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Introducción 

Cualquier estudiante que haya cursado matemáticas superiores 
durante los tres últimos siglos ha oído hablar del último teorema 
de Fermat. Pierre de Fermat era un matemático curioso. Nunca 
publicó un libro con su nombre. Todo lo más, escribió sus ideas en 
cartas o bien las circuló en manuscritos. Al parecer, le bastaba 
convencerse a sí mismo de que había demostrado un resultado 
para darlo por bueno, sin molestarse en escribir detalladamente la 
prueba. De ahí que su herencia representara un gran reto para los 
matemáticos que lo sucedieron, pues tenían que probar casi todo 
lo que Fermat había proclamado que era verdad. Y poco a poco lo 
hicieron -alguna vez lo refutaron- salvo en el caso de un ende­
moniado problema que nadie sabía demostrar ... ni tampoco refu­
tar. Se trataba del último, una anotación casual que el autor dejó 
en un margen de una edición de un libro de Diofanto de Alejandría. 
Contra él se estrellaron algunas de las mentes más esclarecidas 
que ha dado la matemática, empezando por el suizo Leonhard 
Euler, el matemático más prolífico de todos los tiempos. 

Todos esos estudiantes escucharon alguna vez de boca de sus 
profesores que dicho teorema nunca había sido demostrado, con­
virtiéndose en uno de los problemas matemáticos más antiguos 
todavía vigentes a finales del siglo xx. Todos ellos se asombraron 
cuando un profesor escribió en la pizarra el enunciado del teo­
rema. El enunciado era sencillísimo y cualquier alumno de secun-
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daria lo entendería de inmediato. ¿Tal vez es que era imposible de 
probar? Esa posibilidad aterradora, el hecho de que existan afir­
maciones matemáticas imposibles de demostrar, había sido ade­
lantada por uno de los más grandes lógicos del siglo xx, el 
austriaco-estadounidense Kurt Gódel, y poco tiempo después por 
el padre de la informática, el británico Alan Turing. Tal vez el úl­
timo teorema era uno de esos infelices desterrados del reino de 
las matemáticas. Tal vez Fermat, sin saberlo, había encontrado el 
primer resultado indemostrable de la historia de las matemáticas. 
En cualquier caso, Fermat era el responsable, indirectamente y 
sin proponérselo, de haber creado más matemáticas con los vanos 
intentos de demostrar su último teorema que, probablemente, las 
que generaría la demostración que definitivamente cerraría el 
tema y lo pondría a dormir para siempre junto a tantos otros re­
sultados que ya nadie investiga a fondo porque se conocen a la 
perfección. 

El profesor dejaba entonces de hablar de Fermat y devolvía a la 
Tierra a sus alumnos, al confortable mundo en el que los teoremas se 
sucedían unos a otros con demostraciones rigurosas y el último teo­
rema no era sino un extraño monstruo que quitaba el sueño a algunas 
personas. Casi todos aceptaban que el problema nunca sería resuelto. 

Hasta cierto punto, resulta paradójico que esta sea la aporta­
ción más conocida de Fermat, vista su condición de matemático 
de primer orden. A pesar de ello, su nombre rara vez se cita a la 
par de los de Arquímedes, Euclides, Descartes, Newton, Leibniz, 
Euler o Gauss. Sus enormes aportaciones han quedado relegadas 
por razones varias. Basta con dar un vistazo a las enciclopedias y 
libros de historia de las matemáticas para comprobar que apenas 
se le menciona, casi siempre a la sombra de un contemporáneo o 
sucesor. 

Pierre de Fermat, un magistrado de Toulouse al que algunos 
consideran el más grande aficionado que haya contribuido a las 
matemáticas, vivió en la época en la que dicha ciencia, tras despe­
rezarse lentamente de su sueño medieval, fue presa de una febril 
actividad en la que sufrió una profunda transformación, una ver­
dadera revolución científica. Poco se sabe de las incidencias de su 
vida, plácida, burguesa y sin sobresaltos, pero su carácter se nos 
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desvela a través de su correspondencia y de su forma de abordar 
las matemáticas. 

A pesar de ser, según todo indica, un hombre del Antiguo Régi­
men, Fermat fue un revolucionario en el ámbito científico. Pocos 
pusieron tantos cimientos de la matemática moderna como él, al 
igual que pocas personas dieron pasos tan audaces hacia el futuro. 
Pero, como suele pasar con ciertos revolucionarios, Fermat no 
apreció en su justa medida todo lo que estaba haciendo. Su obse­
sión era resucitar la ciencia griega que siglos de incuria y violencia 
habían destruido. Le interesaba reconstruir la obra de Diofanto, de 
Apolonio, de Arquímedes, de Euclides. No se dio cuenta de que las 
herramientas que usaba para restituir a los autores de la Antigüedad 
eran las que fundarían una nueva ciencia y relegarían muchos de los 
métodos de los antiguos a un archivo para historiadores. 

La generación posterior a Fermat perdió el interés por la mate­
mática griega, con la notable excepción de Euclides, que fue, hasta 
bien entrado el siglo xx, la referencia para la enseñanza del rigor y 
la belleza en matemáticas. Sus Elementos son la obra más editada 
después de la Biblia. La modernidad ha perdido muy recientemente 
el privilegio de bañarse en sus aguas, de la misma forma que se ha 
perdido el latín de la Eneida o el griego de Homero. 

Pero Euclides era una rareza. Desde finales del siglo XVII, la 
ciencia griega se había convertido en una curiosidad. A partir de 
entonces, los matemáticos no miraron atrás, pensaron siempre en 
el futuro y en lo que ellos mismos estaban creando. Fermat fue 
uno de los últimos que contempló la gran tradición del pasado. Y al 
hacerlo, y en la forma como lo hizo, enterró ese pasado y creó un 
mundo nuevo, junto con otros grandes matemáticos de su tiempo. 
Toda tradición se resiste a morir, y es cierto que incluso la obra 
cumbre de la física, los Philosophiae naturalis principia mathe­
matica de Newton, adoptó una forma «griega». Pero era el canto 
del cisne. A la muerte de Fermat, en 1665, la matemática griega 
había sido ya sustituida por la moderna. Después de él, ningún 
gran matemático se preocupó por restituir la matemática de la 
Antigüedad. 

En este libro se repasa la historia de esa revolución. Los dos 
primeros capítulos versan sobre el teorema que le hizo famoso y 
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que, durante tres siglos y medio, espoleó a los matemáticos a 
crear edificios increíbles con el único fin de resolver el endiablado 
puzle. Por sí misma, es una historia apasionante. El resto del libro 
contempla otras contribuciones de Fermat, las que permanecen 
en una semioscuridad totalmente inmerecida. 

Se tratarán sus contribuciones a la teoría de números y de cómo 
Fermat fundó esa disciplina como la conocemos hoy en día, así 
como de la génesis de la geometría analítica, una revolución cientí­
fica que cambió para siempre la forma de hacer matemáticas, basán­
dolas en el lenguaje universal del álgebra También tienen cabida en 
esta obra sus métodos de máximos y mínimos, tangentes, cuadratu­
ras y rectificaciones, precursores del cálculo infinitesimal. Se anali­
zarán los obstáculos epistemológicos -el término es del filósofo 
francés Gaston Bachelard- que le impidieron descubrir el cálculo 
propiamente dicho. Finalmente, incidiremos en su papel seminal en 
la creación de la teoría de la probabilidad y en su aportación a la fí­
sica en la forma de un principio extremal que lleva su nombre. 

Se glosarán los logros de un gran pensador, pero también se 
tratarán las razones de que haya sido olvidado. Algunas son sim­
ples casualidades, crueldades del destino, mientras que otras 
están íntimamente ligadas a la personalidad de Fermat, a su fobia 
a publicar tratados bajo su nombre al tiempo que anhelaba el re­
conocinuento de sus colegas a través de sus epístolas, llenas de 
problemas que decía haber resuelto, pero que desesperaban, por 
su inconcreción, a sus corresponsales. Así pues, su propia perso­
nalidad opacó su obra, porque sus ideas cayeron casi siempre en 
terreno fértil, pero fueron separadas de su nombre, condenándole 
a la oscuridad. Es así como la biografía personal de Fermat, tan 
parca en hechos reseñables, se revela verdaderamente a través de 
su obra y su actitud hacia ella, dejando vislumbrar la personalidad 
de un hombre fascinante. 
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1601 Nace el 20 de agosto, en Beaumont, 
Francia 

1620 Cursa estudios de Derecho en Toulouse 
durante cinco años. 

1625 Reside en Burdeos cuatro años, donde 
toma contacto con el matemático 
francés Jean de Beaugrand. 

1631 El 1 de mayo se gradúa en Orléans. 
Adquiere los puestos de conseiller 
en el Parlamento de Toulouse y el de 
Comisario de Ruegos de Palacio. 

1636 Primera carta al filósofo Marin 
Mersenne. Escribe el tratado sobre 
geometría analítica Introducción 
a los lugares geométricos planos y 
sólidos (Isagoge). Circula e1Methodus 
(método de máximos y núnimos). 

1637 Gestación del último teorema. 

1638 Se produce la polémica con su «rival» 
René Descartes por el método de los 
máximos y mínimos y su aplicación 
a las tangentes. 

1640 Anuncio del pequeño teorema de Fem1at. 

1641 Se producen diferentes enfrentamientos 
de posturas con Bemard Frénicle y 
Pierre Brfilart. 

1643 Explica los fundamentos de su método 
en Investigación analítica, una de 
sus memorias más importantes. 

1652 Cae enfermo de la peste. Su amigo 
Bemard Medon anuncia falsamente 
su muerte. 

1654 Mantiene correspondencia con Blaise 
Pascal, de resultas de la cual se 
establecen los principios de la teoría 
de la probabilidad. 

1657 Polémica con John Wallis y Willian1 
Brouncker acerca de la ecuación 
de Pell. 

1658 Redacta el Tratado de cuadraturas, 
en el que an1plía la aplicación de su 
método. Establece controversias sobre 
la Dióptrica con el cartesiano Claude 
Clerselier. 

1659 Inicia un intercambio de 
correspondencia con el matemático 
neerlandés Christiaan Huygens. 

1660 Aparece el Tratado de rectijicación, 
en el que Fem1at se aleja de su 
método expositivo analítico y adopta 
el método sintético griego. 

1665 Fallece el 12 de enero en la localidad 
de Castres, cerca de Toulouse. 
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CAPÍTULO 1 

El teorema que tardó 
350 años en serlo 

A pesar de su aparente simplicidad, 
el último teorema de Fermat atormentó a los 

mejores matemáticos del mundo durante nada menos que 
350 años. Una y otra vez intentaron demostrarlo, y una 

y otra vez fracasaron, hasta que a finales del siglo xx 
un introvertido británico logró lo que hasta 

entonces había parecido imposible. 





Imaginemos el instante. Un hombre de luengos cabellos se inclina, 
a la luz de una vela, sobre un ejemplar de la Aritmética del mate­
mático griego Diofanto de Alejandría (ca. 214-ca. 298) con la es­
palda encorvada. Después de leer uno de los teoremas, reflexiona 
un poco, sonríe, moja la pluma y escribe una frase en latín en uno 
de los márgenes del libro. Hace una pausa, vuelve a tomar la 
pluma, y añade: «[ ... ] cuius rei demonstrationem mirabilem 
sane detexi, hanc marginis exiguitas non caperet». Es decir: 
«[ ... ] he encontrado una demostración admirable de este resul­
tado, pero este margen es demasiado estrecho para escribirla». 

Seguramente el hombre se iría pronto a dormir. Al día siguiente 
le esperaban urgentes asuntos en el Parlamento. No sabemos cuán­
tas veces recordó esa pequeña anotación. Tal vez nunca volvió a 
pensar en ella; su vida estaba ocupada en otros menesteres. ¿Ima­
ginó en algún momento que esas pocas palabras darían lugar a una 
de las más apasionantes odiseas de la historia de las matemáticas y 
que a lo largo de los siglos atormentarían a varias de las mentes más 
brillantes del mundo? Es poco probable. Pierre de Fermat, el prota­
gonista de dicha escena, era dado a los juegos y las adivinanzas, 
pero es difícil suponer que aquella noche hubiera intuido que había 
creado la más famosa adivinanza matemática de todos los tiempos. 

De hecho, tal adivinanza estuvo a punto de no pasar a la pos­
teridad. Escrita como nota personal en el margen de un libro, 
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pudo haber desaparecido sin más junto con los otros hechos más 
o menos triviales de una vida corno tantas. Pero la acotación so­
brevivió a su autor, fue descubierta e impresa, y se convirtió en el 
rey de los problemas al parecer imposibles de resolver. El mundo 
continuó su marcha. El cardenal Richelieu gobernaba la Francia 
que Alejandro Dumas inmortalizó en Los_ tres mosqueteros en la 
época en la que Fermat esclibía, mientras un rey incapaz se re­
creaba en sus ocios. Cayó Richelieu, le siguieron la serie de movi­
mientos de insurrección conocidos corno la Fronda, el Rey Sol, y 
después la Ilustración, la Revolución, el revuelto siglo xrx y el aún 
más dramático siglo xx. Y mientras la historia discurría, el resul­
tado que Fermat decía haber demostrado seguía ahí, resistiendo 
todos los ataques, todos los intentos para probarlo: esa demostra­
ción que no cabía en un margen tampoco tenía un lugar en las 
mentes de los más grandes matemáticos. 

Aceleremos la acción. Nos encontrarnos ahora en 1993, un 
mundo con ordenadores y una red de Internet incipiente. La URSS 
había caído. No existían aún las redes sociales, pero sí un antece­
sor llamado Usenet, al que prácticamente solo estaban suscritas 
las personas ligadas al mundo académico, un número absurda­
mente pequeño si se compara con los actuales usuarios de deter­
minadas redes sociales. De pronto, esa primitiva red, usualmente 
adormilada, comenzó a bullir de excitación. Los mensajes se su­
cedían, relarnpagueantes, con términos que un lego no podía en­
tender: formas modulares, curvas elípticas, grupos de Galois, 
teoría de Iwasawa, conjetura de Taniyarna-Shirnura ... 

Poco a poco, la imagen de lo que había sucedido se iba for­
mando en la red. Andrew Wiles, un matemático británico experto 
en un campo llamado curvas elípticas, había pronunciado, nada 
menos que en el Instituto Isaac Newton de Cambridge, tres con­
ferencias en las que, paso a paso, con paciencia y un sentido del 
arte dramático digno de un Laurence Olivier, avanzó hacia un re­
sultado inevitable. 

Durante años, Wiles trabajó en secreto, corno un alquimista, 
sin compartir con nadie ya no digamos sus resultados, ni siquiera 
la naturaleza de su proyecto. No quería que nadie le quitara la 
gloria de resolver uno de los problemas más difíciles del mundo 
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matemático. Aunque habían corrido algunos rumores en forma de 
correos electrónicos, cuando era abordado por algún colega que 
le preguntaba sobre el contenido de sus conferencias, se limitaba 
a sonreír y a responder: «Asiste a las conferencias y lo verás». 

Tanto secreto espoleó la curiosidad. Así que el auditorio de 
doscientas personas, formado por avezados especialistas y algu­
nos doctorandos, hervía con cada minuto que pasaba. Al anunciar 
las conferencias, Wiles tuvo buen cuidado de esconder su pro­
yecto bajo un título aparentemente inocuo. Sin embargo, conforme 
avanzaba en su exposición, los expertos empezaron a darse cuenta 
de lo que se cocinaba. Entusiasmados, escribían correos electró­
nicos en las pausas entre las conferencias, llenos de expectación 
ante lo que imaginaban que sucedería. Ante el silencio sepulcral de 
su auditorio, el expositor llenó pizarra tras pizarra de matemáticas 
complejísimas y novedosas. Finalmente, Wiles escribió unas pocas 
líneas más que completaban la prueba, hizo una pausa dramática, 
y garrapateó el enunciado del último teorema de Fermat. Se volvió 
sonriente hacia el público y elijo: «Creo que voy a dejarlo aquí». 

Varias cámaras se dispararon, hubo ovaciones, aplausos ... 
Uno de los problemas más difíciles del mundo, también uno de los 
más antiguos sin resolver, cayó finalmente ante el ataque sistemá­
tico de un matemático brillante que había trabajado a solas du­
rante más de un lustro. Pero, ¿cómo es posible? ¿Redescubrió 
Wiles la prueba de Fermat? No, la historia es mucho más com­
pleja. De hecho, los aplausos resultaron prematuros: la demostra­
ción de Wiles contenía un error fatal. Su estrategia de hermetismo 
tenía ese enorme riesgo: al no compartir sus avances, nadie pudo 
señalarle ese error antes de que fuera tarde. Y en matemáticas, un 
solo error, un solo paso en falso, invalida toda la demostración, 
que se derrumba como un castillo de naipes. Todos los pasos son, . 
precisamente, como esos naipes que apuntalan la estructura de tal 
forma que, con solo retirar uno de ellos, esta se desmorona. Wiles 
tuvo por tanto que volver a la pizarra, contrito, y trabajar todavía 
unos años para dar con una demostración definitiva, a prueba de 
balas, que finalmente logró publicar en 1994. Pero dejemos por el 
momento a Wiles, en su máximo momento de gloria, extático ante 
sus rendidos admiradores. 
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Representación 
geométrica 

del teorema de 
Pitágoras. 

EL ÚLTIMO TEOREMA 

Es hora de volver a Fermat y enunciar su último teorema. El resul­
tado que el matemático escribió en latín en ese pequeño margen 
era el siguiente: 

Es imposible escribir un cubo como la suma de dos cubos, o una 
cuarta potencia como la suma de dos cuartas potencias, y en general, 
para ningún número que sea una potencia mayor que dos ser escrito 
como la suma de dos potencias del mismo grado. 

Escrito ~n notación algebraica moderna, lo que dice el último 
teorema es que la ecuación x"+ y"= z", con n > 2, no tiene solucio­
nes naturales; es decir, no existen números naturales x , y y z que 
cumplan la propiedad arriba enunciada: tener un cubo_( o potencia 
mayor) que sea la sun1a de dos cubos ( o potencia mayor del 
mismo grado). 

El teorema de Fermat se aplica exclusivamente a los números 
naturales (aquellos con los que contamos cosas: 1, 2, 3, ... y así 
indefinidamente); si bien en su enunciado original el autor no dio 
esta condición explícita, la misma se entiende por contexto. 

,-- Cabe preguntarse por qué Fer­
mat habla solo de exponentes mayo­
res que dos. La respuesta es sencilla. 
Para el caso n= 1, tenemos un enun­
ciado trivial: en efecto, todo número 
natural mayor que uno es expresable 
como la suma de otros dos números 
(no necesariamente distintos entre 
sí). Cuand_o n = 2 nos encontramos 
frente al conocidísimo teorema de 
Pitágoras (véase l¡:t figura), expre­
sado en la forma de una ecuación al­
gebraica: x2 + y2= z2• 

y 
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Ya no existen soluciones para 
casi todos los números; pero sucede 
que en este caso sí se pueden encon-
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trar números naturales que cumplen esa propiedad. El primer caso 
que encontramos, en los números naturales, es x = 3, y= 4 y z = 5: 

32 + 42 = 9 + 16 = 25 = 52
• 

Otro ejemplo es x = 5, y= 12 y z = 13; y otro más, x = 65, y= 72 
y z = 97. Entre los primeros cien números hay 16 ejemplos simi­
lares, y se puede demostrar que, en total, existen infinitos con­
juntos de tres números naturales que cumplen esa propiedad, 
cor\juntos conocidos como ternas pitagóricas. 

Lo que Fermat decía, por tanto, es que si se cambia ese expo­
nente igual a dos por un exponente mayor no existe una tema de 
números naturales que cumpla dicha propiedad, ternas que, en 
justicia, podríamos llamar «fermatianas». Dada esta definición, el 
último teorema de Fermat es equivalente a decir que no existen 
las ternas fermatianas. 

No es difícil imaginar cómo Fermat llegó a este resultado. 
Llevaba un tiempo analizando las ternas pitagóricas y sus propie­
dades, un problema que se conocía como «descomponer un cua­
drado»: consideraba escribir ese cuadrado como la suma de dos 
cuadrados, de forma tal que todos los números implicados fueran 
naturales. Parece razonable suponer que, una vez planteado ese 
problema, Fermat se preguntaría qué sucedería si en vez de cua­
drados usaba cubos, cuartas potencias, etc. Al fin y al · cabo, una 
de las tendencias más naturales en un matemático es buscar la 
generalización de un resultado, o, cuando menos, explorar las po­
sibles generalizaciones. 

Entender el problema planteado, pues, es bastante sencillo, y 
si bien la mitad de la solución de un problema es entenderlo, la 
otra mitad, en el caso del último teorema de Fermat, gestado en 
1637, es extraordinariamente difícil. ¿Por qué? Para intentar res­
ponder a esa pregunta hay que hacer un «pequeño» viaje al pa­
sado, unos dos mil cien años antes de Fermat, a tiempos de 
Pitágoras. No solo por el parentesco que el último teorema tiene 
con las ternas pitagóricas, sino porque es fundamental entender 
el concepto de demostración matemática que inauguró Pitágoras 
para apreciar qué significa probarlo. 
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LOS GRIEGOS 

Volvamos al principio de los tiempos matemáticos para tratar la 
naturaleza de la demostración matemática. Pitágoras de Samos 
(ca. 580-ca. 495 a.C.) es un personaje sernilegendario. Casi todo lo 
que nos ha llegado sobre el sabio fue escrito siglos después de sµ 
muerte, y dado el carácter sernidivino que le atribuían sus segui­
dores, buena parte de ello es una colección de mitos. Así corno 
una leyenda llamada Hornero fundó la literatura occidental, una 
leyenda llamada Pitágoras fundó la matemática. 

Una cosa es segura: Pitágoras no descubrió el teorema que 
lleva su nombre. Egipcios y babilonios lo conocían y aplicaban, 
pero lo hacían corno receta. Era algo que comprobaron una y otra 
vez y habían determinado que funcionaba. En lenguaje moderno, 
los egipcios y los babilonios usaban la matemática de forma em­
pírica: si comprobaban sistemáticamente que un resultado funcio­
naba, generalizaban y pensaban que era verdadero siempre. Eso 
es lo que se conoce corno razonamiento inductivo, algo que los 
humanos hacernos de forma natural: cuando encontramos una re­
ceta que funciona, seguirnos aplicándola, aunque no entendamos 
por qué funciona. 

Sin embargo, lo que hizo Pitágoras fue realmente revoluciona­
rio: llegó a la convicción de que no bastaba con recetas empíricas, 
sino que había que demostrar rigurosamente que la receta era ver­
dadera Es cierto que Tales de Mileto (ca 630-545 aC.), el padre de 
la filosofía, había hecho ya varias demostraciones, pero Pitágoras 
convirtió la búsqueda de una demostración matemática en un pro­
grama sistemático. Hizo algo asombroso: pensar que la receta 
podía, en todos los casos, demostrarse deductivamente, usando las 
reglas de la lógica, de forma que se convirtiera en una verdad eterna, 
inatacable, imposible de refutar. Contra el empirismo, opuso la 
razón: el poder de la mente sería capaz, según Pitágoras, de alcan­
zar la certidumbre por sí solo. Así, una demostración basada en 
reglas lógicas, formada por una serie de pasos que cualquiera puede 
seguir y comprender era mejor que un millón de experimentos. 

Pitágoras fue, hasta donde se sabe, el primero en pensar que 
tales verdades no solo eran posibles, sino también alcanzables 
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DEMOSTRACIÓN GEOMÉTRICA DEL TEOREMA DE PITÁGORAS 

Consideremos dos cuadrados de igual área, con lado a+b, y subdividámoslos 
como se muestra en la figura. Obviamente, el área de cada uno de los cuadra­
dos es (a+ b)2

, pero hay una forma más interesante de expresarlas. En el 
cuadrado de la izquierda, el área total es la suma de las áreas de los dos cua­
drados con lados b y a más la suma de las áreas de los cuatro triángulos con 
lados a y b, que es 

2.ab 
2 

para cada uno de ellos. Por tanto, el área total del primer cuadrado es: 

A¡= a
2 
+b

2 +4(iab )· 

El área del segundo cuadrado es la suma del área del cuadrado inscrito de lado 
e más, nuevamente, la suma de las áreas de cuatro triángulos de lados a y b : 

Como A, y A
2 

son iguales, 

a
2 

+ b
2 

+ 4(iab) = c
2 

+ 4(iab )· 

Y, simplificando la ecuación: 

a2+b,=c2. 
Este es un ejemplo típico de demostración directa por construcción, ya que 
para llegar a ella hay que construir diversas figuras geométricas en el interior 
de los cuadrados. 

b a a b 

a 

b 

b 

a 

b a b a 
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sistemáticamente. Por ello merece el título de Padre de la Mate­
mática. Toda la ambición de la ciencia matemática vislumbrada 
por Pitágoras, una de las más fructíferas en la historia intelectual 
de la humanidad, la retomaría el matemático alemán David Hil­
bert (1862-1943) con su Wir müssen wissen. Wir werden wissen 
( «Hemos de saber. ¡Sabremos!») en la segunda década del siglo xx. 

Pitágoras, o alguien de su escuela, demostró el teorema que 
lleva su nombre, de forma tal que era imposible ya dudar de su 
verdad. Este teorema nos da una regla inmutable. En el caso de un 
triángulo rectángulo, esta relación se cumplirá siempre. Con su 
programa, Pitágoras puso el listón muy alto para las generaciones 
posteriores: ya no bastaba con encontrar una receta, comprobarla 
muchas veces y proclamar una regla universal. Desde entonces, 
en matemáticas, había que probarla. Y aunque en algunos casos 
resultaría endemoniadamente difícil, el programa pitagórico de­
mostró ser tan fructífero que los matemáticos, a pesar de las difi­
cultades, no están dispuestos a renunciar a él. Como el poeta al 
que la cárcel de la métrica y la rima estimulan la creatividad, el 
matemático piensa que el rigor que impone su método es impres­
cindible para acceder a las verdades que descubre. 

Durante siglos los griegos aplicaron este principio para seguir 
demostrando con rigor sus resultados. Pero un geómetra que reinó 
al mismo tiempo que Ptolomeo I (367-283 aC.), general de Alejan­
dro Magno y rey de Alejandría, llegaría a cumbres más altas. Se trata 
de Euclides (ca. 325-265 a.C.), quien no se conformó con demostrar 
algunos resultados aislados, sino que, ambiciosamente, quiso reunir 
todo el conocimiento matemático de su época en un solo sistema. 

Euclides cayó en la cuenta de que toda demostración se ba­
saba en resultados anteriores que habían sido a su vez demostra­
dos; pero este proceso no podía seguir hasta el infinito. Por fuerza, 
había que partir de algunas verdades que consideraba evidentes. 
A esas verdades las llan1ó axiomas. Asimismo, tenían que existir 
definiciones claras de los elementos utilizados; en geometría, por 
ejemplo, puntos, líneas, triángulos, círculos, etc. A partir de esos 
pocos elementos Euclides demostró que se podían organizar 
todos los resultados en un solo corpus de conocimiento en el que 
los resultados demostrados y los asumidos (los axiomas) servían 
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como base para demostrar otros resultados. A diferencia de los 
axiomas, esos nuevos resultados que requerían ser demostrados 
recibieron el nombre de teoremas. 

Invocando este procedimiento una y otra vez podemos cons­
truir un edificio inmenso, una teoría matemática, es decir, una 
especie de árbol en el que, a partir de unas pocas raíces, se puede 
generar un número potencialmente infinito de ramas y hojas, al­
gunas más importantes (más robustas y más fructíferas en supo­
tencial de crear nuevas ramas) que otras, pero todas igualmente 
verdaderas. 

Se cuenta que Ptolomeo I intentó que Euclides le enseñara 
matemáticas, y que, impaciente ante la prolijidad y concentración 
que ello le requería, exigió que el sabio simplificara sus explicacio­
nes, a lo que este repuso: 

Majestad, lo que me pedís es imposible; es indispensable que sufráis 
y paséis por todos los pasos nécesarios para entender la ciencia. No 
existe un camino real en matemáticas. 

Es imposible exagerar la importancia del programa de Eucli­
des. Prácticamente todas las generaciones venideras de ma­
temáticos lo tomaron como referencia. A día de hoy, cualquier 
matemático que proponga una teoría nueva -o intente replantear 
una teoría existente- utiliza dicho programa. Hasta bien entrado 
el siglo xx, su obra, los famosos Elementos, fue el libro más popu­
lar después de la Biblia, consagrándose como un texto de referen­
cia y estudio imprescindible en los institutos y las universidades. 

Pero a pesar de sus increíbles intuiciones, Pitágoras y la es­
cuela que fundó tenían un elemento que a los modernos nos parece 
algo perturbador. En efecto, los pitagóricos fundaron una especie 
de religión y secta secreta, tal vez no muy distinta de otras antiguas 
sociedades secretas griegas, como la de Eleusis o los misterios 
órficos. Al igual que los iniciados eleusinos, los pitagóricos no po­
dían revelar la naturaleza de sus actividades. 

El misticismo pitagórico estaba íntimamente ligado a la idea 
de que el número era la esencia de la naturaleza. Pero los pitagó­
ricos no tenían el mismo concepto de número que nosotros. Para 
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ellos, los números solo eran los naturales y aquellos que podían 
ser expresados como un cociente de naturales (3/4, 5/8, etc.): el 
coajunto de los racionales positivos. 

Por supuesto, los pitagóricos sabían medir longitudes geomé­
tricas. Fieles a su mística fe en la esencia numérica de la natura­
leza, estaban seguros de que toda longitud era expresable como un 
número, es decir, como un racional positivo. Su geometría aspi­
raba a describir la naturaleza como cualquier ciencia natural, igual 
que la armonía musical también descubierta por ellos. Los triángu­
los rectángulos que los pitagóricos dibujaban eran triángulos natu­
rales en el mismo sentido en el que una cuerda vibrante era natural. 

Entonces sucedió el desastre. Según la leyenda, uno de los 
discípulos de Pitágoras demostró que la hipotenusa de un trián­
gulo rectángulo no era un número, no en el sentido que los pitagó­
ricos daban al término. Asombrosamente, se trataba del triángulo 
rectángulo más sencillo posible: aquel que tiene dos catetos de 
longitud igual a uno, un triángulo que además de rectángulo, es 
isósceles. En efecto, en ese triángulo la hipotenusa, por el propio 
teorema de Pitágoras, es igual a raíz de dos. 

¡Pero raíz de dos no es expresable como un número racional 
positivo! Es lo que hoy en día llamamos irracional, no porque 
dichos números tengan algún defecto psicológico, sino porque no 
pueden ser expresados como un cociente o razón entre dos núme­
ros naturales. Eso es lo que la leyenda dice que demostró Hipaso 
de Metaponto (ca. 500 a.C.), un discípulo díscolo. Por ello (o por 
haber revelado la demostración al mundo), se dice que fue aho­
gado en el mar frente a Crotona, en la actual Calabria italiana. La 
demostración es un típico caso de reducción al absurdo, en el que 
se supone lo contrario de la conclusión que se quiere demostrar y, 
a su vez, se demuestra que esa suposición nos lleva a una contra­
dicción irresoluble con una verdad ya demostrada. Es uno de los 
métodos de prueba más poderosos de las matemáticas, en el que, 
como decía el matemático británico Godfrey Hardy (1877-1947), 
el matemático arriesga más que cualquier ajedrecista con su gam­
bito: aniesga el juego entero. 

El orgullo intelectual de los pitagóricos sufrió un durísimo 
golpe: el mundo no estaba, al parecer, basado en el número como 
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DEMOSTRACIÓN DE LA IRRACIONALIDAD DE ✓2 

Pongamos por caso que ✓2 es rac ional. Entonces, puede expresarse como la 
razón de dos números enteros: ✓2 =p/q. Podemos suponer, sin pérdida de 
generalidad, que la razón anterior es irreducible, es decir, que no puede sim­
plificarse más, o, lo que es lo mismo, p y q no tienen divisores comunes. Aho­
ra bien, de la expresión anterior se sigue que 2=p2/q2. Por tanto, p 2 es par. 
Pero si un número entero al cuadrado es par, el número mismo, p, es par 
(porque el cuadrado de un impar es siempre impar). Por tanto, podemos es­
cribir p = 2k y 4k2 = 2q2 o 2k2 = q2. Con lo cual, q2 es también par y q también lo 
es. iPero eso contradice la hipótesis de que no había divisores comunes entre 
p y q! En consecuencia, alguna de nuestras hipótesis es falsa. No puede ser la 
hipótesis de que la razón es irreducible; tiene que ser, efectivamente, la supo­
sición de que ✓2 es racional. 

esencia. No se les ocurrió a los pitagóricos que bastaba generali­
zar su limitado concepto de número para resolver el dilema, que 
es lo que los matemáticos han hecho a partir de la Edad Moderna, 
cada vez que se encuentran con una dificultad similar. Pero es 
explicable; en los albores de la matemática era imposible para los 
pitagóricos asumir lo que les parecía inexpresable. Finalmente, se 
vieron obligados a hacer una distinción entre magnitud y número, 
entre las longitudes medibles en geometría y los números expre­
sables de forma aritmética. Así, ambas disciplinas se alejaban en 
un divorcio que solo los trabajos en el siglo XVII de Franciscus 
Vieta, Fermat y René Descartes lograrían remediar. 

DESDE EL RENACIMIENTO HASTA EL SIGLO XVII 

El Renacimiento trajo un verdadero despertar de la actividad in­
telectual matemática. Cuesta encontrar durante toda la Edad 
Media resultados matemáticos prominentes en Europa; tales re­
sultados se dieron solamente en el mundo musulmán. Pero el gra-
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TARTAGLIA Y CARDANO 

Niccolo Fontana (1499-1557), apodado 
Tartaglia, y Giro lamo Cardano (1501-1576) 
fueron dos de los cosistas más célebres. 
Tartaglia tuvo una. infancia agitada. Huér­
fano de padre y hundido en la miseria, en 
la conquista de Brescia un soldado fran­
cés le dio un corte que afectó la mandí­
bula y el paladar, impidiéndole hablar con 
normalidad. De ahí su sobrenombre, «tar­
tamudo». Estudió balística y fue el primer 
traductor de Euclides y Arquímedes al 
italiano. Cardano, médico célebre, alge­
brista, ludópata y gran ingeniero, perdió 
un hijo al no poder pagar la indemniza­
ción que se le exigía para que no lo ejecu­
taran. Su otro hijo era también ludópata 
y le robaba dinero. El matemático italiano 
Scipione del Ferro (1465-1526) había en­
contrado la solución a las ecuaciones cú­
bicas, que mantuvo en secreto sa lvo para 
sus discípulos más íntimos. Uno de ellos, 
A.M. Fiar, retó a Tartaglia en 1535 a una 
justa matemática. Trabajando a marchas 
forzadas, Tartaglia encontró su propia 
solución, más general que la de Del Ferro. 
Ello le permitió tomar por sorpresa a Fiar, 
resolver todos los problemas de ecuacio­
nes cúbicas que este le proponía, y a su 
vez ganarle proponiendo problemas que 
Fiar no pudo resolver. Cardano supo de 
esa justa y aduló a Tartaglia hasta que 
este, finalmente, le mostró la solución, 
exigiendo un juramento de secreto. Pero 
Cardano averiguó también la solución de 
Del Ferro y, pensando que ello le relevaba 
de su juramento, publicó la de Tartaglia 
en Ars Magna, su gran tratado de álgebra. 
Tartaglia nunca se lo perdonó y lanzó una 
larga campaña de desprestig io, a la que 

NiccolO Fontana Tartaglia 

Girolamo Cardano 

Cardano contestó a través de un discípulo, y, según se dice, financió la acusa­
ción de herejía que sufrió Cardano por haber realizado el horóscopo de Cristo. 
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dual conocimiento de textos griegos que habían sido preservados 
por los árabes, conjuntado con las propias contribuciones origina­
les del islam, llevaron a los incipientes matemáticos del siglo XVI a 
una actividad sin precedentes. 

Muy tempranamente, los matemáticos se dividieron. Por un 
lado estaban los geómetras que intentaban comprender y comple­
tar los resultados griegos. Téngase en cuenta que, aunque se pre­
servaron varios libros, muchísimos otros perecieron en las 
diversas contingencias históricas que separaban la época helenís­
tica del Renacimiento, un período que abarca alrededor de dos mil 
años. Notoria entre estas contingencias fue la destrucción -o su­
cesivas destrucciones- de la Biblioteca de Alejandría. Así que los 
matemáticos renacentistas, convencidos de que habían perdido 
un enorme acervo de conocimiento, buscaban rellenar los aguje­
ros que la historia había horadado en las obras de Euclides, Arquí­
medes, Diofanto, Ptolomeo o Apolonio. Su método era el griego: 
rigurosas y bellas demostraciones geométricas. 

Al mismo tiempo, sin embargo, otros matemáticos, a los que 
se ha dado en llamar cosistas, se dedicaban a la resolución de 
problemas más o menos prácticos, y eran empleados por comer­
ciantes, aunque con frecuencia también se ganaban el sustento 
participando en justas en las que se planteaban problemas que 
debían resolver. Dichos matemáticos eran algebristas primitivos, 
y su enfoque era pragmático; no estaban tan interesados en el 
rigor, la perfección y la belleza de la prueba como en la efectivi­
dad de sus recetas. De alguna forma, eran herederos de los egip­
cios y babilonios. La misma naturaleza del trabajo de los cosistas 
hizo que por un lado restaran importancia a la idea de demostra­
ción y, por otro, cultivaran una tradición secretista muy distinta 
de la que animaba a los griegos pospitagóricos, que publicaban de 
manera transparente sus resultados, de forma semejante a como 
se hace hoy en día. 

Recapitulando, se ha hecho una rápida reseña de la historia 
de las matemáticas para indagar en la naturaleza de la prueba 
según diversas tradiciones matemáticas, desde Pitágoras hasta el 
Renacimiento. Dichas tradiciones oscilan entre el secretismo y la 
transparencia, entre el rigor y el pragmatismo. Y fue en ese caldo 
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de cultivo de tendencias enfrentadas en el que Fermat desarrolló 
su trabajo. El jurista y matemático francés vivió en una época en 
la que, con justicia, se podría decir que se fundó la matemática 
moderna, basándose de forma muy importante en las tradiciones 
antiguas, pero al mismo tiempo creando algo totalmente nove­
doso, y no fue Fermat un personaje menor en el nacimiento de 
dicha matemática. 

Es de señalar que toda esa actividad científica, tanto por parte 
de los modernos herederos de la tradición griega como por la de 
los cosistas, ocurría casi toda al margen de las anquilosadas insti­
tuciones universitarias de la época, ancladas aún en la pesada tra­
dición medieval. De hecho, no existía por aquel entonces una 
cátedra propiamente matemática en dichas universidades. No 
había profesores ni árbitros académicos de ningún tipo, ni una 
disciplina con protocolos a los que todo practicante tuviera que 
adherirse, como ocurre hoy en día, en que para ser matemático 
hay que discurrir por varios cursos y asignaturas y un programa 
de doctorado supervisado por un investigador que, a su vez, ha 
obtenido la aprobación académica de sus pares, que tiene que re­
frendarse a lo largo de su carrera mediante el cuidadoso escruti­
nio de sus publicaciones. 

Nada de ello existía en los siglos xvr y xvrr. Uno de los más 
grandes historiadores de las matemáticas, el escocés Eric Temple 
Bell (1883-1960), llamó a Fermat el «príncipe de los aficionados», 
pero el hecho es que, en su siglo, todos eran de una u otra manera 
aficionados. Unos pocos matemáticos lograron que los mecenas 
de la época subvencionaran sus investigaciones, pero la mayoría 
practicaba otras profesiones y dedicaban a la matemática su 
tiempo libre. 

LA VIDA PERSONAL Y PROFESIONAL DE FERMAT 

Llegamos así al primer año del siglo xvn. Pierre de Fermat nació el 
20 de agosto de ese mismo año, 1601. Su padre, Dominique, era un 
próspero comerciante, un curtidor de Beaumont-de-Lomagne, 
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un pueblecito cercano a Toulouse. Su cuna convertía a Fermat en 
alguien un poco extranjero en la Francia de entonces, centrada 
históricamente en el norte, y con una inherente desconfianza 
hacia los «gascones», la gente del sur, como el famoso D'Artagnan. 
El francés René Descartes (1596-1650), que sería su gran rival 
matemático, nacido en la Turena francesa, en la zona noble del 
Loira, resaltaría la condición gascona de Fermat como un baldón. 
Fermat, en cambio, la reivindicaría con orgullo. 

Su madre, Claire, provenía de lo que, en la Francia del Anti­
guo Régimen, se llamaba noblesse de robe, el funcionariado, y muy 
particularmente, el que se dedicaba a la judicatura. Ambas tradi­
ciones, el dinero del padre burgués y la herencia de la madre, 
convertían al joven Pierre en un candidato ideal a escalar social­
mente a través de una carrera relacionada con la abogacía, y, en 
efecto, es lo que hizo. 

Se sabe muy poco de su vida privada en general, y aún menos 
de sus tiempos como niño y adolescente. Tuvo, al parecer, un her­
mano, Clément, también dedicado a la abogacía, y dos hermanas, 
Louise y Marie. Todo indica que su niñez y sus años mozos discu­
rrieron plácidamente en Beaumont, tal vez bajo la instrucción de 
los frailes cordeliers del monasterio de Grandselve. 

Pierre se matriculó en Derecho en la Universidad de Toulouse 
antes de su estancia en Burdeos en la segunda mitad de la década 
de 1620. Es muy probable que su formación matemática comen­
zara en Burdeos, aunque no queda ningún testimonio de si su in­
terés por dicha disciplina precedió a su mudanza a esa ciudad, 
cuyas razones son poco claras. Se ha especulado con que, preci­
samente, se mudó a Burdeos para estudiar matemáticas, en una 
especie de año sabático en el que se apartó del Derecho para 
perseguir lo que sería su pasión secreta durante toda la vida. 
Dado que en dicha ciudad había una tradición matemática mucho 
mayor que la que pudiera existir en Toulouse, la explicación no 
es descabellada. 

Burdeos es la ciudad donde Fran~ois Viete (1540-1603) -al 
que se conoce en castellano por la latinización de su nombre, 
Franciscus Vieta- desarrolló su trabajo matemático. Habrá oca­
sión de explorar su trabajo en mayor profundidad, pero baste 
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decir por ahora que fue el fundador del álgebra simbólica. Su tra­
bajo, por tanto, fue importantísimo, pero, tal vez por razones geo­
gráficas, por su relativo aislamiento en una ciudad de provincias 
en la centralista Francia y por la falta a la sazón de medios de di­
fusión científica, en los años en los que Fermat estuvo en Burdeos 
su revolucionario trabajo era prácticamente desconocido fuera 
del círculo de sus discípulos más directos. 

Fermat no conoció a Vieta, que murió cuando él tenía dos 
años, pero trabó conocimiento con uno de sus discípulos, Jean de 
Beaugrand ( ca. 1584-1640), quien sería su amigo y colega hasta su 
muerte. El caso es que ya en 1629, con veintiocho años, Fermat 
dio las primeras noticias de su talento matemático al enviar a 
Beaugrand una copia de su reconstrucción de una obra perdida 
del geómetra griego Apolonio de Perga ( ca. 262-190 a. C.), De locis 
planis, es decir, sobre los lugares -geométricos- planos. Buena 
parte del trabajo de los matemáticos de los siglos XVI y XVII era in­
tentar reconstruir dichas obras perdidas a través de referencias de 
otros matemáticos. En particular, la obra de Papo de Alejandría 
(290-350), que vivió varios siglos después de la mayoría de los 
matemáticos a los que reseñaba, fue una referencia fundamental. 
En efecto, Papo consignó unos 400 teoremas extraídos de las 
obras de los clásicos que él todavía pudo leer, de forma que, aun­
que parte de las obras de estos no habían logrado llegar al Rena­
cimiento, perdidas en los sucesivos incendios de la Biblioteca de 
Alejandría y en otros similares holocaustos culturales, cuando 
menos quedaban esas pocas ruinas, esas piedras aisladas debidas 
a Papo, para, de alguna forma, imaginar toda la gloria de los edifi­
cios matemáticos que había erigido la Antigüedad, del mismo 
modo que un arqueólogo puede describir el ágora de Atenas a 
partir de lo que queda de ella. 

Después de su estancia en Burdeos, Fermat se matriculó en la 
Universidad de Orléans. Allí obtuvo su grado de Licenciado en De­
recho Civil en 1631. A la sazón, y como se estilaba en la época, ya 
había comprado el puesto de conseiller en el Parlamento de Tou­
louse y el de Comisario de Ruegos de Palacio a la viuda del anterior 
detentador de dichos cargos, Pierre de Garriere. Fermat volvió así 
a sus pagos, ennoblecido por su toga, que le permitió añadir un 
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«de» a su nombre: Pierre de Fermat. Incidentalmente, que Fermat 
pudiera pagar el considerable monto de ambos puestos ( 43 500 li­
bras) demuestra que su posición económica era bastante desaho­
gada, como siguió siéndolo durante toda su vida. 

En el Antiguo Régimen los parlan1entos tuvieron una impor­
tancia política considerable como contrapesos· del poder central 
del rey que intentaba imponer su voluntad absolutista. En particu­
lar, el de Toulouse fue una concesión real a una población que se 
quejaba de la lejanía de París y de cómo las formas específicas del 
derecho del Languedoc eran ignoradas en la capital. 

Cabe recordar la agitadísima época en la que vivió Fermat. 
Eran los tiempos de Luis XIII, débil y voluntarioso, y de su pode­
roso ministro, el cardenal Richelieu. No hacía mucho que había 
sido asesinado el rey Enrique IV, el hugonote que se convirtió al 
catolicismo porque París bien valía una misa; por entonces, Pierre 
era un niño de ocho años. Las brutales guerras de religión entre 
católicos y protestantes, apenas apaciguadas por el edicto de Nan­
tes (1598), que promulgaba la tolerancia de ambos credos, eran 
también pasado reciente. De hecho, Richelieu todavía pelearía con­
tra los protestantes de La Rochelle, no muy lejos de Burdeos, en un 
episodio que Dumas consignó en Los tres mosqueteros y en el que 
participó el mismísimo René Descartes. Durante la vida de Fermat 
tan1bién tuvo lugar la Guerra de los Treinta Años, uno de los episo­
dios más dran1áticos de la historia de Europa, que solo puede com­
pararse en brutalidad y sufrimiento de la población civil a las dos 
guerras mundiales; y el episodio de la Fronda, la rebelión contra 
Mazarino cuando el despotismo de la regencia de Luis XIV la en­
frentó con los parlamentos -esos mismos parlan1entos en los que 
Fermat hizo carrera- y con una parte de la nobleza provinciana. 

Sin embargo, si algo define la vida de Fermat es la placidez. 
Vivió en una época de grandes acontecimientos, pero no participó 
políticamente en ninguno de ellos. No se le conocen, de hecho, 
opiniones políticas. Unos meses después de graduarse se casó con 
una prima segunda por parte de madre, Louise de Long. El matri­
monio engendró cinco hijos, que se sepa. Clément-Samuel, Jean, 
Claire, Catherine y Louise. El primogénito heredaría el puesto del 
padre, que a su vez pasaría en herencia a su hijo. Jean se convirtió 
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en archidiácono, Claire se casó y tuvo dos hijas monjas. Poco más 
se sabe, pero estas pinceladas permiten vislumbrar una tranquila 
vida burguesa, sin demasiada agitación, lo cual es asombroso, 
dada la violenta historia política de la época. Parece ser que Fer­
mat vivió todas estas convulsiones sin que le afectaran en lo más 
mínimo, a pesar de que, durante su carrera judicial, llegó a ocupar 
puestos de mucha importancia, que, dada la histórica oposición 
del Parlamento de Toulouse a la autoridad central, casi con segu­
ridad tendrían que haber situado a Fermat en medio de complica­
dos conflictos políticos. 

Los parlamentos eran cuerpos judiciales, no legislativos. Fue­
ron abolidos durante la jacobina Revolución francesa, pero en su 
momento fueron un gran contrapeso al absolutismo real. Por 
tanto, en toda su carrera profesional Fermat se ocupó de impartir 
justicia, pero también de mediar entre intereses políticos contra­
puestos. El edicto de Nantes, en particular, ordenaba que existie­
ran cámaras para que los derechos de ambas confesiones, la 
católica y la hugonota, tuvieran representación y justicia. 

En Castres, ciudad cercana a Toulouse y bastión protestante, 
Fermat fue miembro de una de esas cámaras a partir de 1632, 
cuando tenía treinta y un años. Es de suponer que los conflictos 
fueran significativos, pero nada de ello se trasluce en la corres­
pondencia de Fermat, que es prácticamente la única forma de in­
dagar en su vida. Algunos biógrafos creen ver en ello su aversión 
a las polémicas y las confrontaciones, su voluntad conciliadora, e 
incluso tal vez la motivación que le llevó a perseguir su pasa­
tiempo, las matemáticas, para escapar de los conflictos y ambi­
güedades de su vida profesional. 

En verdad, en pocos ámbitos hay tanta certidumbre y tan 
poco espacio para la duda como en matemáticas. Es profunda­
mente irónico, por tanto, que Fermat viviera en una época en la 
que, debido a la juventud de la disciplina en su forma moderna, 
los debates eran el pan de cada día y que, de hecho, siendo uno 
de los pensadores más brillantes del siglo, estuviera involucrado 
en buena parte de ellos, algo que le causó no poca amargura. Si 
buscaba certidumbre, muchas veces encontró incomprensión y 
oposición a sus ideas. 
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Fermat mantuvo toda su vida una relación estrecha con su 
pueblo natal, Beaumont, en el que también presidió en ocasiones 
el Consejo General. Pero parece claro que viajó poco y que su vida 
transcurrió entre Toulouse, Castres y Beaumont, con algún oca­
sional viaje a ijurdeos. 

Fuera de sus conocidos de juventud en Burdeos, algún matemá­
tico tolosano y el inglés Kenelm Digby, Fermat no conoció personal­
mente a casi ninguno de sus colegas; prácticamente toda su 
interacción con ellos fue epistolar. Su vida, comparada con la agi­
tada vida de su rival Descartes, que combatió en la Guerra de los 
Treinta Años, viajó por media Europa y frecuentó diversas cortes, 
se presenta apacible, burguesa y provinciana Las matemáticas eran 
su refugio secreto cuando, harto de confrontaciones políticas y sen­
tencias dolorosas, se refugiaba en su casa para leer, reflexionar, 
crear mundos nuevos y, a veces, comunicarlos a sus corresponsales. 

En efecto, Fermat escribió cientos de cartas en las cuales de­
tallaba sus descubrimientos, retaba a sus adversarios o se enzar­
zaba en amargas polémicas. El principal entre sus corresponsales 
fue un personaje curioso, un mor\je de la orden de los Mínimos, 
Marin Mersenne (1588-1648), quien tenía una gran pasión por la 
matemática que le llevó a cartearse con la mayoría de los grandes 
pensadores de la época. 

No existiendo revistas científicas, lo más similar que había en 
la época era Mersenne, una especie de central epistolar que recibía 
resultados de diversos matemáticos y los comunicaba a otros co­
rresponsales. Mersenne fue la primera gaceta científica, y si bien 
su talento matemático personal nunca fue espectacular, su enorme 
mérito radicó en su capacidad de entender quiénes eran los gran­
des creadores de la matemática de la época y la importancia de sus 
resultados; y, por supuesto, crear esos puentes de comunicación 
entre aficionados más o menos aislados entre sí. Sin Mersenne, 
Fermat hubiera sido un oscuro personaje que se recreaba en las 
matemáticas en la soledad de su despacho. Gracias al mor\je que 
le leía en la soledad de su celda y compartía luego sus descubri­
mientos, la fama matemática de Fermat se esparció por toda Eu­
ropa. Mersenne vivía en París y estaba en estrecho contacto con 
un grupo de matemáticos paiisinos en el que descollaba Étienne 
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Pascal, padre de Blaise, y que, a instancias del propio Mersenne, 
se reunía de forma irregular en las casas de sus participantes, y 
posteriormente en la propia celda del monje, que llegó a contar 
con 180 corresponsales repartidos por toda Europa. 

Mersenne adoraba las polémicas, y gozaba enfrentando a sus 
corresponsales y contertulios entre sí. Creía firmemente en que 
ese era el método a partir del cual resplandecería la verdad. Con 
frecuencia, incluso compartía con otros corresponsales las cartas 
que le enviaban en confidencia, sin tener autorización para ello, 
con lo que causó no pocos disgustos y malentendidos. Para Mer­
senne, más importante que la lealtad y la confianza de sus corres­
ponsales era que las ideas matemáticas se ventilaran en público y 
se debatieran con fervor. Esta convicción le costó la amistad de 
Descartes. La Academia Francesa de Ciencias fue, en su germen, 
ese grupo de matemáticos que se reunía alrededor de Mersenne. 

Marin Mersenne conoció a Fermat a través de un amigo del 
tolosano, Pierre de Carcavi, según dice el propio Carcavi en la 
primera carta que dirigió a Mersenne el 26 de abril de 1636, co­
menzando una fructífera correspondencia. Carcavi, matemático 
aficionado a su vez, se trasladó a París desde Toulouse como bi­
bliotecario del rey, y no perdió ocasión de hablar a Mersenne del 
genio matemático de Fermat. En todo caso, Fermat vio a Mer­
senne en persona una sola vez, en Burdeos, en 1654, cuando este 
iba de vuelta a París después de un periplo por Europa. Así, se 
piensa, transcunió la totalidad de la vida de Fermat, entre la judi­
catura que le permitía llevar pan a la mesa de su familia y la se­
creta pasión que le consumía cuando no tenía que vestir la toga. 
Se puede decir que se ganó la vida con el Derecho y la inmortali­
dad con las matemáticas. 

Hasta donde se sabe, Fermat solamente enfermó de gravedad 
durante la peste de los años 1652 y 1653. Tanto fue así que uno de 
sus amigos, Bemard Medon, reportó su muerte a un corresponsal 
holandés, Nicholas Heinsius. Poco tiempo después Medon se des­
decía y comunicaba a Heinsius la feliz nueva de que Fermat seguía 
entre los vivos. Curiosamente, la peste ayudó a su carrera. Dado 
que la progresión en la judicatura estaba detem1inada por estricto 
escalafón, la muerte de muchos de sus colegas en esos aciagos 
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años le hizo subir rápidamente en la lista, hasta llegar a ser el ter­
cero en antigüedad del máximo tribunal del Parlamento, la Tor­
nelle, que veía las causas penales. En esa situación tuvo que 
condenar en una ocasión a la hoguera a un sacerdote expulsado 
que «había abusado de sus funciones», algo que le causó, si hemos 
de creer su correspondencia, un gran desasosiego, que a su vez le 
impidió durante unas semanas dedicarse a resolver el problema 
matemático que le tenía ocupado a la sazón. 

La otra gran actividad legal de Fermat era elevar peticiones 
de los súbditos a la Corona. Dichos súbditos no podían hacer las 
peticiones directamente; debían pasar por un consejero como Fer­
mat, al que tenían que convencer de los méritos de su petición. 
Según algunos testimonios, Fermat cumplió esta función con em­
patía y generosidad. 

Tenemos constancia de que fue el vocero del Parlamento de 
Toulouse en sus relaciones con el poderoso canciller de la Co­
rona, Pierre Séguier. El cargo de canciller era uno de los más po­
derosos de Francia, equivalente actualmente a un ministro de 
Justicia. En una instancia particular, Fermat defendió ante Sé­
guier que los habitantes de Aquitania fueran declarados exentos 
de pagar un cierto impuesto, dado que, según su argumento, cual­
quier intento de cobrarlo por la fuerza llevaría irremediablemente 
a indeseables revueltas civiles. 

De todas formas, todo parece indicar que su carrera como 
parlamentario nunca llamó demasiado la atención. El propio Fer­
mat confesó en una ocasión a Mersenne que temía que un nombra­
miento en particular, que había solicitado a Séguier, no tuviera 
lugar, dado el fracaso «de su gestión en Castres», de la que no se 
tienen más datos. Años más tarde, el intendente de Languedoc 
escribió un informe al célebre ministro Jean-Baptiste Colbert en 
el que daba su opinión sobre el primer presidente del Parlamento, 
superior directo de Fermat, a quien interesaba al ministro vigilar, 
y sobre sus consejeros. Su opinión de Fermat, en tanto magis­
trado, es poco halagadora: 

Fermat, un hombre de gran erudición, tiene contacto con sabios de 
todo el mundo. Pero suele estar muy preocupado [ con su erudición]; 
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no instruye bien sus casos y se confunde mucho. No es uno de los 
amigos del primer presidente. 

Sea como sea, Fermat se revelaba como un hombre reser­
vado, casi tímido, conciliador hasta el punto de, por un lado, servir 
en un altísimo cargo en una institución abiertamente enfrentada a 
la Corona y, por otro, tener buenas relaciones con la Corte. 

LA PERSONALIDAD MATEMÁTICA DE FERMAT 

Los rasgos del carácter retraído de Fermat influyeron decisi­
vamente en su carrera científica. Según comenta Michael Sean 
Mahoney, uno de sus principales biógrafos, su correspondencia 
matemática está desprovista de la egolatría que caracterizaba a 
un René Descartes o un John Wallis. A Mersenne le confesó que 
no perseguía la gloria, que estaba «exento de ambición». Esto tal 
vez no es exacto. Está claro que Fermat se enorgullecía de su ca­
rrera en la judicatura y de los altos puestos que había escalado; de 
la misma forma, esperaba reconocimiento por sus contribuciones 
matemáticas. Pero esa ambición era, en cierto sentido, modesta. 
Le bastaba el reconocimiento de sus colegas, no la gloria de ser 
reconocido por el gran público; y cuando no lo obtuvo reaccionó 
de forma dolida, frustrado ante la indiferencia o la hostilidad de 
algunos de sus contemporáneos. 

Esta personalidad explica tal vez por qué Fermat -«el más 
perezoso de los hombres», le dice a Mersenne refiriéndose a sí 
mismo- nunca publicó bajo su nombre en vida, y por qué evitó 
en la medida de lo posible dar demostraciones de los resultados 
que anunciaba en su correspondencia. 

La tradición -de secreto en las matemáticas se había originado 
con la escuela pitagórica; pero si tal hermetismo tenía raíces místi­
cas en la Antigüedad, los cosistas lo continuaron por razones prag­
máticas. Era el equivalente a la moderna protección de las patentes. 

Mersenne, precisamente, luchaba contra ese secretismo 
cuando hacía circular las cartas que le habían enviado. Conven-
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cido con firmeza de que solo el debate haría progresar las mate­
máticas, el monje de la orden de los Mínimos de Paris inauguró 
una nueva tradición, intentando convencer a sus corresponsales 
de que revelaran sus secretos. Pero, a pesar de su poder de per­
suasión, nunca convenció a Fermat de que publicara una obra 
formal. Para Mersenne y los miembros de su círculo, Fermat tenía 
que ser alguien desesperante: un brillantísimo matemático que 
contaba sus resultados a cuentagotas, sin aportar, en la mayoria 
de los casos, una demostración de sus teoremas. 

En más de una ocasión Fermat utilizó ese secretismo tan caro 
a los cosistas para retar a sus adversarios a que resolvieran un 
problema que él mismo había ya resuelto. Este tipo de juegos y 
adivinanzas parecía causarle gran placer, sobre todo cuando, 
como ocurrió varias veces, la rivalidad se había convertido en 
franca enemistad. De esta forma, Fermat se limitó a explicar reta­
zos de sus ideas en cartas que primordialmente iban dirigidas a 
Mersenne, y, en ocasiones, a circular memorias y pequeños trata­
dos manuscritos. Solamente se publicó en vida una obra debida a . 
él, como un apéndice de otro libro y bajo seudónimo. Esta renuen­
cia frustró a muchos de sus amigos, llevando a Medon a rogar a 
Heil:lsius que usara sus buenos oficios para convencer nada menos 
que a la reina Cristina de Suecia a que instara a Fermata publicar, 
una labor en la que Mersenne, Gilles de Roberval, Blaise Pascal y 
Christiaan Huygens habían fracasado. 

Tal renuencia podria también deberse a la enorme cantidad 
de trabajo que la formalización rigurosa de sus resultados hubiera 
requerido. Fermat era un hombre de enorme intuición matemá­
tica, y con frecuencia unos pocos garabatos escritos para sí mismo 
le convencían de que tenía razón. Convertir esos garabatos en una 
prueba formal, según el estándar de la geometria griega, era 
mucho más trabajo del que Fermat queria dedicar a su pasa­
tiempo. Él trabajaba para sí mismo; sus pruebas, parciales o com­
pletas, eran para consumo personal. Como un jugador de ajedrez 
que adivina el jaque mate en cinco jugadas, Fermat solo avanzaba 
hasta el punto en la demostración que le parecía necesario. Sus 
notas eran solo recordatorios para sí mismo, claves para que en 
su mente se presentara de nuevo la idea que había iluminado justo 
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antes de escribir dichas notas. Pero hay otra razón metodológica 
que será aparente en él más adelante, cuando detallemos cómo 
amplió la tradición matemática que heredó de Vieta. 

Sea como sea, convencer a otros de la corrección de sus re­
sultados no entraba entre sus preocupaciones. Ya sabrían ellos, 
pensaba, reproducir sus razonamientos. O si no pueden, peor para 
ellos. En todo caso, el trabajo de convencerlos era un desperdicio 
de su limitado tiempo, que estaría mejor empleado en descubrir 
nuevos resultados, no en probar rigurosamente los que ya le pare­
cían evidentes. 

«[Si existe] cualquier parte de mi obra que se considere digna 
de publicación, me niego a que mi nombre figure en ella.» 

- FERMAT EN UNA CARTA ENVIADA A ROBERVAL EN 1637. 

Su propia carrera profesional habría incentivado esta actitud, 
dado que le robaba tiempo a la matemática. Y así, toda la vida 
científica de Fermat estuvo marcada por esos resultados que se 
enunciaban con parsimonia, esas ideas apenas esbozadas que 
nunca fueron perseguidas hasta su consecución, ese desdeño por 
rellenar huecos y detalles y esa ausencia de pruebas. En resumen, 
el reverso de lo que la obra de Euclides, con su enfoque sistemá­
tico y riguroso, y sus demostraciones prístinas, había significado 
para generaciones de matemáticos. En ese sentido, Fermat estaba 
mucho más cerca de la tradición cosista que del rigor helenístico. 

Todas estas notas, bocetos de demostraciones y papeles de­
sordenados ( al menos, todas las que pudo encontrar y a las que 
pudo dar sentido) fueron ordenadas, sistematizadas y publicadas 
por su albacea, el primogénito Clément-Samuel, que además de 
heredar los cargos del padre, recibió al menos una parte de su 
afición por las matemáticas. 

En particular, en 1670 el hijo publicó Los comentarios a Dio­
fanto, reuniendo todas las notas marginales de su padre. Fue así 
como llegó hasta nosotros ese teorema que, seguran1ente, era solo 
una nota que Fermat se hacía a sí mismo. Nunca la compartió con 
nadie en toda su generalidad; la única constancia que tenemos de 
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ella es ese margen que Clément-Samuel, fiel a la memoria de su 
padre, transcribió y publicó póstumamente. 

Fermat discutió casos particulares del teorema; pero el enun­
ciado general, tal como aparecía en su casual anotación, se hu­
biera perdido con casi total seguridad en la noche de los tiempos 
matemáticos como se perdieron tantas obras de Euclides, Apolo­
nio, Diofanto y otros pensadores. 

El destino de una obra es caprichoso; a veces pende de un 
hilo, de la voluntad de alguien que crea que esa obra es importante 
y que merece ser conocida. Y ese hilo, en el caso de Fermat, fue el 
amor de Clément-Samuel por su padre y su memoria. 

Así es como llegamos, finalmente, a ese margen en el que Fer­
mat escribió su endiablado teorema. «He encontrado -decía­
una maravillosa demostración de esta afirmación, que por 
desgracia no cabe en este margen tan pequeño.» 

Es curioso que los siglos hayan hablado siempre del último 
teorema de Fermat. En matemáticas, cualquier resultado no de­
mostrado se conoce como conjetura o hipótesis. Así, tenemos la 
hipótesis de Riemann, la conjetura de Goldbach, y hasta hace muy 
poco, la conjetura de Poincaré, que al haber sido demostrada, se 
ha convertido en el teorema de Poincaré-Perelman. Y es que solo 
los resultados demostrados merecen el nombre de teorema. 

Pero, por alguna razón, el último teorema de Fermat se cono­
ció siempre como teorema; tal vez porque los otros comentarios 
fueron siendo demostrados poco a poco, hasta solo quedar el úl­
timo. Es, por tanto, el teorema que tardó 350 años en serlo. 
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CAPÍTULO 2 

Los intentos de demostración 
del último teorema 

Durante 350 años los historiadores de las 
matemáticas se han preguntado inútilmente si 

Fermat llegó a demostrar su teorema, si fanfarroneaba, 
o si se equivocó al pensar que lo había demostrado. 

Dado el modo de actuar del matemático francés, 
casi todo es posible, aunque algunas informaciones 

son más probables que otras. 





Los instrumentos matemáticos de la época de Fermat eran muy 
similares a los que emplea un alumno aplicado de instituto. Dicho 
de otra forma; la humanidad tardó unos 2 500 años en adquirir los 
conocimientos de un bachiller. En cambio, desde entonces los 
conceptos son cada vez más difíciles de entender para los no es­
pecialistas. 

La matemática que usó Wiles para demostrar el último teo­
rema de Fermat no existía en los tiempos del sabio francés. De 
hecho, buena parte de ella no fue inventada hasta el siglo xx. Ello 
hace extraordinaliamente difícil creer que Fermat tuviera una 
prueba de su teorema, que resistió los ataques de algunas de las 
mejores mentes matemáticas mundiales durante 350 años. 

Lo más probable es que Fermat hubiera demostrado algunos 
casos particulares del teorema. En la observación 45 del tratado 
de Diofanto consta que probó el caso con n = 4. Es decir, no exis­
ten números naturales x, y y z tales que: x 4+ y 4=z 4• 

Es posible que hubiera probado también el caso con n = 3. 
Cuando menos, lo citó en su correspondencia como un resultado 
probado, de la misma forma que lo hizo con n = 4. Y, muy proba­
blemente, a partir de estos dos casos, pensó que la generalización 
era muy sencilla. 

No era la primera vez que Fermat se equivocaba. También 
había afumado que 22

P + 1 es siempre un número plimo ( divisible 
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solamente por sí mismo y por la unidad) si p es primo. El gran 
matemático suizo Leonhard Euler (1707-1783) demostraría que 
esto no es verdadero: con un valor tan bajo como p = 5 la afirma­
ción de Fermat falla, ya que dicho número es divisible por 641. 

Así que Fermat se había equivocado alguna vez, confiando 
demé!Siado en su intuición y en sus demostraciones incompletas. 
No es descabellado pensar que su supuesta demostración del úl­
timo teorema solo existió en su imaginación, y que su falta de 
rigor le llevó a hacer una afirmación muy audaz a partir de un par 
de casos especiales ... afirmación de la que, por otro lado, no se 
tiene constancia de que quisiera compartirla con otros. 

En todo caso, hay que hacer notar que la observación que 
constituye el último teorema es una cosa curiosa, casi un deta­
lle, no uno de los fundamentos de una revolución matemática. 
Comparada con otros resultados que a fecha de hoy no han sido 
demostrados, como la hipótesis de Riemann, su importancia ma­
temática palidece: al demostrar el último teorema no se crea un 
nuevo y fecundo campo de investigación matemática. Los mate­
máticos miden la importancia de un resultado en función de la 
matemática nueva que dicho resultado, al ser demostrado, ge­
nera. El caso es que el último teorema, por sí mismo, no genera 
gran cosa. 

Sin embargo, los esfuerzos para demostrarlo durante 350 años 
desarrollaron teorías matemáticas importantísimas. Su enorme 
paradoja es esa: en cierto sentido, es un resultado sin importancia, 
una observación adecuada para el margen donde fue escrita; pero 
la enorme dificultad de la demostración y el interés que suscitó a 
través de los siglos llevaron a crear teorías completas cuya apli­
cación y desarrollo resultaron capitales. 

Aquellos profesores de los que hablamos al principio segu­
ramente decían a sus alumnos: «Ojalá nunca sea demostrado». 
Porque las matemáticas que han generado sus intentos de de­
mostración son más importantes que el teorema en sí, y espe­
ramos que se sigan creando teorías novedosas gracias a dichos 
intentos. 

Desde luego, cabe otra versión de la historia, en la que Fer­
mat, como hizo alguna vez, jugaba con sus contemporáneos, re-
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tándolos a demostrar algo de lo que él mismo no estaba seguro; 
pero el no haber hecho público el resultado trabaja en contra de 
tal hipótesis. Además, como se ha dicho, la posibilidad de que 
realmente tuviera una demostración general del teorema es muy 
difícil. O los matemáticos más brillantes de los últimos 350 años 
han sido ciegos o la matemática necesaria para demostrar el teo­
rema simplemente no existía en los tiempos de Fern1at. Lo se­
gundo es mucho más probable. 

Un problema sin resolver es como un muro. Los matemáticos 
que lo acometen tienen que fabricar armas para derribarlo. Y hay 
problemas que, sencillamente, no pueden ser derribados con cier­
tas armas. De la misma forma que una catapulta romana resultaría 
absurdamente inútil contra un portaaviones moderno, determina­
das herranuentas matemáticas son pobres ante ciertos problemas, 
y los matemáticos tienen que devanarse los sesos inventando nue­
vas estrategias de ataque y nuevas armas. La historia moderna de 
las matemáticas, en buena medida, es la historia de la invención 
de esas am1as. 

Fern1at tenía armas que una generación o dos anteriores no 
hubieran soñado; pero no eran suficientes para resolver su pro-

. blema. Por otro lado, era imposible que él lo supiera. Tal vez el 
jurista tolosano se vio deslumbrado por el brillo de las armas que 
su maestro Vieta y él mismo habían inventado, y no supo que no 
serían capaces de derrumbar determinados muros. El lema de 
Vieta era nullum non problema solvere: «no hay problema sin 
solución». Esta confianza era excesiva, pero nadie podía saberlo 
entonces. 

Los matemáticos acometen las demostraciones con tantas 
estrategias como tiene un general en batalla; o tal vez con más de 
ellas. En tiempos de Fermat el número de estrategias se multiplicó 
drásticamente con la invención del álgebra simbólica; una de las 
que usó el propio Fermat la inventó él mismo: el método del des­
censo infinito, que parte de la reducción al absurdo. En su versión 
más sin1ple, dicho método consiste en asunur como hipótesis la 
negación de la conclusión del teorema que queremos probar ( el 
recurso de reducción al absurdo), y buscar una propiedad que es 
válida para un número dado, n. Acto seguido, se demuestra que si 
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esa propiedad es válida para el número n, también lo es para un 
número menor que n, típicamente n-1. 

¡Pero aquí hay un problema! Si esto es cierto, hay sucesión 
infinita de números naturales cada vez más pequeños, y sabernos 
que esto no es cierto. Hay un número natural más pequeño que 
todos, el número uno. Por tanto, tenernos una contradicción, lo 
cual demuestra que nuestra hipótesis es errónea. 

Así fue corno Ferrnat demostró que su famoso teorema era 
verdadero al menos en el caso particular en el que n = 4, en una 
demostración que casi cupo en otro margen de la misma Aritmé­
tica de Diofanto donde consignó el caso general. Y decirnos «casi» 
porque Ferrnat omitió, corno era su costumbre, algunos pasos de 
la demostración. 

Poco más se puede decir de las investigaciones de Ferrnat 
sobre su último teorema, ya que apenas dejó algo dicho al res­
pecto; así que tenernos que embarcarnos en esa jornada de 350 
años para entender el desarrollo de una historia que Ferrnat no 
pudo ver. 

DE EULER A SOPHIE GERMAIN 

Corno ya se ha dicho, el último teorema fue postulado pósturna­
rnente. Por otro lado, la teoría de números formulada por Ferrnat 
tuvo bastante poco éxito entre sus contemporáneos, más preo­
cupados por los acuciantes problemas del cálculo. Así pues, la 
publicación de los comentarios de Ferrnat a la Aritmética de 
Diofanto tuvo poca repercusión. Los matemáticos de su época 
no entendían su obsesión por esos problemillas sin sentido, que 
parecían más adivinanzas y puzles que problemas matemáticos 
importantes. 

Fue otro científico aficionado, el matemático prusiano Chris­
tian Goldbach (1690-1764) -a quien curiosamente se recuerda 
por una cor\jetura no muy distinta de los problemas que abordaba 
Ferrnat y que continúa sin ser resuelta a día de hoy-, el que co­
menzó a estudiar a Ferrnat y llamó la atención del más grande 
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LEONHARD EULER 

El matemático suizo Leonhard Euler 
(1707-1783) fue el estandarte de la ma­
temática del siglo xv111. Su trabajo cubre 
prácticamente todas las áreas vigentes 
en su momento, al tiempo que impor­
tantes trabajos en física. Euler ocupó 
destacados puestos en las Academias 
Reales de Rusia y Prusia, bajo Catalina 
la Grande y Federico 11, donde se codeó 
con reyes y pensadores de la talla de 
Voltaire. Tuerto de un ojo, Euler terminó 
por perder la vista del todo, pero ello no 
le impidió seguir produciendo al ritmo 
de un artículo a la semana. Dotado de 
una memoria prodigiosa, lograba com­
poner sus teoremas en su mente de la 
misma forma en que podía recitar sin 
problema la Eneida de principio a fin. De él se cuenta que, estando Catalina 
harta de los desplantes ateos de Diderot, pidió a Euler que le humillara pú­
blicamente. Euler se acercó al filósofo y le espetó: 

a+bn D' . 'R d 1 « -- = x, por tanto, 10s existe. 1 espon a.». 
n 

Diderot no supo qué responder. Sin embargo, algunos historiadores dudan 
de la veracidad de la anécdota. También Euler es responsable de una de las 
fórmulas más bellas de la matemática: e i. +l=O. 

matemático de su época sobre los trabajos del tolosano. Nacido 
unos cuarenta años después de la muerte de Fermat, ese matemá­
tico era Leonhard Euler. 

Sucede que la curiosidad de Euler se despertó por los comen­
tarios de Goldbach, y el suizo comenzó a analizar los trabajos de 
Fermat. Entre otras cosas, demostró que este se equivocaba en · 
uno de los resultados de los que se sentía más orgulloso, la afirma­
ción de que ciertos números, conocidos como «números de Fer­
mat», son siempre primos. Pero Euler también indagó si el último 
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teorema era cierto. Y aunque no pudo demostrarlo en el caso ge­
neral, logró demostrarlo para el caso en el que n = 3. Así que, en el 
punto en el que Euler dejó el terna, se habían demostrado dos 
casos ... o en realidad una infinidad de ellos, ya que si se demues­
tra el teorema paran= 3, el resultado es válido para todos los múl­
tiplos de 3, es decir, para la secuencia 6, 9, 12, 15 ... Esto es así 
porque cualquier potencia que sea múltiplo de tres se puede escri­
bir corno un número al cubo. Por ejemplo, 46 = 163. Análogamente, 
corno Ferrnat demostró el caso n = 4, está demostrado también 
para los múltiplos de 4. 

SOPHIE GERMAIN 

Como todas las mujeres científicas hasta 
el siglo xx, la matemática parisina Soph ie 
Germain (1776-1831) se enfrentó a múlti­
ples prob lemas para segu ir su carrera 
científica. Sin educación formal , se hizo 
con las notas de l 'École Polytechnique 
para estudiar. Se carteó con los grandes 
matemáticos de la época, como Joseph­
Louis Lagrange, Adrien-Marie Legendre 
y Gauss, haciéndose pasar por un tal «se­
ñor LeBlanc». Gauss se enteró de su 
identidad en las circunstancias más cu­
riosas imaginables. Habiendo ocupado 
las tropas napoleónicas la local idad ale­
mana en la que Gauss v ivía, Germain te­
mió por la v ida de su corresponsal, re­
cordando el ejemplo de Arquímedes, así 
que escribió al general Pernety, amigo 
de su familia, rogándole que protegiera 
al genio. Pernety mandó un destacamen­
to que informó a Gauss de las gestiones 
de Soph ie. Emocionado y asombrado, 
Gauss escribió a Germain haciéndole notar cómo los estúpidos prejuicios de 
la época hacían que una mujer requiriera ser en realidad una persona del «más 
noble valor, extraordinario talento y genio superior» para lograr vencer los 
obstáculos que se oponían a su carrera. 
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Si pudiéramos demostrar el teorema para los números pri­
mos, dado que cualquier número es un múltiplo de primos, lo ten­
dríamos demostrado en general. Sin embargo, por desgracia, la 
demostración para el caso n = 5 era extraordinariamente más 
compleja de lo que Fermat hubiera imaginado. De todas formas, 
el hecho de que Euler se interesara por los trabajos de Fermat 
insufló una bocanada de aire fresco en la teoría de números. Esta 
disciplina se convirtió, gracias a Euler y a Carl Friedrich Gauss 
(1777-1855), en una teoría matemática respetable, tal y como Fer­
mat había deseado. 

Sin embargo, el teorema no tuvo suerte en manos de Gauss, 
el llamado príncipe de las matemáticas, que se refería a él en tér­
minos desdeñosos. Lo consideraba una pérdida de tiempo; o es 
posible que haya intentado resolverlo alguna vez, y que, frustrado 
por su falta de éxito, adoptara la estrategia del zorro con las uvas, 
fingiendo despreciar lo anhelado por saberlo inalcanzable. 

Pero otros matemáticos de su época lo abordaron. Notoria­
mente, Sophie Germain, que descubrió que, para los primos que 
llevan su nombre (números p donde p es un primo y P= 2p + 1 
también lo es), aunado a ciertas propiedades que deben cumplir P 
y p, en particular que p no divida a xyz, el producto de las tres 
incógnitas de la ecuación de Fermat, el últin10 teorema de Fermat 
es cierto paran= p. Con esta técnica, Germain logró demostrar el 
teorema de Fermat para todos los primos menores de 100. Por 
desgracia, su trabajo no fue publicado en vida. 

Adrien-Marie Legendre y Gustav Lejeune Dirichlet lograron 
demostrar el caso n = 5. La demostración usa herramientas mate­
máticas que no existían en el siglo xvn, como la teoría de formas 
cuadráticas. La demostración, en efecto, era relativamente senci­
lla para los casos n = 3 y n = 4, pero se volvía mucho inás compleja 
a partir de n = 5, e intratable por métodos convencionales a partir 
den= 23. 

De todas maneras, el intento de Sophie Germain fue el pri­
mero en el que se buscaba una solución para toda una clase de 
números, no para primos particulares, y abrió una estrategia no­
vedosa de ataque al problema que siguió utilizándose en años 
venideros. 
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LAMÉ, CAUCHY Y KUMMER 

Las décadas siguientes vieron los intentos de Gabriel Lamé (1795-
1870) y Augustin-Louis Cauchy (1789-1857) para demostrar el teo­
rema Lamé logró probar el caso n = 7, y en una tormentosa sesión 
de la Academia Francesa de Ciencias, anunció que estaba a punto de 
demostrar el caso general. Delineó a grandes rasgos su estrategia, 
que se basaba en el álgebra de números complejos. De forma sensa­
cional, Cauchy, una de las cumbres matemáticas de la época, se le­
vantó para declarar, a su vez, que él también estaba a punto de tener 
la demostración, y que su enfoque era muy similar al de Lamé. 

Se.inició entonces una carrera entre los dos matemáticos, que 
fue dramáticamente interrumpida cuando un alemán, Emst Kum­
mer (1810-1893), proclamó con teutónica satisfacción que las técni­
cas de Cauchy y Lamé estaban equivocadas. En efecto, decía 
Kummer, ambos habían cometido el fatal error de suponer que los 
números complejos que usaban tenían una factorización única Esto, 
argumentaba correctamente Kummer, no era cierto. 

Así las cosas, la estrategia de Cauchy y Lamé se hundió, mien­
tras Kummer siguió investigando y llegó a crear una nueva teoría 
matemática para intentar demostrar el último teorema de Fermat. Su 
investigación le llevó a intentar entender cuáles eran los obstáculos 
a la factorización única que intentaban los franceses, y esto le llevó 
a su vez a formular los principios de lo que se conoce como teoría 
de ideales. Las herramientas se iban complicando cada vez más ... 

Pero Kummer fue mucho más allá. Usando técnicas matemá­
ticas aún más avanzadas, logró encontrar las condiciones que ha­
cían posible la factorización única. A partir de ello, demostró que 
existen ciertos primos, llamados regulares, para los que el último 
teorema de Fermat se cumple. Kummer había logrado demostrar 
el teorema para un número enorme de casos (tal vez infinito, aun­
que no se ha demostrado que el número de primos regulares sea 
infinito). De hecho, lo había demostrado para todos los casos me­
nores a 100 salvo 37, 59 y 67, que son primos irregulares. 

El trabajo de Kummer fue también fundamental para la poste­
rior generalización de su concepto de números ideales por parte del 
matemático alemán Richard Dedekind (1831-1916), creando la teo-
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PROFUNDIZACIÓN SOBRE EL ENFOQUE DE LAMé-CAUCHY 
Y DE LA CORRECCIÓN DE KUMMER 

El enfoque de Gabriel Lamé y Augustin-Louis Cauchy estribaba en intentar 
factorizar el miembro izquierdo de la ecuación de Fermat de la siguiente 
forma: x n + y n - (x + y)(x + c;y) ... ( x + ~ n-1y), donde x e y son números enteros 
ordinarios y los ~ son lo que se conoce como enteros algebraicos que, a pesar 
de su nombre, son números complejos (números como a+ bi, donde i es igual 
a ,J-1) que ocurren como raíces de cierto tipo de polinomios. Lo relevante es 
que, si dicha factorización es única, se puede demostrar que no hay solucio­
nes para la ecuación de Fermat, es decir, que el último teorema es verdade­
ro. Tanto Lamé como Cauchy habían abierto un nuevo frente: el uso de nú­
meros complejos de una cierta forma. Pero Kummer demostró que esta 
factorización, en general , es imposible. A partir de ello, intentó buscar las 
condiciones en las que pudiera llevarse a cabo. Esto le llevó al estudio de los 
llamados campos ciclotómicos, que son una extensión de los racionales, ob­
tenida añadiendo uno de los números "r/ de la ecuación anterior. Kummer 
aplicó por primera vez la teoría de grupos a la teoría de números. A partir de 
ello, el matemático alemán logró demostrar que existen ciertos primos que 
no d iv iden a un número, llamado número de clase de ideales, que es una 
característica de la extensión anteriormente mencionada. Estos primos son 
los primos regulares. 

ria de ideales, una importante extensión de las propiedades de los 
números naturales. Un ideal, por ejemplo, es el coajunto de los nú­
meros pares, o los múltiplos de tres, pero hay ideales que no son 
números, a pesar de lo cual conceptos familiares como la factoriza­
ción en primos son aplicables a ellos. 

FALTINGS Y LA BÚSQUEDA INFORMÁTICA 
DE CONTRAl;JEMPLOS 

Durante los años que siguieron a la muerte de Kummer, en 1893, 
hubo poca investigación formal novedosa para demostrar el último 
teorema. Los investigadores profesionales lo dejaron de lado. Se 
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convirtió durante décadas en el pasatiempo de matemáticos aficio­
nados buscando el Grial que prometía la gloria y algún premio eco­
nómico ( a principios del siglo xx, Paul W olfskehl instauró un 
premio dotado con 100 000 marcos a quien demostrara o refutara 
el último teorema de Fermat), pero las herramientas con que con­
taban estos aficionados, más o menos tan primitivas como las de 
Fermat, se revelaron una y otra vez insuficientes para derribar el 
muro. Si acaso, la invención de los ordenadores permitió intentar 
la búsqueda de contraejemplos. Como se sabe, basta un solo con­
traejemplo, un resultado contrario ( en el caso de Fermat, encontrar 
al menos una terna x, y y z naturales que cumplan la ecuación para 
n > 2) para demostrar que el teorema es falso. En cambio, si se 
quiere demostrar que es verdadero no basta un millón de ejemplos. 

Los ordenadores, cada vez más poderosos, permitieron de­
mostrar a principios de la década de 1980 que el último teorema 
era verdadero para todos los valores de n hasta cuatro millones. 
Pero eso no bastaba. Aunque la mayoría de los matemáticos esta­
ban convencidos de que el último teorema era verdadero, no se 
puede afirmar un resultado por más casos afirmativos que lo res­
palden. Esto se comprobó espectacularmente con una conjetura 
que formuló Euler en el siglo XVIII, que afirmaba que x 4 + y 4 + z 4 = w4 

no tenía soluciones naturales. Dicha conjetura se demostró falsa 
mediante un contraejemplo en 1988, unos doscientos años des­
pués de la muerte de Euler. La ecuación tiene la siguiente solu­
ción: x=2682440, y= 15365639, z= 18796760 y w=20615673. Es 
una especie de justicia poética que el hombre que refutó a Fermat 
con sus primos haya sido refutado a su vez. 

Pero en 1983, un investigador alemán llamado Gerd Fal­
tings dio un salto de gigante al demostrar que, si existen solu­
ciones naturales a la ecuación de Fermat, el número de estas es 
finito. Esto no demostraba el teorema, que dice que el número 
de soluciones es cero, pero era un avance significativo. Proce­
damos con cautela, aclarando que un número finito puede ser 

1 O 000 000 000 000 000 000 000 000 000 000 000 , 101º , llamado «numero de Skewes», 
que tiene que ver con la distribución de los números primos. Es 
un número inconcebiblemente grande, muchísimo mayor que el 
número de partículas en el universo, o incluso el número de po-
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tenciales interacciones entre dichas partículas. Godfrey Hardy lo 
llamó «el número más grande que ha tenido alguna vez alguna 
aplicación en matemáticas». 

La estrategia de Faltings se basaba en los resultados de una 
disciplina llamada geometría diferencial. La geometría diferen­
cial estudia, muy grosso modo, curvas y superficies geométricas 
generalizadas, utilizando para ello hen-anúentas del cálculo como 
la diferenciación y la integración. Ahora bien, un grupo de inves­
tigadores rusos se dio cuenta, en la década de 1970, de que se 
podían relacionar ciertos problemas de la teoría de números, a la 
que pertenece el último teorema de Fermat, con ciertos proble­
mas de la geometría diferencial. Esos investigadores habían ten­
dido un puente entre dos islas, dos disciplinas que parecían 
alejadísin1as entre sí y cuyos especialistas no se hablaban entre 
ellos, al menos no profesionalmente. 

Faltings relacionó la ecuación de Fermat (xn+ y n= z n) con 
distintas superficies en el mundo de la geometría diferencial, una 
para cada valor de n. Dichas superficies son como rosquillas, 
salvo que, en vez de tener un solo agujero central, tienen muchos. 
Cuanto más grande es n, más agujeros tienen. Faltings relacionó 
la existencia de más de un agujero con el hecho de que la ecuación 
de Fennat relacionada terúa, cuando mucho, un número finito de 
soluciones. Era un gran paso, pero aún insuficiente. 

LA CONJETURA DE TANIYAMA-SHIMURA 

Volviendo al último teorema, nadie se imaginaba por dónde salta­
ría la liebre. Si un matemático de la época de Fermat operaba con 
elementos fanuliares, como círculos o números primos, los inves­
tigadores de épocas posteriores comenzaron a crear criaturas 
cada vez más curiosas y a intentar entender las leyes que reglaban 
su comportanúento. 

En este punto de la nan-ación, es preciso no desesperarse si 
no se logra entender las complejas estructuras matemáticas que 
se usan para intentar derribar el muro. Nadie que no sea un ex-
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Curvas elípticas 
para c=O y 

distintos valores 
de a y b . 

54 

perto puede entenderlas cabalmente. De hecho, solo un científico 
profesional puede seguir con detalle estos argumentos. Sea como 
fuere , los matemáticos crearon una teoría sobre una de esas es­
tructuras, las curvas elípticas, y otra, totalmente distinta y sin apa­
rente relación con la primera, sobre formas modulares. 

Las curvas elípticas del tipo que nos concierne aquí (véase la 
figura) son simplemente ecuaciones de una cierta forma: 
y 2= x 3 +ax 2+bx+c, donde a, by e son números enteros. No son 
realmente elipses; deben su nombre a haber sido utilizadas en el 
pasado para medir trayectorias planetarias. En cambio, las formas 
modulares son animalitos un poco más extraños. Viven en lo que 
se llama un espacio hiperbólico, en el que tenemos dos ejes, pero 
ambos están formados por números complejos. Como resultado, 

b = -1 b:O b = 1 b:2 

a= -2 

a= -1 

a=O 

a= 1 
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dado que todo número complejo tiene una parte real y una imagi­
naria, el espacio hiperbólico tiene en realidad cuatro coordenadas. 
Dado que nuestra pobre visión se limita a tres coordenadas espa­
ciales, no podemos visualizar una forma modular. Digamos enton­
ces que una forma modular es un objeto matemático que habita en 
el espacio hiperbólico, cumpliendo ciertas propiedades. Una de 
ellas es que su parte irnaginalia es positiva, por lo que nuestros 
objetos habitan en la mitad supelior del espacio. Otras propiedades 
no son tan fáciles de desclibir, y las obviaremos en esta exposición. 

Ahora bien, cada forma modular tiene, siguiendo un símil de 
Sirnon Singh, un ADN, una selie de números que lo descliben por 
completo, y que llamaremos Ml' M

2
, • • • Mn. Análogamente, cada 

curva elíptica tiene asu vez otroADN, qU:e llamaremosE
1
,E

2
, • • • En. 

Hasta bien entrado el siglo xx ambos campos -el estudio de 
las curvas elípticas y el de las formas modulares- eran compar­
timentos estancos, sin la menor relación entre sí. Siguiendo la tra­
dición de especialización de los matemáticos, que se volvió cada 
vez más aguda a partir del siglo XIX, quienes se ocupaban de una 
cosa no terúan la menor idea de la otra. 

Pero entonces llegaron los matemáticos japoneses Yutaka 
Taniyama (1927-1958) y su amigo Goro Shimura, que postularon 
un resultado asombroso: a cada curva elíptica le correspondía una 
forma modular, y viceversa. Los ADN eran totalmente intercam­
biables. La secuencia de M de una forma modular era igual a la 
secuencia de E de una curva elíptica, y viceversa. 

No podían demostrar esta cortjetura cuando la plantearon en 
el Japón de la posguerra, pero estaban bastante seguros de su 
verdad. A la pregunta de un colega de si estaba asegurando que 
algunas curvas elípticas terúan una correspondiente forma modu­
lar, Shimura contestó: «No, estoy afirmando que todas la tienen». 

La cortjetura era hermosa, porque tendía un puente entre dos 
áreas aparentemente ajenas. Era un puente entre dos mundos. Si 
era cierta, significaba que cualquier teorema demostrado sobre for­
mas modulares seria cierto para las curvas elípticas, y viceversa La 
belleza de todo esto no solamente consiste en que se ahorra la 
mitad del esfuerzo, sino que a veces una demostración es mucho 
más accesible en uno de los mundos que en el otro. La cortjetura 
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fascinó a los matemáticos durante décadas ... Pero, como sucedió 
con el último teorema, resistió todos los intentos de demostración. 

Es cierto que los investigadores habían explorado un enorme 
número de casos particulares y en todos la conjetura parecía cum­
plirse; pero esto no sirve como prueba. Sin embargo, los investiga­
dores empezaron a explorar sus consecuencias si fuera cierta, 
descubriendo una enorme cantidad de resultados fantásticos. La 
cortjetura era muy fecunda. Si tan solo fuera verdadera ... Todos 
estos resultados eran como ramas separadas del árbol de las mate­
máticas, porque se basaban en una hipótesis no demostrada. Pero 
el mundo que se vislumbraba más allá del muro era fantástico. 

Años después, a mediados de la década de 1980, el matemá­
tico alemán Gerhard Frey planteó que el último teorema de Fer­
mat podía escribirse como una curva elíptica. Pero era una curva 
elíptica muy especial. Si existiera de verdad, su secuencia de E 
sería tan extraña que sería imposible la existencia de una forma 
modular con una secuencia de M igual. En efecto, si la curva elíp­
tica de Frey existiera, la conjetura de Taniyama-Shimura habría 
encontrado un contraejemplo, y sería por tanto falsa. La falsedad 
del último teorema implica la falsedad de Taniyama-Shimura, por 
lo que, recíprocamente, la verdad de Taniyama-Shimura implica la 
verdad del último teorema. Frey no logró probar su hipótesis, pero 
el matemático norteamericano Ken Ribet lo hizo poco después. 

El resultado de Frey y Ribet inauguraba una estrategia de ata­
que totalmente novedosa. Durante décadas la invención de estra­
tegias nuevas para atacar el último teorema había caído en un 
impasse, pero de pronto había nacido un nuevo frente, totalmente 
novedoso: quien demostrara la cortjetura de Taniyama-Shimura 
demostraría el último teorema de Fermat. 

EL PASO FINAL 

Es aquí donde Andrew Wiles entra en escena. Por una increíble 
casualidad, Wiles había estado obsesionado por el teorema de 
Fermat desde que tenía diez años; pero cuando estudió matemá-
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ticas, sus intereses le llevaron -aparentemente- muy lejos de 
dicho resultado: se especializó en curvas elípticas. Tiene que 
haber sido asombroso para él conocer el resultado de Frey y 
Ribet, en una conversación casual en 1986. ¡El premio estaba a su 
alcance! 

«Un día andaba mirando en la biblioteca pública local y encontré 
un libro sobre matemáticas que contaba un poco de la historia 

de este problema, y yo, con diez años de edad, pude entenderlo. 
Desde ese momento traté de resolverlo yo mismo [ ... ] . 

Ese problema era el último teorema de Fermat. » 

- ANDREW WILES EN REFERENCIA A SU PRIMER CONTACTO CON EL ÚLTIMO TEOREMA DE FERMAT. 

Sin dudarlo, Wiles se encerró en su cubículo y, sin partici­
par a nadie de sus proyectos, decidió probar la cortjetura de Ta­
niyama-Shimura, que, como hemos visto, demostraría de forma 
automática el último teorema de Fermat. Entre ese momento de 
iluminación y el ciclo de conferencias en Cambridge mediaron 
siete años, en los que Wiles no publicó casi nada y se dedicó, en 
apariencia de forma exclusiva, a sus actividades docentes. 

Esto es algo inusitado, dado que un investigador que no pu­
blica ve su carrera seriamente comprometida. Existe un adagio 
en la comunidad académica: publicar o perecer. El éxito se mide 
por el número de citas que tienen los artículos publicados en re­
vistas de prestigio. Sin hacer caso de dicho adagio, Wiles se man­
tuvo en un mutismo prácticamente total, publicando de vez en 
cuando sobre cuestiones muy alejadas de su investigación real. 
Avanzaba a buen paso, y algunos de sus resultados en teoría de 
grupos tenían el suficiente mérito como para darle un gran pres­
tigio; pero temeroso de que alguien se oliera lo que estaba ha­
ciendo, Wiles se obligó a sí mismo a callar. Pronto los colegas 
comenzaron a pensar que la carrera de Wiles estaba acabada, que 
su genio matemático se había agotado, algo nada raro, ya que la 
mayoría de los matemáticos hacen sus contribuciones cuando 
son jóvenes. 
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Este mutismo le llevó a tener que tragarse su disgusto 
cuando, apenas dos años después de comenzar su labor, otro 
investigador llamado Y oichi Miyaoka anunció que había demos­
trado el último teorema de Fermat. Miyaoka se había basado en 
una estrategia distinta de la de Wiles, heredera de la estrategia 
de Faltings, pero análoga en el fondo a lo que intentaba Wiles: él 
mismo había formulado una conjetura, la conjetura de Miyaoka, 
que, al igual que Taniyama-Shimura, implicaba el último teo­
rema; si la conjetura de Miyaoka era verdadera, también lo era 
el último teorema de Fermat. Por fortuna para Wiles, el propio 
Faltings encontró rápidamente un error en la demostración de 
Miyaoka, y a pesar de todos los esfuerzos por enmendarlo, ésta 

ÉVARISTE GALOIS Y NIELS ABEL 

Évariste Galois (1811-1832) y Niels Henrik Abel (1802-1829) desarrollaron, de 
forma independiente, la teoría de grupos para resolver el problema de si la 
ecuación de quinto grado tenía una solución general, como sí la tenían todas 
las ecuaciones de grado menor. La teoría del francés Galois fue mucho más 
desarrollada que la del noruego Abel, siendo el primero en usar el término 
«grupo». Ambos matemáticos compartieron el destino trágico de haber muer­
to jóvenes. Abel, consumido por la enfermedad y las privaciones. Galois, fo ­
goso revolucionario a la par que matemático genial, v ivió una breve v ida que 
se consumió en un absurdo duelo por una mujer, en el que muchos han que­
rido ver una trampa política de la policía de Luis Felipe de Orléans. Ninguno 
de ellos fue reconocido en vida. Es conocido que Galois escribió febrilmente 
sus ideas en la víspera del duelo, seguramente convencido de que iba a morir 
al día siguiente. De vez en cuando, escribía «No tengo tiempo». Al día siguien­
te, en efecto, fue herido de muerte y abandonado por su adversario. Todavía 
viv ió unos días. Viendo a su hermano llorar le dijo: «No llores, necesito todo 
mi va lor para morir a los veintiún años». 

Teoría de grupos 
Un grupo es simplemente un conjunto A con una operación Et> que cumple 
algunas propiedades: es cerrada (el resultado de la operación está en A), es 
asociativa, tiene un elemento neutro y un inverso. Uno de los grupos más 
senci llos es el de permutaciones de elementos. Por ejemplo, un conjunto 
{a,b,c}, y la operación que consiste en ordenar los tres elementos de distintas 
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se hundió en apenas dos meses. Wiles suspiró aliviado y conti­
nuó trabajando. 

La historia de cómo Wiles logró la demostración es muy com­
pleja: su prueba tiene más de cien páginas. Conviene resaltar al­
gunos aspectos de ella. En primer lugar, Wiles usó, igual que 
Kummer, la teoría de grupos. 

El enfoque original de Wiles se basó además en una estrate­
gia llamada teoría de Iwasawa, la cual descartó, dado que no pro­
ducía avances, a favor del llamado método de Kolyvagin-Flach. 
Es interesante hacer notar que la teoría de Iwasawa comenzó 
como una generalización del trabajo de Kummer. En matemáti­
cas hay linajes que persisten en la historia. 

maneras (abe), (acb), (bca), etc., forman un grupo. Hoy en día los grupos son 
omn ipresentes en matemáticas. Pocas cosas han sido tan fértiles como la 
teoría de grupos. Pero además, el estudio de la teoría de grupos lleva al estu­
dio de otras estructuras algebraicas, como los anillos, los cuerpos y los ideales. 
Buena parte del álgebra moderna es el estudio de un conjunto y ciertas ope­
raciones sobre los elementos de ese conjunto. 

Évariste Galois Niels Henrik Abel 
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Como hemos dicho, el matemático que intenta demostrar un 
teorema difícil es como el general que hace uso de diversas estra­
tegias hasta que, en un momento de iluminación, encuentra la que 
funciona para derribar el muro. Wiles mismo comparó su trabajo 
a entrar en una habitación a oscuras en la que poco a poco se van 
reconociendo los muebles y objetos que contiene, hasta que, final­
mente, uno encuentra el interruptor y logra inundar la habitación 
de luz. 

El caso es que la prueba que Wiles expuso en aquella célebre 
serie de conferencias pronunciadas el 23 de junio de 1993 en 
Cambridge estaba basada en su segunda estrategia, en Kolyva­
gin-Flach, habiendo descartado por inútil el método inicial. Sin 
embargo, esa prueba se derrumbó porque contenía un error 
fatal. 

Wiles se estrelló contra el mismo muro que Cauchy, Lamé, 
Kummer y Miyaoka. Todos habían acariciado el premio, solo para 
ser derrotados en el último instante. Ese pequeño paso, ese último 
naipe, se les había escapado a todos los matemáticos. Y ahora, al 
parecer, el'udía también a Wiles. Al igual que los investigadores 
que le precedieron, Wiles parecía destinado a ser otro nombre en 
la larga serie de fracasos que ya duraba 350 años. 

Pero ello no fue evidente al principio, cuando Wiles era acla­
mado al final de su conferencia. El error surgió durante la revi­
sión para la publicación, un proceso rigurosísimo que se conoce 
como «revisión por los pares». Típicamente, durante dicho pro­
ceso, se formulan preguntas y dudas que el autor tiene que res­
ponder. Y hubo una de esas dudas que Wiles no pudo resolver. El 
error de Wiles, identificado por el matemático norteamericano 
Nick Katz, es imposible de describir para un lego. Según el propio 
Wiles, incluso un matemático profesional requeriría dos o tres 
meses para entenderlo. Al final, Wiles tuvo que admitir que Katz 
tenía razón: se había equivocado en un detalle tan sutil que era 
casi imposible verlo. 

El hermetismo de Wiles tenía ese precio. La discusión abierta 
entre colegas de los proyectos de investigación y el grado de 
avance de los mismos es una de las reglas no escritas de la práctica 
matemática. Dicha discusión permite identificar posibles errores, 
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discutir estrategias, contrastar ideas. Pero esto tiene un coste: si 
alguien te sugiere algo, en el artículo que publiques debes darle 
reconocimiento, incluso coautoría. Esto explica que dichos artícu­
los parezcan, con frecuencia, escritos por una decena de personas. 

«El problema de trabajar sobre Fermat es que puedes pasarte 
años sin obtener nada [ ... ] . » 

- ANDREW WILES. 
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Wiles conocía el riesgo que corría, pero el premio era dema­
siado importante para compartirlo con nadie. Así que optó por 
correr el riesgo . .. y cometió un error. De todas formas, la prueba 
de Wiles contenía tanta matemática novedosa que, por sí sola, 
había valido la pena. Igual que Cauchy o Kummer, sus intentos de 
asaltar el muro habían abierto las puertas a mundos en los que los 
matemáticos podían adentrarse fructíferamente durante décadas. 
Pero Wiles no estaba listo para darse por vencido. Dado que el 
secreto ya no tenía sentido, empezó a trabajar con un colega, Ri­
chard Taylor, para intentar corregir el error. Finalmente, dio con 
la solución. Todo estribaba en conciliar el método que había aban­
donado originalmente, el de Iwasawa, con el de Kolyvagin-Flach. 
Wiles encontró la solución el día de su cumpleaños, y de pronto, 
todo fue claridad. El interruptor de la luz había sido accionado y 
la habitación resplandecía. Poco después se publicarían dos artí­
culos en los Annals of Mathematics correspondientes a mayo de 
1995, uno firmado por Wiles y Taylor y otro solo por Wiles. Ambos 
contribuían a demostrar, finalmente, uno de los problemas más 
difíciles de todos los tiempos. El exiguo margen que hubiera con­
tenido la prueba era, en efecto, insuficiente para los cientos de 
páginas de novedosa matemática que había inventado Wiles, ba­
sándose a su vez en las increíbles inspiraciones de Taniyama, Shi­
mura, Frey y Ribet. El muro había caído por fin. Uno de los asedios 
más largos y difíciles de la historia de la matemática se saldaba 
con el triunfo de los sitiadores. 

Del teorema como tal no se podían deducir resultados nove­
dosos y revolucionarios en matemáticas, pero los intentos de de-
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mostración, tanto los fallidos como el exitoso, dieron un enorme 
acervo de nuevas y fructíferas rutas de exploración. Es posible 
que si Euler no se hubiera interesado por el problema, la teoría de 
números hubiera tardado mucho más en ser desarrollada; la teoría 
de ideales de Dedekind fue concebida originalmente por Kummer 
como una herramienta para abordar el teorema, aunque hoy en 
día es aplicada en muchísimas otras instancias. Faltings y Miyaoka 
indagaron en las conexiones entre geometría diferencial y teoría 
de números gracias al último teorema. Y, finalmente, ~iles tal vez 
no se hubiera dedicado a probar Taniyama-Shimura con tanto 
afán si no hubiera conocido la relación entre esta conjetura y su 
problema favorito de la infancia. 

Todo ello se lo debemos a ese humilde postulado que no pa­
saba de ser una curiosa observación, el teorema que Fermat escri­
bió un día en el margen de la Aritmética de Diofanto. 
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CAPÍTULO 3 

La moderna teoría de números 

A pesar de la importancia del último 
teorema de Fermat en el desarrollo posterior 

de las matemáticas, si hubiera hecho solamente esta 
contribución, la figura del jurista tolosano carecería 

de la relevancia con la que cuenta. Pero Fermat fue un 
matemático de primera línea; para muchos historiadores, 

un pensador a la altura de Arquímedes, Euler o Gauss. 
Realizó importantes contribuciones a uno de sus 
campos favoritos, la moderna teoría de números, 

de la que el propio Fermat es el fundador. 





Los divisores propios o partes alícuotas de un número (inclu­
yendo el número uno, que siempre divide a cualquier número) son 
aquellos, distintos del propio número, que lo dividen exactamente 
( es decir, sin dejar resto). Pues bien, un número perlecto es aquel 
que tiene la propiedad de que la suma de sus divisores propios es 
igual al propio número. 

Veámoslo con un ejemplo. Los divisores propios de 6 son 1, 2 
y 3, y 1 + 2 + 3 = 6. Luego 6 es un número perlecto, el primero de 
ellos, de hecho. Los pitagóricos adscribían una gran importancia 
mística a los números perlectos. En particular, el 6 conjuntaba los 
tres primeros números, que tenían significados místicos importan­
tes ( unicidad, dualidad y trinidad como mezcla de unicidad y dua­
lidad); el 6 era el resumen de todos estos significados. 

Los griegos solo identificaron los cuatro primeros números 
perlectos: el 6, el 28, el 496 y el 8 128. El quinto no se descubrió 
hasta el siglo xv, y da un salto gigante: 33 550 336. Hallar un nú­
mero perlecto no es fácil. En marzo de 2012 se conocían solo 4 7 
de ellos, el mayor de los cuales tiene 25956377 dígitos. 

Conocemos a Euclides como un gran geómetra, pero, sin em­
bargo, un hecho menos advertido es que sus Elementos contenían 
muchos teoremas aritméticos. Al célebre matemático griego le 
debemos, por ejemplo, el saber que los números primos son infi­
nitos. En el campo de los números perlectos, demostró un resul-
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tado asombroso (véase la figura): seaN=2"(2"+1-l) =2"M, donde 
hemos llamado Mal factor 2"+1- 1 (Mes uno de los llamados «nú­
meros de Mersenne», que veremos más adelante). Entonces, nos 
dice Euclides, N es perfecto si M es primo. 

Como puede verse fácilmente, todos estos números N son 
pares. No sabemos aún si existen números perfectos impares. Es 
uno de los grandes problemas abiertos de la teoría de números. Sin 
embargo, se sabe que, si existen, tienen que cumplir un conjunto 
de condiciones tan complejas que muchos matemáticos piensan 
que sería un milagro que lo consiguieran. Tampoco sabemos si los 
números de la forma N son infinitos, porque no se sabe si el nú­
mero de primos de la forma M, los primos de Mersenne, es infinito. 
Lo que sí puede afirmarse, dado que Euler lo demostró años des­
pués de la muerte de Fermat, es que el recíproco del teorema de 
Euclides es cierto: todo número perfecto par tiene la forma N. 

Representación 
gráfica de un 

número perfecto. 

Como es evidente, hay números que no son perfectos. Estos 
se dividen en dos tipos: aquellos en los que la suma de sus diviso­
res propios es menor al número, llan1ados números abundantes, y 
aquellos en los que dicha suma es mayor al número, llamados nú­
meros deficientes (ya que se quedan cortos respecto de la suma). 
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L 
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28 = 1 + 2 + 4 + 7 + 14 = 2 X 14 = 4 X 7 = 22 X (2 2+l - 1) 
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DEMOSTRACIÓN DE LA INFINITUD DE LOS NÚMEROS PRIMOS 

Esta demostración se debe a Euclides, y procede por el ya conocido méto­
do de reducción al absurdo. Supongamos que la conclusión es falsa y los 
números primos son finitos. Esto quiere decir que hay un número primo 
máximo. Llamémosle Pn· Ahora bien, construyamos el número N como el 
producto de todos los primos más uno: N=P,Pr-Pn-,Pn +l =An +l. Este nú­
mero no es divisible por ningún primo desde p, hasta Pn, ya que, para ser 
divisible, tendría que serlo también tanto An como 1, y, claramente, ningún 
número divide a 1, salvo él mismo. Es decir, o bien N es un número primo, o 
bien contiene factores primos mayores que Pn· Por tanto, hemos encontra­
do un número primo mayor que pn, contradiciendo nuestra hipótes is de que 
Pn es el número primo máximo. Se sigue que la hipótesis es falsa y que el 
número de primos es infinito. 

Finalmente, hay otros números muy relacionados con los nú­
meros perfectos: los llamados números amigos. Dos números son 
amigos entre sí cuando la suma de los divisores propios de uno es 
igual al otro y viceversa. En la Antigüedad, el único par de núme­
ros amigos conocido era 220 y 284. En efecto, los divisores pro­
pios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, y 284 = 1 + 2 + 4 + 
+ 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110. Análogamente, los · divisores 
propios de 284 son 1, 2, 4, 71, 142, y 220= 1 +2 +4+ 71 + 142. 

También este par de números amigos tenía un significado 
mágico-místico. En la Edad Media, se creía que si dos personas 
comían dos panes en los que se habían inscrito estos dos núme­
ros, respectivamente, esas personas serían amigas para siempre, 
aunque no se conocieran con anterioridad. 

La resurrección del misticismo pitagórico al principio de la 
Edad Moderna mantuvo el interés en estos problemas. En su libro 
Traité de l'harmonie universeUe, Mersenne afirmaba que Fermat 
había descubierto un par de números anúgos, 17296 y 18416, el 
primer par de números amigos descubierto desde la Antigüedad. 
Y también que Fermat había demostrado que tanto 120 como 672 
eran números deficientes con valor igual a la mitad de la suma de 
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sus divisores propios ( es decir, dicha suma es 240 y 1344 respec­
tivamente). Tales números se conocen como números multiplica­
tivamente perfectos o k-perfectos. 

«[Entre] los hombres de alta alcurnia ... que han hecho 
aportaciones en esta área de las matemáticas y a quienes nadie 
puede enseñar nada, repetiría el nombre de ... [Étienne Pascal] 
y añadiría el del Sr. Fermat ... » 

- COMENTARIO DE MARIN MERSENNE EN SU LIBRO TRAITÉ DE CHARMONJE UNJVERS ELLE (1636). 
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Así, ya en 1636 Fermat estaba preocupado por cómo determi­
nar la suma de los divisores propios de un número dado, y segura­
mente por aquel entonces tenía un método para hacerlo. Dicho 
método nunca fue publicado y está perdido. Nos ha llegado, sin 
embargo, un método debido a René Descartes. Dado que todo nú­
mero se puede expresar como el producto de potencias de sus 
factores primos, N = Pt' p;2 

• • • p;;,, los divisores propios serán todas 
las combinaciones posibles entre dichos factores. Por ejemplo, 
1452 =22 -3-112 y los divisores propios son 2, 3, 11, 22, ll2, 2-3, 22 -3, 
etc., cubriendo todas las combinaciones. Descartes encontró una 
fórmula que, dados resultados anteriores, proponía un nuevo divi­
sor propio, hasta agotar todos ellos. Es lo que se conoce como una 
fórmula recursiva. El método de Fermat seguramente era similar. 

Fermat derivó varios resultados a partir de su método. Por 
ejemplo, envió a Mersenne un par de resultados que este incluyó 
en la segunda parte de su Harmonie, publicada en 1637. El pri­
mero proponía un método general para encontrar números ami­
gos, similar en estructura a la que aplicó Euclides para encontrar 
números perfectos. En particular, si tres números A = 32 • 22" - 1, 

B = 3. 2n-l y e= 3. 2"-1-1 son primos, entonces 2"A y 2"BC son nú­
meros amigos. Nótese la similitud de este resultado con el de 
Euclides sobre números perfectos. El segundo resultado daba una 
fórmula similar para un caso específico de números multiplicati­
vamente perfectos, los que son la tercera parte de su suma de di­
visores propios. El argumento era similar: si un número de cierta 
forma es primo, el resultado de la fórmula es un número que, mul-
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tiplicado por tres, da la suma de sus divisores propios. Fermat 
afirmó que había encontrado fórmulas similares para otros núme­
ros multiplicativamente perfectos, pero estas nunca aparecieron. 

Todos estos problemas tienen un sustrato común: en cada 
uno de ellos, antes de poder asegurar si un número es perfecto, o 
un par de ellos amigos, u otro multiplicativamente perfecto hay 
que averiguar si ciertos números con determinada estructura son 
primos. No es de extrañar, por tanto, que en su correspondencia 
con Mersenne en los últimos años de la década de 1630 su aten­
ción se dirigiera cada vez más hacia el problema de probar cuándo 
un número con cierta forma es primo. 

EL PEQUEÑO TEOREMA DE FERMAT 

Fermat se dio cuenta de que los problemas fundamentales de la 
teoría de números se derivan del estudio de los primos, la factori­
zación y la primalidad ( es decir, la determinación de si un nú­
mero es primo). Este hecho le convierte en el padre de la teoría 
de números moderna. 

En la Antigüedad, Diofanto había publicado una célebre Arit­
mética, de la cual ha sobrevivido aproximadamente la mitad. No 
es un tratado como los Elementos de Euclides, sino una colección 
de más de cien problemas de ecuaciones determinadas -con una 
o pocas soluciones únicas- e indeterminadas ( con un número 
infinito de soluciones). No hay un enfoque sistemático en la expo­
sición de dichos problemas, cuya solución suele ser ad hoc, indi­
vidual para cada problema. El método de solución se expone caso 
por caso, a manera de ejemplo. De forma no menos importante, 
cuando se topaba con una ecuación indeterminada Diofanto se 
contentaba con encontrar una sola solución, ignorando la existen­
cia de otras posibles soluciones. 

Dado que, como se ha visto con anterioridad, los griegos con­
sideraban que los números eran solo los números racionales posi­
tivos, mientras que los números como .J2 eran extraños monstruos 
que solo aparecían en geometría, Diofanto daba soluciones única-
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mente para dichos números. Por ello, los métodos para eliminar 
soluciones no racionales eran fundamentales para Diofanto y se 
usaban aún en el siglo XVII. Ahora bien, los números racionales, en 
general, no son factorizables. Los griegos lo sabían, pero, aunque 
conocían los primos, no habían creado una disciplina que estudiara 
de forma exclusiva los números que sí son factorizables, los natu­
rales. Esa disciplina la fundó Fermat; él fue el primero en darse 
cuenta de que los números naturales merecían ser estudiados por 
sí mismos, y el primero en sentar los fundamentos de dicho estudio 
en el análisis de las propiedades de los números primos. 

Los números primos son los ladrillos con los que se constru­
yen todos los naturales. Ya se han visto varios resultados en los 
que es fundamental que una cierta cantidad sea un número primo. 
Hay muchos otros en ios que uno se concentra en los números 
primos, ya que explorar las propiedades de estos ladrillos permite 
hacer aseveraciones que no se podrían realizar sobre un natural 
en general. Los primos tienen propiedades interesantes que los 
números compuestos - no primos- no poseen; por ese motivo, 
razonar con ellos y deducir propiedades de los números com­
puestos a partir de ellos es una estrategia común en teoría de 
números. 

Los trabajos de Fermat llamaron la atención de un matemá­
tico llamado Bernard Frénicle de Bessy (1605-1675), miembro del 
círculo de Mersenne. Frénicle, aunque no tenía el genio matemá­
tico de Fermat, había desarrollado una intuición impresionante 
sobre las propiedades de números muy grandes. Su relación fue, 
como todas las de Fermat, epistolar, comenzando en 1640 y termi­
nando, con intermitencias, casi veinte años después. Y como mu­
chas de las de Fermat, fue una relación difícil. Sin embargo, 
Frénicle fue tal vez la persona que mejor entendió las contribucio­
nes de Fermat a la teoría de números. 

En efecto, viviendo en aislamiento en Toulouse, Fermat fra­
casó una y otra vez en sus intentos de despertar el interés de sus 
colegas en el novedoso campo que estaba descubriendo. Parte de 
la culpa se debe, seguramfnte, a dicho aislamiento monacal. Pero 
otra buena parte es fruto de su forma de trabajar. Al no compartir 
sus métodos, al tratar incluso a corresponsales como Frénicle con 
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LA CRIBA DE ERATÓSTENES Y LA COMPLEJIDAD 

La criba de Eratóstenes es el método más antiguo para determinar si un nú­
mero N es primo. Para el lo, se hace una lista de todos los números hasta N. 
Partiendo del primer primo, el 2, se tachan de esa lista todos los múltip los de 
2 hasta N. Luego se hace lo propio para el primer número no tachado de la 
lista, que es el 3, luego el 5, etc., hast a llegar al número más cercano a ✓N. 
Cada primer número no tachado es primo. Si en cua lquier momento de este 
proceso se tacha N, sabemos q ue N es un número compuesto. Por el contra­
rio, si se llega al último número, el primo más cercano a ✓N, N es primo. Evi ­
dentemente, el método es engorroso, ya que requiere conocer todos los nú­
meros primos hasta ✓N. Un método sim ilar es la división por tentativa. En este 
caso, se divide por todos los primos hasta ✓N (obtenidos previamente), o b ien 
por dos y todos los impares hasta ✓N, hasta encontrar uno que divida a N o 
agotar la lista. 

Eficiencia computacional 
Los métodos como la criba de Eratóstenes claramente pueden ser más o 
menos eficientes. El estudio de la eficienc ia computacional de un algoritmo 
es una de las ramas de investigación más importantes en computación. Hay 
problemas que son irresolubles, dado que no existe un algoritmo que pueda 
dar siempre una respuesta . De los prob lemas que son solub les, podemos 
est imar cuál es el t iempo máximo en el que se resüelve el prob lema con un 
algoritmo dado. Esto se representa como O(f(n)), donde f(n) es cua lquier 
func ión de n, que a su vez es una med ida del «tamaño» del problema (por 
ejemplo, puede ser el número de elementos de una lista). Puede haber algo­
r itmos con complej idad : O(n), O(n2),0( log n),O(n log n),O(e n), etc. Por otro 
lado, existen problemas que, siendo so lubles, requieren tanto tiempo que no 
es rea lista intentar resolverlos. Son los problemas de complej idad exponen­
cia l: O(e n) o, peor aún, combinatoria: O(n!) , por ejemplo, contar todas las 
permutaciones den objetos. Reciben el nombre de prob lemas intratables. 
Hay otra c lase de problemas muy interesante: aquellos que podrían ser int ra­
tab les, pero no sabemos si lo son. Conceptualmente, son problemas en los 
que, si se conoce la so luc ión, es m uy fác il comprobar si d icha soluc ión es 
verdadera, pero en los que encontrar la solución, al parecer es un problema 
intratable. Dec imos «a l parecer» porque nadie ha pod ido demostrar si lo son. 
Estos problemas se llaman problemas NP. El prob lema de factor izar un nú­
mero es el ejemplo más re levante para nosotros. Fina lmente, ex isten los pro­
b lemas tratables, que son los que sabemos que son so lub les en un tiempo 
razonable, del orden de O(n k), O(n logn) u O( logn), conocidos como tiempos 
po linom iales. La cr iba de Eratóstene s es un algori t mo con complej idad 
0(10,r,; ), claramente exponenc ial. 
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displicencia, era imposible que Fermat creara escuela, se allegara 
discípulos, tomara el papel de un líder explorando territorio nuevo. 

Siempre que Fermat trabajó en problemas que preocupaban 
a sus contemporáneos, sus contribuciones fueron razonable­
mente reconocidas. Pero en teoría de números estaba solo. Él era 
el pionero. Nadie le entendía, nadie comprendía por qué esos 
problemas en apariencia triviales, sin ninguna aplicación, tenían 
la menor importancia. Que ninguna persona le hiciera caso le 
causó una enorme amargura, que comenzó a manifestarse gra­
dualmente en una beligerancia cada vez mayor contra sus con­
temporáneos. 

En su correspondencia con Fermat, a través de Mersenne, 
Frénicle retó a Fermat a que encontrara un número perfecto de 
20 dígitos. La respuesta del matemático tolosano fue inmediata: 
no existe tal número, como tampoco existe uno de 21 dígitos, lo 
cual a su vez demuestra que la conjetura de que existe al menos 
un número perfecto en cada intervalo entre 10" y 1011+1 es falsa. 

En una de las raras ocasiones en las que Fermat mostró algu­
nas de sus bazas, en su respuesta a Frénicle, en 1640, afirmaba que 
los números de Mersenne M=2P-l solo son primos cuando el 
exponente es primo. También que, sin es primo, n divide a 2 n-1- l 
y, finalmente, que si n es primo, los únicos divisores posibles de 
211

- l tienen la forma k (2n) + 1. Pero como era habitual, Fermat no 
ofreció ninguna prueba. 

El primer resultado es muy importante, ya que permite descar­
tar una gran cantidad de números de Mersenne como candidatos 
a primos. El segundo y el tercero son atajos. El segundo permite 
encontrar al menos un divisor de un cierto número de Mersenne 
( que puede ser el propio número, como demuestra 2 3- 1-1 = 3, que 
divide a 3) y el tercero permite limitar la forma de los factores de 
otro número de Mersenne, con lo que su búsqueda -y la conse­
cuente demostración de si el número es primo o compuesto- se 
vuelve mucho más eficiente: se limita a los números de esa forma, 
excluyendo todos los demás. Si bien Fermat no conocía métodos 
de búsqueda de primalidad mejores que la criba del griego Eratós­
tenes de Cirene (276-194 a.C.), sí podía determinar la primalidad 
de ciertos números muy rápidamente gracias a estos atajos. 
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Fermat usó el tercer resultado para demostrar que no existe 
ningún número perfecto de 20 o 21 dígitos. Primero, determinó que 
237 -1 es el único número de Mersenne que puede generar, a través 
de la fórmula de Euclides, un número perfecto de 20 o 21 dígitos 
( esto implica conocer y dar por válido el recíproco del teorema de 
Euclides, que demostró Euler años después). Luego determinó que 
ese número de Mersenne no es primo, siendo divisible por 
223 = 3 • (2 • 37) + 1, que precisamente tiene la forma k (2n) + 1. En 
efecto, en vez de tener que calcular la cantidad enorme de primos 
que podrían dividir al trigésimo séptimo número de Mersenne, a 
Fermat le bastó ir probando los números k (2 • 37) + 1 para distintos 
valores de k. Al tercer intento ya había encontrado la respuesta. 

En su carta a Frénicle, Fermat decía que había comenzado a 
vislumbrar la luz de resultados maravillosos. Pero en realidad, esa 
luz ya la había visto. Los dos últimos resultados de los que hablaba 
a Frénicle eran corolarios de un resultado mucho más general, lo 
que hoy en día se conoce como el «pequeño teorema de Fermat», 
para diferenciarlo del último teorema. Es una paradoja que el «pe­
queño» teorema sea mucho más útil en teoría de números que el 
«último», pero así lo ha querido la terminología. 

EL RECIPROCO DE UN TEOREMA 

La demostración directa de un teorema procede de las hipótesis, y paso por 
paso avanza hacia la conclusión. Algunos de estos pasos son invertibles; otros 
no. En general, un paso que tenga una implicación no es invertible. Veámoslo 
con un ejemplo cotidiano. Se puede deducir que la acera está mojada del 
hecho de que está lloviendo, pero no podemos deducir que está lloviendo 
porque la acera está mojada; lo último puede haber pasado por circunstancias 
ajenas a la lluvia, desde un camión cisterna que derrama agua a su paso has­
ta una manguera con la que se riega la acera. Si llueve, entonces la acera está 
mojada, pero no necesariamente al revés. Decimos que el hecho de que llue­
va es una condición suficiente para que la acera esté mojada, pero no es ne­
cesaria. Esta unidireccionalidad está presente, entre muchos otros, en el pe­
queño teorema. 
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En el mismo año 1640 Fermat anunciaba el pequeño teorema 
a Frénicle. El pequeño teorema de Fermat es uno de esos resulta­
dos que solo es aplicable a un número primo. En su enunciado 
actual, el teorema dice que, dados un primo p y un número na­
tural a, con a y p primos relativos (o sea, que p no divide a a), 
av-1

- l es divisible por p. Al principio no parece clara la relevancia 
de este teorema, pero el hecho es que establece una propiedad 
fundamental de los ladrillos, los primos, que tiene consecuencias 
muy interesantes. 

Godfrey Hardy, hacia 1912, notaba con satisfacción que los 
problemas de la teoría de números no tenían aplicación práctica. 
Sin embargo, este hecho cambió radicalmente cuando, en 1977, se 
desarrolló un algoritmo de encriptación llamado RSA, que depende 
críticamente de la diferencia en eficiencia entre factorizar un nú­
mero en dos factores primos ( encontrar la solución) y multiplicar 
dos factores para obtener un número (comprobarla solución). 

Violar el código requiere factorizar un número enorme. Esto 
tiene que ser muy difícil para que el algoritmo tenga éxito. En 
cambio, quienes conocen los factores pueden fácilmente codifi­
car y descodificar el mensaje, ya que ello solamente requiere una 
multiplicación. Por primera vez, la teoría de números tenía una 
aplicación práctica. De este principio dependen hoy en día todas 
las transacciones encriptadas que se llevan a cabo en Internet, 
nada menos. Sin embargo, la seguridad del método, entendida 
como la diferencia de tiempo entre codificar y descodificar, por 
un lado, y violar el código, por otro, no ha podido ser demos­
trada. Toda nuestra economía electrónica pende de ese hilo ma­
temático, aunque la mayoría de los expertos cree que el algoritmo 
es seguro. 

Sea como fuere, a partir de la implantación generalizada del 
RSA, tanto las pruebas de primalidad -el primer paso del algo­
ritmo es encontrar dos primos enormes- como los algoritmos de 
factorización --que, en el peor de los casos, podrían destruir la 
seguridad del RSA- han cobrado una importancia práctica 
enorme. 

Fermat estaba, pues, preocupado por el problema de la pri­
malidad. Como ejemplo de una prueba de primalidad trivial, uno 
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puede preguntarse si un número dado cumple la propiedad del 
pequeño teorema de Fermat; sin embargo, nótese que esto es el 
recíproco del teorema y, por tanto, no hay ninguna garantía de que 
el número sea primo. De hecho, se sabe que los llamados números 
de Carmichael no cumplen el recíproco del teorema. Aun así, 
dicha prueba es tan sencilla y rápida que se usa en la implementa­
ción del algoritmo RSA para descartar rápidamente números com­
puestos. Porque, en realidad, la prueba de primalidad basada en 
el pequeño teorema es una prueba de si el número es compuesto. 
Por si fuera poco, el pequeño teorema de Fermat se utiliza tam­
bién para demostrar que el algoritmo RSA es con-ecto. 

Otras pruebas de primalidad se dividen entre probabilísticas y 
deterministas. Entre las primeras está la prueba de Miller-Rabin, 

LA FACTORIZACIÓN DE FERMAT 

Fermat inventó un método de factorización que, en ciertos casos, es más 
eficiente que la división por tentativa , a partir de la observación de que un 
número impar no cuadrado se puede escribir como N=x2 - y 2, donde 

X =n1+n2 Y Y=n1-n2_ 
2 2 

Se puede demostrar fácilmente que N=n1n2
• Si N es primo, n1=N y n

2
=l. En 

caso contrario, n
1 
y n

2 
son divisores propios de N. Dado que n

1 
y n

2 
son impa­

res por ser N impar, x e y son enteros. De aquí que resolver la ecuación ante­
rior para x e y enteros implique la existencia de una factorización de N. Para 
resolver esta ecuación se procede por tanteo, empezando con un entero m 
que cumpla cierta propiedad y, si no es la solución, continuar con otro núme­
ro m' que se obtiene a partir de m, y continuar así hasta que se obtenga un 
divisor propio o se llegue al propio número N. La factorización de Fermat 
puede llegar a ser muy eficiente en ciertos casos, porque los números m tienen 
que ser cuadrados, y muchas veces es muy fácil determinar si un número es 
cuadrado solo por inspección. En efecto, los cuadrados perfectos solo pueden 
terminar en O, 1, 4, 5, 9, 16, 36, 56, 76 y 96, lo cual excluye el 90% de las ter­
minaciones. La belleza del método es que no requiere conocer todos los 
primos hasta un cierto número, y que, si N es compuesto y tiene un factor 
cercano a ✓N, esta factorización lo identifica con rapidez. 
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que se basa también en el pequeño teorema de Fermat, o la de 
Solovay-Strassen, fundamentada en un teorema de Euler que gene­
raliza el pequeño teorema. Esta última nunca declara que un nú­
mero es primo sin serlo, pero es menos exitosa con números 
compuestos. En efecto, hay pruebas que son más eficaces mos­
trando que un número es compuesto y otras más aptas para probar 
que es primo. 

Una extensión determinista de la prueba de Miller-Rabin se 
basa en un resultado no probado: la hipótesis extendida de Rie­
mann. Su eficacia, evidentemente, depende de que dicha hipótesis 
sea cierta. Sin embargo, en 2002 se anunció por primera vez una 
prueba, llamada AKS, que es general (funciona para cualquier nú­
mero), determinista, incondicional (no depende de resultados no 
probados) y eficiente (con una complejidad computacional poli­
nomial). El algoritmo AKS está también basado en una generaliza­
ción del pequeño teorema de Fermat. 

Es importante distinguir las pruebas de primalidad de los 
algoritmos de factorización. Mientras que todo algoritmo de fac­
torización es implícitamente una prueba de primalidad, las prue­
bas de primalidad no implican necesariamente factorizar. Por 
ejemplo, la criba de Eratóstenes no factoriza el número (aunque 
una generalización trivial puede hacerlo) y la prueba basada di­
rectamente en el pequeño teorema de Fermat ni siquiera encuen­
tra ninguno de sus factores, mientras que la división por tentativa 
sí lo hace. De aquí que, aunque se haya encontrado un algoritmo 
eficiente como prueba de primalidad, el problema de la factori­
zación siga siendo lo suficientemente complicado como para que 
el algoritmo RSA permanezca vigente. La prueba AKS no facto­
riza el número: las transacciones en Internet continúan siendo 
seguras. 

Existen muchos otros resultados que dependen del pequeño 
teorema. Uno de los más conocidos es algo que todos hemos ob­
servado: la expansión decimal de un número racional se repite 
periódicamente si en dicho racional, expresado como fracción 
irreducible, el denominador es un primo p distinto de 2 y de 5 (que 
son los factores primos de 10). De hecho, se repite con un período 
de repetición de, o bien p-1 o bien un divisor de p-1. Es por ello 
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que 1/3 = 0,33333 ... y 1/7 = 0,142857142857 ... , pero 1/5 = 0,2, sin 
repetición periódica. La discusión anterior debería servir para en­
tender que el pequeño teorema es uno de los resultados más im­
portantes de la teoría de números. 

«He aquí el teorema fundamental que se cumple en cada 
grupo finito, llamado habitualmente pequeño teorema 

de Fermat, porque Fermat fue el primero en probar 
una parte especial de él.» 

- ANOTAC IÓN DEL MATEMÁTICO ALEMÁN KURT HENSEL EN SU LIBRO 

TEORÍA DE NÚltfEROS (ZAHLENTI/EORIE, 1913). 

Por supuesto que Fermat, fiel a su costumbre, no dejó ninguna 
demostración. Este fue demostrado por Euler, que ignoraba que 
Leibniz, unos años antes, lo había demostrado a su vez, aunque 
el resultado no se publicó hasta el siglo XIX. La demostración de 
Leibniz usa matemáticas al alcance de Fermat, con lo que es po­
sible que la demostración de Fermat, si existió, discurriera por 
líneas similares. 

De todas formas, las aplicaciones posteriores evidentemente 
no fueron intuidas por Fermat. Para él, el teorema era una herra­
mienta para probar la primalidad de ciertos números, como 2"- 1. 
Era uno de sus atajos para evitar la criba de Eratóstenes. Por 
ejemplo, gracias a su pequeño teorema, Fermat fue capaz de ata­
car números de la forma a" -1 con a> 2, que nunca son primos; 
reduciendo los candidatos a sus divisores primos a un conjunto 
menor. Como es fácil de ver, estos números son una generaliza­
ción de los números de Mersenne. También le pemutió atacar de 
la misma forma, limitando la fom1a de sus posibles factores, nú­
meros de la fom1a a" + 1, que, según afirmó, solo son primos si a 
es par y n de la forma 2"'·. Fue en el curso de esta investigación 
cuando descubrió los llamados primos de Fermat, que cumplen 
estas dos condiciones y otra más, que m sea primo: 22

" + 1, con p 
primo. 

Pero la intuición de Fermat falló en esta ocasión. Euler en­
contró un contraejemplo con p = 5. El número resultante es divi-
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sible por 641. Fermat era consciente de que no podía probar este 
resultado, y reflejó su frustración por ello durante muchos años; 
en 1659, anunció una prueba a su amigo Carcavi, pero dado el 
contraejemplo de Euler, esa prueba, de haber existido, segura­
mente era errónea. En todo caso, está claro que el pequeño teo­
rema le permitía a Ferrnat eliminar de sus cálculos todo un 
conjunto de números primos candidatos a divisores de números 
de cierta forma, lo cual agilizaba las pruebas de prirnalidad de di­
chos números; sin embargo, para su gran frustración, nunca logró 
lo que ambicionaba: un teorema que le permitiera deshacerse de 
todos los primos elirninables para dichos tipos de números. 

A día de hoy no existe un método verdaderamente eficiente 
y seguro para generar números primos de tamaño arbitrario; no 
existe una fórmula cerrada corno la que encontró Euclides para 
los números perfectos pares. La mayoría de los métodos de ge­
neración de primos requieren conocer todos los primos hasta 
un cierto número previo, o bien saber si los números vecinos al 
candidato a primo son factorizables. De ahí que las pruebas de 
prirnalidad sean fundamentales: en general, primero se busca un 
candidato a primo y luego se prueba si lo es. 

A finales de 1640, Fermat parecía haber perdido interés en las 
sumas de divisores propios. Sus siguientes exploraciones en teo­
ría de números emparentan directamente con su último teorema. 

LOS TRIÁNGULOS RECTÁNGULOS 
Y EL ENFOQUE GENERALIST A 

Los triángulos rectángulos racionales son temas racionales - lla­
madas pitagóricas- de números x, y y z que cumplen el teorema 
de Pitágoras: x 2+y2=z2• 

Estas temas son muy antiguas y se encuentran ya en Babilo­
nia y en Egipto. Pero Euclides demostró que dados dos números 
racionales p y q, z = p 2 + q2, x = p 2- q2 e y = 2pq es una tema pitagó­
rica. Se sigue inmediatamente que el número de temas pitagóricas 
es infinito, porque los racionales son infinitos. 
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Diofanto dedicó el Libro VI de su Aritmética a resolver pro­
blemas relacionados con este tipo de triángulos, tal como acos­
tumbraba: caso por caso. Su método de solución implicaba 
plantear una ecuación o un sistema de dos ecuaciones. El pro­
blema es que, en ocasiones, esto daba como resultado un número 
racional negativo, algo que para él no tenía sentido, dado que nin­
gún triángulo tiene lados de longitud negativa. En otras ocasiones, 
su método fallaba porque ciertas condiciones necesarias para su 
éxito no se cumplían, a saber, que en las ecuaciones resultantes el 
coeficiente de :i2- sea un cuadrado, o bien lo sea la constante. Dio­
fanto escogió sus problemas cuidadosamente para que cumplie­
ran estas condiciones y la solución fuera siempre positiva, 
haciendo la «trampa» de solo proponer problemas solubles a tra­
vés del método propuesto. 

La obra de Diofanto fue editada por Claude Gaspard Bachet de 
Méziriac, en Francia, en 1621. Fue a partir de esta edición que Fer­
mat trabó conocimiento con Diofanto, y fue en esta edición donde 
escribió su famosa anotación del último teorema en el margen. 

Fermat se interesó por los triángulos rectángulos, con impor­
tantes novedades: en primer lugar, limitó su estudio solo a los 
números naturales. En segundo, en vez de resolver casos particu­
lares con números específicos, Fermat tomó el método de solu­
ción de Diofanto y lo planteó en términos generales. Mientras 
Diofanto estaba limitado por el lenguaje del álgebra verbal, Fer­
mat, siguiendo a Vieta, ya utilizaba un álgebra simbólica que le 
permitía una mayor capacidad de abstracción. Así las cosas, Fré­
nicle escribió a Fermat en 1641 proponiéndole un problema: en­
contrar un triángulo en el que el cuadrado de la diferencia de los 
dos catetos exceda al cateto menor por un cuadrado (recorde­
mos que todos los números deben ser enteros, y por tanto, los 
cuadrados son siempre cuadrados perfectos): (x-y) 2 = y +z2• Los 
problemas diofantinos, invariablemente, llevan a ecuaciones de 
este tipo. 

Fermat resolvió no sin esfuerzo el problema, peto dos años 
después ya tenía un método. Propuso a Pierre Bn11art de Saint­
Martin tres problemas similares, a fin de despertar su interés en la 
teoría de números. Brfilart y el propio Frénicle reaccionaron con 
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indignación. Según ellos, los problemas no tenían solución. Sentían 
que Fermat se burlaba de ellos, que intentaba dejarlos en ridículo. 
Pero el tolosano aseguró, a través de Mersenne, que la solución 
existía, sin especificarla. Sin embargo, la presión de Mersenne hizo 
que esta vez sus resultados fueran revelados al cabo de un tiempo. 

«Usted me pregunta si el número 100895598169 es primo 
o [ ... ] compuesto. A esta pregunta yo le respondo que este 
número es compuesto y que se obtiene del producto de 
estos dos: 898 423 y 112303, que son primos.» 
- FEKMAT A MERSENNE A PROPÓSITO DEL PEQUEÑO TEOREMA. 
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La supuesta imposibilidad estribaba en que el método de Dio­
fanto daba un resultado negativo; pero Fermat había resuelto el 
nudo gordiano. En efecto, cuando obtenía una raíz negativa, reex­
presaba la ecuación utilizando esa raíz y un cambio de variable, y 
resolvía por el método de Diofanto la ecuación resultante. Si vol­
vía a dar una raíz negativa, reexpresaba de nuevo, iterando hasta 
que, finalmente, le resultara una raíz positiva. Fermat había explo­
tado la indeterminación de la ecuación para inventar un ingenioso 
método de solución. 

Al utilizar este enfoque generalista, basado en la teoría de 
ecuaciones, Fermat rompía de manera definitiva con el pasado 
diofantino abocado a soluciones particulares, un salto que sus 
contemporáneos no lograron comprender. En cuanto a Fermat, 
habiendo resuelto el problema, se desentendió de los números 
cuadrados; sin embargo, su relación con Frénicle y Brfilart se vio 
seriamente deteriorada. 

LA DESCOMPOSICIÓN DE NÚMEROS Y LA PARTICIÓN 
DE LOS PRIMOS IMPARES 

En otra carta de 1640 a Frénicle, Fermat anunció que había encon­
trado una teoría general de la descomposición de un número en 
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sumas de dos cuadrados. El origen de ello fue un comentario de 
Bachet a un problema de Diofanto; descomponer un número Nen 
la suma de dos cuadrados de cuatro formas distintas. 

La descomposición de números en sumandos es un problema 
similar a la factorización. Si en esta se buscan divisores, en la 
descomposición se buscan sumandos. Corno es obvio, los suman­
dos tienen que ser de un cierto tipo, ya que encontrar sumandos 
cualesquiera es trivial. Fermat resolvió el problema, generalizán­
dolo a encontrar todas las formas en las que un número dado se 
puede descomponer en la suma de dos cuadrados. 

La solución es una fórmula que no escribiremos aquí. Baste 
apuntar que la relevancia del resultado está en que Fermat logró, 
de nuevo, un método general, y en que para probarlo usó una 
curiosa propiedad de los primos, mucho más importante que el 
problema en sí. En efecto, Fermat sabía que los números primos 
de la forma 4k- l no pueden expresarse corno la suma de dos 
cuadrados. También, aunque la demostración le costó un mayor 
esfuerzo y fue realizada con su método de descenso infinito, de­
mostró que los números primos de la forma 4k + 1 siempre se pue­
den descomponer en la suma de dos cuadrados, y esa suma es 
única. Fermat había logrado partir los primos impares en dos gru­
pos disjuntos según si obedecen o no cierta propiedad. Usó estos 
dos resultados para demostrar que el problema de Bachet se 
podía reducir a determinar, dado un número N, cuántos de sus 
divisores primos son de la forma 4k-1 y cuántos de la forma 
4k + l. En efecto, salvo el número dos, todos los primos se pueden 
escribir de una forma u otra, dado que ambas formas cubren todos 
los números impares. Por tanto, solo los divisores primos de la 
fo_rrna 4k + 1 pueden formar dos sumandos y el número de formas 
en que se puede descomponer N no es otra cosa que un problema 
de combinatoria. 

Nuevan1ente, vernos la potencia de la estrategia de concen­
trarse en los divisores primos. Es poco lo que podernos decir sobre 
un número N general. Pero ¡sí que podernos hacer afirmaciones 
sobre sus divisores primos, que literalmente rebosan propiedades 
interesantes! Y ello nos lleva a descubrir algo sobre el número N. 
Esta es la fructífera estrategia que Fermat usó una y otra vez. Él 
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mismo se había quejado a Mersenne, en 1636, de que no existían 
principios generales en la aritmética para resolver problemas. 
Pocos años después, el propio Fermat había establecido sólida­
mente algunos de esos principios. 

NÚMEROS POLIGONALES 

Después de 1644, Fermat dejó súbitamente de escribir a sus corres­
ponsales, en un silencio que duraria diez años. A ello contribuyó, 
sin lugar a dudas, la muerte en 1648 de su principal corresponsal, 
el padre Mersenne, y el hecho de que sus relaciones con sus otros 
dos corresponsales habituales, Frénicle y Bn1lart, se habían en­
friado al punto de la ruptura. 

Este hiato fue roto cuando Blaise Pascal, hijo de Étienne, se 
dirigió a Fermat para plantearle el problema que inauguraría la 
teoría de la probabilidad. Durante esta correspondencia, Fermat 
aprovechó para plantear problemas en teoría de números, con­
fiando en interesar a Pascal en esta. Citando una frase de Francis 
Bacon: «Muchos deben pasar para que el conocimiento crezca», 
Fermat decía que era importante crear una cofradía de matemáti­
cos que, compitiendo entre sí pero también colaborando, trabaja­
ran para resolver los problemas planteados por dicha teoría. Uno 
de los resultados que Fermat comunicó es de una gran belleza. 
Para explicarlo, hay que volver a la otra gran preocupación aritmé­
tica de los pitagóricos, los números triangulares y su generaliza­
ción, los números poligonales. 

Un número triangular es aquel que puede descomponerse de 
forma que los sumandos formen un triángulo (figura 1). Por ejemplo, 
el número 10 tiene esta propiedad: 10 = 1 + 2 + 3 + 4, es decir, es la 
suma de los cuatro primeros números naturales. El número 10 es­
taba en el corazón de la mística pitagórica Se referían a él como el 
tetraktys y representaba los cuatro elementos, la armonía de las 
esferas y el ordenamiento del espacio (O dimensiones, 1 dimensión, 
2 y 3 dimensiones, representadas por cada línea). Los pitagóricos 
rezaban al tetraktys y juraban por éi considerándolo engendrador 
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de dioses y hombres y fuente de la cambiante creación. También el 
1, el 3, el 6 y el 15 son números triangulares (figura 2). El 6 es el pri­
mer número perfecto. De hecho, todo número perfecto es triangular. 

El concepto es fácilmente generalizable. Un número será cua­
drado si puede descomponerse en sumandos que formen un cua­
drado (evidentemente, todos iguales). Números cuadrados son el 
1, el 4, el 9, el 16, el 25 .. . y así sucesivamente (figura 3). 

Estamos ya en condiciones de enunciar el resultado de Fer­
mat: todo número es, o bien triangular, o bien la suma de dos o 
tres números triangulares. También es, o bien, cuadrado, o bien 
la suma de dos, tres o cuatro cuadrados. También pentagonal, o 
bien la suma de dos, tres, cuatro o cinco pentagonales. Y así su­
cesivamente. 

Además de en su correspondencia a Pascal, Fermat dejó con­
signado este resultado en otro de los márgenes de laAritmética 
de Diofanto. No es sorprendente que lo acompañara de una ob­
servación casi idéntica a la del último teorema: «La demostración 
de este maravilloso resultado no tiene cabida en este margen, 

FIG. l • •• ••• •••• 
FIG. 2 • • •• • •• • •• • •• ••• • ••• ,. 

3 • • 6 ••• 10···· 15····· 
FIG. 3 ••••• •••• ••••• ••• •••• ••••• •• ••• • ••• ••••• L•_ 4•• 9 •• • 16 •••• 25 ••••• 
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pero pienso escribir un libro sobre este tema». Como en tantas 
otras ocasiones, Fermat faltó a su promesa. Dicho tratado no fue 
escrito jamás, y la prueba nunca se encontró. Lagrange y Gauss 
probarían casos particulares y, finalmente, Cauchy daría con una 
prueba general en 1812. En todo caso, Fermat no logró interesar 
a Pascal. En 1654, este contestaba con una carta cortés y hunulde 
en la que se presentaba a sí mismo como incapaz de estar a la 
altura matemática de Fermat, instándole a que prosiguiera sus 
estudios y publicara sus resultados. 

LA ECUACIÓN DE PELL Y DESALIENTOS DIVERSOS 

Dado que no podía recurrir directamente a Frénicle, ante el re­
chazo de Pascal, Fermat discurrió un nuevo plan. Había entrado 
en contacto con la matemática del inglés John Wallis a través de 
un libro que le había proporcionado Digby. Tanto él como Wallis 
habían adoptado un enfoque muy semejante para resolver proble­
mas de sumas de potencias de enteros. Lleno de esperanza por 
ello, Fermat se dirigió a Wallis, procurando interesarlo en los pro­
blemas que Pascal había rechazado. 

Sin embargo, la estrategia de Fermat para abordar a Wallis 
fue distinta. Si a su amigo Pascal le había pedido colaboración, a 
Wallis lo retaría. El 3 de enero de 1657, desde Castres, Fermat 
escribió una carta a Claude Martin de Laurendiere, con la petición 
de que la difundiera por la comunidad matemática. En ella se ha­
blaba de dos problemas particulares. Fermat se envanecía di­
ciendo que la Galia Narbonesa (es decir, la Francia del Sur) daría 
la solución si Inglaterra, Flandes y la Galia Céltica ( es decir, París) 
eran incapaces de hacerlo. Había en este párrafo un reto implícito 
a Frénicle, que tuvo oportunidad de leer la carta. 

Estos problemas - y otros muchos que Fermat abordó en su 
correspondencia sin tratarlos explícitamente- requerían del co­
nocimiento de las propiedades de la ecuación de Pell, cuya solu­
ción general Fermat había, sin lugar a dudas, encontrado: 
x 2-py2 = 1, conp primo. 
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Por desgracia, Fermat no obtuvo la respuesta que esperaba. 
Sus corresponsales consideraban irresolubles sus problemas. De 
forma que, poco después, Fermat reveló algunas de sus bazas y 
planteó la necesidad de resolver problemas teóricos de índole 
más general. En particular, Fermat exponía la ecuación de Pell y 
pedía soluciones. 

Esta carta es prácticamente un credo. Fermat empezaba que­
jándose de la falta de investigadores que propusieran y resolvie­
ran problemas puramente aritméticos (de teoría de números). Lo 
atribuía a la contaminación que la geometría y sus métodos habían 
proyectado sobre la aritmética. Su proyecto, dice, es eliminar esa 
influencia y tratar la aritmética como una ciencia por sí misma, 
tan sutil, rigurosa y difícil como la propia geometría, y declaraba 
lo siguiente: «Así que la aritmética debe redimir la doctrina de los 
números naturales como un patrimonio en sí mismo». 

El programa de Fermat era ahora explícito. Sin saberlo del 
todo, ya que él sentía que revivía un arte antiguo, estaba sentando 
las bases de algo totalmente nuevo: una ciencia aritmética que, 
sin influencia de la geometría, se pudiera estudiar por sí misma 
con el mismo provecho que la geometría griega. Por desgracia, 
nadie hasta Euler lo vio así. Fermat estaba solo entre sus con­
temporáneos. Frénicle resolvió el primer problema y mandó cua­
tro soluciones. Era incapaz, y probablemente Fermat lo sabía, de 
abordarlo en términos de técnicas de solubilidad generales. La 
respuesta de Wallis no podía ser más desalentadora. Escribió al 
vizconde William Brouncker, que le había hecho llegar el reto, que 
no existían ecuaciones generales para resolver esos problemas, 
para los que él, ocupado en otros menesteres, no tenía tiempo. 
Y ofrecía, despectivamente, su solución trivial a ambos proble­
mas: el número uno. Esta respuesta no llegó a Fermat. Se quedó 
en París, donde Digby se la enseñó a Frénicle, quien a su vez deci­
dió debatir con Wallis si el número uno podía ser considerado un 
número. Pero lo que sí llegó fue una solución de Brouncker, con 
la que Wallis estuvo de acuerdo. Fermat vio que ni Brouncker ni 
Wallis habían entendido los problemas: él insistía en soluciones 
enteras, y Brouncker le había hecho llegar un método para encon­
trar soluciones fraccionarias. 
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Fermat respondió a Digby con una carta en la que decía que 
cualquier tonto podía encontrar la solución de Brouncker y Wallis, 
y después de reflexionar sobre la tradicional enemistad entre in­
gleses y franceses, lanzaba lo que los ingleses consideraron un 
insulto, aunque es bastante probable que el bienintencionado Fer­
mat intentara solamente «consolar» a los ingleses respecto de su· 
falta de talento matemático: «ningún campo puede albergar cual­
quier cosecha». Echando más sal en la herida, el tolosano añadió 
a esta carta una dura crítica del libro de Wallis que Digby le había 
entregado. 

«Esperamos estas soluciones, las cuales, si Inglaterra 
o Bélgica o la Galia Celta, no las producen, 

entonces la Galia Narbonesa lo hará.» 
- EXTRACTO DE LA CARTA QUE FERMAT ESCRIBIÓ EL 3 DE ENERO DE 1657 A CLAUDE 

MARTIN DE LAURENDIÉRE LANZANDO UN RETO A LOS MATEMÁTICOS EUROPEOS . 

La respuesta de Fermat llegó a todos los interesados, pero la 
polémica subsiguiente excluyó al tolosano, convirtiéndose en una 
justa entre Frénicle y Digby, por un lado, y Wallis y Brouncker por 
el otro. Wallis insistió en que estos problemas, de los que se podía 
concebir una gran variedad, no ofrecían ninguna utilidad ni difi­
cultad alguna. No lograba ver los aspectos teóricos que Fermat 
encontraba en ellos. Eran divertimentos sin sentido, y no mere­
cían la atención «de toda Inglaterra, Francia y Holanda». 

Wallis también mostró su aburrimiento sobre las proposicio­
nes negativas de Fermat, de las que su último teorema es sola­
mente el ejemplo más famoso. En efecto, el inglés consideraba 
que había un nún:iero infinito de tales proposiciones, a cual más 
aburrida e inconsecuente, y se preguntaba por qué Fermat daba 
tanta importancia a asombrar a Frénicle con sus «audaces» afir­
maciones sobre ecuaciones particulares con un número limitado 
(o cero) de soluciones. Como hemos visto, Wallis se equivocaba 
gravemente. Los problemas planteados por Fermat daban lugar a 
investigaciones muy fructíferas. 
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Fermat, sin embargo, no se rendía. Su última carta a Digby, en 
junio de 1658, demostraba que todavía tenía esperanzas de que 
Wallis y Brouncker entendieran las cosas a su manera. Mucho más 
conciliadora y adulatoria, simplemente pedía que los ingleses re­
conocieran su error. Wallis nunca contestó. Se limitó a incluir la 
carta como colofón de su libro sobre esta polémica. El intento 
fermatiano de hacer que la teoría de números cruzara el canal de 
la Mancha había fracasado. Como ironía final, John Pell, un mate­
mático inglés de poca monta, copió la ecuación de Fermat -que, 
por otro lado, ya era conocida en la India- del libro de Wallis. 
Dicha copia llegó a las manos de Euler, que, ignorante de su auto­
ría, llamó a dicha expresión ecuación de Pell. Nuevamente, Fer­
mat había sido traicionado por la posteridad. 

El cada vez más rendido y an1argado Fermat haría un intento 
postrero de interesar a todos por su pasión y por el mundo que 
solo él había intuido. Dicho intento lleva el ilustre nombre del 
matemático neerlandés Christiaan Huygens, quien había escrito 
en 1656 al tolosano instándole a publicar sus resultados. 

Fermat, finalmente, hizo un pequeño tratado que hizo llegar a 
Carcavi con la intención de que este se lo enviara a Huygens. En 
este tratado habla, entre otras cosas, del método de descenso infi­
nito que ya se ha comentado en conexión con el último teorema, y 
explica cómo lo usó para demostrar su resultado sobre la descom­
posición de primos 4k + 1 en una suma de dos cuadrados, esbo­
zando apenas la prueba. Otra vez el secretismo de Fermat volvía a 
ganar la partida: resultados enunciados sin demostración, pruebas 
apenas esbozadas, proyectos de investigación incompletos. 

Al final, Fermat alegaba que no tenía tiempo para escribir un 
tratado completo, pero que si otros matemáticos pudieran llenar 
las lagunas (refiriéndose específicamente a Frénicle y Carcavi), 
«la posteridad tal vez me agradecería por haber mostrado que los 
antiguos no lo sabían todo». 

Huygens le reiteró su admiración, pero, como Pascal antes 
que él, declinó participar en la nueva teoría de números. Igual 
que otros matemáticos de la época, no veía la utilidad de entrete­
nerse en esos problemas. Huygens era un matemático aplicado, 
un hombre interesado en problemas de física y su solución a tra-
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vés de las matemáticas. En cambio, a Fermat esos problemas no 
le interesaban. La disonancia entre ambas maneras de abordar las 
matemáticas era irresoluble. Si al principio de su correspondencia 
Huygens era entusiasta con el ya viejo Fermat, la continuación de 
esta le llevó progresivamente al tedio. Además de no entender los 
descubrimientos de Fermat en teoría de números, la notación de 
este, fiel a su maestro Vieta, le resultaba fatigosa comparada con 
la más clara de Descartes; los problemas que planteaba Fermat, o 
bien eran triviales o bien habían sido resueltos con anterioridad, 
ya que Fermat le enviaba a veces sus investigaciones antiguas, 
ignorando tal vez que algunas de ellas habían quedado obsoletas. 
Poco a poco, la correspondencia decayó, y con ello la última opor­
tunidad de que un discípulo adoptara sus investigaciones. 
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CAPÍTULO 4 

La geometría analítica 

Fermat no se limitó a la teoría de números. 
En el siglo XVII la geometría analítica y el cálculo 

comenzaban a surgir, y Fermat fue una pieza fundamental 
en el establecimiento de sus primeros resultados. Aquí, 
a diferencia de lo que le sucedió en teoría de números, 

el matemático francés formó parte de un esfuerzo 
colectivo y sus descubrimientos fueron plenamente 

reconocidos durante su vida. 





De nuevo, para entender las aportaciones de Fermat, hay que dar 
un salto atrás hasta llegar al nacimiento del álgebra. Después de 
su enorme gloria helenística, las matemáticas occidentales langui­
decieron durante la Edad Media. En Europa es difícil encontrar 
una obra original en matemáticas hasta Leonardo Fibonacci, que 
vivió a caballo entre los siglos XII y XIII. En cambio, en el mundo 
musulmán la herencia griega fue adoptada y transformada de 
forma decisiva. Los musulmanes tradujeron a Aristóteles, Eucli­
des, Ptolomeo, Apolonio y Diofanto, entre otros muchos autores 
griegos, preservando su conocimiento. Pero también hicieron dos 
contribuciones fundamentales. Desarrollaron decisivamente el 
álgebra y adoptaron la notación numérica india, extendiéndola 
con el uso de decimales. 

Es imposible concebir el desarrollo de la matemática occi­
dental sin el lenguaje de los números indoarábigos. Los griegos no 
podían expresar los números irracionales. Esa incapacidad de ex­
presar algo es un obstáculo al pensamiento. Solo cuando uno es 
capaz de conceptualizar una cosa es posible razonar sobre ella. 
Por esta razón la introducción de los números indoarábigos fue 
una de las grandes revoluciones científicas. Nos daban, en primer 
lugar, el cero. Era posible, finalmente, pensar que «nada» era ex­
presable. También ofrecían una forma de escribir decimales, acer­
cándonos a la expresión de números irracionales. Además, el 
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sistema indoarábigo nos dio la posibilidad de calcular algorítmi­
camente (es decir, con base en reglas) las operaciones más bási­
cas: la suma, la sustracción, la multiplicación, la división. En vez 
de usar el ábaco, imprescindible si se utilizan números romanos, 
por primera vez era posible hacer operaciones mentalmente de 
acuerdo con las sencillas reglas que todo escolar puede aprender. 

La otra gran innovación del islam fue la sistematización del 
álgebra. El que tal vez fuera su mayor matemático, Muhammad 
ibn Musa al-Khwarizmi (780-850), escribió un tratado sistemático 
de álgebra en el que categorizó diversos tipos de ecuaciones y 
describió cómo los dos lados de una ecuación son como los platos 
de una balanza equilibrada, con lo que lo que se resta o suma de 
un lado debe restarse o sumarse del otro. 

Gracias al triunfo de los algoritmos y a la adopción y conoci­
miento del álgebra árabe fu.e posible el desarrollo de una de las 
escuelas modernas de la matemática de los siglos XVI y xvn, los 
cosistas, que no eran otra cosa que calculistas que se basaban en 
la tradición árabe y en sus propios descubrimientos para hacer 
cálculos efectivos. Antes que nada pragmáticos, no terúan dema­
siado tiempo para el rigor griego: habían vuelto a los tiempos de 
las recetas y a la utilización de una panoplia de problemas repre­
sentativos para ilustrar sus métodos. En esta mezcla de tradicio­
nes se desarrolló la carrera de Fermat. Por un lado, la tradición 
cosista de resolución de problemas; por otro, los geómetras y su 
pasión por los grandes resultados sistemáticos. Pero la última 
pieza, y la más importante para entender a Fermat, es el maestro 
del maestro, Fran<;ois Vieta: es la argamasa que une las dos ver­
tientes de la carrera de Fern1at y apunta el camino a la gran sínte­
sis que lograría el matemático tolosano. Dicha argamasa tomó la 
forma del álgebra sin1bólica y la teoría de ecuaciones. 

Ya Diofanto, en la época helerústica, había usado ocasional­
mente símbolos para representar cantidades numéricas, pero fue 
Vieta quien introdujo de forn1a definitiva un nuevo lenguaje que, 
como la notación indoarábiga, permitía expresar cosas inexpresa­
bles hasta entonces. Vieta fue el primero en usar letras de forma 
sistemática para referirse por un lado a las constantes y por otro 
a las incógnitas. 
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El álgebra simbólica permite representar un número sin saber 
exactamente qué número es. Ya no es «la cosa», es la x. De hecho, 
como en el caso del último teorema, se pueden expresar núme­
ros «que tal vez ni siquiera existen», los x, y, z de la ecuación de 
Fermat. Ello implica que se puede razonar sobre clases enteras 
de problemas, y hacer aseveraciones sobre un número infinito de 
problemas similares conociendo solo su estructura algebraica, la 
relación entre las variables a través de una ecuación. Es decir, es 
posible hablar de ecuaciones de una forma general. Por ejemplo, 
se puede decir de forma rápida y sencilla que a2 - b2 = (a+b) (a - b), 
y que esto se cumple para cualesquiera a y b. El álgebra simbólica 
libera nuestra mente de las pesadas descripciones verbales y nos 
permite razonar a otro nivel, de la misma forrna que los números 
indoarábigos nos ayudan a calcular. Esta revolución fue posible 
gracias a Vieta y, posteriormente, a Descartes. 

Tras la anterior exposición, se hace necesario detenerse un 
poco en ciertos conceptos. Los matemáticos griegos hacían prue­
bas rigurosas, usualmente constructivas. Estas pruebas se llama­
ban «sintéticas», e iban desde las hipótesis del teorema hacia su 
conclusión, con reglas lógicas, paso a paso. Pero rara vez un ma­
temático toma un camino tan directo cuando está descubriendo 
sus resultados. El matemático, y los griegos no eran una excep­
ción, usa métodos heurísticos, informales, para comprobar si 
tiene razón o no, antes de intentar una prueba. En Grecia, los ca­
minos tentativos con los que el matemático intentaba indagar 
sobre la prueba, una especie de andamiaje que desaparece de la 
exposición final de la prueba, se llamaba análisis (hay que hacer 
notar que dicha palabra tiene un significado totalmente distinto en 
la matemática actual), mientras que la prueba era la síntesis. El 
análisis procede a partir de la conclusión hacia las hipótesis, 
mientras que una prueba normal, rigurosa y sintética procede 
siempre en sentido contrario. Para desesperación de sus lectores 
de los siglos xvr y XVII, los griegos no dejaban trazas de su método 
analítico. Borraban sus huellas para dejar solamente el rigor y la 
belleza de la prueba sintética. Papo, escribiendo siglos después de 
las cumbres de la matemática helenística, fue uno de los pocos 
autores que dejó trazas analíticas. 
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A primera vista, esta forma de proceder parece extraña. Los 
recíprocos de los teoremas no tienen por qué ser ciertos (véase, por 
ejemplo, el pequeño teorema de Fermat). De alú que la traducción 
del análisis ( en dirección contraria) en prueba sintética ( en la direc­
ción, digamos, con-ecta, de las hipótesis a la conclusión), no sea 
automática Pero los griegos se valieron de ingeniosos métodos para 
poder invertir sus análisis y convertirlos en una demostración en 
toda regla. En particular, observaron que en geometría, en muchas 
ocasiones, los pasos sí son invertibles. En otras ocasiones, introdu­
jeron hipótesis auxiliares para que dichos pasos fueran invertibles. 

El análisis, tal como lo practicaban los griegos, encontró tam­
bién vida entre los algebristas árabes y los cosistas. Ahora bien, 
las ecuaciones del álgebra son esencialmente invertibles. Si se van 
aplicando las reglas de conversión de una ecuación, el camino 
inverso siempre puede transitarse. Por ejemplo, podemos pasar 
de escribir a 2- b2 a escribir (a + b) (a - b) .. . , o bien hacerlo al revés. 
Esto es así porque dos expresiones iguales entre sí son libremente 
intercambiables. Vieta se dio cuenta de esto y descubrió que si 
basaba el análisis en el álgebra, utilizando únicamente manipula­
ciones de ecuaciones e identidades, sus demostraciones serían 
automáticamente verdaderas. Esto le llevó a postular, de forma 
revolucionaria, que análisis y álgebra eran una y la misma cosa, lo 
que él llamó arte analítico. 

Había ahora una forma general de razonar sobre las ecuacio­
nes, y un problema podía resolverse en dos pasos: el plantea­
miento, que es la traducción al álgebra simbólica del problema en 
la forma de una ecuación, y la manipulación algebraica hasta dar 
con la solución. Lo que se practica en las clases de matemáticas 
en el instituto. De esta manera, en vez de enfocarse en la solución 
misma de una ecuación particular, como habían hecho los cosis­
tas, Vieta se concentró en las reglas para manipular la ecuación: 
sumar términos de ambos lados, restar términos, elevar a poten­
cias, extraer raíces, multiplicar o dividir por factores, buscando 
fórmulas generales de manipulación, que dependieran solo de la 
estructura de la ecuación. Buena parte del tratado de Vieta está 
dedicado a catalogar las identidades mediante las cuales se llevan 
a cabo esas manipulaciones. 
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Si vemos 3 + 2, nuestra tendencia natural es hacer la suma y 
poner un 5, como hacían los cosistas. Pero con ello perdemos la 
estructura de la expresión original, el hecho de que es una suma. Y 
por tanto, no podemos razonar de forma general sobre sumas. Al 
impedir estas reducciones, el álgebra simbólica nos permite razo­
nar sobre estructuras. Podriamos decir que el álgebra simbólica se 
concentra en la sintaxis de la ecuación, olvidando su contenido, su 
significado, hasta la solución final. Al mismo tiempo, el álgebra de 
Vieta sugeria que los objetos con los que trataba, constantes e in­
cógnitas, no necesariamente eran números. Podían ser cualquier 
cosa: ángulos para hablar de trigonometria, elementos geométri­
cos . .. Cualquier cosa en la que tuviera sentido sumar, multiplicar, 
elevar a potencias, etc. El álgebra, que había sido nada más que una 
rama de la aritmética enfocada a la solución de problemas nun1é­
ricos, se convertía así en el lenguaje universal de las matemáticas. 

«La matemática es la ciencia del orden y la medida, de bellas 
cadenas de razonamientos, todos sencillos y fáciles.» 

- RENÉ DESCARTES. 

Llegados a este punto, deberia resultar evidente la importan­
cia que el trabajo de Vieta; que Fermat conoció en Burdeos, tuvo 
en nuestro personaje. En efecto, en Fermat hemos visto ya esa 
misma tendencia de ir de lo particular a lo general, de analizar la 
estructura de las ecuaciones que resuelven una clase de proble­
mas, la supremacía del método por encima de los problemas es­
pecíficos. Vieta no solo propone métodos y soluciones; plantea un 
programa matemático que Fermat llevó hasta sus últimas conse­
cuencias. Pero no estaba solo. Otro gran pensador, René Descar­
tes, había llegado a las mismas conclusiones, partiendo de la 
filosofía y llegando al álgebra como una herramienta de clarifica­
ción del pensanüento. Los tres, Vieta, Descartes y Fermat, funda­
rian los métodos de la matemática moderna, divorciándolos para 
siempre de las elegantes construcciones de Euclides y los geóme­
tras griegos. Donde antes hubo trazos con regla y compás, ahora 
vendrian las manipulaciones algebraicas sobre objetos cada vez 
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más extraordinarios. El álgebra, en efecto, se convirtió en sus 
manos en la forma de razonamiento matemático por excelencia. 

Si bien la deuda matemática de Fermat con Vieta es evidente, 
continúa siendo polémico hasta qué punto este influyó a Descar­
tes. Algunos historiadores piensan que Descartes conocía las 
obras de Vieta, como afirmó Beaugrand; otros creen que Descar­
tes, como él mismo afirmaba, llegó a sus resultados de forma in­
dependiente. Pero siendo un mejor sistematizador que Vieta, su 
notación resultó ser mucho más clara -recuérdese que una bue­
na notación, en matemáticas, puede iluminar, mientras que una 
notación oscura puede confundir el pensamiento- y su teoría de 
ecuaciones era tan superior a la de Vieta que, en el lapso de una 
generación, se impuso por completo, haciendo que el maestro de 
Fermat cayera en el olvido. Alú donde Vieta usaba agotadoras ca­
suísticas muy a tono con su mente de abogado, Descartes aplicaba 
su mente de filósofo para construir grandes sistemas. 

A pesar de sus intuiciones revolucionarias, Vieta seguía atado 
al pasado en algunos aspectos. Para él, una incógnita elevada al 
cuadrado tenía un significado muy específico: es un cuadrado real, 
geométrico, un área. Lo mismo una incógnita elevada al cubo: es 
un cubo, un volun1en. Y a pesar de que era capaz de in1aginar po­
tencias superiores (cuárticas, quínticas), que no tenían un signifi­
cado geométrico evidente, no logró dar un paso fundamental: 
pensar que un polinomio podía ser no homogéneo, es decir, que 
sus términos podían tener potencias distintas: ax3 + bx2 +ex= d. 
Para él, esto era como sumar peras con manzanas, una línea con 
un cubo, un cuadrado con un punto. No tiene sentido geométlico. 
Esto le llevó a formular una ley de homogeneidad: los polinomios 
deben ser sumas de monomios del mismo grado. Cuadrados con 
cuadrados, cubos con cubos. 

Evidentemente, Vieta tenía todo el peso del pasado griego en 
sus hombros, en el que los números no tenían dimensión pero las 
figuras geométricas sí. Combinar an1bos no tenía sentido. Para los 
griegos era inevitable que el concepto de din1ensión estuviera aso­
ciado con la niultiplicación de elementos geométricos: dos líneas 
multiplicadas dan un rectángulo y un rectángulo por una tercera 
línea da un paralelepípedo. 
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Fermat tuvo problemas para librarse de esta restrictiva forma 
de pensar, que impide concebir polinomios más generales. Lo 
logró, pero, de la forma a la que ya nos tiene acostumbrados, sin 
haber puesto en un terreno teórico firme su renuncia a aplicar 
dicha ley. Descartes, en cambio, razonó su abandono de la ley 
de homogeneidad. Fue el primero en usar los superíndices a los 
que estamos tan habituados para denotar la operación de elevar 

RENÉ DESCARTES 

Sin duda, René Descartes (1596-1650) es 
la figura más relevante de la filosofía del 
siglo xv11. Le distingue sobre todo su re­
curso a la duda sistemática, su renuncia 
a creer nada que no pudiera probar, ex­
presada con enorme fuerza en su cogito, 
ergo sum. Nacido en La Haye, en la Tu­
rena francesa, se graduó en la Universi­
dad de poitiers en Derecho, pero pronto 
fue alistado en el ejército de Maurice de 
Nassau, combatiendo en Flandes contra 
España. Participó también en la Guerra 
de los Treinta Años bajo el mando del 
duque Maximiliano I de Baviera, así como 
en el mismo asedio de La Rochelle en el 
que Alejandro Dumas imaginó a sus 
mosqueteros. Estando en campaña, tuvo 
una iluminación: todas las verdades te­
nían que estar encadenadas y basadas 
en una verdad primera, su «pienso, luego existo». Descartes se convenció de 
que la razón era la vía al conocimiento. La mayor parte de su vida, después 
de licenciarse del ejército, transcurrió en la República Holandesa, saltando de 
una ciudad y una universidad a otra. En 1637 publicó el Discurso del método 
con sus apéndices. Cuatro años después verían la luz las Meditaciones filosó­
ficas. Condenado y perseguido en el mundo católico, Descartes fue invitado 
por Cristina de Suecia para ser su tutor. Se dice que las manías de la reina de 
madrugar y de mantener las ventanas abiertas terminaron por minar la salud 
del pensador, que murió de neumonía un 11 de febrero. El papa Alejandro VII 
incluyó sus obras en el indice de libros prohibidos trece años después. 
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a una potencia, y lo hizo en parte para librarse de los vicios de 
la notación previa. Vi eta escribía cosas como: B • A quad + G pla­
numA = Z solido. Quad, planum y solido son las potencias a las 
que se elevan A, G y Z respectivamente para conservar la homo­
geneidad, con una obvia interpretación geométrica. 

Descartes rechazó dicha interpretación, diciendo: 

Yo mismo estuve mucho tiempo engañado por estos nombres [ cua­
drado, cubo] ... Finalmente observé después de muchos experimen­
tos que no hay nada que con esta interpretación se pueda resolver 
que no pueda resolverse de forma más sencilla y clara sin ella, y que 
tales nombres deben ser rechazados para evitar que confundan el 
pensamiento. 

Descartes postula que, dado que, por ejemplo, un triángulo 
con un cierto ángulo y con lados a y 1 es similar a un triángulo con 
el mismo ángulo y lados ab y b, todos los problemas geométricos 
son escalables entre sí y la unidad que uno elija es arbitraria. En 
otras palabras, el producto ab, que tiene grado dos y es, por tanto, 
un cuadrado, no es distinto en absoluto del número lineal b. Así, 
no cabe pensar que representan objetos matemáticos distintos. 
Dimensionalmente son iguales. 

Vieta cayó en el olvido y Descartes se impuso. Esto tiene su 
importancia, porque la absoluta fidelidad de Fermat al maestro 
Vieta oscureció las propias aportaciones del tolosano, que con 
frecuencia eran oscuras para contemporáneos y sucesores que 
habían adoptado la notación y las ideas de Descartes. Ello es 
otro de los factores que llevó a Fermat, a su vez, a ser incom­
prendido. 

Hay otra faceta del trabajo de Vieta que ilumina la obra de 
Fermat. Ya se ha comentado que Vieta tenía una gran fe - por lo 
general justificada- en su arte analítico, fe que iba aparejada con 
un cierto desdén hacia la forma sintética en la que los griegos 
habían construido sus pruebas. Afirmaba en su Introducción al 
arte analítico (1571) que, dado que el análisis que él proponía 
implicaba que todos los pasos de una demostración eran reversi­
bles, la síntesis a la manera griega ya no era necesaria. 
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Fermat tomó este principio de Vieta como uno de los funda­
mentos de su investigación matemática y, junto con su habitual 
desidia para escribir tratados completos, dicha adopción clarifica 
por qué se topó con tanta incomprensión entre sus contemporá­
neos: en efecto, dados unos pocos pasos analíticos que le permi­
tían -o eso creía él- vislumbrar la demostración, para Fermat, 
como para Vieta, hacer la demostración a la griega no tenía ya 
sentido. Era redundante. El problema, claro, es que sus contem­
poráneos no estaban tan imbuidos como él del programa analítico 
de Vieta. Fermat no supo ver esa disonancia, y ello le ocasionó no 
pocos desencuentros y amarguras. Finalmente, es curioso señalar 
que, como ya se ha visto en varios ejemplos, Fermat usaba álgebra 
simbólica para sus manipulaciones, pero casi siempre planteaba 
el resultado en términos verbales. ¿Hay mejor ejemplo de cómo 
Fermat estaba a caballo entre dos tradiciones, entre un mundo 
matemático que moría y otro que empezaba a nacer? 
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Es momento de detenerse un poco en la cronología. En el capítulo 
anterior se hizo referencia a casi toda la vida matemática de Fer­
mat, cronológicamente hablando. Pero la «otra vida» que ahora se 
tratará transcurrió en paralelo y fue incluso anterior en algunos 
aspectos, por lo que conviene volver atrás en el tiempo, a los años 
de Burdeos. 

Fennat estuvo en Burdeos en la segunda mitad de la década de 
1620. Para entonces, había perfeccionado su método de máximos 
y mínimos y había comenzado la restauración de la obra de Apolo­
nio de Perga sobre los lugares geométricos planos, la línea recta y 
el círculo. Dicha obra se perdió, pero el hecho de que Papo descri­
biera sus resultados permitió a los matemáticos de los siglos xv y 
xv1, convertidos en verdaderos arqueólogos del saber, intentar 
estas reconstrucciones. El programa de Vieta implicaba, en pri­
mera instancia, dicha reconstrucción; y en segunda, la transforma­
ción de los resultados clásicos al nuevo lenguaje del arte analítico. 
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Fermat logró restituir buena parte de la obra de Apolonio, 
según la había resumido Papo, que había generalizado los 14 7 teo­
remas y 8 lemas que contenfala obra original a apenas 16, pero un 
teorema, en particular, le impedía avanzar. La demostración par­
cial que había dado no le satisfacía. A su vuelta a Toulouse en 
1631, Ferrnat había empezado a analizar dicho problema a la luz 
de una nueva técnica. Ya en 1635 existen claros indicios de que 
usaba dicha técnica para resolver problemas clásicos. Finalmente, 
escribió su teoría en un pequeño tratado llamado «Introducción a 
los lugares geométricos planos y sólidos» ( en latín, Ad locos pla­
nos et solidos isagoge, a partir de ahora, Isagoge), que envió a 
París -a Mersenne y Roberval- en algún momento entre finales 
de 1636 y principios de 1637. Esa es la época en la que Ferrnat 
comenzó su correspondencia con Mersenne, inundando París de 
resultados asombrosos, no solo en teoría de números, sino sobre 
geometría y lo que, corriendo el tiempo, se llamaría cálculo. Sus 
trabajos atrajeron la atención de un matemático francés que tra­
bajaba en problemas similares, Gilles de Roberval (1602-1675), 
que se convirtió en devoto admirador del magistrado de Toulouse. 

La Isagoge era el primer paso de una gran revolución. Vi eta ya 
había planteado resolver problemas geométricos con métodos al­
gebraicos, pero sus problemas se limitaban a encontrar ciertos 
puntos que cumplieran una cierta razón o intersecciones entre fi­
guras geométricas simples, como una recta y un círculo, en los 
que la solución era, invariablemente, un punto. Fermat había visto 
más allá, logrando un resultado revolucionario: nada más ni nada 
menos que reducir toda la geometría (la reina de las ciencias 
según Platón) a la humilde álgebra que, hasta una generación an­
terior, solo había servido para resolver problemas numéricos sin 
aparente trascendencia matemática. El matemático tolosano 
había inventado la geometría analítica Nos apresuramos a señalar 
que otro gran pensador lo hizo de forma casi simultánea e inde­
pendiente: René Descartes, al que se le suele atribuir la primicia, 
hasta el punto de que las coordenadas que usamos reciben el nom­
bre de «cartesianas». Pero si bien no cabe duda de que las ideas 
de Descartes estaban maduras antes que las de Ferrnat, fue este 
últin10 quien publicó primero. 
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El segundo capítulo de la presente obra trata cómo los mate­
máticos buscan puentes entre can1pos que, a primera vista, son 
distintos y no tienen ninguna relación. Uno de los primeros ejem­
plos de esa actividad de tender puentes es la geometría analítica, 
llamada así porque usa el arte analítico -el álgebra- para descri­
bir toda la geometría. De pronto, todos los problemas geométricos 
pueden resolverse con el álgebra, a partir de la definición de cur­
vas como lugares geométricos. 

Un lugar geométrico es un coajunto, usualmente infinito, de 
puntos: lo que llamamos una curva, a pesar de que no todas sean 
curvas en el sentido coloquial. Dicho cortjunto debe cumplir una 
cierta propiedad. Por ejemplo, todos los puntos que equidistan de 
un punto fijo definen el lugar geométrico llamado «círculo», y todos 
los puntos cuya distancia a un punto dado es igual a la distancia a 
una recta dada definen el lugar geométrico llamado «parábola». De 
esta forma, se pueden definir curvas cada vez más complejas. 

Estudiando los lugares geométricos definidos por Apolonio, 
Fermat, al igual que Descartes, tuvo una iluminación: dichos luga-
res geométricos, cuando estaban en un plano, podían ser descritos 
por completo como una ecuación indeterminada en dos incógnitas. 

La dimensionalidad no dependía, como habían pensado todos 
hasta entonces, del grado de la ecuación, de si era cuadrática o 
cúbica. Dependía del número de in-
cógnitas. Así, si se tenían dos incógni-
tas, tendríamos curvas en un plano 
(dos dimensiones). Si se tenía una 
sola, tendríamos los puntos sobre lí-
neas (una dimensión) que analizaba ¡-

Gráfica en dos 
dimensiones de 
una curva cúbica, 
cuya ecuación 
general es 
y=ax1 +bx2 +cx +d. 

Vieta. Si teníamos tres, tendríamos su- -+------+-+------+---+---e--+-•---

perficies en las tres dimensiones del 
espacio. 

No importaba si una ecuación era 
un polinomio de grado tres; su di­
mensión no era una superficie en tres 
dimensiones, sino, si tenían dos incóg­
nitas, una humilde curva en dos (véase 
la figura). L_ 

· II 
- --~ 
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N acta impide ahora analizar polinomios de grado superior. 
Esta traslación del concepto de dimensionalidad fue la puerta que 
abrió la reducción de la geometría al álgebra. Pero además, dichas 
incógnitas se relacionaban a través de una ecuación indetermi­
nada, es decir, una ecuación con un número infinito de puntos: el 
lugar geométrico. 

Previamente a la geometría analítica, los lugares geométricos 
se describían de acuerdo con sus propiedades, o bien, como en el 
caso de las cónicas, como intersecciones de un volumen y una 
superficie. La geometría analítica cambió el paradigma por com­
pleto, permitiendo que el número limitado de curvas que habían 
estudiado los griegos, y que tenían que construirse una a una, se 
multiplicara hasta el infinito. Esto no es una exageración. En 
efecto, el número de ecuaciones en dos incógnitas es infinito, y 
como a cada una de ellas corresponde una curva, el número de 
posibles curvas es también infinito. 

Adicionalmente, la algebraización de la geometría permitía 
introducir la enorme flexibilidad de las operaciones algebraicas, 
sumas, restas, multiplicaciones, divisiones, elevación y potencias 
y extracción de raíces, que, junto con la teoría de ecuaciones, per­
mitían resolver muchos problemas de forma casi mecánica. Com­
parado con el laborioso método constructivo de los geómetras 
griegos, la geometría analítica era un método extraordinariamente 
poderoso para resolver problemas, como Fermat demostró al 
abordar· algunos teoremas de Papo que nunca habían sido resuel­
tos, y un problema de Galileo, en el que corrigió al propio maestro 
toscano: mientras Galileo pensaba que una bala de cañón que cae 
hacia el centro de una Tierra en movimiento sigue una trayectoria 
circular, Fermat descubrió que la trayectoria es una espiral. Gali­
leo, en correspondencia con Fermat, aceptó la corrección. 

Ahora bien, el programa de Descartes, aunque riquísimo en 
sus consecuencias, no fue perseguido por el autor. Su intención 
era mostrar una nueva forma de pensar, más que encontrar nue­
vos resultados matemáticos. Paradójicamente, en 1637, cuando la 
carrera matemática de Fermat apenas comenzaba, Descartes, por 
voluntad propia, concluía la suya. La Geometría que publicó era 
parte de un libro en el que había tres tratados científicos, precedi-
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dos del celebérrimo Discurso del método. Su Geometría no era 
otra cosa, a sus ojos, que una ilustración del método que había 
descubierto, una prueba incontrovertible del poder de su filosofía. 
Publicada en 1637, la obra es el canto del cisne matemático de 
Descartes, justo por los años en los que Fermat comenzaba su 

APOLONIO Y LAS CÓNICAS 

Apolonio de Perga (ca. 262-ca. 190 a.C.) sistematizó el estudio de las curvas 
llamadas cónicas, a las que dio los nombres que hoy tienen. Las cónicas se 
definen por la intersección de un plano con un cono en diversos ángulos. 
Se puede demostrar que, salvo casos degenerados, la totalidad de las cóni­
cas está contemplada en los casos ilustrados: si se corta el cono de forma 
paralela a la generatriz, el resultado es una parábola. Si el ángulo del plano 
con el eje es mayor. que el ángulo de la generatriz, el resultado es una elipse, 
y en el límite en el que el plano es perpendicular al eje, un círculo. Finalmente, 
si el ángulo entre plano y generatriz es menor, el resultado es una hipérbola 
con dos ramas. Las propiedades formuladas por el matemático de Perga para 
definir estas curvas permitieron que cada una de ellas tuviera una caracterís­
tica definitoria que la distinguía de todas las otras cónicas, expresada en 
forma de una proporción. A partir de tales características fue que Descartes 
y Fermat construyeron su estudio de las ecuaciones correspondientes. 

Círculo Elipse Parábola Hipérbola 
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A _ . ....-

x, 

mayor efervescencia. Los 
dos genios apenas se encon­
traron. Este hecho no debe 
interpretarse como un gesto 
desdeñoso a la enorme con­
tribución de Descartes; sin1-
plemente, es de reseñar que 
su genio matemático reful­
gió en unos pocos anni mi-
rabiles. Era sobre todo un 
filósofo, y Fermat un mate­

mático de pura cepa. Su forma de abordar los problemas era dis­
tinta. Para Descartes, bastaba con establecer el método; para 
Fem1at, era necesario aplicarlo a la resolución de cuestiones ma­
temáticas. 

Tal como queda dicho, el interés de Fermat en la geometría 
analítica surgió de sus intentos para restaurar la obra de Apolonio. 
A partir de tal restauración llegó a las ideas que dejó sentadas en 
su Isagoge, donde se puede leer la siguiente frase: 

Siempre que dos cantidades [ dos incógnitas] se encuentren en igual­
dad ... , existe un lugar geométrico ... tal que el punto final de una [de 
estas cantidades] describe una línea recta o una curva. 

Según el historiador Carl Boyer, esta afirmación constituye 
una de las mayores revoluciones de la historia de las matemáticas. 
No es directan1ente demostrable; se trata de un postulado. Pero 
Fermat dedica el resto de su pequeño tratado a ilustrar su utilidad, 
analizando un tipo particular de curvas: las cónicas, la línea recta 
y el círculo (al que la Antigüedad no consideraba una cónica). 

Fem1at, al igual que Descartes, no definió el sistema de coor­
denadas rectangulares que tan fanliliar resulta hoy en día. Su geo­
metría analítica es monoaxial: solo define el eje de las abscisas. 
Sin embargo, es evidente que utiliza implícitamente el eje de las 
ordenadas al definir distancias. 

En la figura se muestran los elementos de la geometría analí­
tica de Fermat. Tenemos una ecuación con dos incógnitas x e y y 
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una constante c,J(x,y) = c. La distancia x
0 

es claramente el valor 
de la abscisa, mientras que la ordenada está dada por el valor de 
la longitud del segmento y O Nótese que el ángulo a no necesaria­
mente es recto, como ocurriría en el sistema actual de coordena­
das cartesianas. De hecho, el ángulo es arbitrario (autores 
posteriores caerían en la cuenta de que es mucho más sencillo 
hacer que a sea recto). El punto que se mueve sobre el lugar 
geométrico es A. Podemos verlo moverse a la posición A', que 
corresponde a unaabscisax

1 
yunaordenaday

1
• El punto a obser­

vares que f(x
0
,y) =f(x"y) =c; es decir, la ecuación se cumple 

para todos los puntos A sobre el lugar geométrico, y, recíproca­
mente, los puntos A están totalmente definidos por la ecuación. 
Esta es la correspondencia clave entre geometría y álgebra que 
proporciona la geometría analítica -la notación es anacrónica; 
Fermat no hubiera usado la notación de funciónf(x,y)-. 

Hay un concepto implícito en esta exposición que fue funda­
mental en el desarrollo del cálculo: la variación continua. Al usar 
un eje monoaxial Fermat se concentró en cómo se mueve un 
punto sobre la curva que define el lugar geométrico. Esto es con­
ceptualmente distinto del proceso de representar gráficamente 
puntos en un plano con dos ejes coordenados e interpolar la curva 
entre ellos, que es como la mayoría de nosotros hemos aprendido 
a hacer una gráfica. La visión de Fermat es dinámica: corresponde 
a un punto que se mueve de una cierta forma, es decir, que tiene 
una cierta trayectoria, y por tanto, casi sin quererlo, Fermat le dio 
realidad física a su geometría analítica, introduciendo una fom1a 
de ver las cosas que resultaría fundamental en los trabajos poste­
riores de Newton, Leibniz y la familia Bemoulli. Otra caracterís­
tica a resaltar del sistema de Fermat es que solo incluye cantidades 
positivas, tanto para las abscisas como para las ordenadas, por lo 
que sus curvas están siempre en el primer cuadrante del plano y, 
por tanto, a veces pierden entre la mitad y las tres cuartas partes 
de su extensión. Una parábola con vértice en el origen y foco en 
el eje x, por ejemplo, sería solo media parábola. 

El teorema central que Fermat demuestra en su Isagoge es 
que todas las cónicas, además de la línea recta y el círculo, pueden 
ser expresadas por ecuaciones generales de segundo grado o de 
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primer grado, en el caso de la recta. Ferrnat divide todas las ecua-
ciones posibles de primer o segundo grado en siete casos «canó­
nicos», demostrando que cualquier ecuación de primer o segundo 
grado se puede reducir a uno de esos siete casos, que correspon­
den respectivamente a un círculo, una elipse, una parábola y dos 
tipos de hipérbola y dos tipos de línea recta. Las demostraciones 
de cada uno de los casos son más prolijas de lo que Ferrnat acos­
tumbraba, pero aun así obvian varios pasos que le parecían evi­
dentes, por provenir de obras clásicas tales como los Data de 
Euclides, el tratado de Cónicas de Apolonio o las propias obras 
de Vieta. 

Al igual que Vieta, Ferrnat omite invariablemente la prueba 
sintética, la ruta que nos llevaría desde el lugar geométrico hasta 
su ecuación correspondiente, considerándola trivial y utilizando 
solo el método analítico para ir desde la ecuación hasta el lugar 
geométrico. Pero está claro en todo momento que Ferrnat piensa 
-como en efecto ocurre- que sus teoremas son bidireccionales, 
es decir, que también se da que para todo lugar geométrico hay una 
ecuación. Finalmente, en sus pruebas Ferrnat utilizó, sin destacar­
las demasiado, una serie de transformaciones típicas de la geome-

SOLUCIONES GRÁFICAS A ECUACIONES DE GRADO SUPERIOR 

En un apéndice que circuló poco tiempo después de su Isagoge, Fermat di­
señó un método general para convertir una ecuación cúbica o cuártica en un 
sistema de ecuaciones de segundo grado. Se trata de buscar un punto de 
intersección entre dos curvas. Así, la ecuación determinada x3 +bx2 =bc, me­
diante la introducción de una nueva variable y, se convierte en dos ecuaciones 
indeterminadas: x2 +bx=by, c=xy. Claramente, se trata de la intersección en­
tre una parábola y una hipérbola. Por desgracia, el mismo espíritu geométrico 
del método impidió a Fermat buscar más de una raíz (una intersección), dado 
que, influido por los griegos, le bastaba una sola raíz positiva. El tolosano 
utilizó estos resultados para atacar la clasificación de curvas de Descartes, en 
una polémica que hoy en día se antoja estéril, ya que dichas clasificaciones se 
han vuelto irrelevantes. 
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tria analítica, tales como trasladar un círculo para que su centro 
coincida con el origen de coordenadas, rotar una parábola o hacer 
un cambio de variable. Fermat ya sabía que podía llevar a cabo 
estas transformaciones sin que su resultado perdiera generalidad. 

Habiendo establecido una geometiia analítica plana, Fermat 
se lanzó a continuación a tratar de extender sus resultados a tres 
dimensiones. Sin embargo, sus he1Tamientas matemáticas fallaron 
en este intento. La falta de un sistema de coordenadas demostró 
ser fatal; la visualización de los resultados geométricos en tres 
dimensiones sin sus correspondientes coordenadas es demasiado 
difícil, y Fermat no logró nunca la tan deseada extensión. 

Descartes fue el primero en filosofar sobre el álgebra como 
una especie de proceso mental que clarificara el pensamiento, 
pero está claro que Fermat, menos inclinado a la filosofía, era un 
firme adherente a ese programa. Entre los dos lograron establecer 
una forma nueva de pensamiento matemático que continúa hasta 
nuestros días. Seguramente Fermat no lo sabía, pero él seria uno 
de los últimos matemáticos en interesarse de forma tan profunda 
por los clásicos. Queriendo restaurar la tradición clásica a través 
del rescate de sus obras más emblemáticas, en realidad la estaba 
enterrando. Las herramientas que había usado para desentrañar 
los misterios olvidados de Grecia habían inaugurado un mundo 
novedoso, que haria que muchos de los métodos clásicos griegos 
cayeran en la irrelevancia. 
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CAPÍTULO 5 

Contribuciones de Fermat 
al cálculo diferencial e integral 

La geometria analítica seria la base sobre la 
que se asentarian otros resultados revolucionarios, 

y muy particulannente, el cálculo. Fermat cayó en la cuenta 
de que, toda vez que podía usar una ecuación para describir 

por completo una curva, podía utilizar manipulaciones 
algebraicas para razonar sobre las propiedades 
de esa curva. Pero, para llegar a esa conclusión, 

tuvo que seguir un tortuoso camino. 





Ya en Burdeos -donde estableció contacto con el círculo de se­
guidores de Vieta y recibió clases privadas de matemáticas de Jean 
de Beaugrand-, en su juventud, Fermat había dado con un mé­
todo para encontrar valores máximos y mínimos que, como prece­
día a su invención de la geometría analítica, no estaba basado en 
esta. Sin embargo, a lo largo de unos quince años, volvió sobre este 
tema una y otra vez, escribiendo pequeños tratados sobre él y ha­
blando del mismo en su correspondencia. En dichos escritos se 
refleja la transformación del pensamiento de Fermat respecto al 
método. Lo cierto es que, como el jurista tolosano solía hacer, 
prometió en una de sus cartas a Mersenne que, cuando tuviera 
tiempo, escribiría un gran tratado sobre el tema, cosa que nunca 
sucedió. Se trata de otra oportunidad perdida porque, de haberlo 
hecho, no es descabellado pensar que hoy atribuiríamos a Fermat 
la invención del cálculo diferencial. 

Por desgracia, Fermat nos tiene ya acostumbrados a esta 
forma de proceder algo anárquica. Descartes dijo una vez con des­
dén que Fermat era un solucionador de problemas ( a la manera 
cosista), no un gran sistematizador. Tal vez tenía algo de razón. Al 
genio de Toulouse le bastaba comprobar que un método funcio­
naba para asegurarse de su generalidad, y se olvidaba de demos­
trarlo. Su indagación sobre máximos y mínimos no fue una 
excepción. 
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LA CONTROVERSIA CON DESCARTES 

Hacia 1636, circulaba ya en Paris una memoria de Fermat llamada 
Método para determinar máximos y mínimos y tangentes a lí­
neas curvas ( que llamaremos, a partir de ahora, el M ethodus, por 
su nombre en latín). Escrito probablemente en 1629, el Methodus 
consistía en apenas seiscientas palabras. Era un par de recetas, 
de algoritmos. No había ni una indicación de cómo había llegado 
al resultado ni una prueba del mismo. Corno veremos, la falta de 
claridad del Methodus le daria no pocos dolores de cabeza. Tal 
corno estaba escrito, el método resultaba absurdo. Casi de inme­
diato, gracias a la intervención de Descartes, el Methodus desató 
una enorme polémica, y ello llevó a Ferrnat, por primera y prác­
ticamente única vez en su vida, a explayarse en la explicación de 
los fundamentos de su método a lo largo de los años. Hasta cinco 
memorias, incluyendo en ellas una carta a Brfilart, llegó a escribir 
nuestro personaje al respecto. La más in1p01tante de ellas fue la 
Investigación analítica del método de máximos y mínimos ( en 
adelante, Investigación analítica), en la que reúne las dos ver­
tientes de su pensamiento derivando por un lado de Vieta y, por 
otro, de los antiguos: Euclides y Papo. 

En efecto, en Papo encontró un problema en el que se intentaba 
obtener un máximo. Estos problemas nos son fanuliares hoy en día. 
Por ejemplo, encontrar la figura geométrica que englobe el mayor 
volumen con la menor área superficial (la esfera). O bien, como 
problema inverso, determinar si un panal de abeja es una fom1a 
óptin1a de cubrir el plano. Corno puede verse, este tipo de investiga­
ciones tienen mucho que ver con la optinúzación de recursos. En 
todo caso, a Ferrnat le llamó la atención que el máximo que buscaba 
Papo fuera «único y singular». Dadas sus dotes de humanista, Fer­
rnat pudo entender el griego que el propio traductor de Papo al latín, 
Federico Commandino, daba por imposible. Papo hablaba de un 
extremo que era único. A partir de ello, y de sus lecturas de Vieta, 
se planteó cómo manipular la ecuación cuadrática que describía el 
problema de Papo para hacer que la solución fuera única. 

Recordemos que una ecuación cuadrática suele tener dos raí­
ces ( decimos «suele» porque, en tiempos de Fem1at, había raíces 
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LA SINCRISIS DE VIETA 

La sincrisis consiste en combinar ecuaciones similares para obtener expresio­
nes que relacionan sus raíces con sus coeficientes. Por ejemplo, de la ecuación 
bx- x 2 =c, que tiene una raíz x, se puede obtener la ecuación by-Y2 =c, donde 
y es la otra raíz. V ieta igualaba ambas ecuaciones: bx-x2 =by-y2 , de donde 

2 2 x2 
- Y

2 

b(x-y)=x - y <-+b=---=x+y; 
x-y 

y, sustituyendo, c=(x+y)x-x2 =x2 +xy-x2 =xy. De esta forma, tanto b como e 
estaban expresados en términos de x e y. 

que no eran aceptables, desde las u.racionales hasta las complejas, 
pasando por las negativas). El caso es que Vieta había inventado 
un método para expresar los coeficientes de una ecuación en tér­
minos de dos de sus raíces, al que llamó sincrisis. 

Fermat utilizó este método para manipular su ecuación cua­
drática de una forma novedosa. Planteó que existía una raíz x y 
llamó a su otra raíz x + h, donde h, según él mismo aclara, puede 
ser cualquier valor. A continuación seguía un paso decisivo y 
extraño. Fermat «adigualó» la ecuación con valor x con la ecua­
ción con valor x+ h: f(x ) ef(x+ h). Llamó a esta operación «adi­
gualar», usando un término prestado de Diofanto. Sin embargo, 
en realidad, en toda la teoría de ecuaciones de Vieta no existe 
justificación matemática formal para llevar a cabo esta extraña 
operación. 

Por si fuera poco, Fermat se dedicó luego a eliminar varios 
términos que contuvieran h dividiendo por h: 

f(x) f(x+h) 
--9'-'---'----'-

h h 

Finalmente, decretó que h era cero y que, por tanto, las dos 
raíces eran una sola. Esa es la forma de asegurar la unicidad, fi-
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EL MÉTODO DE MÁXIMOS Y MÍNIMOS DE FERMAT 

Ilustremos el método con un ejemplo: dividir el segmento AB en un punto E, 
de forma que AE. EB sea un máximo. 

A E 8 

Sea AB=b. 

1. Entonces, si AE - a, EB - b-a. 

2. Por tanto, el producto del que se debe encontrar un máximo es ab-a2
• 

3. Cambiemos ahora la incógnita origina l a por a+ e, que es la otra raíz. Por 
tanto, el segmento AB es ahora a+e y el segmento EB es b-a-e, con lo 
que el producto de ambos es ab-a2 +be-2ae-e2 . 

4. Se adigualan (2) y (3), de modo que: ab-a2 + be-2ae-e2 ,. ab-a2• Se sim­
plifica: be- 2ae-e2 a 0 .. bea2ae + e2. Esta operación es similar a la sincrisis, 
adigualando en vez de igualando. 

5. Se divide hasta que en uno de los miembros no aparezca ninguna e: 
ba2a+e. 

6. Se hace que e sea cero: b = 2a. 

b 
7. Por tanto, a=-. 

2 

Se trata, evidentemente, del punto medio del segmento. 

jando una raíz y haciendo que la otra se iguale a ella. Pero, en 
efecto, lo que al parecer hizo Fermat, en medio del proceso, fue 
dividir por cero sin ninguna justificación teórica. 

Esto se parece mucho a lo que se hace hoy en día al calcular 
la derivada, cuya definición no fue dada hasta el siglo XIX por Cau­
chy, e igualándola a cero, que es la forma corno encontrarnos 
máximos y mínimos. Dicha similitud ha llevado a varios matemá­
ticos -Lagrange, Pierre-Sirnon Laplace, Charles Fourier- e his-
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toriadores de la ciencia a decir que Fermat inventó el cálculo 
diferencial. Desgraciadamente, no fue así. 

Es cierto que Fermat se estaba aproximando a los métodos 
del cálculo diferencial moderno. Esa h, en el pensamiento de 
Gottfried Leibniz e Isaac Newton, es una cantidad infinitesimal, 
algo que, dicho de la forma más vulgar posible, no es cero, pero se 
puede considerar en ciertas circunstancias como cero. Solo 
cuando Cauchy logró formalizar el concepto de límite, estas ideas 
tuvieron una expresión matemática rigurosa. 

Fermat no hacía esta distinción entre cantidades finitas e in­
finitesimales, al menos no en sus trabajos sobre máximos y míni­
mos y tangentes, que ocuparon una parte relativamente temprana 
de su vida matemática. Dicha distinción es fundamental. Fermat 
consideraba que h, la distancia a la raíz original, era totalmente 
arbitraria, tan grande o pequeña como se quiera. A todas luces, 
este es un pensamiento muy distinto al de los infinitesimales, que 
deben ser arbitrariamente pequeños. De hecho, Fermat nunca 
consideró que sus máximos y mínimos pudieran ser locales, no 
globales. Un máximo local solo puede encontrarse usando méto­
dos infinitesimales. De todas formas, es de justicia apuntar que el 
método de Fermat llegaba incluso a discernir si una solución era 
un máximo o un mínimo, siguiendo lo que en_ la actualidad se co-
noce como «el criterio de la segunda derivada». · 

La reconstrucción anterior del pensamiento de Fermat está 
basada en la Investigación analítica. Es bastante seguro que el 
tolosano empezó con el problema mencionado de Papo, y los his­
toriadores han logrado reconstruir, a partir de sus múltiples memo­
rias, su razonan1iento. De todas formas, como era su costumbre 
inveterada, incluso cuando formuló los pasos de una demostra­
ción, corno hizo en la Investigación analítica, Fermat se quedaba 
corto en sus explicaciones. Obviaba pasos, confiaba en que el lec­
tor llenara los huecos. Y el lector tenía que ser un experto que su­
piera de memoria que tal paso se justificaba por un teorema de 
Apolonio o tal otro por un teorema de Papo, o un tercero porque 
Vietalo había demostrado. Peor aún, en elMetlwdus original, como 
hemos dicho, no había ni estos esbozos de prueba de la Investiga­
ción analítica, ni la menor justificación de las extrañas manipula-
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ciones que emprendía nuestro personaje: Fermat se limitaba a dar 
el algoritmo. Evidentemente, una receta sin la menor explicación 
y con divisiones por cero chocó a sus contemporáneos, que, si eran 
amigos de Fermat, le pidieron explicaciones, y si no lo eran, le 
atacaron sin misericordia. Además, el Methodus se limitaba a resol­
ver dos problemas ya resueltos, uno de Euclides y otro en el que 
encontraba tangentes a parábolas. El método, al menos en aparien­
cia, no tenía nada de novedoso y sí mucho de problemático. 

En el propio Methodus Fermat había formulado una forma de 
encontrar una tangente a cualquier curva dada. Con orgullo, decía 
que ese método era totalmente general y funcionaba siempre pero 
no justificaba su aserto, algo que a estas alturas no sorprenderá a 
nadie. El método para encontrar tangentes se derivaba natural­
mente de su método de máximos y mínimos. En efecto, Fermat 
cayó en la cuenta de que, como las curvas clásicas griegas -cóni­
cas, círculos y líneas rectas- estaban definidas en términos de 
proporciones, resolver el problema de la tangente era equivalente 
a encontrar el mínimo de una cierta razón entre dos cantidades. 
Su método de máximos y mínimos servía por igual para maximizar 
o minimizar una cierta cantidad o una razón. Por tanto, encontrar 
una tangente era una aplicación natural. 

Veamos con detalle el método de Fermat. Sea la parábola 
mostrada en la figura. Buscamos la tangente al punto B, la recta 

E 
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BE. Fermat consideraba el punto O arbitrario, exterior a la pará­
bola. Aquí se ve claramente que Fermat estaba lejos aún del con- . 
cepto de infinitésimo; en el cálculo infinitesimal, el punto O de­
bería estar arbitrariamente cerca del punto B. Acto seguido, 
consideró la propiedad de la parábola, definida por Apolonio en 
forma de proporción: 

BC2 I ZI2 = ci5 I DI. Como 01 > zl, ci5 I DI> BC2 I 012
• 

Por semejanza de los triángulos BCE y OIE se tiene que 

BCI 01 = CE I JE, por lo que ci5 I DI> CE2 
/ IE 2

• 

Sean ci5 = d , el = e y CE = a . Este último segmento es la 
subtangente. Entonces, 

d a2 
-->---
d-e (a - e)2 

y d(a-e)2 >a2 (d-e), de donde da2-2dae+de2 >da2-a2e. 
Seguidamente se adigualan ambos miembros de la desigual­

dad: da2-2dae+de2ada2-a2e, y eliminando y transponiendo tér­
minos: de2 + a2ea 2dae. Dividiendo por e: de+ a2a 2da. Finalmente, 
Fermat ignoró el término que contiene e: a2 = 2da, por lo que a= 2d. 
De esta forma se halla el punto E, determinando la subtangente a 
la parábola (CE) . 

ElMethodus se escribió antes de que Fermat inventara la geo­
metría analítica. Su única visión de las curvas clásicas seguía 
siendo la de Apolonio. Es por ello que Fermat seguía empleando 
las definiciones geométricas del griego en vez de su posterior vi­
sión algebraica. Pero en la Investigación analítica esto había 
cambiado, y Fermat ya era capaz de utilizar el gran poder de sus 
ecuaciones algebraicas para atacar tanto el problema de máximos 
y mínimos como el de tangentes. De hecho, cada vez había menos 
diagramas en sus escritos. Le bastaba con la ecuación, que definía 
totalmente una curva, para analizar a fondo sus propiedades. Me­
diante dicha ecuación sería capaz de buscar máximos y mínimos, 
por un lado, y tangentes por otro. El método algebraico revelaba 
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LAS TANGENTES A LAS CURVAS MECÁNICAS 

En su Geometría, Descartes había hecho una distinción entre curvas geomé­
tricas y mecánicas. Las primeras tenían expresión en ecuaciones algebraicas, 
es decir, polinomios. En cambio, las curvas mecánicas no tenían tal expre­
sión; su defin ición se daba a partir del movimiento de un punto de acuerdo 
con c iertas reglas. Descartes creyó imposible analizar las curvas mecánicas 
en su Geometría . En cambio, Fermat, en una memoria de 1640 sin título 
abordó tres curvas geométricas, la cisoide, la conco ide y el folio de Descar­
tes, pero también una curva mecánica: la cicloide, la «Helena de las curvas», 
as í llamada por la atracción que ejercía. En efecto, la cic loide es la respues­
ta a una aparente paradoja de Aristóteles sobre la distancia que recorren 
dos puntos ubicados en dos círcu los concéntricos que ruedan sobre una 
linea. Conceptualmente, la c icloide corresponde al movimiento de un punto 
en una rueda conforme 
esta se desplaza. Al 
analizar este prob lema, 
Fermat se v io ob ligado, 
«con e l propósito de 
ev itar irracionalidades», 
según sus pa labras, a 
adigualar el segmento 
RB de la tangente con 
el segmento RN de la 
curva . Comenzaba ya a 
pensar en términos de 
segmentos arbi traria­
mente pequeños. H 

A 

F G 

de nuevo su gran poder. Todavía llegaría más lejos en años poste­
riores, prácticamente llegando al concepto de una distancia arbi­
trariamente pequeña en su tratamiento de la tangente a la cicloide, 
es decir, quedándose en el borde mismo del cálculo diferencial. 

Pero Fermat se dio cuenta a medias del gran poder de sus 
herramientas. Obsesionado, como todos sus contemporáneos y 
como su maestro Vieta, en restituir la gran obra de los griegos, no 
reparó en que su pensamiento había derivado por otros derrote­
ros, que había inaugurado una nueva forma de hacer matemáticas. 
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Atrapado por el pasado, no logrará entender cabalmente la impor­
tancia de sus logros. 

Recordemos, en efecto, que la derivada de un punto dado 
sobre una curva se define como la pendiente de la tangente en ese 
punto. Fermat no lo veía . .. porque en realidad no se le ocurrió 
tratar la pendiente como una ecuación. De hecho, no calculó pen­
dientes. Calculó subtangentes, es decir, la proyección de la tan­
gente sobre el eje de las abscisas, concluyendo con razón que una 
vez calculada dicha proyección, dibujar la tangente era trivial. Se­
guramente, es por esa razón que nunca apreció que la pendiente 
se puede expresar también como una curva definida por una ecua­
ción. Fermat era incapaz de ver que existía una relación entre dos 
ecuaciones en dos variables, en la que la derivación es una fom1a 
de convertir una en otra. Sea como sea, tenemos que volver a la 
fecha en que el Methodus comienza a circular: la geometría analí­
tica y las justificaciones de la Investigación analítica estaban en 
el futuro. En el Methodus solo hay recetas. Entender y creer a 
Fem1at requería buena voluntad, y por las fechas en que circulaba 
el Methodus había un hombre muy malhumorado con Pierre de 
Fermat, y muy poco dispuesto a ofrecerle esa buena voluntad. Ese 
hombre era nada más y nada menos que Descartes. 

Descartes ignoraba la existencia de Fermat. En 1637, cuando 
apenas comenzaba la correspondencia de Fermat con París, 
había dado los toques finales a su célebre Discurso del método, 
que incluía como apéndices tres ensayos en los que intentaba 
ilustrar la potencia de su filosofía. Uno de ellos era la Dióptrica; 
otro, la Geometría, en la que por primera vez Descartes exponía 
su visión de la teoría de ecuaciones y la geometría analítica. Es­
taba seguro de que nadie había hecho nada igual. Envanecido, 
pensaba que había refundado la filosofía formulando las reglas 
del pensamiento correcto, e ilustrando cómo se aplicaban a la 
matemática y la física. 

Para entonces, Descartes ya había entrado en polémica con 
algunos matemáticos. La suerte quiso que dichos matemáticos fue­
ran Roberval y el maestro de Fermat, Beaugrand, precisamente los 
amigos con los que Fermat contaba en esa época, cuando comen­
zaba a ser conocido en los círculos de París. Descartes había criti-
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cado duramente la Geostática de Beaugrand. A su vez, Beaugrand 
había acusado a Descartes de haber plagiado la teoría de ecuacio­
nes de Vieta, su maestro. Según parece, Beaugrand había utilizado 
además su puesto de secretario del rey, que daba las autorizacio­
nes de impresión, para escamotear una copia de la Dióptrica de 
Descartes, que terminó en manos de Fermat antes de su publica­
ción, con lo que Mersenne se ganó la furia de Descartes. 

Mersenne, preocupado, pidió a Fermat que no comentara el 
tratado en público, sino que dirigiera toda la correspondencia a 
través de él. Ignorando todo lo que había pasado, Fermat inter­
pretó esto como una petición de comentarios, así que, inocente­
mente, envió una carta en la que decía que la Dióptrica le parecía 
el intento de un investigador de indagar, a tontas y a locas, en la 
oscuridad, y que sus resultados eran el fruto de un argumento 
circular: el autor habría tomado, de todas las opciones, solo la que 
le permitía llegar a su conclusión, con lo que dicha conclusión 
estaba contenida en las premisas. El caso es que, increíblemente, 
Mersenne envió la carta de Fermat a Descartes, después de una 
vacilación inicial. Más o menos al mismo tiempo, Descartes había 
recibido una copia del primer tratado de Fermat, su reconstruc­
ción de los lugares geométricos planos de Apolonio. Siendo un 
trabajo de juventud, Descartes lo desdeñó. Fermat, concluyó, ob­
viamente no estaba a su altura intelectual. 

Descartes pensó que Fermat no había entendido su Dióptrica, 
así que le recomendó, a través de l\'1ersenne, que la leyera bien, 
añadiendo que si estudiaba también su Geometría podía llegar a 
ser un aventajado alumno. Resulta evidente que Descartes había 
subestimado a su oponente. Poco después recibiría copias del Me­
thodus y la Isagoge enviadas por Fermat, que tal vez había sentido 
su orgullo herido y quería demostrar su valía. Seguramente, en ese 
momento Descartes cayó en la cuenta de su error: Fermat no era 
alguien a quien se pudiera despreciar, era un matemático de pri­
mera fila. De hecho, ¡había descubierto también la geometría ana­
lítica, de la que tan orgulloso estaba el propio Descartes! 

En vez de reconocer el talento de su adversario, Descartes 
pensó paranoicamente que Fermat era parte de una conspiración, 
en la que también estaban sus odiados Roberval y Beaugrand, 
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para destruir la obra de su vida, su joya, el Discurso del método y 
sus aplicaciones. En efectó, en una carta a Mersenne en enero de 
1638, Descartes se quejaba de que se intentaba ahogar a su hijo 
intelectual en la propia cuna. Y aunque no lo dijera explícitamente, 
es muy posible que también pensara que, a través de las indiscre­
ciones de Beaugrand y Mersenne, Fermat había plagiado su geo­
metría analítica. A continuación se exponen algunos fragmentos 
de las respuestas de Descartes a Mersenne: 

Mayo de 1637 
[ ... ] me habéis enviado una proposición de un matemático, un con­
sejero de Toulouse, muy bella y que mucho me ha agradado. Porque 
en la medida en que es fácilmente soluble por lo que he escrito en 
mi Geometría, [ ... ] espero que este consejero, si es un hombre abier­
to y honesto, será una de las personas que sacarán mayor partido de 
mi trabajo [ . .. ] 

18 de enero de 1638 
[ .. . ] no quiero siquiera nombrarle, a fin de que no se sienta tan aver­
gonzado por los errores que le he encontrado, y porque mi intención 
no es insultar a nadie, sino solamente defendem1e. Y como siento 
que él no perderá ocasión de envanecerse a mi costa en muchos 
escritos, creo que es apropiado que mucha gente vea mi defensa. [ ... ] 
Y si a pesar de ello él os dice que quiere enviarme otros escritos, os 
ruego que le pidáis que los reflexione de mejor manera que los pre­
cedentes; si no fuera así, os ruego que no me los enviéis. 

Sea como sea, Descartes encontró el punto débil de su adver­
sario: no era la geometría analítica, era el Methodus. En efecto, en 
su falta de método, en su ausencia de justificación o demostra­
ción, Descartes encontró una forma ideal de atacar a Fermat. Sus 
objeciones eran de dos tipos. En primer lugar, de forma ponzo­
ñosa, devolvería a Fermat el cumplido de «a tontas y a locas». 
Según Descartes, la obra de Fermat no ofrecía ningún resultado 
original. Había llegado a sus conclusiones, conocidas previa­
mente, por casualidad y sin esforzarse. A tatons («a tientas»), la 
misma expresión que Fermat había empleado con él. Fermat había 
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demostrado cómo obtener la tangente a una parábola. Según Des­
cartes, sin embargo, el método era el mismo para cualquier otra 
curva sin cambiar nada, lo cual era claramente absurdo dado que 
la tangente a una parábola no es igual a la tangente a una elipse. 
En segundo lugar, desmentía que el método de tangentes se deri­
vara del método de máximos y mínimos. 

Como hemos visto, la respuesta de Descartes - siempre a tra­
vés de Mersenne- fue devastadora en su tono, en el que desdeña 
abiertamente al tolosano sin mencionar siquiera su nombre, di­
ciendo que, si Fermat no reconsideraba, él no se <lignaria a leer los 
otros resultados de Fermat que este había prometido enviar. Al 
mismo tiempo, daba muestras de su paranoia, acusando a Fermat 
de haberle atacado sistemáticamente, cuando este solo había arre­
metido una vez contra su Dióptrica. 

«[Preferiría] no decir nada sobre el artículo que me habéis 
enviado [ el Methodus], porque no hay nada que se pueda 
decir que aproveche a quien lo escribió[ ... ].» 

- DESCARTES EN UNA CARTA ENVIADA A M .ERSENNE EL 18 DE ENERO DE 1638, 
EN REFERENCIA AL METHODUS DE FERMAT. 
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Mersenne, en esta polémica, tuvo el raro talento de empeorar 
las cosas. En vez de enviar la respuesta de Descartes directamente 
a Fermat, la turnó a su vez a los enemigos parisinos de Descartes, 
Étienne Pascal y Roberval, que, ni tardos ni perezosos, entraron 
en la polémica como elefante en cacharrería, a menudo malinter­
pretando el trabajo de su defendido. Esto confirmó los peores te­
mores de Descartes: había una conspiración en su contra, y 
Fermat no era más que un peón en manos de los parisinos. 

De todas formas, Descartes se había pasado de listo. Si bien 
su segunda crítica, que el método de tangentes no se derivaba del 
de máximos y mínimos, es entendible dada la oscuridad del Me­
thodus, su primera objeción era absurda. Descartes afirmaba que 
el método de Fermat daba la misma tangente para toda curva co­
nocida, pero faltaba a la verdad, porque cambiar la palabra «pará­
bola» por «elipse» requeriría no solo esa sustitución, sino también 
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cambiar la definición matemática de la parábola por la de elipse, 
y si esto se hiciera, el método de Fermat funcionaría. 

Descartes coronaba su carta con una enorme condescenden­
cia, recomendando de nuevo a Fermat que leyera con cuidado la 
Geometría, en la que, afirmaba, estaba todo lo que Fermat creía 
haber descubierto. Solo a través de su libro, implicaba Descartes, 
se podía llegar a la verdad. Enfrentado a un genio matemático de 
su misma talla, Descartes no pudo asimilarlo: se había convencido 
de que el monopolio de la verdad era suyo. 

Para demostrar su punto, Descartes, convencido de estar de­
batiendo con un peso liviano, lanzó un reto: pidió a Fermat que 
encontrara la tangente a una curva dada, que la posteridad llama­
ría «folio de Descartes». Sin dudarlo, y para asombro de su adver­
sario, Fermat respondió con la solución correcta. En su respuesta, 
Fermat derivaba el resultado de dos formas. La segunda está ba­
sada en las propias ideas de Descartes; utilizando la normal para 
calcular la tangente; de esa manera quería demostrar a su adver­
sario que su método daba los mismos resultados, pero de forma 
más simple. Sin embargo, Fermat nunca logró que su heurística de 
adigualar, que, según aseguraba, provenía de los griegos, fuera 
plenamente aceptada por sus adversarios. Pero, como era típico 
en él, pensaba que, si funcionaba, tenía que ser verdadera. En todo 
caso, por fortuna para los historiadores, la polémica continuó por 
un tiempo, obligando a Fermat, por primera vez, a justificar sus 
resultados con cierto detalle. 

En el fondo, todo era un malentendido. En la Investigación 
analítica ya estaba claro que la objeción de Descartes de que el 
método de tangentes no estaba basado en el de máximos y míni­
mos era falsa. Y, finalmente, un mediador al gusto de Descartes, el 
matemático francés Gérard Desargues (1591-1661), dio una res­
puesta salomónica a la polémica: Descartes tenía razón de haber 
desconfiado porque la presentación de Fermat en el Methodus no 
era suficientemente clara, pero, en el fondo, Fermat tenía razón: 
su método de tangentes era perfectamente universal. Ambos gi­
gantes habían chocado por un problema de egos. O más bien, del 
ego del filósofo, ya que Fermat se comportó, por lo general, de 
forma bastante correcta. Descartes aceptó el veredicto a regaña-
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dientes, e incluso se disculpó ante Fermat por sus insultos, pero 
no perdió oportunidad, en el futuro, de justificarse a sí mismo al 
tiempo que intentaba empañar la reputación de Fermat. Fermat 
continuaría su polémica contra Descartes y sus seguidores veinte 
años después, con su adversario ya fallecido. En escritos posterio­
res es evidente la admiración que tenía por Descartes, que se tras­
luce a pesar de sus críticas. En cierto sentido, aunque nunca 
abandonó a Vieta, Fermat hizo caso a Descartes y adoptó en parte 
la Geometría. Pero las heridas que la polémica causó, la forma 
desdeñosa con la que Descartes le trató y los intentos de este por 
desprestigiarle ante la comunidad matemática de su tiempo nunca 
llegaron a sanar. 

LA CUADRATURA 

En el curso de sus investigaciones sobre tangentes y máximos y 
mínimos, Fermat acercó gradualmente su concepto de una adi­
gualdad arbitraria al concepto, mucho más moderno, de una 
cuasi-igualdad aproximada, incluso arbitrariamente cercana hasta 
el punto de ser prácticamente cero. Pero fue en su método de 
cuadraturas cuando dio el paso final hacia lo infinitesimal, hacia 
las cantidades arbitrariamente pequeñas. Para entonces había de­
jado atrás sus métodos de tangentes y máximos y mínimos, y 
nunca los revisó a la luz de sus nuevas ideas. 

El problema de las cuadraturas se había planteado desde la 
Antigüedad, a partir de las obras de Eudoxo y Arquímedes. En 
general, dicho problema consiste en encontrar el área limitada por 
una cierta curva y una recta (normalmente el eje) o, cuando la 
curva envuelve por completo un punto como en el caso de las 
espirales, el área delimitada por la curva y ese punto. Tal como lo 
hacían los antiguos, esta área se expresa construyendo un rectán­
gulo cuya área sea igual al área buscada, es decir, encontrando el 
producto de dos números racionales a y b que conforman los 
lados del rectángulo. En realidad, en muchos casos se obtenían 
varios rectángulos cuyas áreas, sumadas, daban el área buscada. 
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Muy pronto los griegos se dieron cuenta de que cuadrar cier­
tas curvas era muy difícil. En particular, una de las más elementa­
les: el círculo. Por más esfuerzos que hicieron, los griegos no 
pudieron construir un rectángulo con lados racionales que tuviera 
la misma área. La razón de tales fracasos no se descubrió hasta 
el siglo XIX: el número n:, con el que se expresa necesariamente el 
área del círculo, no puede expresarse ya no digamos de forma 
racional, sino ni siquiera como el resultado de una ecuación alge­
braica. En la actualidad, tales números son llamados trascenden­
tes, y son parte de los números irracionales. 

La dificultad de cuadrar ciertas curvas en términos racionales 
no escapaba a Fermat, pero, como hemos dicho, su geometría 
analítica había dado lugar a un número infinito de curvas. En par­
ticular, curvas de grado superior al cuadrado de las cónicas eran 
de pronto perfectamente tratables como ecuaciones. Así que, en 
vez de obsesionarse por curvas no cuadrables como el círculo, 
Fermat aplicó su método a las curvas de grado superior. La con­
vicción de Fermat de que dichas curvas estaban perfectamente 
determinadas por su ecuación poco a poco le llevó a no preocu­
parse por la representación geométrica. En sus cartas y tratados, 
con cada vez mayor énfasis, olvidaba la gráfica de la curva y se 
concentraba en la manipulación algebraica. Como siempre, Fer­
mat empezó su trabajo a partir de un griego. Esa vez no era Apo­
lonio ni Diofanto, sino Arquímedes. Sus trabajos definitivos sobre 
el tema fueron publicados por su hijo Clément-Samuel, después 
de su muerte, y aunque fueron incomprendidos por personas de 
la talla de Huygens, el autor ya no estaba presente para, como hizo 
con Descartes, aclarar lo que quería decir. 

Volviendo a los tempranos tiempos de su correspondencia 
con Mersenne y Roberval, en 1636, encontramos a un Fermat ocu­
pado con el tratado sobre espirales de _Arquímedes, en el que este 
había determinado la cuadratura de la espiral que lleva su nombre. 
Fermat extendió este método a otras espirales, como la que había 
definido para el problema de Galileo mencionado anteriormente. 
Fermat retó a Roberval a encontrar la cuadratura de la parábola 
sólida, una función cúbica: y 3 = kx, que consideró por primera vez 
y que se parecía mucho a una parábola. Roberval contestó de in-
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....--------------- - mediato. Terúa ya un método si­
milar al de Fermat, basado en un 
teorema de suma de potencias de 
enteros que el tolosano había en­
contrado durante sus investigacio­
nes sobre teoría de números, y en 
el antiguo «método de exhaución», 
inventado por Eudoxo y aplicado 

A C 

Ilustración del 
método de 
exhaución, 

acotando el área 
bajo la curva entre 

un área mayor y 
una menor. 

130 

por Arquímedes. Consiste en aco­
tar el área que buscamos entre dos 

sumas (véase la figura). Una de las sumas es la de los rectángulos 
mayores DEFG -circunscritos- al área real bajo la curva; la otra 
es la de los rectángulos menores HIFG -inscritos- a dicha área. 
Evidentemente, el área real está entre las dos sumas. El método de 
exhaución consistía en proponer un área y demostrar por una doble 
reducción al absurdo que era la única que podía estar entre ambas 
sumas; no podía ser sino el área real. 

El método de Fermat y Roberval fallaba para ciertas curvas, 
como rápidamente se dieron cuenta ambos. Pero Fem1at pareció 
desinteresarse del tema. Sin embargo, en 1658, respondió casi in­
mediatamente a la reciente obra de Wallis sobre cuadraturas ha­
ciendo circular un tratado propio que, claramente, terúa que haber 
estado rumiando durante muchos años. 

En su Tratado de cuadraturas, Fermat demostraba lo lejos 
que había llegado. Su método ahora era aplicable a todas las hipér­
bolas de grado mayor que dos, que se le habían resistido veinte 
años antes. Había cambios radicales. Ahí donde Arquímedes (y los 
métodos tempranos del propio Fermat y de Roberval) buscaban 
sumas finitas, Fermat ahora aceptaba la posibilidad de una suma 
infinita de rectángulos en el eje de las abscisas. Era la única forma 
de analizar el área bajo una hipérbola, ya que la alternativa impli­
caba no un número infinito de rectángulos, sino un número finito 
de rectángulos, uno de los cuales terúa área infinita. Un rectángulo 
de área infinita sumado a otros rectángulos da un área infinita. En 
cambio, un infinito de rectángulos puede, en ciertas condiciones, 
dar un área finita. Pero además, el método de Fermat se alejaba del 
método de exhaución en el hecho fundamental de que ya no nece-
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sitaba acotar el área entre dos sumas. Le bastaba una sola suma en 
la que se adigualaba el lado superior de cada rectángulo con un 
segmento muy pequeño de la hipérbola. Cuanto más pequeño fuera 
el segmento, más cercana era esa adigualdad, y por tanto, más cer­
cana estaba el área bajo el segmento de curva al área del rectán­
gulo correspondiente. La diferencia es sutilisima, pero fundamental. 

Tan sutil que Ferrriat no se dio cuenta de lo importante que 
era el cambio. Su concepto de adigualdad había cambiado: ya no 
se trataba de adigualar cantidades finitas cualesquiera. Fermat 
había encontrado los infinitésimos. Sin embargo, estaba seguro 
de continuar la tradición de Arquímedes. No entendió .que el salto 
conceptual que había dado era tan grande que sus admirados 
maestros griegos no podían ya seguirle al terreno inexplorado 
que estaba abriendo. De nuevo, sin darse cuenta enterraba la tra­
dición que tanto respetaba. En efecto, la cuadratura de curvas es 
la operación que hoy en día llamamos integración, aunque, como 
en el caso de las tangentes, Fermat no supo ver que el área bajo 
una curva era también un~ ecuación. 

LA RECTIFICACIÓN 

Si cuadrar significa encontrar un área rectangular igual a otra 
determinada por una curva, rectificar significa encontrar una 
línea recta igual en longitud a la de una línea curva. Una vez más, 
el problema se remonta a los griegos. 

Aristóteles había dictaminado que era imposible encontrar 
una línea recta igual en longitud a una línea curva. Su autoridad 
era tan grande que, en el siglo XVII, la mayoría de los matemáticos 
estaba de acuerdo, a pesar de que ya se habían logrado algunas 
rectificaciones, en particular por Arquímedes. Siguiendo a dicho 
maestro, Fermat estaba convencido de la posibilidad de recti­
ficar curvas. Su trabajo al respecto es la única instancia de un 
tratado de Fermat que fue publicado de forma impresa en vida 
del autor, como un apéndice de la obra de un amigo, el jesuita 
tolosano Antoine de Lalouvere (1600-1664), en el tardío año de 
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1660. Sin embargo, se publicó de 
8 forma anónima. Su autor sola­

mente se identificaba por unas 
iniciales que no se correspondían 
con las de Fermat. Los seguidores 
de Descartes, emulando al maes­
tro, estaban convencidos de que 
Aristóteles tenía razón. Fermat, 

e 
en su tratado, había decidido de­
mostrar que los cartesianos se 
equivocaban. 

En el Tratado de rectifica-
ción, de forma clarísima, Fermat adiguala un segmento de tan­
gente dado DE con el arco que subtiende dicho segmento, FE 
(véase la figura). Para adigualar, obliga a que dicho segmento sea 
arbitrariamente pequeño: estaba usando infinitésimos. Grosso 
modo, Fermat estaba pensando en la curva como si ésta estuviera 
formada por una cantidad enorme de segmentos rectilíneos muy 
pequeños, cada uno de ellos tangente a la curva. La suma de esos 
segmentos infinitesimales daría la longitud de la curva (la rectifi­
cación). 

El siguiente paso era encontrar la suma de estos segmentos, 
y Fermat lo resolvió con lo que hoy llamarían10s un «cambio de 
variable». Fue un golpe de genio: el cambio de variable definiría 
una parábola ordinaria -de grado dos- cuya cuadratura es igual 
al valor de la suma que estamos buscando. En otras palabras, Fer­
mat convirtió el problema de rectificación en un problema de cua­
dratura ya conocido y resuelto por él mismo. No contento con 
ello, definió una familia infinita de curvas basadas en una parábola 
generalizada y demostró que si esta es rectificable, todas las 
demás lo son. Lo hizo demostrando que siempre podría construir 
la parábola ordinaria asociada que acabamos de mencionar. De 
esta forma, su victoria sobre los cartesianos fue total. No solo 
había logrado rectificar una curva; había demostrado que el nú­
mero de curvas rectificables es infinito. 

Pero precisamente ese paso de reducir la rectificación a una 
cuadratura fue lo que volvió a impedir a Fermat ver que el resul-

CONTRIBUCIONES DE FERMAT AL CÁLCULO DIFERENCIAL E INTEGRAL 



LA METODOLOGÍA DE LOS DOS TRATADOS TARDÍOS DE FERMAT 

El Tratado de cuadraturas emplea buena parte de los descubrimientos ante­
riores de Fermat, desde su método de máximos y mínimos, que permite divi­
dir las curvas en segmentos que crecen o decrecen monotónicamente, la 
geometría analítica, a través de rotaciones y traslaciones de eje que le permi ­
ten manipular esos segmentos) , y, por supuesto, la noc ión de adigualdad. 
Como era de esperar, es un tratado analítico. En cambio, el Tratado de recti­
ficación es, metodológicamente, muy d istinto a todo lo que Fermat había 
escrito hasta el momento. En efecto, el tolosano se alejaba de su método 
expositivo analítico y adoptó el método sintético griego, el de los clásicos 
como Euclides. Su razonamiento analítico, que era su forma normal de discu­
rrir, estaba por tanto escondido. Por qué lo hizo es un misterio, pero tal vez 
tenga que ver con el peso de la tradición. La laboriosidad que implicaba es­
cribir semejante obra, similar a la de Newton en los Principia, a su vez podría 
explicar por qué no utilizó este enfoque en ningún otro sitio. 

tacto de su rectificación era otra ecuación. No se dio cuenta de que 
estaba casi tocando los principios fundamentales del cálculo. 
Había logrado pensar en infinitesimales, un paso esencial en el 
descubrimiento del cálculo, pero esto no solo no le llevó a revisar 
su trabajo sobre tangentes y máximos, sino que tampoco supo 
interpretar sus resultados como ecuaciones: pensaba en subtan­
gentes y áreas. 

Años después -y en parte gracias a los trabajos de Fermat­
Leibniz y Newton darían independientemente con las ideas cen­
trales del cálculo: el uso de infinitésimos. Pero, sobre todo, con la 
idea fundamental de que la operación de calcular la pendiente de 
la tangente a una curva A da como resultado una ecuación B, y 
que la operación de encontrar la cuadratura de la curva E da como 
resultado la ecuación A. En otras palabras, que encontrar pen­
dientes y cuadraturas, derivar e integrar, son operaciones comple­
mentarias como la suma y la resta. Este es el teorema fundamental 
del cálculo. 

¿Cómo es posible que Fermat no se diera cuenta de que tenía 
al alcance de la mano el descubrimiento de dicho teorema? Es 
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desesperante. Como el caballero Perceval, Fermat contemplaba el 
Santo Grial, sin lograr reconocerlo, lo cual le impidió reclamar el 
triunfo de haberlo hallado. En todo caso, la gran síntesis que Leib­
niz y Newton lograron es un ejemplo más de esos grandes puentes 
entre problemas aparentemente disímbolos que, como hemos vis­
to, lograron el propio Fermat y Descartes con la geometría analí­
tica y Taniyama, Shimura y Wiles con la cor\jetura que lleva el 
nombre de los dos primeros. 

Y con este Moisés que vislumbra la tierra prometida pero no 
llega a ella, casi hemos terminado nuestra historia. Falta el canto 
del cisne, que es tan revolucionario como el resto de sus aporta­
ciones. 

134 CONTRIBUCIONES DE FERMAT AL CÁLCULO DIFERENCIAL E INTEGRAL 



CAPÍTULO 6 

La probabilidad 
y el principio de Fermat 

Las contribuciones de Fermat 'a la matemática 
no se agotan en las dos grandes vertientes que hemos 

tratado hasta ahora, la teoría de números por un lado, y la 
geometría analítica y el cálculo por otro. Junto con Pascal, 
se le acredita haber inventado la teoría de la probabilidad, 

y en sus últimos años se dedicó a revivir su polémica 
con Descartes sobre óptica. 





Hablar de «leyes del azar» es, a primera vista, un despropósito. 
¿Cómo el azar, algo que, por definición, no es predecible, puede 
tener leyes? Si, en pleno siglo xxr, este concepto nos parece asom­
broso, en tiempos de Fermat era inconcebible. Pero dichas leyes 
existen, y Fermat tuvo un papel fundamental en desarrollarlas a 
instancias de Blaise Pascal. 

Como era costumbre, todo comenzó con un problema. Blaise 
Pascal, cuyo padre había sido uno de los corresponsales parisinos 
de Fermat, un íntimo del círculo de Mersenne, se dirigió a Fermat 
en 1654, recordándole su amistad con su fallecido padre, para 
plantearle una cuestión. Para entonces, Fermat había guardado 
años de silencio epistolar. A pesar de que volvió en la década de 
1650 con brío renovado, y parece muy claro que no podría haberlo 
hecho sin haber estado trabajando en privado durante buena parte 
de ese tiempo, la muerte de Beaugrand, Descartes, Étienne Pascal 
y, sobre todo, Mersenne, sus ocupaciones profesionales, además 
de la peste y el agitado clin1a político de la Fronda, mantuvieron a 
Fermat en un profundo aislamiento que la carta de Pascal vino 
a romper. 

Pascal había trabado conocimiento con un tal Antaine Gom­
baud, chevalier de Méré, un verdadero tallúr. Había deducido al­
gunas reglas heurísticas para saber cuándo apostar y cuándo no, 
basadas en observaciones empíricas. El caballero le planteó a Pas-
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cal un problema basado en el llamado «juego de puntos», en el que 
un jugador apuesta que podrá obtener un cierto resultado, diga­
mos un seis tirando un dado, en un número N de jugadas; digamos 
en ocho, como en el ejemplo de Gombaud. La cuestión es que se 
apuesta una cierta cantidad y se tira el dado hasta que, o bien han 
transcunido las ocho jugadas sin que salga un seis, lo cual signi­
fica que el apostador pierde, o bien ha salido un seis, en cuyo caso 
el que tira el dado gana. La pregunta que hizo Gombaud a Pascal 
fue la siguiente: ¿Qué ocurre si se interrumpe el juego antes de 
tenninar, digamos, después de tres tiradas? ¿De qué forma sería 

BLAISE PASCAL 

Nacido en Clermont, en el centro de la 
geografía fra ncesa, Blaise Pascal (1623-
1662) fue un genio precoz. A la edad de 
doce años, el joven presentó a su padre, 
Étienne, la prueba de que la suma de los 
ángulos de un triáng ulo cualquiera es 
180 º, uno de los teoremas capita les de 
los Elementos de Euclides, libro que el 
niño desconocía ... Impresionado, Ét ienne 
se hizo cargo personalmente de su for­
mación. A lrededor de la misma edad , 
perfecc ionó la primera máquina calcu la­
dora mecánica conocida, d iseñada para 
ayudar a su padre en los cálcu los fisca­
les, muy similar a las que se usaron hasta 
mediados del siglo xx . Étienne tuvo un 
accidente, y para cuidarlo, Blaise contra­
tó a dos jóvenes que profesaban el jan­
senismo, una corr iente cat ólica muy si-
milar al calvinismo, a la que se oponían vehementemente los jesuitas. Bla ise 
se convirtió al jansenismo, arrojándose a los brazos de una práctica religiosa 
severísima, pero al cabo de un t iempo retomó sus estudios. Blaise Pascal 
desarrol ló importantes trabajos en hidrostática y en el estudio de las cónicas, 
pero su fe continuó siendo su preocupación principal. Su aportación más 
conocida es la re lativa al t r iángulo que lleva su nombre. 
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justo repartir la apuesta? Pascal planteó este problema y algunos 
similares en una carta que no ha sobrevivido. Sin embargo, cono­
cemos la respuesta de Fermat. 

Tanto Fermat como Pascal tenían claro que había que calcu­
lar el número de casos posibles por un lado y el número de casos 
favorables a un jugador por el otro ( el resto de casos son favora­
bles al otro jugador). Después, había que dividir el segundo nú­
mero por el primero, lo que hoy conocemos como probabilidad, 
aunque ninguno de ellos usó ese nombre. Finalmente, se multipli­
caría esa probabilidad por el monto de la apuesta. El resultado es 
lo que en la actualidad se llama valor esperado. 

Hay otro principio fundamental que ambos aceptan inmedia­
tamente: los eventos son independientes entre sí. La probabilidad 
de obtener un seis en el quinto intento es independiente de lo que 
haya sucedido hasta ese momento. Esto parece trivial a poco que 
se sepa de teoría de probabilidad, pero recordemos que hay millo­
nes de personas en el mundo que piensan que la lotería de Navi­
dad acabará en cuatro porque «ya toca», porque hace mucho que 
no acaba en ese número. 

Pascal había hallado un valor para el cuarto intento; es decir, 
después de tres intentos fallidos, suponiendo que ambos jugado­
res consideraran la alternativa de parar el juego o tirar un cuarto 
dado, cuál debería ser la fom1ajusta de repartir el bote. Cabe ob­
servar que esto no es el problema original de Gombaud; se limita 
a una sola ti.rada después de los tres fallidos. Pascal encontró que 
si la tirada no se llevaba a cabo, el jugador que lanza el dado debe­
ría recibir 125/1296 de la apuesta original, alrededor del 10%, pro­
ducto de considerar las probabilidades de haber acertado en la 
primera tirada, en la segunda y en la tercera, es decir, en el pa­
sado. De acuerdo con esto, el jugador que lanza el dado tiene de­
recho a alrededor del 10% de la apuesta. 

Pero Fermat decía que no era así: «Si mi oponente me ofrece 
ese 10% para que no tire una vez más, sería un error aceptarlo». La 
probabilidad de obtener un seis en una tirada más es la misma que 
en cualquier otra tirada, 1/6, al.rededor del 17%. Pascal vio su error 
y aceptó la solución de Fermat; el pasado no importa. Lo único 
que importa, para calcular la probabilidad, es el futuro. 
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Pero a continuación Pascal planteó algunas dudas. En primer 
lugar, intentó simplificar el problema reduciéndolo a un juego de 
monedas ( cara o cruz), de fom1a que los momios estuvieran igua­
lados para ambos jugadores. A partir de ello, utilizando un método 
recursivo, cuya álgebra es bastante compleja, propuso la solución 
al problema completo, considerando ya no solo la cuarta tirada, 
sino tan1bién el resto de posibilidades: que el tirador ganara en la 
quinta, sexta, séptima u octava tirada o que perdiera al cabo de 
todas ellas. 

Fem1at respondió que el análisis de Pascal era correcto, pero 
propuso un método mucho más simple. En vez de la complicada 
respuesta algebraica de Pascal, el tolosano realizó simplemente 
un recuento de casos posibles y eligió entre ellos los favorables. 
Sin embargo, con una intuición increíble ( dado que ni él ni Pascal 
hicieron ningún esfuerzo empírico para confirmar sus resultados), 
hizo algo muy curioso: no se detuvo cuando el tirador había ga­
nado, sino que consideró casos en los que este ganaría en las tira­
das quinta a séptima, si la partida seguía. 

Según Fermat, había que considerar todos esos casos para 
computar correctamente la probabilidad. Solo de esta forma se 
podía estar seguro de contar correctamente todos los casos po­
sibles y todos los casos favorables. Acertaba, pero ni Pascal ni 
muchos de los que conocieron su método -en particular Rober­
val- entendieron al principio por qué. ¿Por qué había que conti­
nuar el juego cuando uno de los jugadores ya había ganado? Era 
absurdo considerar esos casos, dado que en un juego real la ac­
ción se detendría en cuanto alguien ganara, de la misma forma que 
se detiene un partido de tenis cuando uno de los jugadores llega a 
tres de cinco mangas ganadas, lo haga en tres o lo haga en cinco. 
Es cierto, comentaba Pascal en su respuesta, que dos jugadores 
pueden seguir jugando después de que uno haya ganado, y que, 
por lógica, el resto de las jugadas no alterará el resultado, pero, 
¿qué ocurriría si fueran tres o más? 

Imaginemos que hay tres jugadores que tienen igual probabi­
lidad de ganar. Si uno de ellos ha ganado, digamos, a la cuarta 
oportunidad, no le conviene seguir el juego, porque otro de los 
jugadores podría empatarle. Esto no ocurre con dos jugadores, 
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EL TRIÁNGULO DE PASCAL 

Au nque Pascal no descubrió el triángulo, si fue el primero en Occidente en 
explorarlo a fondo. Antes que él, varios matemáticos indios, persas, chinos y 
occidentales habían tratado aspectos de esta curiosa estructura. La propiedad 
más elemental del triángulo es que una casilla dada es el resultado de sumar 
las dos casillas encima de ella. De este principio tan sencillo se deriva una 
enorme cantidad de resultados. 

j() 
0,0 

ºªº 0000 

ººººº O Oml:fil!O O 

Por ejemplo, el desarrollo de un binomio elevado a una potencia n-1 tendrá, 
en cada uno de sus términos, los coeficientes correspondientes a la enésima 
fila del triángulo. Así: 

(a+b)º -1 

(a+b)1 = l·a+ l·b 

(a+b)2 = l·a
2 

+2ab+ l· b2 

(a+ b)3 ~ 1 · a3 + 3a2b + 3ab2 + 1 · b 2 

(a+ b)4 = 1 · a4 + 4a3b+ 6a2b2 + 4ab3 + 1· b 3
. 

Otra aplicación inmediata del triángulo es el cálculo de combinaciones. En 
efecto, la casilla k de la fila n corresponde a todas las formas de escoger k 
elementos entre n, sin importar el orden. 

( 
n ) n! 
k = (n-k)!k!. 

Por ejemplo, si tenemos cuatro elementos y queremos escoger dos de ellos 
sin importar el orden, podemos hacerlo de seis formas: 

( 
4 ) 4! 4·3·2 
2 = (4-2)!2! 2T= 6

. 

Esta fórmula es la que Pascal explotó para calcular las probabilidades del 
juego de los puntos. 
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pero puede ocurrir con tres o más. Pascal le preguntó a Fermat: 
«¿ Cómo entonces se puede seguir sosteniendo que hay que consi­
derar todos los casos hasta el total de las ocho jugadas?». ¿No 
estaba Fermat considerando un caso poco realista? 

Pascal no solo planteó la pregunta. Se respondió a sí mismo 
utilizando su tliángulo para calcular todas las combinaciones po­
sibles. La respuesta que obtuvo, según le pareció, no era la co­
rrecta, y ahí creyó encontrar una paradoja en el método de Fermat. 
A esa carta, la más compleja que escribió Pascal, fechada el 24 de 
agosto de 1654, Fermat respondió muy brevemente. 

El error de Pascal era obvio para el magistrado tolosano: 
había olvidado que, aunque se tomaran en cuenta todas las com­
binaciones, porque se asumiera que el juego continuara hasta el 
final, ello solo tendría el efecto de considerar todos los casos po­
sibles. Los casos favorables, por ejemplo, al jugador A, eran solo 
aquellos en los que A ganaba aunque B y C le empataran después. 
Ese empate era irrelevante porque A ya había ganado. Es como si 
un partido de fútbol terminara 2-1 pero los jugadores acordaran, 
para divertirse, seguir jugando un rato más. El resultado oficial, 
independientemente de si el equipo perdedor empata después, se­
guirá siendo 2-1. En otras palabras, hay que tener en cuenta el 

LA APUESTA DE PASCAL 

Es curioso el hecho de que Pascal usara la teoría de la probabilidad en una de 
sus más importantes obras teológicas. El matemático francés fue un impor­
tante pensador católico, influido por el jansenismo. En sus célebres Pensées, 
libro que comenzó a raíz de la muerte de su padre pero que no terminó jamás, 
Pascal plantea la creencia en Dios de forma utilitarista, como una apuesta: si no 
creemos en Él, pero existe en realidad, nos habremos condenado eternamente; 
por tanto, lo racional es creer en Él, porque incluso si no estamos seguros, 
el valor esperado -la salvación eterna- es infinitamente mayor si creemos 
que si no creemos ( la condenación eterna). Este argumento ha sido criticado 
por varios filósofos, pero lo relevante aquí es apreciar cómo el pensamiento 
matemático había permeado la filosofía de Pascal. 
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orden en el que ocurren los casos favorables. Si calculamos los 
casos favorables basándonos en el orden, la paradoja desaparece. 

Pascal aceptó la explicación de Fermat y dio por resuelto el 
problema Ni Pascal ni Fennat volvieron activamente a la teoría de 
la probabilidad. De todas formas, de esta breve correspondencia 
habían surgido ideas seminales importantísimas para el posterior 
desarrollo de la teoría de la probabilidad, que continuó primero 
Christiaan Huygens y, posteriormente, la genial familia Bernoulli. 

La corrección de Fermat sobre el espacio de muestra es poco 
intuitiva, y cuesta mucho entenderla. Veámoslo con un ejemplo. 
Pongamos por caso que una persona dice que tiene dos hijos, de 
los cuales uno es varón. ¿Cuál es la probabilidad de que su otro 
hijo sea varón? La mayor parte de la gente responderá: 509'6. Pero 
esto es incorrecto. Hay cuatro posibilidades en el espacio de 
muestra, que podemos listar de la forma siguiente: VH, W, HV, 
HH. Claramente, la cuarta posibilidad se descarta por la informa­
ción que nos han proporcionado. Pero quedan tres, no dos posibi­
lidades igualmente probables. Por tanto, la probabilidad de que el 
otro hijo sea varón es de 1/3. 

Pascal y Fermat habían planteado la forma de razonar sobre 
el futuro. Este era, si no completamente predecible evento a 
evento, sí predecible en general, cuando eventos similares se re­
piten lo suficiente. Era un cambio asombroso, cuyas aplicaciones 
futuras apenas podían vislumbrar. 

En un memorial dirigido a la Academia de Mersenne, Pascal 
hablaba de sus trabajos matemáticos, tenninando con la corres­
pondencia que había mantenido con Fermat. Ahí aseguraba que 
ambos habían logrado algo paradójico: 

Así, juntando el rigor de las demostraciones de la ciencia con la in­

certidumbre del azar, y conciliando ambas cosas en apariencia con­
trarias, puede, obteniendo su nombre de las dos, atribuirse con razón 
el asombroso título de «geometría del azar». 

Pascal, pues, tenía ya plena conciencia del logro: encontrar 
que el azar se repartía, como norma general, de forma «justa» (son 
sus palabras, algo teológi_cas), y que dicho reparto era matemati-
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zable, porque cuando se refiere a geometría, Pascal en realidad 
quiere decir matemáticas. Por desgracia, al tiempo que la corres­
pondencia entre Pascal y Fermat se desarrollaba, el primero ya 
había enfermado gravemente. En alguna de sus cartas le comentó 
al tolosano que estaba en cama y que, a pesar de haber recibido su 
carta, no había tenido oportunidad de leerla. Blaise Pascal desa­
rrolló, casi seguramente, un cáncer de estómago que terminaría 
con sus días. Enfermo desde los veinte años, presa de atroces 
cefaleas, Pascal se consumía lentamente. 

Seis años después de su breve correspondencia, en 1660, sa­
bedor de que Pascal había ido a su natal Clermont desde París 
para una cura, Fermat le propuso una entrevista personal. El tolo­
sano tan1poco se sentía ya con fuerzas de emprender el viaje, y le 
propuso a Blaise un punto intermedio. Pero Pascal respondió que 
no le era posible. Asimismo, participaba a Fermat que le hubiera 
encantado conocerle personalmente, no por la matemática (la 
geometría, decía él), que no le haría dar ya ni dos pasos, sino por 
el placer de conversar con una persona a la que tanto admiraba. 
Llamando a Fermat «el mayor geómetra de Europa», expresaba al 
mismo tiempo indiferencia por tal oficio, asegurándole que las 
cualidades de su alma eran más valiosas que todo su conocimiento 
matemático. El teólogo había ganado la partida sobre el científico 
en el corazón del enfermo Pascal. 

Sea como fuere, Pascal le comunicó que su propósito era vol­
ver a París de la forma más suave posible: a través de canales. 
Adivinamos que su sufrimiento le hacía imposible siquiera la idea 
de subirse a una diligencia. Pascal murió con treinta y nueve años, 
como el verdadero asceta que fue toda su vida. Su religiosidad le 
convenció de que el sufrimiento era una condición natural del 
hombre, y aceptó su cruz con valor y estoicismo. Vio cómo el jan­
senismo que tanto había defendido era declarado hereje por el 
papa y por tanto suprimido por el rey, escribió una postrera obra 
en defensa de sus ideas, y falleció el 18 de agosto de 1662. Fermat 
se había quedado solo. Estaba Christiaan Huygens, como posible 
discípulo, pero el holandés, aunque reconocía su genio, era inca­
paz de entenderle. El gran genio matemático del siglo XVII no logró 
crear una escuela. 
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LA ÓPTICA Y EL PRINCIPIO DE FERMAT 

Recordemos que la polémica con Descartes comenzó con unas 
observaciones de Fermat sobre la Dióptrica, uno de los apéndices 
del Discurso del método. No hemos abundado en el capítulo ante­
rior en las objeciones de Fermat, debido, entre otras cosas, a que 
fueron muy brevemente debatidas entre los dos. Rápidamente, la 
polémica se centró en los métodos de máximos y mínimos y las 
tangentes. Pero hacia el final de su vida, y con el fallecimiento de 
Descartes ocho años antes, Fermat revivió la polémica en lo que 
fue su última contribución a la ciencia. 

«Me encantaría saber lo que él [Fermat] responderá, 
tanto sobre la carta adjunta a esta, donde respondo a su obra 

sobre máximos y mínimos, como a la precedente, donde repliqué 
a su demostración contra mi Dióptrica. Pues he escrito ambas 

para que él las lea, si me hacéis esa merced.» 
- DESCARTES EN UNA CARTA ENVIADA A MERSENNE EL 18 DE ENERO DE 1638. 

Pierre de Fermat fue, sobre todo, un matemático. Su interés 
por la física, lo que entonces se llamaba «filosofía natural», fue 
muy marginal, limitado a algunos comentarios en defensa de las 
ideas geoestáticas de su amigo Beaugrand y a la famosa polémica 
con Descartes sobre óptica. Fermat no entró en dicha polémica 
por propio pie. Pensó que tanto Mersenne como Beaugrand le pe­
dían un comentario sobre el trabajo de Descartes, e hizo ese co­
mentario con la mejor voluntad, sin darse cuenta de que ello le 
acarrearía la enemistad del filósofo. 

Las objeciones de Fermat en el temprano año de 1637, cuando 
su correspondencia con Mersenne apenas comenzaba, eran fun­
dan1entalmente filosóficas. Fermat era un firme defensor del em­
pirismo que había encontrado en Francis Bacon. 

Según Fermat, la verdad en las ciencias físicas solo podía ser 
encontrada a través de la experimentación, como había hecho Ga­
lileo. Descartes daba un paso atrás, siempre según Fermat: usaba 
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un método racionalista, totalmente aristotélico, para intentar lle­
gar a verdades sobre la naturaleza. 

Había otro elemento que pem1eaba la crítica inicial de Fer­
mat hacia la Dióptrica. Descartes había evitado publicar uno de 
los apéndices de su obra, El tratado del mundo, en el que expli­
caba sus principios físicos, por miedo a la Inquisición. No hacía 
muchos años que Galileo había sido condenado, y Descartes de­
fendía un sistema heliocéntrico, igual que Galileo. Así que Des­
cartes se abstuvo de publicar, privando a la Dióptrica de su 
justificación física y dejándola en un simple tratado matemático. 
Por tanto, Fermat no tenía forma de conocer las ideas físicas de 
Descartes. Tan solo conocía su metodología general racionalista. 
Y los principios matemáticos de la Dióptrica se le antojaron arbi­
trarios, sin ninguna base. 

Veamos a continuación lo que Fermat no conocía. La luz, 
para Descartes, es un impulso que se comunica por colisión 
entre partículas muy sutiles, como bolas de billar (prácticamente 
toda la física cartesiana se basa en colisiones). Como símil Des­
cartes hablaba del bastón de un ciego, que al chocar con algo, 
transmite el impulso de ese choque a la mano del ciego. La luz 
opera con el ojo de forma similar, siendo el bastón la sucesión de 
partículas que colisionan unas con otras. Su transmisión, ade­
más, es instantánea. 

Descartes seguía razonando que el impulso, al ser una 
«fuerza» (la fuerza cartesiana no es la misma que la fuerza newto­
niana con la que estamos familiarizados), podía descomponerse 
vectorialmente. A partir de ello derivaba las leyes de la reflexión, 
que para él era como el choque de una bola de billar contra una 
pared inamovible ( como se puede comprobar, dicho choque tiene 
la misma propiedad que la reflexión: el ángulo de incidencia y el 
de salida son iguales). De forma más polémica, Descartes de1i­
vaba la ley de la refracción -lo que hoy conocemos como ley de 
Snell- de la conjetura de que, al cambiar a un medio más denso, 
era necesario que la luz ejerciera más fuerza para poder transmi­
tirse, contrarrestando la resistencia del medio. 

El modelo de Descartes tenía un problema: en un universo 
de bolas de billar, si cambiar de medio es, por ejemplo, atravesar 
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REFLEXIÓN Y REFRACCIÓN 

La reflexión especular (figura 1) ocurre cuando la luz es total o parcialmente 
reflejada por una superficie reflejante, como un metal o un charco de agua. 
Según sabemos hoy -aunque esto era todavía algo polémico en el siglo xv11-, 
la ley de reflexión de la luz dice que: 

l. El rayo incidente PO, el rayo reflejado 00 y la normal están en el mismo 
plano, por lo que dicho plano es perpendicular a la superficie. 

3. PO y OQ se encuentran en lados opuestos de la normal. 

La refracción (figura 2) ocurre cuando la luz pasa de un medio transparente 
de cierta densidad a uno de densidad distinta. Se evidencia con la familiar 
imagen de la cuchara que parece «doblada» cuando está parcialmente sumer­
gida en agua. La ley de refracción, conocida como ley de Snell, dice que el 
seno del ángulo entre el rayo incidente y la normal es al seno del ángulo entre 
la normal y el refractado como las respectivas velocidades son una a otra, y 
como el inverso de los respectivos índices de refracción uno a otro: 

FIG.1 

Normal 

1 

sen01 ~-':J..= n2 

sen02 v2 n1 

FIG.2 
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una tela muy delgada, el ángulo previsto por la bola que atraviesa 
dicha tela se aleja de la normal, es decir, el ángulo crece. En 
cambio, lo que se observa en óptica es que el ángulo decrece. 
Para explicar esta discrepancia, Descartes imaginó un apaño fí­
sico: una explicación ad hoc, sin ninguna base ya no digamos 
experimental, sino siquiera fundamentada en sus propios princi­
pios físicos. Ahora bien, toda esta explicación solo tiene sentido 
si se conocen los principios de la física cartesiana. La justifica­
ción de la teoría de la luz de Descartes está en su física, no en sus 
matemáticas. 

Fermat no se dio cuenta de que necesitaba entender la física 
cartesiana para comprender la Dióptrica, ni Descartes ni los car­
tesianos advirtieron que Fermat ignoraba la física subyacente. 
Para ellos, Fermat simplemente no la entendía. En cambio, el to­
losano veía injustificadas las derivaciones cartesianas. Otra vez 
estaba inmerso en un diálogo de besugos, como tantos en los que 
participó Fermat durante su vi.da. De todas formas, la física carte­
siana hubiera repugnado a Fermat; y hubiera hecho bien, porque 
Descartes se equivocaba al reducir todo el mundo a colisiones 
entre partículas. 

La polémica en aquella época no duró demasiado. Pero en 
1658, Claude Clerselier contactó a Fermat para consultarle sobre 
la controversia, dado que estaba preparando una edición de las 
cartas de Descartes. Clerselier solo estaba interesado en averi­
guar si existían más de las dos cartas de Fermat que había encon­
trado, pero este le contestó con una larga carta en la que, además 
de las objeciones que había planteado en 1637, añadía otras nue­
vas. Para su asombro, Clerselier vio que Fermat quería reabrir la 
polémica. 

A esas alturas Descartes había muerto, pero el resentimiento 
de Fermat contra el hombre que le había menospreciado y había 
intentado manchar su reputación no había decaído. Es posible 
también que, en ese momento de su vida, amargado por los múlti­
ples fracasos en interesar a sus contemporáneos por la teoría de 
números, Fermat considerara que los ataques de Descartes habían 
contribuido a que no se le hiciera caso. Su carácter, afable al prin­
cipio en medio de las discrepancias, se había agriado. Sea como 
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fuere, Clerselier y otro matemático francés, Jacob Rohault, con­
testaron defendiendo a Descartes. Fermat no se amilanó, volvió a 
la carga, y esta nueva polémica se prolongó durante cuatro años. 
La falta de interés que había mostrado en 1637 por involucrarse en 
cuestiones físicas había desaparecido del todo: estaba listo para 
la batalla. 

Quiso la suerte que Fermat estuviera en continuo contacto, 
por razones profesionales, con Marin Cureau de la Chambre, se­
cretario del canciller del Reino, Séguier, con el que Fermat, en 
tanto portavoz del Parlamento, tenía que despachar asuntos ofi­
ciales. Cureau de la Chan1bre también tenía inquietudes científi­
cas, y acababa de publicar, precisamente en 1657, un libro sobre 
óptica, llamado Luz, dedicado al cardenal Mazarino. Cureau envió 
una copia a Fermat, que lo leyó y respondió manifestando su 
acuerdo con Cureau y su alegría de que el trabajo de este «pondría 
a M. Descartes y todos sus amigos a la defensiva». 

Cureau había planteado un principio físico que ya se conocía 
desde la Antigüedad: «La naturaleza opta siempre por el camino 
más corto». Dicho principio había sido postulado específicamente 
para casos de reflexión por Herón de Alejandría ( ca. 10-70). De 
acuerdo con Herón, Cureau limitaba dicho principio a la reflexión. 
Fermat, en cambio, lo generalizaba a la refracción, añadiendo la 
hipótesis de que la razón entre la resistencia al paso de la luz de 
ambos medios determina el trayecto más corto. Como acostum­
braba a hacer, no demostraba lo que afirmaba. Simplemente lo 
esbozaba. 

Ahora bien, aunque Fermat lo planteó en estos términos, un 
análisis detallado de su razonamiento revela que no estaba calcu­
lando el camino más corto. Estaba calculando, en realidad, el 
tiempo más corto. Fermat había cambiado el principio de Herón: 
no midió distancias, sino tiempos. ¿Por qué, entonces, intentó Fer­
mat enmascarar su razonamiento, basándolo en la autoridad del 
matemático griego? Por un lado, faltó a su convicción empirista. 
El principio de Fermat, que así se llama ahora, era en ese mo­
mento un postulado axiomático más que un resultado empírico. 
Fermat, para luchar contra Descartes, aceptó los términos de este: 
matematización de la naturaleza y renuncia al empirismo, razo-
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nando a partir de postulados, como si la física fuera una rama de 
las matemáticas. 

Pero, de forma más importante, Fermat se acogió a un princi­
pio de autoridad y enmascaró su verdadero método. Está claro 
por qué: tanto Cureau como Descartes pensaban que la luz se pro­
pagaba de forma instantánea, o, dicho de otro modo, que su velo­
cidad era infinita. Pero para hablar del tiempo que tarda la luz en 
atravesar un medio dado es obvio que hay que asumir que la velo­
cidad de la luz es finita. Sin duda, Fermat quería evitar esa polé­
mica, en la que no tenía argumentos sólidos, y prometió enviarle 
a Cureau una demostración de la ley de refracción basada en ese 
principio. Cuatro años después, aún no lo había hecho. Cureau le 
imploró que se diera a la tarea, pero Fermat contestó que no tenía 
tiempo de realizar los complejos cálculos necesarios. Sin em­
bargo, finalmente Fermat accedió y derivó la ley de refracción del 
principio que lleva su nombre, usando su método de máximos y 
mínimos. 

Es asombroso cómo, en Fermat, los temas recurren una y 
otra vez. Por otro lado, es lógico: el principio de Fermat es un 
ejemplo de lo que se conoce en física como principios extrema­
les, que requieren calcular un máximo o un mínimo; en este caso, 
el tiempo mínimo. La formulación de la mecánica o de la óptica en 
términos de dichos principios tiene una importancia capital. En 
mecánica, por ejemplo, dichos principios son más básicos que las 
leyes de Newton, y de una aplicación mucho mayor: el principio 
de mínima acción es válido tanto para la mecánica newtoniana 
como para la relatividad o la mecánica cuántica; lo único que cam­
bia es la definición detallada de lo que hay que minimizar. Fermat, 
por tanto, estaba planteando, una vez más, un formalismo con un 
futuro inmenso. 

En todo caso, el tolosano logró derivar la ley de refracción a 
partir de su principio, que, esta vez sí, era postulado de fom1a 
explícita. Y para su enom1e sorpresa, ¡era la misma ley que había 
derivado Descartes! Claramente, la derivación de Fermat era 
mucho mejor. En primer lugar, se había basado en un principio de 
gran elegancia y simplicidad, que, ahora sabemos, es de aplicación 
universal en óptica sin que sea necesario hacer conjeturas sobre 
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la naturaleza de la luz (solo sobre la finitud de su velocidad). En 
segundo, no requiere hipótesis ad hoc. Se deriva naturalmente del 
principio mismo. 

Fermat estaba feliz. Los crutesianos verían confirmada la ley 
de refracción, que, a su vez, estaba derivada de una forma mucho 
más convincente que la que había usado Descartes. Nuevamente, 
la ingenuidad de nuestro personaje traicionó sus expectativas. Los 
cartesianos estrictos, como Clerselier, no podían transigir, no po­
dían abandonar al maestro. La polémica continuó, ahora centrada 
en la derivación de Fermat. 

Es una ironía que la última carta conocida que Fermat escri­
bió sobre un tema científico, en 1662, fuera para defender su deri­
vación, dado el poco interés que mostró durante toda su carrera 
por la física matemática, la cual, le decía a Mersenne en su pri­
mera carta, ni le interesaba ni se sentía capacitado para ejercerla. 
Sabemos, por su última eruta a Pascal, que ya desde 1660 se sentía 
enfermo y sin las fuerzas necesarias para hacer el trayecto a Cler­
mont. Al año siguiente, hizo gestiones para que su hijo Clément­
Samuel heredara sus cargos. El fin, intuía, estaba cercano. 

A partir de 1662 todo es silencio. Lo poco que se sabe de los 
últimos años de Fermat se deriva de su carrera profesional. En 
1663 el intendente del Languedoc, Bezin de Bésons, escribió a Col­
bert la carta donde analizaba a los consejeros del Parlamento de 
Toulouse, considerando a Fermat un gran erudito políticamente 
inofensivo, e incluso algo torpe en cuestiones profesionales. Ni 
Séguier antes que él ni Colbert tenían nada que temer del ingenuo 
magistrado, el sabio que se recreaba en las certidumbres matemá­
ticas al tiempo que huía de la política. 

Pero el magistrado siguió trabajando. Su sentido del deber 
era excepcional. Como ya se ha dicho, con frecuencia impidió que 
su dedicación a las matemáticas fuera mayor de la que fue. El 9 de 
enero de 1665 dictó su último acto judicial. Apenas tres días des­
pués, Pierre de Femiat murió en Castres, la ciudad con la que tan 
ligada estuvo su carrera profesional, y fue enterrado sin pompa en 
el cementerio local. Su panegírico fue publicado, probablemente 
por Pierre de Carcavi, en el Journal de Savants del 9 de febrero 
de 1665, expresando preocupación de que su desperdigada obra 
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pudiera editarse finalmente en un magnus opus para que el mundo 
conociera la genialidad de Fermat: 

Con gran tlisteza hemos sabido de la muerte de M. de Fermat, con­
sejero del Parlamento de Toulouse. Fue una de las más brillantes 
mentes de este siglo, un genio tan universal y de tal calibre que, si 
los sabios no hubieran sido testigos de su mérito extraordinario, 
apenas podrían10s creer todo lo que de él se ha dicho, y nos queda­
ríamos cortos en sus alabanzas. 

Pero, como hemos dicho, su obra pudo no sobrevivirle. El 
amor de hijo de Clément-Samuel, recopilando pacientemente sus 
obras, como el aduanero de Lao Tse, primero en sus comentarios 
a la Aritmética de Diofanto y luego en una Varia Opera Mathe­
matica, fue el primer paso para preservar sus obras. También 
J acques de Billy y J ohn Wallis, cada uno por su cuenta, publicaron 
elementos de la obra de Fermat. Sin embargo, no era suficiente; 
importantes cartas en manos de Carcavi, que inexplicablemente 
no proporcionó al primogénito, y de muchos otros corresponsa­
les, no fueron publicadas hasta mucho más tarde. Inevitable­
mente, las epístolas de Fermat se desperdigaron conforme morían 
los destinatarios. No fue sino hasta el siglo XIX cuando un biblió­
filo anunció que había comprado buena parte de los manuscritos 
de Fermat en Metz. Los eventos revolucionarios de 1848 hicie­
ron que la colección volviera a perderse. Pero entre 1879 y 1891 
Charles Henry y Paul Tannery emprendieron la titánica tarea de 
recuperar las obras de Fermat a partir de las obras publicadas y 
de colecciones privadas. Gracias a ellos su herencia ha llegado a 
nosotros. 

En cuanto al propio Fermat, diez años después de su muerte, 
fue inhumado en la célebre y bellísima iglesia de los agustinos de 
Toulouse. Ahí descansó, durante más de cien años, una de las 
mentes científicas más privilegiadas de todos los tiempos, hasta 
que sus restos se perdieron durante la Revolución francesa. 
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