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Introducción 

Cada cuatro años, la Unión Matemática Internacional otorga la 
medalla Fields a uno o más matemáticos (hasta un máximo de 
seis) que han destacado por alguna razón en su campo de estudio. 
Se trata de la más alta distinción que un matemático pueda recibir, 
habida cuenta de la ausencia del premio Nobel en dicha disciplina. 
En una de las caras de la medalla puede leerse una frase derivada 
de un verso del poeta romano Marco Manilio, que rodea el gra­
bado de un busto de Arquímedes: «Transire suum pectus mun­
doque potiri» ( «Ir más allá de uno mismo y dominar el mundo»). 

Matemático, físico, ingeniero y astrónomo; estas son las pri­
meras palabras que suelen leerse en muchos textos que presentan 
a Arquímedes de Siracusa, un hombre que entregó su vida a la 
ciencia y que dejó en ella una huella indeleble que dura ya más de 
dos mil años. Conocer la figura de Arquímedes es viajar por su 
extensa obra científica, puesto que tenemos la suerte de que nos 
han llegado muchos de sus tratados, aunque no se pueda. decir lo 
mismo acerca de los pormenores de su propia vida. Lo que ha 
persistido hasta hoy es una multitud de ensayos sobre matemáti­
cas con grandes descubrimientos geométricos y, entre ellos, por 
ejemplo, una excelente aproximación al número re. Prácticamente 
la totalidad de sus textos están dedicados a las matemáticas, y por 
esta razón, entre todos los apelativos, se le suele recordar como 
matemático por encima de otras denominaciones. Fue casi con-
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temporáneo de Euclides, el gran sabio que recogió muchos teo­
remas en el inmortal Elementos. Los tratados de Arquímedes 
presentan un rigor exquisito, una seriedad que no sería igualada 
durante siglos y una estructura que hace amena y ordenada la 
lectura. Incluso podemos atrevernos a afirmar que es un texto 
moderno desde el punto de vista académico. Trabajó con círculos, 
cuadrados, parábolas, paraboloides y un sinfín de otras figuras 
geométricas. Pero no solo estudió lo que ya era conocido en su 
época, sino que introdujo figuras nuevas en el panorama de las 
matemáticas, como la espiral y los sólidos que llevan su nombre. 
A pesar de que sus contribuciones más conocidas en matemáticas 
son las cuestiones geométricas, para el público general pasa des­
apercibido un hecho contrastado y real: fue uno de los precurso­
res más tempranos del cálculo infinitesimal. Dado que para el 
estudio de áreas y volúmenes complejos necesitaba una herra­
mienta matemática nueva, usó un método en el que cuarteaba las 
superficies y los volúmenes, significando un primer paso hacia el 
cálculo integral. Por desgracia, sus ideas al respecto fueron desoí­
das por la comunidad científica debido a su complejidad y hasta 
la era moderna no se ha reconocido su gran aportación. Sin em­
bargo, los apuntes que hizo Arquímedes sobre esta cuestión bien 
podrían formar parte de un curso matemático introductorio de 
nivel universitario hoy en día. 

La figura de Arquímedes tal vez sea más conocida a nivel po­
pular por su papel en los campos de la física y la ingeniería, gra­
cias al principio de Arquímedes y a la ley de la palanca. Estos dos 
resultados están grabados en el recuerdo de todos, quizá porque 
al bañarnos cualquiera de nosotros ha experimentado alguna vez 
la sensación de la disminución del peso, o el rebosamiento de 
agua. De igual modo, ¿quién no ha abierto alguna vez una botella 
haciendo palanca en la tapa con un cuchillo o unas tijeras? El 
hecho de que estos dos conceptos estén más cercanos a nuestra 
realidad cotidiana hace que sean populares de por sí y que nuestro 
cerebro sepa retenerlos con mayor facilidad. Una gran parte de las 
matemáticas y la física de Arquímedes podrían etiquetarse de co­
tidianas, respecto al cortjunto de fenómenos que analizan. En la 
historia de la ciencia ha ocurrido en ocasiones que los científicos 
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han estudiado en primer lugar los hechos más cercanos a su pro­
pio quehacer, dejando cuestiones más elevadas para épocas más 
tardías. Así, un análisis histórico nos enseña que los primeros 
científicos procuraron explicar el porqué y el cómo de los fenóme­
nos naturales más cotidianos y, de paso, sentaron las bases para 
la ciencia actual. Arquímedes es uno de los primeros eslabones de 
esta cadena. 

Arquímedes fue una persona bien relacionada, tanto política 
como científicamente. Existe constancia escrita por el mismo Ar­
químedes de que tuvo relación con el griego Eratóstenes de Ci­
rene, recordado en los libros de historia de la ciencia como la 
primera persona que midió el radio de la Tierra (lo cual haría, 
además, con bastante precisión). Arquímedes mantuvo tanto con 
él como con otros científicos del momento una correspondencia 
frenética. Los propios tratados, tal como se han conservado, sue­
len mostrar un preámbulo con la carta que los precede, haciendo 
las veces de introducción de la propia obra. También es conocida 
la estrecha relación que mantuvo con Hierón II, tirano de Siracusa 
y pariente suyo. Incitado por él construyó todo tipo de ingenios, 
muchos de ellos de uso militar. Gracias a estas relaciones se co­
noce algo de su biografía, a través de lo que contaba en sus cartas. 
Por ejemplo, por palabras del propio Arquímedes hoy sabemos 
que su padre, Fidias, fue astrónomo, algo que posiblemente in­
fluyó en su educación. 

La época que le tocó vivir al sabio de Siracusa fue un mo­
mento marcado por los cambios políticos, puesto que su vida dis­
currió en mitad de las guerras púnicas. Siracusa era una ciudad 
pequeña; sin embargo, ocupó un lugar destacado en las disputas 
entre romanos y cartagineses cuando corrían los años de las cita­
das guerras púnicas. La época que vivió le marcó en las propias 
investigaciones científicas y técnicas que llevó a cabo. Tanto es así 

· que el relato de la defensa de Siracusa no puede contarse sin el 
papel decisivo que desempeñó Arquímedes. De hecho, en ese 
punto es donde se suele presentar a Arquímedes como el gran 
ingeniero que diseñó por completo la defensa de una ciudad, la 
cual, gracias a sus geniales ideas, soportó durante más de dos 
años el asedio romano. 
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En el presente libro comenzaremos esbozando ligeramente 
la biografía de Arquímedes, aunque por desgracia contiene pocos 
datos, contextualizando su vida en el entorno social e histórico 
que ya se ha adelantado. Nos detendremos a analizar algunas de 
las muy fiables fuentes que hablan de instantes concretos de su 
vida, para poder acercamos al matemático de la mejor forma po­
sible. En el primer capítulo presentaremos la lista de tratados que 
salieron de su mano, y tendremos la oportunidad de poner la mi­
rada en los verdaderamente relevantes. Muchos de esos tratados 
son de fácil lectura para cualquier persona familiarizada con los 
textos matemáticos y, en especial, con la geometría. 

En el segundo capítulo abordaremos los temas relacionados 
con la física. En primer lugar se estudiará el famoso principio de 
Arquímedes, también llamado principio de la hidrostática, y nos 
acercaremos a los conocidos relatos de la corona del rey Hierón 
y el «¡eureka!» pronunciado por el sabio después del baño más 
famoso de la historia de la ciencia. En segundo lugar, no puede 
faltar la ley de la palanca, que ofrece la oportunidad de aproxi­
mamos al tratamiento matemático al respecto que el propio Ar­
químedes realizó sobre ella. Por último, también en el segundo 
capítulo se abordará cierto estudio de las dimensiones del uni­
verso en el que incluso se explica un método sorprendente para 
expresar números grandes y en el que se encuentra la única refe­
rencia al padre del genio; ese método se considera un antece­
dente de la actual notación científica. 

El tercer capítulo está dedicado a los principales logros ma­
temáticos del sabio de Siracusa, y en él se establecen algunas 
cadenas de razonamientos matemáticos, de fácil seguimiento, en­
caminados a divulgar los resultados del propio Arquímedes en el 
lenguaje actual. El capítulo constituye un sorprendente viaje a la 
génesis del cálculo diferencial, cuyo recorrido comienza con el aná­
lisis de los métodos usados por Arquímedes, uno de los cuales es 
una invención propia basada en la ley de la palanca. Presentaremos 
varios apartados relacionados con aspectos geométricos ( circunfe­
rencias, parábolas, espirales, etc.), otros dedicados amostrar cómo 
Arquímedes acarició la idea de límite, e incluso no faltarán curiosi­
dades matemáticas, entre las que podremos abordar El problema 
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de los bueyes, un libro escrito en forma de poema que plantea el 
recuento de reses de distintos tipos. Otras figuras geométricas par­
ticulares son las conocidas como cuchillo de zapatero y bodega 
para la sal, de las que estudiaremos sus propiedades. 

En el cuarto y último capítulo se discuten algunos artificios 
atribuidos a su ingenio. Para favorecer una lectura amena, estos 
ingenios no serán abordados desde el punto de vista técnico, sino 
que se estudiará su utilidad y cómo sabemos hoy si son o no auto­
ría de nuestro personaje. Se hablará del tomillo de Arquímedes, de 
un barco gigante llamado Siracusia, de espejos incendiarios, 
de catapultas ... 

A lo largo de la presente obra se dan informaciones comple­
mentarias que pueden ser de gran interés para el lector, tanto del 
contexto histórico como de otros autores o aplicaciones de los 
resultados científicos expuestos en estas páginas. La biografía 
científica de Arquímedes puede ser de gran utilidad a cualquiera 
por varios motivos. Por un lado, sus aportaciones están presentes 
en nuestra vida diaria en multitud de momentos, por ejemplo, en 
los baños veraniegos, al abrir una puerta o al dibujar una circunfe­
rencia. Por otro lado, los profesores y docentes pueden encontrar 
en las palabras de Arquímedes posibilidades didácticas de todo 
tipo y en todos los campos de las matemáticas y la física. Los estu­
diantes, por su parte, pueden leer esta obra con el afán de asentar 
algunos de sus conocinúentos, e incluso los investigadores avan­
zados pueden acceder a un punto de vista del que tal vez nunca 
hayan disfrutado, dada la premura en sus estudios de licenciatura 
y de doctorado. 

La impronta que dejó Arquímedes en la historia se deja ver 
en el hecho de que forma parte del elenco de personajes que cual­
quier persona con una cultura media es capaz de recitar de me­
moria. Incluso si hiciéramos una lista de sabios dedicados a la 
ciencia estaría en la lista de los que se pueden contar con una 
mano y nos sobraría un dedo: Arquímedes, Galileo, Newton y 
Einstein. Por supuesto que hay más físicos que han hecho histo­
ria, pero ya sea por sus méritos o por los caprichos del destino 
son estos cuatro, tal vez, los que forman parte del recetario de la 
sabiduría popular. 
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Aunque el nombre de Arquímedes está sajeto a mitos y leyen­
das, vamos a comprobar que sus éxitos reales fueron mucho ma­
yores que las historias fabuladas que se cuentan sobre él. Es 
necesario recordar a Arquímedes como el hombre que gritaba 
«¡Eureka!, ¡eureka!» o como el científico que dijo «Dadme un 
punto de apoyo y moveré el mundo», pero su genialidad fue 
mucho más allá del hecho de pronunciar un par de frases famosas. 
En el caso de Arquímedes, la realidad supera la ficción. 
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287 a.c. Fecha aproximada del nacimiento 
de Arquímedes, en Siracusa, Sicilia. 
Su padre era astrónomo y pariente 
de Hierón II, rey de Siracusa desde 
el año 265 hasta el 216 a.c . 

279 a.c. Fin del reino de Hicetas, tirano de 
Siracusa. 

278 a.c. Tras la victoria en la batalla de 
Asculum (279 a.C.), el rey Pirro de 
Epiro pacta una tregua con Roma. 

270 a.c. Nacimiento de Gelón, hijo 
de Hierón II de Siracusa, a quien 
Arquímedes dedicó su tratado 
El Arenario, en el que se plantea 
cuántos granos de arena cabrian 
en Siracusa, en Sicilia, en la Tierra .. . 

268 a.c. Nace Marco Claudio Marcelo, uno 
de los comandantes del ejército 
romano durante la Segunda Guerra 
Púnica. 

265 a.c. Hierón derrota a los mamertinos 
y se proclama rey de Siracusa 

264 a.c. Comienzo de la Primera Guerra 
Púnica. Siracusa se alia con Cartago 
contra Roma. 

263 a.c. Hierón firma el tratado de paz 
con Roma. 

260 a.c. Arquímedes formula la ley de la 
palanca de brazos desiguales, siendo 
el primer matemático que pudo 

adaptar la geometria de su momento 
a fenómenos físicos. 

247 a.c. Nacimiento del general cartaginés 
Aníbal Barca. 

241 a.c. Fin de la Primera Guerra Púnica. 

240 a.c. Eratóstenes elabora un mapa que 
representa el mundo conocido. 
Comienza la corregencia de Hierón 
yGelón. 

230 a.c. Primeros estudios sobre las cónicas, 
de la mano del geómetra griego 
Apolonio de Perga 

218 a.c. Comienza la Segunda Guerra Púnica 
entre Roma y Cartago. Tras cruzar 
los Alpes, Aníbal invade Italia. 

216 a.c. Muere Gelón. 

215 a.c. Muere Hierón. Jerónimo, hijo 
de Gelón, asume la corona de 
Siracusa. 

213 a.c. Ataque de Marcelo a Siracusa 
y derrota con la ayuda de las 
máquinas de Arquímedes. 
Comienza el asedio a Siracusa. 

212 a.c. Siracusa es tomada y saqueada 
por los romanos. Arquímedes 
muere durante el saqueo. 

80 a.c. Cicerón descubre la tumba 
de Arquímedes en Siracusa. 
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CAPÍTULO 1 

Un sabio en la Antigüedad 

El siglo rn a.C. constituye la denominada Edad 
de Oro de las matemáticas griegas. El nacimiento 

de Arquímedes se sitúa en ese siglo, entre los de los 
matemáticos Euclides de Megara y Apolonio de Pérgamo. 
La vida de Arquímedes discurrió relativamente tranquila 

teniendo en cuenta que fue contemporáneo de las guerras 
púnicas. Dedicó su vida al estudio de las matemáticas 

y a su aplicación a los campos de la física y está 
considerado como el primer físico 

matemático de la historia. 





No nos ha llegado demasiada información acerca de la vida de Ar­
químedes, un hombre que destacó en matemáticas, física, astrono­
mía, ingeniería e, incluso, tuvo un papel importante y decisivo en 
cuestiones militares y políticas. Lo que sabemos hoy sobre su vida 
nos viene desde varias fuentes: escritos de historiadores romanos 
y griegos, anécdotas contadas por otros eruditos y las propias 
epístolas y obras de Arquímedes. El matemático griego Eutocio 
de Ascalón ( 480-540) hace referencia a una biografía escrita por 
Heráclides, amigo de Arquímedes, que por el momento parece ser 
que está perdida. Un único testimonio nos sitúa su nacimiento en 
tomo al año 287 a.c., en la ciudad siciliana de Siracusa, mientras 
que su muerte, acaecida en 212 a.c., bajo el filo del arma de un sol­
dado romano, bien podría parecer el capítulo final de una novela 
de aventuras cientí.ficas. Es muy posible que redundara en su edu­
cación cientí.fica el hecho de que Fidias, su padre, fuera astrónomo, 
y motivara su interés por las cuestiones matemáticas y astronómi­
cas. El mismo Arquímedes habla de su progenitor en El Arenario 
cuando delibera acerca de los diámetros relativos del Sol y la Luna, 
aspecto que se tratará a fondo en el siguiente capítulo. 

Aunque pasó casi toda su vida en Siracusa, Arquímedes viajó 
a Egipto en su juventud, en concreto a la ciudad de Alejandría, tal 
como cuenta Diodoro Sículo, un historiador siciliano del siglo r 
a.c. En cualquier caso, sea o no fiable el dato, es cierto que Arquí-
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medes estuvo en contacto con eruditos y estudiosos alejandrinos. 
Cuenta de ello da su actividad epistolar, aunque se tenga solo 
constancia parcial de ella. Los investigadores han supuesto, por 
tanto, que Arquímedes se formó en matemáticas con algunos se­
guidores del matemático griego Euclides (325-265 a.C.), hecho que 
marcaría de forma decisiva su labor científica, dejando un sello de 

MIDIENDO LA TIERRA CON LA SOMBRA DE UN OBJETO 

Eratóstenes de Cirene consiguió medir el diámetro de la Tierra con un error de 
poco más del 1,5%, lo cual es posible que hoy no sorprenda demasiado, a no 
ser que se tenga en cuenta el dato de que lo hizo en el siglo III a.c. Tenía noticias 
de que en la ciudad de Siena (actual Asuán, en Egipto, no confundir con la 
Siena italiana) el día del solsticio de verano los objetos no proyectaban sombra 
y que el fondo de los pozos se iluminaba. Este hecho le condujo a una idea 
extraordinaria, por su simplicidad y elegancia: si medía la sombra de un objeto 
en una ciudad que estuviese situada en la misma longitud terrestre (en el mis­
mo meridiano) que Siena, podría determinar el ángulo de separación de ambas 
ciudades por la circunferencia de la Tierra y extrapolar así el resultado (véase 
la figura). Así que, en su posición de director de la Biblioteca de Alejandría, 
consiguió que un grupo de esclavos de las caravanas (a cuyos jefes Eratóste­
nes les regalaba mapas para que se orientaran) midiera la separación entre las 
ciudades de Alejandría y la actual Asuán. Resultó ser de 5000 estadios. 

Rayos solares Rayos solares 

ij ij ij ij ij ij ij ijijijijijijij 

Asuán 

Asuán Ale1andria 

Si la Tierra fuera plana, en el momento del solsticio de verano ninguno de los objetos en las 
ciudades arrojarían sombra, como puede verse en las ilustraciones. 
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estilo en casi todas sus obras. Uno de los receptores de sus cartas 
y sus escritos fue Eratóstenes de Cirene (276-194 a.C.), director de 
la Biblioteca de Alejandría desde el 236 a.c. hasta el final de sus 
días. Arquímedes debía tenerlo en muy alta estima para intercam­
biar con él sus preciadas ideas científicas en un intento de perpe­
tuar sus descubrimientos. Y así era, pues Eratóstenes gozaba de 

Tras medir la sombra Eratóstenes encontró que ambas ciudades estaban se­
paradas en una proporción de la cincuentava parte de la circunferencia de la 
Tierra, es decir, un ángulo de 7º 12' (véase la figura). Este dato nos da un va lor 
de 50 x 5 000 = 250 000 estadios para la circunferencia completa. Muchas son 
las interpretaciones sobre cuál es la verdadera equivalencia entre el estadio 
de Eratóstenes y el metro actual, pero tomemos como válida la métrica egip­
cia, la cual deriva en que 1 estadio equivale a 157,2 m. Por tanto, la longitud de 
la circunferencia de la Tierra calculada por Eratóstenes es de 39 300 km, lo 
cual supone un radio medio de 6256 km, frente a los 6371 km medidos en la 
actualidad; una aproximación verdaderamente sorprendente. 

En este esquema se aprecia que el ángulo medido sobre el objeto que proyecta la sombra es el 
mismo que el ángulo de separación de las dos ciudades sobre la circunferencia terrestre. Este 
ángulo es la cincuentava parte de 360°. 
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gran renombre y prestigio como matemático, incluso más allá de 
Alejandría. De hecho, se considera que fue el p1imero que consi­
guió medir el diámetro de la Tierra, con un margen de error sor­
prendentemente pequeño para la época. Arquímedes remitió a 
Eratóstenes El Método, una obra donde explicaba su método de 
trabajo y que estuvo perdida hasta 1906, cuando el historiador 
helenista Johan Ludvig Heiberg descubrió el palimpsesto de Cons­
tantinopla. Durante años, muchos estudiosos pensaron que guar­
daba en secreto y con recelo sus herranüentas metodológicas, 
pero el hallazgo de la obra cambió para siempre la visión que se 
tenía de Arquímedes. Conón de Samos (280-220 a.C.) fue otro de 
sus corresponsales alejandrinos, al igual que Dositeo de Pelusio 
(2.ª mitad del siglo n a.C.). Del primero llegó a decir que era un 
«amigo y hombre que ha llegado a ser admirable en matemáticas». 
A la muerte de Conón decidió enviarle algunas de sus obras a Do­
siteo, puesto que este había conocido a Conón y estaba familiari­
zado con el estudio de la geometría. No nos han llegado las cartas 
enviadas a Conón, pero sí sabemos que a Dositeo le remitió dos 
libros de Sobre la esfera y el cilindro, y los tratados completos 
Sobre los conoides y los esferoides, Sobre las espirales y Sobre la 
cuadratura de la parábola. 

Arquímedes guardó una relación muy estrecha con Hierón II 
(306-215 a.C.), tirano de Siracusa entre los años 270 a.c. y 215 aC. 
Al parecer, ambos eran parientes, pues tal vez Fidias, padre de 
Arquímedes, fuese primo de Hierón II. Incluso llegó a dedicar El 
Arenario a Gelón II, hijo del tirano. Son varias las fuentes donde 
se relatan historias acaecidas que involucran a los dos personajes 
y todas ellas suelen destacar el vínculo político y de alianza bélica 
entre Hierón y Arquímedes que desembocaría en la dirección de la 
defensa ante el fan1oso asedio de Siracusa, habiendo ya fallecido 
Hierón. El tirano había quedado maravillado por una demostra­
ción intelectual y mecánica de su pariente: consiguió mover un 
gran barco pesado realizando un pequeño esfuerzo. Esta historia 
es comúnmente recordada con la sentencia «Dadme un punto de 
apoyo y moveré el mundo», recogida por Papo de Alejandría (290-
350), y que sirve para traernos a la memoria las leyes de lapa­
lanca, punto que será abordado en los siguientes capítulos. Tal fue 
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la sorpresa de Hierón que «encargó a Arquímedes que le constru­
yese toda especie de máquinas de sitio, bien fuera para defenderse 
o bien para atacar», como afirma el historiador griego Plutarco 
( ca. 50-ca. 120) en su Vida de Marcelo . 

«Marcelo, lleno de admiración por ese genio extraordinario, 
dio orden de conseivarle la vida, siendo para él de tanta 

gloria la conseivación de Arquímedes como 
la toma de Siracusa.» 

- PUBLIO V ALERIO MÁXIMO. 

Es interesante detenemos brevemente en el relato del men­
cionado asedio a Siracusa, por el papel que tuvo Arquímedes. A 
pesar de que ambos bandos estaban muy debilitados tras anterio­
res enfrentamientos, Roma decidió declarar la guerra a Cartago a 
partir de la destrucción que había sufrido Sagunto por parte de los 
cartagineses. Se sucedieron entonces un conjunto de batallas que 
constituirían la Segunda Guerra Púnica, contienda que comenzó 
en 218 a.c. y duraría hasta 201 a.c. El general cartaginés Arubal 
Barca (24 7-183 a. C.) había comenzado a progresar de forma preo­
cupante por Italia cuando el cónsul romano Marco Claudia Mar­
celo (268-208 a.C.) fue enviado a Sicilia con una armada, para 
tomarla al precio que fuese. Allí se encontraba la ciudad estado de 
Siracusa, que por entonces era una polis griega. 

Marcelo, como nos cuenta Plutarco, «era realmente guerrero 
en el ejercicio y los conocimientos» y «para él no hubo desafío que 
no aceptase». Sin embargo, se vio obligado a sitiar Siracusa du­
rante meses, pues tomarla a viva fuerza le resultó imposible. Mar­
celo y sus soldados no contaban con la mente del mayor 
matemático griego de la época y uno de los más grandes sabios de 
la Antigüedad: Arquímedes. Así que el comandante romano estuvo 
cinco días dedicado a preparar el asedio a Siracusa, reuniendo y 
disponiendo todo tipo de armas y artilugios. La ciudad estaba ele­
vada, rodeada de muros en redondo, a modo de contorno, y de 
barbacanas, es decir, era una verdadera fortificación de difícil 
acceso. Mientras él mismo realizaba un ataque desde el mar, su 
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adjunto Apio dirigía el ataque en tierra por Levante. La flota de 
Marcelo contaba con sesenta quinquerremes (barcos de guerra do­
tados con cinco niveles de remos) repletos de soldados armados 
de arcos, flechas y hondas para amilanar la defensa siracusana 
desde las almenas. Ocho de los quinquerremes estaban unidos de 
dos en dos, eliminando las filas de remos por donde se fusionaban, 
para desplegar las sambucas, así llamadas porque recordaban al 
homónimo instrumento musical; se trataba de unas máquinas de 
asedio recientemente diseñadas por Heráclides de Tarento (no 
confundir con el biógrafo de Arquímedes) y que resultaron ser un 
estrepitoso fracaso. En lo alto de la escalera se situaban tablas por 
tres lados con cuatro hombres para desalojar las almenas. 

«Había más imaginación en la cabeza de Arquímedes 
que en la de Homero.» 
-VOLTAIB.E. 

22 

Como se ha indicado, Marcelo estaba acostumbrado a las 
armas y era hombre de conocimiento en el terreno de combate; sin 
embargo, Arquímedes había prevenido la ofensiva con todo tipo de 
ingenios que frustrarían cualquier intento de acometida. Tenía pre­
paradas máquinas, tanto defensivas como ofensivas, algunas de las 
cuales lanzaban dardos a todas las distancias; dispuso ballestas y 
catapultas más elásticas que las del enemigo, máquinas que arro­
jaban proyectiles pesados a distancias inimaginables para los ro­
manos, con gran violencia y velocidad. Los muros servían de 
escondite a toda esta maquinaria, extraña para las sorprendidas 
huestes de Marcelo y Apio. Las sambucas de los quinquerremes de 
Marcelo eran como papel para los grandes peñascos y pedazos de 
plomo disparados mediante los novedosos artefactos diseñados a 
tal efecto. Los navíos eran levantados y soltados desde las alturas, 
hundidos o estrellados contra las volanderas, atrapados «dejando 
caer una mano de hierro atada a una cadena». Los soldados se 
encontraban realmente horrorizados, puesto que nunca habían 
visto instrumentos similares a los que Arquímedes había diseñado, 
los cuales aparecían desde lo alto sin previo aviso y rompían filas 
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sembrando el pánico entre los combatientes. Durante los meses 
que duró el asedio, ninguna estratagema violenta vio los frutos 
deseados. Marcelo y sus hombres estaban desesperados, no sabían 
cómo actuar ni a qué atenerse. El bloqueo del suministro de víve­
res para conseguir vencerlos por el hambre fue uno de los tantos 
movimientos inútiles que los romanos realizarían durante el ase­
dio. Como diría el griego Polibio de Megalópolis (200-118 a.C.) en 
su Historia Univ~sal bajo la República Romana, «no contaban 
con la habilidad de Arquímedes, ni preveían que en ocasiones un 
buen ingenio puede más que muchas manos», a partir de lo cual 
«jamás osaron intentar un asedio a viva fuerza», pues «tanto y tan 
admirable es el poder que tiene en ciertos lances un solo hombre 
y un solo arte empleado a propósito». La toma de la ciudad por la 
fuerza se hacía imposible, solamente el sitio sería la alternativa. La 
forma exacta en la que los soldados romanos accedieron a Sira­
cusa no está del todo aclarada, y en este sentido Plutarco relata 
que pudieron haber entrado haciendo uso de la oportuna penum­
bra de la noche, de manera oculta, por una torre mal conservada y 
mal defendida, tal vez ayudados de algún traidor siracusano. Apro­
vecharon un momento de fiesta en honor a Artemisa, mientras la 
diversión y el vino servían para bajar la guardia Cuando en Sira­
cusa advirtieron el problema, decenas de soldados romanos ya 
habían tomado sus calles. Corría el año 212 a.c. 

Situados en este contexto, parece que hay acuerdo general 
entre los historiadores acerca de la muerte de Arquímedes, en 
tanto que su vida quedó truncada por la espada de un soldado ro­
mano. Es posible que una de las tres opciones que ofrece Plutarco 
sea la más viable, ya sea por lo recurrente en el resto de la litera­
tura o por el romanticismo que exhala dicha historia: 

[ ... ] hallábase este casualmente entregado al examen de cierta figura 
matemática, y, fijos en ella su ánimo y su vista, no sintió la invasión 
de los romanos ni la toma de la ciudad. Presentósele repentinamen­
te un soldado, dándole orden de que le siguiese a casa de Marcelo; 
pero él no quiso antes de resolver el problema y llevarlo hasta la 
demostración; con lo que, irritado el soldado, desenvainó la espada 
y le dio muerte. 
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La literatura cuenta que el enfado del soldado fue mayúsculo 
cuando Arquímedes pronunció su supuesta última frase: «No moles­
tes mis círculos». No se conocen con certeza los pormenores de la 
acción que temtinaría con la vida del sabio siracusano, pero son mu­
chos los testimonios de varios historiadores y todos coinciden en 
que fue, efectivamente, un soldado el que estuvo implicado. Fuera de 
una u otra forma, lo cierto es que a Marcelo no le agradó en absoluto 
la desafortunada noticia de la muerte del que llamaría «geómetra 
Briareo», sobre todo porque era para él «tanta gloria la conservación 

LAS GUERRAS PÚNICAS 

Las guerras púnicas enfrentaron Roma y Cartago entre los años 264 a.c. y 
146 a.c . El nombre proviene del latín punici, término que deriva de phoenici, 
voz que usaban los romanos para hablar de los cartagineses, haciendo refe­
rencia a sus ancestros fenicios. La causa principal fue la expansión de Roma 
mediante su adhesión a la Magna Grecia. Se trata de una serie de tres guerras, 
de las cuales nos interesan las dos primeras, por ser Arquímedes contempo­
ráneo a ellas. 

Primera Guerra Púnica (264-241 a.C.) 
El conflicto tuvo Sicilia como punto de partida y duró 23 años. Los mamertinos 
eran un grupo de mercenarios que se refugiaron en Messana, actual Mesina, 
al noreste de Sicilia. Se habían situado allí a la fuerza, expulsando a los hombres 
y quedándose con las mujeres, desde el año 289 a.c. Hierón 11 de Siracusa 
(ciudad griega en aquel momento) se atrevió a enfrentarse a los agitadores 
a partir del 270 a.c., para poner punto y final a la piratería que los caracte­
rizaba . Sin embargo, los mamertinos pidieron ayuda a Roma, mientras que 
Siracusa se alió con Cartago. Esto desembocaría en un enfrentamiento a gran 
escala, es decir, en la Primera Guerra Púnica, en el 264 a.c. A pesar de la su­
perioridad naval de los cartagineses, quienes evitaban la confrontación por 
tierra, los romanos se pusieron a la altura en tan solo dos meses. En el año 
241 a.c. se firmó el control romano sobre Sicilia, ante la superioridad general 
de Roma, aunque Siracusa mantuvo la independencia. 

Segunda Guerra Púnica (218-201 a.C.) 
Durante este conflicto fue cuando Arquímedes desplegó sus inventos en Si­
racusa, ante el asedio romano; sin embargo, la ciudad fue tomada en el 211 a.c. 
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de Arquímedes que la torna de Siracusa». En la mitología griega, un 
«briareo» era un gigante de cien manos y cincuenta cabezas; así veía 
Marcelo al hombre que osó plantarle cara. Se cuenta que llegó a 
apartar de su presencia al soldado que dio muerte a Arquímedes, 
mientras que trató con todo el respeto, aprecio y distinción a los 
parientes del matemático. Sabernos por el historiador bizantino Juan 
Tzetzes (1110-1180) que Arquímedes «trabajó en geometría hasta 
una edad avanzada, viviendo setenta y cinco años», testimonio que 
permite situar la fecha de su nacimiento en el año 287 aC. 

La Segunda Guerra Púnica tuvo tres escenarios: Italia, Hispania y Sicilia. La 
guerra estalló con la toma de Sagunto por parte de Aníbal, general cartaginés 
que se propuso aniquilar Roma. En el año 201 a.c. Aníbal firmó la paz con 
Escipión el Africano (236-183 a.C.), resultando un balance claramente positivo 
para los romanos. 

- Territorios cartagineses 
Territorios romanos 

Mesina 

__ Monte Etn~Catania 

Siracusa 
Cartago 

~~/ 
--- iJ 

Distribución de territorios al final de la Segunda Guerra Púnica. 
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El relato de la muerte de Arquímedes nos muestra el tópico 
del científico despistado, absorto en sus pensamientos y despreo­
cupado de las tareas comunes, e incluso del propio aspecto per­
sonal. En algunas ocasiones se dice que las películas y la literatura 
alimentan ese tópico, pero lo cierto es que ya los historiadores 
romanos lo usaron en la figura de Arquímedes, aunque no fuera de 
forma premeditada. Es evidente que el matemático griego se en­
tregó al pensamiento abstracto, como prueban sus escritos, sin 
dejar de lado por completo los intereses experimentales, al menos 
ocasionalmente. Por tanto, es posible que fuera un hombre im­
buido en sus pensamientos, que se debía a sus trabajos, enajenado 
en parte de la vida cotidiana. En aquella época ninguna persona 
con apuros económicos podía dedicarse en cuerpo y alma a las 
matemáticas; sin embargo, Arquímedes tuvo la suerte de estar 
bien posicionado, lo cual le permitió entregarse de por vida a sus 
investigaciones, alejándose, tal vez, de las realidades mundanas. 
Al respecto, en su obra Vida de Marcelo (Tomo 11, XVII), Plutarco 
apunta: 

Así, no hay cómo no dar crédito a lo que se refiere de que, halagado 
y entretenido de continuo por una sirena doméstica y familiar, se 
olvidaba del alimento y no cuidaba de su persona; y que llevado por 
fuerza a ungirse y bañarse, formaba figuras geométricas en el mismo 
hogar, y después de ungido tiraba líneas con el dedo, estando verda­
deramente fuera de sí, y como poseído de las musas, por el sumo 
placer que en estas ocupaciones hallaba. 

A pesar de todo, es posible que también se exagere con ex­
ceso la animadversión que sentía Arquímedes por las cosas mate­
riales. En su época no estaba bien visto entre los geómetras usar 
las manos para realizar construcciones ni máquinas de ningún 
tipo. El filósofo griego Platón (428-347 a.C.) criticó con dureza a 
los matemáticos griegos Eudoxo de Cnidos (390-337 a.C.) y Arqui­
tas de Tarento (430-360 a.C.) por inclinarse hacia el arte de la 
maquinaria, puesto que era una forma de degradar la geometría al 
trasladarla de lo incorpóreo e intelectual a lo tangible y sensible. 
El uso de la geometría para los cuerpos se consideraba un oficio 
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tosco, así que fue desviada de la atención de los filósofos y se 
consideró como parte de las artes militares. Sabemos por Plu­
tarco que Arquímedes no dejaría nada escrito sobre sus ingenios, 
pues «tenía por innoble y ministerial toda ocupación en la mecá­
nica». Sin embargo, «fue el tirano Hierón quien estimuló hacia 
ellos su ambición, persuadiéndole que convirtiese alguna parte de 
aquella ciencia de las cosas intelectuales a las sensibles, y que, 
aplicando sus conocimientos a los usos de la vida, hiciese que le 
entrasen por los ojos a la muchedumbre». El culto que tuvo Arquí­
medes por la geometría llegó a tal punto que pidió a los de su 
entorno que esculpieran uno de sus resultados matemáticos como 
epitafio. Así lo cuenta Plutarco: 

Habiendo, pues, sido autor de muchos y muy excelentes inventos, 
dícese haber encargado a sus amigos y paiientes que después de su 
muerte colocasen sobre su sepulcro un cilindro con una esfera ins­

crita en él, poniendo por inscripción la razón del exceso entre el 
sólido continente y el contenido. 

Hoy el epitafio está perdido, aunque parece que en el siglo 
r a.c. aún estaba visible, según narra el escritor romano Cicerón 
(106-43 a.C.) en Disputaciones tusculanas: 

[ .. . ] busqué el rastro de su tumba ... y la encontré rodeada y cubierta 
de zarzas y matorrales; pues recordé ciertos versos sobre su tumba 
que había oído, según los cuales se habían colocado encima de su 
sepultura una esfera y un cilindro. Así pues, después de mirar cuida­
dosamente alrededor (pues hay un gran número de tumbas en la 
Puerta Agrigentina), descubrí una pequeña columna que se elevaba 
un poco sobre los arbustos, sobre la que había la figura de una esfe­
ra y un cilindro ... Se enviaron esclavos con hoces ... y cuando se hubo 
abierto paso, nos aproximamos al pedestal frente a nosotros; el epí­
grama fue fácil de encontrar con alrededor de la mitad de las líneas 
legibles, mientras que la últin1a parte estaba completan1ente raída. 

Quizá nunca lleguemos a saber cómo fue Arquímedes en su 
quehacer diario, cuáles fueron los detalles de las anécdotas rea-
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les y cuáles eran sus verdaderas opiniones sobre los ingenios que 
pudo haber construido, pero no es del todo negativo que se 
pierda en la memoria del tiempo cómo se sucedieron realmente 
los hechos. Pasar de la historia a la historieta no debe tomarse 
solo como un inconveniente, sino que también significa una opor­
tunidad. Todo el mundo recuerda al Arquímedes de sus años de 
estudios p1imarios como aquel científico que corría enloquecido 
por las calles de Siracusa gritando «¡Eureka!, ¡eureka!», cele­
brando de este modo el descubrimiento del hoy llamado princi­
pio de Arquímedes. Es poco probable que esta historia contada 
en el siglo r a. C. por el arquitecto romano Marco Vitruvio en De 
architectura fuera cierta; sin embargo, sirve para reforzar en 
nuestra memoria algo más importante que la historieta: la figura 
y los resultados científicos de Arquímedes. Y muchos incluso re­
cuerdan que con ese descubrimiento solucionaría el problema de 
la corona de oro del tirano Hierón, pasaje que trataremos más 
adelante. 

«Entre todos los trabajos que se refieren a las disciplinas 
matemáticas, parece que el primer lugar puede ser reivindicado 

por los descubrimientos de Arquímedes, que confunden a las 
almas por el milagro de su sutilidad.» 

- EVANGELISTA TORRICELLI. 

EL LEGADO CIENTÍFICO DE ARQUÍMEDES 

Los textos arquimedianos que se conservan no están escritos por 
regla general en lengua original ( dórico, antiguo dialecto griego), 
sino que han llegado hasta nosotros en griego clásico, en bizantino 
y en árabe. Además, parece ser que la mayor parte de los escritos 
del genio de Siracusano se han conservado y, por supuesto, no se 
conocen manuscritos del propio Arquímedes. Sus obras versan en 
su mayoría de matemáticas, aunque también dedica bastantes lí­
neas a la física matemática (estática e hidrostática) o a la aplica­
ción de las matemáticas a problemas concretos. 
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Los comentarios más tempranos sobre la obra de Arquímedes 
se deben a Herón (10-70), Papo (290-350) y Teón (335-405), todos 
ellos matemáticos alejandrinos. Sin embargo, la primera recopila­
ción importante de los trabajos de Arquímedes no llegó hasta el 
siglo VI de nuestra era y recae en la figura del ya citado matemático 
griego Eutocio, siendo de gran importancia sus comentarios a las 
obras Sobre la esfera y el cilindro, Sobre la medida del círculo y 
Sobre el equilibrio de las figuras planas. En el mismo siglo, el 
arquitecto bizantino Isidoro de Mileto fue el responsable de la pri­
mera edición de los tres libros comentados por Eutocio, a la que 
se irían sumando otros trabajos hasta el siglo rx a medida que se 
iban redescubriendo. A partir de ahí, dos han sido las vías funda­
mentales por las que los trabajos de Arquímedes llegaron a Occi­
dente: Bizancio y el mundo árabe. 

Por la vía árabe, son verdaderamente destacables las tra­
ducciones del griego de la mano de Thabit ibn Qurra (836-901). 
Arquímedes fue desconocido en el Occidente medieval, pero el 
traductor flamenco Guillermo de Moerbeke (1215-1286) solucio­
naría este desaire publicando una traducción al latín en 1269. Esta 
edición y otras posteriores posibilitó que las obras más significa­
tivas de Arquímedes estuviesen disponibles en el Renacimiento. 
Por otra parte, la trágica muerte del astrónomo alemán Johann 
Müller Regiornontano, en 14 76, impidió que este viese terminado 
su proyecto de imprimir algunas obras de Arquímedes para darles 
una difusión que no habría tenido parangón hasta el momento. 
Pero hubo que esperar poco, pues en 1544 Hervagius imprimió en 
Basilea la primera edición de todos los textos griegos conocidos 
hasta el momento, editados por Thornas Gechauff Venatorius, en 
griego y en latín. Así, los trabajos de Arquímedes tornarían un 
papel fundamental en los siglos XV-XVI, lo cual significó -sin 
duda- uno de los pilares en los que descansaría la primera revo­
lución científica y elevó a Arquímedes a la posición de padre de la 
física matemática, puesto que sigue manteniendo, según la opi­
nión de muchos historiadores de la ciencia. 

Las primeras traducciones a lenguas modernas se basan en 
la edición de Basilea: edición alemana de Sturm (1670), la edi­
ción bilingüe grecolatina de Torelli (1792), la edición alemana de 
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OBRAS DE ARQUÍMEDES 

En griego y de autoría aceptada por los expertos se han conservado: 

l. Sobre el equilibrio de las figuras planas (2 libros). 
2. Sobre la cuadratura de la parábola. 
3. El método sobre los teoremas mecánicos (conocido como El Método). 
4. Sobre la esfera y el cilindro (2 libros). 
5. Sobre las espirales. 
6. Sobre los conoides y los esferoides. 
7. Sobre los cuerpos flotantes (2 libros). 
8. Sobre la medida del círculo. 
9. El Arenario o El contador de arena. 
10. El problema de los bueyes. 
11. Stomachion o Loculus Archimedium. 

También han llegado en árabe o en su correspondiente traducción latina al­
gunas obras que han sido adaptadas y citadas por otros autores o simplemen­
te cuya autoría es dudosa: 

12. Sobre los poliedros regulares. Resumido y citado por Papo. 
13. Sobre el heptágono. Conservado en árabe. 
14. De iis quae in humido vehuntur. La versión árabe está perdida, pero se 

conserva la traducción latina de Moerbeke (1286). 
15. El libro de los lemas o Liber assumptorum. Conservado en árabe. 
16. Sobre los triángulos. Conservado en árabe. 
17. Sobre las rectas paralelas. Conservado en árabe. 
18. Sobre las propiedades de los triángulos rectángulos. Conservado en ára­

be. Es posible que los dos anteriores y este sean un mismo libro, aunque 
los bibliógrafos árabes lo citan como tres distintos. 

19. Sobre las clepsidras. Conservado en árabe. 
20. De speculo comburente concavitatis parabolae. Citado por varios auto-

res. Perdido. 
21. Sobre los fundamentos de la geometría. 
22. Sobre los círculos tangentes. 
23. Sobre las fechas. 
24. Libro acerca del equilibrio de las figuras en que se emplean las palancas. 

Citado por Herón. Perdido. 
25. Libro de los soportes. Citado por Herón. Perdido. 
26. Libro de las palancas. Citado por Herón. Perdido. 
27. Libro de la equivalencia de pesos. Citado por Herón. Perdido. 
28. Sobre la construcción de esferas. Citado por Papo. Perd ido. 
29. Elementos de mecánica. 
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Nizze (1824) y la edición francesa de Peyrard (1807). Ya en la 
época actual, y superando las anteliores, el trabajo de investiga­
ción, recopilación y traducción más importante se lo debemos a 
Heiberg. A finales del siglo xrx publicó una traducción de toda la 
obra conocida de Arquímedes hasta el momento, a partir de un 
manusclito gliego del siglo xv. En 1906, como ya se ha señalado, 
Heiberg descublió el denominado «palimpsesto de Constantino­
pla», en el que encontró vados trabajos, incluido El Método. Otras 
recopilaciones y traducciones clásicas citadas en cualquier estudio 
de manera recurrente son la versión inglesa de Heath y las versio­
nes holandesa e inglesa de Dijksterhuis. Estas últimas son de fácil 
acceso y lectura gracias a las múltiples reediciones y traducciones 
a distintos idiomas, dato que puede interesar a cualquiera que 
desee profundizar un poco en la obra del sabio de Siracusa. 

«Arquímedes anticipa nuestro cálculo integral, tanto en el tiempo 
como en la seguridad de los procedimientos y en la genialidad de 
los artificios no superados por los precursores del siglo xvrr.» 
- P AOLO RUFFINI, 
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En los textos de Arquímedes y en líneas generales es inme­
diata la identificación de dos estilos narrativos: epistolar y cientí­
fico. Ya se ha hablado de la correspondencia de Arquímedes y 
cómo gracias a ella sabemos algo sobre su vida. Respecto al estilo 
científico, sus obras se acercan más al ensayo científico que al 
texto docente, típico este último de su época y de los siglos si­
guientes. De hecho, los destinatados de los tratados de Arquíme­
des no son estudiantes, ni mucho menos, sino que están diligidos 
a personas con bagaje en el uso de la geometría, es decir, a sus 
iguales. 

Es patente que recoger los descublimientos y estudios de Ar­
químedes podría ocupar vados volúmenes. En la presente obra se 
estudian algunos de sus resultados: dedicaremos un capítulo a los 
trabajos sobre física matemática, otro a los resultados puramente 
matemáticos y un tercero a los ingenios que se suponen de su 
autoría. 
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EL PALIMPSESTO DE CONSTANTINOPLA 

La forma en que el filólogo danés Heiberg dio a conocer una co­
lección de obras de Arquímedes es digna del guión de una película 
de aventuras. Había oído hablar de un palimpsesto medieval con­
servado junto al Santo Sepulcro de Jerusalén, así que en 1906 tuvo 
la oportunidad de exhumarlo tras una dura búsqueda. Los pa­
limpsestos son documentos que han sido sobrescritos sobre anti­
guos textos. Se trataba de un pergamino de piel de cabra de 185 
páginas que es conocido como el «palimpsesto de Constantino­
pla», la actual Estambul. Al parecer, unos monjes ortodoxos del 
siglo xm habían escrito sus textos litúrgicos sobre un conjunto de 
documentos que eran copias del siglo x: varias obras de Arquíme­
des y una carta a Eratóstenes. El amanuense no borró lo mencio­
nado, sino que lavó la piel y escribió encima los textos religiosos. 
Heiberg llevó a cabo una labor extraordinaria mediante técnicas 
fotográficas: transcribió los textos de Arquímedes letra a letra, 
interpretó los dibajos y ordenó las hojas según la estructura ini­
cial. El palimpsesto contiene siete tratados: las únicas copias 
hasta el momento conocidas de Sobre los cuerpos flotantes y El 
método sobre los teoremas mecánicos, y Stomachion, Sobre el 
equilibrio de las.figuras planas, Sobre las espirales, Sobre la me­
dida del circulo y Sobre la esfera y el cilindro. 

El tratado más importante encontrado fue El método sobre 
los teoremas mecánicos, conocido habitualmente como El Mé­
todo y que sirvió para terminar con la supuesta idea de que Arquí­
medes escondía sus herramientas metodológicas. También es 
destacable el hecho de que dedicase El Método a Eratóstenes, me­
diante una carta que se conserva. Es decir, quiso compartir su 
método con el que consideraba el matemático más brillante de 
su tiempo y, con ello, con el resto de la comunidad científica. 

En 1920 el palimpsesto pasó a ser propiedad de un comprador 
privado y fue puesto en subasta en 1998. Aunque el gobierno 
griego llegó a pujar 1,9 millones de dólares, un comprador anó­
nimo se hizo con el documento por 2,2 millones de dólares. El 
coleccionista anónimo, conocido como Mr. B, donó el palimpsesto 
al Walters Art Museum de Baltimore, Estados Unidos. 
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CAPÍTULO 2 

¡Eureka! 

El matemático Tales de Mileto suele ostentar el 
título del primer filósofo del que se tiene constancia en la 

historia. Tras varios siglos vería la luz el concepto de física, 
que tomaría un papel especial en la figura de Aristóteles. Sin 

embargo, la física en el sentido moderno tuvo su inicio 
de la majestuosa mano de Arquímedes: fue el primero 

en usar conceptos matemáticos y geométricos 
para explicar la realidad física. 





El nombre de Arquímedes se ha grabado en la memoria de la cul­
tura popular emparejado a los estudios sobre la flotabilidad de los 
cuerpos y a la ley de la palanca. Es fácil recordar el principio de 
Arquímedes gracias a la anécdota de la corona del rey Hierón y la 
carrera de un desnudo científico que gritaba «¡Eureka!» en mitad 
de la vía pública. Asimismo, la ley de la palanca viene acom­
pañada de aquella afirmación atribuida a Arquímedes, a saber: 
«Dadme un punto de apoyo y moveré el mundo». 

En este capítulo no solo nos acercaremos a los principios 
científicos sino que también veremos qué hay de verdad en esas 
historias conocidas por todos y qué hay de mito y leyenda en 
ellas. Es curioso que, aun siendo cierto que contribuyó de manera 
decisiva a la historia de la física, no fue el tema principal en sus 
investigaciones ni tampoco el de sus propios intereses. Incluso el 
acercamiento que tuvo hacia la física fue mediante el uso de las 
matemáticas, convirtiéndose así en el primer físico matemático 
de la historia en el sentido estricto de la palabra. Fundó una 
nueva forma de investigar la naturaleza, lejos de las disertaciones 
especulativas y acariciando el método científico. 

El mundo de las matemáticas griegas sobrevaloraba el mé­
todo deductivo y Arquímedes no pudo despojarse completa­
mente de ese sistema de trabajo. El sabio de Siracusa supo 
introducir la inducción a partir de la experiencia y combinarla 
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con la deducción. Tanto es así que inventó un método basado en 
esa idea; de hecho, sus trabajos sobre la palanca le condujeron a 
poder inducir resultados matemáticos que se tratarán en el capí­
tulo siguiente. 

Si bien la primera ley física descubierta por los griegos fue 
probablemente la de las proporciones numéricas de las longitu­
des de cuerdas o de las frecuencias musicales, la segunda docu­
mentada aparecería trescientos años después: la ley de la palanca 
de Arquímedes. Fue, por tanto, el primer matemático que pudo 
adaptar la geometría de su momento histórico a fenómenos físi­
cos. La investigación que llevó a cabo estuvo basada en lo que hoy 
podrían1os denominar una física intuitiva, cercana al experimen­
tador, fácil de mostrar experin1entalmente y que forma parte de 
la realidad de cualquier persona. Tuvo la genial idea de utilizar y 
explotar al máximo el recurso cetere paribus, que puede tradu­
cirse libremente del latín como «permaneciendo el resto cons­
tante». Dicho de otro modo, se percató de que para estudiar 
cualquier magnitud física debía fijarse solo en la magnitud a estu­
diar, simplificando el problema y haciendo que el resto de magni­
tudes no influyeran, es decir, que permanecieran constantes. Para 
ello usó por primera vez idealizaciones de objetos físicos en un 
texto matemático, tal es el caso de palancas con barras sin masa 
y cuerpos con figuras geométricas concretas y definidas. Por úl­
timo, no se interesó solamente por las famosas palancas y por la 
flotabilidad, también escribió un libro, El Arenario, en el que se 
intuye su inclinación por la astronomía. Además, entre su obra se 
ha perdido otro libro, Catóptrica, donde hablaba de la luz y que 
se volverá a nombrar en el capítulo final, cuando se presenten 
algunos de sus ingenios. 

El filósofo griego Aristóteles escribió varios libros relaciona­
dos con la física, pero destaca, precisamente, el conocido con el 
nombre de Física. El término proviene del griego y significa «na­
turaleza», es decir, la física estudia los fenómenos naturales. Aun­
que contribuyó con buenos planteamientos en otros campos del 
saber, en cuestión de física Aristóteles no introdujo grandes avan­
ces, es más, supuso un retroceso durante todo el Medievo. Pero el 
problema realmente fue que sus ideas calaron con profundidad 

iEUREKA! 



entre la comunidad científica de la época y hasta los siglos xv y XVI 

el ser humano no se permitió refutar las instauradas ideas del filó­
sofo. Sería en el entorno de la primera revolución científica 
cuando personajes como Galileo mostrarían una visión más ade­
cuada del movimiento y Newton integraría una serie de resultados 
para demostrar que cielo y tierra se rigen por las mismas reglas 
naturales. 

«Podríamos obtener demostraciones perfectas 
de los libros de Arquímedes, a nosotros no 

nos repele la espinosa lectura de ellos.» 
- JOt{ANNES KEPLER. 

Arquímedes tenía la clave para superar la física aristotélica, 
aunque fue desoído durante siglos. Aristóteles puso de moda los 
conceptos de gravedad y levedad, siendo lo primero lo que expe­
rimentan los cuerpos que caen y lo segundo lo que experimentan 
los cuerpos que flotan en el aire. Arquímedes, sin embargo, dio un 
vuelco al concepto introduciendo en sus textos la noción de masa 
específica o densidad, para hablar de la flotabilidad de los cuer­
pos. Así, un cuerpo flota en el aire porque su densidad es menor 
que la del aire. De paso, y de manera implícita, rechazaba la idea 
aristotélica de que el vacío no existe, a pesar de que, por ejemplo, 
Estratón de Lámpsaco (340-268 a.C.), filósofo griego y director 
del Liceo, la había defendido. Precisamente, Estratón demostró 
que el aire está compuesto por partículas. Del principio de flota­
bilidad de Arquímedes se pudo deducir que los cuerpos menos 
densos, al tener más volumen por unidad de masa, contienen más 
vacío entre sus partículas constituyentes. En este sentido, el ato­
mismo de Leucipo y Demócrito ya tenía un par de siglos de exis­
tencia y daba pie a todo tipo de especulaciones. Lo que sí es 
evidente es que Arquímedes no dejó escrita ni una sola línea de 
suposiciones azarosas; más bien al contrario, utilizó en todo mo­
mento las matemáticas para demostrar y dar apoyo a sus afirma­
ciones, circunstancia que lo diferencia de los filósofos griegos de 
su época. 
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EL PRINCIPIO DE ARQUÍMEDES 
Y LA CORONA DEL REY HIERÓN 

Antes de presentar o recordar el principio de Arquímedes comen­
zaremos contando la historia que suele relatarse para hablar de 
dicho resultado. Tras el relato, se enunciará dicho principio, 
usando alguna relación matemática que servirá además para ana­
lizar, a posteriori, la historia introductoria. Finalmente se hará 
algún comentario acerca del tratado donde Arquímedes dejó es­
critas sus ideas sobre flotabilidad. 

Hierón, el tirano de Siracusa y pariente de Arquímedes, en­
cargó una guirnalda de oro a un joyero siracusano, para lo cual le 
dio la cantidad de metal necesario. Sin embargo, cuando recibió 
el encargo, sospechó de la autenticidad de la corona, pues pen­
saba que el artesano no había usado todo el oro, sino que la adul­
teró con plata para quedarse con la diferencia. Fue entonces 
cuando Hierón tuvo la genial idea de convocar a Arquímedes para 
presentarle sus sospechas, para ver si con sus astutos razona­
mientos podía resolver el problema. El genio no respondió en el 
momento, sino que prometió meditar sobre los hechos para en­
contrar un método que le diera la clave con la cual dilucidar el 
material utilizado. 

Un día, en unos baños públicos, Arquímedes vio cómo se 
derramaba el agua de su bañera hacia el exterior, dándose así 
cuenta de cómo investigar la naturaleza de la guirnalda. Tal 
fue su alegría que saltó de la bañera y su reacción fue salir co­
rriendo por las calles de Siracusa, desnudo, gritando: «¡Eureka!, 
¡eureka!», es decir, «¡Lo he encontrado!, ¡lo he encontrado!». Lo 
que había hallado fue lo que se conoce como «principio de Ar­
químedes». Parece ser que el joyero había intentado estafar al 
tirano, como demostró Arquímedes. En la actualidad, todavía se 
usa el término «eureka» para hacer referencia al momento de la 
resolución de un problema. 

Es bastante improbable que Arquímedes se paseara en paños 
menores por su propia ciudad gritando en todas direcciones como 
un enajenado. Sin embargo, la leyenda parece que se sustenta en 
algún hecho real, pues la detallan varios historiadores. El testimo-
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nio más temprano se lo debemos al arquitecto romano Vitruvio y 
merece la pena transcribir la parte más importante, aparecida en 
su obra De architectura: 

Entre el gran número de admirables descubrimientos realizados por 
Arquímedes, hay que señalar el que voy a citar y en el que puso de 
manifiesto una sutileza casi increíble. Cuando Hierón ·reinaba en Si­
racusa, este príncipe, por los éxitos logrados en sus empresas, se 
propuso ofrecer en un cierto templo una corona de oro a los dioses 
inmortales. Convino la confección de la obra con un artesano me­
diante una buena suma de dinero y la entrega de la cantidad de oro 
en peso. El artesano entregó la corona en la fecha convenida con el 
rey, quien la encontró perfectamente ejecutada, pareciendo que con­
tuviera todo el oro que le había entregado. Pero habiendo obtenido 
indicios de que el artesano había retenido una parte del oro, el rey, 
indignado ante ese engaño y no teniendo a mano los medios para 
demostrar al artesano su fraude, encargó a Arquímedes que se ocu­
pase del asunto y que con su inteligencia encontrase esos medios. 
Un día que Arquímedes, preocupado por este asunto, entró por ca­
sualidad en una casa de baños, advirtió que a medida que se 
introducía en la bañera, el agua se desbordaba de la misma. Esta 
observación le hizo descubrir la razón que buscaba, y sin aguardar 
más por la alegría que este hecho le producía, salió del baño aún 
desnudo y corriendo hacia su casa gritaba: «¡Eureka!, ¡eureka!», es 
decir, «¡Lo he encontrado!, ¡lo he encontrado!». 

El principio de Arquímedes se estudia en todas las escuelas 
del mundo y se trata de una ley física de fácil comprensión intui­
tiva. Cualquier persona ha experimentado un descenso en su 
propio peso al bañarse en una piscina, ha visto globos surcando 
los cielos, barcos flotar en el mar o vídeos de submarinos des­
cendiendo al fondo de los océanos. Todos los anteriores son solo 
algunos ejemplos que tienen como telón de fondo el principio de 
Arquímedes. En tiempos del sabio, muchos de los conceptos ac­
tuales no se conocían o se estaban estudiando. Así, tuvo que in­
troducir el concepto de masa específica ( densidad) para poder 
hablar de flotabilidad; sin embargo, no manejó el de fuerza, uti-
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El peso de un 
cuerpo en el aire 

siempre será 
mayor que su 

peso en un fluido. 
El peso aparente 
en el flu ido será 

igual al peso rea l 
en el aire menos la 
fuerza de empuje. 

Por tanto, una 
forma de calcular 
el empuje sufrido 

(F , ) por un cuerpo 
es medir el peso 

en el aire ( FP) , 

luego en el fluido 
(F',), y restar 

ambas cantidades: 
FE=Fp- F'p• 
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!izado hoy para estudiar el principio de Arquímedes, también 
llamado principio de la hidrostática. Hay muchos modos de 
enunciarlo; una forma muy común es la siguiente: «Todo cuerpo 
sumergido total o parcialmente en agua u otro fluido sufre un 
empuje vertical y hacia arriba que es igual al peso del agua o 
fluido desalojado por el cuerpo». 

Usando la terminología actual, el empuje y el peso son fuer­
zas, y hubo que esperar hasta los tiempos de Newton para poder 
realizar un tratamiento matemático serio y correcto de dichas 
magnitudes. Aun así, el principio de Arquímedes puede ser abor­
dado mediante herramientas geométricas o echando mano del 
concepto de densidad. 

Arquímedes aceptaba que para sumergir un cuerpo en agua 
( de ahora en adelante entiéndase por agua cualquier fluido, es 
decir, líquidos y gases), debía desplazarse una cantidad de agua 
igual al volumen del cuerpo sumergido. Esta es la razón por la 

ff 
ü 

Aire Agua 
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cual la anécdota del baño sirve 
de contexto para el principio de 
la hidrostática: si se introduce un 
cuerpo en una bañera colmada de 
agua, parte del agua tendrá que 
salir, es decir, el punto de partida 

es que V parte sumergida = V agua desalojada · 

En términos de fuerza, lo que 
ocurre es que el agua ( o cualquier 
fluido) ejerce una fuerza de empuje 
sobre el cuerpo que se sumerja 
(véase la figura); esta fuerza de em­
puje F E es idéntica en valor abso­
luto a la fuerza peso F P del fluido 
desplazado. Es decir: F E=FP(agua)' 

La fuerza peso del agua des­
plazada se calcula con el producto 
de la masa de agua por la acele­
ración gravitatoria ( de media, el 
valor en la Tierra es de 9,8 m/s2): 

FP(agua) = m agua. g. Pero atendiendo a 



la expresión matemática de la densidad, es decir, dasua =masjVasua' 

se puede escribir: FP(agua) = vagua. dagua. g. Ya hemos dicho que el vo­
lumen del agua desalojada debe ser igual al volumen de la parte del 
cuerpo sumergido, de lo cual se infiere que FP casua) = Vcuerpo · dasua · g. 

Finalmente, y prescindiendo de los subíndices, como el peso 
del agua desalojada es idéntico al empaje sufrido por el cuerpo, el 
principio de la hidrostática puede enunciarse mediante la expre-

. sión matemática FE= V.d-g, donde FE es la fuerza de empuje expe­
rimentado por el cuerpo, medida en newtons (N); V el volumen 
sumergido del cuerpo, medido en m3; d la densidad del fluido, me­
dida en kg/m3; y g la aceleración gravitatoria. 

DEL MITO A LA REALIDAD 

Como ocurre con cualquier leyenda, el asunto de la corona de oro 
del rey Hierón tiene parte de realidad y parte de mito. Se ha lle­
gado a afirmar que incluso hay algo de ficción en la forma de la 
suposición científica que se atribuye a Arquímedes a la hora de 
descubrir el engaño del astuto joyero. 

Arquímedes sí pudo demostrar que el artesano incurrió en un 
fraude, pero mediante otro método más elaborado, usando no 
solo el principio de la hidrostática sino también el de la palanca. 
Veamos a continuación los comentarios que realizó Marco Vitru­
vio al respecto: 

A raíz de este descubrimiento encargó entonces dos masas de igual 
peso que el de la corona, una de oro y otra de plata. Sumergió luego 
la masa de plata en un vaso, lo que hizo salir una cantidad de agua 
igual al volumen de esa masa y volvió a llenar el vaso con una igual 
cantidad de agua que había salido y que se preocupó de medir, de 
manera que pudo conocer la cantidad de agua que correspondía a la 
masa de plata que había introducido en el vaso. Después de esa ex­
periencia sumergió igualmente la masa de oro en el vaso lleno de 
agua, y después de haberla retirado midió nuevamente el agua desa­
lojada, encontrando que la masa de oro no había desalojado tanta 
agua como la de plata y que la diferencia en menos era igual a la 
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diferencia entre los volúmenes de la masa de oro y de la masa de 
plata de igual peso. Finalmente volvió a llenar el vaso sumergiendo 
esta vez la corona, que desalojó más agua de la que había desalojado 
la masa de oro de igual peso, pero menos de la respectiva de la masa 
de plata. Calculando entonces, de acuerdo con esas experiencias, en 
cuánto la cantidad de agua que la corona había desalojado era mayor 
de aquella que había desalojado la masa de oro, conoció cuánta era 
la plata que se había mezclado al oro, mostrando claran1ente el frau­
de del artesano. 

Aunque la idea es del todo correcta y precisa, vamos a com­
probar cómo habría sido muy complicado que realmente Arquíme­
des siguiera ese método al pie de la letra. El inconveniente se 
observa en la medida de los volúmenes. En primer lugar, para una 
mejor comprensión del problema, enumeremos y ordenemos los 
pasos que sugiere Vitruvio: 

l. Tomó dos masas idénticas a la corona, una de plata ( m
1
,) y 

otra de oro (m). 

2. En segundo lugar, introdujo la plata en una cantidad fija de 
agua, desalojando un volumen Vv del líquido, el cual midió. 

3. A continuación, introdujo el oro en la misma cantidad de 
agua, desalojando un volumen V

0 
del líquido, el cual midió 

oportunamente. 

4. Observó que Vv era mayor que V
0

• 

5. Introdujo la corona real en la misma cantidad de agua, de­
salojándose un volumen Ve del líquido, el cual midió. 

6. Observó que el volumen Ve desalojado por la corona era 
mayor que el desalojado por el oro y menor que el desalo­
jado por la plata (Vv > Ve > VJ Esto demostró que la corona 
estaba adulterada con plata, es decir, que no había sido 
construida solo con oro. 
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FOTO SUPERIOR: 

Cuenta la leyenda 
que mientras 
estaba en unos 
baños públicos, 
Arquímedes 
encontró la 
solución al 
problema de la 
corona de oro 
planteado por 
el rey Hierón. 
Grabado de 1575. 

FOTO INFERIOR: 

Entre las frases 
más destacadas 
que se atribuyen 
al sabio de 
Siracusa se 
encuentra la 
célebre «Dadme 
un punto de 
apoyo y moveré 
el mundo», citada 
por Papo de 
Alejandría en 
el Libro VIII 
de Sinagoga. 
En la imagen 
se reproduce 
un grabado 
perteneciente 
a la edición 
berlinesa de 
Friedrich Otto 
Hultsch, en 1878. 
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Reproduzcamos ahora los pasos con un caso viable, lo más 
fielmente posible con los datos reales de los que disponemos, para 
lo cual seguiremos la misma numeración anterior, para poderlos 
contrastar si se cree necesario. Recuérdese que, como se ha apun­
tado anteriormente, cualquier objeto introducido en un líquido 
desaloja una cantidad de líquido igual a su volumen. El volumen 
de un objeto puede calcularse a partir de su densidad y de su 
masa, gracias a la conocida expresión d = m/V. 

l. Para ser generosos con los cálculos, tomaremos como re­
ferencia la guirnalda de oro más grande que se conserva de 
aproximadamente la época de Arquímedes; se trata de la 
guirnalda de Vergina, la cual data en tomo al siglo IV a.c. 
La corona tiene una masa de 714 g y un diámetro de 18,5 cm. 
Teniendo en cuenta que ha perdido varias de sus hojas, 
y para facilitar la lectura, supongamos una masa de 1 000 g 
para ser aún más generosos en los resultados finales. Por 
tanto, para realizar la prueba, tenemos 1 000 g de plata, 
1 000 g de oro y 1 000 g de una corona cuyo material se pre­
tende poner a prueba. 

2. En segundo lugar, introduzcamos los 1 000 g de plata en 
agua. Puesto que la densidad de la plata es 10,5 g/cm3, el 
volumen desplazado de agua será 95,2 cm3

: 

V= mP = lOOOg =95,2cm3 • 

P d 10 5 g/cm3 

p ' 

3. En tercer lugar, introduzcamos los 1000 g de oro en agua. 
Puesto que la densidad del oro es 19,3 g/cm3, el volumen 
desplazado de agua será 51,8 cm3: 

V = mo = 1000 g = 51 8 3 
º a ' cm. d

0 
19,3 g/cm 

4. El volumen de agua desalojado por los 1000 g de plata es 
mayor que el desalojado por los 1 000 g de oro, puesto que 

iEUREKA! 



la densidad de la plata es menor y se necesita más espacio 
para contener la misma masa. 

5. A continuación se introduce la corona en agua y se mide la 
cantidad de agua desalojada. Sobre este dato tenemos que 
especular: supondremos que el oro de la corona fue susti­
tuido por plata en un 30%. 

6. Al introducir la corona en agua se observa que se desaloja 
más cantidad que en el caso del oro y menos que en el caso 
de la plata. El volumen de la corona será, según la suposi­
ción, un 300/4 el volumen de los 1 000 g de plata más un 70% 
el volumen de los 1000 g de oro: 

ve = 30 % · vp + 70 % vp = 

= 30·95,2cm
3 

+ 70·51,8cm
3 =648 cm3 . 

100 100 ' 

El volumen desplazado por la corona (64,8 cm3) es mayor que 
el desplazado por el oro (51,8 cm3), lo cual demostraría el fraude 
del joyero. 

Pero, ¿cómo medir estos volúmenes tan pequeños? Nótese 
que la diferencia es de 13 cm3, aproximadamente el volumen de un 
par de garbanzos. 

A lo largo de la historia se han sugerido varios métodos para 
la medición, de los cuales nos quedamos aquí con dos: medir la 
altura a la que llegaría el agua en un recipiente del que no se des­
borda, o bien recoger la cantidad de agua desalojada en un reci­
piente aparte. La primera opción se muestra como imposible para 
una medición en la época, y la segunda, como un subterfugio ex­
perimental alejado de la realidad de Arquímedes. Según el primer 
método, al introducir la corona o algunos de los metales en un 
recipiente no lleno hasta el borde, el nivel del agua sube cierta 
altura. Si el recipiente es un cilindro (véase la figura), el volumen 
de la corona sumergida coincide con un volumen igual de agua 
que «sube», en forma de cilindro. Supongamos un recipiente de un 
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El volumen de un 
cilindro se calcula 

multiplicando la 
superficie de una 
de sus bases por 

la altura. 

48 

s 

diámetro de 20 cm, lo que da una superficie de 314 cm2
• Con estos 

datos podemos calcular la altura (h) que ascenderá el agua en 
cada uno de los casos: 

hplata = vp = 95,2 cm: = 0,30 cm= 3,0 mm 
S 314cm 

h
0

,.
0 

= Vº = 5118 cm: = 0,170 cm= 1, 7 mm 
S 314cm 

hcorona = V,, = 
64

'
8 cm: = 0,21 cm= 2,1 mm. 

S 314cm 

Es decir, la diferencia de altura entre una corona de oro y la 
corona adulterada (he -h

0 
= 0,4 mm) es de ¡menos de medio milí­

metro! Recordemos que estos cálculos son aproximados, pero en 
cualquier caso varían poco si se hacen unas u otras suposiciones; 
además, se han realizado las operaciones para obtener resultados 
que puedan medirse lo mejor posible. ¿Era viable que Arquíme­
des midiese esta diferencia? Difícilmente, debido a que incluso se 

r 

V = S·h 
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confunde con el menisco del líquido, 
es decir, la curvatura que se produce 
en las superficies líquidas por las in-
teracciones con las paredes del re­
cipiente. 

Descartada la primera posibili­
dad, algunos estudiosos han sugerido 
que lo que hizo Arquímedes fue reco­
ger el agua fuera del recipiente, o sea, 
seguir al pie de la letra las palabras de 
Vitruvio. Para ello, podría haber usa­
do un reloj de agua o clepsidra, un 
recipiente que consiste en una simple 
vasija con un pequeño orificio por el 
que puede salir el agua para medir 



el tiempo. La hipótesis se refuerza con el hecho de que en la 
época ese instrumento era muy usado y se conocía desde el anti­
guo Egipto. De hecho, el griego Ctesibio construyó una clepsidra 
en los tiempos de Arquímedes. Los pasos a seguir mediante el 
método de la clepsidra serían: 

Paso l. Se tapa el agujero y se rellena la vasija con agua, de 
forma que al introducir un cuerpo el agua no rebose. 

Paso 2. Se introduce en la vasija el lingote de oro de igual 
masa que la corona. 

Paso 3. Se destapa el agujero y se deja que salga el agua por 
él hasta que se alcance un equilibrio. 

Paso 4. Se extrae el lingote y se tapa de nuevo el agujero. 

Paso 5. Se introduce la corona. 

Paso 6. Se destapa el agujero. Si sale agua quiere decir que el 
volumen de la corona es mayor que el del lingote, lo 
cual significa que está adulterada y que contiene otro 
elemento. Si el agua sube justo hasta el nivel del agu­
jero, la corona está construida con oro puro. 

Se ha comprobado experimentalmente que con este método 
pueden medirse diferencias de 10 cm3, que es el volumen del que 
estamos hablando. En cualquier caso, en el relato de Vitruvio no se 
hace referencia al material usado, por lo que no se dispone de 
pruebas que corroboren este procedimiento. A pesar de todo, nin­
guno de los dos métodos expuestos ( altura del agua y clepsidras) 
hace honor a la realidad contextual de Arquímedes. Cualquier es­
pecialista en su obra trabaja con los textos del matemático, y no 
solo con las fuentes secundarias, como es el caso de Vitruvio y la 
literatura posterior. Así que afirmar que los hechos tal como los 
cuenta el historiador romano podrían ser incorrectos no es menos­
preciar el talento de Arquímedes, sino todo lo contrario, puesto 
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CTESIBIO DE ALEJANDRIA 
Y LA CLEPSIDRA 

Ctesibio de Alejandría (285-222 a.C.) es 
considerado actualmente como el padre 
de la neumática, por haber escrito el pri­
mer tratado científico sobre el aire com­
primido y su aplicación para bombas neu­
máticas. Entre las muchas invenciones y 
descubrimientos que se le atribuyen se 
encuentran un órgano acuático, el princi­
pio científico del sifón y la clepsidra (en la 
imagen), un reloj de agua extremadamen­
te preciso para la época que funcionaba 
evacuando agua lentamente por un orifi­
cio practicado para tal efecto. Tal era la 
precisión de la clepsidra que se llegó a 
usar en asuntos legales y administrativos 
como medida de paso del tiempo. 

Reconstrucción de una clepsidra de fines 
del siglo v a.c. Museo del Ágora de 
Atenas (foto: Marsyas). 

que todo indica que su genialidad fue todavía más allá. Y es que se 
da la circunstancia de que en toda su obra escrita está plasmado el 
uso de las leyes de la palanca. ¿Por qué no lo iba a usar en el asunto 
de la corona de oro? En efecto, veamos una propuesta que se re­
pite en los ensayos de muchos expertos. Como han mostrado los 
cálculos anteriores, los 1000 g de oro puro y los 1 000 g de la co­
rona desalojan volúmenes de agua distintos; por consiguiente, des­
alojan distintas masas de agua. En concreto, 51,8 g en el caso del 
oro puro y 64,8 g en el caso de la corona. ¿Podía Arquímedes medir 
una diferencia de 13 g de agua? Sí podía, pero no con la lectura en 
la altura del nivel del agua o el método de la clepsidra; podría ha­
berla medido mediante el uso de una balanza de brazos iguales, un 
método matemático que usó a lo largo de toda su carrera. Por 
tanto, la idea sería la siguiente: si colocamos a ambos lados de una 
balanza de brazos iguales el lingote de 1000 g de oro y la corona de 
1 000 g, dicha balanza estará equilibrada debido a la equivalencia 
de las masas (figura 1), pero si ambos objetos se introducen en 
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agua, la balanza se desequilibra de­
bido a que las masas aparentes no 
son iguales (figura 2). ¿Por qué? 
Porque según el principio de la hi­
drostática el empaje sufrido por el 
cuerpo será igual al peso de agua 
desalojada, que será distinta en 
cada uno de los casos. Es decir, el 
peso aparente del objeto de mayor 
volumen (corona) será inferior que 
el peso aparente del objeto de me­
nor volumen (lingote); por tanto, la 
balanza estará inclinada hacia el 
lingote de oro. Este procedimiento 
es perfectamente viable según el 
elenco de la obra científica,de Ar­
químedes. Tan solo necesitaba un 
entorno falto de aire y una balanza 
lo suficientemente precisa como 
para poder inclinarse ante unos 
pocos gramos, algo que estaba a su 
alcance. De hecho, científicos de la 
talla de Galileo han mostrado que 
este método era plausible. 

CÓMO FLOTAR 

FIG. l 

FIG. 2 

Un cuerpo flotará en un líquido si su densidad es menor que la del 
líquido, se hundirá si su densidad es mayor y se encontrará en una 
situación de equilibrio si ambas densidades son iguales. Este resul­
tado conocido de forma popular y que explicó por primera vez 
Arquímedes puede demostrarse a partir de procedimientos dinámi­
cos, comparando la fuerza de empaje del fluido y la fuerza peso del 
objeto sumergido en él. Si el lector se pierde en algún momento 
puede obviar sin problemas las siguientes líneas, pues tan solo vie­
nen a reforzar las ideas de Arquímedes en un lenguaje moderno. 
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UN GIGANTE SOBRE EL AGUA 

El agua presenta una curiosa anomalía que es la razón, entre otras cosas, de 
que puedan existir los océanos y la propia vida: en estado sólido es menos 
densa que en estado líquido. Esto significa que un trozo de hielo puede flotar 
libremente sobre el agua líqu ida. Es lo que ocurre, por ejemplo, con los ice­
bergs. La palabra iceberg proviene del neerlandés, a través del inglés, y sig­
nifica, literalmente, «témpano de hielo». Se trata de gigantescos pedazos de 
hielo de agua dulce que quedan a la deriva en el océano y suelen ser arrastra­
dos a latitudes más bajas, por ejemplo, por la corriente del Labrador y la de 
Groenlandia. Cuando un iceberg flota, lo hace hundiendo parte de su propio 
volumen en el agua liquida. La razón dinámica es que se igualan así el peso 
del iceberg (P) con el empuje (E) realizado por el agua liqu ida, el cual será 
idéntico en número al peso del agua que cabe en el volumen ocupado por el 
iceberg (V

5
) . 

Fuerzas Volúmenes Densidades Fórmula 

E 
vs d. (Empuje realizado E= V5 ·d. ·g 

por el agua) 
(Sumergido) (Agua salada) 

p ve d , P=Ve· d ,·g 
(Peso del iceberg) (Completo) (Agua dulce) 

El empuje sufrido por el iceberg será E= V
5 

· d0 g , siendo dª la densidad del 
agua del mar. Por otro lado, el peso del iceberg completo será P =Ve · d , · g, 
siendo d, la densidad del iceberg, es decir, del agua dulce, y Ve el volumen del 
iceberg completo. Para saber la proporción de iceberg oculto y saliente bas­
ta con calcular la razón V5 / Vc Simplemente hay que dividir la expresión del 
empuje y el peso y despejar, teniendo en cuenta que ambas fuerzas son igua­
les (E= P), debido a que el iceberg está en equilibrio. 

5-= Vs ·da·g _ Vs ·da 
P Ve · d1 · g Ve · d1 

Vs = E . d , __,. Como E=P __,. Vs = d, 
~ P·~ ~ ~ 

Es decir, la proporción entre el volumen sumergido de iceberg y el volumen 
total será igual a la proporción de la densidad del iceberg respecto a la den-
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sidad del agua donde flote. La densidad del iceberg (agua dulce en forma 
sólida) es de 0,92 g/cm3 y la densidad del agua del mar es variable (depende 
de la temperatura y de la sa linidad, entre otros factores), y aquí tomaremos 
un va lor de 1,03 g/cm3; el resultado variará dependiendo de lo que se afine en 
la medida de las densidades. 

Porcentaje sumergido = º·92 
· 100 = 89,3%. 

1,03 

Por lo tanto, prácticamente todo el iceberg está sumergido en el agua, hasta 
casi un 90%. 

Los icebergs existen gracias a que el agua en forma sólida tiene menor densidad que en estado 
líquido. De no ser así, el hielo se acumularía en el fondo de los océanos. 
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Obsérvense los razonamientos matemáticos que siguen te-
niendo en cuenta que: 

me: masa del cuerpo. 
mª: masa desalojada de agua (o de cualquier fluido). 
de: densidad del cuerpo. 
dª: densidad del agua. 
V: volumen sumergido del cuerpo y desalojado de agua. 

Se hunde 
La fuerza peso es mayor que la fuerza de empuje: 

Fp>FE - m e •g > V-da•g - V-de > V -da• g - de > da 

El cuerpo se hunde si su densidad es mayor que la del agua. 

Flota 
La fuerza peso es menor que la fuerza de empuje: 

Fp < FE - m e•g < V-da•g - V-de < V •da• g - de < da 

El cuerpo flota si su densidad es menor que la del agua. 

En equilibrio 

La fuerza peso es igual a la fuerza de empuje: 

El cuerpo permanece en una posición de equilibrio si su den­
sidad es igual a la del agua. 

«SOBRE LOS CUERPOS FLOTANTES» 

Arquímedes recogió una buena parte de las ideas en torno al 
principio de la hidrostática en su tratado Sobre los cuerpos flo­

tantes , el único sobre el asunto que ha llegado hasta nuestros 
días. Tal vez sea el más conocido del conjunto de la obra de Ar­
químedes y, sin duda, la mayor muestra de su genialidad. Aunque 
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el método deductivo está presente a lo largo de todas sus líneas, 
se intuye que acudió repetidamente a la realidad física para 
poder llegar a sus conclusiones, adelantándose así casi dos mil 
años al método científico experimental que se desarrollaría en 
los siglos XVl y XVII. 

«Son la maduración y la asimilación de la obra de 
Arquímedes las que sirven de base a la revolución 

científica que se realizará en el siglo XVII.» 

- ALEXANDRE KOYRÉ. 

El tratado consta de dos libros. El Libro I se abre con un 
preán1bulo al que siguen nueve proposiciones, y el Libro II está 
formado por un total de diez proposiciones. En el primer libro se 
explica la ley del equilibrio de los líquidos y se demuestra que el 
agua adopta una forma esférica alrededor de un centro de gra­
vedad; en concreto, se está refiriendo al centro de la Tierra. Se 
está asumiendo que la Tierra es, efectivamente, esférica, tal como 
afirmaban los astrónomos griegos de la época, corno, por ejem­
plo, Eratóstenes. Esta fue la propia percepción del mundo que 
tenía Arquímedes. En el tratado se muestra por primera vez en la 
hlstoria de la ciencia el concepto de peso específico o densidad, 
aunque el texto original carece de terminología propia que lo 
describa. También se estudian las tres posibilidades de deposi­
ción de un cuerpo en un líquido respecto a las densidades rela­
tivas: un cuerpo de igual densidad que el líquido (proposición 3), 
un cuerpo de menor densidad que el líquido (proposiciones 4-6) 
y un cuerpo de mayor densidad que el líquido (proposición 7). Lo 
que hoy se conoce como principio de Arquímedes o principio de 
la hldrostática se extrae de las proposiciones 6 y 7, como veremos. 
En el Libro II se analizan las distintas posiciones de equilibrio de 
las secciones de los paraboloides. Hay que tener en cuenta que 
Arquímedes vivió en una Siracusa dominada por el mercado ma­
rítimo y militar, por lo que tal vez estuviera motivado por las for­
mas de los cascos de los barcos y quisiera emularlas con las figuras 
geométricas que conocía. 
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Como se ha dicho con anterioridad, el Libro I se abre con un 
preámbulo, en el cual se supone previamente que el líquido es 
presionado verticalmente por el líquido que está justo encima de 
él. Esta hipótesis es cierta y toma todo su sentido a partir de la ley 
de gravitación universal de Newton, puesto que el propio fluido 
tiene peso y ejerce una fuerza sobre el líquido que está por debajo. 
También son muy acertadas las proposiciones 1 y 2, que llevan a 
afirmar que la superficie de un líquido en reposo es esférica con 
centro en la Tierra: «La superficie de todo líquido en estado de 

SUBIR Y BAJAR EN UN FLUIDO 

Muchos peces poseen un órgano lla­
mado vejiga natatoria que les propor­
ciona la posibilidad de controlar a vo­
luntad su densidad, para así subir o 
bajar dentro del agua sin necesidad de 
mover sus músculos externos. El me­
canismo consiste en aumentar el con­
tenido de gas en sangre para poder 
ascender y lo consiguen mediante 
reacciones químicas, puesto que son 
capaces de liberar oxígeno y dióxido 
de carbono en su torrente sanguíneo. 
Es habitual ver en museos y ferias de 
la ciencia una sencilla construcción ex­
perimental para visualizar este extraor­
dinario producto de la evolución, me-
diante el uso de un globo, un tubo y 
una botella (figura 1). Se introduce el 
globo dentro de la botella llena de 
agua, en la que previamente se ha FIG. i 

practicado un orificio para que el agua 

--·- --·-

pueda entrar y salir. El globo se sitúa en el interior de la botella y se comu­
nica con el exterior mediante algún tipo de tubo, desde el cual se controla­
rá el paso del aire. Dentro de un recipiente con una cierta cantidad de agua, 
cuando se llena el globo de aire, la densidad del conjunto disminuye, y, por 
tanto, sube. Cuando se vacía el globo de aire, el espacio es ocupado por el 

iEUREKA! 



inmovilidad tendrá la figura de una esfera que tendrá por centro 
el mismo que la Tierra». 

La proposición 3 muestra un grado de abstracción sin prece­
dentes: si un cuerpo tiene la misma densidad que el líquido en el 
que se sumerge, se quedará en el lugar del líquido donde se sitúe, 
es decir, se encontrará en equilibrio hidrostático. 

Por otra parte, si se deposita un cuerpo en un líquido, siendo 
la densidad del cuerpo menor que la del líquido, solo se sumergirá 
en parte. Este resultado se recoge cualitativamente en la propo-

agua y la densidad aumenta, es decir, 
se hunde. El dispositivo no solo repre­
senta esquemáticamente la vejiga na­
tatoria de los peces, sino que sirve para 
entender el propio funcionamiento de 
los submarinos. 

El diablillo de Descartes 
Un clásico juego de física recreativa 
que emula el subir y bajar de un sub­
marino es el ludión o diablillo de Des­
cartes (figura 2). Consiste en un reci­
piente cerrado con agua en el que se 
ha introducido un objeto flotante par­
cialmente lleno de aire. El montaje se 
realiza de tal manera que se puede 
comprimir el agua, ya sea mediante 

•-----Tapón de rosca 

0 
_,_ _ _,_ __ Cámara llena de aire 

~__.,. __ Boca del tubo 
de ensayo (abierta) 

_ _,_ __ Agua 

FIG. 2 

una membrana en la tapa del recipien- Para construir un ludión casero tan solo se 
te O por la presión directa sobre sus necesita una botella da plástico, un cilindro 

abierto por un lado (a modo da tubo da 
paredes. El principio de Pascal dice ensayo) y agua. 

que esta presión se comunicará a to-
dos los puntos del líquido, de manera 
que llegará hasta el objeto presionando a su vez el aire que tiene dentro. 
Dada la gran compresibilidad del aire, disminuirá su volumen y, con ello, 
aumentará la densidad. Este hecho se traduce en el hundimiento del objeto. 
En conclusión, el ludión consiste en un sistema que permite variar la densidad 
de un objeto para controlar su estado de flotación. 
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En el tratado 
Sobre los cuerpos 
flotantes todas las 

demostraciones 
son puramente 

geométricas, un 
procedimiento 
habitual en su 

época. La imagen 
corresponde a la 
proposición 5 del 

Libro 1, en la 
edición de Heath. 

El texto está 
repleto de 

imágenes como 
esta, las 

cuales vienen 
acompañadas 

de largas 
demostraciones 
geométricas. Se 
muestra a modo 
ilustrativo, pues 

este tipo de 
razonamientos son 

de difícil 
comprensión en 

la actualidad, 
con predominio 

del lenguaje 
algebraico y 

simbólico. 

58 

F 

sición 4 y lo cuantifica respecto a las proporciones en la pro­
posición 5 (véase la figura): el volumen de líquido que equivale al 
volumen sumergido debe tener el mismo peso que el cuerpo en­
tero. Se trata de un antecedente magistral de equilibrio de fuerzas 
que vio su esplendor con Newton. Una forma sencilla de enten­
derlo es poner el corcho de una botella de vino en el interior de 
un vaso de agua: se sumerge parcialmente. 

En la proposición 6 se muestra que si introducimos a la fuerza 
un cuerpo en un líquido de densidad mayor, el cuerpo sufrirá un 
empuje hacia arriba que lo hará ascender y flotar, provocando que 
su peso se vea disminuido. En la proposición 7 se presenta la idea 
de que si introducimos un cuerpo en un líquido de menor densi­
dad, caerá al fondo del recipiente contenedor, aunque su peso apa­
rente disminuirá. En ambos casos, Arquímedes demuestra en 
cuánto disminuye el peso de los cuerpos: «en una cantidad que 
equivale al peso del líquido cuyo volumen coincide con el volumen 
del cuerpo sólido». Es decir, el conocido principio de Arquímedes. 

LA LEY DE LA PALANCA 

Un alto porcentaje de historiadores de la ciencia considera el tra­
tado Sobre el equilibrio de las figuras planas de Arquímedes 
como el inicio de la física matemática. Sin lugar a dudas, no se 
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SENTADO EN EL AGUA 

El Mar Muerto es un lago de unos 80 km de largo y con un máximo de 16 km 
de ancho, situado en la frontera entre Israel y Jordania. Su principal caracte­
rística es que, debido a su salinidad, la densidad de sus aguas es muy superior 
a la del mar, llegando a 1 240 kg/m3, característica que permite a cualquier ser 
humano flotar sin ninguna dificultad. Como se desprende de su nombre, nin­
gún ser vivo habita en él, a excepción de las artemias, unos crustáceos cuya 
morfología apenas ha cambiado desde el período Triásico. 

En el Mar Muerto, los bañistas flotan como boyas. 

trata de ninguna exageración, a pesar de que se pueden encontrar 
antecedentes documentados sobre la palanca en filósofos de épo­
cas precedentes. Aproximadamente un siglo antes, Aristóteles 
escribía sobre los elementos de la palanca y enunciaba la ley de la 
palanca de brazos iguales, pero al parecer no le dio la importancia 
suficiente, de manera que se ha pensado que algún copista podría 
haberlo incluido a posteriori en sus textos. Por otra parte, las in­
teresantes contribuciones de Arquitas (430-360 a.C.), sin ánimos 
de desmerecerlas, deben tomarse como meras construcciones ex-
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perimentales. Arquímedes no fue el primero en usar la palanca, 
pero sí nos ofrece el primer documento escrito que relaciona las 
matemáticas con la física. 

Los relatos históricos del primer capítulo de la presente obra 
vienen a verificar que el uso de la palanca era habitual en la vida 
cotidiana de Arquímedes, ya sea en la construcción de elementos 
mecánicos para la defensa de Siracusa o en otro tipo de labores. 
El nivel de abstracción al que llegó no tiene antecedentes conoci­
dos: eliminó todos los elementos dinámicos, consideró balanzas 
ideales y tomó en sus cálculos los cuerpos como objetos puntua­
les (hablaba de magnitud y de centro de gravedad como único 
aspecto físico del cuerpo). De este modo, a lo largo del tratado 
Arquímedes usa el concepto de balanza ideal, aunque no llegase 
a definirlo de ese modo. La etimología del propio término «ba­
lanza» ayuda a su definición, pues proviene de la fusión de las 
voces latinas bis (dos) y lanx (plato). De esta forma, una balanza 
no es más que una palanca de primer grado, cuyos brazos son 
iguales y que permite medir masas mediante el establecimiento 
del equilibrio. 

LA TROMPETA BALANZA 

Una de las primeras referencias escritas a la ley de la palanca, aunque no 
desde el punto de vista científico, la encontramos en La paz, una comedia del 
dramaturgo griego Aristófanes (444-385 a.C.), estrenada en el año 421 a.c. 
En ella, el autor se mofa de varios personajes contemporáneos, entre ellos, 
Eurípides. El granjero Trigeo se burla del armero al decirle que use una trom­
peta a modo de balanza de brazos desiguales: 

Trigeo: Ay, querido, lo siento; pero tu coraza me destroza las nalgas. Llé­
vatela; no puedo comprártela . 

El armero: ¿y qué voy a hacer con esta trompeta, que me cuesta a mí sesen­
ta dracmas? 

Trigeo: Echa plomo en su cavidad; sujeta en lo alto una varilla algo larga, 
y tendrás un cótabo en equilibrio. 

El armero: iAy! Te burlas de mí. 
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• 
Una palanca simple (véase la figura) se compone de una 

barra rígida que puede girar libremente sobre un punto de apoyo 
o fulcro. En la barra se pueden diferenciar dos partes, el brazo de 
potencia ( donde se realiza el esfuerzo) y el brazo de resistencia 
(el que recibe la fuerza). La utilidad consiste en poner masas o 
realizar esfuerzos en un lado de la palanca, por lo que pueden 
ocurrir dos cosas: o se consigue el equilibrio, o se desequilibra. 
La ley de la palanca establece la relación entre las fuerzas ejerci­
das en cada brazo y la distancia a la que se deben realizar para 
que se dé el equilibrio: la razón entre las fuerzas es igual a la 
razón entre las distancias desde el punto donde se ejerce la fuerza 
hasta el punto de apoyo. Esta relación fue una de las principales 
contribuciones de Arquímedes, la cual adquiere la siguiente for­
mulación matemática: 

LAS TRES PALANCAS 

En los cursos de la enseñanza primaria de cualquier país suelen 
estudiarse las tres especies de palancas. Puesto que una palanca 
tiene tres elementos distintos (potencia, fulcro y resistencia), ten­
dremos tres formas de alinearlos, resultando así los tres tipos o 
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Fulcro: es el 
punto de apoyo. 
P: potencia. Es la 
fuerza aplicada, 
y puede ser 
un peso . 
R: resistencia. 
Es la fuerza que 
se pretende 
vencer, y puede 
ser un peso. 
B,: brazo de 
potencia. Es la 
distancia entre 
el punto de 
aplicación de la 
fuerza ejercida 
y el punto 
de apoyo. 
s.: brazo de 
resistencia . Es la 
distancia entre el 
punto que realiza 
la resistencia y el 
punto de apoyo. 
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especies, de los cuales tenemos ejemplos en el cuerpo humano 
(figura 3). Arquímedes dejó escrita en sus tratados la ley de la 
palanca, aunque no clasifica los distintos tipos de palanca, puesto 
que podría resultar algo obvio. Sin embargo, no está de más recor­
dar la clasificación. 

En la palanca de primera especie (figura 4), el fulcro está si­
tuado entre la potencia y la resistencia. Realmente es la palanca 
que aparece en los textos de Arquímedes. Ejemplos de palanca de 
primera especie son la balanza, el balancín, las tenazas, los alica­
tes y la catapulta. 

En la palanca de segunda especie (figura 5), la resistencia se 
encuentra entre la potencia y el fulcro. Ejemplos de palanca de 
segunda especie son la carretilla de albañil, el cascanueces y el 
abrebotellas. 

En la palanca de tercera especie (figura 6), la potencia está 
entre la resistencia y el fulcro. Ejemplos de palanca de tercera 
especie son el quitagrapas, la pinza de cejas y la grapadora. 

«SOBRE EL EQUILIBRIO DE LAS FIGURAS PLANAS» 

El tratado Sobre el equilibrio de las.figuras planas presenta una 
anomalía con respecto a las obras matemáticas de la época: ca­
rece de definiciones. Esto ha dado lugar a teorizar que tal vez se 
trate de un resun1en de una obra de mayor envergadura. Tal como 
ha llegado a nuestros días, el tratado se compone de dos libros. 

El Libro I comienza con siete postulados ( algunos autores 
afirman que en realidad son axiomas) y continúa con quince pro­
posiciones, en las que se usa de modo implícito .el equilibrio en 
una balanza de brazos iguales para mostrar distintas afirmaciones 
sobre el equilib1io de cuerpos. Las últimas proposiciones se dedi­
can al cálculo de los centros de gravedad del triángulo, del para­
lelogramo y del trapecio. 

El Libro II trata a lo largo de diez proposiciones el equilibrio 
de un segmento parabólico. Este segundo libro guarda una estre­
cha relación con su tratado sobre la parábola, así como con el 
método de investigación que utilizó Arquímedes. 
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«DADME UN PUNTO DE APOYO Y MOVERÉ EL MUNDO» 

En el Libro VIII de Sinagoga, Papo habla de Arquímedes y de la 
palanca Afirma que se comentaba que Arquímedes dijo la siguiente 
frase: «Dadme un punto de apoyo y moveré el mundo». Mediante 
una simple cuenta, veremos que esa afirmación no es posible y es 
muy extraño que Arquímedes cayera en semejante error. Suponga­
mos que usamos una palanca de primera especie y situamos la 
Tierra a 1 m del fulcro. El primer problema lo encontramos en que 
la Tierra no «pesa», en el sentido de que está en el espacio vacío, 
no está sobre ningún planeta. Pero, pongamos por caso que pode­
mos realizar el experimento y colocamos la Tierra sobre una súper 
palanca que está en un súper planeta. En el caso de una Tierra 
puntual a 1 m del punto de apoyo, ¿a qué distancia debería Arquí­
medes realizar la fuerza en el otro brazo? Puesto que la Tierra tiene 
una masa aproximada de 6 • 1024 kg y suponiendo que Arquímedes 
colocara una carga de potencia de 6 kg, la distancia a la que tendría 
que hacerlo sería: 

P·Bp =R·BR 

B - l . 6 · 10
24 

kg _ 1024 
p- m - - -~- m. 

6kg 

Si no se está acostumbrado a la notación científica, este resul­
tado no sorprende, pero un sencillo cambio de unidades nos lleva 
a ¡10 millones de años luz! (1016 ). El universo tiene una edad de 
13 700 millones de años (1,37 -1010

); suponiendo un universo esfé­
rico, significaría que de punta a punta habría unos 27 400 millones 
de años luz. Para entender el resultado, dividamos el diámetro del 
universo entre el tamaño de la palanca: resulta que ¡podríamos 
atravesar el universo de punta a punta con apenas 2 7 40 de estas 
palancas! Además, como veremos, Arquímedes tenía una concep­
ción del universo mucho menor que la que tenemos ahora, así que 
no tiene sentido que cometiese dicho error de cálculo. Si realmente 
dejó escrita alguna frase parecida en algún sitio, es evidente que 
solo lo expresó en sentido metafórico, para exagerar consciente­
mente el poder multiplicativo de la fuerza por medio de la palanca. 
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GALILEO, EL ARQUIMEDIANO 

En 1586 Galileo Galilei (1564-1642) escribió un brevísimo ensayo 
llamado La bilancetta, en el que trató el relato de Vitruvio sobre la 
corona de oro del rey Hierón. Mostró cierto escepticismo acerca de 
la forma en que el arquitecto imaginó la resolución del problema, 
puesto que Galileó era un gran conocedor de la obra de Arquímedes 
y de su contexto científico. Por tanto, recuperó el análisis teórico 
de la balanza hidrostática y lo plasmó magistralmente en menos de 
cinco páginas, apoyado por el esquema reproducido en la figura En 
el ensayo Galileo explica de algún modo que no tiene mucho sen­
tido afirmar que Arquímedes realizara un experimento tan burdo 
desde el punto de vista científico, pues contaba con medios para 
realizar mediciones mucho más elegantes como para tener que re­
bosar agua de un recipiente. A continuación señala que lo que 
muestra está basado en las propias demostraciones de Arquímedes, 
aparecidas en los tratados sobre la flotabilidad y sobre el equilibrio, 
y cita la herramienta usada por Arquímedes, una balanza hidrostá­
tica, aunque con frecuencia se atribuye tal invención al propio Ga­
lileo. En el escrito incluso advierte de las dificultades en la precisión 
de la medida a nivel visual. Galileo, por tanto, llevó a cabo un tra­
bajo de reconstrucción bibliográfica sencillamente magistral. 

Hay que hacer notar que Galileo era un verdadero estudioso 
de todo el elenco científico conocido de Arquímedes y mostró un 
profundo respeto a su forma de trabajar y a sus resultados; lo cita 
en muchas de sus obras, por ejemplo, en Diálogo sobre dos nuevas 
ciencias, n Saggiatore y La bilancetta, además de aparecer nom-

a e g f e 
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brado en algunas de sus cartas. Las investigaciones que llevó a 
cabo Galileo para el movimiento de los cuerpos se basaron en la 
hidrostática de Arquímedes. Así, el toscano imaginó movimientos 
en fluidos que cada vez ofrecían menos resistencia al paso de un 
cuerpo. De este modo, extrapoló su resultado y formuló las famo­
sas ecuaciones de la cinemática en ausencia de aire, siendo cons­
ciente de que en su época no podría comprobarlas con fidelidad 
debido al rozamiento real con el aire en la caída de un cuerpo. Las 

LA BALANZA DE MOHR-WESTPHAL 

La balanza de Mohr-Westphal es una balanza de brazos desiguales que se 
utiliza para la determinación de densidades de líquidos. Su fundamento cien­
tífico, puesto que se trata de una balanza hidrostática, es el principio de Ar­
químedes. Fue inventada por el farmacéutico alemán Karl Friedrich Mohr 
(1806-1879). 

El brazo corto posee un contrapeso y del brazo largo pende un inmersor, que es donde se introduce 
el liquido cuya densidad desea determinarse de forma relativa al liquido en el que se sumerge. 
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ecuaciones de movinúento de Galileo sirven para conocer la posi­
ción y la velocidad de un cuerpo a lo largo de su movinúento en el 
vacío y pueden usarse con gran precisión en un campo gravitato­
rio, es decir, al dejar caer un cuerpo desde cierta altura. Sin em­
bargo, el aire es un fluido y ofrece una resistencia a la caída, lo cual 
se traduce en que las ecuaciones de movinúento no son válidas. En 
1971, el astronauta del Apolo 15 David Scott dejó caer una pluma 
y un martillo sobre la superficie lunar, para comprobar que ambos 
llegaban a la par al suelo, dada la ausencia de atmósfera en nuestro 
satélite y, por ende, la carencia de rozamiento, pudiéndose así 
cumplir las ecuaciones de movinúento de Galileo. «Lo que demues­
tra que las ideas del Sr. Galileo eran correctas», comentó Scott al 
finalizar el famoso experimento, como homenaje al toscano y de 
forma implícita a su maestro Arquímedes. 

«EL CONTADOR DE ARENA» 

La única obra de divulgación científica conocida de Arquímedes es 
El contador de arena, citada habitualmente como El Arenario 
(Psammites, en griego). El comienzo del tratado se abre con una 
dedicatoria a Gelón de Siracusa, hijo de Hierón II, a quien acom­
pañó en la corregencia. Incluso siendo consciente de la dificultad 
que pueda entrañar un texto de contenido científico, le anima di­
ciendo: «Pero yo intentaré hacerte ver, mediante demostraciones 
geométricas que podrás comprender [ ... ] ». Tras un largo ir y venir 
de números enormes, cierra la disertación recordándole a las per­
sonas poco familiarizadas con las matemáticas que podrían estar 
interesadas en el asunto y acaba despidiéndose de Gelón: «Pensé 
que tampoco a ti dejaría de convenirte conocer estos resultados». 
Algunos expertos han considerado que el texto fue de poco interés 
para los hombres de la época e inmediatamente posteriores, pues 
conserva casi intacto el dialecto de Siracusa. A pesar de ello, la 
existencia de este texto nos presenta a un Arquímedes más cer­
cano a la realidad, interesado por la divulgación científica y por la 
popularización del conocimiento. 
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En el tratado se cuestiona cuántos granos de arena cabrían en 
Siracusa: ¿serían infinitos? La respuesta del texto es no. Luego 
cuántos cabrían en Sicilia, en la Tierra, cuántos harían falta para 
colmar todas las montañas terrestres ... Y así hasta plantearse el 
número de granos de arena que cabrían en el mundo entero. Ar­
químedes quiso mostrarle a Gelón que ese número no es infinito. 

«Es evidente por tanto que la cantidad de granos de arena 
que ocupa una magnitud igual a la esfera de los astros 
fijos que Aristarco supone como hipótesis es inferior 
a 1000 miríadas de números octavos.» 
- ARQUÍMEDES EN REl'ERENCIA A LA CANTIDAD DE GRANOS DE ARENA NECESARIOS PARA CUBRIR 

EL MUNDO, TAL Y COMO ÉL LO CONCEBÍA. 

68 

En su época no existía un nombre para los números que de­
signaran cantidades tan grandes como las que aparecen en el en­
sayo; por tanto, Arquímedes se atrevió a revisar el sistema de 
numeración, proponiendo modificaciones para poder trabajar con 
ese tipo de cifras. La principal limitación de la numeración griega 
era que se usaba el mismo alfabeto que para las palabras, lo cual 
convertía un cálculo con números grandes en un galimatías. Con­
ceptualmente hablando, en el tratado Arquímedes establece un 
acercamiento a nuestro actual sistema de notación científica, que 
nos permite escribir cantidades tan grandes como deseemos. El 
Arenario no debe tomarse como un simple divertimento matemá­
tico en el que Arquímedes se jacta de poder escribir el número que 
quiera, sino que en él se hace un repaso de la astrononúa griega e, 
incluso, hace la única referencia a su padre, el astrónomo Fidias, 
como veremos a continuación. 

Arquímedes comienza El Arenario demarcando qué se en­
tiende por «mundo», y para ello dice que la mayoría de los astróno­
mos defienden que el mundo es la esfera que tiene por centro la 
Tierra y por radio la recta que une los centros de la Tierra y el Sol. 
Pero no deja de lado la hipótesis heliocéntrica de Aristarco de 
Samas (310-230 a.C.); de hecho, un dato importante a señalar es que 
se trata de la única mención que se tiene del astrónomo en toda la 
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literatura griega antigua Lo interesante en este punto es que Arquí­
medes rechaza la idea de que el Sol esté en el centro, no por moti­
vos de imposibilidad de una Tierra en movimiento, como ocurriria 
más adelante, sino por la incoherencia detectada en una frase: 

[ .. . ] [Aristarco de Samos] supone que los astros fijos y el Sol perma­
necen inmóviles, y que la Tierra se desplaza según una circunferen­
cia de círculo en torno al Sol, el cual está situado en el centro de su 
curso, y que la esfera de los astros fijos, situada en torno al mismo 
centro que el Sol, es de un tamaño tal que el círculo según el cual 
supone que se desplaza la Tierra guarda con la distancia de los astros 
fijos una razón como la que guarda el centro de la esfera con su su­
perficie. Es más que evidente que esto es imposible: puesto que el 
centro de la esfera no tiene ningún tamaño tampoco cabe aceptar 
que guarde ninguna razón con la superficie de la esfera. 

A pesar de que Arquímedes advierte con acierto la incoheren­
cia de comparar un punto con una superficie, incurre en un argu­
mento ad logicam, es decir, en una falacia, puesto que el hecho de 
que la frase sea incorrecta no significa que el argumento de Aris­
tarco sea erróneo. En cualquier caso, pone a Gelón en aviso de que 
los números a los que dará nombre incluso exceden el número de 
granos de arena que cabrían en el mundo entero. A continuación 
supone un perímetro terrestre de 300 miríadas de estadio y re­
cuerda que el diámetro de la Tierra es mayor que el de la Luna pero 
menor que el del Sol. Una miríada equivale al número 10000. Sin 
embargo, la equivalencia del estadio con las unidades del Sistema 
Internacional plantea un problema: en la Antigüedad variaba de 
unos lugares a otros. En cualquier caso, aquí no importa la preci­
sión en las medidas de la Tierra, solo el uso de los números que 
indican cantidades grandes. Seguidamente especula acerca de las 
proporciones de los diámetros del Sol, la Tierra y la Luna. Es en 
ese punto cuando habla de su padre: 

Después de esto, que el diámetro del Sol es treinta veces mayor que 
el diámetro de la Luna y no más, aunque entre los astrónomos ante­
riores Eudoxo lúzo ver que era nueve veces mayor; Fidias, mi padre, 
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que dos veces, y Aristarco intentó demostrar que el diámetro del Sol 
era más de dieciocho veces mayor que el de la Luna, pero menor que 
veinte veces más. 

Aunque es destacable notar cómo el asunto de los tamaños de 
los cuerpos celestes era un tema de interés entre los astrónomos, 
Arquímedes prefiere hacer un inciso para detallar cómo construir, 
con materiales caseros, una dioptra, instrumento utilizado por los 
astrónomos griegos para medir la posición de los astros. Luego 
termina de establecer sus hipótesis sobre los tamaños para dar 
paso a su innovador sistema de numeración. Respecto a esto úl­
timo, parece ser que no ha llegado hasta nosotros una obra de la 
que habla en el texto: 

Pero supongo que también es útil que hable sobre la denominación de 
los números --entre otras cosas, para que no se pierdan los que no 
han tenido acceso al libro que dediqué a Zeuxipo por no haberse dicho 
de antemano en este libro nada sobre esa cuestión-. Ocurre, en efec­
to, que los nombres de los números que nos han sido transmitidos 
llegan hasta las miríadas y por encima de las miríadas. Llámense pues 
primeros a los números indicados hasta la miríada de miríada 

De este modo Arquímedes va introduciendo órdenes de mag­
nitud cada vez mayores haciendo notar que así se puede escribir 
el número que se desee. Una vez establecido su sistema de nume­
ración, realiza una serie de cálculos estimativos; entre ellos, argu­
menta que en una semilla de amapola cabrían 10 000 granos de 
arena. Finalmente, llega a una cifra para los granos de arena que 
cubrirían el mundo, su visión del mundo, que en nuestra numera­
ción sería 1063, esto es, un uno seguido de sesenta y tres ceros. 

LAS OCT ADAS DE ARQUÍMEDES 

El sistema de numeración propuesto por Arquímedes en El Are­
nario es conocido como el «sistema de octadas» y tenía un gran 
potencial, aunque fue desatendido por muchos matemáticos. 
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Hasta su época se usaban los siguientes términos: unidad, decena, 
centena, millar y miríada. Su propuesta fue ir más allá del diez mil. 
Para ello empezó a contar unidades de miríadas, decenas de mi­
ríadas, millares de miríadas y miríadas de miríadas. Una vez ter­
minado el recuento, consiguió tener ocho cantidades con números, 
las anteriores y los múltiplos de ellos: 

Arquímedes Notación científica Notación actual 

Una unidad 1=10º Uno 

Una decena 10=101 Diez 

Una centena 100=102 Cien 

Un millar 1000=103 Mil 

Una miríada 
10000=104 Diez mil 

(una unidad de miríada) 

Una decena de miríadas 10 ·10000=105 Cien mil 

Una centena de miríadas 100·10000=106 Un millón 

Un millar de miríadas 1000 ·10000=107 Diez millones 

Una miríada de miríada 10 000 · 10 000 = 108 Cien millones 

Estamos por tanto ante un sistema de base 108, de ahí el nom­
bre de octada. Cada vez que realiza un ciclo pasa de un tipo de 
número a otro; así tomó los siguientes nombres: 

Números primeros. 
Desde 1 a 108 (excluido) El 1 es la primera unidad 

de los números primeros. 

Números segundos. 
Desde 108 a 1016 (excluido) El 108 es la primera unidad 

de los números segundos. 

Números terceros. 
Desde 1016 a 102• (excluido) El 1016 es la primera unidad 

de los números terceros. 

Etc. 
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De esta manera, pudo llegar hasta 108 veces 108, es decir, hasta 
( 108 tºªl, lo cual constituye los números de lo que llamó el primer 
período. Este recuento se puede extender a números del segundo 
período, tercer período, etc. El número máximo que Arquímedes 
nombra es el del período de miríadas de miríadas, es decir, 

o lo que es lo mismo, un uno seguido de ochenta mil billones de 
ceros (80 000-1012

) ... Una cifra realmente grande. 
Concluyendo, en El Arenario Arquímedes llega a la afirma­

ción de que en el mundo caben 1 000 miríadas de números octavos 
(10 56). Es decir, el número de granos de arena que cabe en el 
mundo es 103 • 104 . 1056 = 1063 . 

Hoy en día este tipo de órdenes de magnitud son habituales 
en algunos campos del conocimiento y la tecnología. Por ejem­
plo, en el universo hay la friolera de 1082 protones, y más grande 
que esta cifra es el gúgol, es decir, 10100 (un uno seguido de cien 
ceros). El término gúgol fue creado en 1938 por Milton Sirotta, un 
niño de nueve años sobrino del matemático estadounidense Ed­
ward Kasner. Una curiosidad es que el motor de búsqueda Google 
recibe este nombre por su semejanza con el término en inglés, 
que se escribe googol. De hecho, la sede de Google en California 
recibe el nombre de Googleplex, lo cual recuerda a un gúgolplex, 
término acuñado por Kasner y que viene a ser lügúgot, es decir, 
10

10100 
(10 elevado a un uno con cien ceros detrás). 
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CAPÍTULO 3 

El defensor del círculo 

La época de Arquímedes fue un hervidero de 
estudios y descubrimientos matemáticos. Muchos fueron 

los talentos dedicados a esa materia; sin embargo, el sabio 
griego destacó al introducir nuevos métodos de estudio y 
analizar los resultados ya conocidos mediante una visión 

personal. Ha pasado a la historia por su aproximación 
al número n y por sus exhaustivos estudios sobre los 
volúmenes y las áreas de las figuras más comunes. 





A pesar de que en general la figura de Arquímedes se conoce a 
nivel popular por sus aportaciones a la física, el grueso de su obra 
científica trata temas eminentemente matemáticos. Incluso llegó 
a pedir que se esculpiera en su tumba uno de sus resultados 
geométricos, estudió la mayoría de los temas recurrentes del pen­
samiento griego y ofreció nuevas demostraciones y enfoques. 
Llevó el método exhaustivo y la reducción al absurdo a límites 
desconocidos, rozó el cálculo infinitesimal e integral y consiguió 
utilizar sus descubrimientos sobre la palanca para encontrar nue­
vos resultados matemáticos. En este capítulo nos acercaremos a 
algunos de los resultados matemáticos más importantes que apa­
recen en su obra, empezando por los métodos que usaba el cien­
tífico en sus investigaciones y continuando con el análisis de 
casos concretos elegidos atendiendo a criterios de relevancia y 
accesibilidad. 

LOS MÉTODOS DE ARQUÍMEDES 

El éxito de las investigaciones llevadas a cabo por Arquímedes se 
basa casi por completo en los métodos utilizados por este. Se 
apoyó fundamentalmente en dos: uno enfocado a descubrir la 
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solución que le interesaba (método mecánico), y otro, una vez 
hallado el resultado, encaminado a demostrar que la solución era 
la correcta (método geométrico de exhaución). En el trabajo de 
Arquímedes hay citas y referencias a los textos de Euclides y 
otros matemáticos anteriores, es decir, muchos resultados los da 
por superados y los usa tal cual en sus escritos, como conoci­
mientos asimilados. Por tanto, estamos ante un matemático que 
trabajó con fuentes fidedignas y que supo extraer de ellas los 
contenidos necesarios para sus investigaciones. En la actualidad 
usamos el lenguaje algebraico para realizar todo tipo de demos­
traciones (fórmulas con letras, números y símbolos matemáti­
cos), pero en la época que nos ocupa tal nomenclatura aún no 
existía. Esto hace que sus textos sean de difícil seguimiento para 
un lector contemporáneo, puesto que todos los razonamientos se 
basan en procedimientos meramente geométricos. A continua­
ción se presentan algunos descubrimientos matemáticos de Ar­
químedes y se desvela en la medida de lo posible su proceso 
mental, aunque en ocasiones se ha tenido que recurrir al lenguaje 
algebraico. 

«EL MÉTODO SOBRE LOS TEOREMAS MECÁNICOS» 

En el libro El método sobre los teoremas mecánicos puede apre­
ciarse cómo Arquímedes compartió sus métodos de trabajo con la 
comunidad científica de la época, como ya se ha apuntado al ha­
blar del palimpsesto de Constantinopla. En concreto, envió la 
obra a Eratóstenes, pensando que así caería en buenas manos y 
podría ser usada para descubrir nuevos resultados interesantes. 

A pesar de que Herón cita la obra en Métrica, muchas fuentes 
a lo largo de la historia dibujaron la figura de Arquímedes como 
un investigador celoso de su trabajo y reacio a compartir y divul­
gar sus métodos. Por fortuna, en 1906 el helenista Heiberg recu­
peraría El Método y otras obras con el hallazgo del célebre 
palimpsesto. Efectivan1ente, Arquímedes estaba dispuesto a com­
partir tanto sus descubrimientos como la forma en que había lle­
gado a ellos, e incluso alentó a Eratóstenes a que usara su método 
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mecánico, informándole de que le «será posible disponer de re­
cursos para poder investigar algunos asuntos matemáticos por 
medio de la mecánica». 

« [ ... ] al redactar el método he pretendido sacarlo a la luz a la vez 
porque previamente había hablado en favor de él - no fuera que 

le pareciera a algunos que había estado hablando palabras 
vanas- y al mismo tiempo porque estaba convencido de que 

arrojaría no pequeña utilidad para la matemática.» 
- EXTRACTO DE LA CARTA DE ARQUÍMEDES A ERATÓSTENES EN EL MÉTODO. 

Por consiguiente, en esta obra Arquímedes presenta los por­
menores de su propio método, el método mecánico, y cómo lo 
había usado en las investigaciones previas que ya había publicado 
en otros tratados, ofreciendo ejemplos de aplicación. No obstante, 
el tratado, además del método mecánico, de autoria propia, incluye 
el método geométrico ( el de exhaución), que atribuye a Eudoxo. El 
método mecánico solo es usado con el fin de realizar un acerca­
miento a la solución, de modo que considera de mayor rigor y vali­
dez cualquier demostración mediante métodos geométricos: 

[ .. . ] algunas de las cosas que primero se me mostraron por medio de 
la mecánica luego las demostré por medio de la geometría, [ ... ] pues 
es más fácil avanzar en la demostración tras haber alcanzado por 
anticipado cie1to conocimiento de las cuestiones gracias a este mé­
todo que hacer la investigación sin conocer nada. 

Tras la carta enviada a Eratóstenes, el tratado se abre con un 
conjunto de once lemas a modo de definiciones previas sobre cen­
tros de gravedad. En este punto es importante resaltar que da por 
supuesto algunos resultados relacionados con su trabajo Sobre el 
equilibrio de las.figuras planas. El tratado no nos ha llegado com­
pleto; se conservan dieciséis proposiciones y con algunas enmien­
das importantes. En las once primeras ofrece el método mecánico 
en sí, mientras que en las siguientes desarrolla todo el procedí-
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miento, es decir, añade la posterior demostración mediante el ci­
tado método exhaustivo. Trata una gran cantidad de temas que ya 
había estudiado en otras obras, como por ejemplo el asunto de la 
cuadratura del segmento parabólico, aparecido en Sobre la cua­
dratura de la parábola. La primera de las proposiciones del tra­
tado, ejemplificada en la figura de la página siguiente, es: 

Sea el segmentoABC comprendido entre larectaACy la sección de 
parábola ABC; córtese ABC por la mitad en el punto D y trácese la 
recta DBE paralela al eje de la parábola y trácense AB y BC. Digo 
que el segmento ABC es cuatro tercios del triángulo ABC. (El méto­
do sobre los teoremas m ecánicos, proposición l.) 

EL «STOMACHION» 

Con el pequeño tratado Stomachion 
ha ocurrido algo similar a lo que su ­
cedió con El Método: a lo largo de la 
historia han sido varias las referencias 
que han señalado su existencia, pero 
permaneció perdido hasta 1906, año 
del descubrimiento del palimpsesto 
de Constantinopla. Así, Ausonio y 
Mario Victorino hablan en el siglo 1v 

de un Loculus Archimedium («caja de 
Arquímedes») compuesto de catorce 
láminas de marfil incluidas en una for­
ma cuadrada. Lo que se conserva del 
tratado no es más que la descripción 
para realizar las catorce divisiones 
pertinentes del cuadrado (figura 1). 
Ofrece a su vez las proporciones en­
tre las áreas ocupadas por las piezas 
y el cuadrado completo. No está cla­
ro cuál es el objetivo del Stomachion; 
si bien algunos han querido ver en él 
un temprano estudio combinatorio, 

EL DEFENSOR DEL CÍRCULO 

FIG. 1 

SI representamos las piezas del Stomachton 
sobre un cuadrado de 12 unidades de lado, 
el área de cada una de las piezas es la 
representada en la Imagen. Una manera fácil 
de representar las piezas es emplear un 
papel cuadriculado. Los números en la figura 
lndicann las áreas. 
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Adaptación de 
la construcción 
geométrica 
realizada por 
Arquímedes para 
descubrir la 
relación entre 
las áreas de la 
parábola y el 
triángulo. La base 
del razonamiento 
está en el estudio 
mecánico, es 
decir, en buscar 
la forma de 
equilibrar 
segmentos. 

otros tan solo han advertido una actividad recreativa a modo de puzle o 
tangram. Hasta el año 2003 no se pudo hacer un riguroso anál isis combina­
torio, el cual demostraría que hay 17152 formas posibles de combinar las 
piezas del Stomachion dentro del cuadrado, que se reducen a 536 si se 
obvian construcciones similares por rotación o reflexión (figura 2) . 

FIG. 2 

No solo es posible construir el cuadrado reorganizando las piezas, sino que también se pueden 
formar divertidas figuras, como el famoso elefante. 
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MATEMÁTICO HASTA EL AGOTAMIENTO: 

EL MÉTODO DE EXHAUCIÓN 

En las matemáticas griegas ocurrió una sonada crisis debida a los 
llamados números inconmensurables, aquellos que no pueden ex­
presarse como la razón de otros dos números enteros. En la actua­
lidad a esos números los llamamos números irracionales, como por 
ejemplo, el número Jt. Esta circunstancia se traduce en una dificul­
tad a la hora de comparar figuras curvilíneas y rectilíneas; es decir, 
los griegos incurrían en un importante problema cuando querían 
calcular el área de círculos y otras superficies encerradas por líneas 
curvas, además de ciertas magnitudes como, por ejemplo, la diago­
nal de un cuadrado. Este problema se simplificó gracias al método 
de exhaución, el cual puede considerarse como un antecedente del 
moderno cálculo infinitesimal y del concepto de límite. Aunque 
Euclides lo usó en algunas demostraciones de sus Elementos, fue 
Arquímedes quien lo supo explotar a lo largo de toda su vida como 
matemático. Él mismo asignó este método a Eudoxo, en el preám­
bulo de su tratado El método sobre los teoremas mecánicos. 

«Es imposible encontrar en toda la geometría 
cuestiones más difíciles y más importantes explicadas 
con términos más sencillos ni más comprensibles que los 
teoremas de inteligencia sobrehumana de Arquímedes.» 
- PLUTARCO. 
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El método de exhaución también suele conocerse como «mé­
todo de exhaustación», «método exhaustivo» o «método por ago­
tamiento». Con él se persigue calcular el área de una superficie 
descomponiéndola en trozos cada vez más pequeños (figuras poli­
gonales) y sumando a continuación esos trozos. Se realiza esta 
fragmentación hasta «agotar» la superficie, aunque en realidad 
nunca se consigue cubrirla en su totalidad. En este sentido, la ex­
presión «método por agotamiento» la acuñó el matemático belga 
Grégoire de Saint-Vincent (1584-1667), y su uso se ha extendido 
irreversiblemente. 
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La idea original se extiende si además de circunscribir la fi­
gura curvilínea con un polígono, hacernos lo propio pero inscri­
biéndola. Es decir, la figura curvilínea se va acorralando desde 
dentro y desde fuera: se aumenta el número de lados de un polí­
gono inscrito y, asimismo, se aumenta el número de lados de un 
polígono circunscrito a la superficie curvilínea. Por tanto, el mé­
todo de exhaución se generaliza o puede dividirse en dos proce­
dimientos: 

- Agotamiento: se inscribe una figura poligonal en la super­
ficie curvilínea hasta casi agotarla, o sea, hasta minimizar 
la superficie no cubierta. 

- Compresión: se circunscribe una figura poligonal a la su­
perficie curvilínea hasta minimizar el espacio excedido. 

Realmente es posible encontrar un polígono tan cercano a la 
superficie curva corno se desee. Este resultado recibe el nombre 
de «axioma de Arquímedes» (aunque ya estaba incluido de algún 
modo en los Elementos euclídeos) y en términos modernos viene 
a decir que si se torna una recta o magnitud cualquiera y se le quita 
un trozo mayor que su mitad, al resto se le quita a su vez un trozo 
mayor que su mitad y se procede así reiteradamente, se puede 
llegar a un trozo de recta tan pequeño corno sea preciso. 

El gran paso conceptual con el uso del axioma de Arquímedes 
está en la idea de «aproximación». Los matemáticos griegos bus­
caban respuestas exactas y absolutas, por lo que sus procedimien­
tos se encaminaban a ello. Con el axioma de Arquímedes cualquier 
persona que investigue, por ejemplo, un área, puede acercarse a 
su valor tanto corno desee, aunque no la calcule de manera exacta. 
Lógicamente, una vez este acercamiento sea el suficiente, puede 
postularse un valor exacto. Arquímedes tenía verdadero aprecio a 
este método de trabajo, puesto que conducía a una verdadera de­
mostración geométrica: una vez encerrada la superficie curva, se 
procede mediante una doble reducción al absurdo para compro­
bar el valor de su área que se ha postulado a priori con el método 
de exhaución. Los pasos lógicos son: 
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- Sea S el área a calcular de la superficie curva. 

- Se propone (puede ser por ensayo y error) un valor Tpara 
el área de la curva. 

- Hay que demostrar que S = T. 

- Primero se prueba que no puede ser S < T. 

- Luego se prueba que no puede ser S > T. 

- Como S no puede ser ni mayor ni menor que T, entonces 
S=T. 

Arquímedes usó este método en la mayoría de sus tratados y 
mostró un rigor sin precedentes en la historia de las matemáticas. 
En las siguientes páginas se proponen algunos ejemplos del uso del 
método de exhaución que servirán para una mejor comprensión. 

NEUSIS 

La neusis, que podría traducirse del término griego homólogo 
como «inclinación», es una técnica de construcción geométrica 
consistente en colocar entre dos líneas un segmento de longitud 
conocida haciendo que pase por un punto fijo dado. Se trata de 
una construcción manual, en el sentido de que se marcan los ex­
tremos sobre una regla y se desplaza esta convenientemente para 
que coincida con las líneas correspondientes. Con desenfado, po­
dría decirse que es una «cuenta de la vieja» geométrica. 

Bajo el idealismo platónico en el que se encontraban las mate­
máticas griegas en el contexto histórico de Arquímedes, las demos­
traciones en materia matemática seguían, según los expertos, una 
jerarquía, unas preferencias de estilo y elegancia. Si algo podía de­
mostrarse con regla y compás, así debía hacerse. En el caso de que 
fuera inviable, se pasaba al segundo nivel, es decir, debía echarse 
mano de las secciones cónicas. Solamente en ocasiones en lás que 
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no quedara más remedio era recomendable usar el método neusis. 
Arquímedes acudió a la neusis en algunos de sus pasajes, por ejem­
plo, en las proposiciones 5 a 9 de Sobre las espirales, aunque nos 
detendremos en la trisección del ángulo ( véase la figura) aparecida 
en la proposición 8 de El libro de los lemas: 

- Sea ABC el ángulo que se desea trisecar. 

- Se traza, con centro en B, una circunferencia de radio ar­
bitrario. Se obtienen los puntos de corte P ( en AB), Q ( en 
BC) y R (prolongación de BC). 

- Se dibuja la recta STP de forma que S esté en la línea 
CQBR, T en la circunferencia y con las condiciones 
ST=BQ=BP=BT ( esta es la aplicación de la construcción 
neusis, es decir, con una regla marcada). 

- Puesto que STB y TBP son isósceles, a partir de este hecho 
puede demostrarse, aunque no tiene cabida aquí, que el 
ángulo BST es un tercio del ángulo QBP, consiguiéndose 
así la trisección. 
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EL ESQUIVO NÚMERO Jt 

Desde el comienzo del pensamiento filosófico y matemático al ser humano le 
resultó fácil advertir que las circunferencias cumplían una propiedad intere­
sante: parece como si todas las circunferencias fueran la misma pero en dis­
tintas versiones, ampliadas o reducidas. En seguida se supo que existía una 
relación de proporcionalidad entre el perímetro de la circunferencia y el diá­
metro de la misma. Es decir, al dividir el perímetro de una circunferencia entre 
su diámetro siempre debe resultar el mismo número, una constante k deter­
minada. Pero lcuál es ese número? Eso es algo que no solo preocupó a los 
matemáticos griegos, sino también a los de culturas anteriores y posteriores. 

Todas las circunferencias cumplen la misma relación de proporcionalidad (k) al dividir su perlmetro 

por su diámetro. 

La búsqueda de esta razón ha dado lugar a siglos de investigación y mares 
de tinta. Los matemáticos de las primeras culturas buscaron una razón entre 
dos números enteros y así se sucedieron diferentes aproximaciones para re­
lacionar el perímetro y el diámetro de la circunferencia . Pero no sería hasta el 
siglo x1x cuando se supo realmente que la razón buscada era un número irra­
cional, por eso su búsqueda había sido tan infructuosa. En la actualidad sabe­
mos que esta razón recibe el nombre de número n: 

Longitud del perímetro = n 
Diámetro 

La aproximación de Arquímedes es tan buena que no solo se usó durante siglos, 
sino que hoy en día se toma prestada en multitud de contextos. De esta forma, 
es habitual calcular la longitud de una circunferencia con la expresión: L = 3,14d. 
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EN BÚSQUEDA DEL NÚMERO Jt 

En Sobre la medida del círculo queda reflejado que Arquímedes 
buscaba una relación de proporcionalidad entre la longitud de 
una circunferencia (L) y el diámetro (d) de la misma. En la pro­
posición 3 del tratado se deduce que la longitud de la circunfe­
rencia es aproximadamente 3,14 veces la longitud del diámetro, 
es decir, L ~ 3,l4d. 

Si recordamos la expresión que seguramente muchos hemos 
aprendido en la escuela (L = red), lo que observamos es que Ar­
químedes encontró un valor aproximado de dos decimales para 
el número n:, es decir, n: ~ 3,14. Esta aproximación se usaría du­
rante toda la Edad Media y aún la usamos en la actualidad en 
algunas ocasiones, aunque sabemos que re es un número irracio­
nal con infinitos decimales. 

La técnica empleada por Arquímedes para encontrar la rela­
ción existente entre la longitud y el diámetro de la circunferencia 
fue, literalmente, acorralar la circunferencia, usando el método 
de exhaución que se ha introducido con anterioridad. Para ello, 
tomó una circunferencia y dentro de ella inscribió un hexágono. 
Desde el perímetro del hexágono al perímetro del círculo existe 
una superficie sin cubrir por dicho hexágono. A continuación, 
circunscribió otro hexágono (por fuera) a la circunferencia. 
Desde el perímetro del círculo hasta el perímetro del hexágono 
hay una superficie extra. Lógicamente, la longitud (perímetro) de 
la circunferencia será mayor que el perímetro del hexágono pe­
queño, pero menor que el perímetro del grande. 

El proceso mental es análogo si usamos el concepto de área, 
que todavía resulta mucho más visual. El objetivo en este caso 
será calcular el área del círculo encerrada en la circunferencia 
anterior. Sabemos que esta área se calcula con la expresión: 
A= rer2• Obsérvese que en el caso de que el radio sea la unidad 
(r=l), el área será A= re= 3,14159 ... ~ 3,14. Es decir, si calcula­
mos el área de una circunferencia de radio 1, se obtendrá el nú­
mero n:. Arquímedes proponía construir un círculo y a partir de 
él inscribir y circunscribir un polígono regular, en concreto, un 
hexágono. 
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FIG.1 

FIG. 2 

Es decir, el área A del círculo será mayor que el área AH del 
e P 

hexágono pequeño y a su vez menor que el áreaAH
9 

del hexágono 
grande (véanse secciones sombreadas en la figura 1). Con este 
método no se conoce con exactitud el valor del área, pero al 
menos se puede saber entre qué valores está: 2,598l<Ac < 3,4641, 
o sea, es mayor que el área del hexágono pequeño (2,5981) y 
menor que el área del hexágono grande (3,4641). La siguiente ge­
nialidad de Arquímedes fue duplicar el polígono, pasando a un 
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dodecágono (figura 2). De esta manera, el valor del área del cír­
culo está encerrado entre dos valores más cercanos, y se afina 
más el cálculo, puesto que los valores de las áreas de los dos polí­
gonos se parecerán más. Arquímedes siguió duplicando polígonos 
hasta llegar a uno de nada menos que ¡96 lados! Esto le permitió 
demostrar que el valor del área del círculo está comprendido entre 
3+ 10/71 y 3+ 1/7: 

La longitud del círculo es el triple del diámetro y lo ex­
cede en menos de 1/7 pero en más de 10/71. (Sobre la 
medida del círculo, proposición 3): 

3 + 
10 

< Ac < 3 + I_, es decir, 3,1408 <A <3,14286. 
71 7 e 

Por tanto, el área de un círculo de radio la unidad es de 3,14 
unidades de superficie, con una precisión de dos decimales, tal 
como vimos antes. Además, como Euclides había demostrado que 
el área de un círculo era proporcional al cuadrado de su diámetro, 
se deduce la aproximación: A ~ 3, 14 r 2

• Es importante señalar que 
Arquímedes sabía que este no era el valor real, pues al acotar el 
área entre dos valores era consciente de que estaba llevando a 
cabo una aproximación. 

LA CIRCUNFER ENCIA ENMARCADA 

Otra demostración interesante que apa­
rece en el tratado Sobre la medida del 
cí rculo es que la razón entre el área de 
una circunferencia y el área del cua­
drado circunscrito en ella es 11/14. En 
este contexto, de nuevo se obtiene para 
n el valor aproximado de 3,14. Estudie­
mos a continuación la validez de esta 
demostración. En primer lugar, fijémo­
nos en la construcción geométrica de la 
figura de la derecha. 
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El área del círculo es: A f u1 = nr2
• ere o 

El área del cuadrado es: A cuadrado= (2r) 2 
= 4r2

• 

Área círculo nr2 n 
La razón de uno a otro es: ------ - - - -

Área cuadrado - 4r2 
- 4 · 

Área círculo 11 
Lo que obtuvo Arquímedes fue: = -

Área cuadrado 14 

Es evidente que ambos valores deben coincidir, y, recordando 
que los razonamientos de Arquímedes son aproximados: 

4 
11 

14 
- n;:::::3,14. 

EN EL ABSURDO ESTA LA RESPUESTA 

Como ya se ha dicho, Arquímedes usó la reducción al absurdo en 
muchas de sus demostraciones. La primera de las proposiciones 
de Sobre la medida del círculo dice: 

Todo círculo es igual a un triángulo rectángulo cuyo radio 
es igual a uno de los lados que forman el ángulo recto y 
el perímetro es igual a la base. 

Debe entenderse que aquí se habla de áreas. Para la demos­
tración (véase la figura) procedió del siguiente modo: 

- Supongamos que el área del círculo es mayor que el área 
del triángulo: Acfrculo > AtriánguJo• Arquímedes demostró que 
esta desigualdad es imposible. 

- Supongamos que el área del círculo es menor que el área 
del triángulo: Ac!rculo <AtriánguJo• Arquímedes demostró que 
esta desigualdad también es imposible. 
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- Puesto que el área del círculo no puede ser ni mayor ni 
menor que el área del triángulo, entonces, por reducción 
al absurdo, deben ser iguales: A círculo = Atriángulo' 

En el lenguaje algebraico actual es fácil de mostrar: 

-Acírculo = :rtr2. 

_ 4 'ángul = base· altura = 2:rtr · r = :rtr2. 
""tri º 2 2 

- Efectivamente: A círculo = A triángulo' 

iLO QUIERO EN MI LÁPIDA! 

En el corolario a la proposición 34 del tratado Sobre la esfera y el 
cilindro se encuentra el resultado del que se cree que Arquímedes 
estaba más orgulloso: 

El volumen y la superficie del cilindro es igual a 3/2 el vo­
lumen y la superficie de la esfera inscrita en él (figura 3): 

3 
v cllindro = 2 v esfera 

3 
~llindro = 2 A esfera · 

En efecto, fue capaz de encontrar una razón entre el volumen 
de una esfera y el de un cilindro en el que encaja perfectamente; 

EL DEFENSOR DEL CÍRCULO 89 



90 

FIG. 3 

-- - - - --- --- ... ., ... 
h = 2r 

--

FIG. 4 

X 4 

J 
dicho de otro modo, el diámetro del círculo coincide tanto con el 
diámetro de la base del cilindro como con su altura. El volumen del 
cilindro resulta ser una vez y media (3/2) el volumen de la esfera. 
Esta relación es la misma si hablamos de áreas. Como ya se ha 
dicho, Arquímedes llegó a pedir que se esculpiera este teorema en 
la lápida de su tumba a modo de epitafio. En el siglo 1 a.c. Cicerón 
aseguraba que consiguió verla; sin embargo, hoy el epitafio está 
perdido. 

Para llegar a su conclusión Arquímedes realizó un recorrido 
por varias definiciones, postulados y proposiciones, demostrando 
además otras importantes relaciones de proporcionalidad entre 
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áreas. Sobre la esfera y el cilindro es un tratado formado por dos 
libros escritos en momentos distintos de su vida y por diferentes 
motivos. El Libro I consta de 44 proposiciones, seis definiciones y 
cinco postulados. Algunas proposiciones, además, tienen impor­
tantes corolarios; de hecho, la relación comentada entre el cilin­
dro y la esfera está presentada en forma de corolario. El primer 
libro sirve de soporte instrumental al segundo, el cual es mucho 
más corto (solo tiene seis proposiciones) y está enfocado a res­
ponder algunas preguntas realizadas por Dositeo, a quien está di­
rigida la obra. Son destacables dos proposiciones del primero que 
conducirian a Arquímedes a la demostración del enunciado ante­
rior. Se trata de las proposiciones 33 y 34: 

Proposición 33. La superficie de la esfera es cuatro ve­
ces la superficie del círculo máximo de dicha esfera. 

Esta proposición (figura 4) se interpreta del siguiente modo 
intuitivo. Si sumamos cuatro veces el áreaAcM del círculo máximo 
(ACM = nr2

) resulta ser igual al área AE de la superficie de toda la 
esfera (AE = 4 nr2

). Es decir, haría falta la misma cantidad de tinta 
para pintar la superficie de la esfera que la superficie de los cuatro 
círculos. 

Proposición 34. El volumen de la esfera es cuatro veces 
el volumen de un cono que tiene por base el círculo má­
ximo de la esfera y por altura su radio. 

En la notación algebraica actual es inmediato probar esta razón 
entre volúmenes (figura 5). El volumen Ve de un cono de radio r y 
altura r es 

1 3 Ve =-nr, 
3 

mientras que el volumen VE de una esfera de radio r es 

4 3 
VE =-nr. 

3 
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Por tanto: VE = 4 Ve- Es decir, el volumen de una esfera de radio 
r equivale al volumen de cuatro conos de base r y altura r . Con 
otras palabras, para rellenar por completo una esfera de radio r 
con 4 litros de agua, necesitaremos 4 conos de radio r y altura r 
rellenos por completo con l litro de agua cada uno. 

Como corolario a la proposición 34 Arquímedes llegó a la con­
clusión comentada al principio, válida para volúmenes y áreas: 

La superficie de la esfera es 3/2 la superficie de un cilin­
dro que tiene por base el círculo máximo de la esfera y 
por altura su diámetro (figura 6). 

Para calcular la superficie del cilindro, puede entenderse 
como la sun1a de la superficie lateral más las dos tapas. La superfi­
cie lateral es un rectángulo de base 2nr y altura 2r; el área será, 
por tanto, 4nr2. 

Por otra parte, las dos tapas son círculos de radio r, de modo 
que el área de cada uno será nr. Sumando el área del lateral más 
dos veces el área de una de las tapas resultaAcilindro = 6nr 2

• Lo que 
se obtiene es que el área de la superficie del cilindro equivale a seis 
veces el área de un círculo del mismo radio. Puesto que una esfera 
equivale a cuatro círculos, seis círculos equivaldrán a una esfera y 
media. Atendiendo a estos resultados, ne-
cesitaríamos la misma cantidad de tinta 
para pintar seis círculos de radio r, la su- FIG. 7 

perficie de una esfera y media de radio ro 
un cilindro completo de base r y altura 2 r. 

Hay que añadir que la relación obte­
nida también se aplica a los volúmenes, es 
decir, el volumen del cilindro es 3/2 el vo­
lumen de la esfera inscrita en él (figura 7). 
De esta manera, una forma de entender la 
razón es que si en una esfera cupiesen 2 
litros de agua, en el cilindro correspon­
diente cabrían 3 litros. Por eso este resul­
tado a veces se presenta diciendo que la 
razón del cilindro a la esfera es de 3 a 2. 
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EL PROBLEMA DE DELOS 

En el siglo v a.c. una epidemia de peste asoló la ciudad de Atenas y entre las 
víctimas se encontraba el mismísimo Pericles (495-429 a.C.), gobernador de 
la ciudad y figura que llegó a concentrar hombres de talento de todos los 
rincones del mundo griego. Un grupo de atenienses decid ió entonces ir a 
consultar al Oráculo de Apolo, en la ciudad de Delfos, para saber cómo poder 
detener la peste. La respuesta del Oráculo, al parecer, fue que debían cons­
truir un nuevo altar cúbico cuyo volumen fuera el doble del anterior. Esta 
leyenda, en una de sus versiones, const ituye el famoso problema de la dupli­
cación del cubo, también conocido como «problema de Delos» o «problema 
délico»: duplicar un cubo usando solo regla y compás. En Sobre la esfera y 
el cilindro Arquímedes planteó lo que hoy sería una ecuación cúbica, recurso 
utilizado con anterioridad por otros matemáticos para, precisamente, la re­
solución del problema délico. En cualquier caso, de las obras de Arquímedes 
se deduce que era plenamente consciente de que para duplicar el cubo no 
podía aceptarse la intuitiva y tentadora idea de duplicar uno de los lados. 
En efecto, si el lado de la arista de un cubo es l

1
=a, su volumen será V

1
=a 3; si 

duplicamos el lado tendremos un nuevo cubo con lado 1
2 
= 2a, pero con volu­

men V2=(2a)3 =8a3, es decir, V2=8V1• El volumen del cubo no se duplica, sino 
que se octuplica, como se muestra en la figura . 

1 ., ., 

... - -.,", 
., 1 ., 

., 
1 ' 1 ' ., ., 
"-- - _ _ .1, _ _ ., ., ., ., ., ., 

En la actual idad sabemos que el problema délico no tiene solución usando 
únicamente regla y compás, puesto que la solución incluye un número tras­
cendente. En concreto, para duplicar un cubo de lado a, el nuevo lado debe 
ser if2.a. 
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LA ESPIRAL 
DE ARQUÍMEDES 

Una espiral es una curva generada 
a partir de un punto que se aleja 
progresivamente de un centro 
mientras da vueltas alrededor de 
él. Arquímedes estudió una espiral 
concreta, conocida con el nombre 
de «espiral de Arquímedes» (véase 
la figura) y que suele definirse me­
diante la forma en que esta se 
construye: 

La espiral de Arquímedes es la línea construida por un 
punto que se mueve a velocidad constante por una recta 
que gira a velocidad angular constante sobre un punto de 
origen fijo. 

En el tratado Sobre las espirales Arquímedes estudia la espiral 
que lleva su nombre y algunas propiedades relacionadas con ella. 
Este tratado se considera una de las obras más complejas del sabio 
griego; de hecho, fue pasado por alto en la Antigüedad, y conside­
rado erróneo por algunos matemáticos de los siglos XVII y XVIII, que 
no supieron entenderlo. Su importancia no solo radica en el campo 
de las matemáticas, sino también en el de la filosofía. Es el primer 
documento conocido en el que se calcula la tangente a una curva 
diferente a una circunferencia, es decir, un paso más allá de la 
homogeneidad del círculo platónico. Matemáticamente tiene una 
importancia crucial, pues podría formar parte de la introducción 
de un curso superior de análisis diferencial; este supuesto queda 
patente en el hecho de que Arquímedes estuvo a punto de llegar al 
cálculo integral en las demostraciones que realizó. 

Sobre las espirales consta de 28 proposiciones y fue enviado 
a Dositeo de Pelusio con una carta a modo de preámbulo. Las 
once primeras proposiciones son resultados auxiliares usados 
más tarde por Arquímedes para demostrar otros más interesantes. 
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Mientras que la 
recta a gira a una 
velocidad angular 
constante oo en 
torno al centro O, 
el punto P se 
desplaza a 
una velocidad 
constante v por la 
recta a. Una forma 
sencilla de dibujar 
la espiral es trazar 
ocho octantes 
(dos líneas 
perpendiculares y 
sus bisectrices) 
y un conjunto de 
circunferencias 
equidistantes y 
concéntricas. Cada 
octavo de giro la 
espiral salta de 
una circunferencia 
a la siguiente, es 
decir, se señala 
un punto en cada 
intersección entre 
una recta y una 
circunferencia, 
saltando a la de 
radio superior. 
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Tras la primera 
vuelta, la espiral 

cubre un área que 
es igual a un 

tercio del área 
encerrada por la 

circunferencia que 
envuelve a dicha 

espiral. 
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Esa forma de trabajar es común 
en toda la obra de Arquímedes, 
usar proposiciones auxiliares 
que sirvan de apoyo a otras de 
nivel superior. De hecho, él 
mismo adelanta en el preámbulo 
los cuatro resultados más impor­
tantes, considerándose el resto 
como auxilio para ellos. Tras las 
primeras once proposiciones 
realiza una lista de siete defini­
ciones, la primera de las cuales 
muestra, precisamente, la defini­
ción de la espiral de Arquímedes 
que se ha dado anteriormente. 
En las proposiciones 12 a la 20 
estudia las propiedades de las 
tangentes a la espiral y mide ade­

más la longitud de los giros de la misma, para compararlos con los 
círculos que la componen. En esa parte de la obra muestra cómo 
calcular la tangente a la espiral en un punto, aunque no dejó es­
crito cuál fue su análisis para llegar a dicha conclusión. Final­
mente, de la proposición 21 a la 28 estudia el área de la curva en 
giros sucesivos, que son los resultados que más han interesado a 
la comunidad investigadora. Dada la dificultad del tratado, nos 
quedamos solo con una de las proposiciones, la número 24: 

El área barrida por la espiral en su primera vuelta equi­
vale a la tercera parte del área del círculo que la envuelve. 

Arquímedes demostró este resultado mediante el método de 
exhaución (véase la figura): dividiendo el área de la espiral en pe­
queñas superficies de secciones circulares, realizando las sumas 
pertinentes y, por reducción al absurdo, concluyendo que no puede 
ser mayor ni menor a un tercio del círculo, o, lo que es lo mismo, 
el área de la primera vuelta de la espiral es exactamente 1/3 del 
círculo que la circunscribe. 
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DANDO VUELTAS 

Las espirales son curvas que se generan mediante un punto que gira alrededor 
de un centro alejándose de él a cada vuelta. En la propia naturaleza aparecen 
espirales de varios tipos, en plantas, moluscos, etc. Así, los matemáticos se 
han visto motivados a estudiar estas curvas sorprendentes. Incluso en las 
creaciones humanas aparecen espirales, como es el caso de los discos de 
vinilo o de los muelles. Algunos tipos de espirales son: 

- La espiral de Arquímedes o aritmética (figura 1). Su ecuación es r =a+be. 

- La espiral de Fermat o parabólica (figura 2). Su ecuación es r= 0'12• 

- La espiral hiperbólica o recíproca (figura 3). Es la inversa a la espiral de 
Arquímedes. Su ecuación es r=a / e. 

- La espiral logarítmica o espiral de crecimiento (figura 4). Su ecuación es 
r= logb (r/ a). 

FIG. 1 FIG. 2 

FIG. 3 FIG. 4 

.... ! 
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DOS PROBLEMAS DE LA ANTIGÜEDAD 

Los tres conocidos problemas de la Antigüedad son la duplicación 
del volumen de un cubo, la trisección del ángulo y la cuadratura 
del círculo. Algunos expertos afirman que el objetivo fundamental 
que perseguía Arquímedes en su tratado Sobre las espirales era 
dar solución a dos de esos problemas. En efecto, con su espiral se 
puede resolver la trisección del ángulo y la cuadratura del círculo, 
aunque saltándonos una de las premisas. El problema debía ser 
resuelto únicamente mediante el uso de regla y compás, si bien la 

FIG. 8 

A 

FIG.9 

Q 

EL DEFENSOR DEL CÍRCULO 

espiral conlleva un procedimiento 
cinemático intrínseco. Por tanto, 
siendo rigurosos, el problema no 
está realmente resuelto. De hecho, 
en 1837 el matemático francés Pie­
rre W antzel publicó la imposibilidad 
de trisecar el ángulo y de duplicar 
el cubo usando únicamente regla y 
compás. Más adelante, en 1882, el 
matemático alemán Ferdinand von 
Lindemann demostró que :n: es un nú­
mero trascendente y, con ello, que la 
cuadratura del círculo usando única­
mente regla y compás es imposible. 

Así, la trisección del ángulo (fi­
gura 8) consiste en dividir un ángulo 
en tres partes iguales usando solo 
regla y compás. Con la espiral de Ar­
químedes puede darse solución a 
este problema, aunque, como se ha 
dicho, saltándonos esa premisa. Para 
ello se han de seguir los siguientes 
pasos: 

- El ángulo a trisecar será el 
formado por las semirrectas 
OAyOB. 



- La semirrecta OA es la que gira para formar la espiral y el 
punto P es el que se desliza por esa recta. 

- Se divide en tres partes el segmento OP, obteniéndose los 
puntosRy Q. 

- Se trazan arcos de circunferencia desde O con radios OR 
y OQ, que cortan a la espiral en los puntos U y V, respec­
tivamente. 

- Se trazan líneas desde O pasando por U y pasando por V. 
Se obtiene así la trisección. 

El problema de la cuadratura del círculo (figura 9) consiste en 
encontrar un cuadrado cuya área sea equivalente a un círculo 
dado, usando únicamente regla y compás. Con la espiral de Arquí­
medes también puede buscarse el resultado, aunque de nuevo fal­
tando a la premisa de la regla y el compás, debido al carácter 
cinemático de la espiral. Los pasos a seguir son: 

- Se traza por un punto P de la espiral la tangente PQ. 

- Se traza el radiovector OP, es decir, un segmento que una 
el centro de la espiral con el punto P considerado. 

- Se traza la perpendicular en O al segmento OP, hasta que 
corte a PQ en Q. 

- Se traza el arco PS, de centro O y radio OP. 

- Se puede demostrar que el segmento OQ es igual en longi-
tud al arco PS. 

- A partir de aquí se demuestra que la tangente a la espiral 
en R determina un segmento que se extiende hasta el eje 
horizontal, que es igual a la cuarta parte de una circunfe­
rencia, lo cual se traduce en la cuadratura del círculo. 
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LA CUADRATURA DE LA PARÁBOLA 

En el tratado Sobre la cuadratura de la parábola Arquímedes 
presenta varios teoremas mecánicos que, según apunta en el 
preámbulo, no habían sido estudiados antes. Es decir, él mismo 
los había planteado. El más reproducido en la literatura divulga­
tiva es el de la cuadratura de la parábola (proposición 24): 

El área de la superficie comprendida entre una parábola 
y una recta que la corta es 1/3 superior al área del trián­
gulo cuya base es la recta y de igual altura a la parábola 
(figura 10). 

Su intención era, por tanto, compartir sus descubrimientos, y 
qué mejor forma de hacerlo que enviándolos a los estudiosos de 
Alejandría. Por esta razón se lo remitió a Dositeo de Pelusio, 
siendo la primera de las obras que compartió con él tras la muerte 
de Conón de Samas. El tratado Sobre la cuadratura de la pará­
bola se divide en 24 proposiciones. En las cinco primeras intro­
duce algunas propiedades de la curva; de la proposición 6 hasta la 
16 realiza un estudio mecánico de la parábola, basándose en las 
leyes de la palanca. En la proposición 1 7 presenta por primera vez 
el resultado de la cuadratura de la parábola mediante su método 
mecánico y en las siguientes proposiciones utiliza el método de 
exhaución para acabar demostrando dicha cuadratura (proposi­
ción 24). Así que Arquímedes realiza una demostración de la cua­
dratura mediante el método mecánico, pero tras no considerarlo 
riguroso, encontró el mismo resultado con métodos geométricos 
clásicos, o sea, por exhaución. Es interesante señalar que la cua­
dratura de la parábola constituye el primer caso conocido en la 
obra de Arquímedes en el que hizo uso del método mecánico. 
Existe una tercera demostración de la cuadratura, contenida en el 
tratado El método sobre los teoremas mecánicos. 

Como se ha dicho, para demostrar la proposición 24 empleó el 
método de exhaución (figura 11). Comienza dando por conocido 
el resultado, es decir, afirma que el áreaAP de la parábola es 4/3 el 
área Ar del triángulo ABC (Ap =½A¡.). Los pasos que sigue son: 

100 EL DEFENSOR DEL CÍRCULO 



FIG.10 

A triángulo 

FIG. 11 

---

A parábola = ..'!_ A triángulo 
3 

A parábola 

- Traza una cuerda de la parábola (AC) y, a partir de ella, 
construye el triángulo elevando dos líneas rectas desde los 
puntos de corte (A y C) hasta. el punto más alto de la pará­
bola (B). Así, aparecen dos nuevas cuerdas en la sección 
parabólica: AB y CB. 

- De cada nueva cuerda se pueden trazar sendos triángulos 
ADB y BEC, según el mismo procedimiento. 

- El trazado se puede repetir tanto como se quiera, para que 
el polígono se parezca cada vez más a la parábola. 

- En la proposición 21 demostró que cada triángulo dibu­
jado según estas características tiene un área que es la 
cuarta parte del triángulo anterior. Es decir, se tiene que 

1 
AADB = ABEC = 4 ~ángulo· 
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- Asume que el espacio comprendido entre el triángulo y la 
curva parabólica puede ser Gompletado mediante la com­
posición de triángulos a partir de las nuevas cuerdas en un 
proceso reiterativo. 

- A partir de esta idea llega a demostrar que el área de la 
parábola no puede ser mayor de 4/3 el área del triángulo 
inicial, pero tampoco puede ser menor de 4/3 el área de 
dicho triángul°4 Es imposible tanto ~'ª > f ~ángulo 

COmO ,\arábola < 3 ~ángulo· 

_.:.. Así que, por reducción al absurdo, se tiene la relación 
,\arabo,a = J ~ángulo, como se quería demostrar. 

SUMANDO HASTA CASI EL INFINITO 

El testimonio más antiguo que puede considerarse como un ante­
cedente del cálculo infinitesimal descansa sobre la figura de Zenón 
de Elea (490 a.C.-430 a.C.). Este filósofo griego advirtió con la fa­
mosa paradoja de la flecha que no tenía sentido considerar un 
tiempo infinitamente divisible a la par que un espacio constituido 
de indivisibles, es decir, de partes que no pueden ser divididas a 
partir de cierta cantidad. El procedimiento seguido ( dividir reite­
radamente un segmento por su mitad) significó un precedente en 
los trabajos de los matemáticos griegos de los siguientes siglos. 

Arquímedes acarició la idea de límite en varias ocasiones 
cuando aplicaba el método de exhaución. Una de ellas se encuen­
tra contenida durante el recorrido del tratado Sobre la cuadratura 
de la parábola. Se trata de una suma de infinitos términos que da 
como resultado un número finito. Si bien Arquímedes no llegó a 
sumar todos los términos, sí pudo dar un resultado satisfactorio 
a dicha suma de manera intuitiva. Esta suma se encuentra en la 
proposición 23, la penúltima del tratado, justo antes de la propo­
sición en la que se presenta por segunda vez en el texto la cuadra­
tura de la parábola. Apoyándose en este resultado pudo demostrar 
la cuadratura de la parábola mediante reducción al absurdo. De 
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hecho, la proposición 23 fue un resultado auxiliar para llegar a 
dicha cuadratura; es decir, puede considerarse como una herra­
mienta de cálculo para sus propósitos. El rigor con el que trata el 
asunto no tuvo paragón hasta la época de Newton y Leibniz. La 
proposición 23 dice: 

Si se disponen sucesivamente magnitudes en la razón de cua­
tro a uno, todas las magnitudes más la tercera parte de la 
menor sumadas en una sola serán cuatro tercios de la mayor. 

Veámoslo de un modo más comprensible; aunque Arquíme­
des lo presenta para segmentos, la idea también es válida para 
áreas. Se toma un cuadrado y se divide en cuatro partes iguales. 
Se suma el cuadrado y su cuarta parte. La cuarta parte se divide a 
su vez en cuatro, sumando cada vez una de las partes obtenidas, 
y así sucesivamente tanto como se desee. Luego se realiza la suma 
de las superficies del cuadrado y todas las cuartas partes resultan­
tes más la tercera parte de la división más pequeña. El resultado, 
se divida las veces que se divida, es siempre 4/3 del cuadrado ori­
ginal (véanse las figuras 12 y 13 en la página siguiente; en la figura 
12 se realiza una sola división, y en la figura 13 se llevan a cabo dos 
divisiones). 

Efectivamente, como puede observarse el resultado siempre 
es A+½ A, es decir, la suma de todas las sucesivas divisiones es 
1/3 del cuadrado mayor. A esto fue a lo que pudo llegar Arquíme­
des de manera intuitiva, así, si se divide el cuadrado n veces (no 
realizó la suma infinita, sino que expresó que podría realizarse 
tantas veces como se quisiera): 

A+[lA+-1.A+···+l.l..A] = A+lA = iA. 
4 42 3 4" 3 3 

En la actualidad cualquier estudiante de secundaria podría 
realizar esta suma por sí mismo mediante el concepto de progre­
sión geométrica: una sucesión de elementos en la que cada uno se 
obtiene del anterior multiplicado por un número constante lla­
mado razón. En efecto, el término general de una progresión 
geométrica es: a n = ªi · r(n-l)_ 
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En nuestro caso tendremos: 1 
a,, = 4(n- l ) A. 

Así, dando valores a la n tenemos todos los términos de la 
sucesión: 

1 1 1 
A, ¡A, 42 A, 43 A. .. 

Se pueden sumar todos los términos (suma infinita) de la su­
cesión, puesto que es decreciente, haciendo uso de la siguiente 
expresión (paso a1 límite): 
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Como era de esperar, este es el valor que obtuvo Arquímedes 
sin necesidad de realizar la suma de todos los términos. La clave 
está en que se percató d~ que al truncar la suma, el resto hasta 
llegar a todos los términos de la sucesión coincidía con 1/3 del 
término donde se había truncado, fuera cual fuera este. No se 
sabe con exactitud cómo llegó a esta conclusión, pero parece que 
hubiese usado un método de ensayo y error hasta dar con la res­
puesta correcta, que es la que propone en su tratado. El caso es 
que atisbó y se quedó a un peldaño del paso al límite mediante la 
reiteración, un método que se sigue usando para encontrar la fór­
mula general de una sucesión por recurrencia. 

Término 
Resto hasta 

a, ª2 a, ... 
ª" el infinito 

Valor del 
A _!_A ..2._A J_A 

término 
... ... 

4 4 2 4 " 

A+ _!_A+ ..2._A +--· +..2..A+ 
4 4 2 4n 

__!_J_A 
3 4 n 

A+ _!_A 
Suma 3 

- 1 4 
L 4(n- l) A = 3A 
n=l 

«EL PROBLEMA DE LOS BUEYES» 

Al acercarnos a la obra de Arquímedes es fácil notar que el dis­
curso adoptado es casi eminentemente ensayístico, puesto que su 
destinatario es más el estudioso en la materia matemática que el 
hombre de a pie. A pesar de ello, el contenido no se lleva mal con 
el estilo de redacción; así, en El problema de los bueyes deja dis-
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AQUILES Y LA TORTUGA 

Zenón de Elea fue un filósofo griego perteneciente a la escuela eleática famo­
so por el planteamiento de varias paradojas. Quizá una de las más conocidas 
sea la de Aquiles y la tortuga. Se decía del guerrero aqueo Aquiles que era 
tan rápido que le llamaban «el de los pies ligeros». Zenón propuso una com­
petición muy peculiar: una carrera entre Aquiles y una tortuga, la cual se 
presuponía la mitad de lenta. Pero Aquiles, en un acto de arrogancia, otorga­
ba una ventaja de la mitad del camino a la tortuga. Zenón propuso que cuan­
do Aquiles llegara a la posición media de la distancia a cubrir la tortuga habría 
recorrido una distancia de la cuarta parte del camino total, es decir, la mitad 
de lo que quedaba por recorrer. Por lo que se vuelve a la situación inicial: 
cuando Aquiles ocupara la nueva posición de la tortuga, esta se habría des­
plazado nuevamente, y así hasta el infinito, de manera que Aquiles nunca la 
alcanzaría. Arquímedes encontró la respuesta a la paradoja, aunque no llegó 

· a desarrollar el cuerpo matemático que la justifica: la suma de infinitos térmi­
nos puede dar lugar a un número finito, es decir, no infinito. Dicho de otro 
modo: a Zenón de Elea le faltaba una herramienta matemática fundamental, 
el cálculo infinitesimal. Aqu iles alcanza a la tortuga porque a pesar de que se 
pueda dividir la recta en infinitos trozos, al ser estos cada vez más pequeños, 
la suma es un número finito. Actualmente, el problema puede representarse 
mediante la siguiente notación: 

A 
1 

AB/2 
1 

AB/4 AB/8 1 B 
AB/16. 

Cuando Aquiles alcance la posición AB/2, donde estaba la tortuga, esta se encontrará en AB/ 4. 
En el momento en que Aquiles alcance la posición AB/4 que ocupaba la tortuga, esta estará en 
AB/8, y así sucesivamente. 
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currir su pluma por los caminos que ofrece la poesía, aunque es 
cierto que algunos expertos han dudado de su auténtica autoría, 
ya sea del poema o del problema propiamente dicho. Incluso se 
ha llegado a dudar de que pudiera resolverlo por sí mismo, aunque 
el tratamiento de los números grandes mediante miríadas arroja 
algo de luz a una posible resolución hecha por Arquímedes. Esta 
pequeña obra es un conjunto de veintidós dísticos elegíacos basa­
dos en una obra de Homero; el dístico, que consta de dos versos, 
es una composición muy habitual en la poesía griega. El manus­
crito fue descubierto por el poeta alemán Gotthold Ephrairn Les­
sing en 1773, en la Biblioteca Herzog de Wolfenbüttel, Alemania. 

«Luego, cuando hubimos escapado de la terrible Caribdes 
y de Escila, pronto llegamos a una isla espléndida. 

Allí estaban las vacas de amplia testuz y los gru~ 
y muchos rebaños de Helios Hiperión1» 

- EXTRACTO DE LA ODISEA DE HOMERO, DEL QUE SE HA LLEGADO A AFIKIIAI ~Ull 

ARQUbfEDES SE BASÓ EN ÉL PARA PLANTEAR EL PROBLEMA DE LOS llllE\'J;S, 

El problema consistía en calcular el número de reses de ga­
nado de ocho tipos distintos bajo una serie de condiciones y res­
tricciones muy concretas. En primer lugar contextualizó el 
problema: se trataba de cabezas de ganado del dios Sol que pasta­
ban en las llanuras de la siciliana isla de Trinada. Clasificó las 
reses, a saber, cuatro tipos de toros y otros cuatro de vacas. La 
diferencia radicaba en el color: blancos, negros, moteados y ama­
rillos. A continuación introdujo un total de nueve condiciones; las 
siete primeras eran ecuaciones simples pero las dos últimas con­
vertían el asunto en un problema de análisis indeterminado. La 
inclusión de las dos últimas condiciones condujo a Arquímedes a 
presentar un antecedente a la conocida ecuación diofántica del 
matemático inglés John Pell (1611-1685), es decir, la que tiene la 
forma general a 2-a~2 = l. Arquímedes la resolvería solamente 
para un valor de a, el que resulta de su propio problema. Escribir 
las ecuaciones a partir de las condiciones dadas por Arquímedes 
es fácil, corno puede comprobarse a continuación: 
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Toros Vacas 

' 
W: Número de toros blancos. w: Número de vacas blancas. 

X: Número de toros negros. x: Número de vacas negras. 

Y: Número de toros moteados. y: Número de vacas moteadas. 

Z: Número de toros amarillos. z: Número de vacas amarillas. 

l. El número de toros blancos (W) es la mitad más la tercera 
parte de los toros negros (X) más los amarillos (Z). 

2. El número de toros negros (X) es la cuarta parte más la 
quinta parte de los moteados (Y) más los amarillos (Z). 

3. El número de toros moteados (Y) es la sexta parte más la 
séptima parte de los blancos (W) más los amarillos (Z). 

4. El número de vacas blancas (w) es igual a un tercio más un 
cuarto de la suma de los toros negros (X) más las vacas 
negras (x). 

5. El número de vacas negras ( x) es igual a la cuarta parte más 
la quinta parte de la suma de los toros moteados (Y) más las 
vacas moteadas (y). 

6. El número de vacas moteadas (y) es igual a la quinta parte 
más la sexta parte de la suma de los toros amarillos (Z) más 
las vacas amarillas ( z). 

7. El número de vacas amarillas (z) es igual a la sexta parte 
más la séptima parte de la suma de los toros blancos 
(W) más las vacas blancas ( w). 

8. La suma del número de toros blancos (W) y toros negros 
(X) es un número al cuadrado. 
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9. La suma de los toros moteados (Y) más los toros amarillos 
(Z) es un número triangular. Un número triangular viene 
definido por la expresión 

m·(m+l) 
2 

l. W = (½+½)x +Z 

2.X = (¼+¼)v +Z 

3. Y = (¼+~)w+z 

4. w=(½+¼)x + x 

5. X = (¼+¼)Y + y 

6. y = ( ¼ + ¼) Z + z 

7. z=(¼+~ )w+w 
8. W +X = n 2 

9. Y+Z= m·(m+l)_ 
2 

Los matemáticos supieron encontrar pronto la solución, te­
niendo en cuenta solo las primeras siete ecuaciones. El número 
total de reses es de 50 389 082. Sin embargo, las dos últimas con­
diciones complican increíblemente el problema; de hecho, no 
existe una única solución, sino que depende de dos coeficientes. 
Hasta 1880 no se obtuvo una primera solución aproximada del 
problema completo, y lo conseguiría A Amthor mediante el uso 
de exponenciales y sería la más pequeña de las soluciones. La 
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NÚMEROS TRIANGULARES 

Los números triangulares son aquellos que pueden ordenarse formando un 
triángulo y pueden calcularse a partir de la expresión 

T. = n(n+l) 
n 2 . 

De esta forma se pueden calcular sustituyendo el valor de n por un número 
concreto. En la figura 1 se muestran algunos ejemplos. Un caso particular muy 
conocido es la Tetraktys (figura 2), correspondiente a T4 = 10, considerado por 
los pitagóricos un número sagrado. 

FIG. I • • • • • •• ••• • •• ••• • ••• T1 = 1 T2 = 3 T3 = 6 T4 = 10 

• •• ••• •••• ••••• 
Ts = 15 

• •• • •• • ••• • •••• • ••••• h = 21 

solución aproximada de Amthor es de 7,76-10206544 reses en total. 
Se trata pues de un número de 206 545 cifras. Si quisiéramos escri­
bir el número completo a un dígito por segundo, sin descanso, 
tardaríamos unos 2 días y 9 horas y usaríamos, al menos, 50 pági­
nas. Y es la solución más pequeña . . . 

El problema de los bueyes nos ha llegado bajo el supuesto de 
que fue enviado a Eratóstenes con una carta previa. En la propia 
redacción del problema Arquímedes retaba a cualquier persona 
que leyese el texto a resolver el acertijo, diciendo que «si llegaras 
a decir exactamente cuántas eran las reses del Sol, no serías lla-
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mado ignorante ni inexperto en 
números»; y a quien fuera capaz 
de resolverlo por completo, inclui­
das las dos últimas restricciones, 
le dice que se vaya jactando de 
«ser portador de la victoria» y que 
se tenga por «fecundo en esta sa­
biduría». 

EL ARTE DE FILETEAR 
UN PARABOLOIDE 

En su tratado Sobre los conoides y 
los esferoides Arquímedes realizó 
un estudio sobre las superficies só­
lidas generadas a partir de cónicas 
de revolución. Este va acompa­
ñado, una vez más, de una carta a 
Dositeo en la que ofrece un resu­
men de lo que encontrará en la 
obra, como era común en el estilo 
de Arquímedes. Tras las defuúcio­
nes previas y un lema, siguen un 
total de treinta y dos proposiciones. 

Un paraboloide (figura 14) es 
la superficie tridimensional gene­
rada al hacer girar una parábola 
alrededor de su eje; un hiperbo­
loide (figura 15) es la superficie 
tridimensional generada al hacer 
girar una hipérbola alrededor de su 
eje; y un elipsoide (figura 16) es la 
superficie tridimensional generada 
al hacer girar una elipse alrededor 
de uno de sus ejes. 

FIG. 14 

FIG. 15 

FIG.16 
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Ilustración de la 
proposición 19 de 

Sobre los 
conoides y los 
esferoides. Se 

aprecia cómo el 
paraboloide se 

divide en cilindros 
muy planos a 

modo de cortes, 
tanto interiores 

como exteriores al 
volumen. 

112 

Las veinte primeras proposiciones tienen un carácter auxiliar 
para las proposiciones 21 a 32, que son los resultados importantes 
del tratado. En Sobre los conoides y los esferoides se aprecia un 
cálculo integral incipiente. Se introducen los conceptos básicos 
para poder abordar un problema de volúmenes de curvas de revo­
lución mediante la integración definida; sin embargo, no se llega­
ría hasta este punto debido a que no había sido introducido aún el 
concepto de límite. Así, la idea de base presente en el texto es 
trocear los sólidos de revolución en pequeños cilindros, tantos 
como se quieran, hasta acercarse lo más posible a rellenarlo ( ago­
tamiento) o cubrirlo (compresión). Por tanto, Arquímedes usó 
aquí en todo su esplendor el método de exhaución. De esta ma­
nera, lo único que necesitaba era demostrar que, efectivan1ente, 
podía acotar el paraboloide por exceso y por defecto, algo que 
expresa, por ejemplo, en la proposición 19: «Es posible inscribir 
una figura sólida y circunscribir otra compuesta de cilindros de la 
misma altura, de modo que la figura circunscrita exceda a la ins­
crita en una magnitud menor que cualquier magnitud sólida pro­
puesta». Es decir, se encaja el paraboloide en un cilindro y se 
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corta el cilindro en «rodajas» de la 
misma altura (pequeños cilindros 
achatados, más anchos que altos, 
a modo de pastillas). Estas rodajas 
se cortan por pares, de tal manera 
que una esté inscrita en el parabo­
loide (por dentro) y la otra cir­
cunscrita (por fuera). El volumen 
del paraboloide será un valor in­
termedio entre el volumen total de 
las rodajas que circunscriben y las 
rodajas que inscriben. Como se 
muestra en la figura, a mayor nú­
mero de rodajas (menor altura por 
cada una) más aproximado será el 
valor del volumen calculado. La 
idea es muy parecida a la usada en 
la cuadratura de la circunferencia. 



EL CUCHILLO DE ZAPATERO 
YLABODEGAPARALASAL 

El tratado conocido como El libro de los lemas difiere del resto 
de la obra de Arquímedes en un punto fundamental: no se dis­
pone del texto griego. Ha llegado hasta nuestros días gracias a 
la traducción árabe del astrónomo, matemático y traductor Tha­
bit ibn Qurra en el siglo rx. Se trata por tanto del único testimo­
nio que otorga la autoría del libro a Arquímedes, lo cual arroja 
algunas dudas sobre su verdadero carácter arquimediano. Es un 
libro que ha sido considerado como didáctico por lo elemental 
de sus proposiciones y recoge algunos resultados conocidos o 
inmediatos. Por ejemplo, la proposición 7 demuestra que el área 
del círculo que circunscribe a un cuadrado es el doble de la del 
círculo que lo inscribe. Consta de untotal de quince proposicio­
nes y el propio Arquímedes aparece citado en el libro, por ejem­
plo en la proposición 4, al presentarse la figura geométrica 
llamada arbelos. 

El término griego arbelos significa literalmente «cuchillo de 
zapatero», debido a que su forma recuerda dicha herramienta. El 
arbelos es la región del plano limitada por tres semicírculos tan­
gentes. En la figura aquí representada, el arbelos corresponde a 
la sección sombreada y limitada por los semicírculos de diámetro 
AB ACy CB. 

El arbelos tiene curiosas propiedades que pueden ser estu­
diadas en un curso elemental de geometría. Tal vez la más atrac­
tiva sea la relacionada con los llamados círculos gemelos de 
Arquímedes (véase la figura de la página siguiente): se traza por 
C una perpendicular a AB hasta que 
corte a la circunferencia de mayor 
diámetro. Esta perpendicular divide 
el arbelos en dos superficies. A con­
tinuación se trazan los círculos C1 y 
C2 a ambos lados de la línea perpen­
dicular y tangentes a dicha línea y a 
las circunferencias mayor y menor 
correspondientes al lado donde se A e 
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e B 

encuentren. En la proposición 5 se 
demuestra que estos dos círculos tie­
nen la misma área (Ac = Ac ) sea 

1 2 
cual sea el punto C, de ahí el trata-
miento de círculos gemelos de Arquí­
medes. Otros círculos relacionados 
con el arbelos y con nombre propio 
son el círculo de Apolonio, el círculo 
de Papo y el círculo de Bankoff. 

La otra figura que aparece definida en El libro de los lemas es 
el salinon, término proveniente del griego, según la interpretación 
del historiador de la matemática griega Thomas Heath, y que viene 
a significar «salero», o «bodega para la sal». En la proposición 14 
se indican los pasos a seguir para construirla y se vuelve a citar al 
propio Arquímedes. El hecho de que aparezca citado en varias 
ocasiones en este tratado es indicativo de su carácter propedéu­
tico; incluso en la actualidad podrían incluirse sus tratados en un 
manual de geometría de escuela primaria por su profundo interés 
didáctico. Las indicaciones que aparecen en el libro para la cons­
trucción del salinon (figura 17, pagina 116) son las siguientes: 

- Se traza un segmento AB y sea el centro el punto O. 

- Se traza una semicircunferencia sobre el segmento AB 
cuyo diámetro sea el del segmento. 

- Sobre el segmento AB se trazan otras dos semicircunfe­
rencias de iguales diámetros (menor que la mitad del seg­
mento), de forma que sean respectivamente tangentes a la 
primera semicircunferencia en A y en B. 

- Resultan las semicircunferencias de diámetros AD y EB, 
con centros en G y en H, respectivamente. 

- Se traza una semicircunferencia con diámetro DE en el 
sentido contrario a las dos anteriores, cerrando así una 
superficie. 
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FOTO SUPERIOR 
IZQUIERDA: 

Lugar de la 
supuesta tumba 
de Arquímedes, 
en Siracusa, 
Sicilia. 

FOTO SUPERIOR 

DERECHA: 

En 1965, el cálculo 
de la soluc ión 
menor del 
problema 
de los bueyes 
tuvo ocupado 
al ordenador 
IBM 7040 durante 
7 horas y 49 
minutos 
(foto: Columbiana 
photo archive). 

FOTO INFERIOR: 

En El 1/bro de los 
lemas Arquímedes 
Introdujo la figura 
geométrica 
arbelos («cuchillo 
de zapatero»), 
así llamada por 
el parecido que 
guarda con dicha 
herramienta (foto: 
Thomas Schoch). 
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- La superficie encerrada por la línea resultante de unir las 
cuatro semicircunferencias es el salinon. 

Es interesante señalar que a la par que Arquímedes presenta el 
salinon, en la misma proposición 14, muestra la siguiente propiedad: 

- Se traza una línea recta perpendicular a AB en O. 

- Esta línea corta al salinon en C y en F. 

- SeaP el punto medio entre C y F; se traza una circunferen­
cia de centro P y diámetro CF. 

- Se puede demostrar que el área del salinon es idéntica al 
área de la circunferencia de diámetro CF y centro P (fi­
gura 18). 
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SÓLIDOS ARQUIMEDIANOS 

Desgraciadamente, no ha llegado 
a nosotros el tratado Sobre los po­
liedros regulares, donde parece 
que Arquímedes describió con de­
talle los sólidos que hoy llevan su 
nombre. Sin embargo, sabemos 
de su existencia gracias al mate­
mático griego Papo de Alejandría, 
quien en el Libro V de Sinagoga 
dice: 

Dodecaedro 
romo 

Cubo 
truncado 

Aunque pueden ser concebi­
dos muchos sólidos geométricos 
de muchos tipos, los que tienen 
formas regulares son los que me­
recen atención. Estos no solo 
incluyen las figuras encontradas 

Cuboctaedro 
Octaedro 
truncado 

por el gran Platón, es decir, el te-
traedro, el cubo, el octaedro, el 
dodecaedro y en quinto lugar el icosaedro, sino también los trece 
sólidos descubiertos por Arquímedes, formados por polígonos equi-
láteros y equiangulares pero no similares. 

Los sólidos arquimedianos, de los que se muestra algún ejem­
plo en la figura 19, son un conjunto de trece poliedros convexos 
que se obtienen en su mayoría truncando los sólidos platónicos: 
tetraedro truncado, cubo truncado, rombicuboctaedro menor, 
rombicuboctaedro mayor, octaedro truncado, dodecaedro trun­
cado, icosaedro truncado, cubo romo, cuboctaedro, rombicosido­
decaedro menor, rombicosidodecaedro mayor, icosidodecaedro y 
dodecaedro romo. 
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CAPÍTULO 4 

El ingeniero de la guerra 

El mundo de los griegos en torno a la época 
de Arquímedes también destacaba por el interés de 

dominar la naturaleza y, para ello, había que crear todo tipo 
de ingenios y artificios, ya fueran sistemas de apertura de 

puertas, aparatos para elevar grandes masas o navíos 
cada vez más sofisticados. En este contexto y con 

unas matemáticas que veían su esplendor, la receta 
del nacimiento de la ingeniería científica 

estaba escrita. 





Al igual que ocurre con su faceta de físico, Arquímedes ha sido 
recordado a lo largo de la historia por sus ingenios e invencio­
nes, más que por sus aportaciones a las matemáticas. Lo curioso 
es que no dejó absolutamente ninguna línea escrita sobre las 
máquinas que se le atribuyen, al menos que se sepa. Sin embargo, 
son múltiples las referencias que tenemos sobre varios disposi­
tivos, así que las presentaremos sean o no de su autoría. Como 
se comentó en su momento, tal vez el matemático de su época 
considerase poco el arte de construir máquinas, a pesar de que 
dicha disciplina ya llevaba cierto recorrido en la historia del 
mundo griego. 

El relato de la defensa de Siracusa esboza un Arquímedes 
perfectamente capacitado para aplicar todos sus conocimientos 
a la realidad física y a las necesidades del momento. De este 
modo, se cuenta que supo adaptar sus descubrimientos matemá­
ticos sobre la palanca a la construcción y mejora de catapultas, 
así como a complejos sistemas de poleas. 

El universo de las invenciones del sabio siracusano no está 
carente de mitos y leyendas, y algunos autores han citado in­
cluso el uso de un espejo, el rayo de calor, con el que consiguió 
incendiar la flota romana. Repetiremos algunas de las citas que 
se han introducido en el primer capítulo, con el fin de dar sus­
tento bibliográfico a los ingenios presentados. 
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LOS INGENIEROS ALEJANDRINOS 

La historia de la ingeniería puede 
remontarse al nacimiento mismo 
de la humanidad, si por ingeniería 
entendemos el uso de herramien­
tas para el bienestar humano. Sin 
embargo, debemos encuadrar en 
la época de Arquímedes la génesis 
de la ingeniería científica, que con­
siste en ap licar las técnicas geo­
métricas al mundo natural y al de 
la construcción de artificios. Filón 
de Bizancio (280-220 a.C.) escribía 
sus tratados en koiné, que era el 
griego común del momento, para 
así ll egar a los prácticos. En su 
obra Belopoica realiza un estudio 
de la catapulta teniendo en cuenta 
el peso del proyectil y la energía 
acumulada en el resorte. Un par de 
siglos después, Herón de A lejan-
dría tomaría algunas ideas de Ar-
químedes, generalizando, por ejemplo, las leyes de la palanca, e incluso se 
antic ipó experimenta lmente a la tercera ley de Newton, la ley de acción y 
reacción. Lo hizo con una máqu ina de vapor conocida como «eolípila», que 
consistía en una cavidad cerrada con dos orificios situados de tal manera 
que al hacer salir vapor de agua de su interior g iraba con rapidez. La máqu i­
na de vapor de Herón no era más que una de las muchas máquinas autóma ­
tas que tanto se pusieron de moda en la época. Por su parte, Arquímedes 
contribuyó de manera decisiva a la hora de dar un cuerpo matemático a la 
física necesaria para la construcción y el entendimiento de algunos de estos 
ingenios. 

Parece ser que el sabio de Siracusa no solo usó su genialidad 
en el ejercicio de la guerra, sino que también la utilizó en otros 
ámbitos, como, por ejemplo, en la construcción de un sistema 
para elevar agua, el tomillo de Arquímedes, el cual se va a tratar 
a continuación. 
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EL INGENIO DE ARQUÍMEDES EN LA FILATELIA 

Los grandes personajes de la historia han sido inmortalizados en el mundo de 
la filatelia; el caso de Arquímedes no iba a ser menos. Se adjuntan aquí algunos 
ejemplos de sellos donde aparece algún aspecto relacionado con el persona­
je que nos ocupa: 
A: Italia. Publicado en mayo de 1983. Aunque la imagen pretendía ser un bus­
to de Arquímedes del Museo Nacional de Nápoles en Italia, en realidad se 
trata del rey espartano Archidano 111. Puede verse el tornillo de Arquímedes. 
B: Grecia. Publicado en abril de 1983. Se trata de una ilustración basada en un 
mosaico renacentista que representa su muerte. Sin embargo, la cabeza es la 
misma que la que aparece en el sello italiano. Se aprecia una balanza de bra­
zos iguales para mostrar el principio de la hidrostática. 
C: San Marino. Publicado en abril de 1982. Curiosamente, el busto es el mismo 
que el de los sellos griego e italiano, erróneo. Arriba a la derecha puede verse 
el resultado geométrico que mandó tallar en su lápida. 
D: Guinea-Bissau. Publicado en 2008. La imagen, una vez más, es el mismo 
busto erróneo de los casos anteriores y ya apareció en una postal sov iética 
de 1957. En el fondo puede verse el asteroide 3600 Arquímedes. 
E: Nicaragua. Publicado en 1971. Corresponde a la serie «Las diez fórmulas mate­
máticas que cambiaron la faz de la Tierra». Puede apreciarse la ley de la palanca. 
F: España. Publicado en 1963. Corresponde a un cuadro del pintor español José 
de Ribera (1591-1652), conservado en el Museo del Prado de Madrid. 
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EL GIGANTE «SIRACUSIA» Y EL TORNILLO 
DE ARQUÍMEDES 

El escritor griego Ateneo de N áucratis ( ca. 200) cuenta en La cena 
de los eruditos (Deipnosophistai) que el tirano Hierón II encargó 
a Arquímedes el diseño de un barco enorme, de unos 55 metros de 
eslora y con capacidad para 600 personas. Al barco se le puso el 
nombre de Siracusia, en honor a Siracusa, y la construcción y 
supervisión cayó sobre la figura de Arquias de Corinto. 

«Respecto al barco construido por Hierón, el tirano de Siracusa, 
el cual fue también supervisado por Arquímedes, no tengo 
derecho a callarlo, ya que un hombre llamado Moschion escribió 
lo que sigue: [ ... ] . » 

- ATENEO ACERCA DE LA CONSTRUCCIÓN DEL S!RACUSIA , EL TEXTO CONTINUABA CON UNA DESCRIPCIÓN 

MINUCIOSA DE LAS CARACTERfSTICAS DEL BARCO, 

124 

El Siracusia era de un tamaño tal que incluía jardines deco­
rativos, un gimnasio, una biblioteca y un templo dedicado a la 
diosa Afrodita. Su nombre se cambió al de Alejandria cuando fue 
enviado como regalo a Ptolomeo III de Egipto, junto con un carga­
mento de grano. El Siracusia bien podría llamarse el Titanic de 
la Antigüedad, pues su masa oscilaba entre 1600 y 1800 toneladas, 
siendo el barco de la época más grande del que se tiene noticias, 
una nave verdaderamente descomunal para ese tiempo. Incluso se 
comenta en el texto de qué forma se botó el barco, además de la 
descripción de algunas máquinas creadas por Arquímedes, como 
por ejemplo, una catapulta. El tamaño del barco da idea de que 
debía movilizar grandes cantidades de agua a través del casco, 
para lo cual se dice que el matemático construyó el afamado tor­
nillo de Arquímedes, con el fin de elevar y extraer el agua de la 
bodega: «Y aunque la bodega era de una profundidad enorme, se 
podía bombear por un solo hombre, a través de un tornillo, un in­
genio que fue invención de Arquímedes». 

La invención del tomillo puede que no se deba realmente a 
Arquímedes, pues es más que famoso el culto que tuvieron los 
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ARQUÍMEDES Y EL DESARROLLO DE LA INDUSTRIA NAVAL 

Hasta que Arquímedes no escribió su tratado Sobre los cuerpos flotantes 
poca gente entendía de verdad lo que significaba flotar. La clave está en la 
densidad, no en el peso. Su tratado sirvió como punto de partida teórico 
para la empresa naval. La segunda parte de su tratado incluso estudia el 
equilibrio de paraboloides en el agua, sólidos geométricos muy parecidos al 
casco de los barcos. Durante mucho tiempo solo se construían barcos de 
madera, pero más tarde se empezarían a utilizar materiales más densos que 
el agua. Los grandes barcos con cascos de acero flotan en el agua a pesar 
de que la densidad de este metal es muy superior a ella . De hecho, un pe­
queño trozo de acero soltado sobre el agua se hunde con rapidez. ¿cómo 
pueden los barcos flotar si el acero es más denso que el agua? La respuesta 
está en la estructura del propio barco: se debe conseguir que existan huecos 
donde el aire haga que la densidad del conjunto sea menor que la del agua. 
Un barco, por tanto, se hundirá si el agua toma el espacio ocupado por el 
aire. Así ocurrió, por ejemplo, con el hundimiento legendario del transatlán­
tico Titanic, en la noche del 14 al 15 de abril de 1912. El gigante de 270 m de 
eslora y con capacidad para más de 3 500 personas fue incapaz de evitar la 
colisión lateral con un iceberg, el cual produjo varias grietas en el casco, por 
donde el agua entró inevitablemente en la nave. En la actua lidad, y para 
evitar tragedias como la del Titanic, la industria naval está tendiendo al uso 
del doble casco -sobre todo en los petroleros-, que posee una barrera de 
separación doble entre los tanques de carga y el mar, con lo que las naves 
son menos vulnerables ante una colisión . 

Imagen del Titanic, el 10 de abril de 1912, cuando comenzaba su viaje inaugural desde 
Southampton, Inglaterra. 
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antiguos por el uso del agua como recurso energético y de _muchos 
otros tipos. Tanto es así que algunos filósofos defendieron que el 
agua era el principio de todas las cosas y tuvieron dioses y divini­
dades acuáticas. El mar era el día a día como camino y nexo en las 
relaciones internacionales de los mundos griego y romano. Por 
otra parte, la manipulación de las aguas en los ríos era fundamen­
tal para todos los hombres de la Antigüedad, de manera que, por 
ejemplo, los artificios en el Nilo pudieron dar lugar a un mejor 
aprovechanliento de sus recursos. En cualquier caso, el artefacto 
ha pasado a las páginas de la historia de la ingeniería como obra 
de Arquímedes. También Vitruvio describe en uno de sus libros 
una «cóclea para elevar agua», que en esencia se trata del tornillo 
o rosca de Arquímedes, aunque no llega a nombrar a este. El inge­
nio consiste en una estructura en hélice semejante a un tornillo 
arrollada en un tubo que se coloca forn1ando un plano inclinado y 
que se usa para elevar agua o grano gracias a su giro continuado, 
por lo que se trata de un tipo de «tornillo sin fin». 

EL RAYO DE CALOR 

Otra de las historias recurrentes que se cuenta en torno a la figura 
de Arquímedes es que venció a una de las flotas romanas de Mar­
celo haciéndola arder, mediante el reflejo de la luz solar a través 
de unos grandes espejos, cuando se disponían a tomar Siracusa. 
La historia se conoce como «el rayo de calor de Arquímedes» o 
«los espejos ustorios de Arquímedes». El término ustorio pro­
viene del latín y significa «el que quema». Vamos a ver que no se 
trata más que de otra de las leyendas que la literatura ha atribuido 
a nuestro personaje, aunque en ocasiones este tipo de proezas se 
antoja cierto, pues es sabido que un trozo de cristal sobre hojas 
secas es una fuente de peligro de incendio. Para refutar la veraci­
dad del ingenio vamos a presentar dos argumentos: la carencia de 
fuentes históricas fiables y las difíciles condiciones necesarias 
para que las naves se incendiaran, siguiendo este procedimiento, 
desde el punto de vista científico. 
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EL RAYO DE LA MUERTE LLEVADO AL CINE Y LA TELEVISIÓN 

El cine ha inmortalizado la figura de Arquímedes en bastantes ocasiones. 
Entre ellas, el sabio de Siracusa aparece barbudo y casi anciano en la pelí­
cula Cabiria (1914), considerada una de las primeras obras de cine histórico 
de aventuras, también llamadas péplum. El director, Giovanni Pastrone (más 
conocido por el seudónimo de Piero Fosco), cuenta la historia de una niña 
romana llamada Cabiria en el contexto de la Segunda Guerra Púnica. El lar­
gometraje muestra cómo Arquímedes derrota a la flota romana con la ayu­
da de los espejos ustorios, lo cual ha servido para alimentar la leyenda del 
rayo de calor, también conocido como rayo de la muerte. 

El rayo de calor en televisión 
Más recientemente, en 2006, se ha puesto a prueba el rayo de calor en el 
programa televisivo de divulgación científica Cazadores de mitos (Myth­
busters), en el capítulo titulado «El rayo de la muerte de Arquímedes». Para 
ello, pidieron ayuda a un grupo de estudiantes del MIT (Instituto Tecnológi­
co de Massachusetts) que un año antes habían conseguido hacer brotar 
llamas en un barco, aunque en unas condiciones muy específicas. Jamie 
Hyneman y Adam Savage, los cazadores de mitos, repitieron el experimen­
to en San Francisco con un modelo a escala de un trirreme. Las conclusiones 
fueron: se debería haber hecho exclusivamente durante la mañana (la costa 
de Siracusa mira al este), en unas condiciones climatológicas perfectas, es­
tando el barco estático y durante un largo período de tiempo. En definitiva, 
clasificaron la afirmación como desmentida. 

Fotograma de la película Cabiria, en la que Enrico Gemelli encarna 
el personaje de Arquímedes. 
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La primera de las razones que nos encamina a calificar de le­
yenda el rayo de calor la encontramos en las propias referencias 
a la historia. No se encuentran alusiones en las fiables narraciones 
de Siracusa por parte de Plutarco, Tito Livio o Polibio. 

Si los espejos ustorios hubieran aparecido en la Vida de Mar­
celo u otro relato histórico, sería más difícil dudar de ellos, pero el 
verlo omitido de tan importantes fuentes obliga a ser escépticos. 
Polibio nació doce años después del asedio de Siracusa, por lo que 
posiblemente conocería a testigos directos de la hazaña y no ha­
bría dudado ni un momento en incluirla en sus escritos. No exis­
ten, por tanto, referencias tempranas; de hecho, el primero en 
relatar el suceso fue Galeno de Pérgamo, un médico griego del 
siglo rr, quien en su obra Los temperamentos llega a decir: «Arquí­
medes quemó las naves enemigas conpureia». Pero incluso esta 
primera alusión es confusa, pues según algunos expertos pureia 
podría designar los espejos ardientes o cualquier dispositivo 
capaz de encender un fuego, por ejemplo, flechas ardientes. Así, 
hay que ir al siglo VI para encontrar el primer texto realmente ex­
plícito, de Antemio de Tralles ( ca. 4 7 4-¿ ?) en su tratado Máquinas 
extraordinarias. Antemio ha pasado a la historia por ser el arqui­
tecto, junto a Isidoro de Mileto, de la iglesia de Santa Sofía de 
Constantinopla, en la actual Estambul. En la obra citada, discute 
sobre la posibilidad de incendiar ciertas sustancias mediante la 
reflexión de la luz. Aunque admite que Arquímedes incendió las 
galeras romanas, también afirma que debería haber usado unos 
espejos parabólicos enormes. 

El resto de alusiones al rayo de calor son aún más tardías e 
incluyen una hazaña equivalente en la figura de Proclo, ingeniero 
del emperador bizantino Anastasia I. Así, el historiador griego 
Juan Zonaras (siglo xrr) relata que Proclo logró incendiar en Cons­
tantinopla la flota de Vitalino. Se excluyen aquí varias fuentes de 
la época y de los siglos posteriores en las que se trata el asunto; 
en cualquier caso, todas son de naturaleza secundaria. 

La segunda de las razones que da pie a presentar los espejos 
ustorios como una leyenda se encuentra, como se ha dicho, en 
motivos técnicos y científicos. Muchos hombres de ciencia a lo 
largo de la historia han intentado mostrar que se trata de una fá-
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bula, en contraposición a otros que han pretendido darle pábulo. 
El filósofo y matemático francés René Descartes (1596-1650) ne­
gaba la hazaña en su Dióptrica, afirmando que el espejo debía ser 
demasiado grande y la precisión extremadamente afinada. 

«La imaginación no actúa menos en un geómetra que crea que 
en un poeta que inventa, aunque operan de manera diferente 
sobre su objeto: el primero lo desnuda y analiza, el segundo 
lo compone y embellece. [ .. . ] De todos los grandes hombres 

de la Antigüedad, es acaso Arquímedes el que más merece 
figurar al lado de Homero.» 

- JEAN LE ROND D'ALEMBERT. 

Por contra, personajes de la talla de Galileo, Bonaventura 
Cavalieri y Roger Bacon se pronunciaron a favor del aconteci­
miento, tal vez guiados más por la admiración y respeto a Arquí­
medes que por las posibilidades técnicas y científicas. Un clásico 
muy citado es el de Georges Louis Leclerc (1707-1788), conde de 
Buffon, quien construyó un sistema de espejos con el que llegó a 
prender pedazos de madera al hacer coincidir todos los rayos. Se 
trataba de un conjunto de 168 espejos de 16 x 21,5 cm, que se 
orientaban a voluntad para hacer coincidir los rayos sobre un 
objetivo y así maximizar el efecto. El problema era que para ha­
cer funcionar el dispositivo se requería un tiempo mínimo de 
media hora, al que había que sumarle el intervalo de acción de los 
rayos para que la madera alcanzase la temperatura suficiente 
para incendiarse. 

¿Acaso Arquímedes convenció a Marcelo para que dejase sus 
barcos inmóviles durante tanto tiempo? ¿Tenía el poder de man­
tener el agua en calma para que los rayos enfocasen siempre en el 
mismo punto? Este es el verdadero problema, puesto que estudios 
más recientes demuestran que sí es posible que la madera arda 
mediante algún tipo de material reflector, pero se necesita tiempo 
y precisión. Ninguna de las dos variables era controlable por Ar­
químedes, por muy ingenioso que fuera. 
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LA LUZ PERDIDA DE ARQUÍMEDES 

Varias fuentes citan Catóptrica, un libro perdido sobre óptica es­
crito por Arquímedes. A pesar de que conocía a fondo muchas de 
las propiedades de la parábola, no existe un legado escrito sobre 
si Arquímedes sabía que los rayos que entran paralelos a una pará­
bola salen reflejados de esta cortándose en el foco. A lo largo de la 
historia, los científicos que defendieron la anécdota de los espejos 
ustorios no hablaron en realidad de un espejo parabólico, sino de 
un conjunto de espejos que, orientados adecuadamente, hacían 
cortar los rayos reflejados en un punto. Hay que notar que el sis­
tema de muchos espejos es equivalente al de un espejo parabólico, 

HORNOS SOLARES 

A pesar de que hay numerosas 
razones de peso para pensar que 
el rayo de calor de Arquímedes es 
una leyenda, la idea científica que 
la sustenta se ha llevado a la prác­
tica con éxito en la actualidad. La 
energía solar se puede aprovechar 
de infinidad de maneras; entre 
ellas, resulta interesante la relativa 
a la energía termosolar, es decir, 
el aprovechamiento directo del 
calor producido por los rayos so­
lares. Ese calor se puede utilizar 
para cocinar alimentos, calentar 
agua para uso doméstico o para 
la producción de energía mecáni ­
ca con el fin de obtener energía 
eléctrica. La esencia en los tres 
casos mencionados es la misma: 
la concentración de los rayos so­
lares mediante sistemas parabóli ­
cos que reflejan debidamente la 
luz solar (figuras 1 a 3). 
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FIG 1 

11----- Soporte para cocinar 
los alimentos 

Espejo parabólico 

Si se coloca el alimento en el foco de la parábola se puede 
llegar a cocinar solo con la luz solar. Se trata del mismo 
sistema que el de los espejos ustorios de Arquímedes. 



pues al fin y al cabo se acaban orientando según la superficie de un 
paraboloide (véase la figura de la página siguiente). 

Una de las fuentes más fiables sobre el tratado perdido de 
Arquímedes es el matemático griego Teón de Alejandría (335-405). 
En su comentario al Almagesto de Ptolomeo dice: 

Y los rayos que desde ella [la vista] recaen sobre el aire, al sufrir la 
refracción y formar un ángulo mayor que el que tiene su vértice en 
el ojo, como lo afirma también Arquímedes demostrándolo en los 
libros sobre catóptrica, que también las cosas sumergidas en el 
agua parecen más grandes, y que cuanto más abajo van, más gran­
des parecen. 

FIG. 2 En la tecnología de torre se posicionan los heliostatos (espejos 
móviles) alrededor de una torre para concentrar los rayos solares 

sobre su parte superior. Allí calientan un fluido que, al expandirse, 
produce electricidad tras el movimiento de unas turbinas. 

Torre 

En la tecnología cilindroparabólica los espejos 
se posicionan a lo largo de la superficie de un 
cilindro parabólico, la luz solar se concentra 
en unos tubos que van sigu iendo el eje que 
hace las veces de foco. Por estos tubos pasa 
un líquido similar al aceite que tras evaporarse 
mueve las turbinas que transforman la energía 
cinética en electricidad. 
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0 
Habida cuenta de la gran 

probabilidad de la existencia de 
Catóptrica, se presenta como la 
posible fuente de la leyenda del 
rayo de calor. 

Según hemos visto Arquíme­
des realizaba experimentos de 
todo tipo para poder llegar a sus 
conclusiones teóricas. Por tanto, 
Catóptrica podría ser un libro de 
óptica eminentemente matemá­
tico cuyos resultados dejarían en­
trever algún tipo de experimento. 
Tal vez sus amigos o las personas 
de su entorno conociesen estos 
experimentos que con el paso de 
los años serían el origen de la le­
yenda. 

LA GARRA DE ARQUÍMEDES 

Entre todos los artefactos usados por Arquímedes en la defensa 
de Siracusa, el más destacado tal vez sea la garra de Arquíme­
des, también conocido como manusferrea («mano de hierro»). 
Su existencia es muy probable, pues grandes historiadores 
como Polibio y Tito Livio la explican, aunque no hay acuerdo 
sobre su verdadera estructura. Lo que sí es seguro es que se 
trataba de algún tipo de grúa con un enorme gancho metálico 
que conseguía levantar las naves romanas para su posterior 
hundimiento. 

En líneas generales, el mecanismo consistía en una polea o 
un polispasto que era accionado por la fuerza animal o de varios 
hombres (véase la figura de la página siguiente). Se dejaba caer 
un gancho a modo de ancla que se asía al casco del barco; una vez 
sujeto, la fuerza motora actuaba levantando el barco. Ese movi-
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miento debía ser lento, pero irremediable. Cuando se alcanzaba 
cierta altura, se dejaba caer de golpe, produciendo fracturas que 
hundían el barco. En palabras de Polibio: 

Al mismo tiempo dejaban caer una mano de hierro atada a una cade­
na, con la cual aquel que gobernaba la máquina, así que con la parte 
anterior de ésta había agarrado la proa del navío, bajaba la posterior 
por dentro de la muralla Una vez levantada la proa, y puesto el buque 
perpendicular sobre la popa, quedaba inmóvil la parte anterior de la 
máquina; pero mediante cierta polea se aflojaba la mano de hierro y 
la cadena, con lo cual unos navíos caían de costado, otros de espal­
das, y la mayor parte, dejaba caer la proa desde lo alto, eran sun1er­
gidos y echados a pique. 

Los científicos e ingenieros antiguos y actuales han mostrado 
su interés sobre el artefacto. Así, en 2005 se construyó con éxito 
una garra de Arquímedes para un capítulo de la serie de documen­
tales Superarmas del mundo antiguo (Superweapons of the An­
cient World), abriendo la posibilidad de que el ingenio fuera 
factible. 
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Imagen 
esquemática del 
funcionamiento 
aproximado de 
la garra de 
Arquímedes. 
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EL POLISPASTO 

Se ha afirmado muy a menudo que fue Arquímedes quien utilizó por primera 
vez el polispasto, tal vez para su manus ferrea o para botar el Siracusia. En 
cualquier caso, es evidente que debería haber utilizado algún sistema que 
multiplicase la fuerza motora. Y eso es, en esencia, lo que hace un polispasto. 
Se trata de un conjunto de poleas, con un mínimo de dos, comun icadas con­
venientemente para conseguir una fuerza mayor de la que se proporc iona. 
Esto no incumple la ley de conservación de la energía, puesto que la clave 
está en el desplazamiento: mientras que en el punto de aplicación de la fuer­
za motora se recorre cierta distancia, en el punto de aplicación del cuerpo 
que se desea movilizar la distancia recorrida es muchísimo menor. Concep­
tualmente hablando, el objet ivo es el mismo que el de la pa lanca de brazos 
desiguales, así que si Arquímedes no inventó el polispasto, seguramente sí lo 
usó, puesto que conocería bien su mecanismo debido a la gran semejanza 
con una de sus especialidades, la palanca. 

Mientras que en una polea simple la fuerza que hay que aplicar es la misma que la fuerza peso del 
objeto a levantar, con el uso de un polispasto la fuerza a aplicar se minimiza y pueden levantarse 
grandes pesos con pequeños esfuerzos. 
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Desde su 
aparición, 
la catapulta 
(izquierda) se 
ha usado en 
todas las épocas, 
aunque este se 
generalizó en la 
Edad Media. 
Abajo, a la 
izquierda, 
grabado del 
tratado Thesaurus 
opticus, de 
Alhacén (965-
1040), que 
muestra cómo 
Arquímedes usó 
los espejos 
ustorios. 
Bajo estas líneas, 
detalle de un 
fresco en el que 
se representa 
la garra de 
Arquímedes. 
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En su Vida de Marcelo, Plutarco también hace referencia a la 
mano de hierro: 

En cuanto a las naves, a unas las asían por medio de grandes made­
ros con punta, que repentinamente aparecieron en el· aire saliendo 
desde la muralla, y, alzándose en alto con unos contrapesos, las 
hacían luego sumirse en el mar, y a otras, levantándolas rectas por 
la proa con garfios de hierro semejantes al pico de las grullas, las 
hacían caer en el agua por la popa, o atrayéndolas y arrastrándolas 
con máquinas que calaban adentro las estrellaban en las rocas y 
escollos que abundaban bajo la muralla, con gran ruina de la 

· tripulación. 

ARQUÍMEDES: MITOS Y REALIDADES 

A lo largo de la presente obra se han repasado las historias reales y las leyen­
das sobre la v ida, los descubrimientos y las invenciones de Arquímedes. Lle­
gados a este punto podemos hacer una recopilación de las afirmaciones más 
destacadas y conocidas: 

l. «Dadme un punto de apoyo y moveré el mundo.» Frase atr ibuida falsa­
mente a Arquímedes, tomando el sentido estricto de su significado, pues­
to que tenía conocimientos sobrados para comprobar que no era posible. 

2. «i Eureka!, ieureka!» Expresión de alegría que supuestamente pronunció 
al introducirse en un baño público y descubrir el principio de la hidrostá­
tica . Es muy poco probable que la historia sea cierta en sus detalles; 
posiblemente Vitruvio la adornó literariamente. 

3. La corona del rey Hierón 11. Seguramente la anécdota de la corona es 
cierta, aunque el modo de demostración de la estafa sería mediante la 
combinación del principio de la hidrostática y de la ley de la palanca, no 
simplemente rebosando agua de un recipiente. 

4. El epitafio en la tumba. Es muy probable que sea cierto que Arquímedes 
pidiera que grabaran en su epitafio una esfera dentro de un cilindro. Ci­
cerón encontró la tumba, ya dañada, pero no ha llegado a nuestros días. 
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LA CATAPULTA 

Una catapulta es un instrumento militar que aprovecha la energía 
potencial elástica de un sistema comprimido para convertirla en 
energía cinética cuando se libera. Se tiene conocimiento de que 
en tiempos de Arquímedes ya se hacía uso de ella y que este pudo 
mejorarla notablemente. Por ejemplo, Polibio nos cuenta: 

Pero Arquímedes, que tenía prevenidas máquinas para arrojar dardos 
a todas distancias, mientras los enemigos se hallaban lejos, hirién­
doles con ballestas más elásticas y catapultas de mayor alcance, los 
reducía al último apuro. 

5. «No molestes mis círculos.» La frase en sí puede ser una fantasía, pero su 
contexto no. Hay acuerdo entre los historiadores de que Arquímedes fue 
asesinado en su casa mientras trabajaba. Lo que no es seguro es que 
dijera esta última frase al soldado que acabó con su vida. 

6. El tornillo de Arqu ímedes. Este dispositivo se conocía con seguridad 
antes de su nacimiento; sin embargo, es muy posible que lo mejorara de 
algún modo o le sacara más partido. 

7. Planificación de la defensa de Siracusa. Según cuentan todas las crónicas 
serias de los historiadores, este hecho parece ser cierto. 

8. La garra de Arquímedes. También es verdad que construyó una máquina 
que levantaba y destruía de algún modo los barcos, como puede consul­
tarse en las crón icas. 

9. El rayo de calor. Es un mito con casi total seguridad, debido a las limita­
c iones técnicas y a la ausencia de crónicas tempranas. 

10. Cálculo del número n:. Se dice muchas veces que Arquímedes calculó el 
número n. iEso es imposible! El número n tiene infinitos decimales y 
deberíamos estar un tiempo infinito enumerando cada decimal. Sí es 
cierto que calculó una aproximación que hoy se sigue usando: 3,14. 
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OBSERVADOR DEL CIELO 

El único libro en el que Arquímedes muestra una evidencia de su 
gusto por la astronomía es El Arenario. Sin embargo, existen 
otras fuentes que hacen pensar que dedicó parte de su vida a ob­
servar el cielo e incluso construyó máquinas relacionadas con la 
astronomía. De hecho, Papo de Alejandría cuenta que escribió un 
tratado llamado Sobre la construcción de esferas, documento que 
desgraciadamente se ha perdido. 

«Considero que hubo en aquel siciliano [Arquímedes] más 
inteligencia que la que parece que haya podido producir 
la naturaleza humana.» 
- CICERÓN. 
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Por su parte, Cicerón relata que en el saqueo de los soldados 
de Marcelo se encontraron dos esferas pertenecientes al célebre 
siracusano. Una de ellas era sólida y tenía grabadas estrellas en su 
superficie, unos globos celestes que Cicerón atribuye a Tales y 
Eudoxo. La segunda de las esferas sorprende más y Cicerón sí 
adjudica su invención a Arquímedes. Se trata de un planetario, es 
decir, un sistema mecánico que representa el movimiento del Sol, 
la Luna, los planetas y las estrellas, con centro en la Tierra. Ambas 
esferas fueron tomadas como botín de guerra y llevadas por Mar­
celo al templo de Virtus, en Roma. El general, político y astró­
nomo romano Cayo Sulpicio Galo estudió el mecanismo a 
conciencia, como cuenta Cicerón en Sobre la República: 

Pero tan pronto como Galo ha empezado a explicar, con su sublime 
cien~ia, la composición de esta máquina, sentí que el geómetra sici­
liano debió poseer un genio superior a cualquier cosa que usualmen­
te concibamos perteneciente a nuestra naturaleza. 

En el año 1900 se descubrieron los restos del naufragio de un 
barco griego del siglo r a.c. Allí se encontraba un dispositivo que 
ha sido identificado como una calculadora astronómica, lo cual 
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viene a ser un planetario muy sofisticado. El hallazgo fue bauti­
zado con el nombre de «mecanismo de Anticitera», puesto que se 
descubrió en la isla griega homónima. Se trata de un planetario 
muy avanzado, por lo que no debía ser un modelo único. Tal vez 
el planetario de Arquímedes fuera un dispositivo precursor del de 
Anticitera. 

HOMENAJEANDO A ARQUÍMEDES 

No solo Arquímedes ha prestado su nombre a la ingeniería, sino 
que también los ingenios de nuestros tiempos han usado su nom­
bre como homenaje. Así, son incontables las veces que se ha 
tomado prestado el «¡Eureka!» para nombrar centros de investi­
gación, asociaciones, etc. Del mismo modo se ha hecho con el 
propio nombre de Arquímedes, siendo uno de los reconocimien­
tos más importantes el epónimo que aparece tres veces en la 
Luna. El Cráter de Arquímedes tiene un diámetro de unos 80 km 
y una profundidad de 2, 1 km, y se encuentra en las coordenadas 
29,7º N, 4,0º W, en la zona oriental del Mare Imbrium. Al sur del 
cráter se localizan los Montes de Arquímedes y en el borde su­
reste se extiende una planicie, Palus Putredinis, donde se halla 
un sistema de grietas llamado Fisura de Arquímedes. La sonda 
soviética Luna 2 es la obra humana que más cerca ha estado del 
cráter y fue el primer artefacto en llegar con éxito a la superficie 
lunar, estrellándose sobre Palus Putredinis, el 13 de septiembre 
de 1959. Por otra parte, los seres humanos que más se han aproxi­
mado al Cráter de Arquímedes son David Scott y James lrwin, el 
comandante y el piloto del módulo lunar Falcon, respectiva­
mente, de la misión Apolo 15. El lugar de alunizaje del Falcon fue 
la base de los Montes Apenninus, a unos 200 km del sureste del 
centro del cráter. 
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Anexo 

En este anexo se recogen algunos textos de los tratados de Arquí­
medes, según la traducción de Paloma Ortiz García, en la Biblio­
teca Clásica Gredos, edición de 2005. La numeración de las citas 
se refiere a la edición de Heiberg-Stamatis: volumen en números 
romanos y página y líneas en arábigos, siempre en este orden. 

«SOBRE LA ESFERA Y EL CILINDRO» 

Libro I 

«2. Llan10 siempre cóncava por el mismo lado a una línea tal que 
si en ella tomamos dos puntos cualesquiera, las rectas entre esos 
puntos o bien caen enteras hacia el mismo lado de la línea o bien 
una parte hacia el mismo lado y otra sobre la propia línea, pero 
ninguna hacia el otro lado.» (I, 6, 6-12) 

«Proposición 33. La superficie de toda esfera es el cuádruple 
del círculo máximo de los que hay en ella.» (I, 121, 15-16) 

«Proposición 34. La esfera entera es el cuádruple del cono 
que tiene la base igual al círculo máxinlo de los de la esfera y por 
altura el radio de la esfera.» (I, 125, 15-17) 
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«Corolario [a proposición 34]. Una vez demostrado lo ante­
rior, es evidente que todo cilindro que tenga por base el círculo 
máximo de los de la esfera y la altura igual al diámetro de la esfera 
es una vez y media la esfera, y su superficie, incluidas las bases, es 
una vez y media la superficie de la esfera.» (I, 131, 4-9) 

«Proposición 42. La superficie de todo casquete de esfera 
menor que un hemisferio es igual al círculo cuyo radio es igual a 
la recta trazada desde el vértice del casquete hasta la circunf eren­
cia del círculo que es la base del casquete de esfera.» (I, 157, 1-5) 

«Proposición 44. Todo sector de esfera es igual a un cono que 
tenga la base igual a la superficie del casquete de esfera corres­
pondiente al sector y la altura igual al radio de la esfera.» (I, 160, 
13-16) 

Libro JI 

Arquímedes a Dositeo 

«¡Salud! Hace un tiempo me pediste que redactara las demostra­
ciones de los problemas cuyos enunciados yo mismo envié a 
Conón. Ocurre que la mayor parte de ellas se redacta por medio 
de los teoremas cuyas demostraciones te mandé antes: [ ... ).» (II, 
168, 1-8) 

«Proposición 3. El tercer problema era este: cortar mediante 
un plano la esfera dada de manera que las superficies de los cas­
quetes guarden entre sí una razón igual a la razón dada.» (II, 184, 
1-4) 

ccSOBRE LA MEDIDA DEL CÍRCULO» 

«Proposición l. Todo círculo es igual a un triángulo rectángulo 
cuyo radio es igual a uno de los lados que forman el ángulo recto 
y el perímetro es igual a la base.» (I, 232, 1-4) 
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«Proposición 2. El círculo guarda con el cuadrado levantado 
sobre su diámetro la razón de 11 a 14.» (I, 235, 18-20) 

«:Proposición 3. El perímetro de todo círculo es el triple del 
diámetro y además excede de él en menos de un séptimo del diá­
metro, pero es más de diez setentaiunavos.» (I, 237, 8-11) 

«SOBRE LOS CONOIDES Y LOS ESFEROIDES» 

«Proposición 4. Toda área comprendida por una elipse guarda con 
el círculo de diámetro igual al diámetro mayor de la elipse la 
misma razón que su diámetro menor con el mayor o con el diáme­
tro del círculo.» (I, 276, 3-7) 

«Proposición 6. Las áreas comprendidas por las elipses guar­
dan entre sí la misma razón que la que guardan entre sí los rectán­
gulos comprendidos por los diámetros de las elipses.» (I, 285, 
7-10) 

«Proposición 19. Dado un segmento de cualquiera de los dos 
tipos de conoide cortado por un plano perpendicular al eje, o un 
segmento no mayor que la mitad de un elipsoide de una u otra 
clase cortado de manera semejante, es posible inscribir una figura 
sólida y circunscribir otra compuesta de cilindros de la misma 
altura de modo que la figura circunscrita exceda a la inscrita en 
una magnitud menor que cualquier magnitud sólida propuesta.» 
(I, 336, 1-14) 

«Proposición 21. [ ... ] Todo segmento de paraboloide cortado 
por un plano perpendicular al eje es una vez y media el cono que 
tiene la misma base que el segmento y el mismo eje.» (I, 345, 18-23) 

«Proposición 27. En todo elipsoide cortado por un plano que 
pase por el centro, perpendicular al eje, la mitad del elipsoide es 
el doble del cono que tiene la misma base que el segmento y el 
mismo eje.» (I, 393, 18-22) 

AN EXO 143 



«SOBRE LAS ESPIRALES» 

«De los teoremas que envié a Conón, respecto a los cuales me . 
encargas constantemente que te escriba las demostraciones, la 
mayoría las tienes escritas en lo que te llevó Heráclides y algunas 
otras te las escribo y envío en este libro.» (II, 2, 2-6) 

«Proposición l. Si un punto moviéndose se desplaza unifor­
memente por una línea y en ella se toman dos líneas, las líneas 
tomadas guardarán entre sí la misma razón que los tiempos en los 
que el punto las recorrió.» (II, 12, 13-17) 

«l. Si se traza una línea recta en un plano y, permaneciendo 
fijo uno de sus extremos y haciéndola girar un número cualquiera 
de veces, vuelve de nuevo a la posición de la que partió y, al mismo 
tiempo que se hace girar la línea, se desplaza por la recta un punto 
a velocidad uniforme partiendo del extremo fijo, el punto descri­
birá una espiral en el plano.» (II, 45, 16-22) 

«Proposición 24. El área comprendida por la espiral trazada 
en su primer giro y por la recta primera tomada en la recta princi­
pio del giro es la tercera parte del círculo primero.» (II, 87, 7-10) 

«SOBRE EL EQUILIBRIO DE LAS FIGURAS PLANAS» 

Libro I 

«l. Postulamos que los pesos iguales a distancias iguales están en 
equilibrio, y que los pesos iguales a distancias desiguales no están 
en equilibrio, sino que el de mayor longitud se inclina hacia el peso. 

2. Y que, si estando en equilibrio unos pesos a ciertas distan­
cias, se incrementa uno de los pesos, no mantienen el equilibrio, 
sino que se inclinan hacia el peso al que se le añadió algo. 

3. E igualmente, que si de uno de los pesos se quita algo, no 
mantienen el equilibrio, sino que se inclina hacia el peso del que 
no se quitó nada.» (II, 124, 3-12) 
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«Proposición l. Los pesos en equilibrio a distancias iguales 
son iguales.» (II, 127, 5-6) 

«Proposición 2. Los pesos desiguales a distancias iguales no 
están en equilibrio, sino que se inclinarán hacia el mayor.» (II, 127, 
12-14) 

«Proposición 6. Las magnitudes conmensurables están en 
equilibrio a distancias que guardan la razón inversa de la de los 
pesos.» (II, 131, 13-15) 

«Proposición 7. Y también de modo semejante, si las magni­
tudes son inconmensurables, estarán en equilibrio a distancias 
que guarden la razón inversa de las magnitudes.» (II, 137, 17-20) 

«Proposición 10. El centro de gravedad de todo paralelo­
gramo es el punto en que se cortan las diagonales.» (II, 142, 22-24) 

«Proposición 14. En todo triángulo el centro de gravedad es 
el punto en el que coinciden las rectas trazadas desde los ángulos 
hasta el centro de los lados.» (II, 158, 8-11) 

Libro JI 

«Proposición 8. El centro de gravedad de todo segmento compren­
dido por una recta y una parábola corta al diámetro del segmento 
de modo que la parte de este que está hacia el vértice del seg­
mento es una vez y media la parte del mismo que está hacia la 
base.» (II, 187, 29-30, 188, 1-3) 

«EL ARENARIO» 

Arquímedes a Gelón 

«Creen algunos, rey Gelón, que es infinito en cantidad el número 
de granos de arena -me refiero no solo a la que hay en Siracusa 
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y el resto de Sicilia, sino también a la de toda la Tierra habitada y 
no habitada- . Y hay algunos que suponen que no es que sea infi­
nito, sino que no ha recibido nombre ninguna cifra tan elevada que 

· exceda esta cantidad.» (II, 216, 3-9) 

«Pero yo intentaré hace1te ver -mediante demostraciones 
geométricas que podrás comprender- que alguno de los números 
a los que he dado nombre y que he dado a conocer en los libros 
que dediqué a Zeuxipo superan no solo el número de granos de 
arena igual en magnitud a la Tierra colmada, como dijimos, sino 
también el de un volumen igual al mundo.» (II, 217, 16-21, 218, 1) 

«Te consta que la mayor parte de los astrónomos llaman 
"mundo" a la esfera cuyo centro es el centro de la Tierra y cuyo 
radio es igual a la recta que hay entre el centro del Sol y el centro 
de la Tierra, pues eso ya lo has aprendido de las demostraciones 
escritas por los astrónomos.» (II, 218, 3-7) 

«[ ... ] [Aristarco de Samos] supone que los astros fijos y el Sol 
permanecen inmóviles, y que la Tierra se desplaza según una cir­
cunferencia de círculo en tomo al Sol, el cual está situado en el 
centro de su curso, y que la esfera de los astros fijos, situada en 
tomo al mismo centro que el Sol, es de un tamaño tal que el círculo 
según el cual supone que se desplaza la Tierra guarda con la dis­
tancia de los astros fijos una razón como la que guarda el centro 
de la esfera con su superficie. Es más que evidente que esto es 
imposible: puesto que el centro de la esfera no tiene ninglin ta­
maño, tampoco cabe aceptar que guarde ninguna razón con la su­
perficie de la esfera.» (II, 219, 10-23) 

«En primer lugar, que el perímetro de la Tierra es de 300 mi­
ríadas de estadios y no mayor.» (II, 220, 8-9) 

«Después de esto, que el diámetro de la Tierra es mayor que 
el diámetro de la Luna y que el diámetro del Sol es mayor que el 
diámetro de la Tierra, asumiendo en esto igualmente lo mismo que 
la mayoría de los astrónomos anteriores.» (II, 220, 15-18) 
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«Después de esto, que el diámetro del Sol es treinta veces 
mayor que el diámetro de la Luna y no más, aunque entre los as­
trónomos anteriores Eudoxo hizo ver que era nueve veces mayor; 
Fidias, mi padre, que dos veces, y Aristarco intentó demostrar que 
el diámetro del Sol era más de dieciocho veces mayor que el de la 
Luna, pero menor que veinte veces más.» (II, 216, 3-9) 

«Pero supongo que también es útil que hable sobre la denomi­
nación de los números - entre otras cosas, para que no se pierdan 
los que no han tenido acceso al libro que dediqué a Zeuxipo por 
no haberse dicho de antemano en este libro nada sobre esa cues­
tión- . Ocurre, en efecto, que los nombres de los números que nos 
han sido transmitidos llegan hasta las miríadas y por encima de 
las miríadas. Llámense pues primeros a los números indicados 
hasta la miríada de miríada. 

La miríada de miríadas de los números primeros llámese uni­
dad de los números segundos, y cuéntense las unidades de núme­
ros segundos y, a partir de las unidades, las decenas, centenas y 
millares y miríadas de miríadas. 

De nuevo, a la miríada de miríadas de los números segundos 
llámesela unidad de números terceros, y cuéntense las unidades 
de los números terceros y, a partir de las unidades, las decenas, 
centenas, millares y miríadas hasta las miríadas de miríadas. 

[ ... ] y avanzando así sucesivamente tengan los números nom­
bres que lleguen hasta las miríadas de miríadas de los números del 
ordinal correspondiente a la miríada de miríadas. 

Conocidos también hasta ese punto los números, cabe avan­
zar aún más: llámese a los números indicados hasta ahora "del 
primer período", y llámese al último número del primer período 
unidad de los números primeros del segundo período. De modo 
semejante, también al último número de estos llámesele unidad 
de los números terceros del segundo período y así sucesiva­
mente, según avanzan los números tengan los nombres del se­
gundo período hasta las miríadas de miríadas de números del 
ordinal correspondiente a la miríada de miríada. De nuevo, al 
último número del segundo período llámesele unidad del tercer 
período, y así sucesivamente avanzando hasta las miríadas de 
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miríadas de los números del ordinal de la miríada de miríadas del 
período de la posición de la miríada de miríadas.» (II, 237, 17-29, 
239, 1-29) 

«Por tanto, ha quedado demostrado que la cantidad de granos 
de arena que ocupa una magnitud igual a lo que la mayor parte de 
los astrónomos llaman mundo es inferior a 1 000 unidades de nú­
meros séptimos.» (II, 255, 29-31) 

«Es evidente por tanto que la cantidad de granos de arena que 
ocupa una magnitud igual a la esfera de los astros fijos que Aris­
tarco supone como hipótesis es inferior a 1 000 miríadas de núme­
ros octavos.» (II, 255, 29-31) 

<<SOBRE LA CUADRATURA DE LA PARÁBOLA» 

Arquímedes a Dositeo 

«Al oír que había muerto Conón, cuya amistad nunca me faltó, y 
que tú habías conocido a Conón y que estabas familiarizado con la 
geometría, me entristecí por el difunto en su calidad de amigo y de 
hombre que ha llegado a ser admirable en matemáticas, y me pro­
puse enviarte por escrito, igual que solía escribir a Conón, teore­
mas matemáticos que antes no habían sido estudiados, pero que 
ahora han sido estudiados por mí, habiéndolo descubierto primero 
mediante el método mecánico y habiéndolos demostrado después 
por el método geométrico.» (11, 262, 4-13) 

«Proposición 21. Si en un segmento comprendido por una 
recta y una sección de cono rectángulo (parábola] se inscribe un 
triángulo que tenga la misma base que el segmento y la misma al­
tura, y en los segmentos restantes se inscriben otros triángulos 
que tengan la misma base que los segmentos y la misma altura, el 
triángulo inscrito en el segmento entero será el óctuplo de cada 
uno de los triángulos inscritos en los segmentos que quedan en 
torno.» (II, 306, 1-9) 
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«Proposición 23. Si se disponen sucesivamente magnitudes 
en la razón de cuatro a uno, todas las magnitudes más la tercera 
parte de la menor sumadas en una sola serán cuatro tercios de la 
mayor.» (II, 310, 5-9) 

«Proposición 24. Todo segmento comprendido por una recta y 
una sección de cono rectángulo [parábola] es cuatro tercios del 
triángulo que tiene la misma base que él e igual altura.» (II, 312, 1-4) 

«SOBRE LOS CUERPOS FLOTANTES» 

Libro I 

«Supóngase que el líquido tiene una naturaleza tal que de las par­
tes suyas que yacen por igual y son continuas, la menos presio­
nada es empujada por la más presionada, y que cada una de sus 
partes es presionada verticalmente por el líquido que está por en­
cima de ella a menos que el líquido esté encerrado en un reci­
piente y sea presionada por alguna otra cosa.» (II, 318, 2-8) 

«Proposición 2. La superficie de todo líquido en estado de 
inmovilidad tendrá la figura de una esfera que tendrá por centro 
el mismo que la Tierra.» (II, 319, 7-9) 

«Proposición 3. De las magnitudes sólidas, las que tienen el 
mismo peso que el líquido, depositadas en el líquido, se sumergi­
rán de modo que no se sobresalga en absoluto de la superficie del 
líquido y ya no serán llevadas más abajo.» (II, 321, 31-33, 322, 1-2) 

«Proposición 4. De las magnitudes sólidas, la que es más li­
viana que el líquido, depositada en el líquido, no se sumergirá en­
tera, sino que una parte de ella quedará por fuera de la superficie 
del líquido.» (II, 325, 25-26, 326, 1-3) 

«Proposición 5. De las magnitudes sólidas, la que es más liviana 
que el líquido, depositada en el líquido, se sumergirá en la medida 
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en que un volun1en del líquido igual al volwnen de la parte swner­
gida tenga un peso igual al de la magnitud entera.» (II, 328, 18-22) 

«Proposición 6. Los sólidos más livianos que el líquido, forza­
dos dentro del líquido, son desplazados hacia arriba con una fuerza 
tan grande como el peso en que es más pesado que la magnitud el 
líquido que tiene igual volwnen que la magnitud.» (II, 331, 10-14) 

«Proposición 7. Las magnitudes más pesadas que el líquido, 
depositadas en el líquido, se desplazarán hacia abajo ,hasta llegar 
al fondo en el líquido y serán más livianas en un peso igual al del 
líquido de volwnen igual al volwnen de la magnitud sólida.» (II, 
328, 18-22) 

Libro II 

«Proposición l. Si una magnitud que es más liviana que el agua es 
depositada en el líquido guardará en peso con el líquido la misma 
razón que guarda la parte swnergida de la magnitud con la magni­
tud entera.» (II, 347, 2-7) 

«STOMACHION» 

«Como el llamado Stomachion contiene variadas posibilidades de 
estudio de la transposición de las figuras que lo componen, consi­
deré necesario exponerlo estudiando en primer lugar la magnitud 
de la figura entera y las partes en que se divide y a qué figura es 
semejante cada una de ellas [ ... ].» (II, 416, 2-6) 

«EL MÉTODO SOBRE LOS TEOREMAS MECÁNICOS» 

Arquímedes a Eratóstenes 

« Y al ver, como digo, que eres estudioso y que destacas conside­
rablemente en filosofía y que aprecias la investigación matemática 
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cuando es el caso, probé a escribirte y a definir en este mismo 
libro la peculiaridad de cierto método mediante el cual, cuando te 
lo haya proporcionado, te será posible disponer de recursos para 
poder investigar algunos asuntos matemáticos por medio de la 
mecánica. Estoy persuadido de que eso es no menos útil también 
para la demostración de estos mismos teoremas, pues algunas de 
las cosas que primero se me mostraron por medio de la mecánica 
luego las demostré por medio de la geometría, porque la investi­
gación por este método carece de demostración; y es más fácil 
avanzar en la demostración tras haber alcanzado por anticipado 
cierto conocimiento de las cuestiones gracias a este método que 
hacer Ja investigación sin conocer nada.» (II, 429, 19 ss) 

« [ ... ] Al redactar el método he pretendido sacarlo a la luz a la 
vez porque previamente había hablado en favor de él - no fuera 
que les pareciera a algunos que había estado hablando palabras 
vanas- y al mismo tiempo porque estaba convencido de que arro­
jaría no pequeña utilidad para la matemática. Pues sostengo que 
algunos, bien de los presentes, bien de los venideros, mediante el 
método que doy a conocer descubrirán incluso otros teoremas 
que aún no se me han ocurrido.» (II, 430, 12-18) 

«EL LIBRO DE LOS LEMAS» 

«Proposición 4. SeaABC un semicírculo y estén sobre el diámetro 
AC dos semicírculos, de los cuales sea uno AD y otro DC, y sea DE 
una perpendicular; en cualquier caso, la figura resultante, a la que 
Arquímedes llama arbelos -es la superficie comprendida por el 
arco de un semicírculo mayor y las dos circunferencias de los 
semicírculos menores- es igual a un círculo cuyo dián1etro es la 
perpendicular DB.» (II, 513) 

«Proposición 5. Si hay un semicírculo AB y en cualquier parte 
en su diámetro está marcado un punto C y sobre el diámetro se 
construyen dos semicírculos AC, CB; y desde C se traza CD per­
pendicular a AB, y, a uno y otro lado, se describen dos círculos 
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tangentes a ella y tangentes a los semicírculos, en cualquier caso 
aquellos dos círculos son iguales.» (II, 514) 

«Proposición 7. Si se traza un círculo en torno a un cuadrado 
y otro dentro de él, en cualquier caso el circunscrito será el doble 
del inscrito.» (II, 517) 

«Proposición 14. Si hay un semicírculo AB y de su diámetro 
AB se cortan líneas iguales AC, BD y sobre esas líneas se constru­
yen los semicírculosAC, CD, DB y el centro de los dos semicírcu­
los AB, CD es el punto E, y EF es perpendicular aAB y se prolonga 
hasta G, el círculo de diámetro FG es igual a la superficie conte­
nida por el semicírculo mayor y los dos semicírculos que están en 
su interior y el semicírculo de en medio que está fuera de él. Y esta 
es la figura a la que Arquímedes llama salino.» (II, 523) 

ccEL PROBLEMA DE LOS BUEYES» 

«Tras dedicarle tus desvelos, si participas de la sabiduría, haz la 
cuenta, extranjero, de la cantidad de los bueyes del Sol que pacían 
en las llanuras de la siciliana isla Trinada repartidos en cuatro 
hatos diferentes en pelaje: uno blanco como la leche, reluciente 
otro de color negro; otro rubio y otro, a manchas.» (II, 529, 5-10) 

« Y tú, extranjero, si llegaras a decir exactamente cuántas eran 
las reses del Sol -por su lado el número de los fuertes toros, por 
su lado las hembras cuantas había en cada grupo según su color-, 
no serías llamado ignorante ni inexperto en números.» (II, 531, 
22-24) 
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