los métodos 
para extrapolar tablas numéricas y para aproximar parábolas con 
elipses e hipérbolas. La sección II está dedicada a la determinación 
del lugar de un cuerpo celestial como una función de tres coorde­
nadas. Gauss comenzó con la definición de los siete parámetros 
que definen el movimiento de un cuerpo celestial: longitud media, 
movimiento medio, semieje mayor, excentricidad, longitud del 
nodo ascendente, inclinación de la órbita y masa. Luego describió 
las relaciones entre esos elementos y explicó los criterios para la 
identificación de las diferentes secciones cónicas. Y para terminar 
la sección, estableció las ecuaciones diferenciales del movimiento 
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de un cuerpo celeste, dando algunos ejemplos prácticos. En la sec­
ción III entró en el problema del cálculo de la órbita a partir de 
varias observaciones y cómo encontrar todos los parámetros que 
describen el movimiento del cuerpo mediante relaciones matemá­
ticas. En la última sección se ocupó del caso de varias observacio­
nes que estén en el mismo plano que el Sol ( como ocurre con el 
movimiento de la Tierra, por ejemplo), para las que dedujo sus re­
laciones trigonométricas. Esta sección es corta y concluye con la 
ecuación para órbitas elípticas. 

«El principio consiste en que la suma de los cuadrados 
de las diferencias entre lo observado y las cantidades 

calculadas debe ser mínimo.» 
- GAUSS, DEFINICIÓN DEL MÉTODO DE MÍNIMOS CUADRADOS. 

Después de la preparación de la primera parte del libro, Gauss 
abordó en la segunda parte el problema principal: la determina­
ción de la órbita de un cuerpo celestial a partir de observaciones. 
El problema es resuelto en dos pasos: en el primero se calcula una 
solución aproximada a partir de tres o cuatro observaciones, y en 
el segundo va mejorando este primer resultado con la ayuda de los 
restantes datos observados. Los apartados 1 y 2 de esta sección · 
del libro se ocupan del primer paso, y el 3 y el 4, del segundo. 

Corno hemos mencionado anteriormente, son siete los ele­
mentos del movimiento que se han de calcular para determinar la 
órbita. En la sección 1 de la segunda parte del libro, Gauss explica 
cómo calcular seis de ellos usando tres observaciones; el séptimo, 
la masa, se ha de determinar de forma independiente. Teniendo en 
cuenta que cada observación proporciona dos parámetros, longi­
tud y latitud, tres observaciones son suficientes para los cálculos, 
salvo que la órbita observada se encuentre en la eclíptica o muy 
próxima a ella. Cuando se habla de eclíptica nos referimos al plano 
en el cual la Tierra se desplaza alrededor del Sol describiendo una 
elipse. Para tratar este caso, que es el objeto de la sección II de 
la segunda parte, es para lo que se necesitan cuatro nuevas ob­
servaciones independientes. Gauss consideró el caso de cuatro 
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observaciones independientes, de las cuales solo dos están com­
pletas. Metodológicamente no es novedoso respecto a lo visto an­
teriormente, pero es importante si la órbita mencionada está 
próxima a la eclíptica de la Tierra. En tal caso, errores pequeños 
en las observaciones pueden llevar a cálculos erróneos, si se tra­
baja solo con las cuatro observaciones mencionadas. 

Las últimas dos secciones del libro están dedicadas a los méto­
dos de mejora del cálculo aproximado de las órbitas calculadas en 
las dos primeras secciones. En la sección III Gauss publicó por 
primera vez el método de mínimos cuadrados, como su herramienta 
más eficiente para la mejora del cálculo de órbitas. Como ya hemos 
visto, este principio fue usado con éxito para el cálculo de la órbita 
de Ceres, precediendo en su uso a Legendre, aunque no en su publi­
cación. En la sección IV, que es bastante corta, Gauss hizo algunas 
observaciones sobre las perturbaciones de las órbitas elípticas 
causadas por la influencia de planetas mayores, lo que le permitió 
hacer el cálculo de la masa de Júpiter a partir de la órbita de Ce­
res, aunque sin entrar en demasiados detalles. El libro termina con 
una serie de larguísimas tablas que clarifican las relaciones entre los 
diversos parámetros que definen una órbita. 

Se puede afirmar que Theoria motus corporum coelestium in 
sectionibus conicis solem ambientium fue el más importante e 
influyente texto astronómico hasta bastantes décadas después de 
su publicación. Gauss marcó el inicio de la astronomía moderna 
también en el planteamiento de un nuevo estándar de exigencia, 
precisión y fidelidad en las observaciones astronómicas y en su 
reducción. El método de mínimos cuadrados resultó ser una herra­
mienta básica: inicialmente solo una técnica, pero se transformó 
en uno de los pilares de la filosofía natural de Gauss, que la usó en 
numerosas ocasiones. Y también llegó a ser un instrumento indis­
pensable en otras muchas ramas de las matemáticas. 

Como astrónomo, Gauss realizó también experimentos sobre 
la modificación de la gravedad por la rotación terrestre, la deter­
minación de la longitud geográfica, la identificación de cometas y 
el análisis de las dificultades en la óptica de los telescopios. 
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CAPÍTULO 4 

Poniendo orden entre 
los números primos 

Todo número se puede descomponer en primos, 
lo que convierte a estos últimos en la base misma 
de la aritmética. Sin embargo, no es sencillo saber 

si un número de gran tamaño es primo, ni disponemos 
de fórmulas que generen primos de forma ininterrumpida 

y ni siquiera sabemos cuál es su distribución. 
Al abordar el problema, Gauss tuvo la lucidez 

de buscar nuevos caminos y poner orden 
donde hasta entonces solo había caos. 





Corno hemos visto, Gauss dedicó su interés a áreas matemáticas 
muy diversas: álgebra, aritmética, astronomía, construcciones 
con regla y compás y alguna más. Pero si de un terna se puede 
decir que fue una constante en su vida científica, este seda el 
estudio de los números primos y sus propiedades. Bien podiia­
rnos decir que si Gauss hizo de la teoiia de números «La reina de 
las matemáticas», las mejores joyas que adornaban a esa reina 
eran los descubrimientos sobre los números primos, los números 
que habían fascinado (y atormentado) a generaciones enteras de 
matemáticos. 

La prueba más antigua del interés de la humanidad por los 
números primos es un hueso que está datado en el año 6500 a.c. 
El hueso de Ishango se descubrió en 1960 en África ecuatorial. 
Tiene grabadas varias columnas con distintas muescas. Lo intere­
sante es que en una de sus columnas tiene 11, 13, 17 y 19 marcas, 
que son los números primos que están entre 10 y 20. También la 
antigua civilización china se sintió atraída por el estudio de los 
números primos. Para los chinos tenían cualidades viriles, porque 
no se dejaban descomponer en producto de números menores. 
Sin embargo, fueron los antiguos griegos los que encontraron la 
primera propiedad importante de los números primos: todo nú­
mero natural se puede descomponer de forma única como pro­
ducto de números primos. Por así decirlo probaron que los primos 
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eran los elementos que construían toda la aritmética de los núme­
ros, al igual que los elementos químicos de la tabla periódica cons­
tituyen la base de todo el universo. 

Hasta donde se sabe, Eratóstenes (276 a.C.-194 a.C.), el biblio­
tecario de Alejandría, fue el primero en construir tablas de núme­
ros primos en el siglo m a.c. Ideó un procedimiento razonable­
mente sencillo para saber qué números eran primos entre dos 
cantidades, por ejemplo 1 y 1000. Dejando aparte el número 1, que 
no todos los matemáticos consideran primo, buscaba el primer 
primo: el número 2. A partir de alú, tachaba todos los números que 
fuesen múltiplos de 2 (los pares) y que, por tanto, ya no podían ser 
primos. Con la lista de números no tachados, buscaba el primer 
número no tachado, que era automáticamente primo, en este caso 
3, y volvía a proceder de la misma manera, tachando todos los 
múltiplos de 3. Eratóstenes seguía con este procedimiento sa­
biendo que el primer número de su lista de números no tachados 
era primo (siguen el 5, 7, 11. .. ) y que era el que determinaba cuá­
les serían los siguientes en ser quitados de la lista (todos sus múl­
tiplos). Con este procedimiento sistemático construyó tablas de 
números primos. El método recibió el acertado nombre de criba 
de Eratóstenes, pues se construía una red que descartaba los nú­
meros que no podían ser primos, de la misma forma que el cedazo 
de los mineros les ayuda a buscar las pepitas de oro. Obviamente 
en cada fase la malla de Eratóstenes cambia de dimensión, por lo 
que el proceso se acelera. 

Euclides también se ocupó de los números primos y se hizo 
la siguiente pregunta: ¿es infinito el conjunto de los números pri­
mos? ¿Habríamos de seguir encontrando primos indefinidamente 
en el conjunto de los números naturales o, por el contrario, hay un 
momento en que estos dejan de aparecer? La pregunta tiene res­
puesta y Euclides la encontró: el conjunto de números primos es 
infinito. El matemático griego lo expresó diciendo que la cantidad 
de números primos es mayor que cualquier número que se pueda 
pensar. La demostración es bastante elemental y prueba la poten­
cia del razonamiento matemático, que es capaz de responder a esa 
pregunta sin necesidad de encontrar números primos más gran­
des cada vez. 
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EL CONJUNTO DE NÚMEROS PRIMOS ES INFINITO 

Se hace por reducc ión al absurdo. Suponemos, en primer lugar, que el con­
junto de los números primos es finito, o sea P = {2, 3, ... , P¡, .. . , Pn} es el conjun­
to de todos los primos que existen y Pn es el mayor de ellos. Se considera el 
producto de todos ellos más uno, o sea calculamos q=2 ·3· ... ·p¡' ... "Pn +l. Este 
número es obviamente mayor que 1 y que p n, por lo que no puede ser primo, 
pues entonces tendríamos un primo mayor que el máximo Pn· Así pues, hay 
que suponer por el contrario que q es un número compuesto. Como todo 
número compuesto se puede descomponer en producto de números primos 
menores que él, eso significa que todos los factores primos de q están en el 
conjunto de primos P. Por tanto, existe al menos un elemento del conjunto P, 
que notamos por P,, que divide a q. Pero por construcción P; también divide 
al producto 2 · 3 · ... · P¡ · .. . · Pn, ya que P; es uno de los factores de ese produc­
to. Lo que significa que P; divide a q y a q-1, por lo que debe divid ir a su di­
ferencia que es 1, pero ningún número primo mayor que 1 divide a l. Es decir, 
se ha llegado a un absurdo. La consecuencia es que el conjunto P que se es­
cogió no es exhaustivo, ya que existen números primos que no pertenecen a 
él, y por tanto el conjunto de números primos es infinito. 

Con la argumentación de Euclides se desvanecía la posibi­
lidad de construir una tabla que contuviera todos los números 
primos, y por tanto la posibilidad de encontrar la forma mágica 
que nos permitiera describirlos se desvanece. Mucho más fuerte 
que el resultado de Euclides es el que demostró Euler en 1737, que 
dice que la suma de los recíprocos de los números primos diverge. 
Lo que expresado mediante fórmula matemática queda: 

lim ( 2 !) = oo con p primo . 
• 1:-:::0 ps..,: p 

Obviamente, de ese resultado ya se puede deducir que el nú­
mero de p1imos es infinito, ya que para que una suma sea infinita 
necesita, necesariamente, tener un número infinito de términos (y 
a dicha conclusión se llega, por cierto, sin necesidad de hacer la 
suma; simplemente por medio de un razonamiento lógico). 
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Cuando Gauss era joven recibió como regalo un libro que 
contenía una lista de varios millares de números primos, posible­
mente determinados con algún tipo de criba numélica del tipo de 
las usadas por Eratóstenes. Gauss observó que los números apa­
recían de forma desordenada. Parecía casi imposible determinar 
cuál era su patrón de comportamiento o determinar la fórmula 
que pemritiese encontrarlos en el cortjunto infinito de los números 
naturales. Para un científico que había determinado la órbita de 
cuerpos celestes a partir de unas cuantas observaciones, parecía 
un reto hecho a su medida. La idea de que los matemáticos no 
podían encontrar reglas en la distribución de los números primos 
aguijoneaba la mente de Gauss. Su reto era encontrar orden y re­
gularidad donde solo parecía haber caos. 

«Cualquier bobo puede plantear preguntas sobre los números 
primos a las que la persona más inteligente no puede responder.» 
- GODFREY IIAROLD IIARDY (1877-1947) EN REFERENCIA A LOS NÚMEROS PRIMOS. 

Durante generaciones se había intentado comprender los nú­
meros primos y se habían realizado especulaciones interesantes. 
Por ejemplo, existe una conjetura que dice que es posible encon­
trar infinitos números primos gemelos (separados por dos unida­
des), es decir, si p es primo tan1bién lo es p + 2. Se han encontrado 
parejas de primos gemelos en valores muy avanzados, corno la for­
mada por 1000037 y 1000 039. Euclides demostró hace más de dos 
mil años que hay infinitos números primos, pero nadie sabe si exis­
te un número más allá del cual no hay más de esas parejas de pri­
mos vecinos. Y es que en matemáticas una cosa son las cortjeturas 
y otra bien distinta los teoremas, separados de las primeras por el 
abismo de la demostración. Es por ello por lo que la demostración 
matemática es la base fundamental del avance de dicha ciencia. 

Una de las primeras cuestiones que intentaron los matemáti­
cos fue encontrar fórmulas que proporcionaran una lista ilimitada 
de números primos. Era un objetivo más modesto que el de encon­
trar una fórmula general que generara todos los números p1imos, 
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lo cual es imposible, y a ello se aplicaron grandes matemáticos. 
Fermat creyó haber hallado una: su idea era sumarle 1 a un tipo 
especial de potencias de 2. Según Fermat, los números de la forma 
22

" + 1, siendo n un número natural, que notaremos por F y llan1a-" ' 

remos primos de Fermat o números de Fermat, eran siempre pri~ 
mos. Para potencias bajas de dos el sistema funciona, y así con 
n = 1, obtenemos 5; paran= 2, obtenemos 17. Fermat estaba con­
vencido de que su fórmula siempre proporcionaría un primo, pero 
no tenía medios para comprobarlo experimentalmente, ya que el 
tamaño de los nún1eros aumentaba rápidamente y era imposible 
calcularlos. Sin embargo, en esta ocasión su intuición no era cierta. 
El quinto nún1ero primo de Fermat, que tiene 10 cifras y por tanto 
no era calculable para él, ya no es primo, porque es divisible por 
641, como probó Euler. Como se había encontrado lo que en mate­
máticas se llama un contraejemplo, la intuición de Fermat dejó de 
ser una conjetura y pasó a ser simplemente una proposición falsa. 
Es por ello por lo que algunos autores se resisten a llamarlos pri­
mos de Fermat y aluden a ellos como números de Fermat. 

Los números de Fermat fueron muy estimados por Gauss, 
pero él les dio un uso diferente. En las Disquisitiones arithme­
ticae, Gauss demostró que si un número de Fermat es primo, es 
posible construir un polígono regular con ese número de lados 
con regla y compás. Diecisiete son los lados del polígono cuya 
construcción dio a conocer el nombre del joven Gauss, y 17 es el 
segundo número de Fermat. El cuarto número de Fermat, 65 537, 
es primo, y ello significa que se puede construir un polígono re­
gular perfecto con ese número de lados. Obviamente se necesita 
mucha precisión y paciencia para lograrlo, pues ya vimos que el 
encargado de grabar la lápida de Gauss renunció a hacerlo con 
los 1 7 lados. 

Así pues, aparte del uso que Gauss le dio a la fórmula de los 
números primos de Fermat, el procedimiento se reveló bastante 
ineficaz para lo que se había concebido. Este es un ejemplo más 
de que teorías matemáticas que pueden considerarse de poca uti­
lidad pueden encontrar su aplicación en el futuro. Es por ello por 
lo que a los matemáticos les cuesta tanto calificar de poco útiles 
las matemáticas que hacen, por teóricas que sean. 
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Fermat trató de determinar algunas de las propiedades de los 
primos que, como 5, 13, 17 o 29, al dividirlos por 4 dan de resto l. 
Tales números se pueden escribir como suma de cuadrados 
(13=32 +22, 29 =22 +52, etc.). Así que Fermat conjeturó que la sun1a 
de cuadrados daba números primos e incluso afirmó poseer una 
demostración. Efectivamente, Fermat era muy dado a construir 
conjeturas y a sobreestimar su capacidad de demostrarlas, ya que 
por ejemplo 25 = 42 + 32 no es primo. De hecho, como ya se ha co­
mentado, muchos matemáticos de esa generación no proporciona­
ban la demostración de propiedades que decían haber descubierto. 

El día de Navidad de 1640, Fermat escribió sobre su descu­
brimiento ( que ciertos primos se podían expresar como suma de 
cuadrados) en una carta que envió al monje Marin Mersenne, que 
era también músico. Mersenne era interlocutor habitual de mu­
chos matemáticos de la época y tuvo correspondencia con casi 
todos los franceses e incluso alguno de fuera, como Galileo Galilei 
(1564-1642). El grupo de matemáticos que se unieron a través de la 
correspondencia con Mersenne fue el germen de la Academia de 
Ciencias de París. 

Mersenne también se interesó por la cuestión de construir nú­
meros primos e ideó una fórmula que se reveló más útil que las 
pensadas por Fermat. Partía de considerar las potencias de 2, pero 
en lugar de sumar 1 al resultado como hacía Fermat con sus pri­
mos, decidió restarlo. Por ejemplo 23- 1 = 7, que es primo. Mer­
senne descubrió en seguida que su fórmula no siempre daba un 
número primo, ya que 24- 1 = 15, que no es primo. Entendió que 
necesitaba alguna condición adicional e impuso que la potencia de 
2 fuese a su vez un número primo. Así afirmó que para valores 
de n no superiores a 257, los números de la forma 2"-1 eran pri­
mos si y solo si n era primo. O sea, una caracterización matemá­
tica, pues contiene una condición necesaria y suficiente. Su 
teorema tenía una única excepción pues 211 - 1 = 2047, que es el 
producto de 23 por 89, así que no es primo. Y en matemáticas, la 
excepción no confirma la regla. En consecuencia, el teorema era 
falso. Lo que sigue siendo un misterio es cómo pudo afirmar Mer­
senne que 2257 -1 era primo, dado que es un número de setenta y 
siete cifras, absolutamente fuera de sus posibilidades de cálculo. 
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LA ACADEMIA DE CIENCIAS DE PARÍS 

La Academia de Ciencias fue fundada en 
París en el año 1666 por Colbert, minis­
tro de finanzas de Luis XIV. En su crea­
ción tuvo mucha importancia el grupo 
de matemáticos que se relacionaban a 
través de su co rrespondencia con Ma­
rin Mersenne (1 588 -1648), reproducido 
en el grabado de la derecha. Entre los 
miembros más importantes de su prime­
ra época estaban René Descartes, Pierre 
de Ferma t y Bla ise Pasca l (1623 -1 662). 
Desde su creación incluía miembros no 
franceses, como ~I holandés Christiaan 
Huygens (1629-1695), que tuvo durante 
toda su vida una ayuda económica de 
la Academ ia. En 1699 la Academia fue 
reorganizada bajo el patronato real de 
Luis X IV y se ubicó su sede en el palacio 
del Louvre. Estaba dividida en dos cate-
gorías principales, c iencias matemáticas y cienc ias fís icas, que a su vez se 
subdividían en tres ramas: geometría, mecánica y astronomía, en la parte de 
cienc ias matemáticas, y química, botánica y anatomía, en la de ciencias físicas. 
La geometría ha de entenderse en el sentido de la Grecia clásica y comprendía 
todas las ramas de las matemáticas. Durante el siglo xv111 contr ibuyó al movi­
m iento científico de su tiempo por med io de sus publicaciones. Además rea­
lizaba acc iones de asesoría científica para el poder pol ít ico. Tras la supres ión 
de las academias que siguió a la Revolución, en 1816 recuperó su autonomía y 
se unió al Instituto de Francia, estatuto que conserva en la actua lidad. 

El incentivo de los premios 
En 1721 la Academia había establecido un prestigioso sistema de premios, que 
perduró en el tiempo. Estos premios fueron de gran impacto en el desarrollo 
de las matemáticas y otras c ienc ias, y dieron lugar a trabajos de destacada 
importancia en diversas áreas. Existía un comité de expertos para juzgar cada 
gran premio y sus archivos guardan deta lles de las deliberaciones de los en­
cargados de concederlos. A lgunos años la Academia decidía sobre qué tema 
deberían remitirse los trabajos que optasen al premio, como por ejemplo en 
1816 y 1857, que se dedicó a la solución del último teorema de Fermat que, por 
supuesto, no ganó nadie. Gauss nunca optó a d icho premio, pues mantenía 
una cierta distancia con las instituciones francesas, debido a las guerras que 
Francia mantuvo con su país. 
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En parte, las ideas de Mersenne siguen siendo estudiadas, pues no 
se sabe si su fórmula seguirá proporcionando números primos de 
forma indefinida. Aún se está a la espera de que se demuestre que 
los primos de la forma 2"-1, con n primo, no se acabarán nunca. 

Euler también se dedicó a estudiar los números primos. Tanto 
con él como con Gauss es más fácil señalar los campos de las 
matemáticas en los que no obtuvieron resultados que lo contrario. 
La pasión de Euler por los números primos había sido estimulada 
por su correspondencia con Christian Goldbach, que era secreta­
rio de la Academia de Ciencias de San Petersburgo. 

Goldbach, al igual que Mersenne, no era un matemático pro­
fesional, pero encontraba fascinante jugar con números y ejecutar 
experimentos numéricos. Fue a Euler a quien primero comunicó 
Goldbach su famosa conjetura. Euler utilizó a Goldbach para ayu­
darle a verificar sus demostraciones sobre números primos, ya 
que sus argumentaciones contenían pasos que no eran totalmente 
1igurosos. En particular estuvo muy interesado en algunas de las 
conjeturas de Fermat sobre estos números. A Euler el trabajo con 
números primos se le daba especialmente bien, pues le permitía 

LA ACADEMIA DE CIENCIAS DE SAN PETERSBURGO 

La Academia de Ciencias fue fundada por Pedro I en San Petersburgo en 
enero de 1724 y mantuvo este nombre de 1724 a 1917. Los primeros invitados 
a trabajar en ella fueron reconocidos científicos europeos, como los mate­
máticos Leonhard Euler, Christ ian Goldbach, Nicolás y Daniel Bernoulli, el 
embriologista Caspar Friedrich Wolff (1734-1793), el astrónomo y geógrafo 
Joseph-Nicolas Delisle (1688-1768), el físico Georg Wolfgang Krafft (ca. 1700-
1754) o el historiador Gerhard Friedrich Müller (1705-1783). Gauss fue uno de 
los científicos relevantes que fue invitado a la Academia, con motivo de la 
celebridad alcanzada con el cálcu lo de la órb ita de Ceres, aunque rechazó tal 
inv itac ión. La Academ ia ha realizado una gran labor de promoción de las 
ciencias que admite pocas comparaciones, tanto a nivel europeo como mun­
dia l. Mantuvo su actividad, a pesar de las convulsiones a las que se vio some­
tida Rusia, hasta 1934, cuando su sede se trasladó a Moscú con la mayoría de 
los institutos de investigación de la Unión Soviética. 
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aprovechar sus excepcionales capacidades de cálculo, y era muy 
hábil manipulando fórmulas para que aparecieran las conexiones 
que ocultaban. Otro colega matemático, Fran<;ois Arago (1786-
1853), uno de los reformadores de la Academia de Ciencias de 
París, elijo de él: «Euler calcula sin esfuerzo aparente, como los 
hombres respiran o las águilas se sostienen con el viento». 

Euler disfrutaba calculando números primos, ocupación a la 
que Gauss también dedicaba su tiempo. Confeccionó tablas de 
todos los primos menores de 100 000 y de algunos mayores. Entre 
otras cosas, como ya hemos visto anteriormente, consiguió de­
mostrar que el quinto primo de Fermat no era primo por procedi­
mientos teóricos, porque su capacidad de cálculo no alcanzaba la 
magnitud del número. Uno de sus descubrimientos más curiosos 
fue una fórmula que parecía generar una cantidad enorme de nú­
meros primos. En 1772 calculó todos los resultados que se obtie­
nen cuando a x se le dan valores entre O y 39 en la ecuación 
x 2 + x + 41. Obtuvo la siguiente lista: 

41,43,47,53,61, 71,83,97, 113,131,151,173,197,223,251,281, 
313,347,383,421,461,503,547,593,641,691,743,797,853,911, 

971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601. 

Todos ellos eran números primos. Parecía un inicio promete­
dor, pero con los valores de x =40 y x =41 la fórmula encontraba 
números que no eran primos. Y es que de nuevo los primos se re­
sistían a revelai· una fórmula que los produjera de forma constante 
y sin fin. Descubrió, además, que cambiando el término indepen­
diente de la ecuación y poniendo 2, 3, 5, 11, 17 en vez de .41 tam­
bién obtenía números primos, pero siempre se terminaba por 
interrumpir la serie. Eso hizo que Euler en 1751 escribiera: «Hay 
algunos misterios que la mente humana no penetrará jamás. Para 
convencemos de ello basta con que echemos un vistazo a las ta­
blas de números primos. Observaremos que en ellas no reina 
orden ni ley». Si el gran Euler tira la toalla es que el problema es 
serio. Así estaban las cosas cuando Gauss se interesó por la cues­
tión. Y conste que él sentía una admiración enorme por Euler, del 
que había dicho, refiriéndose a la teoría de números, que: 
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Las particulares bellezas de estos campos han atraído a todos los 
que se han dedicado activan1ente a su cultivo; pero ninguno ha ex­
presado este hecho tan a menudo como Euler quien, en casi todos 
sus numerosos escritos dedicados a la teoría de números, cita con­
tinuamente el placer que obtiene de esas investigaciones, y el grato 
cambio que halla respecto a las labores más directamente ligadas a 
aplicaciones prácticas. 

LAS CONJETURAS DE GAUSS 
SOBRE LOS NÚMEROS PRIMOS 

Durante muchos siglos se había tratado, sin éxito, de conseguir 
fórmulas que proporcionaran números primos de forma ilimitada. 
Gauss aportó al problema un nuevo enfoque y una estrategia dis­
tinta. Desde muy joven, Gauss había demostrado su genialidad 
para encontrar caminos nuevos con los que abordar los proble­
mas, huyendo de lo evidente y demasiado trillado. Así, Gauss 
abandonó la búsqueda de fórmulas que proporcionasen números 
primos, un camino que había acabado siempre en callejones sin 
salida, y trató de encontrar un orden en la distribución de los nú­
meros primos, y si era posible, las expresiones matemáticas que 
definiesen ese orden. Este cambio supuso un punto de inflexión 
en el tratamiento del problema y se revelaría muy acertado, pro­
porcionando materia de estudio a nuevas generaciones de mate­
máticos y propiciando descubrimientos que aún hoy dan sus 
frutos. La idea de Gauss era relacionar la distribución de los nú­
meros primos con los logaritmos de base e, tal y como veremos. 
La idea surgió muy pronto en su despierta mente matemática, aun­
que tardaría años en madurar y sus consecuencias le trascende­
rían y llegarían a sus alumnos. 

A sus catorce años, Gauss recibió como regalo un libro de 
logaritmos, una herramienta imprescindible para todo aquel que 
se interesaba por la aritmética. Los logaritmos han perdido con las 
modernas calculadoras matemáticas parte de su utilidad, y ahora 
no se estudian con la intensidad con la que se hacía en décadas 
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APLICACIONES DE LOS LOGARITMOS 

Dados dos números rea les by x d iremos que z es el logaritmo de x con base 
b, si b elevado a z da x . En expresión matemática: 

Los logaritmos tienen dos propiedades que los hacen muy adecuados para 
hacer operaciones aritméticas de forma cómoda. Por una parte, el logaritmo 
de un producto es la suma de logaritmos y su división se convierte en una 
diferencia. Así, 

log/ x-y) = logbx+ logby ' y además logb!... = logbx -logby, 
y 

lo que permitía calcular multiplicaciones y divisiones como sumas y restas 
con la ayuda de las tablas de logaritmos, por lo que en el pasado todos los 
escolares las utilizaban en sus estudios. Gracias al diálogo que los logaritmos 
permiten entre la multiplicación y la suma se dinamizó la navegación y el 
comercio; las tablas de logaritmos y sus inversos se volvieron muy populares. 
La primera tabla de logaritmos se concibió en 1614, por el escocés John Napier 
(1550-1 617). Los matemáticos se dieron cuenta de que la base de un logarit­
mo podía cambiarse, haciéndose muy popular, por su gran utilidad, el loga­
ritmo con base e, un número irracional que toma el valor de 2,718182 ... deter­
minado por primera vez por Euler, y que está presente en numerosas 
expresiones matemáticas. El número e puede obtenerse a través del cálculo: 

e= Í _2_, donde n! es el factorial del número natura l n. 
n-O n! . 

Los logaritmos en base e son conocidos, en honor a Napier, como logaritmos 
neperianos y se notan por In. 

pasadas. La razón es que los logaritmos permitían una gran sim­
plificación en las operaciones matemáticas. 

El libro de logaritmos contenía también una tabla de núme­
ros primos al final, así que la aguda mente de Gauss empezó a 
especular sobre si existía alguna relación entre los dos tipos de 
tablas. Y esa fue su gran aportación al tema de los números pri­
mos. En lugar de intentar prever la posición precisa de un primo 
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respecto al anterior, intentó comprender si era posible averiguar 
cuántos primos existían inferiores a 100, o a 1000 o en general a 
cualquier número dado. ¿Había alguna manera de estimar cuán­
tos números había comprendidos entre 1 y N para un N natural 
dado? Para ello definió la función: 

rr,(N) = cardinal del conjunto {p ~N, tal que p es primo}. 

La notación no es demasiado afortunada porque da idea de 
que la función está relacionada de alguna manera con el número 
rr,, cuando no es así. Al hacer algunos cálculos elementales, la pri­
mera conclusión es que los números primos no se distribuyen de 
manera uniforme. Por ejemplo, hay 25 primos menores que 100; 
esto es, al elegir un número entre 1 y 100 tenemos una probabi­
lidad de 1/4 de dar con un primo. Estas probabilidades van des­
cendiendo cuando aumentamos el número N. Pero ¿siguen estas 
variaciones algún patrón susceptible de ser expresado matemáti­
camente? Gauss usó sus tablas de números primos para intentar 
dar respuesta a la pregunta. AJ observar la fracción de números 
primos comprendidos en intervalos cada vez mayores, le pareció 
que mantenían una cierta estructura regular. Si vemos el resultado 
de esas observaciones para diversas potencias de 10, esa regulari­
dad empieza a poder vislumbrarse. 

Potencias de 10 
Número de primos Distancia media 

(rc(N)) entre primos 

10 4 2,50 

100 25 4,00 

1000 168 5,95 

10000 1229 8,14 

100000 9592 10,43 

1000000 78498 12,74 

10000000 664579 15,05 

Esta tabla contiene mucha más información de la que tenía a 
su disposición Gauss, que no tenía tablas de números primos que 
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llegasen a 1O000000, pero generalmente él necesitaba menos datos 
para llegar a conclusiones que las demás personas, así que es justo 
que nos tomemos alguna ventaja. Si observamos la tabla es evi­
dente que la distancia media entre primos consecutivos aumenta y 
para valores supe1iores a 10 000 el incremento se estabiliza en 2,3. 
Es decir, cuando multiplicamos por 10 el número N, la distancia 
entre primos aumenta en 2,3. Este nexo entre multiplicación y 
suma es el que hizo que Gauss pensara que los logaritmos podían 
jugar un papel in1portante. La razón por la que las distancias me­
dias aumentaban en 2,3 en vez de hacerlo en 1 cada vez que multi­
plicamos por 10 da idea de que el logaritmo involucrado no es en 
base 10. Gauss comprobó que la base que más se adecuaba a sus 
cálculos era e y, por tanto, se decidió por usar logaritmos neperia­
nos. Y es que el ln(lü) = 2,3034, por lo qué ln(lO0) = ln(l0-10) = 
= ln(lü) + ln(lü) y de igual forma cuando multiplicamos por 10. 

Eso dio pie a que Gauss fmmulase la siguiente hipótesis: para 
números comprendidos entre 1 y N, la separación media de los 
primos será ln(N). En consecuencia, podíamos estimar el valor de 
la función n:, como: 

N n:(N)e--. 
ln(N) 

Gauss nunca pensó que eso fuera una fórmula exacta, sino que 
podía servir para dar una estimación, para establecer una especie 
de orden en la aparición de números primos. Gauss apuntó esta 
aproximación en su libro de logaritmos, pero no le explicó a nadie 
la idea, entre otras cosas porque no tenía la demostración de que 
su especulación fuese cierta y no sabía si su patrón seguiría siendo 
cierto cuando se aumentara el tamaño de N. Como ya hemos visto, 
esta manera de actuar formaba parte de la idea que Gauss tenía de 
cómo debe actuarse en matemáticas. Sin una demostración, para 
Gauss la conexión entre primos y logaritmos carecía de valor. Sin 
embargo su idea sería el germen de una nueva manera de abordar 
el problema y daría maravillosos frutos en el futuro. 

Una vez más, sin embargo, Legendre volvería a cruzarse en sus 
investigaciones. El matemático francés también estaba interesado 
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en la teoría de números y en 1798, con seis años de retraso con 
respecto a Gauss, anunció un nexo experimental entre números 
primos y logaritmos. La estimación que propuso Legendre era 
mejor, puesto que la estimación de Gauss se comprobó que se ale­
jaba progresivan1ente de los valores reales a medida que se alejaba 
de N. La fórmula de Gauss, por su parte, los subestimaba, corno 
podernos ver en la figura siguiente: 

20000 40000 60000 80 000 100 000 

La figura demuestra que, aunque ciertamente Gauss había 
dado con algo interesante, quedaba espacio para la mejora. Así 
que Legendre dio una nueva estimación definida por la fórmula 

n(N)~ ___ N __ 
- ln(N)-1,08366' 

haciendo una pequeña corrección que era más cercana a la grá­
fica real de la distribución de los números primos. De hecho, con 
las tablas de primos existentes hasta la fecha era casi imposible 
distinguir las gráficas de n(N) y la estimación de Legendre. Lo que 
había hecho era ajustar una función a la gráfica, problema relati­
vamente fácil usando el método de mínimos cuadrados, y era por 
eso por lo que en la fórmula aparecía un término corno 1,08366, 
de nulo sentido matemático. Legendre, en general, estaba más 
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preocupado de hallar explicaciones prácticas de las matemáticas 
que de buscar demostraciones. Así, en 1808, publicó su hipótesis 
sobre números primos en un libro titulado Théorie des nombres 
(Teoría de números), sin añadir el método que le había llevado a 
esa conclusión. La controversia sobre quién había sido el primero 
en descubrir la conexión entre logaritmos y números primos·pro­
vocó de nuevo una disputa entre Gauss y Legendre, que no hizo 
más que avivar lo ocurrido con el descubrimiento del método de 
mínimos cuadrados para el cálculo de la órbita de Ceres. Solo 
cuando tras su muerte se estudiaron las notas y correspondencia 
de Gauss se pudo determinar que, de nuevo, Gauss se había ade­
lantado a Legendre en el descubrimiento. En cualquier caso, la 
ecuación de Legendre, con su término añadido, tenía un aire muy 
poco natural y, además, no se tenía seguridad de que la estima­
ción siguiese siendo buena cuando se ampliaran las tablas de nú­
meros primos. 

Por ese motivo, no es de sorprender que Gauss dedicara los 
últimos años de su vida a perfeccionar su estimación, buscando 
una fórmula más precisa y mejor fundamentada matemática­
mente. Así que se planteó el problema como un cálculo de proba­
bilidades. Era evidente que cuando aumentaba N, la probabilidad 
de encontrar un primo disminuía. La idea era usar probabilidades 
basadas en la expresión 

1 
ln(N)' 

así la estimación de Gauss tenía una nueva expresión: 

1 1 1 N 1 
n(N)a,,-+ - + ... +- = 2--. 

ln2 ln3 lnN i-2 ln( i) 

En realidad, la fórmula que presentó Gauss era una ligera va­
riación de la anterior, que notó por L/N), llamada logaritmo in­
tegral de N y que era más precisa que la anterior, porque sustituía 
la serie de sumas por la integral, que no es más que una suma in­
finita y que, por tanto, se adapta mejor a la idea de Gauss. Así la 
expresión dada por Gauss era: 
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Li (N) = f _!!:Jj__ 
2 ln(y) 

Con lo que Gauss conjeturó que n(N) e L i (N), que es lo que se 
conoce como la conjetura de los números primos de Gauss que, 
como veremos, se convirtió en el teorema de los números primos 
de Gauss. Con esta expresión, el matemático alemán volvía a su­
perar a Legendre, aunque serian necesarios enormes avances téc­
nicos en el cálculo de números primos para probarla. Gauss de­
dicó mucho tiempo a la construcción de tablas de números primos 
para poder probar su conjetura. Con más de setenta años, Gauss 
le escribió al astrónomo Johann Encke (1791-1865): «Con mucha 
frecuencia utilizaba un cuarto de hora de inactividad para encon­
trar los números primos de intervalos de tamaño mil». Con esta 
curiosa forma de relajarse, Gauss consiguió encontrar el número 
de primos inferiores a 3 000 000 y comprobó que la diferencia con 
la estimación de su función integral .era de apenas del 0,0007%. 
Cuando se empezaron a utilizar tablas más extensas de primos, se 
descubrió que la fórmula de Legendre resultaba mucho menos 
precisa y para números mayores que 10000000 se desviaba mar­
cadamente. 

Con la ayuda de modernos métodos de cálculo se comprobó 
que la estimación de Gauss de los números primos menores que 
1016 se aparta del valor correcto en apenas una diezmillonésima 
del 1 %, mientras que la estimación de Legendre multiplica por va­
rios miles de millones esta desviación. Podemos afirmar que la 
estimación de Gauss, basada en razonamientos de tipo matemá­
tico, superó los ajustes de Legendre para hacer coincidir su fun­
ción con los datos disponibles hásta ese momento. 

Además de esta primera conjetura, de que la función n(N) 
podía ser estimada con precisión por L;(N) sin tener límites para 
N, Gauss hizo una segunda, pues creía que la función L;(N) ternti­
naria por sobreestimar la cantidad real de números primos (siem­
pre en porcentajes infinitesimales) y que esta tendencia sería 
uniforme. Esta segunda afirmación recibió el nombre de segunda 
conjetura de Gauss. Y su demostración o refutación no era tarea 
sencilla, habida cuenta de que los cálculos de los más modernos 
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ordenadores no la desmienten. Sin embargo, la confirmación o no 
de las conjeturas de Gauss habría que hacerla mediante demostra­
ciones matemáticas: no se podía dejar a su comprobación expe­
rimental, porque por más larga que fuese la tabla de números 
primos construida, siempre se tendría la duda de si al aumentar el 
alcance de las tablas seguiría dándose la misma ocurrencia. Para 
los matemáticos, que se pueda comprobar experimentalmente 
para números inimaginables por su tamaño no es suficiente. Es la 
diferencia de las matemáticas con otras ciencias y no parece que 
se vaya a renunciar a ella. 

En la comprobación de las conjeturas de Gauss tendría un 
papel destacado quien posiblemente fue su mejor alumno, Bem­
hard Riemann. 

LA HIPÓTESIS DE RIEMANN 

En 1809, Wilhelm van Humboldt (1767-1835) se convirtió en mi­
nistro de Educación de Prusia y revolucionó el sistema educativo. 
El estudio de las matemáticas constituyó por primera vez una 
parte importante de los nuevos Gymnasiem y universidades; se 
animaba a los estudiantes a estudiar matemáticas por su valor en 
sí mismas, y no solo como ciencia auxiliar al servicio de otras 
disciplinas. Esta actitud contrastaba con la que se había tenido 
durante el dominio francés, donde el conocimiento utilitarista era 
el que primaba. Uno de los beneficiados por este cambio de acti­
tud fue Riemann, que había nacido en 1826 y era uno de los estu­
diantes de matemáticas más dotados del momento en Alemania. 
Cuando terminó sus estudios en Luneburgo, en el estado de Han­
nover, se matriculó, en 1846, en la Universidad de Gotinga por 
deseo expreso de su padre, un eclesiástico que prefería esa uni­
versidad porque en ella se enseñaba teología. Esta decisión pon­
dría en contacto a Riemann con un Gauss ya anciano. De hecho, 
poco después de llegar, su padre hubo de dar permiso al joven 
Bemhard para cambiar los estudios de teología por los de mate­
máticas. Riemann completó su formación en la Universidad de 
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Berlín durante dos años, pues Gotinga ofrecía, salvo el anciano 
Gauss, escasos estímulos intelectuales según su parecer. En Ber­
lín trabó contacto con Dirichlet, que sería el sustituto de Gauss en 
Gotinga, y quien le propuso los prin1eros problemas de números 
primos. Durante su estancia en Berlín consiguió estudiar los pa­
peles de Gauss sobre sus conjeturas sobre los números primos. 

Riemann volvió a Gotinga en 1849 para completar su tesis 
doctoral y someterla al criterio de su maestro Gauss. Logró pre­
sentar su tesis en 1854, un año antes de la muerte de Gauss. 

Cundo Riemann empezó a hacer sus aportaciones sobre nú­
meros primos estaban pendientes de ser demostradas las dos hi­
pótesis de Gauss, que eran en primer lugar que la función n(N) 
podía ser estimada con precisión por LJN) para cualquier N, o sea 
que su diferencia era un infinitésin10, lo que significa que su límite 
era cero. Y la segunda que LJN) 2: n(N) para cualquier valor de N. 
Para abordar el problema Riemann definió su famosa función 
zeta, que está definida de la siguiente manera: 

"' 1 
s(z)= I - z, 

n -1 n 

donde z es un número complejo distinto de l. Esta función tiene 
valores donde se anula, como en z = - 2, z = -4 y otros, que se cono­
cen con el nombre de ceros triviales. Los no triviales son aquellos 
en que su parte real es mayor estricta que cero, pero menor es­
tricta que l. Recordemos que un número complejo siempre es de 
la forma a+ bi, donde tanto a como b son números reales. Así, los 
ceros no triviales son aquellos en que se verifica que O< a< l. 

Riemann, con su definición, lo que hizo fue generalizar una 
función estudiada por Euler, que también notó del mismo modo: 

00 1 
t(x)= I~-,,_¡ n 

La diferencia entre la función zeta de Riemann y la de Euler 
está en el campo de definición. Para Euler x es un valor real, mien­
tras que con Riemann z es un número complejo. Por lo tanto, la 
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función de Euler torna valores reales, rrúentras que la de Riernann 
lo hace en los complejos. 

El interés de los matemáticos por esta suma infinita, lo que se 
conoce en matemáticas por una serie, proviene del mundo de la 
música y su origen es anterior a Euler, aunque fuera este quien 
la estudiara de manera más profunda y encontrara los primeros 
resultados que la ligaban con los números primos. Pitágoras com­
probó que el sonido que errútía un recipiente con agua dependía de 
la cantidad de líquido que contuviera. Así, se dio cuenta de que los 
sonidos eran armoniosos si la cantidad de agua era una fracción 
del total cuyo numerador fuese l. O sea, 1, 1/2, 1/3, 1/4, . .. Pitágoras 
llamó a esta serie, por sus virtudes musicales, armónica. La suma 
de la serie armónica era el resultado de darle a x el valor 1 en la 
función zeta de Euler. Se puede probar que la suma de esa serie es 
infinito. Podría pensarse que ese es un resultado evidente, pues si 
sumarnos un número infinito de térrrúnos positivos, necesaria­
mente la suma cada vez será mayor y terrrúnará divergiendo, o to­
rnando valor infinito. Lo cierto es que no es así: para x = 2 la serie 
converge. De hecho, Euler demostró que el valor de 

00 1 Jt2 
C(2) =}:-2 =-. 

n-1 n 6 

En la historia de las matemáticas no siempre estuvo claro 
que la suma de infinitos términos positivos tuviera necesaria­
mente que dar infinito e incluso se forjaron teorías filosóficas a 
este respecto. 

Sin duda, el primer gran resultado que liga a la función zeta 
con los números primos fue el obtenido por Euler en 1737, que 
afinna: 

00 1 1 
C(x) = Í: ~=TI - --x, 

n•l n pEP 1- p 

siendo x un número real y P el conjunto de los números primos. 
En la fórmula se cambia la suma por un producto de fracciones 
generadas por números primos. Para llegar a ese resultado Euler 
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descompuso cada término de la serie como el producto de primos. 
Por ejemplo, 

1 1 1 1 
90 = 2 32 5º 

Riemann estudió a fondo la función que había usado Euler 
que, como hemos visto, se puede expresar en función de los nú­
meros primos. Su gran aportación, entre otras cosas, fue ampliar 
el dominio de la función de los números reales a los números 
complejos. 

EULER Y LA TORTUGA 

Zenón de Elea (ca. 490 a.C.-ca. 430 a.C.) fue un filósofo griego que ideó una 
serie de paradojas, o aporías, para apoyar la doctrina de su maestro Parmé­
nides, que afirmaba que las sensaciones que obtenemos del mundo son ilu­
sorias, y concretamente, que no existe el movimiento físico, como pretendía 
probar por razonamientos lógicos. La más famosa de sus paradojas tiene por 
protagonistas a Aquiles, «el de los pies ligeros», y una tortuga. Aquiles y la 
tortuga se retaron a una carrera. Ya que el guerrero corría mucho más rápido 
le dio a aquella una gran ventaja. Al darse la salida, Aquiles recorrió la distan­
cia que los separaba inicialmente, pero al llegar allí descubrió que la tortuga 
ya no estaba, sino que había avanzado un pequeño trecho. Sin desanimarse, 
siguió corriendo, pero al llegar de nuevo donde estaba la tortuga, esta había 
avanzado un poco más. Y así siguió ocurriendo hasta el infinito. De este modo, 
Aquiles no alcanzaba nunca a la tortuga; la conclusión es evidente: como 
nuestros sentidos nos dicen que Aquiles alcanza a la tortuga, entonces es que 
nuestros sentidos nos engañan y Parménides tenía razón. El razonamiento es 
falso y fácil de desmontar. Los tiempos en los que Aquiles recorre la distancia 
que lo separa del punto anterior en el que se encontraba la tortuga son cada 
vez más y más pequeños, y su suma da un resultado finito, por lo que Aquiles 
alcanzará a la tortuga. Supongamos que Aquiles le da a la tortuga una venta­
ja inicial de O y que el guerrero solo corre al doble de la velocidad de la tor­
tuga. Cuando Aquiles llega donde estaba la tortuga, el animal ha recorrido 
(1/2)0. Reiteramos el razonamiento y sabemos que, cuando Aquiles llega a 
0+(1/2)0, la tortuga ha avanzado (1/4)0 adicional. Por ponerlo de forma 
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Cuando se extiende el campo de definición a los complejos, la 
función es más difícil de manejar. Por lo pronto, ya no es posible 
representarla gráficamente. La función zeta que usaba Euler es una 
función real de variable real, es decir, para un valor real obtenemos 
un resultado que es un valor real. Por ejemplo, sabemos que 

00 1 Jt2 

t(2)= 2-2 =-. 
n-1 n 6 

Eso hace que sea posible su representación como una gráfica 
en el plano, que los matemáticos notamos por JR2. Cuando cambia-

matemática, la distancia que ha de recorrer Aquiles hasta que alcance a la 
tortuga viene dada por la suma, 

Por lo que en el peor de los casos, tenemos que Aquiles ha de recorrer 

o 00 

1 
-+ "-·O 2 L, 2 ' 

n- ln 

pero sabemos, por el resu ltado de Euler, que la suma de la serie es finita, de 
hecho vale n2 

/ 6, por lo que la distancia que ha de recorrer Aquiles es también 
finita. Es más, la distancia que recorre antes de alcanzar a la tortuga y que 
notaremos por d, verifica 

Si hacemos las cuentas nos queda que ds2,144·0. De hecho, es elemental 
calcular que la distancia que recorre Aqui les para alcanzar a la tortuga al 
doble de velocidad es d=2D. 
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mos el dominio de la función, que es el conjunto donde toma va­
lores, al conjunto de los complejos, el resultado de la función es 
también un número complejo. Si consideramos, tal como hizo 
Euler, que un número complejo a+ bi se puede representar como 
un par (a,b) E JR.2, y lo mismo ocurre para su imagen 'i;,(a+bi), que 
también es un número complejo, resulta que su representación 
gráfica ha de hacerse en lR.4, que es un espacio de cuatro dimensio­
nes. Hacer gráficas en espacios de cuatro dimensiones queda fue­
ra de nuestro alcance. Sin embargo, Riemann fue capaz de imagi­
nar dicha función en cuatro dimensiones y se dio cuenta de que 
existía una conexión entre los números primos y los ceros no tri-

LOS PROBLEMAS DEL MILENIO 

Con el propósito de ce lebrar la llegada del nuevo milenio, el Instituto Clay 
seleccionó siete problemas matemáticos que habían resistido todos los inten­
tos de resolución. Se pretendía con ello emular a David Hilbert que, cien años 
antes, había planteado un conjunto de 23 problemas que han sido una refe­
rencia para todos los matemáticos durante el siglo xx. El único problema que 
está incluido en las dos listas es la hipótesis de Riemann. La lista de problemas 
abarca las más importantes áreas de las matemáticas y es la siguiente: 

l. P versus NP. Formulado por Stephen Cook en 1971. Puede ser el proble­
ma central de las ciencias de la computación. Básicamente los problemas 
matemáticos en la actua lidad se c las if ican en las c lases P y NP. La clase 
P contiene todos aquellos problemas que pueden ser resueltos con un 
algoritmo en un período de t iempo polinomial, lo que significa que el 
número de iterac io nes está acotado por un polinomio en el que la varia­
ble es el tamaño del problema. Esos problemas son tratables con ayuda 
electrónica. La clase NP está formada por todos aquellos problemas para 
los que no existen algoritmos en tiempo pol inomial, pero que, al menos, 
si tenemos una posib le solución, podemos determinar si es buena o no, 
en un tiempo po linomial. De la definición anterior se deduce que todo 
problema P es también NP, esto es , todo problema resoluble en t iempo 
polinomial mediante un algoritmo adecuado (P), es también un proble­
ma que admite una comprobación rápida de una posible so lución (NP). 
El problema consiste en probar (o refutar) el recíproco, que todo pro­
blema NP es también P. 
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viales de la función, es decir, aquellos cuya parte real está com­
prendida estrictamente entre O y l. Para llegar a esa conclusión 
empezó por calcular los ceros no triviales de la función y, a partir 
de esos cálculos y una profunda compresión de la función zeta, 
conjeturó que la parte real de todo cero no trivial de la función es 
1/2. Esta afirmación es conocida como la hipótesis de Riemann. 

Riemann se dio cuenta de inmediato de que su hipótesis podía 
explicar el motivo por el que la estimación de Gauss sobre n (N) se 
mantenía tan precisa usando la función L;(N). Posteriormente, se 
probaría de forma rigurosa que la hipótesis de Riemann era equiva­
lente a la primera conjetura de los números primos de Gauss. 

2. La conjetura de Hodge. Relacionada con la investigación de las formas 
de objetos complicados mediante la aproximación a partir de combina­
ciones de bloques geométricos más simples de dimensión creciente. 

3. La conjetura de Poincaré. Propuesta en 1904 por el famoso matemático 
francés Jules Henri Poincaré (1854-1912). En su expresión más simple 
dice que solo hay una variedad cerrada y simplemente conexa de di­
mensión 3: la esfera tridimensional. Es el único problema resuelto de la 
lista. El ruso Grigori Per.elman (n . 1966) presentó en 2003 una demos­
tración correcta. Tal hallazgo le supuso la conces ión de la medal la Fields, 
que rechazó. 

4. La hipótesis de Riemann. Que afirma que la parte real de los ceros no 
triviales de la función zeta de Riemann vale 1/2. 

5. El problema de Yang-Milis. Está planteado como un problema matemá­
tico y se refiere al estudio de las ecuaciones de Yang-Milis, fundamen­
tales en la unificación de la electrodinámica cuánt ica con la teoría elec­
trodébil. 

6. El problema de Navier-Stokes. El estudio de la existencia de soluciones 
para las ecuaciones básicas del movimiento de los fluidos incompresibles. 

7. La conjetura de Birch y Swinnerton-Dyer. Conduce al estudio del carác­
ter infinito o finito del número de soluciones racionales de una curva 
algebraica elíptica o de género l . 
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El paralizante perfeccionismo que había aquejado a Riemann 
en su época de aprendizaje casi le impidió poner por escrito sus 
descubrimientos. Sin duda estaba influido por la insistencia de 
Gauss sobre la necesidad de publicar solo demostraciones perfec­
tas, absolutamente libres de lagunas. En noviembre de 1859, Rie­
mann publicó en las notas mensuales de la Academia de Berlín un 
ensayo sobre sus descubrimientos. Aquellas diez páginas de densa 
matemática estaban destinadas a ser las únicas que Riemann pu­
blicaría sobre la cuestión de los números primos, y a pesar de ello 
habrían de tener un efecto fundamental sobre la forma en que 
serían percibidos en el futuro. Sin embargo, y a pesar de su bri­
llante intuición, el ensayo era frustrante. Como su maestro Gauss, 
Riemann había borrado las pistas de su trabajo al escribir. La tesis 
fundamental del ensayo era que la función Li (N) de Gauss propor­
cionaría una aproximación cada vez mejor de la función n (N), a 
medida que avanzáramos en el cómputo: Aunque había propor­
cionado el instrumento para la demostración de la cortjetura de 
Gauss, la solución quedó fuera de su alcance. Sin embargo, Rie­
mann introdujo la forma en la que en el futuro se abordaría el 
problema. La demostración de la hipótesis de Riemann ha apasio­
nado a los matemáticos desde que se expuso por primera vez. 

~<Si yo despertara después de dormir mil años, mi primera 
pregunta sería: ¿se ha probado ya la hipótesis de Riemann?» 
- DAVID HILBERT, MATEMÁTICO QUE PROPUSO LA FAMOSA LISTA DE LOS VEINTITRÉS PROBLEMAS 

SIN RESOLVER EN 1900. 

En 1890, a propuesta de Charles Hermite (1822-1901), uno de 
los mayores expertos franceses en teoría de números, la Academia 
de París dedicó el Grand Prix des Sciencies Mathematiques a la 
demostración de la primera cortjetura de Gauss sobre los números 
primos. Y fue un alumno de Herrnite, Jacques Salomon Hadamard 
(1865-1963), quien presentó un trabajo sobre el tema. Si bien no 
proporcionó una demostración completa, sus ideas bastaron para 
convertirlo en ganador del premio. Estimulado por el galardón, en 
1896 Hadamard consiguió salvar las lagunas de su primera demos-
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tración y no le fue necesario apoyarse en la hipótesis de Riemann 
de que los ceros no triviales tenían parte real igual a un medio. Para 
su nueva demostración le bastaba con probar que ningún cero no 
trivial tenía parte real mayor que uno, y eso sí pudo probarlo. 

Un siglo después de que Gauss descubriera una relación entre 
los números primos y una función logarítmica, finalmente se dis­
ponía de una demostración de la conjetura de Gauss sobre los 
números primos. Puesto que ya no se trataba de una conjetura, a 
partir de aquel momento pasó a llamarse teorema de los números 
primos de Gauss. Obviamente, Hadamard no habría podido obte­
ner su resultado sin el trabajo de Riemann. Hadamard tuvo que 
compartir la gloria con un matemático belga: Charles de la V alleé­
Poussin (1866-1962), que había hallado en el mismo año una de­
mostración distinta del mismo resultado. 

Quedaba, por tanto, pendiente la demostración o refutación 
de la segunda conjetura de Gauss sobre los nún1eros primos. Si 
probar una conjetura de Gauss era una hazaña formidable, tratar 
de probar que su intuición no era cierta entraba dentro de otra 
categoría. Sin embargo, John Edensor Littlewood (1885-1977), ma­
temático inglés de la primera mitad del siglo xx, se puso manos a 
la obra. Littlewood era alumno destacado de Godfrey Harold Hardy 
(1877-1947) y era conocido por sus estudios sobre teoría de núme­
ros, desigualdades y teoría de funciones. En 1912 descubrió que la 
hipótesis de Gauss era un espejismo, que había regiones donde 
la estimación subestimaba la verdadera cantidad de primos. La 
demostración la realizó por razonamientos matemáticos, puesto 
que ninguna evidencia nun1érica permitía afumar que Gauss estaba 
equivocado. De hecho hasta hoy nadie ha conseguido avanzar lo 
suficiente como para llegar a una región numérica donde la con­
jetura de Gauss resulte falsa. Algunos años más tarde, en 1933, 
un estudiante de Littlewood, llamado Stanley Skewes (1899-1988), 
estimó que solo cuando se encontraran números primos del or­
den de 1010w"' hallaríamos una subestimación del número de pri­
mos por parte del logaritmo integral de Gauss. Se trata de un 
número tan absurdamente grande que no queda más remedio que 
ser indulgentes con el gran maestro. 
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CAPÍTULO 5 

Aportaciones en geometría 
y en física 

Gauss se sintió atraído por la geometría desde 
muy joven. Su extraordinaria inventiva le llevó a 

buscar alternativas a la geometría euclídea, considerada 
en su época como la única posible. También hizo 

aportaciones fundamentales a la geometría diferencial 
y a la aplicada, en especial en geodesia. En el ámbito 
de la física colaboró con figuras ilustres como Weber 

y Humboldt y dejó su impronta en ámbitos tan 
diversos como el magnetismo o la dinámica. 





Gauss fue un hombre de costumbres fijas, que no deseaba alte­
rarse por motivos que él consideraba nimios. Los viajes largos no 
entraban dentro de sus necesidades y no le gustaba hacerlos, salvo 
que tuvieran como fin conseguir material para el observatorio de la 
Universidad de Gotinga. Se sentía cómodo en Gotinga o Brunswick 
y su vida discurrió alrededor de estas ciudades y sus contornos. 

Como los grandes matemáticos de su época, Gauss recibía 
numerosas invitaciones para viajar y dar charlas e incluso para 
cambiar de residencia. Gotinga estaba considerada como una pe­
queña y tranquila ciudad de provincias y se pensaba que el mayor 
genio de las matemáticas de Alemania debería estar en el centro 
más innovador y pujante del país: Berlín. Durante los años 1822 
y en el período 1824-1825 hubo negociaciones serias entre las au­
toridades académicas de Berlín y Gauss con el fin de que este se 
trasladara a la universidad de la capital prusiana. Prusia acababa 
de sacudirse de encima el dominio francés, y un nuevo espíritu 
de renacimiento nacional recorría la nación, donde los hermanos 
Humboldt - Alexander (1769-1859), el científico y explorador, y 
Wilhelm (1767-1835), el político ilustrado- trataban de crear un 
nuevo sentimiento patriótico. Para ellos era importante que Gauss 
estuviera en el centro del sitio que sería el germen del nuevo país. 
Por otro lado, su segunda esposa, Minna, corno el resto de su fa­
milia política, lo animaban a trasladarse a Berlín, donde veían 
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nuevas oportunidades. A esto hay que añadir la muerte del secre­
tario de la sección científica de la Academia de Berlín, que abría 
la posibilidad de ofrecerle a Gauss un puesto prestigioso y mucho 
mejor pagado que el que tenía en Gotinga. 

Berlín era la cabeza del estado alemán más pujante y parecía 
natural que los mejores científicos alemanes residieran allí. Ob­
viamente, Gauss ocupaba un sitio de honor entre dichos científi­
cos. Sin embargo, él no participó nunca personalmente en las 
negociaciones de su traslado, lo que es indicativo de su poco in­
terés personal en el asunto. A pesar de los esfuerzos de Carl Hein­
rich Lindenau (1755-1842), nuevo jefe del ministerio, Gauss nunca 
fue muy explícito con sus peticiones y no mostraba interés en 
contestar a las propuestas que se le hacían. 

Personalmente conservador, se encontraba demasiado cómo­
do en una ciudad tranquila y poco abierta a los cambios que se 
estaban sucediendo en toda Europa como para que tomase la de­
cisión de mudarse. Pese a todo, tuvo ofertas inmejorables y a fina­
les del año 1825 parecía que las negociaciones llegarían a buen 
término. Gauss incluso informó al gobierno de IIannover, estado 
donde se encuentra Gotinga, de que estaba haciendo planes para 
irse a Berlín y que entraría al servicio del estado de Prusia. Pero 
las cosas se desarrollaron de manera diferente. Después de algu­
nas reticencias iniciales, Hannover incrementó su salario para 
igualarlo a lo ofrecido por Berlín. Además le prometieron mejoras 
en su situación y en el observatorio, que era donde Gauss hacía su 
vida. Así pues, estando ya de antemano muy poco convencido de 
su mudanza, decidió quedarse y no salir de Gotinga. Esta decisión 
disgustó a muchos de sus amigos, que estaban involucrados en 
el movimiento patriótico de renacimiento del país, como Olbers, 
Friedrich Wilhelm Bessel (1784-1846), matemático y astrónomo 
con el que Gauss mantenía correspondencia, y, por supuesto, Lin­
denau, que se sintieron decepcionados. Para ellos Berlín era el 
sitio natural de Gauss. Querían que el estado de Prusia fuera la 
semilla de una Alemania unificada. Aunque Gauss permaneció en 
la pequeña y aislada Gotinga, su influencia real no fue menor que 
si hubiera ido a Berlín para comenzar una nueva carrera en Prusia. 
Gauss tenía un prestigio personal enorme, debido al impacto de 
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El retrato más 
conocido de 
Gauss, realizado 
en 1840 por el : 

pintor danés 
Christian Albrecht 
Jensen (1792-
1870), cuando el 
gran genio alemán 
contaba sesenta 
y tres años. 
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sus publicaciones, lo que ayudó a establecer una base firme, no 
solo para la expansión de la actividad científica, sino también para 
la evolución tecnológica y económica de su país en el primer ter­
cio del siglo XIX. 

Después de tres partos, entre 1811 y 1816, la salud de Minna 
Gauss se volvió más frágil y tuvo que renunciar a parte de sus 
funciones como ama de casa y a sus actividades sociales, por lo 
que no pudo presionar a su marido demasiado para forzar el tras­
lado a Berlín, del que era partidaria. 

Aunque la vida de pareja con Minna era bastante satisfactoria 
para el matemático, no puede decirse lo mismo de las relaciones 
con sus hijos, especialmente los tenidos en su segundo matrimo­
nio, salvo en el caso de Therese, que se ocupó de Gauss hasta su 
muerte. Con el único hijo, además de Therese, con el que mantuvo 
una relación cordial fue con el mayor de los habidos en su primer 
matrimonio, Joseph, que incluso colaboró con él en algunos tra­
bajos de los que hablaremos posteriormente. Aunque sus contac­
tos con su padre eran esporádicos, pues Joseph era militar, Gauss 
disfrutó de esta relación y de sus éxitos en su vida profesional, 
de los que daba cuenta en sus cartas personales. Las relaciones 
con los dos menores, hijos de Minna, fueron tormentosas, y am­
bos, Eugen y Wilhelm, emigraron a América del Norte huyendo de 
los conflictos con su padre. Eugen, en particular, siempre repro­
chó a su padre haberle obligado a estudiar leyes, carrera por la 
que no se sentía interesado. 

A pesar de que Gauss era una figura respetada y podía haber 
usado su prestigio e influencia para diversas causas, su carácter 
natural hacía que se mantuviera al margen, dedicado a sus estudios 
y tratando de pasar desapercibido, incluso en situaciones en las 
que podía haber ayudado a sus amigos. En este sentido es esclare­
cedor de lo dicho el suceso conocido como el asunto de los siete 
de Gotinga, ocurrido en 1837. Ese año murió Guillermo IV de In­
glaterra, y le sucedió la reina Victoria; sin embargo, la ley sálica que 
regía en el estado de Hannover impedía que reinase una mujer, a 
pesar de que en ese momento el estado formaba parte de la corona 
inglesa. Se produjo un acuerdo para salvar la situación y un tío de 
Victoria, Ernesto Augusto, duque de Cumberland, pasó a reinar en 
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Hannover. Un año después, el nuevo rey declaró abolida la Consti­
tución y otras libertades, lo que originó una reacción en contra de 
este recorte de libertades de siete profesores, entre ellos Wilhelm 
Weber, con el que Gauss llevaba años colaborando en estudios de 
física, y Georg Heinrich August Ewald (1803-1875), orientalista, 
yerno de Gauss y gran colaborador suyo. Los siete profesores fir­
maron una protesta formal, oponiéndose a estos actos absolutistas 
muy alejados del espíritu de los tiempos. El rey Ernesto Augusto 
reaccionó con soberbia, afinnando que «puedo encontrar nuevos 
profesores con la misma facilidad que bailarinas de ballet», despre­
ciando a valiosos científicos. Como consecuencia de ello, los siete 
firmantes perdieron su empleo y fueron despedidos de la universi­
dad. Gauss no hizo nada públicamente en favor de los firmantes, 
aunque parece que intervino de forma privada, encontrándose con 
el rey y proponiendo un acuerdo para la restitución de los científi­
cos expulsados. El acuerdo supeditaba la permanencia de Weber 
y Ewald a unas condiciones humillantes e inaceptables, de forma 
que no transigieron y tuvieron que marcharse. Para Gauss, la mar­
cha de Weber marcó el final de una etapa de colaboración intensa, 
aunque hasta 1840 se mantuvieron los proyectos comunes: la Re­
vista de la Universidad y el Atlas de Geomagnetismo. 

LA MEDICIÓN DEL REINO 

En 1818, el reino de Hannover encargó a Gauss la triangulación y 
medición del Estado. Era una práctica muy habitual en la época, 
sobre todo tras la medición del meridiano realizada por los fran­
ceses, y venía impuesta por las necesidades militares. Los trabajos 
geodésicos disfrutaban de la benevolencia oficial por los benefi­
cios militares y económicos que podían proporcionar unos bue­
nos mapas. La geodesia trata, además de medir las superficies, de 
la construcción de mapas que representen la topografía de la tie­
rra, incluyendo sus accidentes naturales, para lo que se necesita 
determinar un conjunto de coordenadas que definan los puntos 
principales de la orografía de la zona a estudiar. · 
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EN BUSCA DEL ARCO DE MERIDIANO 

Uno de los principales empeños científicos en el sig lo xv111, una vez que ya 
se sabía que la Tierra era aproximadamente esférica, era conocer su tamaño 
exacto y su forma, es decir, si el grado de esfericidad era perfecto o estaba 
achatada en algún punto, ya fuera por los polos (la opinión de Newton) o, 
por el contrario, por el ecuador (la de Descartes). Para resolver ambas cues­
tiones y a in iciativa de la Academ ia de Ciencias de París, se proyectó un 
experimento que consistía en realizar una serie de mediciones del arco del 
meridiano a la altura del ecuador (con lo que, tras las oportunas operaciones 
matemáticas, se averiguaría el perímetro de la Tierra) y compararlas con 
otras mediciones a la altura de los polos. Así, en 1735 partió de Ruan una 
expedición hacia Laponia dirigida por Pierre-Louis Moreau de Maupertuis, al 
que acompañaron otros científicos franceses. En 1736 otra expedición se 
embarcó hacia Perú, bajo la dirección del astrónomo y matemático Louis 
Godin, llevando a algunos de los más reputados sabios de la época, y a los 
marinos y científicos españoles Jorge Juan y Antonio de Ulloa, representan­
tes de la monarquía bajo cuya soberanía se hallaban los territorios objeto de 
estudio. Esta expedición, que duró casi una década (regresaron a Europa 
entre 1744 y 1745), terminaría convirtiéndose en una auténtica gesta cientí­
fica y, aunque se demostró que era el inglés Newton quien estaba en lo 
cierto, para descontento de los impulsores de la expedición, abrió muchos 
caminos de futuro para diversas ramas del saber: geodesia, astronomía, na­
vegación, botánica, etc. De muchos de los viajeros que participaron en las 
dos expediciones quedaron testimonios bibliográficos muy interesantes. 

Grabado realizado en 1773 por Castro Carmona que ilustra una de las triangulaciones llevadas a cabo 
en el Virreinato del Perú para determinar la longitud de un arco de meridiano. La difícil orografía andina, 
con alturas superiores a los 4 000 m, hacía particularmente complicadas las mediciones. 
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El método usado principab:nente se conoce con el nombre de 
triangulación, y en él se usa la trigonometría, la disciplina que se 
ocupa de los ángulos y sus relaciones, para determinar posiciones 
de puntos, medidas de distancias o áreas de figuras. La medición de 
una altura solo se podía realizar a partir de la construcción de di­
ferentes triángulos, uno de cuyos vértices había de ser la cota que 
se quiere establecer, midiendo los ángulos formados desde distan­
cias determinadas previamente. La altura se determinaba me­
diante fórmulas trigonométricas. La técnica usada era muy simple 
en teoría. Empezando por una base de determinadas distancias 
calculadas con precisión, el área objeto de estudio debía ser cu­
bierta por una malla de triángulos cuyos vértices estuvieran vi­
sualmente conectados, y a partir de ese momento se trataba de 
establecer los ángulos que definían dichos triángulos. Este proce­
dimiento requiere de mucho tiempo y esfuerzo para el trabajo de 
campo. Además, en ausencia de calculadoras modernas, también 
era muy costoso por la necesidad de realizar operaciones aritmé­
ticas complejas. 

Una parte de Hannover había sido medida durante el domi­
nio napoleónico y había sido conectada con la triangulación rea­
lizada en los Países Bajos, pero el trabajo no había sido comple­
tado y no era lo suficientemente preciso. Iniciativas de este tipo 
eran corrientes en toda Europa y Schumacher, astrónomo con el 
que Gauss mantenía una muy buena relación, le pidió a este que 
se involucrara en el proyecto. Schumacher tenía la experiencia 
previa de la triangulación de Holstein, que le pernütió extender 
los estudios geodésicos a Dinamarca. Gauss se sintió inmediata­
mente atraído por la idea y presentó al Gobierno de Hannover un 
proyecto completo de las necesidades y la ayuda que requeriría. 
La respuesta fue rápida y positiva y Gauss fue nombrado director 
del proyecto, y se le proporcionaron algunos soldados como ayu­
dantes. En ese momento, Gauss no podía sospechar que el pro­
yecto sería la principal tarea de su vida durante los siguientes 
ocho años, pues las mediciones presentaron más dificultades de 
las que parecía aparentemente. La idea original era completar lo 
existente, pero pronto se vio que era mejor cartografiar el Estado 
entero, pues lo que se tenía era defectuoso, e incluir además la 
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ciudad independiente de Brernen. Además, la zona presentaba 
dificultades adicionales, especialmente en su parte oeste y en la 
costa, porque era bastante llana y estaba cubierta de bosques. Así 
que no era fácil encontrar lugares de amplias vistas para estable­
cer las triangulaciones, y en algunas direcciones era directamente 
imposible. 

Gauss no era un director nominal del proyecto, sino que tra­
bajó personalmente sobre el terreno. Durante los meses de prima­
vera y verano de esos años, en rara ocasión pasó alguna noche 
en su cama y pocas noches en un solo lugar, viajando de pueblo 
en pueblo, víctima de los inconvenientes de la vida en zonas rura­
les y el calor en el verano. 

Durante casi ocho años, hasta 1825, Gauss dedicó sus esfuer­
zos a una práctica rutinaria y agotadora, al alcance de cualquier 
calculista mediano: efectuaba mediciones durante el día y reali­
zaba los cálculos durante la noche, que obviamente lo apartaron 
de actividades mucho más productivas en el ámbito de las mate­
máticas. Tras el desgaste de los ocho primeros años, Gauss siguió 
colaborando, pero solo haciendo cálculos, pues dejó parte del 
trabajo de campo en manos de su hijo Joseph. Así que podernos 
afirmar que durante casi veinte años el genial Gauss perdió gran 
parte de su tiempo en tediosos cálculos astronómicos y geodé­
sicos. Pero fruto de esta tarea nacerían más de setenta escritos 
sobre geodesia y la aplicación del método de mínimos cuadrados 
a medidas terrestres. 

Una contribución importante de Gauss a la instrumentación, 
básica para el éxito del proyecto cartográfico, fue la invención del 
heliotropo (1821). Se trata de un instrumento para facilitar la visi­
bilidad de y desde estaciones lejanas. La idea es muy simple: se 
trata de reflejar la luz solar hacia la estación que se observa, de 
manera que permite una observación de gran precisión y con faci­
lidad, incluso en condiciones atmosféricas no completamente fa­
vorables y sobre distancias en las que anteriormente la observación 
era inimaginable. En diversas formas, el heliotropo subsistió hasta 
el advenimiento de la aerofotogrametría, que en la actualidad ha 
reemplazado, junto con la fotografía desde satélites, a los levanta­
mientos topográficos a gran escala, corno el que dirigió Gauss en 
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Hannover. Después de un parón de tres años, la triangulación 
de Hannover se reinició en 1828, y duró hasta 1844. 

De las publicaciones de Gauss sobre geodesia destacan espe­
cialmente dos, tituladas Bestimmung des Breitenunterschieds 
zwischen den Sternwarten van Gatinga und Altana durch Bea­
bachtungen am Ramsdenschen Zenithsektar ( «Determinación de 
la diferencia de latitud entre los observatorios de Gotinga y Altona 
mediante observaciones con el ocular Ramsden del sector ceni­
tal»), de 1828, y Untersuchungen über Gegenstande der Hoheren 
Geadéisie I y II ( «Investigaciones sobre los elementos de la alta 
geodesia I y II» ), que se publicaron en 1843 y 1846, respectiva­
mente. Ambos trabajos tendrían una enorme influencia en el de­
sarrollo posterior de la geodesia. En dichos trabajos, que tienen 
interés solo para especialistas, Gauss estudia el caso de pasar a 
planos partes de una esfera, usando trigonometría esférica. La tri­
gonometría esférica es la adaptación de la trigonometría plana a 
superficies esféricas. Esta adaptación es necesaria porque la apli­
cación de las fórmulas trigonométricas tradicionales sobre trián­
gulos planos no es posible para triángulos esféricos. Entre otras 
cosas, en el caso de estos segundos no se cumple la ley fundamen­
tal de que la suma de los ángulos de un triángulo es 180 grados. 
Por ejemplo, los ángulos del triángulo esférico que se muestra en 
la figura suman 270 grados. 

En esas dos obras, Gauss 
también dedicó un espacio al tra­
tamiento de los triángulos en elip­
soides, de los que las esferas son 
casos particulares, porque sus sec­
ciones transversales son elipses y 
no círculos como en el caso de la 
esfera. Un balón de rugby puede 
ser un buen ejemplo de elipsoide. 
Con el fin de facilitar los cálculos, 
Gauss incluyó tablas realizadas 
por él mismo que resolvían las 
ecuaciones necesarias en casos 
particulares. 

Triángulo esférico. 
Sus tres ángulos 
son rectos, por lo 
que estos suman 
270 grados. 
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OTRA GEOMETRÍA ES POSIBLE 

Como fruto de sus trabajos en geodesia, Gauss retomó un especial 
interés por la geometría, que ya había sido objeto de estudio en sus 
años de formación. A Gauss se le considera, de hecho, uno de los 
padres de la geometría no euclídea y de la geometría diferencial. 

Desde los tiempos de Euclides, se había considerado que el 
genial matemático, en su obra Elementos de geometría, había de­
finido toda la geometría que se podía hacer y que salirse de sus 
postulados era casi una herejía matemática. 

Euclides había presentado su geometría a partir de unos pos­
tulados que él consideraba axiomas. En matemáticas, los axiomas 
son verdades evidentes que no necesitan demostración. Para su 
construcción, Euclides planteó cinco postulados, basados en sus 
definiciones básicas de punto, plano, recta, etc.: 

l. Dados dos puntos se puede trazar una y solo una recta que 
los una. 

2. Cualquier segmento puede prolongarse de manera continua 
· en cualquier sentido. 

3. Se puede trazar una circunferencia con centro en cualquier 
punto y de cualquier radio. 

4. Todos los ángulos rectos son congruentes, esto es, miden 
lo mismo y coinciden si los superponemos por traslación. 

5. Por un punto exterior a una recta, se puede trazar una única 
recta paralela a la dada. 

En realidad, Euclides debería haber incluido dos postulados 
más que usa en sus demostraciones y que son: 

- Dos circunferencias cuyos centros estén separados por una 
distancia menor a la suma de sus radios, se cortan en dos 
puntos (Euclides lo utiliza en su primera construcción). 
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EUCLIDES 

Euclides (325 a.C.-265 a.C.) fue 
un matemático y geómetra 
griego. Se le conoce como «el 
padre de la geometría». Su vida 
es poco conocida, salvo que vi­
vió en Alejandría durante el rei­
nado de Ptolomeo l. Su obra 
Elementos de geometría es uno 
de los trabajos científicos más 
conocidos del mundo y es, des­
pués de la Biblia, la obra más 
editada y traducida; se trata de 
una recopilación del conoci­
miento impartido en la bibliote­
ca de Alejandría y abarca todo 
el saber geométrico de su épo­
ca. En ella se presenta de mane­
ra formal, partiendo únicamente 
de cinco postulados, el estudio 
de las propiedades de líneas y 
planos, círculos y esferas, trián­
gulos y conos, etc.; es decir, de 
las formas regulares. Probable­
mente ninguno de los resulta­
dos de los Elementos haya sido 
demostrado por primera vez 
por Euclides, pero la organiza-

Página de los Elementos de Euclides perteneciente 
al llamado Manuscrito d'Orville, escrito en griego en 
Constantinopla, en el año 888, y que se conserva en 
la Biblioteca Bodleiana de la Universidad de Oxford. 

ción del material y su exposición sin duda alguna se deben a él. Las demos­
traciones más famosas de Euclides corresponden a los siguientes teoremas: 

- La suma de los ángulos interiores de cualquier triángulo es 180º. 

- En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma 
de los cuadrados de los catetos, el famoso teorema de Pitágoras. 

La geometría de Euclides, además de ser un poderoso instrumento de razo­
namiento deductivo, ha sido extremadamente útil en muchos campos del 
conocimiento, por ejemplo en la física, la astronomía, la química y diversas 
ingenierías. Fue una obra que perduró sin variaciones hasta el siglo x1x, cuan­
do Gauss planteó algunos tipos de geometría no euclídea, al no admitir el 
quinto de sus postulados. 
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- Dos triángulos con dos lados iguales y los ángulos com­
prendidos también iguales son congruentes, es decir, tie­
nen todos los ángulos y todos los lados iguales y, por tanto, 
tienen la misma forma y tamaño. 

Euclides había asumido que todos los postulados eran eviden­
tes y no requerían demostración y así se había aceptado a lo largo 
de la historia. Tal es así que Kant, en su Crítica de la razón pura, 
había afirmado que los conceptos de Euclides eran un compo­
nente esencial de nuestra visión del mundo. Sin embargo, resultó 
que el último postulado es en cierto modo independiente y se 
puede negar sin entrar en contradicción con los anteriores. La 
idea es definir de una nueva forma el significado de líneas parale­
las, trasladando el concepto a espacios no planos. 

A partir de 1813, Gauss elaboró una geometría que negaba el 
último postulado de Euclides, desarrollando ideas que había te­
nido durante sus años de estudio en el Collegium Carolinum en 
charlas con su amigo Wolfgang von Bolyai. De hecho, en 1816, se 
las expresó por carta a Schumacher, amigo y profesor de astrono­
mía. Pero, una vez más, no publicó nada sobre el tema. Puede 
haber varias razones para esta negativa de Gauss para publicar 
sobre el tema y no entrar en discusiones públicas sobre la cues­
tión. Obviamente todo lo que fuera discutir los postulados de 
Euclides sería objeto de controversia y polémica, y a Gauss no le 
gustaba verse envuelto en este tipo de discusiones, que le pare­
cían, además, más de tipo filosófico que matemático. 

Cuando en 1831 János Bolyai (1802-1860), hijo de Wolfgang, le 
expuso sus ideas sobre una geometría no euclídea, Gauss le res­
pondió que «no puedo alabar su trabajo porque al hacerlo me ala­
baría a mí mismo, ya que las ideas que me expone coinciden con 
las que yo desarrollé treinta o treinta y cinco años antes». Sin em­
bargo, Gauss reconoció a János Bolyai y a Nikolái Lobachevski, 
otro de los creadores de la geometría no euclídea, como genios de 
primera magnitud. Tal es así que aprendió ruso para poder leer 
todos los trabajos de Lobachevski en su lengua original. Además, 
consiguió que en 1842 fuera nombrado miembro de la Academia de 
Gotinga Hoy en día todos reconocen a Gauss, Lobachevski y János 
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Bolyai corno los creadores de la geornetria no euclídea. En la ac­
tualidad se admiten, además de la geornetria euclídea, las georne­
trias hiperbólicas y elípticas, dependiendo del tipo de curvatura, 
positiva o negativa, que admitamos para las rectas paralelas. 

GEOMETRÍA NO EUCLÍDEA 

Se denomina no euclídea a cualquier forma 
de geometría cuyos postulados y propie­
dades difieren en algún punto de los cinco 
estat;>lecidos por Euclides en su tratado Los 
elementos. No existe un solo tipo de geo­
metría no euclídea, sino muchos, aunque si 
se restringe la discusión a espacios homo­
géneos, en los que la curvatura del espacio 
es la misma en cada uno de sus puntos y 
en los que todos sus puntos son indistin­
guibles, pueden distinguirse tres tipos de 
geometrías: 

- La geometría euclídea satisface los cinco 
postulados de Euclides y tiene curvatura 
cero. 

- La geometría hiperbólica satisface úni­
camente los cuatro primeros postulados 
de Euclides y tiene curvatura negativa. 
Con respecto al quinto postulado de 
Euclides, en esta geometría, por cada 
punto exterior a una recta pasan infini­
tas rectas paralelas a la primera. 

- La geometría elíptica satisface tan solo 

Espacio hiperbólico 

t 
Espacio euclídeo 

Espacio elíptico 

los cuatro primeros postulados de Euclides y tiene curvatura positiva. 
Con respecto al quinto postulado de Euclides, en esta geometría, por 
cada punto exterior a una recta no pasa ninguna recta paralela a la pri­
mera (recuérdese que en la geometría euclídea pasaba una única recta 
paralela). Es el caso de los meridianos de la Tierra, que en geometría 
esférica (caso particular de la elíptica) se consideran paralelos. En la fi­
gura se representan rectas en los distintos espacios. 
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Como ejemplo de la importancia que el gran matemático ale­
mán concedía a esta parte de las matemáticas, Bemhard Riemann, 
el alumno más destacado de Gauss, dedicó su tesis doctoral, a pe­
tición de su director, el propio Gauss, a la geometría y versó sobre 
generalizaciones de geometría no euclídea. 

APORTACIONES A LA GEOMETRÍA DIFERENCIAL 

Aunque Gauss no publicó nada sobre geometría no euclídea, ello 
no significa que no produjera importantes trabajos en geometría. 
De hecho, en 1827 publicó una obra fundamental sobre geometría 
diferencial, usando elementos del análisis matemático. El libro, 
titulado Disquisitiones generales circa supe1jicies curvas (Dis­
quisiciones' generales sobre supe1jicies curvas), fruto de las ideas 
sobre la geometría de superficies nacidas de sus observaciones 
geodésicas, constituye la cont1ibución definitiva de Gauss a la 
geometría diferencial. En este trabajo Gauss creó la geometría 
diferencial de superficies, iniciando un programa completado por 
el trabajo de muchos matemáticos en décadas posteriores. El pro­
blema que da origen a sus ideas es cómo conseguir proyectar en un 
mapa plano la geometría de otros tipos de superficies. En los casos 
más sencillos (los de curvatura constante) aparecen las geometrías 
homogéneas: euclídea, elíptica e hiperbólica ( que fue la que desa­
rrollaron Bolyai y Lobachevski). Gauss fue mucho más allá de estos 
espacios homogéneos e introdujo lo que en la actualidad se deno­
mina curvatura de Gauss, una generalización para superficies de 
la curvatura definida en el plano. 

Este concepto le permitió hallar el llamado Theorema Egre­
gium (teorema destacable), un resultado fundamental de la geo­
metría diferencial. Informalmente, el teorema dice que la curvatura 
gaussiana de una superficie dif erenciable puede determinarse por 
completo midiendo ángulos y distancias sobre la propia superfi­
cie, sin hacer referencia a la forma particular en que se curva den­
tro del espacio euclídeo tridimensional. Es decir, el concepto de 
curvatura es una propiedad local. 
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LA CURVATURA DE GAUSS 

En geometría se define una curva (en forma paramétrica) en el plano como 
la aplicación ,x(s)-(x(s),y(s)), siendo s número real y las funciones x(s) e 
y(s) nos dan las coordenadas en el plano. Reciben el nombre de paramétri ­
cas aquellas ecuaciones en que las variables x e y, cada una separadamente, 
están expresadas en función de de una misma tercera variable o parámetro, 
en nuestro caso s. La curva ha de ser una función continua y diferenciable, es 
decir, de trazo suave y sin picos. Por ser diferenciable, en cada puntos de la 
curva se puede definir la tangente de esa curva. Por definición la curvatura de 
a en s se define como el ángulo que forma la tangente a la curva en el puntos, 
t(s), con una dirección fija del plano, que por comodidad suele tomarse como 
el eje OX de coordenadas, es decir: 

e (s) = ángulo formado entre < t(s), eje OX > . 

Así que la curvatura ordinaria k(s) de una curva se define como el diferencial 
de la función e, o sea: 

k(s) = 8'(s). 

k(s) en realidad lo que mide es la separación de la curva con su recta tangen­
te. La curvatura de Gauss, que en cierta forma generaliza este concepto para 
superficies, se puede definir de varias maneras, siendo la más sencilla la dada 
por la expresión: 

donde k1 y k2 son las curvaturas principales en cada punto de la superficie. 

Una isometría es una aplicación matemática entre dos es­
pacios que mantiene invariante las distancias entre puntos. Un 
ejemplo de isometría en un espacio euclídeo de tres dimensio­
nes son las rotaciones. Pues bien, un corolario del Theorema 
Egregium es que entre dos superficies solo existen isometrías si 
aquellas tienen la misma curvatura gaussiana. Un ejemplo muy 
ilustrativo es el siguiente: una esfera de radio R tiene curvatura 
constante gaussiana que es igual a R -2, mientras que el plano 
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tiene curvatura nula. Por tanto, y como corolario del Theorema 
Egregium, una hoja de papel no puede doblarse para formar una 
porción de la esfera sin arrugarse o rasgarse. Y recíprocamente, 
la superficie de la esfera no puede plasmarse sobre un plano sin 
distorsionar las distancias. 

Este hecho tiene una consecuencia importante para la car­
tografía: implica que no puede construirse un mapa de la Tierra 
en el que la escala sea perfectamente constante en cada punto 
del plano. Por consiguiente, las proyecciones usadas habitual­
mente alteran la escala en diferentes puntos y producen cierta 
distorsión. Es decir: el mapa perfecto de la Tierra no existe ni 
puede existir. 

En su libro sobre geometría diferencial se puso definitiva­
mente de manifiesto que en las superficies que no son planas la 
línea más corta que une dos puntos no es necesariamente la línea 
recta, tal y como ocurre en los espacios euclídeos. Es por ello por 
lo que hubo que introducir un nuevo concepto: la geodésica, que 
designa a la línea más corta que une dos puntos de una superficie. 
Este principio es utilizado en la navegación aérea y marítima, 
donde se usa para localizar las rutas más cortas sin usar líneas 
rectas. Veamos un ejemplo en la figura siguiente: 

La distancia real más corta en un viaje aéreo desde el aero­
puerto de Madrid, hasta el de Nueva York es la que se hace reco-
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GAUSS Y LA TEORÍA DE LA RELATIVIDAD 

La teoría general de la relatividad es el nombre comúnmente aceptado para 
designar la teoría gravitatoria publicada por Albert Einstein en 1915. De 
acuerdo con la teoría general de la relatividad, la fuerza de la gravedad es 
una manifestación local de la geometría del espacio-tiempo. No es posible 
construir el modelo relativista en espacios euclídeos convencionales. La teo­
ría de la relatividad necesita que el quinto postulado de Euclides, referido a 
las líneas paralelas, no tenga solución única. Como ya hemos visto, Gauss, 
Lobachevski y Bolyai probaron que dicho axioma era independiente de los 
anteriores y que se podía negar sin entrar en contradicción . Riemann desa­
rrolló las matemáticas generales de la geometría no euclídea en su tesis 
doctoral, que fue dirigida por Gauss. Sin esas herramientas matemáticas, 
Einstein no hubiera podido desarrollar sus trabajos. De hecho, sus aporta­
ciones fueron las que hicieron populares las geometrías no euclídeas, reve­
lando su verdadera importancia y valor. Hasta ese momento se creía que no 
tenían más que un valor teórico; tal es así que Gauss no llegó a publicar nada 
sobre el tema. 

rriendo la línea curva que está por encima de la recta que une las 
dos ciudades a través del océano. En el plano, obviamente, no 
ocurre eso, pero en una superficie parecida a la esférica ( como es 
la Tierra), la geodésica, la línea más corta que une dos puntos, no 
es recta. 

En su estudio de superficies Gauss utilizó de forma magistral 
la representación paramétrica introducida por Euler, realizando 
una visión intrínseca de la sup,erficie como una variedad bidimen­
sional. Las coordenadas ( x , y, z) de un punto vienen dadas por tres 
ecuaciones dependiendo de dos parámetros: x = x ( u, v ); y= y ( u , v ); 
z = z ( u, v ). Así se puede decir que estilísticamente Disquisi tiones 
generales circa supetficies curvas es quizá su trabajo más per­
fecto. Su exposición es analítica, directa y muy concisa, de forma 
que cada idea geométrica se presentaba de forma completa. En 
opinión de Einstein, «La teoría de la relatividad no existiría sin la 
geometría de Gauss». 
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GAUSS Y LA FÍSICA 

El año 1831 fue clave en la vida de Gauss. Si un año antes su hijo 
Eugen emigró a Estados Unidos por desavenencias familiares, 
ese año murió Minna, su segunda esposa, posiblemente de tuber­
culosis. Desde entonces fue su hija Therese la que se encargó de 
los asuntos domésticos. Pero a finales de ese año llegó a Gotinga 
Wilhelm Weber para ocupar la plaza de profesor de Física. A par­
tir de ese momento un decaído Gauss encontró otra vez en la 
ciencia la solución a sus males familiares. 

Tanto en el aspecto científico como en el personal, hubo ar­
monía entre Gauss y Weber, que introdujo al matemático en nue­
vas áreas de investigación, algunas de ellas de tipo experimental. 
Su cooperación fue fructífera y la presencia de Weber hizo inte­
resante un período que de otra forma habría sido, desde el punto 
de vista personal, más difícil de llevar para Gauss. Él siempre 
había estado interesado por la física, pero muchas de sus prime­
ras investigaciones, excluyendo las astronómicas y geodésicas, 
eran muy teóricas. Antes de conocer a Weber, Gauss se había 
dedicado al cálculo variacional, que había sido uno de los temas 
centrales en el siglo XVIII. El cálculo variacional se puede tratar 
como un problema matemático, pero es fundamental en numero­
sos problemas de la física. Los problemas variacionales son pro­
blemas de optimización, es decir, problemas en los que se trata 
de encontrar el mejor valor, pero el óptimo no es un valor, sino 
una función. 

Estamos acostumbrados a considerar problemas de optimiza­
ción, que matemátican1ente se formulan como: 

Min:f(x ) 
sujeto a: x E S, 

donde S es el cor\junto de los valores entre los que podemos bus­
car la solución, lo que se llama conjunto factible. La funciónf es 
también denominadafunción objetivo. Desde el punto de vista 
matemático no existe ninguna diferencia entre que el problema 
sea de maximizar o de minimizar, pues el cambio se puede hacer 
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sin más que variar el signo de la función objetivo, por lo que el 
siguiente problema es equivalente al anterior: 

Max: -f(x) 
sujeto a: x E S. 

Dependiendo del tipo de función f y de las propiedades del 
conjunto factible tendremos un tipo de problema u otro. La solu­
ción de este tipo de problemas puede ser tanto un número corno, 
en caso de que la función esté definida en un espacio de varias 
dimensiones, una serie de ellos (un vector). 

WILHELM WEBER 

Weber (1804-1891), físico alemán de la 
primera mitad del siglo x1x, cursó estu­
dios en la Universidad de Halle y siguió 
en la misma como profesor hasta 1831, 
año en el que ingresó en la Universidad 
de Gotinga. Allí entabló amistad con 
Gauss, con quien colaboró en estudios 
sobre electricidad y magnetismo. En 
1833 inventaron un nuevo tipo de telé­
grafo, conocido como galvanómetro 
reflectante de Gauss-Weber. Posterior­
mente llegó a ser expulsado de la Uni­
versidad de Gotinga por su oposición al 
poder político. En 1843 entró como pro­
fesor en la Universidad de Leipzig hasta 
1849, año en el que volvió a Gotinga, y 
algún tiempo después fue nombrado di­
rector del observatorio astronómico de 
esta ciudad, cargo que había ocupado 
Gauss. Weber trabajó para el estableci­
miento de las unidades absolutas de me-
dida de corrientes eléctricas y dedicó los últimos años de su vida al estudio 
de la electrodinámica, sentando las bases para el posterior desarrollo de la 
teoría electromagnética de la luz. 
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Veamos un ejemplo sencillo. Un panadero hornea diaria­
mente un tipo de barras de pan. Por una parte, quiere satisfacer a 
su clientela y tener el pan suficiente para que todos sus clientes 
tengan su pan, pero por otro lado no quiere tener género sobrante 
que no puede vender al otro día. Haciendo un estudio de costes y 
de demanda, podríamos llegar a encontrar la solución que le da 
mayor ganancia, y es perfectamente asumible que la solución será 
un número natural. Si hace varios tipos de piezas de pan, por 
ejemplo de centeno, maíz y trigo, la solución no sería un único 
número, sino un conjunto de tres números que dijese cuántas pie­
zas de cada tipo ha de fabricar. Esa solución sería un vector. 

Pensemos ahora en otro ejemplo de optimización. Estamos 
en la calle y alguien nos pregunta cómo ir a la estación de autobu­
ses de la manera más rápida posible. La respuesta no puede ser un 
número, ni siquiera una lista de números. La respuesta lógica sería 
una explicación del camino: por dónde hay que avanzar y cuántos 
metros, dónde hay que girar y en qué sentido y ese tipo de indica­
ciones. Ese tipo de respuesta se adapta mejor a describirla mate­
máticamente con una función, que le dé al que la usa un criterio 
de actuación, dependiendo del sitio en que se encuentra en cada 
momento de su camino. Estos problemas de optimización en los 
que la solución es una función es lo que se conoce como proble­
mas variacionales y son de gran aplicación en física. 

En 1829 apareció una publicación corta de Gauss acerca de 
un problema de cálculo variacional sobre mecánica, en el que 
introdujo el principio de mínima ligadura. Por «ligadura», 
Gauss entendía las restricciones a las que está sometido el movi­
miento en todo sistema físico. Pues bien, Gauss postuló que la 
naturaleza tiende a hacer mínima la ligadura. En palabras del pro­
pio Gauss: 

Es muy notable que los movimientos libres, cuando no pueden coe­
xistir con las condiciones necesarias, resultan ser modificados por 
la naturaleza exactamente de la misma manera que el matemático, 
según el método de los mínimos cuadrados, reconcilia observaciones 
ligadas entre sí por dependencias necesarias. Podlia proseguirse más 
allá con esta analogía, pero no pretendo hacerlo ahora. 
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La idea es que la naturaleza actúa de la forma más libre de 
entre las que le permiten las restricciones impuestas. Como ve­
mos, de nuevo, vuelve a aparecer referencia a uno de sus más 
fundamentales hallazgos: el principio de mínimos cuadrados. 

Gauss hizo mucho por conseguir que las matemáticas pudie­
sen combinarse de forma natural con la física. En su obra.Princi­
pia generalia theoriae .figurae fiuidorum in statu aequilibrii 
(Los principios generales del esquema teórico de los fluidos en 
estado de equilibrio), de 1830, introdujo, de nuevo, un problema 
variacional asociado a la determinación de la figura de equilibrio 
de la superficie de un fluido, teniendo en cuenta la gravedad y las 
fuerzas de capilaridad y de adhesión al recipiente: 

Lo que obtenemos como resultado de una investigación delicada y 
difícil es una condición de equilibrio que es accesible al sentido co­
mún, y que muestra el ajuste que ocurre cuando hay varias fuerzas 
prevalentes en conflicto. 

Otra vez la misma idea del principio de mínima ligadura, esta 
vez aplicado a la mecánica de fluidos. 

Dentro del mismo orden de ideas, Gauss trabajó en la formali­
zación y propiedades matemáticas de la atracción newtoniana, ori­
ginando la llamada teoría del potencial. Es en ese contexto en el que 
aparece la famosa ley de Gauss: «El flujo del campo gravitatorio a 
través de una superficie cerrada arbitraria es proporcional a la masa 
total contenida en el interior», siendo un campo gravitatorio el con­
junto de fuerzas que representan la gravedad. Este resultado reduce 
a cálculos elementales desarrollos que anteriormente requerían téc­
nicas elaboradas, lo que demuestra su in1portancia. 

Así que a la llegada de Weber no puede decirse que Gauss 
fuera ajeno a la física, pero este consiguió que se involucrase de 
forma más decidida en problemas de la física, y esta vez, de ma­
nera más aplicada. Su nueva visión es tratar de responder a pro­
blemas técnicos y de ingeniería. 

En 1832, y en paralelo con su interés por la electricidad, Gauss 
inició también investigaciones en el can1po del magnetismo terres­
tre. Conviene advertir que la visión actual de la electricidad y el 
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magnetismo corno dos aspectos de un mismo fenómeno, hoy día 
completamente asumida, distaba entonces de ser una evidencia. 
La iniciativa de implicar a Gauss en el estudio del magnetismo co­
rrespondió a Alexander von Humboldt, que buscó su cooperación 
para establecer una red de puntos de observación del campo mag­
nético terrestre en todo el mundo. Se trata del primer intento en la 
historia de plantear una observación a escala global, con sus nuevas 
exigencias: establecimiento de estándares comunes, de técnicas de 
medición, de requerimientos de precisión y fiabilidad. Los objetivos 
del programa consistían en el estudio de la distribución del magne­
tismo terrestre, de sus cambios temporales en intensidad, declina­
ción e inclinación, y ambiciosamente de la determinación del origen 
del campo magnético terrestre. Ya en 1832 Gauss publicó un trabajo 
importante sobre la medición absoluta del campo magnético terres­
tre, titulado Intensitas vis magneticae terrestris ad mensuram 

ALEXANDER VON HUMBOLDT 

Humboldt (1769-1859) fue un geógrafo, 
naturalista y explorador alemán, hermano 
menor del lingüista y ministro de Edu­
cación Wilhe lm von Humboldt. Ha sido 
denominado el «Padre de la Geografía 
Moderna Universal». Fue un naturalista 
de una polivalencia extraordinaria, que 
no volvió a repetirse tras su desaparición. 
Los viajes de exp loración le llevaron de 
Europa a América del Sur, parte del ac­
tual territorio de México, Estados Unidos, 
Canarias y Asia Central. Se especializó en 
diversas áreas de la ciencia, como etno­
grafía, antropología, física, zoología, orni­
tología, climatología, oceanografía, astro­
nomía, geografía, geología, mineralogía, 
botánica, vulcanología y humanismo. Co­
laboró con Gauss en la elaboración de un 
Atlas de Geomagnetismo. 
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absolutam revocata (Medida de la intensidad absoluta del campo 
magnético terrestre) . Siguen otros dos trabajos fundamentales en 
1839, de los que destaca Allgemeine Theorie Erdmagnetismus 
(Teoría general del magnetismo terrestre) y un Atlas de Geomag­
netismo, publicado en 1840 conjuntamente por Gauss, Weber y 
Benjamin Goldschmidt, ayudante de Gauss en el obseivatorio de 
Gotinga. El análisis del contenido de estas obras es interesante. 
Gauss definió por vez primera el campo magnético como vinculado 
a la fuerza causada por un imán, pero aún habla de un «fluido mag­
nético» responsable de dichos fenómenos. A pesar de todo, fue 
capaz de probar que en la Tierra solo puede haber dos polos mag­
néticos y especificó la ubicación del Polo Sur magnético ( cercana 
al Polo Norte geográfico). Esta predicción fue confirmada muy pre­
cisamente por la expedición del explorador capitán Wilkes en 1841. 
Y, finalmente, introdujo una serie de relaciones nuevas entre las 
componentes horizontal y vertical del campo magnético en diferen­
tes puntos (relaciones correctas que Humboldt se negó a aceptar 
durante bastante tiempo). 

La colaboración de Humboldt y Gauss condttjo a varios resul­
tados notables sobre el magnetismo terrestre, que eran totalmente 
desconocidos anteriormente. Por ejemplo, que el campo magné­
tico varía con el tiempo. Y que ocasionalmente hay variaciones 
temporales bruscas (hasta del 1 O% en términos relativos) que ade­
más ocurren simultáneamente en toda la Tierra (tormentas mag­
néticas). El mecanismo último tras ambos fenómenos aún no está 
bien explicado. El trabajo de 1840 es la culminación de esas inves­
tigaciones. Gauss discutió la determinación absoluta del campo 
magnético mediante el magnetómetro, un aparato inventado por 
Gauss y Weber para determinar la componente horizontal de la 
fuerza magnética. Probó que la determinación de la intensidad de 
la componente horizontal de la fuerza magnética, junto con el án­
gulo de inclinación, determina completamente el campo magné­
tico. Se trata de la primera medida absoluta de la fuerza que ejerce 
el campo magnético de la Tierra sobre una brújula, fuerza muy 
débil, cuya medida requirió precauciones extremas. El ambiente 
de experimentación debía estar totalmente libre de perturbacio­
nes magnéticas, lo que obligó a construir un laboratorio exento de 
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hierro y de cualquier otro material magnético y en el que no debía 
haber la más mínima corriente de aire: se hizo de madera, con 
clavos de cobre. Gauss tomó el modelo del observatorio y de los 
procedimientos previamente desarrollados por Humboldt, redu­
ciendo el tiempo de observación necesario e incrementando su 
exactitud, lo que dio lugar a una polémica entre ambos, ya que 
Humboldt no estaba seguro de que Gauss hubiera tomado las pre­
cauciones necesarias y dudó de la validez de los resultados. 

Como otra consecuencia práctica de sus investigaciones en 
electricidad, Gauss y Weber desarrollaron dos modelos de telé­
grafo entre 1833 y 1838. Las señales se observaban en el receptor 
mediante la desviación de una aguja magnética (una brújula) a 
derecha o izquierda, según el voltaje aplicado en el extremo emi­
sor. Desarrollaron un código e instalaron el telégrafo entre el la­
boratorio de Weber y el observatorio astronómico, separados 
unos 1500 metros. El telégrafo funcionó (aunque hubo que repa­
rar el hilo, pues se rompía frecuentemente) hasta que un rayo 
alcanzó el sistema y lo destruyó. Gauss parece haber sido cons­
ciente de las posibilidades que abrían las comunicaciones eléctri­
cas: sugirió que en las líneas de ferrocarril ( entonces iniciando 
una rápida expansión) un raíl se usara como conductor para fa­
cilitar las comunicaciones a larga distancia. El invento de Gauss 
y Weber no era el primer intento de comunicación eléctrica a 
distancia, ni fue el que sobrevivió, privilegio que correspondió al 
sistema de Samuel Morse, que lo patentó nueve años después de 
ser usado por Gauss y Weber. Se sabe que algunos colegas lo 
consideraban como una aberración frívola y acientífica. Pero 
Weber profetizaba en 1835: 

Cuando el globo terráqueo esté cubierto con una red de ferrocarriles 
y de alambres telegráficos, esta red prestará seIVicios comparables 
a los del sistema neIVioso en el cuerpo humano, en parte como un 
medio de transporte, en parte como un medio para la propagación 
de ideas y sensaciones, con la velocidad de la luz. 

Tras la marcha definitiva de Weber de Gotinga, por el famoso 
asunto de la carta de los siete y su oposición a las decisiones ab-
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yde Wilhelm 
Weber. Ambos 
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durante muchos 
años en temas 
de electricidad 
y magnetismo. 
Fruto de este 
trabajo conjunto 
es1 por ejemplo, 
la invención de 
un nuevo tipo 
de telégrafo, 
conocido como 
galvanómetro 
reflectante de 
Gauss-Weber 
(izquierda). 
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solutistas del rey, la producción científica de Gauss disminuyó de 
forma rotunda. Trabajó en sus observaciones astronómicas, en 
dióptrica, en la teoría del potencial y en geodesia, pero todas son 
obras menores. 

La dióptrica, que estudia la forma, disposición, diseño y defec­
tos de las lentes y sus limitaciones intrínsecas, es seguramente el 
campo más especializado de la investigación empírica que Gauss 
abordó. Su interés proviene de las necesidades y dificultades de la 
observación astronómica: en 1807, Repsold, un reputado fabrican­
te de instrumentos, le consultó sobre un objetivo doble acromático, 
iniciando así una larga colaboración. Gauss se interesó, entre otras 
cosas, en disminuir la aberración cromática de un sistema de len­
tes. La línea iniciada por esta colaboración propició, andando el 
tiempo, el importantísimo desarrollo industrial de la óptica en Ale­
mania: Reichenbach (1772-1826), Fraunhoffer (1787-1826) y Stein­
heil (1801-1870) fueron los antecesores de Carl Zeiss (1816-1888) 
en Jena, quien fundó una fábrica de lentes cuyo director científico 
fue Emst Carl Abbe (1840-1905), conocido en óptica por haber es­
tablecido el límite efectivo de ampliación de un microscopio óp­
tico. Gauss, aun en los tiempos de máxima restricción económica, 
tuvo fondos para la compra de instrumentos ópticos para su obser­
vatorio. De hecho, sus viajes más importantes, aparte de los nece­
sarios para sus estudios geodésicos, los realizó para adquirir instru­
mentos ópticos. La publicación más importante de Gauss en este 
campo es Dioptrische Untersuchungen (Investigaciones en Diop­
tría), de 1840, en la que estudia la trayectoria de la luz a través de 
un sistema de lentes en la aproximación llamada paraxial, en la 
que las lentes se suponen infinitamente delgadas y los rayos infini­
tamente cercanos al eje óptico. En esta aproximación todo sistema 
es equivalente a una sola lente efectiva. Este trabajo trata desde 
luego de las etapas básicas en el diseño de sistemas ópticos, pero 
su interés actual es conceptualmente reducido, y matemáticamente 
es bastante elemental: de hecho, Gauss dudó en publicarlo. 
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CAPÍTULO 6 

El legado del 
«Príncipe de los matemáticos» 

La marcha de su buen amigo y fuente de inspiración 
Wilhelm Weber hizo que la actividad científica de Gauss 
en sus últimos años no tuviera el brillo de otras etapas 

vitales. A pesar de ello, siguió activo en la esfera docente, 
y gozó en vida del reconocimiento generalizado 

del mundo científico al conjunto de una 
obra monumental. 





La salida de Weber de la universidad marcó el inicio de la última 
etapa de la vida de Gauss, una época caracterizada sobre todo por 
la ausencia de colegas con los que compartir sus inquietudes cien­
tíficas. Además de Weber, y por el mismo motivo -oponerse al 
rey-, tuvo también que partir Ewald, eficaz ayudante de Gauss y 
marido de su querida hija Minna, que lo acompañó en su exilio. 

Los años posteriores a la salida de Weber de Gotinga fueron 
especialmente tristes y dolorosos para Gauss. En 1839 murió su 
ya anciana madre, lo que supuso un duro golpe para su hijo, que 
le tenía gran aprecio y la había acogido en su casa en sus últimos 
años. Pocos meses más tarde, en 1840, con solo treinta y tres años, 
falleció Minna, su nieta mayor y su preferida, hija de Joseph. Su 
gran amigo Olbers, compañero en tantos estudios astronómicos, 
también murió en 1840. 

De su familia inmediata, solo su hija Therese permaneció 
junto a él. Ella nunca se casó y desde la muerte de su madre se 
hizo cargo de todas las cuestiones prácticas relativas al manteni­
miento de la casa. Aunque Gauss era muy dependiente de ella, no 
parece que padre e hija tuviesen mucho en común, excepto un 
fuerte vínculo de mutuo aprecio, debido a la gratitud en el caso 
del padre y a la admiración por parte de la hija. 

En esta última época existen muchos más informes de Gauss 
sobre sus estudiantes, lo que demuestra que durante esos años el 
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viejo profesor disfrutaba mucho más de la enseñanza en general 
y de sus clases en particular que en sus años de juventud, en los 
que demostraba poca paciencia con los alumnos poco dotados. 
Gauss fue, sin duda, un buen docente y un profesor competente. 
Una de las razones de este cambio, además de una mayor pacien­
cia con los alumnos poco brillantes, es que encontró estudiantes 
mejor preparados y más motivados. La reforma educativa promo­
vida por el ministro Humboldt tuvo sus efectos positivos en la 
formación de las nuevas generaciones de estudiantes. Entre los 
últimos alumnos de Gauss podemos encontrar a luminarias tales 
como Georg Cantor y Richard Dedekind. 

Dedekind tenía muy buen concepto de Gauss como docente, 
y dejó al respecto un testimonio muy valioso: 

Por lo general se sentaba en una actitud cómoda, mirando hacia aba­
jo, ligeramente encorvado, con las manos cruzadas sobre su regazo. 
Hablaba con bastante libertad, muy claramente, simple y llanamente, 
pero cuando quería hacer hincapié en un nuevo punto de vista [ ... ] 
entonces levantaba la cabeza, se volvía hacia alguno de los que estaban 
sentados junto a él, y lo miraba con sus hermosos ojos azules pene­
trantes durante el discurso enfático. [ ... ] Si se trataba de una explica­
ción de los principios para el desarrollo de fórmulas matemáticas, 
entonces se levantaba, y en una postura muy erguida, majestuosa, 
escribía en una piza.na junto a él con su puño y letra peculiarmente 
hermosa: él siempre tenía éxito a través de la econonúa y la disposi­
ción deliberada en un espacio más bien pequeño. Para los ejemplos 
numéricos, a los que a su cuidadosa terminación daba especial valor, 
llevaba consigo los datos necesarios sobre pequeños trozos de papel. 

Gauss estaba todavía activo en esa época en sus observato­
rios magnéticos y astronómicos, entre otras ocupaciones, y reco­
pilaba datos que compartía con otros científicos. También se de­
dicaba a problemas teóricos matemáticos, pero más elementales 
que los que le habían ocupado hasta entonces. S~ ocupaba de al­
gunos problemas combinatorios que le planteaba su amigo Schu­
macher y algunos de física aplicada y teórica. También dedicaba 
tiempo a aprender nuevas lenguas. 
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CANTOR Y DEDEKIND 

Georg Cantor (1845-1918), Julius Wil­
helm Richard Dedekind (1831-1916), am­
bos alumnos de Gauss, y Gottlob Frege 
(1748-1825) fueron los creadores de la 
teoría de conjuntos, el área de las ma­
temáticas que aporta los fundamentos 
sobre los que se sostiene buena parte 
del resto de la disciplina de la matemá­
tica. Gracias a sus audaces y atrevidas 
investigaciones, Cantor fue el primero 
en formalizar la noción de infinito. Des­
cubrió así que los conjuntos infinitos no 
tienen siempre el mismo tamaño. Por 
ejemplo, el conjunto de los números ra­
cionales es numerable, es decir, se pue­
de establecer una relación uno a uno 
con los números naturales, mientras 
que el de los irracionales no lo es. Can­
tor viv ió aquejado por episodios de de­
presión, atribuidos en parte a la dureza 
de las críticas recibidas, en especial las 
procedentes de un ilu stre colega, 
Leopold Kronecker (1823-1891) , quien 
llegó a calificarlo de «renegado», «char­
latán» e incluso «corruptor de la juven­
tud estudiosa». En la actualidad, toda la 
comunidad matemática reconoce ple­
namente su trabajo y admite que ha 
significado un salto cualitati vo impor­
tante en el raciocinio lógico. Por su par­
te, Richard Dedekind influyó decisi­
vamente en el campo del álgebra y la 
teoría de números algebraicos. Se dice 
de él que fue el primero en impartir cla­
ses universitarias sobre la teoría de las 
ecuaciones de Galois. Fue además el 
primero en comprender el significado 
fundamental de las nociones de grupo, 
cuerpo ideal en el campo del álgebra, la 
teoría de números y la geometría alge­
braica. 

Georg Cantor. 

Julius W ilhelm Richard Dedekind. 
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En 1849, con motivo del cincuentenario de su doctorado, im­
partió su famosa conferencia en la que presentó su cuarta demos­
tración del teorema fundamental del álgebra, una variación de la 
presentada en su tesis, incorporando ya de manera abierta los 
coeficientes complejos, que no había querido presentar en sus pri­
meras demostraciones. Dirichlet, que lo sustituiría en la universi­
dad, fue un testigo excepcional. El reconocimiento de Gauss era 
general en Alemania y en toda Europa. 

Uno de los trabajos más curiosos de Gauss de estos años es­
tuvo dedicado al fondo de pensiones para las viudas de los profe­
sores universitarios de la Universidad de Gotinga. Gauss estaba 
preocupado por comprobar si se podría mantener el nivel de co­
bertura a largo plazo. Para este trabajo usó tablas de mortalidad y 
otras informaciones obtenidas de compañías de seguros. Hizo nu­
merosos cálculos, usando todos los datos reales de que pudo dis­
poner. La conclusión la presentó en 1851, después de seis años de 
trabajo, y era bastante sorprendente: el sistema era sostenible e 
incluso se podría aumentar las cantidades pagadas. Una de las 
razones por las que Gauss se tomó tanto interés en este trabajo es 
que le permitió aplicar sus conocimientos de economía práctica. 
A diferencia de Newton en sus últimos años, Gauss jamás se sintió 
atraído por los cargos públicos, aunque su agudo interés y sagaci­
dad en todas las cuestiones correspondientes a la ciencia de la 
estadística, seguros y aritmética política habrían hecho de él un 
excelente gestor público. En su libro Gauss zum Gedachtniss 
(Memoria de Gauss), Sartorius von Waltershausen (1809-1876), 
su amigo personal, expuso que podría haber sido perfectamente 
el encargado de las finanzas del Estado. De hecho, a su muerte 
disponía de una fortuna más que mediana, que era fruto de inver­
siones exitosas en acciones de compañías y bonos de estados, no 
solo alemanes. Y ello a pesar de que tuvo una inversión ruinosa, al 
invertir en la línea de ferrocarril del norte de Hesse, que fue nacio­
nalizado por el Gobierno, perdiendo el 90% de su inversión. 

En sus últimos años vivió como un perfecto burgués de clase 
media, lejos de conflictos, pues políticamente Gauss era un hombre 
conservador. Profesaba unas creencias religiosas bastante persona­
les. No era a;teo, pero podría ser considerado como deísta, acep-
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t:ando la existencia y la naturaleza de Dios a través de la razón. Sus 
convicciones religiosas eran heterodoxas para la época y era con­
trario a las ideas liberales de la Iglesia protest:ante de Alemania Una 
parte esencial de sus creencias era su confianza en la armonía e 
integridad del gran diseño de la creación. Las cartas más personales 
de Gauss muestran que creía firmemente en la inmortalidad del 
alma y en la existencia de una vida después de la muerte, pero no 
ciertamente en concordancia con los postulados del cristianismo. 

«La vida está antes que yo, como una eterna primavera 
con nueva y brillante ropa.» 

- CARL FRIEDRICH GAUSS. 

Le atraía especialmente la literatura inglesa. Leía ávidamente 
las novelas históricas de su contemporáneo sir Walter Scott en 
cuanto aparecían. La facilidad con que dominó los idiomas du­
rante su juventud la conservó durante toda su vida. Las lenguas 
eran para él una verdadera diversión. Cuando ya era anciano quiso 
comprobar la flexibilidad de su cerebro aprendiendo un nuevo 
idioma. Creía que este ejercicio le ayudaría a mantener joven su 
mente, y además estaba empeñado en leer los trabajos de Loba­
chevski antes de que se tradttjeran. En efecto, con sesenta y ocho 
años comenzó a estudiar ruso sin ayuda de nadie. A los dos años 
leía las obras rusas en prosa y en verso con facilidad, y escribía en 
ruso sus cartas a los amigos científicos de San Petersburgo. En 
opinión de los rusos que le visitaron en Gotinga, hablaba su idioma 
perfectamente. Gauss situaba la literatura rusa al nivel de la in­
glesa por el placer que le proporcionaba. 

Al final de su vida, no fue un científico encerrado en su propio 
mundo. A Gauss le interesaba la política mundial, a la que dedi­
caba una hora al día; visitaba las bibliotecas con regularidad y se 
mantenía al corriente de los acontecimientos leyendo todos los 
diarios recibidos, desde el Times de Londres a las revistas locales 
de Gotinga. 

En política era claramente conservador, pero no en el sentido 
de «reaccionario». No se oponía a las reformas por principio, aun-
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que exigía de ellas un sustento lógico muy estricto. Sus amigos 
progresistas atribuían el conservadurismo de Gauss al aislamiento 
a que le obligaba su obra. Puede que en parte sea verdad. En los 
últimos veintisiete años de su vida solo durmió una vez fuera de 
su observatorio, cuando asistió a una reunión científica en Berlín 
para satisfacer a Alexander von Humboldt. 

«Nada me demostraría de un modo tan lisonjero y tan poco 
equívoco que los atractivos de esta ciencia que ha enriquecido 
mi .vida con tantas alegrías no son una quimera, igual que no 
lo es la predilección con la que usted la ha honrado.» 
- GAUSS, EN RESPUESTA A SOPHIE GERMAIN TRAS REVELARLE ESTA SU VERDADERA IDENTIDAD. 

158 

La época en que se desarrolló su vida era turbulenta, con gue­
rras y revoluciones, tanto en su país como en el extranjero. El 
gobierno d~l populacho y los actos de violencia política producían 
en Gauss un indescriptible h01Tor. La revuelta de París en 1848, 
que llevó al poder a la Comuna, lo llenó de pesadumbre. 

En general detestaba a los demagogos que arrastraban a las 
masas. Al haber nacido en una familia pobre, Gauss sabía muy 
bien que las personas ignorantes eran muy fáciles de manipular. 
Ya anciano creía que la paz y el simple bienestar constituían lo 
único bueno para cualquier país. Si la guerra civil hubiera esta­
llado en Alemania, decía, pronto habría muerto. Las conquistas en 
la forma napoleónica le parecían una incomprensible locura y 
siempre guardó un cierto desapego por todo lo francés, derivado 
del efecto devastador de las guerras napoleónicas. 

Gauss era un anciano vigoroso que defendía con ardor sus opi­
niones. Una de las causas de su vigor se encuentra en su serenidad 
científica y en la ausencia de ambiciones personales. Toda su am­
bición era el progreso de la matemática. Si Gauss era algo frío en 
sus expresiones impresas, era suficientemente cordial en su corres­
pondencia personal y en sus relaciones científicas. Como ya sabe­
rnos, mantuvo una relación científica con Sophie Germain, a la que 
admiraba por su sagacidad matemática. La apertura de mente res-
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pecto al tema de la dedicación de las mujeres a la ciencia es muy 
notable para cualquier hombre de su generación y educación. 

Se sabe poco de los últimos años de su vida, en los que de­
dicó parte de su tiempo a leer, y no solo literatura científica y 
periódicos, como ya hemos señalado. En junio de 1854, Gauss se 
hizo un chequeo médico completo. El diagnóstico fue poco favo­
rable, pues le encontraron una dilatación del corazón, con pocas 
esperanzas de vida. Su último acto académico, en junio de 1854, 
fue ejercer como presidente del tribunal en la prueba para la ha­
bilitación de Riemann como profesor de matemáticas. A petición 
del presidente del tribunal, Riemann leyó su famosa exposición 
Sobre las hipótesis en que se fundamenta la geometría, que sin 
duda impactó al anciano Gauss por lo que suponía de reconoci­
miento de las geometrías no euclídeas en las que había sido pio­
nero. A principios de agosto su salud volvió a deteriorarse otra 
vez. En diciembre parecía que su última hora había llegado. De 
cualquier manera, el corazón del anciano Gauss, aquejado de hi­
dropesía, estaba dando sus últimos latidos. Y dejó de latir de for­
ma irremediable en la madrugada del 23 de febrero de 1855, mien­
tras dormía plácidamente. Tenía 77 años, 10 meses y 22 días y 
dejaba tras de sí la obra matemática más grandiosa de la historia. 
No en vano el mismísimo rey Jorge V de Hannover acuñó una 
moneda en su honor en la cual le otorgó el calificativo de Mathe­
maticorum Princeps, «Príncipe de los matemáticos». 

Gauss fue un matemático muy reconocido en su tiempo. Gozó 
de una gran popularidad desde muy joven, y alcanzó fama a nivel 
internacional antes de cumplir los veinticinco años por su descu­
brimiento del método de mínimos cuadrados y su aplicación al 
cálculo de la órbita de Ceres. A pesar de ello, y como dejó recogido 
Sartorius en su memoria: 

Gauss fue sencillo y sin afectación desde su juventud hasta el día de 
su muerte. Un pequeño estudio, una mesita de trabajo con un tapete 
verde, un pupitre pintado de blanco, un estrecho sofá, y, después de 
cumplir los setenta años, un sillón, una lámpara con pantalla, una 
alcoba fresca, alimentos sencillos, una bata y un gorro de terciopelo 
eran todas sus necesidades. 
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Las generaciones posteriores han sabido reconocer su gran­
deza, y los honores recibidos desde su muerte son incontables. En 
la actualidad existe un premio matemático que lleva su nombre, 
instituido en 2002 de forma coajunta por la Unión Matemática In­
ternacional (IMU) y la Deutsche Mathematiker-Vereinigung (Socie­
dad Matemática Alemana, DMV). El galardón se otorga cada cuatro 
años a quienes hayan hecho «contribuciones matemáticas relevan­
tes con aplicaciones significativas fuera de las matemáticas». La 
dotación es de 10000 euros y, contrariamente a la medalla Fields, 
no hay límite de edad. Los dos primeros galardonados fueron Ki­
yoshi Ito (1915-2008) en 2006, por sus trabajos en probabilidad y 
procesos estocásticos, e Yves Meyer (n. 1939) en 2010 por sus es­
tudios sobre ondas oscilatorias. La medalla que acredita el premio 
tiene en su anverso una representación de la órbita de Ceres, y un 
cuadrado adicional simboliza el método de mínimos cuadrados 
usado por Gauss para la determinación de dicha órbita. 

Su patria, Alemania, ha rendido homenaje al genio de Gauss 
en diversos sellos postales, y antes de la llegada del euro, muchos 
alemanes estaban familiarizados con el rostro de Gauss, aunque 
tal vez no supieran a quién correspondía. Eso es así porque du­
rante varios años la semblanza amable del Gauss maduro, tocado 
con su típico gorro de terciopelo, adornaba el billete de diez mar­
cos, acompañado de una representación de la campana que lleva 
su nombre. 

Como se decía en la introducción, todos los matemáticos, sin 
importar la especialidad, podemos contar a Gauss entre los nues­
tros. Suyos son resultados fundamentales en prácticamente todas 
las áreas de la disciplina: álgebra, análisis matemático, geometría, 
estadística, teoría de números, aritmética, astronomía y matemá­
tica aplicada. Sus aportaciones en cualquiera de ellas le hubieran 
garantizado pasar a la posteridad como un gran matemático; el 
hecho de haberlas protag~mizado todas constituye una hazaña 
casi sin parangón. 

Las ideas de Gauss cambiaron las matemáticas de su tiempo 
y su influencia persiste en la actualidad con mayor fuerza si cabe. 
Sin los números imaginarios no se podrían resolver las ecuacio­
nes que permiten que los cohetes despeguen de la Tierra. Sin la 
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geometría no euclídea Einstein no habría dispuesto de las herra­
mientas necesarias para desarrollar la teoría de la relatividad. Sin 
el método de los mínimos cuadrados, los problemas de ajuste de 
funciones y las estimaciones a partir de conjuntos de datos serían 
imposibles. 

Muchos de sus resultados habrían sido encontrados eventual­
mente por otros matemáticos, porque eran necesarios para el 
avance de la ciencia, pero es seguro que se habrían retrasado dé­
cadas. Y de lo que no puede caber duda es de que esos avances no 
habrían sido fruto de un solo hombre. En ocasiones nacen perso­
nas especiales que hacen que esta lenta acumulación de conoci­
mientos que forma la cultura humana crezca de forma significativa, 
logrando ellas solas avances que corresponderían a varías genera­
ciones. Son personas dotadas de un genio y unas capacidades es­
peciales que encuentran las condiciones necesarias para desarro­
llar su talento. Gauss fue uno de esos pocos escogidos. 
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