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PIERRE DE FERMAT es una figura singular en la historia de I ciencio: abogado
de profesién, dedicd a los matemdticas las horas libres que le dejaban sus importantes
cargos piblicos. Su legado dientifico se conserva en su mayor parte en forma de cartas
intercambiadas con ofras luminarias de la época, como Marin Mersenne, Blaise Pascal
o René Descartes. Tal fue el genio del francés que, a pesar de su naturaleza dilefante,
se le deben aportaciones fundamentales en Gmbitos tan diversos como la teoria de la
probabilidad, el cdlculo y, especialmente, la teoria de nimeros, a la que legd una con-
igfura que llev de cabeza a los mds insignes matemdticos durante mds de fres siglos.
Lo historia de la solucion del que fue conocido como «el Glfimo teorema de Fermat» es
una de los mds bellas de la historia de la ciencia.
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Introduccion

Cualquier estudiante que haya cursado matemdticas superiores
durante los tres tltimos siglos ha oido hablar del dltimo teorema
de Fermat. Pierre de Fermat era un matemaético curioso. Nunca
publicé un libro con su nombre. Todo lo més, escribié sus ideas en
cartas o bien las circulé en manuscritos. Al parecer, le bastaba
convencerse a si mismo de que habia demostrado un resultado
para darlo por bueno, sin molestarse en escribir detalladamente la
prueba. De ahi que su herencia representara un gran reto para los
matematicos que lo sucedieron, pues tenian que probar casi todo
lo que Fermat habia proclamado que era verdad. Y poco a poco lo
hicieron —alguna vez lo refutaron— salvo en el caso de un ende-
moniado problema que nadie sabia demostrar... ni tampoco refu-
tar. Se trataba del Gltimo, una anotacién casual que el autor dejé
en un margen de una edicién de un libro de Diofanto de Alejandria.
Contra él se estrellaron algunas de las mentes mas esclarecidas
que ha dado la matematica, empezando por el suizo Leonhard
Euler, el matematico mas prolifico de todos los tiempos.

Todos esos estudiantes escucharon alguna vez de boca de sus
profesores que dicho teorema nunca habia sido demostrado, con-
virtiéndose en uno de los problemas mateméticos mas antiguos
todavia vigentes a finales del siglo xx. Todos ellos se asombraron
cuando un profesor escribié en la pizarra el enunciado del teo-
rema. El enunciado era sencillisimo y cualquier alumno de secun-



daria lo entenderia de inmediato. ;Tal vez es que era imposible de
probar? Esa posibilidad aterradora, el hecho de que existan afir-
maciones matemaéticas imposibles de demostrar, habia sido ade-
lantada por uno de los méis grandes légicos del siglo xx, el
austriaco-estadounidense Kurt Gédel, y poco tiempo después por
el padre de la informética, el britdnico Alan Turing. Tal vez el 1l-
timo teorema era uno de esos infelices desterrados del reino de
las matematicas. Tal vez Fermat, sin saberlo, habia encontrado el
primer resultado indemostrable de la historia de las matematicas.
En cualquier caso, Fermat era el responsable, indirectamente y
sin proponérselo, de haber creado mas matematicas con los vanos
intentos de demostrar su ltimo teorema que, probablemente, las
que generarfa la demostracién que definitivamente cerraria el
tema y lo pondria a dormir para siempre junto a tantos otros re-
sultados que ya nadie investiga a fondo porque se conocen a la
perfeccién.

El profesor dejaba entonces de hablar de Fermat y devolvia a la
Tierra a sus alumnos, al confortable mundo en el que los teoremas se
sucedian unos a otros con demostraciones rigurosas y el tiltimo teo-
remano era sino un extrafio monstruo que quitaba el suefio a algunas
personas. Casi todos aceptaban que el problema nunca seria resuelto.

Hasta cierto punto, resulta paradéjico que esta sea la aporta-
cién mas conocida de Fermat, vista su condicién de matemaético
de primer orden. A pesar de ello, su nombre rara vez se cita a la
par de los de Arquimedes, Euclides, Descartes, Newton, Leibniz,
Euler o Gauss. Sus enormes aportaciones han quedado relegadas
por razones varias. Basta con dar un vistazo a las enciclopedias y
libros de historia de las matemaéticas para comprobar que apenas
se le menciona, casi siempre a la sombra de un contemporaneo o
sucesor.

Pierre de Fermat, un magistrado de Toulouse al que algunos
consideran el més grande aficionado que haya contribuido a las
matematicas, vivié en la época en la que dicha ciencia, tras despe-
rezarse lentamente de su suefio medieval, fue presa de una febril
actividad en la que sufrié una profunda transformacién, una ver-
dadera revolucion cientifica. Poco se sabe de las incidencias de su
vida, placida, burguesa y sin sobresaltos, pero su caricter se nos
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desvela a través de su correspondencia y de su forma de abordar
las matematicas.

A pesar de ser, seglin todo indica, un hombre del Antiguo Régi-
men, Fermat fue un revolucionario en el ambito cientifico. Pocos
pusieron tantos cimientos de la matematica moderna como él, al
igual que pocas personas dieron pasos tan audaces hacia el futuro.
Pero, como suele pasar con ciertos revolucionarios, Fermat no
aprecio en su justa medida todo lo que estaba haciendo. Su obse-
sidn era resucitar la ciencia griega que siglos de incuria y violencia
habian destruido. Le interesaba reconstruir la obra de Diofanto, de
Apolonio, de Arquimedes, de Euclides. No se dio cuenta de que las
herramientas que usaba para restituir a los autores de la Antigiiedad
eran las que fundarian una nueva ciencia y relegarian muchos de los
métodos de los antiguos a un archivo para historiadores.

La generacién posterior a Fermat perdi6 el interés por la mate-
matica griega, con la notable excepcién de Euclides, que fue, hasta
bien entrado el siglo xx, la referencia para la ensefianza del rigor y
la belleza en matematicas. Sus Elementos son la obra mas editada
después de la Biblia. La modernidad ha perdido muy recientemente
el privilegio de bafiarse en sus aguas, de la misma forma que se ha
perdido el latin de la Eneida o el griego de Homero.

Pero Euclides era una rareza. Desde finales del siglo xvi, la
ciencia griega se habia convertido en una curiosidad. A partir de
entonces, los matematicos no miraron atras, pensaron siempre en
el futuro y en lo que ellos mismos estaban creando. Fermat fue
uno de los ultimos que contemplé la gran tradicion del pasado. Y al
hacerlo, y en la forma como lo hizo, enterro ese pasado y creé un
mundo nuevo, junto con otros grandes matematicos de su tiempo.
Toda tradicién se resiste a morir, y es cierto que incluso la obra
cumbre de la fisica, los Philosophiae naturalis principia mathe-
matica de Newton, adopté una forma «griega». Pero era el canto
del cisne. A la muerte de Fermat, en 1665, la matemaética griega
habia sido ya sustituida por la moderna. Después de él, ningin
gran matemaético se preocupé por restituir la matemaética de la
Antigliedad.

En este libro se repasa la historia de esa revolucién. Los dos
primeros capitulos versan sobre el teorema que le hizo famoso y
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que, durante tres siglos y medio, espoleé a los matematicos a
crear edificios increibles con el tinico fin de resolver el endiablado
puzle. Por si misma, es una historia apasionante. El resto del libro
contempla otras contribuciones de Fermat, las que permanecen
en una semioscuridad totalmente inmerecida.

Se tratardn sus contribuciones a la teoria de niimeros y de cémo
Fermat fundé esa disciplina como la conocemos hoy en dia, asi
como de la génesis de la geometria analitica, una revolucion cienti-
fica que cambié para siempre la forma de hacer matematicas, basan-
dolas en el lenguaje universal del dlgebra. También tienen cabida en
esta obra sus métodos de maximos y minimos, tangentes, cuadratu-
ras y rectificaciones, precursores del calculo infinitesimal. Se anali-
zaran los obsticulos epistemolégicos —el término es del filésofo
francés Gaston Bachelard— que le impidieron descubrir el cilculo
propiamente dicho. Finalmente, incidiremos en su papel seminal en
la creacion de la teoria de la probabilidad y en su aportacién a la fi-
sica en la forma de un principio extremal que lleva su nombre.

Se glosaran los logros de un gran pensador, pero también se
trataran las razones de que haya sido olvidado. Algunas son sim-
ples casualidades, crueldades del destino, mientras que otras
estdn intimamente ligadas a la personalidad de Fermat, a su fobia
a publicar tratados bajo su nombre al tiempo que anhelaba el re-
conocimiento de sus colegas a través de sus epistolas, llenas de
problemas que decia haber resuelto, pero que desesperaban, por
su inconcrecion, a sus corresponsales. Asi pues, su propia perso-
nalidad opacd su obra, porque sus ideas cayeron casi siempre en
terreno fértil, pero fueron separadas de su nombre, condeniandole
a la oscuridad. Es asi como la biografia personal de Fermat, tan
parca en hechos resenables, se revela verdaderamente a través de
su obra y su actitud hacia ella, dejando vislumbrar la personalidad
de un hombre fascinante.
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1601

1620

1625

1631

1636

1637

1638

1641

Nace el 20 de agosto, en Beaumont,
Francia.

Cursa estudios de Derecho en Toulouse
durante cinco afios.

Reside en Burdeos cuatro afios, donde
toma contacto con el matemaético
francés Jean de Beaugrand.

El 1 de mayo se gradia en Orléans.
Adquiere los puestos de conseiller
en el Parlamento de Toulouse y el de
Comisario de Ruegos de Palacio.

Primera carta al filésofo Marin
Mersenne. Escribe el tratado sobre
geometria analitica Introduccidn

a los lugares geométricos planos y
sdlidos (Isagoge). Circula el Methodus
(método de miximos y minimos).

Gestacion del ltimo teorema.

Se produce la polémica con su «rival»
René Descartes por el método de los
méximos y minimos y su aplicacién

a las tangentes.

Anuncio del pequefio teorema de Fermat.
Se producen diferentes enfrentamientos

de posturas con Bernard Frénicle y
Pierre Brilart.

1643

1652

1654

1657

1658

1659

1660

1665

Explica los fundamentos de su método
en Investigacion analitica, una de
sus memorias mas importantes.

Cae enfermo de la peste. Su amigo
Bernard Medon anuncia falsamente
su muerte.

Mantiene correspondencia con Blaise
Pascal, de resultas de la cual se
establecen los principios de la teoria
de la probabilidad.

Polémica con John Wallis y William
Brouncker acerca de la ecuacion
de Pell.

Redacta el Tratado de cuadraturas,
en el que amplia la aplicacién de su
meétodo. Establece controversias sobre
la Didptrica con el cartesiano Claude
Clerselier.

Inicia un intercambio de
correspondencia con el matemético
neerlandés Christiaan Huygens.

Aparece el Tratado de rectificacion,
en el que Fermat se aleja de su
método expositivo analitico y adopta
el método sintético griego.

Fallece el 12 de enero en la localidad
de Castres, cerca de Toulouse.
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CAPITULO 1

El teorema que tardo
350 anos en serlo

A pesar de su aparente simplicidad,
el Gltimo teorema de Fermat atorment6 a los
mejores matematicos del mundo durante nada menos que
350 afios. Una y otra vez intentaron demostrarlo, y una
y otra vez fracasaron, hasta que a finales del siglo xx
un introvertido britdnico logré lo que hasta
entonces habia parecido imposible.
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Imaginemos el instante. Un hombre de luengos cabellos se inclina,
a la luz de una vela, sobre un ejemplar de la Aritmética del mate-
matico griego Diofanto de Alejandria (ca. 214-ca. 298) con la es-
palda encorvada. Después de leer uno de los teoremas, reflexiona
un poco, sonrie, moja la pluma y escribe una frase en latin en uno
de los méirgenes del libro. Hace una pausa, vuelve a tomar la
pluma, y afade: «[...] cuius rei demonstrationem mirabilem
sane detexi, hanc marginis exiguitas non caperet». Es decir:
«[...] he encontrado una demostracién admirable de este resul-
tado, pero este margen es demasiado estrecho para escribirla».
Seguramente el hombre se iria pronto a dormir. Al dia siguiente
le esperaban urgentes asuntos en el Parlamento. No sabemos cuan-
tas veces recordo esa pequeiia anotacion. Tal vez nunca volvié a
pensar en ella; su vida estaba ocupada en otros menesteres. ;Ima-
gind en algiin momento que esas pocas palabras darian lugar a una
de las més apasionantes odiseas de la historia de las matematicas y
que a lo largo de los siglos atormentarian a varias de las mentes méis
brillantes del mundo? Es poco probable. Pierre de Fermat, el prota-
gonista de dicha escena, era dado a los juegos y las adivinanzas,
pero es dificil suponer que aquella noche hubiera intuido que habia
creado la mas famosa adivinanza matematica de todos los tiempos.
De hecho, tal adivinanza estuvo a punto de no pasar a la pos-
teridad. Escrita como nota personal en el margen de un libro,
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pudo haber desaparecido sin més junto con los otros hechos mas
o menos triviales de una vida como tantas. Pero la acotacion so-
brevivié a su autor, fue descubierta e impresa, y se convirtié en el
rey de los problemas al parecer imposibles de resolver. El mundo
continué su marcha. El cardenal Richelieu gobernaba la Francia
que Alejandro Dumas inmortalizé en Los tres mosqueteros en la
época en la que Fermat escribia, mientras un rey incapaz se re-
creaba en sus ocios. Cay6 Richelieu, le siguieron la serie de movi-
mientos de insurreccién conocidos como la Fronda, el Rey Sol, y
después la Ilustracién, la Revolucion, el revuelto siglo xix y el atin
mas dramatico siglo xx. Y mientras la historia discurria, el resul-
tado que Fermat decia haber demostrado seguia ahi, resistiendo
todos los ataques, todos los intentos para probarlo: esa demostra-
cién que no cabia en un margen tampoco tenia un lugar en las
mentes de los mas grandes matematicos.

Aceleremos la accién. Nos encontramos ahora en 1993, un
mundo con ordenadores y una red de Internet incipiente. La URSS
habia caido. No existian atin las redes sociales, pero si un antece-
sor llamado Usenet, al que priacticamente solo estaban suscritas
las personas ligadas al mundo académico, un nimero absurda-
mente pequefio si se compara con los actuales usuarios de deter-
minadas redes sociales. De pronto, esa primitiva red, usualmente
adormilada, comenzé a bullir de excitacién. Los mensajes se su-
cedian, relampagueantes, con términos que un lego no podia en-
tender: formas modulares, curvas elipticas, grupos de Galois,
teoria de Iwasawa, conjetura de Taniyama-Shimura...

Poco a poco, la imagen de lo que habia sucedido se iba for-
mando en la red. Andrew Wiles, un matematico britdnico experto
en un campo llamado curvas elipticas, habia pronunciado, nada
menos que en el Instituto Isaac Newton de Cambridge, tres con-
ferencias en las que, paso a paso, con paciencia y un sentido del
arte dramaético digno de un Laurence Olivier, avanzé hacia un re-
sultado inevitable.

Durante anos, Wiles trabajé en secreto, como un alquimista,
sin compartir con nadie ya no digamos sus resultados, ni siquiera
la naturaleza de su proyecto. No queria que nadie le quitara la
gloria de resolver uno de los problemas més dificiles del mundo
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matematico. Aunque habian corrido algunos rumores en forma de
correos electrénicos, cuando era abordado por algin colega que
le preguntaba sobre el contenido de sus conferencias, se limitaba
a sonreir y a responder: «Asiste a las conferencias y lo veras».
Tanto secreto espoleé la curiosidad. Asi que el auditorio de
doscientas personas, formado por avezados especialistas y algu-
nos doctorandos, hervia con cada minuto que pasaba. Al anunciar
las conferencias, Wiles tuvo buen cuidado de esconder su pro-
yecto bajo un titulo aparentemente inocuo. Sin embargo, conforme
avanzaba en su exposicion, los expertos empezaron a darse cuenta
de lo que se cocinaba. Entusiasmados, escribian correos electré-
nicos en las pausas entre las conferencias, llenos de expectacién
ante lo que imaginaban que sucederia. Ante el silencio sepulcral de
su auditorio, el expositor llend pizarra tras pizarra de matemadticas
complejisimas y novedosas. Finalmente, Wiles escribi6 unas pocas
lineas mas que completaban la prueba, hizo una pausa dramatica,
y garrapate6 el enunciado del dltimo teorema de Fermat. Se volvio
sonriente hacia el publico y dijo: «Creo que voy a dejarlo aqui».
Varias camaras se dispararon, hubo ovaciones, aplausos...
Uno de los problemas mas dificiles del mundo, también uno de los
mas antiguos sin resolver, cay6 finalmente ante el ataque sistema-
tico de un matemaético brillante que habia trabajado a solas du-
rante mas de un lustro. Pero, ;cémo es posible? ;Redescubrié
Wiles la prueba de Fermat? No, la historia es mucho mas com-
pleja. De hecho, los aplausos resultaron prematuros: la demostra-
cioén de Wiles contenia un error fatal. Su estrategia de hermetismo
tenia ese enorme riesgo: al no compartir sus avances, nadie pudo
senalarle ese error antes de que fuera tarde. Y en matematicas, un
solo error, un solo paso en falso, invalida toda la demostracion,

que se derrumba como un castillo de naipes. Todos los pasos son,.

precisamente, como esos naipes que apuntalan la estructura de tal
forma que, con solo retirar uno de ellos, esta se desmorona. Wiles
tuvo por tanto que volver a la pizarra, contrito, y trabajar todavia
unos afos para dar con una demostracién definitiva, a prueba de
balas, que finalmente logré publicar en 1994. Pero dejemos por el
momento a Wiles, en su maximo momento de gloria, extatico ante
sus rendidos admiradores.

EL TEOREMA QUE TARDO 350 ANOS EN SERLO
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EL ULTIMO TEOREMA

Es hora de volver a Fermat y enunciar su tltimo teorema. El resul-
tado que el matematico escribi6 en latin en ese pequefio margen
era el siguiente:

Es imposible escribir un cubo como la suma de dos cubos, o una
cuarta potencia como la suma de dos cuartas potencias, y en general,
para ningin nimero que sea una potencia mayor que dos ser escrito
como la suma de dos potencias del mismo grado.

Escrito en notacién algebraica moderna, lo que dice el tltimo
teorema es que la ecuacion x"+ y"=2", con n > 2, no tiene solucio-
nes naturales; es decir, no existen nimeros naturales , y y 2 que
cumplan la propiedad arriba enunciada: tener un cubo (o potencia
mayor) que sea la suma de dos cubos (o potencia mayor del
mismo grado).

El teorema de Fermat se aplica exclusivamente a los niimeros

Representacisn  Naturales (aquellos con los que contamos cosas: 1, 2, 3,... y asi

geométrica  jpdefinidamente); si bien en su enunciado original el autor no dio

del teorema de

pitigoras.  €sta condicién explicita, la misma se entiende por contexto.

Cabe preguntarse por qué Fer-
mat habla solo de exponentes mayo-
res que dos. La respuesta es sencilla.
Para el caso n=1, tenemos un enun-
ciado trivial: en efecto, todo niimero
natural mayor que uno es expresable
como la suma de otros dos niimeros
(no necesariamente distintos entre
si). Cuando n=2 nos encontramos
frente al conocidisimo teorema de
Pitagoras (véase la figura), expre-
sado en la forma de una ecuacién al-
gebraica: 2°+ y?=2%

Ya no existen soluciones para
casi todos los nimeros; pero sucede
que en este caso si se pueden encon-
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trar nimeros naturales que cumplen esa propiedad. El primer caso
que encontramos, en los niimeros naturales, es x=3, y=4 y 2=5:

F+42=9+16=25=5

Otro ejemplo es =5, y=12y 2=13; y otro més, x =65, y =72
y 2=07. Entre los primeros cien niimeros hay 16 ejemplos simi-
lares, y se puede demostrar que, en total, existen infinitos con-
juntos de tres nimeros naturales que cumplen esa propiedad,
conjuntos conocidos como ternas pitagéricas.

Lo que Fermat decia, por tanto, es que si se cambia ese expo-
nente igual a dos por un exponente mayor no existe una terna de
nimeros naturales que cumpla dicha propiedad, ternas que, en
justicia, podriamos llamar «fermatianas». Dada esta definicién, el
dltimo teorema de Fermat es equivalente a decir que no existen
las ternas fermatianas.

No es dificil imaginar cémo Fermat llegé a este resultado.
Llevaba un tiempo analizando las ternas pitagéricas y sus propie-
dades, un problema que se conocia como «descomponer un cua-
drado»: consideraba escribir ese cuadrado como la suma de dos
cuadrados, de forma tal que todos los nimeros implicados fueran
naturales. Parece razonable suponer que, una vez planteado ese
problema, Fermat se preguntaria qué sucederia si en vez de cua-
drados usaba cubos, cuartas potencias, etc. Al fin y al cabo, una
de las tendencias més naturales en un matemaético es buscar la
generalizacién de un resultado, o, cuando menos, explorar las po-
sibles generalizaciones.

Entender el problema planteado, pues, es bastante sencillo, y
si bien la mitad de la solucién de un problema es entenderlo, la
otra mitad, en el caso del tltimo teorema de Fermat, gestado en
1637, es extraordinariamente dificil. ;Por qué? Para intentar res-
ponder a esa pregunta hay que hacer un «pequeiio» viaje al pa-
sado, unos dos mil cien afios antes de Fermat, a tiempos de
Pitagoras. No solo por el parentesco que el ultimo teorema tiene
con las ternas pitagéricas, sino porque es fundamental entender
el concepto de demostraciéon matematica que inauguré Pitadgoras
para apreciar qué significa probarlo.

EL TEOREMA QUE TARDO 350 ANOS EN SERLO
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LOS GRIEGOS

Volvamos al principio de los tiempos matemaéticos para tratar la
naturaleza de la demostracion matematica. Pitdgoras de Samos
(ca. 580-ca. 495 a.C.) es un personaje semilegendario. Casi todo lo
que nos ha llegado sobre el sabio fue escrito siglos después de su
muerte, y dado el caracter semidivino que le atribuian sus segui-
dores, buena parte de ello es una colecciéon de mitos. Asi como
una leyenda llamada Homero fundé la literatura occidental, una
leyenda llamada Pitdgoras fundo la matematica.

Una cosa es segura: Pitagoras no descubri6 el teorema que
lleva su nombre. Egipcios y babilonios lo conocian y aplicaban,
pero lo hacian como receta. Era algo que comprobaron una y otra
vez y habian determinado que funcionaba. En lenguaje moderno,
los egipcios y los babilonios usaban la matematica de forma em-
pirica: si comprobaban sistematicamente que un resultado funcio-
naba, generalizaban y pensaban que era verdadero siempre. Eso
es lo que se conoce como razonamiento inductivo, algo que los
humanos hacemos de forma natural: cuando encontramos una re-
ceta que funciona, seguimos aplicandola, aunque no entendamos
por qué funciona.

Sin embargo, lo que hizo Pitagoras fue realmente revoluciona-
rio: llegd a la conviccién de que no bastaba con recetas empiricas,
sino que habia que demostrar rigurosamente que la receta era ver-
dadera. Es cierto que Tales de Mileto (ca. 630-545 a.C.), el padre de
la filosofia, habia hecho ya varias demostraciones, pero Pitigoras
convirtié la bisqueda de una demostracién matematica en un pro-
grama sistemadtico. Hizo algo asombroso: pensar que la receta
podia, en todos los casos, demostrarse deductivamente, usando las
reglas de la légica, de forma que se convirtiera en una verdad eterna,
inatacable, imposible de refutar. Contra el empirismo, opuso la
razon: el poder de la mente seria capaz, segin Pitdgoras, de alcan-
zar la certidumbre por si solo. Asi, una demostraciéon basada en
reglas légicas, formada por una serie de pasos que cualquiera puede
seguir y comprender era mejor que un millén de experimentos.

Pitagoras fue, hasta donde se sabe, el primero en pensar que
tales verdades no solo eran posibles, sino también alcanzables
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DEMOSTRACION GEOMETRICA DEL TEOREMA DE PITAGORAS

Consideremos dos cuadrados de igual érea, con lado a+b, y subdividamoslos
como se muestra en la figura. Obviamente, el érea de cada uno de los cuadra-
dos es (a+b)? pero hay una forma mas interesante de expresarlas. En el
cuadrado de la izquierda, el érea total es la suma de las areas de los dos cua-
drados con lados b y @ mas la suma de las dreas de los cuatro triangulos con
lados a y b, que es

1
—ab
2

para cada uno de ellos. Por tanto, el drea total del primer cuadrado es:
A= at+b%+ 4(%5:’3).
El area del segundo cuadrado es la suma del area del cuadrado inscrito de lado
¢ mas, nuevamente, la suma de las dreas de cuatro triangulos de lados a vy b:
A=c?+ 4(lab).
2
Como A, y A, son iguales,
204 1 2 1
a‘+b“+4|—-ab|=c*+4|=ab]|.
faefsnz)
Y, simplificando la ecuacion:
a?+bi=c?

Este es un ejemplo tipico de demostracion directa por construccion, ya que
para llegar a ella hay que construir diversas figuras geométricas en el interior
de los cuadrados.
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sistematicamente. Por ello merece el titulo de Padre de la Mate-
matica. Toda la ambicién de la ciencia matematica vislumbrada
por Pitagoras, una de las mas fructiferas en la historia intelectual
de la humanidad, la retomaria el matemaético alemén David Hil-
bert (1862-1943) con su Wir miissen wissen. Wir werden wissen
(«Hemos de saber. j{Sabremos!») en la segunda década del siglo xx.

Pitdgoras, o alguien de su escuela, demostré el teorema que
lleva su nombre, de forma tal que era imposible ya dudar de su
verdad. Este teorema nos da una regla inmutable. En el caso de un
tridngulo rectangulo, esta relacién se cumplird siempre. Con su
programa, Pitdgoras puso el listén muy alto para las generaciones
posteriores: ya no bastaba con encontrar una receta, comprobarla
muchas veces y proclamar una regla universal. Desde entonces,
en matematicas, habia que probarla. Y aunque en algunos casos
resultaria endemoniadamente dificil, el programa pitagérico de-
mostré ser tan fructifero que los matematicos, a pesar de las difi-
cultades, no estdn dispuestos a renunciar a él. Como el poeta al
que la carcel de la métrica y la rima estimulan la creatividad, el
matematico piensa que el rigor que impone su método es impres-
cindible para acceder a las verdades que descubre.

Durante siglos los griegos aplicaron este principio para seguir
demostrando con rigor sus resultados. Pero un geémetra que rein6
al mismo tiempo que Ptolomeo I (367-283 a.C.), general de Alejan-
dro Magno y rey de Alejandria, llegaria a cumbres més altas. Se trata
de Euclides (ca. 325-265 a.C.), quien no se conformé con demostrar
algunos resultados aislados, sino que, ambiciosamente, quiso reunir
todo el conocimiento matematico de su época en un solo sistema.

Euclides cay6 en la cuenta de que toda demostraciéon se ba-
saba en resultados anteriores que habian sido a su vez demostra-
dos; pero este proceso no podia seguir hasta el infinito. Por fuerza,
habia que partir de algunas verdades que consideraba evidentes.
A esas verdades las llamé axiomas. Asimismo, tenian que existir
definiciones claras de los elementos utilizados; en geometria, por
ejemplo, puntos, lineas, tridingulos, circulos, etc. A partir de esos
pocos elementos Euclides demostré que se podian organizar
todos los resultados en un solo corpus de conocimiento en el que
los resultados demostrados y los asumidos (los axiomas) servian
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como base para demostrar otros resultados. A diferencia de los
axiomas, esos nuevos resultados que requerian ser demostrados
recibieron el nombre de teoremas.

Invocando este procedimiento una y otra vez podemos cons-
truir un edificio inmenso, una teoria matematica, es decir, una
especie de arbol en el que, a partir de unas pocas raices, se puede
generar un nimero potencialmente infinito de ramas y hojas, al-
gunas més importantes (mas robustas y mas fructiferas en su po-
tencial de crear nuevas ramas) que otras, pero todas igualmente
verdaderas.

Se cuenta que Ptolomeo I intenté que Euclides le ensefiara
matematicas, y que, impaciente ante la prolijidad y concentracién
que ello le requeria, exigié que el sabio simplificara sus explicacio-
nes, a lo que este repuso:

Majestad, lo que me pedis es imposible; es indispensable que sufrais
y paséis por todos los pasos necesarios para entender la ciencia. No
existe un camino real en matematicas.

Es imposible exagerar la importancia del programa de Eucli-
des. Priacticamente todas las generaciones venideras de ma-
tematicos lo tomaron como referencia. A dia de hoy, cualquier
matematico que proponga una teoria nueva —o intente replantear
una teoria existente— utiliza dicho programa. Hasta bien entrado
el siglo xx, su obra, los famosos Elementos, fue el libro mas popu-
lar después de la Biblia, consagrandose como un texto de referen-
cia y estudio imprescindible en los institutos y las universidades.

Pero a pesar de sus increibles intuiciones, Pitdgoras y la es-
cuela que fundé tenian un elemento que a los modernos nos parece
algo perturbador. En efecto, los pitagéricos fundaron una especie
de religion y secta secreta, tal vez no muy distinta de otras antiguas
sociedades secretas griegas, como la de Eleusis o los misterios
orficos. Al igual que los iniciados eleusinos, los pitagéricos no po-
dian revelar la naturaleza de sus actividades.

El misticismo pitagérico estaba intimamente ligado a la idea
de que el niimero era la esencia de la naturaleza. Pero los pitagé-
ricos no tenian el mismo concepto de nimero que nosotros. Para
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ellos, los niimeros solo eran los naturales y aquellos que podian
ser expresados como un cociente de naturales (3/4, 5/8, etc.): el
conjunto de los racionales positivos.

Por supuesto, los pitagéricos sabian medir longitudes geomé-
tricas. Fieles a su mistica fe en la esencia numérica de la natura-
leza, estaban seguros de que toda longitud era expresable como un
niimero, es decir, como un racional positivo. Su geometria aspi-
raba a describir la naturaleza como cualquier ciencia natural, igual
que la armonia musical también descubierta por ellos. Los triangu-
los rectangulos que los pitagéricos dibujaban eran tridngulos natu-
rales en el mismo sentido en el que una cuerda vibrante era natural.

Entonces sucedié6 el desastre. Segin la leyenda, uno de los
discipulos de Pitdgoras demostré que la hipotenusa de un tridn-
gulo rectangulo no era un nimero, no en el sentido que los pitagé-
ricos daban al término. Asombrosamente, se trataba del triangulo
rectangulo mas sencillo posible: aquel que tiene dos catetos de
longitud igual a uno, un triingulo que ademas de rectiangulo, es
isosceles. En efecto, en ese triangulo la hipotenusa, por el propio
teorema de Pitagoras, es igual a raiz de dos.

iPero raiz de dos no es expresable como un niimero racional
positivo! Es lo que hoy en dia llamamos irracional, no porque
dichos nimeros tengan algiin defecto psicolégico, sino porque no
pueden ser expresados como un cociente o razén entre dos nime-
ros naturales. Eso es lo que la leyenda dice que demostré Hipaso
de Metaponto (ca. 500 a.C.), un discipulo discolo. Por ello (o por
haber revelado la demostracién al mundo), se dice que fue aho-
gado en el mar frente a Crotona, en la actual Calabria italiana. La
demostracién es un tipico caso de reduccién al absurdo, en el que
se supone lo contrario de la conclusién que se quiere demostrar y,
a su vez, se demuestra que esa suposicién nos lleva a una contra-
diccién irresoluble con una verdad ya demostrada. Es uno de los
métodos de prueba mas poderosos de las matematicas, en el que,
como decia el matematico britAnico Godfrey Hardy (1877-1947),
el matemético arriesga mas que cualquier ajedrecista con su gam-
bito: arriesga el juego entero.

El orgullo intelectual de los pitagéricos sufrié un durisimo
golpe: el mundo no estaba, al parecer, basado en el niimero como
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DEMOSTRACION DE LA IRRACIONALIDAD DE V2

Pongamos por caso que V2 es racional. Entonces, puede expresarse como la
razon de dos numeros enteros: \5=p/q. Podemos suponer, sin pérdida de
generalidad, que la razén anterior es irreducible, es decir, que no puede sim-
plificarse mas, o, lo que es lo mismo, p ¥ g no tienen divisores comunes. Aho-
ra bien, de la expresién anterior se sigue que 2=p*/g* Por tanto, p? es par.
Pero si un numero entero al cuadrado es par, el nimero mismo, p, es par
(porqgue el cuadrado de un impar es siempre impar). Por tanto, podemos es-
cribir p=2k y 4k?=2q* 0 2k*=g* Con lo cual, g* es también par y g también lo
es. iPero eso contradice la hipétesis de que no habia divisores comunes entre
P Yy q! En consecuencia, alguna de nuestras hipotesis es falsa. No puede ser la
hipétesis de que la razon es irreducible; tiene que ser, efectivamente, la supo-

sicion de que +2 es racional.

esencia. No se les ocurri6 a los pitagéricos que bastaba generali-
zar su limitado concepto de nimero para resolver el dilema, que
es lo que los matemaéticos han hecho a partir de la Edad Moderna,
cada vez que se encuentran con una dificultad similar. Pero es
explicable; en los albores de la matematica era imposible para los
pitagéricos asumir lo que les parecia inexpresable. Finalmente, se
vieron obligados a hacer una distincioén entre magnitud y nimero,
entre las longitudes medibles en geometria y los niimeros expre-
sables de forma aritmética. Asi, ambas disciplinas se alejaban en
un divorcio que solo los trabajos en el siglo xvii de Franciscus
Vieta, Fermat y René Descartes lograrian remediar.

DESDE EL RENACIMIENTO HASTA EL SIGLO XVII

El Renacimiento trajo un verdadero despertar de la actividad in-
telectual matematica. Cuesta encontrar durante toda la Edad
Media resultados matemaéticos prominentes en Europa; tales re-
sultados se dieron solamente en el mundo musulman. Pero el gra-
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TARTAGLIA Y CARDANO

Niccolo Fontana (1499-1557), apodado
Tartaglia, y Girolamo Cardano (1501-1576)
fueron dos de los cosistas mas célebres.
Tartaglia tuvo una infancia agitada. Huér-
fano de padre y hundido en la miseria, en
la conquista de Brescia un soldado fran-
cés le dio un corte que afecto la mandi-
bula y el paladar, impidiéndole hablar con
normalidad. De ahi su sobrenombre, «tar-
tamudon». Estudié balistica y fue el primer
traductor de Euclides y Arquimedes al
italiano. Cardano, médico célebre, alge-
brista, ludépata y gran ingeniero, perdid
un hijo al no poder pagar la indemniza-
cion que se le exigia para que no lo ejecu-
taran. Su otro hijo era también luddpata
y le robaba dinero. El matematico italiano
Scipione del Ferro (1465-1526) habia en-
contrado la solucion a las ecuaciones cu-
bicas, que mantuvo en secreto salvo para
sus discipulos mas intimos. Uno de ellos,
A.M. Fior, retd a Tartaglia en 1535 a una
justa matematica. Trabajando a marchas
forzadas, Tartaglia encontré su propia
solucidn, mas general que la de Del Ferro.
Ello le permitio tomar por sorpresa a Fior,
resolver todos los problemas de ecuacio-
nes cubicas que este le proponia, y a su
vez ganarle proponiendo problemas que
Fior no pudo resolver. Cardano supo de
esa justa y aduld a Tartaglia hasta que
este, finalmente, le mostré la solucion,
exigiendo un juramento de secreto. Pero
Cardano averigud también la solucién de
Del Ferro y, pensando que ello le relevaba
de su juramento, publicé la de Tartaglia
en Ars Magna, su gran tratado de algebra.
Tartaglia nunca se lo perdond y lanzé una
larga campanfa de desprestigio, a la que
Cardano contesto a través de un discipulo, y, segun se dice, financié la acusa-
cion de herejia que sufrio Cardano por haber realizado el horéscopo de Cristo.

Girolamo Cardano
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dual conocimiento de textos griegos que habian sido preservados
por los drabes, conjuntado con las propias contribuciones origina-
les del islam, llevaron a los incipientes matematicos del siglo xvi a
una actividad sin precedentes.

Muy tempranamente, los matemaéticos se dividieron. Por un
lado estaban los ge6metras que intentaban comprender y comple-
tar los resultados griegos. Téngase en cuenta que, aunque se pre-
servaron varios libros, muchisimos otros perecieron en las
diversas contingencias histéricas que separaban la época helenis-
tica del Renacimiento, un periodo que abarca alrededor de dos mil
afios. Notoria entre estas contingencias fue la destruccién —o su-
cesivas destrucciones— de la Biblioteca de Alejandria. Asi que los
matematicos renacentistas, convencidos de que habian perdido
un enorme acervo de conocimiento, buscaban rellenar los aguje-
ros que la historia habia horadado en las obras de Euclides, Arqui-
medes, Diofanto, Ptolomeo o Apolonio. Su método era el griego:
rigurosas y bellas demostraciones geométricas.

Al mismo tiempo, sin embargo, otros matemaéticos, a los que
se ha dado en llamar cosistas, se dedicaban a la resolucién de
problemas més o menos practicos, y eran empleados por comer-
ciantes, aunque con frecuencia también se ganaban el sustento
participando en justas en las que se planteaban problemas que
debian resolver. Dichos matematicos eran algebristas primitivos,
y su enfoque era pragmatico; no estaban tan interesados en el
rigor, la perfeccién y la belleza de la prueba como en la efectivi-
dad de sus recetas. De alguna forma, eran herederos de los egip-
cios y babilonios. La misma naturaleza del trabajo de los cosistas
hizo que por un lado restaran importancia a la idea de demostra-
cién y, por otro, cultivaran una tradicién secretista muy distinta
de la que animaba a los griegos pospitagéricos, que publicaban de
manera transparente sus resultados, de forma semejante a como
se hace hoy en dia.

Recapitulando, se ha hecho una rédpida resefia de la historia
de las matematicas para indagar en la naturaleza de la prueba
segun diversas tradiciones matemadticas, desde Pitdgoras hasta el
Renacimiento. Dichas tradiciones oscilan entre el secretismo y la
transparencia, entre el rigor y el pragmatismo. Y fue en ese caldo
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de cultivo de tendencias enfrentadas en el que Fermat desarrollé
su trabajo. El jurista y matematico francés vivié en una época en
la que, con justicia, se podria decir que se fundé la matematica
moderna, basandose de forma muy importante en las tradiciones
antiguas, pero al mismo tiempo creando algo totalmente nove-
doso, y no fue Fermat un personaje menor en el nacimiento de
dicha matematica.

Es de senalar que toda esa actividad cientifica, tanto por parte
de los modernos herederos de la tradicién griega como por la de
los cosistas, ocurria casi toda al margen de las anquilosadas insti-
tuciones universitarias de la época, ancladas aiin en la pesada tra-
dicién medieval. De hecho, no existia por aquel entonces una
cétedra propiamente matemaética en dichas universidades. No
habia profesores ni arbitros académicos de ningin tipo, ni una
disciplina con protocolos a los que todo practicante tuviera que
adherirse, como ocurre hoy en dia, en que para ser matematico
hay que discurrir por varios cursos y asignaturas y un programa
de doctorado supervisado por un investigador que, a su vez, ha
obtenido la aprobacion académica de sus pares, que tiene que re-
frendarse a lo largo de su carrera mediante el cuidadoso escruti-
nio de sus publicaciones.

Nada de ello existia en los siglos xvi y xvii. Uno de los més
grandes historiadores de las matematicas, el escocés Eric Temple
Bell (1883-1960), llamé a Fermat el «principe de los aficionados»,
pero el hecho es que, en su siglo, todos eran de una u otra manera
aficionados. Unos pocos matemaéticos lograron que los mecenas
de la época subvencionaran sus investigaciones, pero la mayoria
practicaba otras profesiones y dedicaban a la matemaética su
tiempo libre.

LA VIDA PERSONAL Y PROFESIONAL DE FERMAT
Llegamos asi al primer afio del siglo xvi.. Pierre de Fermat nacié el

20 de agosto de ese mismo aio, 1601. Su padre, Dominique, era un
prospero comerciante, un curtidor de Beaumont-de-Lomagne,
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un pueblecito cercano a Toulouse. Su cuna convertia a Fermat en
alguien un poco extranjero en la Francia de entonces, centrada
histéricamente en el norte, y con una inherente desconfianza
hacia los «gascones», la gente del sur, como el famoso D’Artagnan.
El francés René Descartes (1596-1650), que seria su gran rival
matematico, nacido en la Turena francesa, en la zona noble del
Loira, resaltaria la condicién gascona de Fermat como un baldén.
Fermat, en cambio, la reivindicaria con orgullo.

Su madre, Claire, provenia de lo que, en la Francia del Anti-
guo Régimen, se llamaba noblesse de robe, el funcionariado, y muy
particularmente, el que se dedicaba a la judicatura. Ambas tradi-
ciones, el dinero del padre burgués y la herencia de la madre,
convertian al joven Pierre en un candidato ideal a escalar social-
mente a través de una carrera relacionada con la abogacia, y, en
efecto, es lo que hizo.

Se sabe muy poco de su vida privada en general, y atin menos
de sus tiempos como nifo y adolescente. Tuvo, al parecer, un her-
mano, Clément, también dedicado a la abogacia, y dos hermanas,
Louise y Marie. Todo indica que su nifiez y sus afios mozos discu-
rrieron placidamente en Beaumont, tal vez bajo la instrucciéon de
los frailes cordeliers del monasterio de Grandselve.

Pierre se matriculé en Derecho en la Universidad de Toulouse
antes de su estancia en Burdeos en la segunda mitad de la década
de 1620. Es muy probable que su formacién matematica comen-
zara en Burdeos, aunque no queda ningin testimonio de si su in-
terés por dicha disciplina precedié a su mudanza a esa ciudad,
cuyas razones son poco claras. Se ha especulado con que, preci-
samente, se mudé a Burdeos para estudiar matematicas, en una
especie de aifio sabatico en el que se aparté del Derecho para
perseguir lo que seria su pasion secreta durante toda la vida.
Dado que en dicha ciudad habia una tradiciéon matematica mucho
mayor que la que pudiera existir en Toulouse, la explicacién no
es descabellada.

Burdeos es la ciudad donde Francois Viete (15640-1603) —al
que se conoce en castellano por la latinizacién de su nombre,
Franciscus Vieta— desarroll6 su trabajo matemaético. Habri oca-
sién de explorar su trabajo en mayor profundidad, pero baste

EL TEOREMA QUE TARDO 350 ANOS EN SERLO

29



30

decir por ahora que fue el fundador del dlgebra simbdlica. Su tra-
bajo, por tanto, fue importantisimo, pero, tal vez por razones geo-
graficas, por su relativo aislamiento en una ciudad de provincias
en la centralista Francia y por la falta a la sazén de medios de di-
fusién cientifica, en los afios en los que Fermat estuvo en Burdeos
su revolucionario trabajo era practicamente desconocido fuera
del circulo de sus discipulos maés directos.

Fermat no conocié a Vieta, que murié cuando él tenia dos
anos, pero trabd conocimiento con uno de sus discipulos, Jean de
Beaugrand (ca. 1584-1640), quien seria su amigo y colega hasta su
muerte. El caso es que ya en 1629, con veintiocho afios, Fermat
dio las primeras noticias de su talento matematico al enviar a
Beaugrand una copia de su reconstruccién de una obra perdida
del geémetra griego Apolonio de Perga (ca. 262-190 a.C.), De locis
planis, es decir, sobre los lugares —geométricos— planos. Buena
parte del trabajo de los matematicos de los siglos xvi y xvi era in-
tentar reconstruir dichas obras perdidas a través de referencias de
otros matematicos. En particular, la obra de Papo de Alejandria
(290-3560), que vivié varios siglos después de la mayoria de los
matematicos a los que reseiiaba, fue una referencia fundamental.
En efecto, Papo consigné unos 400 teoremas extraidos de las
obras de los clisicos que €l todavia pudo leer, de forma que, aun-
que parte de las obras de estos no habian logrado llegar al Rena-
cimiento, perdidas en los sucesivos incendios de la Biblioteca de
Alejandria y en otros similares holocaustos culturales, cuando
menos quedaban esas pocas ruinas, esas piedras aisladas debidas
a Papo, para, de alguna forma, imaginar toda la gloria de los edifi-
cios matematicos que habia erigido la Antigiiedad, del mismo
modo que un arquedlogo puede describir el 4gora de Atenas a
partir de lo que queda de ella.

Después de su estancia en Burdeos, Fermat se matricul6 en la
Universidad de Orléans. Alli obtuvo su grado de Licenciado en De-
recho Civil en 1631. A la sazén, y como se estilaba en la época, ya
habia comprado el puesto de conseiller en el Parlamento de Tou-
louse y el de Comisario de Ruegos de Palacio a la viuda del anterior
detentador de dichos cargos, Pierre de Carriére. Fermat volvi6 asi
a sus pagos, ennoblecido por su toga, que le permitié afadir un
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FOTO SUPERICR
Pierre de Fermat
inicié sus estudios
de Derecho en la
Universidad de
Toulouse vy, tras
una estancia

de unos seis afios
en Burdeos en la
segunda mitad de
la década de 1620,
se gradud en la
Universidad de
Leyes de Oriéans
en 1631,

FOTO INFERIOR:
Imagen de la
famosa frase
escrita por Fermat
en el margen de
una pdgina de un
ejemplar de la
Aritmética de
Diofanto, en

la que, tras el
enunciado de

un tecrema

del matematico
griego, podia
leerse: («[...] he
encontrado una
demaostracion
admirable de este
resultado, pero
este margen es
demasiado
estrecho para
escribirlan).

Se trataba del
dltimo teorema
de Fermat.

OBSERVATIO DOMINI PETRI DE FERMAT.

Fhum autem in duos cubes , aut quadratoquadratam in duos quadratoguadrates

& gemeriliser nullam ininfinitum yitra quadratum peteflatem in duos ciuf-
dem nominis fas off dinidere cuins vei demonfirationem mirabilem [ane devexi,
Hane marginis cxignitas non caperes,
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«de» a su nombre: Pierre de Fermat. Incidentalmente, que Fermat
pudiera pagar el considerable monto de ambos puestos (43500 li-
bras) demuestra que su posicién econémica era bastante desaho-
gada, como sigui6 siéndolo durante toda su vida.

En el Antiguo Régimen los parlamentos tuvieron una impor-
tancia politica considerable como contrapesos del poder central
del rey que intentaba imponer su voluntad absolutista. En particu-
lar, el de Toulouse fue una concesion real a una poblacién que se
quejaba de la lejania de Paris y de como las formas especificas del
derecho del Languedoc eran ignoradas en la capital.

Cabe recordar la agitadisima época en la que vivi6 Fermat.
Eran los tiempos de Luis XIII, débil y voluntarioso, y de su pode-
roso ministro, el cardenal Richelieu. No hacia mucho que habia
sido asesinado el rey Enrique IV, el hugonote que se convirtié al
catolicismo porque Paris bien valia una misa; por entonces, Pierre
era un nifio de ocho afios. Las brutales guerras de religién entre
catélicos y protestantes, apenas apaciguadas por el edicto de Nan-
tes (1598), que promulgaba la tolerancia de ambos credos, eran
también pasado reciente. De hecho, Richelieu todavia pelearia con-
tra los protestantes de La Rochelle, no muy lejos de Burdeos, en un
episodio que Dumas consigné en Los tres mosqueteros y en el que
participé el mismisimo René Descartes. Durante la vida de Fermat
también tuvo lugar la Guerra de los Treinta Afios, uno de los episo-
dios mas dramaéticos de la historia de Europa, que solo puede com-
pararse en brutalidad y sufrimiento de la poblacién civil a las dos
guerras mundiales; y el episodio de la Fronda, la rebelién contra
Mazarino cuando el despotismo de la regencia de Luis XIV la en-
frent6 con los parlamentos —esos mismos parlamentos en los que
Fermat hizo carrera— y con una parte de la nobleza provinciana.

Sin embargo, si algo define la vida de Fermat es la placidez.
Vivié en una época de grandes acontecimientos, pero no participd
politicamente en ninguno de ellos. No se le conocen, de hecho,
opiniones politicas. Unos meses después de graduarse se casé con
una prima segunda por parte de madre, Louise de Long. El matri-
monio engendr6 cinco hijos, que se sepa. Clément-Samuel, Jean,
Claire, Catherine y Louise. El primogénito heredaria el puesto del
padre, que a su vez pasaria en herencia a su hijo. Jean se convirtié
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en archididcono, Claire se casé y tuvo dos hijas monjas. Poco mas
se sabe, pero estas pinceladas permiten vislumbrar una tranquila
vida burguesa, sin demasiada agitacién, lo cual es asombroso,
dada la violenta historia politica de la época. Parece ser que Fer-
mat vivié todas estas convulsiones sin que le afectaran en lo méas
minimo, a pesar de que, durante su carrera judicial, llegé a ocupar
puestos de mucha importancia, que, dada la historica oposicion
del Parlamento de Toulouse a la autoridad central, casi con segu-
ridad tendrian que haber situado a Fermat en medio de complica-
dos conflictos politicos.

Los parlamentos eran cuerpos judiciales, no legislativos. Fue-
ron abolidos durante la jacobina Revolucién francesa, pero en su
momento fueron un gran contrapeso al absolutismo real. Por
tanto, en toda su carrera profesional Fermat se ocupé de impartir
justicia, pero también de mediar entre intereses politicos contra-
puestos. El edicto de Nantes, en particular, ordenaba que existie-
ran camaras para que los derechos de ambas confesiones, la
catolica y la hugonota, tuvieran representacién y justicia.

En Castres, ciudad cercana a Toulouse y bastién protestante,
Fermat fue miembro de una de esas cdmaras a partir de 1632,
cuando tenia treinta y un afios. Es de suponer que los conflictos
fueran significativos, pero nada de ello se trasluce en la corres-
pondencia de Fermat, que es practicamente la tinica forma de in-
dagar en su vida. Algunos biégrafos creen ver en ello su aversiéon
a las polémicas y las confrontaciones, su voluntad conciliadora, e
incluso tal vez la motivacién que le llevé a perseguir su pasa-
tiempo, las matematicas, para escapar de los conflictos y ambi-
giiedades de su vida profesional.

En verdad, en pocos ambitos hay tanta certidumbre y tan
poco espacio para la duda como en matematicas. Es profunda-
mente irénico, por tanto, que Fermat viviera en una época en la
que, debido a la juventud de la disciplina en su forma moderna,
los debates eran el pan de cada dia y que, de hecho, siendo uno
de los pensadores mas brillantes del siglo, estuviera involucrado
en buena parte de ellos, algo que le caus6 no poca amargura. Si
buscaba certidumbre, muchas veces encontré incomprension y
oposicién a sus ideas.
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Fermat mantuvo toda su vida una relacién estrecha con su
pueblo natal, Beaumont, en el que también presidi6 en ocasiones
el Consejo General. Pero parece claro que viajo poco y que su vida
transcurrié entre Toulouse, Castres y Beaumont, con algin oca-
sional viaje a Burdeos.

Fuera de sus conocidos de juventud en Burdeos, algiin matema-
tico tolosano y el inglés Kenelm Digby, Fermat no conoci6 personal-
mente a casi ninguno de sus colegas; practicamente toda su
interaccién con ellos fue epistolar. Su vida, comparada con la agi-
tada vida de su rival Descartes, que combatié en la Guerra de los
Treinta Afos, viajé por media Europa y frecuenté diversas cortes,
se presenta apacible, burguesa y provinciana. Las matematicas eran
su refugio secreto cuando, harto de confrontaciones politicas y sen-
tencias dolorosas, se refugiaba en su casa para leer, reflexionar,
crear mundos nuevos y, a veces, comunicarlos a sus corresponsales.

En efecto, Fermat escribi6 cientos de cartas en las cuales de-
tallaba sus descubrimientos, retaba a sus adversarios o se enzar-
zaba en amargas polémicas. El principal entre sus corresponsales
fue un personaje curioso, un monje de la orden de los Minimos,
Marin Mersenne (1588-1648), quien tenia una gran pasion por la
matemadtica que le llevé a cartearse con la mayoria de los grandes
pensadores de la época.

No existiendo revistas cientificas, lo mas similar que habla en
la época era Mersenne, una especie de central epistolar que recibia
resultados de diversos matematicos y los comunicaba a otros co-
rresponsales. Mersenne fue la primera gaceta cientifica, y si bien
su talento matematico personal nunca fue espectacular, su enorme
mérito radico en su capacidad de entender quiénes eran los gran-
des creadores de la matematica de la época y la importancia de sus
resultados; y, por supuesto, crear esos puentes de comunicacién
entre aficionados mas o menos aislados entre si. Sin Mersenne,
Fermat hubiera sido un oscuro personaje que se recreaba en las
matematicas en la soledad de su despacho. Gracias al monje que
le leia en la soledad de su celda y compartia luego sus descubri-
mientos, la fama matematica de Fermat se esparcié por toda Eu-
ropa. Mersenne vivia en Paris y estaba en estrecho contacto con
un grupo de mateméticos parisinos en el que descollaba Etienne
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Pascal, padre de Blaise, y que, a instancias del propio Mersenne,
se reunia de forma irregular en las casas de sus participantes, y
posteriormente en la propia celda del monje, que llegé a contar
con 180 corresponsales repartidos por toda Europa.

Mersenne adoraba las polémicas, y gozaba enfrentando a sus
corresponsales y contertulios entre si. Creia firmemente en que
ese era el método a partir del cual resplandeceria la verdad. Con
frecuencia, incluso compartia con otros corresponsales las cartas
que le enviaban en confidencia, sin tener autorizacién para ello,
con lo que causé no pocos disgustos y malentendidos. Para Mer-
senne, mas importante que la lealtad y la confianza de sus corres-
ponsales era que las ideas matemaéticas se ventilaran en ptiblico y
se debatieran con fervor. Esta conviccién le cost6 la amistad de
Descartes. La Academia Francesa de Ciencias fue, en su germen,
ese grupo de matematicos que se reunia alrededor de Mersenne.

Marin Mersenne conoci6é a Fermat a través de un amigo del
tolosano, Pierre de Carcavi, segiin dice el propio Carcavi en la
primera carta que dirigié a Mersenne el 26 de abril de 1636, co-
menzando una fructifera correspondencia. Carcavi, matematico
aficionado a su vez, se traslado a Paris desde Toulouse como bi-
bliotecario del rey, y no perdié ocasién de hablar a Mersenne del
genio matematico de Fermat. En todo caso, Fermat vio a Mer-
senne en persona una sola vez, en Burdeos, en 1654, cuando este
iba de vuelta a Paris después de un periplo por Europa. Asi, se
piensa, transcurrié la totalidad de la vida de Fermat, entre la judi-
catura que le permitia llevar pan a la mesa de su familia y la se-
creta pasion que le consumia cuando no tenia que vestir la toga.
Se puede decir que se gand la vida con el Derecho y la inmortali-
dad con las matematicas.

Hasta donde se sabe, Fermat solamente enfermé de gravedad
durante la peste de los aios 1652 y 1653. Tanto fue asi que uno de
sus amigos, Bernard Medon, reporté su muerte a un corresponsal
holandés, Nicholas Heinsius. Poco tiempo después Medon se des-
decia y comunicaba a Heinsius la feliz nueva de que Fermat seguia
entre los vivos. Curiosamente, la peste ayudé a su carrera. Dado
que la progresion en la judicatura estaba determinada por estricto
escalafén, la muerte de muchos de sus colegas en esos aciagos
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anos le hizo subir rapidamente en la lista, hasta llegar a ser el ter-
cero en antigiiedad del maximo tribunal del Parlamento, la Tor-
nelle, que veia las causas penales. En esa situacién tuvo que
condenar en una ocasién a la hoguera a un sacerdote expulsado
que «habia abusado de sus funciones», algo que le causé, si hemos
de creer su correspondencia, un gran desasosiego, que a su vez le
impidié durante unas semanas dedicarse a resolver el problema
matematico que le tenia ocupado a la sazén.

La otra gran actividad legal de Fermat era elevar peticiones
de los stibditos a la Corona. Dichos stibditos no podian hacer las
peticiones directamente; debian pasar por un consejero como Fer-
mat, al que tenian que convencer de los méritos de su peticion.
Segiin algunos testimonios, Fermat cumpli6 esta funcién con em-
patia y generosidad.

Tenemos constancia de que fue el vocero del Parlamento de
Toulouse en sus relaciones con el poderoso canciller de la Co-
rona, Pierre Séguier. El cargo de canciller era uno de los mas po-
derosos de Francia, equivalente actualmente a un ministro de
Justicia. En una instancia particular, Fermat defendi6 ante Sé-
guier que los habitantes de Aquitania fueran declarados exentos
de pagar un cierto impuesto, dado que, segun su argumento, cual-
quier intento de cobrarlo por la fuerza llevaria irremediablemente
a indeseables revueltas civiles.

De todas formas, todo parece indicar que su carrera como
parlamentario nunca llamé demasiado la atencién. El propio Fer-
mat confesé en una ocasién a Mersenne que temia que un nombra-
miento en particular, que habia solicitado a Séguier, no tuviera
lugar, dado el fracaso «de su gestion en Castres», de la que no se
tienen mas datos. Afos maés tarde, el intendente de Languedoc
eseribié un informe al célebre ministro Jean-Baptiste Colbert en
el que daba su opinién sobre el primer presidente del Parlamento,
superior directo de Fermat, a quien interesaba al ministro vigilar,
y sobre sus consejeros. Su opinién de Fermat, en tanto magis-

trado, es poco halagadora:

Fermat, un hombre de gran erudicion, tiene contacto con sabios de
todo el mundo. Pero suele estar muy preocupado [con su erudicién];
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no instruye bien sus casos y se confunde mucho. No es uno de los
amigos del primer presidente.

Sea como sea, Fermat se revelaba como un hombre reser-
vado, casi timido, conciliador hasta el punto de, por un lado, servir
en un altisimo cargo en una institucién abiertamente enfrentada a
la Corona y, por otro, tener buenas relaciones con la Corte.

LA PERSONALIDAD MATEMATICA DE FERMAT

Los rasgos del caricter retraido de Fermat influyeron decisi-
vamente en su carrera cientifica. Segiin comenta Michael Sean
Mahoney, uno de sus principales biégrafos, su correspondencia
matematica estd desprovista de la egolatria que caracterizaba a
un René Descartes o un John Wallis. A Mersenne le confesé que
no perseguia la gloria, que estaba «exento de ambicién». Esto tal
vez no es exacto. Esta claro que Fermat se enorgullecia de su ca-
rrera en la judicatura y de los altos puestos que habia escalado; de
la misma forma, esperaba reconocimiento por sus contribuciones
matemaéticas. Pero esa ambicién era, en cierto sentido, modesta.
Le bastaba el reconocimiento de sus colegas, no la gloria de ser
reconocido por el gran piblico; y cuando no lo obtuvo reaccioné
de forma dolida, frustrado ante la indiferencia o la hostilidad de
algunos de sus contemporaneos.

Esta personalidad explica tal vez por qué Fermat —«el més
perezoso de los hombres», le dice a Mersenne refiriéndose a si
mismo— nunca publicé bajo su nombre en vida, y por qué evitd
en la medida de lo posible dar demostraciones de los resultados
que anunciaba en su correspondencia.

La tradicién de secreto en las matematicas se habia originado
con la escuela pitagérica; pero si tal hermetismo tenia raices misti-
cas en la Antigiiedad, los cosistas lo continuaron por razones prag-
maticas. Era el equivalente a la moderna proteccién de las patentes.

Mersenne, precisamente, luchaba contra ese secretismo
cuando hacia circular las cartas que le habian enviado. Conven-
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cido con firmeza de que solo el debate haria progresar las mate-
maticas, el monje de la orden de los Minimos de Paris inauguré
una nueva tradicién, intentando convencer a sus corresponsales
de que revelaran sus secretos. Pero, a pesar de su poder de per-
suasién, nunca convencié a Fermat de que publicara una obra
formal. Para Mersenne y los miembros de su circulo, Fermat tenia
que ser alguien desesperante: un brillantisimo matematico que
contaba sus resultados a cuentagotas, sin aportar, en la mayoria
de los casos, una demostracion de sus teoremas.

En mas de una ocasién Fermat utiliz6 ese secretismo tan caro
a los cosistas para retar a sus adversarios a que resolvieran un
problema que €l mismo habia ya resuelto. Este tipo de juegos y
adivinanzas parecia causarle gran placer, sobre todo cuando,
como ocurrié varias veces, la rivalidad se habia convertido en
franca enemistad. De esta forma, Fermat se limit6 a explicar reta-
zos de sus ideas en cartas que primordialmente iban dirigidas a
Mersenne, y, en ocasiones, a circular memorias y pequefios trata-
dos manuscritos. Solamente se publicé en vida una obra debida a
€l, como un apéndice de otro libro y bajo seudénimo. Esta renuen-
cia frustré a muchos de sus amigos, llevando a Medon a rogar a
Heinsius que usara sus buenos oficios para convencer nada menos
que a la reina Cristina de Suecia a que instara a Fermat a publicar,
una labor en la que Mersenne, Gilles de Roberval, Blaise Pascal y
Christiaan Huygens habian fracasado.

Tal renuencia podria también deberse a la enorme cantidad
de trabajo que la formalizacién rigurosa de sus resultados hubiera
requerido. Fermat era un hombre de enorme intuicién matema-
tica, y con frecuencia unos pocos garabatos escritos para si mismo
le convencian de que tenia razén. Convertir esos garabatos en una
prueba formal, segin el estindar de la geometria griega, era
mucho mas trabajo del que Fermat queria dedicar a su pasa-
tiempo. El trabajaba para si mismo; sus pruebas, parciales o com-
pletas, eran para consumo personal. Como un jugador de ajedrez
que adivina el jaque mate en cinco jugadas, Fermat solo avanzaba
hasta el punto en la demostracién que le parecia necesario. Sus
notas eran solo recordatorios para si mismo, claves para que en
su mente se presentara de nuevo la idea que habia iluminado justo
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antes de escribir dichas notas. Pero hay otra razén metodolégica
que sera aparente en él mas adelante, cuando detallemos cémo
ampli6 la tradicién matematica que heredé de Vieta.

Sea como sea, convencer a otros de la correccion de sus re-
sultados no entraba entre sus preocupaciones. Ya sabrian ellos,
pensaba, reproducir sus razonamientos. O si no pueden, peor para
ellos. En todo caso, el trabajo de convencerlos era un desperdicio
de su limitado tiempo, que estaria mejor empleado en descubrir
nuevos resultados, no en probar rigurosamente los que ya le pare-
cian evidentes.

«[Si existe] cualquier parte de mi obra que se considere digna
de publicacion, me niego a que mi nombre figure en ella.»

— FERMAT EN UNA CARTA ENVIADA A ROBERvAL EN 1637.

Su propia carrera profesional habria incentivado esta actitud,
dado que le robaba tiempo a la matematica. Y asi, toda la vida
cientifica de Fermat estuvo marcada por esos resultados que se
enunciaban con parsimonia, esas ideas apenas esbozadas que
nunca fueron perseguidas hasta su consecucion, ese desdeiio por
rellenar huecos y detalles y esa ausencia de pruebas. En resumen,
el reverso de lo que la obra de Euclides, con su enfoque sistema-
tico y riguroso, y sus demostraciones pristinas, habia significado
para generaciones de matematicos. En ese sentido, Fermat estaba
mucho mds cerca de la tradicién cosista que del rigor helenistico.

Todas estas notas, bocetos de demostraciones y papeles de-
sordenados (al menos, todas las que pudo encontrar y a las que
pudo dar sentido) fueron ordenadas, sistematizadas y publicadas
por su albacea, el primogénito Clément-Samuel, que ademas de
heredar los cargos del padre, recibié al menos una parte de su
aficién por las matematicas.

En particular, en 1670 el hijo publicé Los comentarios a Dio-
Janto, reuniendo todas las notas marginales de su padre. Fue asi
como llegd hasta nosotros ese teorema que, seguramente, era solo
una nota que Fermat se hacia a si mismo. Nunca la compartié con
nadie en toda su generalidad; la inica constancia que tenemos de
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ella es ese margen que Clément-Samuel, fiel a 1a memoria de su
padre, transcribié y publicé péstumamente.

Fermat discutié casos particulares del teorema; pero el enun-
ciado general, tal como aparecia en su casual anotacién, se hu-
biera perdido con casi total seguridad en la noche de los tiempos
matematicos como se perdieron tantas obras de Euclides, Apolo-
nio, Diofanto y otros pensadores.

El destino de una obra es caprichoso; a veces pende de un
hilo, de la voluntad de alguien que crea que esa obra es importante
y que merece ser conocida. Y ese hilo, en el caso de Fermat, fue el
amor de Clément-Samuel por su padre y su memoria.

Asi es como llegamos, finalmente, a ese margen en el que Fer-
mat escribié su endiablado teorema. «He encontrado —decia—
una maravillosa demostracién de esta afirmacién, que por
desgracia no cabe en este margen tan pequefio.»

Es curioso que los siglos hayan hablado siempre del dltimo
teorema de Fermat. En matematicas, cualquier resultado no de-
mostrado se conoce como conjetura o hipétesis. Asi, tenemos la
hipétesis de Riemann, la conjetura de Goldbach, y hasta hace muy
poco, la conjetura de Poincaré, que al haber sido demostrada, se
ha convertido en el teorema de Poincaré-Perelman. Y es que solo
los resultados demostrados merecen el nombre de teorema.

Pero, por alguna razoén, el iltimo teorema de Fermat se cono-
cié siempre como teorema; tal vez porque los otros comentarios
fueron siendo demostrados poco a poco, hasta solo quedar el l-
timo. Es, por tanto, el teorema que tardé 350 afios en serlo.
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CAPITULO 2

Los intentos de demostracion
del ultimo teorema

Durante 350 anos los historiadores de las
matematicas se han preguntado inttilmente si
Fermat lleg6 a demostrar su teorema, si fanfarroneaba,
o si se equivoco al pensar que lo habia demostrado.
Dado el modo de actuar del matematico francés,
casi todo es posible, aunque algunas informaciones
son mas probables que otras.






Los instrumentos matematicos de la época de Fermat eran muy
similares a los que emplea un alumno aplicado de instituto. Dicho
de otra forma, la humanidad tardé unos 2 500 afios en adquirir los
conocimientos de un bachiller. En cambio, desde entonces los
conceptos son cada vez mas dificiles de entender para los no es-
pecialistas.

La matematica que us6é Wiles para demostrar el dltimo teo-
rema de Fermat no existia en los tiempos del sabio francés. De
hecho, buena parte de ella no fue inventada hasta el siglo xx. Ello
hace extraordinariamente dificil creer que Fermat tuviera una
prueba de su teorema, que resistié los ataques de algunas de las
mejores mentes matematicas mundiales durante 350 aifios.

Lo mas probable es que Fermat hubiera demostrado algunos
casos particulares del teorema. En la observacién 45 del tratado
de Diofanto consta que probé el caso conn = 4. Es decir, no exis-
ten nimeros naturales x, y y 2 tales que: x*+y*=2"

Es posible que hubiera probado también el caso con n=3.
Cuando menos, lo citd en su correspondencia como un resultado
probado, de la misma forma que lo hizo con n=4. Y, muy proba-
blemente, a partir de estos dos casos, pensé que la generalizacién
era muy sencilla.

No era la primera vez que Fermat se equivocaba. También
habia afirmado que 2% 41 es siempre un nimero primo (divisible
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solamente por si mismo y por la unidad) si p es primo. El gran
matemadtico suizo Leonhard Euler (1707-1783) demostraria que
esto no es verdadero: con un valor tan bajo como p=5 la afirma-
cién de Fermat falla, ya que dicho niimero es divisible por 641.

Asi que Fermat se habia equivocado alguna vez, confiando
demasiado en su intuicién y en sus demostraciones incompletas.
No es descabellado pensar que su supuesta demostracién del ul-
timo teorema solo existié en su imaginacion, y que su falta de
rigor le llev6 a hacer una afirmacion muy audaz a partir de un par
de casos especiales... afirmacién de la que, por otro lado, no se
tiene constancia de que quisiera compartirla con otros.

En todo caso, hay que hacer notar que la observacién que
constituye el iltimo teorema es una cosa curiosa, casi un deta-
lle, no uno de los fundamentos de una revolucién matematica.
Comparada con otros resultados que a fecha de hoy no han sido
demostrados, como la hipétesis de Riemann, su importancia ma-
tematica palidece: al demostrar el tiltimo teorema no se crea un
nuevo y fecundo campo de investigacién matematica. Los mate-
maticos miden la importancia de un resultado en funcion de la
matemadtica nueva que dicho resultado, al ser demostrado, ge-
nera. El caso es que el iltimo teorema, por si mismo, no genera
gran cosa.

Sin embargo, los esfuerzos para demostrarlo durante 350 aios
desarrollaron teorias matematicas importantisimas. Su enorme
paradoja es esa: en cierto sentido, es un resultado sin importancia,
una observacién adecuada para el margen donde fue escrita; pero
la enorme dificultad de la demostracién y el interés que suscité a
través de los siglos llevaron a crear teorias completas cuya apli-
cacién y desarrollo resultaron capitales.

Aquellos profesores de los que hablamos al principio segu-
ramente decian a sus alumnos: «Ojald nunca sea demostrado».
Porque las matematicas que han generado sus intentos de de-
mostraciéon son mas importantes que el teorema en si, y espe-
ramos que se sigan creando teorias novedosas gracias a dichos
intentos.

Desde luego, cabe otra version de la historia, en la que Fer-
mat, como hizo alguna vez, jugaba con sus contemporaneos, re-
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tdndolos a demostrar algo de lo que €l mismo no estaba seguro;
pero el no haber hecho piblico el resultado trabaja en contra de
tal hipotesis. Ademas, como se ha dicho, la posibilidad de que
realmente tuviera una demostracién general del teorema es muy
dificil. O los matematicos mas brillantes de los iltimos 350 afos
han sido ciegos o la matematica necesaria para demostrar el teo-
rema simplemente no existia en los tiempos de Fermat. Lo se-
gundo es mucho més probable.

Un problema sin resolver es como un muro. Los matematicos
que lo acometen tienen que fabricar armas para derribarlo. Y hay
problemas que, sencillamente, no pueden ser derribados con cier-
tas armas. De la misma forma que una catapulta romana resultaria
absurdamente inttil contra un portaaviones moderno, determina-
das herramientas matematicas son pobres ante ciertos problemas,
y los matematicos tienen que devanarse los sesos inventando nue-
vas estrategias de ataque y nuevas armas. La historia moderna de
las matematicas, en buena medida, es la historia de la invencién
de esas armas.

Fermat tenia armas que una generacion o dos anteriores no
hubieran sofiado; pero no eran suficientes para resolver su pro-
blema. Por otro lado, era imposible que él lo supiera. Tal vez el
jurista tolosano se vio deslumbrado por el brillo de las armas que
su maestro Vieta y é1 mismo habian inventado, y no supo que no
serian capaces de derrumbar determinados muros. El lema de
Vieta era nullum non problema solvere: «<no hay problema sin
solucién». Esta confianza era excesiva, pero nadie podia saberlo
entonces.

Los matematicos acometen las demostraciones con tantas
estrategias como tiene un general en batalla; o tal vez con més de
ellas. En tiempos de Fermat el niimero de estrategias se multiplicé
drasticamente con la invencién del dlgebra simbélica; una de las
que usoé el propio Fermat la inventé é1 mismo: el método del des-
censo infinito, que parte de la reduccién al absurdo. En su versién
mas simple, dicho método consiste en asumir como hipétesis la
negacién de la conclusién del teorema que queremos probar (el
recurso de reduccion al absurdo), y buscar una propiedad que es
vélida para un nimero dado, n. Acto seguido, se demuestra que si
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esa propiedad es vélida para el nimero n, también lo es para un
nimero menor que 7, tipicamente n-1.

iPero aqui hay un problema! Si esto es cierto, hay sucesién
infinita de nlimeros naturales cada vez mas pequerios, y sabemos
que esto no es cierto. Hay un niimero natural mas pequeiio que
todos, el nimero uno. Por tanto, tenemos una contradiccién, lo
cual demuestra que nuestra hipétesis es errénea.

Asi fue como Fermat demostré que su famoso teorema era
verdadero al menos en el caso particular en el que n=4, en una
demostracién que casi cupo en otro margen de la misma Aritmé-
tica de Diofanto donde consigné el caso general. Y decimos «casi»
porque Fermat omitié, como era su costumbre, algunos pasos de
la demostracion.

Poco més se puede decir de las investigaciones de Fermat
sobre su iltimo teorema, ya que apenas dejé algo dicho al res-
pecto; asi que tenemos que embarcarnos en esa jornada de 350
afios para entender el desarrollo de una historia que Fermat no
pudo ver.

DE EULER A SOPHIE GERMAIN

Como ya se ha dicho, el dltimo teorema fue postulado péstuma-
mente. Por otro lado, la teoria de niimeros formulada por Fermat
tuvo bastante poco éxito entre sus contemporaneos, mas preo-
cupados por los acuciantes problemas del calculo. Asi pues, la
publicacién de los comentarios de Fermat a la Aritmética de
Diofanto tuvo poca repercusién. Los matematicos de su época
no entendian su obsesién por esos problemillas sin sentido, que
parecian més adivinanzas y puzles que problemas matemaéticos
importantes.

Fue otro cientifico aficionado, el matematico prusiano Chris-
tian Goldbach (1690-1764) —a quien curiosamente se recuerda
por una conjetura no muy distinta de los problemas que abordaba
Fermat y que continiia sin ser resuelta a dia de hoy—, el que co-
menzé a estudiar a Fermat y llamé la atencién del mas grande
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LEONHARD EULER

El matematico suizo Leonhard Euler
(1707-1783) fue el estandarte de la ma-
tematica del siglo xvii. Su trabajo cubre
practicamente todas las dreas vigentes
en su momento, al tiempo que impor-
tantes trabajos en fisica. Euler ocupd
destacados puestos en las Academias
Reales de Rusia y Prusia, bajo Catalina
la Grande y Federico Il, donde se coded
con reyes y pensadores de la talla de
Voltaire. Tuerto de un ojo, Euler termind
por perder la vista del todo, pero ello no
le impidid seguir produciendo al ritmo
de un articulo a la semana. Dotado de
una memoria prodigiosa, lograba com-
poner sus teoremas en su mente de la
misma forma en que podia recitar sin

problema la Eneida de principio a fin. De él se cuenta que, estando Catalina
harta de los desplantes ateos de Diderot, pidié a Euler que le humillara pu-
blicamente. Euler se acercé al filésofo y le espetd:

n
2 = = x, por tanto, Dios existe. iRespondal».

Diderot no supo qué responder. Sin embargo, algunos historiadores dudan
de la veracidad de la anécdota. También Euler es responsable de una de las

formulas mas bellas de la matematica: e*+1=0.

matematico de su época sobre los trabajos del tolosano. Nacido
unos cuarenta afios después de la muerte de Fermat, ese matema-
tico era Leonhard Euler.

Sucede que la curiosidad de Euler se desperté por los comen-
tarios de Goldbach, y el suizo comenzé a analizar los trabajos de
Fermat. Entre otras cosas, demostré que este se equivocaba en
uno de los resultados de los que se sentia méas orgulloso, la afirma-
cién de que ciertos niimeros, conocidos como «nimeros de Fer-
mat», son siempre primos. Pero Euler también indagé si el iltimo
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teorema era cierto. Y aunque no pudo demostrarlo en el caso ge-
neral, logré demostrarlo para el caso en el que n=3. Asi que, en el
punto en el que Euler dejo el tema, se habian demostrado dos
casos... o en realidad una infinidad de ellos, ya que si se demues-
tra el teorema para n =3, el resultado es valido para todos los mul-
tiplos de 3, es decir, para la secuencia 6, 9, 12, 15... Esto es asi
porque cualquier potencia que sea multiplo de tres se puede escri-
bir como un mimero al cubo. Por ejemplo, 4°= 16°. Andlogamente,
como Fermat demostré el caso n=4, estd demostrado también

para los miiltiplos de 4.

SOPHIE GERMAIN

Como todas las mujeres cientificas hasta
el siglo xx, la matematica parisina Sophie
Germain (1776-1831) se enfrentd a multi-
ples problemas para seguir su carrera
cientifica. Sin educacién formal, se hizo
con las notas de I'Ecole Polytechnique
para estudiar. Se carte¢ con los grandes
matematicos de la época, como Joseph-
Louis Lagrange, Adrien-Marie Legendre
y Gauss, haciéndose pasar por un tal «se-
fior LeBlanc». Gauss se enterd de su
identidad en las circunstancias mas cu-
riosas imaginables. Habiendo ocupado
las tropas napolednicas la localidad ale-
mana en la que Gauss vivia, Germain te-
mio por la vida de su corresponsal, re-
cordando el ejemplo de Arquimedes, asi
que escribio al general Pernety, amigo
de su familia, rogandole que protegiera
al genio. Pernety mandd un destacamen-
to que informo a Gauss de las gestiones
de Sophie. Emocionado y asombrado,
Gauss escribio a Germain haciéendole notar cémo los estupidos prejuicios de
la época hacian que una mujer requiriera ser en realidad una persona del «mas
noble valor, extraordinario talento y genio superior» para lograr vencer los
obstaculos que se oponian a su carrera.
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Si pudiéramos demostrar el teorema para los nimeros pri-
mos, dado que cualquier niimero es un miltiplo de primos, lo ten-
driamos demostrado en general. Sin embargo, por desgracia, la
demostracién para el caso n=5 era extraordinariamente mas
compleja de lo que Fermat hubiera imaginado. De todas formas,
el hecho de que Euler se interesara por los trabajos de Fermat
insuflé una bocanada de aire fresco en la teoria de niimeros. Esta
disciplina se convirtio, gracias a Euler y a Carl Friedrich Gauss
(1777-1855), en una teoria matemadtica respetable, tal y como Fer-
mat habia deseado.

Sin embargo, el teorema no tuvo suerte en manos de Gauss,
el llamado principe de las matematicas, que se referia a él en tér-
minos desdefiosos. Lo consideraba una pérdida de tiempo; o es
posible que haya intentado resolverlo alguna vez, y que, frustrado
por su falta de éxito, adoptara la estrategia del zorro con las uvas,
fingiendo despreciar lo anhelado por saberlo inalcanzable.

Pero otros matematicos de su época lo abordaron. Notoria-
mente, Sophie Germain, que descubrié que, para los primos que
llevan su nombre (nimeros p donde p es un primo y P=2p +1
también lo es), aunado a ciertas propiedades que deben cumplir P
y p, en particular que p no divida a xyz, el producto de las tres
incognitas de la ecuacién de Fermat, el diltimo teorema de Fermat
es cierto para n=p. Con esta técnica, Germain logré demostrar el
teorema de Fermat para todos los primos menores de 100. Por
desgracia, su trabajo no fue publicado en vida.

Adrien-Marie Legendre y Gustav Lejeune Dirichlet lograron
demostrar el caso n=5. La demostracién usa herramientas mate-
méticas que no existian en el siglo xvi, como la teoria de formas
cuadraticas. La demostracion, en efecto, era relativamente senci-
lla para los casos n =3 y n=4, pero se volvia mucho més compleja
a partir de n=5, e intratable por métodos convencionales a partir
de n=23.

De todas maneras, el intento de Sophie Germain fue el pri-
mero en el que se buscaba una solucién para toda una clase de
nimeros, no para primos particulares, y abrié una estrategia no-
vedosa de ataque al problema que sigui6 utilizindose en afos
venideros.
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LAME, CAUCHY Y KUMMER

Las décadas siguientes vieron los intentos de Gabriel Lamé (1795-
1870) y Augustin-Louis Cauchy (1789-1857) para demostrar el teo-
rema. Lamé logré probar el caso n=7, y en una tormentosa sesién
de la Academia Francesa de Ciencias, anunci6 que estaba a punto de
demostrar el caso general. Delineé a grandes rasgos su estrategia,
que se basaba en el dlgebra de mimeros complejos. De forma sensa-
cional, Cauchy, una de las cumbres matematicas de la época, se le-
vanté para declarar, a su vez, que él también estaba a punto de tener
la demostracién, y que su enfoque era muy similar al de Lamé.

Se inici6 entonces una carrera entre los dos matematicos, que
fue dramaticamente interrumpida cuando un alemén, Ernst Kum-
mer (1810-1893), proclamé con teuténica satisfaccién que las téeni-
cas de Cauchy y Lamé estaban equivocadas. En efecto, decia
Kummer, ambos habian cometido el fatal error de suponer que los
nimeros complejos que usaban tenfan una factorizacion tinica. Esto,
argumentaba correctamente Kummer, no era cierto.

Asi las cosas, la estrategia de Cauchy y Lamé se hundio, mien-
tras Kummer siguio investigando y llegé a crear una nueva teoria
matematica para intentar demostrar el tiltimo teorema de Fermat. Su
investigacion le llevé a intentar entender cudles eran los obstédculos
a la factorizacién nica que intentaban los franceses, y esto le llevé
a su vez a formular los principios de lo que se conoce como teoria
de ideales. Las herramientas se iban complicando cada vez més...

Pero Kummer fue mucho més alld. Usando técnicas matema-
ticas atin mds avanzadas, logré encontrar las condiciones que ha-
cian posible la factorizacién tinica. A partir de ello, demostré que
existen ciertos primos, llamados regulares, para los que el tltimo
teorema de Fermat se cumple. Kummer habia logrado demostrar
el teorema para un nimero enorme de casos (tal vez infinito, aun-
que no se ha demostrado que el niimero de primos regulares sea
infinito). De hecho, lo habia demostrado para todos los casos me-
nores a 100 salvo 37, 59 y 67, que son primos irregulares.

El trabajo de Kummer fue también fundamental para la poste-
rior generalizacién de su concepto de niimeros ideales por parte del
matemaético aleman Richard Dedekind (1831-1916), creando la teo-
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PROFUNDIZACION SOBRE EL ENFOQUE DE LAME-CAUCHY
Y DE LA CORRECCION DE KUMMER

El enfoque de Gabriel Lamé y Augustin-Louis Cauchy estribaba en intentar
factorizar el miembro izquierdo de la ecuacién de Fermat de la siguiente
forma: x" + y" = (x+ y)(x +c¥)..(x +c™'y), donde x e y son nimeros enteros
ordinarios y los ¢ son lo que se conoce como enteros algebraicos que, a pesar
de su nombre, son nimeros complejos (nimeros como a+ b/, donde / es igual
a+/-1) que ocurren como raices de cierto tipo de polinomios. Lo relevante es
que, si dicha factorizacion es unica, se puede demostrar que no hay solucio-
nes para la ecuacién de Fermat, es decir, que el ultimo teorema es verdade-
ro. Tanto Lamé como Cauchy habian abierto un nuevo frente: el uso de nu-
meros complejos de una cierta forma. Pero Kummer demostré que esta
factorizacion, en general, es imposible. A partir de ello, intenté buscar las
condiciones en las que pudiera llevarse a cabo. Esto le llevé al estudio de los
llamados campos ciclotémicos, que son una extension de los racionales, ob-
tenida afadiendo uno de los nimeros t* de la ecuacién anterior. Kummer
aplico por primera vez la teoria de grupos a la teoria de nimeros. A partir de
ello, el matematico aleman logré demostrar que existen ciertos primos que
no dividen a un nimero, llamado numero de clase de ideales, que es una
caracteristica de la extensién anteriormente mencionada. Estos primos son
los primos regulares.

BEREI < B A TR el ST AL E R L e e e = — =

ria de ideales, una importante extension de las propiedades de los
nimeros naturales. Un ideal, por ejemplo, es el conjunto de los nu-
meros pares, o los miiltiplos de tres, pero hay ideales que no son
nimeros, a pesar de lo cual conceptos familiares como la factoriza-
cién en primos son aplicables a ellos.

FALTINGS Y LA BUSQUEDA INFORMATICA
DE CONTRAEJEMPLOS

Durante los afios que siguieron a la muerte de Kummer, en 1893,

hubo poca investigacién formal novedosa para demostrar el Gltimo
teorema. Los investigadores profesionales lo dejaron de lado. Se
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convirtié durante décadas en el pasatiempo de matematicos aficio-
nados buscando el Grial que prometia la gloria y algiin premio eco-
némico (a principios del siglo xx, Paul Wolfskehl instauré un
premio dotado con 100000 marcos a quien demostrara o refutara
el dltimo teorema de Fermat), pero las herramientas con que con-
taban estos aficionados, mas o menos tan primitivas como las de
Fermat, se revelaron una y otra vez insuficientes para derribar el
muro. Si acaso, la invencion de los ordenadores permitié intentar
la bisqueda de contraejemplos. Como se sabe, basta un solo con-
traejemplo, un resultado contrario (en el caso de Fermat, encontrar
al menos una terna x, ¥ y 2 naturales que cumplan la ecuacién para
n>2) para demostrar que el teorema es falso. En cambio, si se
quiere demostrar que es verdadero no basta un millén de ejemplos.

Los ordenadores, cada vez mas poderosos, permitieron de-
mostrar a principios de la década de 1980 que el dltimo teorema
era verdadero para todos los valores de n hasta cuatro millones.
Pero eso no bastaba. Aunque la mayoria de los matemaéticos esta-
ban convencidos de que el iltimo teorema era verdadero, no se
puede afirmar un resultado por méas casos afirmativos que lo res-
palden. Esto se comprob6 espectacularmente con una conjetura
que formul6 Euler en el siglo xvi, que afirmaba que 2+ y'+ 2! =w*
no tenia soluciones naturales. Dicha conjetura se demostré falsa
mediante un contraejemplo en 1988, unos doscientos afos des-
pués de la muerte de Euler. La ecuacién tiene la siguiente solu-
cién: x=2682440, y=15365639, 2=18796760 y w=20615673. Es
una especie de justicia poética que el hombre que refuté a Fermat
con sus primos haya sido refutado a su vez.

Pero en 1983, un investigador aleman llamado Gerd Fal-
tings dio un salto de gigante al demostrar que, si existen solu-
ciones naturales a la ecuacién de Fermat, el niimero de estas es
finito. Esto no demostraba el teorema, que dice que el niimero
de soluciones es cero, pero era un avance significativo. Proce-
damos con cautela, aclarando que un nimero finito puede ser
1 Q10" 0 G0N OO WO MO0 amado «nimero de Skewes»,
que tiene que ver con la distribucién de los nimeros primos. Es
un nimero inconcebiblemente grande, muchisimo mayor que el
numero de particulas en el universo, o incluso el nimero de po-
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tenciales interacciones entre dichas particulas. Godfrey Hardy lo
llamé «el ntimero mas grande que ha tenido alguna vez alguna
aplicacién en matematicas».

La estrategia de Faltings se basaba en los resultados de una
disciplina llamada geometria diferencial. La geometria diferen-
cial estudia, muy grosso modo, curvas y superficies geométricas
generalizadas, utilizando para ello herramientas del calculo como
la diferenciacién y la integracién. Ahora bien, un grupo de inves-
tigadores rusos se dio cuenta, en la década de 1970, de que se
podian relacionar ciertos problemas de la teoria de niimeros, a la
que pertenece el tltimo teorema de Fermat, con ciertos proble-
mas de la geometria diferencial. Esos investigadores habian ten-
dido un puente entre dos islas, dos disciplinas que parecian
alejadisimas entre si y cuyos especialistas no se hablaban entre
ellos, al menos no profesionalmente.

Faltings relacioné la ecuaciéon de Fermat (z"+y"=2") con
distintas superficies en el mundo de la geometria diferencial, una
para cada valor de n. Dichas superficies son como rosquillas,
salvo que, en vez de tener un solo agujero central, tienen muchos.
Cuanto més grande es n, mas agujeros tienen. Faltings relacioné
la existencia de més de un agujero con el hecho de que la ecuacion
de Fermat relacionada tenia, cuando mucho, un nimero finito de
soluciones. Era un gran paso, pero aun insuficiente.

LA CONJETURA DE TANIYAMA-SHIMURA

Volviendo al tltimo teorema, nadie se imaginaba por dénde salta-

ria la liebre. Si un matematico de la época de Fermat operaba con
elementos familiares, como circulos o niimeros primos, los inves-
tigadores de épocas posteriores comenzaron a crear criaturas
cada vez mas curiosas y a intentar entender las leyes que reglaban
su comportamiento.

En este punto de la narracién, es preciso no desesperarse si
no se logra entender las complejas estructuras matematicas que
se usan para intentar derribar el muro. Nadie que no sea un ex-
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perto puede entenderlas cabalmente, De hecho, solo un cientifico
profesional puede seguir con detalle estos argumentos. Sea como
fuere, los mateméticos crearon una teoria sobre una de esas es-
tructuras, las curvas elipticas, y otra, totalmente distinta y sin apa-
rente relacion con la primera, sobre formas modulares.

Las curvas elipticas del tipo que nos concierne aqui (véase la
figura) son simplemente ecuaciones de una cierta forma:
yi=x’+ax’+bx+c, donde a, b y ¢ son nimeros enteros. No son
realmente elipses; deben su nombre a haber sido utilizadas en el
pasado para medir trayectorias planetarias. En cambio, las formas
modulares son animalitos un poco mas extraios. Viven en lo que
se llama un espacio hiperbdlico, en el que tenemos dos ejes, pero
ambos estan formados por nimeros complejos. Como resultado,
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dado que todo ntimero complejo tiene una parte real y una imagi-
naria, el espacio hiperbélico tiene en realidad cuatro coordenadas.
Dado que nuestra pobre visién se limita a tres coordenadas espa-
ciales, no podemos visualizar una forma modular. Digamos enton-
ces que una forma modular es un objeto matemaético que habita en
el espacio hiperbdélico, cumpliendo ciertas propiedades. Una de
ellas es que su parte imaginaria es positiva, por lo que nuestros
objetos habitan en la mitad superior del espacio. Otras propiedades
no son tan faciles de describir, y las obviaremos en esta exposicién.

Ahora bien, cada forma modular tiene, siguiendo un simil de
Simon Singh, un ADN, una serie de nimeros que lo describen por
completo, y que llamaremos M, M,,... M,. Anidlogamente, cada
curva eliptica tiene a su vez otro ADN, que llamaremos E , E,,... E.

Hasta bien entrado el siglo xx ambos campos —el estudio de
las curvas elipticas y el de las formas modulares— eran compar-
timentos estancos, sin la menor relacion entre si. Siguiendo la tra-
dicion de especializacién de los matemaéticos, que se volvié cada
vez mas aguda a partir del siglo xix, quienes se ocupaban de una
cosa no tenian la menor idea de la otra.

Pero entonces llegaron los matemadticos japoneses Yutaka
Taniyama (1927-1958) y su amigo Goro Shimura, que postularon
un resultado asombroso: a cada curva eliptica le correspondia una
forma modular, y viceversa. Los ADN eran totalmente intercam-
biables. La secuencia de M de una forma modular era igual a la
secuencia de E de una curva eliptica, y viceversa.

No podian demostrar esta conjetura cuando la plantearon en
el Japén de la posguerra, pero estaban bastante seguros de su
verdad. A la pregunta de un colega de si estaba asegurando que
algunas curvas elipticas tenian una correspondiente forma modu-
lar, Shimura contesté: «No, estoy afirmando que todas la tienen».

La conjetura era hermosa, porque tendia un puente entre dos
dreas aparentemente ajenas. Era un puente entre dos mundos. Si
era cierta, significaba que cualquier teorema demostrado sobre for-
mas modulares seria cierto para las curvas elipticas, y viceversa. La
belleza de todo esto no solamente consiste en que se ahorra la
mitad del esfuerzo, sino que a veces una demostraciéon es mucho
mas accesible en uno de los mundos que en el otro. La conjetura
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fasciné a los matematicos durante décadas... Pero, como sucedié
con el dltimo teorema, resistié todos los intentos de demostracion.

Es cierto que los investigadores habian explorado un enorme
niimero de casos particulares y en todos la conjetura parecia cum-
plirse; pero esto no sirve como prueba. Sin embargo, los investiga-
dores empezaron a explorar sus consecuencias si fuera cierta,
descubriendo una enorme cantidad de resultados fantésticos. La
conjetura era muy fecunda. Si tan solo fuera verdadera... Todos
estos resultados eran como ramas separadas del 4rbol de las mate-
maticas, porque se basaban en una hipétesis no demostrada. Pero
el mundo que se vislumbraba maés all4d del muro era fantéstico.

Afos después, a mediados de la década de 1980, el matemé-
tico alemdn Gerhard Frey plante6 que el tltimo teorema de Fer-
mat podia escribirse como una curva eliptica. Pero era una curva
eliptica muy especial. Si existiera de verdad, su secuencia de E
seria tan extrafia que seria imposible la existencia de una forma
modular con una secuencia de M igual. En efecto, si la curva elip-
tica de Frey existiera, la conjetura de Taniyama-Shimura habria
encontrado un contraejemplo, y seria por tanto falsa. La falsedad
del dltimo teorema implica la falsedad de Taniyama-Shimura, por
lo que, reciprocamente, la verdad de Taniyama-Shimura implica la
verdad del dltimo teorema. Frey no logré probar su hipétesis, pero
el matematico norteamericano Ken Ribet lo hizo poco después.

El resultado de Frey y Ribet inauguraba una estrategia de ata-
que totalmente novedosa. Durante décadas la invencién de estra-
tegias nuevas para atacar el dltimo teorema habia caido en un
impasse, pero de pronto habia nacido un nuevo frente, totalmente
novedoso: quien demostrara la conjetura de Taniyama-Shimura
demostraria el dltimo teorema de Fermat.

EL PASO FINAL
Es aqui donde Andrew Wiles entra en escena. Por una increible

casualidad, Wiles habia estado obsesionado por el teorema de
Fermat desde que tenia diez afios; pero cuando estudié matemé-
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ticas, sus intereses le llevaron —aparentemente— muy lejos de
dicho resultado: se especializé en curvas elipticas. Tiene que
haber sido asombroso para él conocer el resultado de Frey y
Ribet, en una conversacién casual en 1986. {El premio estaba a su
alcance!

«Un dia andaba mirando en la biblioteca publica local y encontré
un libro sobre matemaéticas que contaba un poco de la historia
de este problema, y yo, con diez afios de edad, pude entenderlo.
Desde ese momento traté de resolverlo yo mismo [...].

Ese problema era el ltimo teorema de Fermat.»

— ANDREW WILES EN REFERENCIA A SU PRIMER CONTACTO CON EL ULTIMO TEOREMA DE FERMAT.

Sin dudarlo, Wiles se encerré en su cubiculo y, sin partici-
par a nadie de sus proyectos, decidi6 probar la conjetura de Ta-
niyama-Shimura, que, como hemos visto, demostraria de forma
automdtica el tdltimo teorema de Fermat. Entre ese momento de
iluminacién y el ciclo de conferencias en Cambridge mediaron
siete afios, en los que Wiles no publicé casi nada y se dedicé, en
apariencia de forma exclusiva, a sus actividades docentes.

Esto es algo inusitado, dado que un investigador que no pu-
blica ve su carrera seriamente comprometida. Existe un adagio
en la comunidad académica: publicar o perecer. El éxito se mide
por el nimero de citas que tienen los articulos publicados en re-
vistas de prestigio. Sin hacer caso de dicho adagio, Wiles se man-
tuvo en un mutismo practicamente total, publicando de vez en
cuando sobre cuestiones muy alejadas de su investigacién real.
Avanzaba a buen paso, y algunos de sus resultados en teoria de
grupos tenian el suficiente mérito como para darle un gran pres-
tigio; pero temeroso de que alguien se oliera lo que estaba ha-
ciendo, Wiles se obligé a si mismo a callar. Pronto los colegas
comenzaron a pensar que la carrera de Wiles estaba acabada, que
su genio matemético se habia agotado, algo nada raro, ya que la
mayoria de los matematicos hacen sus contribuciones cuando
son jovenes.
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Este mutismo le llevé a tener que tragarse su disgusto
cuando, apenas dos afios después de comenzar su labor, otro
investigador llamado Yoichi Miyaoka anunci6 que habia demos-
trado el dltimo teorema de Fermat. Miyaoka se habia basado en
una estrategia distinta de la de Wiles, heredera de la estrategia
de Faltings, pero andloga en el fondo a lo que intentaba Wiles: él
mismo habia formulado una conjetura, la conjetura de Miyaoka,
que, al igual que Taniyama-Shimura, implicaba el 1dltimo teo-
rema; si la conjetura de Miyaoka era verdadera, también lo era
el dltimo teorema de Fermat. Por fortuna para Wiles, el propio
Faltings encontré rapidamente un error en la demostracion de
Miyaoka, y a pesar de todos los esfuerzos por enmendarlo, ésta

EVARISTE GALOIS Y NIELS ABEL

Evariste Galois (1811-1832) y Niels Henrik Abel (1802-1829) desarrollaron, de
forma independiente, la teoria de grupos para resolver el problema de si la
ecuacion de quinto grado tenia una solucion general, como si la tenian todas
las ecuaciones de grado menor. La teoria del francés Galois fue mucho mas
desarrollada que la del noruego Abel, siendo el primero en usar el término
«grupox». Ambos matematicos compartieron el destino tragico de haber muer-
to jovenes. Abel, consumido por la enfermedad y las privaciones. Galois, fo-
goso revolucionario a la par gque matematico genial, vivid una breve vida que
se consumio en un absurdo duelo por una mujer, en el que muchos han que-
rido ver una trampa politica de la policia de Luis Felipe de Orléans. Ninguno
de ellos fue reconocido en vida. Es conocido que Galois escribié febrilmente
sus ideas en la vispera del duelo, seguramente convencido de que iba a morir
al dia siguiente. De vez en cuando, escribia «No tengo tiempon. Al dia siguien-
te, en efecto, fue herido de muerte y abandonado por su adversario. Todavia
vivio unos dias. Viendo a su hermano llorar le dijo: «No llores, necesito todo
mi valor para morir a los veintiun afios».

Teoria de grupos

Un grupo es simplemente un conjunto A con una operacion @ que cumple
algunas propiedades: es cerrada (el resultado de la operacion esta en A), es
asociativa, tiene un elemento neutro y un inverso. Uno de los grupos mas
sencillos es el de permutaciones de elementos. Por ejemplo, un conjunto
{a.b,c}, y la operacién que consiste en ordenar los tres elementos de distintas
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se hundié en apenas dos meses. Wiles suspiré aliviado y conti-
nué trabajando.

La historia de cémo Wiles logré la demostracién es muy com-
pleja: su prueba tiene més de cien paginas. Conviene resaltar al-
gunos aspectos de ella. En primer lugar, Wiles usd, igual que
Kummer, la teoria de grupos.

El enfoque original de Wiles se bas6 ademas en una estrate-
gia llamada teoria de Iwasawa, la cual descarté, dado que no pro-
ducia avances, a favor del llamado método de Kolyvagin-Flach.
Es interesante hacer notar que la teoria de Iwasawa comenzé
como una generalizacién del trabajo de Kummer. En matemati-
cas hay linajes que persisten en la historia.

maneras (abc), (ach), (bca), etc., forman un grupo. Hoy en dia los grupos son
omnipresentes en matematicas. Pocas cosas han sido tan fértiles como la
teoria de grupos. Pero ademas, el estudio de la teoria de grupos lleva al estu-
dio de otras estructuras algebraicas, como los anillos, los cuerpos y los ideales.
Buena parte del dlgebra moderna es el estudio de un conjunto y ciertas ope-

raciones sobre los elementos de ese conjunto.

Evariste Galois Niels Henrik Abel
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Como hemos dicho, el matematico que intenta demostrar un
teorema dificil es como el general que hace uso de diversas estra-
tegias hasta que, en un momento de iluminacién, encuentra la que
funciona para derribar el muro. Wiles mismo comparé su trabajo
a entrar en una habitacién a oscuras en la que poco a poco se van
reconociendo los muebles y objetos que contiene, hasta que, final-
mente, uno encuentra el interruptor y logra inundar la habitacién
de luz.

El caso es que la prueba que Wiles expuso en aquella célebre
serie de conferencias pronunciadas el 23 de junio de 1993 en
Cambridge estaba basada en su segunda estrategia, en Kolyva-
gin-Flach, habiendo descartado por iniitil el método inicial. Sin
embargo, esa prueba se derrumbd porque contenia un error
fatal.

Wiles se estrellé contra el mismo muro que Cauchy, Lamé,
Kummer y Miyaoka. Todos habian acariciado el premio, solo para
ser derrotados en el tiltimo instante. Ese pequefio paso, ese tiltimo
naipe, se les habia escapado a todos los matematicos. Y ahora, al
parecer, eludia también a Wiles. Al igual que los investigadores
que le precedieron, Wiles parecia destinado a ser otro nombre en
la larga serie de fracasos que ya duraba 350 afios.

Pero ello no fue evidente al principio, cuando Wiles era acla-
mado al final de su conferencia. El error surgié durante la revi-
sién para la publicacién, un proceso rigurosisimo que se conoce
como «revision por los pares». Tipicamente, durante dicho pro-
ceso, se formulan preguntas y dudas que el autor tiene que res-
ponder. Y hubo una de esas dudas que Wiles no pudo resolver. El
error de Wiles, identificado por el matemdtico norteamericano
Nick Katz, es imposible de describir para un lego. Segiin el propio
Wiles, incluso un matematico profesional requeriria dos o tres
meses para entenderlo. Al final, Wiles tuvo que admitir que Katz
tenia razén: se habia equivocado en un detalle tan sutil que era
casi imposible verlo.

El hermetismo de Wiles tenia ese precio. La discusién abierta
entre colegas de los proyectos de investigacién y el grado de
avance de los mismos es una de las reglas no escritas de la practica
matematica. Dicha discusién permite identificar posibles errores,
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discutir estrategias, contrastar ideas. Pero esto tiene un coste: si
alguien te sugiere algo, en el articulo que publiques debes darle
reconocimiento, incluso coautoria. Esto explica que dichos articu-
los parezcan, con frecuencia, escritos por una decena de personas.

«El problema de trabajar sobre Fermat es que puedes pasarte
afnos sin obtener nada [...].»

— AnprREW WILES.
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Wiles conocia el riesgo que corria, pero el premio era dema-
siado importante para compartirlo con nadie. Asi que opté por
correr el riesgo... y cometi6 un error. De todas formas, la prueba
de Wiles contenia tanta matematica novedosa que, por si sola,
habia valido la pena. Igual que Cauchy o Kummer, sus intentos de
asaltar el muro habian abierto las puertas a mundos en los que los
matematicos podian adentrarse fructiferamente durante décadas.
Pero Wiles no estaba listo para darse por vencido. Dado que el
secreto ya no tenia sentido, empez6 a trabajar con un colega, Ri-
chard Taylor, para intentar corregir el error. Finalmente, dio con
la solucién. Todo estribaba en conciliar el método que habia aban-
donado originalmente, el de Iwasawa, con el de Kolyvagin-Flach.
Wiles encontré la solucién el dia de su cumpleaiios, y de pronto,
todo fue claridad. El interruptor de la luz habia sido accionado y
la habitacion resplandecia. Poco después se publicarian dos arti-
culos en los Annals of Mathematics correspondientes a mayo de
1995, uno firmado por Wiles y Taylor y otro solo por Wiles. Ambos
contribuian a demostrar, finalmente, uno de los problemas mas
dificiles de todos los tiempos. El exiguo margen que hubiera con-
tenido la prueba era, en efecto, insuficiente para los cientos de
paginas de novedosa matematica que habia inventado Wiles, ba-
sandose a su vez en las increibles inspiraciones de Taniyama, Shi-
mura, Frey y Ribet. El muro habia caido por fin. Uno de los asedios
mds largos y dificiles de la historia de la matematica se saldaba
con el triunfo de los sitiadores.

Del teorema como tal no se podian deducir resultados nove-
dosos y revolucionarios en matematicas, pero los intentos de de-
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mostracion, tanto los fallidos como el exitoso, dieron un enorme
acervo de nuevas y fructiferas rutas de exploracién. Es posible
que si Euler no se hubiera interesado por el problema, la teoria de
niimeros hubiera tardado mucho mas en ser desarrollada; la teoria
de ideales de Dedekind fue concebida originalmente por Kummer
como una herramienta para abordar el teorema, aunque hoy en
dia es aplicada en muchisimas otras instancias. Faltings y Miyaoka
indagaron en las conexiones entre geometria diferencial y teoria
de nimeros gracias al dltimo teorema. Y, finalmente, Wiles tal vez
no se hubiera dedicado a probar Taniyama-Shimura con tanto
afan si no hubiera conocido la relacién entre esta conjetura y su
problema favorito de la infancia.

Todo ello se lo debemos a ese humilde postulado que no pa-
saba de ser una curiosa observacion, el teorema que Fermat escri-
bi6 un dia en el margen de la Aritmética de Diofanto.
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CAPITULO 3

La moderna teoria de numeros

A pesar de la importancia del dltimo
teorema de Fermat en el desarrollo posterior
de las matematicas, si hubiera hecho solamente esta
contribucién, la figura del jurista tolosano careceria
de la relevancia con la que cuenta. Pero Fermat fue un
matematico de primera linea; para muchos historiadores,
un pensador a la altura de Arquimedes, Euler o Gauss.
Realiz6 importantes contribuciones a uno de sus
campos favoritos, la moderna teoria de nimeros,
de la que el propio Fermat es el fundador.






Los divisores propios o partes alicuotas de un nimero (inclu-
yendo el nimero uno, que siempre divide a cualquier nimero) son
aquellos, distintos del propio niimero, que lo dividen exactamente
(es decir, sin dejar resto). Pues bien, un niimero perfecto es aquel
que tiene la propiedad de que la suma de sus divisores propios es
igual al propio niimero.

Veamoslo con un ejemplo. Los divisores propios de 6 son 1, 2
y3,¥ 1+2+3=6. Luego 6 es un nimero perfecto, el primero de
ellos, de hecho. Los pitagéricos adscribian una gran importancia
mistica a los niimeros perfectos. En particular, el 6 conjuntaba los
tres primeros ntiimeros, que tenian significados misticos importan-
tes (unicidad, dualidad y trinidad como mezcla de unicidad y dua-
lidad); el 6 era el resumen de todos estos significados.

Los griegos solo identificaron los cuatro primeros nimeros
perfectos: el 6, el 28, el 496 y el 8128. El quinto no se descubri6
hasta el siglo xv, y da un salto gigante: 33550336. Hallar un ni-
mero perfecto no es facil. En marzo de 2012 se conocian solo 47
de ellos, el mayor de los cuales tiene 25956 377 digitos.

Conocemos a Euclides como un gran ge6émetra, pero, sin em-
bargo, un hecho menos advertido es que sus Elementos contenian
muchos teoremas aritméticos. Al célebre matematico griego le
debemos, por ejemplo, el saber que los niimeros primos son infi-
nitos. En el campo de los niimeros perfectos, demostré un resul-
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Representacion
gréafica de un
numero perfecto.
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tado asombroso (véase la figura): sea N=2"(2"*'-1)=2"M, donde
hemos llamado M al factor 2™'—~1 (M es uno de los llamados «ni-
meros de Mersenne», que veremos mas adelante). Entonces, nos
dice Euclides, N es perfecto si M es primo.

Como puede verse facilmente, todos estos nimeros N son
pares. No sabemos ain si existen nimeros perfectos impares. Es
uno de los grandes problemas abiertos de la teoria de niimeros. Sin
embargo, se sabe que, si existen, tienen que cumplir un conjunto
de condiciones tan complejas que muchos matematicos piensan
que seria un milagro que lo consiguieran. Tampoco sabemos si los
niameros de la forma N son infinitos, porque no se sabe si el ni-
mero de primos de la forma M, los primos de Mersenne, es infinito.
Lo que si puede afirmarse, dado que Euler lo demostré afios des-
pués de la muerte de Fermat, es que el reciproco del teorema de
Euclides es cierto: todo niimero perfecto par tiene la forma N.

Como es evidente, hay niimeros que no son perfectos. Estos
se dividen en dos tipos: aquellos en los que la suma de sus diviso-
res propios es menor al niimero, llamados niimeros abundantes, y
aquellos en los que dicha suma es mayor al nimero, llamados nu-
meros deficientes (ya que se quedan cortos respecto de la suma).

SN E

28=1+2+4+7+14=2x14=4x7 =22x (2 -1
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DEMOSTRACION DE LA INFINITUD DE LOS NUMEROS PRIMOS

Esta demostracion se debe a Euclides, y procede por el ya conocido méto-
do de reduccion al absurdo. Supongamos que la conclusion es falsa vy los
numeros primos son finitos. Esto quiere decir que hay un numero primo
maximo. Llamémosle p,. Ahora bien, construyamos el nimero N como el
producto de todos los primos mas uno: N=p,p,..p, P, +1=A, +1. Este nu-
mero no es divisible por ningun primo desde p, hasta p , ya que, para ser
divisible, tendria que serlo también tanto A como 1, y, claramente, ningun
numero divide a 1, salvo él mismo. Es decir, o bien N es un niumero primo, o
bien contiene factores primos mayores que p,. Por tanto, hemos encontra-
do un numero primo mayor que p,, contradiciendo nuestra hipotesis de que
p, es el numero primo maximo. Se sigue que la hipotesis es falsa y que el

numero de primos es infinito.

Finalmente, hay otros niimeros muy relacionados con los nu-
meros perfectos: los llamados nimeros amigos. Dos nimeros son
amigos entre sf cuando la suma de los divisores propios de uno es
igual al otro y viceversa. En la Antigiiedad, el tinico par de niime-
ros amigos conocido era 220 y 284. En efecto, los divisores pro-
piosde 220son 1, 2,4, 5, 10, 11, 20, 22, 44, 55, 110,y 284=1+2+4 +
+5+10+11+20+22+44+55+110. Andlogamente, los divisores
propiosde 284 son 1, 2,4, 71, 142, y 220=1+2+4+ 71 + 142.

También este par de nimeros amigos tenia un significado
méagico-mistico. En la Edad Media, se creia que si dos personas
comian dos panes en los que se habian inscrito estos dos niime-
ros, respectivamente, esas personas serian amigas para siempre,
aunque no se conocieran con anterioridad.

La resurreccién del misticismo pitagérico al principio de la
Edad Moderna mantuvo el interés en estos problemas. En su libro
Traité de 'harmonie universelle, Mersenne afirmaba que Fermat
habia descubierto un par de niimeros amigos, 17296 y 18416, el
primer par de nimeros amigos descubierto desde la Antigiiedad.
Y también que Fermat habfa demostrado que tanto 120 como 672
eran nimeros deficientes con valor igual a la mitad de la suma de
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sus divisores propios (es decir, dicha suma es 240 y 1344 respec-
tivamente). Tales niimeros se conocen como niimeros multiplica-
tivamente perfectos o k-perfectos.

«[Entre] los hombres de alta alcurnia... que han hecho
aportaciones en esta drea de las matematicas y a quienes nadie
puede ensefar nada, repetma el nombre de... [Etienne Pascal]
y afiadiria el del Sr. Fermat...

— COMENTARIO DE MARIN MERSENNE EN 8U LIBRO TRAITE DE L’HARMONIE UNIVERSELLE (1636).
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Asfi, ya en 1636 Fermat estaba preocupado por c6mo determi-
nar la suma de los divisores propios de un niimero dado, y segura-
mente por aquel entonces tenia un método para hacerlo. Dicho
método nunca fue publicado y estéd perdido. Nos ha llegado, sin
embargo, un método debido a René Descartes. Dado que todo nu-
mero se puede expresar como el producto de potencias de sus
factores primos, N = p{* p...p%, los divisores propios seran todas
las combinaciones posibles entre dichos factores. Por ejemplo,
1452=2%.3.11%y los divisores propios son 2, 3,11, 22 112, 2.3, 22.3,
etc., cubriendo todas las combinaciones. Descartes encontré una
férmula que, dados resultados anteriores, proponia un nuevo divi-
sor propio, hasta agotar todos ellos. Es lo que se conoce como una
férmula recursiva. El método de Fermat seguramente era similar.

Fermat derivé varios resultados a partir de su método. Por
ejemplo, envi6é a Mersenne un par de resultados que este incluyé
en la segunda parte de su Harmonie, publicada en 1637. El pri-
mero proponia un método general para encontrar niimeros ami-
gos, similar en estructura a la que aplicé Euclides para encontrar
nimeros perfectos. En particular, si tres nimeros A = 3%. 2%,
B=3-2"'y C=3-.2"!-1 son primos, entonces 2"A y 2"BC son ni-
meros amigos. Noétese la similitud de este resultado con el de
Euclides sobre niimeros perfectos. El segundo resultado daba una
férmula similar para un caso especifico de nimeros multiplicati-
vamente perfectos, los que son la tercera parte de su suma de di-
visores propios. El argumento era similar: si un niimero de cierta
forma es primo, el resultado de la férmula es un niimero que, mul-
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tiplicado por tres, da la suma de sus divisores propios. Fermat
afirmé que habia encontrado férmulas similares para otros nime-
ros multiplicativamente perfectos, pero estas nunca aparecieron.

Todos estos problemas tienen un sustrato comin: en cada
uno de ellos, antes de poder asegurar si un nimero es perfecto, o
un par de ellos amigos, u otro multiplicativamente perfecto hay
que averiguar si ciertos niimeros con determinada estructura son
primos. No es de extraiiar, por tanto, que en su correspondencia
con Mersenne en los tultimos afios de la década de 1630 su aten-
cién se dirigiera cada vez mas hacia el problema de probar cuando
un nimero con cierta forma es primo.

EL PEQUENO TEOREMA DE FERMAT

Fermat se dio cuenta de que los problemas fundamentales de la
teoria de niimeros se derivan del estudio de los primos, la factori-
zacion y la primalidad (es decir, la determinacién de si un ni-
mero es primo). Este hecho le convierte en el padre de la teoria
de niimeros moderna.

En la Antigiiedad, Diofanto habia publicado una célebre Arit-
mética, de la cual ha sobrevivido aproximadamente la mitad. No
es un tratado como los Elementos de Euclides, sino una coleccién
de maés de cien problemas de ecuaciones determinadas —con una
o pocas soluciones tinicas— e indeterminadas (con un nimero
infinito de soluciones). No hay un enfoque sistematico en la expo-
sicién de dichos problemas, cuya solucién suele ser ad hoc, indi-
vidual para cada problema. El método de solucién se expone caso
por caso, a manera de ejemplo. De forma no menos importante,
cuando se topaba con una ecuacién indeterminada Diofanto se
contentaba con encontrar una sola solucién, ignorando la existen-
cia de otras posibles soluciones.

Dado que, como se ha visto con anterioridad, los griegos con-
sideraban que los niimeros eran solo los niimeros racionales posi-
tivos, mientras que los niimeros como V2 eran extrafios monstruos
que solo aparecian en geometria, Diofanto daba soluciones tinica-
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mente para dichos niimeros. Por ello, los métodos para eliminar
soluciones no racionales eran fundamentales para Diofanto y se
usaban aiin en el siglo xvi. Ahora bien, los niimeros racionales, en
general, no son factorizables. Los griegos lo sabian, pero, aunque
conocian los primos, no habian creado una disciplina que estudiara
de forma exclusiva los niimeros que si son factorizables, los natu-
rales. Esa disciplina la fund6 Fermat; él fue el primero en darse
cuenta de que los niimeros naturales merecian ser estudiados por
si mismos, y el primero en sentar los fundamentos de dicho estudio
en el andlisis de las propiedades de los niimeros primos.

Los niimeros primos son los ladrillos con los que se constru-
yen todos los naturales. Ya se han visto varios resultados en los
que es fundamental que una cierta cantidad sea un niimero primo.
Hay muchos otros en los que uno se concentra en los niimeros
primos, ya que explorar las propiedades de estos ladrillos permite
hacer aseveraciones que no se podrian realizar sobre un natural
en general. Los primos tienen propiedades interesantes que los
nimeros compuestos —no primos— no poseen; por ese motivo,
razonar con ellos y deducir propiedades de los niimeros com-
puestos a partir de ellos es una estrategia comin en teoria de
niameros.

Los trabajos de Fermat llamaron la atencién de un matema-
tico llamado Bernard Frénicle de Bessy (1605-1675), miembro del
circulo de Mersenne. Frénicle, aunque no tenia el genio matema-
tico de Fermat, habia desarrollado una intuicién impresionante
sobre las propiedades de niimeros muy grandes. Su relacién fue,
como todas las de Fermat, epistolar, comenzando en 1640 y termi-
nando, con intermitencias, casi veinte anos después. Y como mu-
chas de las de Fermat, fue una relaciéon dificil. Sin embargo,
Frénicle fue tal vez la persona que mejor entendio las contribucio-
nes de Fermat a la teoria de niimeros.

En efecto, viviendo en aislamiento en Toulouse, Fermat fra-
cas6 una y otra vez en sus intentos de despertar el interés de sus
colegas en el novedoso campo que estaba descubriendo. Parte de
la culpa se debe, seguramente, a dicho aislamiento monacal. Pero
otra buena parte es fruto de su forma de trabajar. Al no compartir
sus métodos, al tratar incluso a corresponsales como Frénicle con
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LA CRIBA DE ERATOSTENES Y LA COMPLEJIDAD

La criba de Eratostenes es el método mas antiguo para determinar si un nu-
mero N es primo. Para ello, se hace una lista de todos los numeros hasta M.
Partiendo del primer primo, el 2, se tachan de esa lista todos los multiplos de
2 hasta N. Luego se hace lo propio para el primer nimero no tachado de la
lista, que es el 3, luego el 5, etc., hasta llegar al niumero mas cercano a JN.
Cada primer numero no tachado es primo. Si en cualquier momento de este
proceso se tacha N, sabemos que N es un numero compuesto. Por el contra-
rio, si se llega al dltimo numero, el primo mas cercano a JN, Nes primo. Evi-
dentemente, el método es engorroso, ya que requiere conocer todos los nu-
meros primos hasta v/N. Un método similar es la divisidn por tentativa. En este
caso, se divide por todos los primos hasta JN (obtenidos previamente), o bien
por dos vy todos los impares hasta JN, hasta encontrar uno que dividaaNo
agotar la lista.

Eficiencia computacional

Los métodos como la criba de Eratdstenes claramente pueden ser mas o
menos eficientes. El estudio de la eficiencia computacional de un algoritmo
es una de las ramas de investigacion mas importantes en computacion. Hay
problemas que son irresolubles, dado que no existe un algoritmo que pueda
dar siempre una respuesta. De los problemas que son solubles, podemos
estimar cual es el tiempo maximo en el gue se resuelve el problema con un
algoritmo dado. Esto se representa como O(f(n)), donde f(n) es cualquier
funcién de n, que a su vez es una medida del «tamafo» del problema (por
ejemplo, puede ser el nimero de elementos de una lista). Puede haber algo-
ritmos con complejidad: O(n),0(n?),0(logn),O(nlogn), O(e™), etc. Por otro
lado, existen problemas que, siendo solubles, requieren tanto tiempo gue no
es realista intentar resolverlos. Son los problemas de complejidad exponen-
cial: O(e"™) o, peor aun, combinatoria: O(n!), por ejemplo, contar todas las
permutaciones de n objetos. Reciben el nombre de problemas intratables.
Hay otra clase de problemas muy interesante: aquellos que podrian ser intra-
tables, pero no sabemos si lo son. Conceptualmente, son problemas en los
que, si se conoce la solucién, es muy facil comprobar si dicha solucién es
verdadera, pero en los que encontrar la solucién, al parecer es un problema
intratable. Decimos «al parecer» porque nadie ha podido demostrar si lo son.
Estos problemas se llaman problemas NP. El problema de factorizar un nu-
mero es el ejemplo mas relevante para nosotros. Finalmente, existen los pro-
blemas tratables, que son los que sabemos que son solubles en un tiempo
razonable, del orden de O(n*), O(nlogn) u O(logn), conocidos como tiempos
polinomiales. La criba de Eratéstenes es un algoritmo con complejidad
0(105). claramente exponencial.
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displicencia, era imposible que Fermat creara escuela, se allegara
discipulos, tomara el papel de un lider explorando territorio nuevo.

Siempre que Fermat trabajé en problemas que preocupaban
a sus contemporaneos, sus contribuciones fueron razonable-
mente reconocidas. Pero en teorfa de niimeros estaba solo. El era
el pionero. Nadie le entendia, nadie comprendia por qué esos
problemas en apariencia triviales, sin ninguna aplicacién, tenfan
la menor importancia. Que ninguna persona le hiciera caso le
causdé una enorme amargura, que comenzé a manifestarse gra-
dualmente en una beligerancia cada vez mayor contra sus con-
temporaneos.

En su correspondencia con Fermat, a través de Mersenne,
Frénicle reté a Fermat a que encontrara un nimero perfecto de
20 digitos. La respuesta del matematico tolosano fue inmediata:
no existe tal nimero, como tampoco existe uno de 21 digitos, lo
cual a su vez demuestra que la conjetura de que existe al menos
un nimero perfecto en cada intervalo entre 10" y 10"*! es falsa.

En una de las raras ocasiones en las que Fermat mostré algu-
nas de sus bazas, en su respuesta a Frénicle, en 1640, afirmaba que
los niimeros de Mersenne M=27-1 solo son primos cuando el
exponente es primo. También que, si n es primo, n dividea 2™1-1
y, finalmente, que si n es primo, los Unicos divisores posibles de
2"~1 tienen la forma k (2n) + 1. Pero como era habitual, Fermat no
ofreci6 ninguna prueba.

El primer resultado es muy importante, ya que permite descar-
tar una gran cantidad de nimeros de Mersenne como candidatos
a primos. El segundo y el tercero son atajos. El segundo permite
encontrar al menos un divisor de un cierto niimero de Mersenne
(que puede ser el propio mimero, como demuestra 2°-!-1=3, que
divide a 3) y el tercero permite limitar la forma de los factores de
otro nimero de Mersenne, con lo que su bilisqueda —y la conse-
cuente demostracion de si el niimero es primo o compuesto— se
vuelve mucho maés eficiente: se limita a los nimeros de esa forma,
excluyendo todos los demas. Si bien Fermat no conocia métodos
de biisqueda de primalidad mejores que la criba del griego Eratoés-
tenes de Cirene (276-194 a.C.), si podia determinar la primalidad
de ciertos mimeros muy rapidamente gracias a estos atajos.
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Fermat usé el tercer resultado para demostrar que no existe
ningiin nimero perfecto de 20 o 21 digitos. Primero, determiné que
2%~1 es el inico nimero de Mersenne que puede generar, a través
de la férmula de Euclides, un niimero perfecto de 20 o 21 digitos
(esto implica conocer y dar por vélido el reciproco del teorema de
Euclides, que demostré Euler afios después). Luego determiné que
ese nimero de Mersenne no es primo, siendo divisible por
223=3-(2-37)+1, que precisamente tiene la forma k(2n)+ 1. En
efecto, en vez de tener que calcular la cantidad enorme de primos
que podrian dividir al trigésimo séptimo niimero de Mersenne, a
Fermat le basto6 ir probando los nimeros k (2-37) + 1 para distintos
valores de k. Al tercer intento ya habia encontrado la respuesta.

En su carta a Frénicle, Fermat decia que habia comenzado a
vislumbrar la luz de resultados maravillosos. Pero en realidad, esa
luz ya la habia visto. Los dos tiltimos resultados de los que hablaba
a Frénicle eran corolarios de un resultado mucho maés general, lo
que hoy en dia se conoce como el «pequeiio teorema de Fermat»,
para diferenciarlo del dltimo teorema. Es una paradoja que el «pe-
quefio» teorema sea mucho mas titil en teoria de niimeros que el
«iltimo», pero asi lo ha querido la terminologia.

EL RECIPROCO DE UN TEOREMA

La demostracion directa de un teorema procede de las hipotesis, y paso por
paso avanza hacia la conclusion. Algunos de estos pasos son invertibles; otros
no. En general, un paso que tenga una implicacién no es invertible. Veamoslo
con un ejemplo cotidiano. Se puede deducir que la acera estd mojada del
hecho de que esta lloviendo, pero no podemos deducir que estéd lloviendo
porque la acera estd mojada; lo ultimo puede haber pasado por circunstancias
ajenas a la lluvia, desde un camién cisterna que derrama agua a su paso has-
ta una manguera con la que se riega la acera. Si llueve, entonces la acera esta
mojada, pero no necesariamente al revés. Decimos gue el hecho de que llue-
va es una condicidn suficiente para que la acera esté mojada, pero no es ne-
cesaria. Esta unidireccionalidad esta presente, entre muchos otros, en el pe-

quefio teorema.
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En el mismo afio 1640 Fermat anunciaba el pequeiio teorema
a Frénicle. El pequefio teorema de Fermat es uno de esos resulta-
dos que solo es aplicable a un niimero primo. En su enunciado
actual, el teorema dice que, dados un primo p y un nimero na-
tural a, con a y p primos relativos (o sea, que p no divide a a),
a?~'—1 es divisible por p. Al principio no parece clara la relevancia
de este teorema, pero el hecho es que establece una propiedad
fundamental de los ladrillos, los primos, que tiene consecuencias
muy interesantes.

Godfrey Hardy, hacia 1912, notaba con satisfaccién que los
problemas de la teoria de niimeros no tenian aplicacién practica.
Sin embargo, este hecho cambié radicalmente cuando, en 1977, se
desarroll6 un algoritmo de encriptacién llamado RSA, que depende
criticamente de la diferencia en eficiencia entre factorizar un ni-
mero en dos factores primos (encontrar la solucién) y multiplicar
dos factores para obtener un niimero (comprobar la solucién).

Violar el cédigo requiere factorizar un nimero enorme. Esto
tiene que ser muy dificil para que el algoritmo tenga éxito. En
cambio, quienes conocen los factores pueden ficilmente codifi-
car y descodificar el mensaje, ya que ello solamente requiere una
multiplicaciéon. Por primera vez, la teoria de niimeros tenia una
aplicacién practica. De este principio dependen hoy en dia todas
las transacciones encriptadas que se llevan a cabo en Internet,
nada menos. Sin embargo, la seguridad del método, entendida
como la diferencia de tiempo entre codificar y descodificar, por
un lado, y violar el cédigo, por otro, no ha podido ser demos-
trada. Toda nuestra economia electrénica pende de ese hilo ma-
temaético, aunque la mayoria de los expertos cree que el algoritmo
es seguro.

Sea como fuere, a partir de la implantacién generalizada del
RSA, tanto las pruebas de primalidad —el primer paso del algo-
ritmo es encontrar dos primos enormes— como los algoritmos de
factorizacion —que, en el peor de los casos, podrian destruir la
seguridad del RSA— han cobrado una importancia practica
enorme.

Fermat estaba, pues, preocupado por el problema de la pri-
malidad. Como ejemplo de una prueba de primalidad trivial, uno
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puede preguntarse si un niimero dado cumple la propiedad del
pequeio teorema de Fermat; sin embargo, nétese que esto es el
reciproco del teorema y, por tanto, no hay ninguna garantia de que
el nimero sea primo. De hecho, se sabe que los llamados niimeros
de Carmichael no cumplen el reciproco del teorema. Aun asi,
dicha prueba es tan sencilla y rapida que se usa en la implementa-
cién del algoritmo RSA para descartar rapidamente nimeros com-
puestos. Porque, en realidad, la prueba de primalidad basada en
el pequeiio teorema es una prueba de si el niimero es compuesto.
Por si fuera poco, el pequefio teorema de Fermat se utiliza tam-
bién para demostrar que el algoritmo RSA es correcto.

Otras pruebas de primalidad se dividen entre probabilisticas y
deterministas. Entre las primeras estd la prueba de Miller-Rabin,

LA FACTORIZACION DE FERMAT

Fermat inventd un método de factorizacién que, en ciertos casos, es mas
eficiente que la division por tentativa, a partir de la observacion de que un

numero impar no cuadrado se puede escribir como N=x?-y2, donde

+1, _m-n
2 Yi¥ PN

n
X =l

Se puede demostrar facilmente que N=n,n,. Si N es primo, n.=Ny n,=1. En
caso contrario, n, y n, son divisores propios de N. Dado que n, ¥ n, son impa-
res por ser N impar, x e y son enteros. De aqui que resolver la ecuacién ante-
rior para x e y enteros implique la existencia de una factorizacién de N. Para
resolver esta ecuacion se procede por tanteo, empezando con un entero m
que cumpla cierta propiedad vy, si no es la solucién, continuar con otro nume-
ro m’ que se obtiene a partir de m, y continuar asi hasta gue se obtenga un
divisor propio o se llegue al propio nimero N. La factorizacion de Fermat
puede llegar a ser muy eficiente en ciertos casos, porque los nimeros m tienen
que ser cuadrados, y muchas veces es muy facil determinar si un numero es
cuadrado solo por inspeccion. En efecto, los cuadrados perfectos solo pueden
terminaren 0,1, 4, 5, 9, 16, 36, 56, 76 y 96, lo cual excluye el 90% de las ter-
minaciones. La belleza del método es que no requiere conocer todos los
primos hasta un cierto nimero, y que, si N es compuesto y tiene un factor

cercano a YN , esta factorizacion lo identifica con rapidez.
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que se basa también en el pequefio teorema de Fermat, o la de
Solovay-Strassen, fundamentada en un teorema de Euler que gene-
raliza el pequefio teorema. Esta tltima nunca declara que un ni-
mero es primo sin serlo, pero es menos exitosa con nimeros
compuestos. En efecto, hay pruebas que son mas eficaces mos-
trando que un niimero es compuesto y otras mas aptas para probar
que es primo.

Una extensién determinista de la prueba de Miller-Rabin se
basa en un resultado no probado: la hipétesis extendida de Rie-
mann. Su eficacia, evidentemente, depende de que dicha hipétesis
sea cierta. Sin embargo, en 2002 se anuncié por primera vez una
prueba, llamada AKS, que es general (funciona para cualquier ni-
mero), determinista, incondicional (no depende de resultados no
probados) y eficiente (con una complejidad computacional poli-
nomial). El algoritmo AKS estd también basado en una generaliza-
cién del pequefio teorema de Fermat.

Es importante distinguir las pruebas de primalidad de los
algoritmos de factorizacién. Mientras que todo algoritmo de fac-
torizacién es implicitamente una prueba de primalidad, las prue-
bas de primalidad no implican necesariamente factorizar. Por
ejemplo, la criba de Eratéstenes no factoriza el niimero (aunque
una generalizacion trivial puede hacerlo) y la prueba basada di-
rectamente en el pequefio teorema de Fermat ni siquiera encuen-
tra ninguno de sus factores, mientras que la divisién por tentativa
si lo hace. De aqui que, aunque se haya encontrado un algoritmo
eficiente como prueba de primalidad, el problema de la factori-
zacioén siga siendo lo suficientemente complicado como para que
el algoritmo RSA permanezca vigente. La prueba AKS no facto-
riza el nimero: las transacciones en Internet continiian siendo
seguras.

Existen muchos otros resultados que dependen del pequefio
teorema. Uno de los mds conocidos es algo que todos hemos ob-
servado: la expansién decimal de un nimero racional se repite
periédicamente si en dicho racional, expresado como fraccién
irreducible, el denominador es un primo p distinto de 2 y de 5 (que
son los factores primos de 10). De hecho, se repite con un periodo
de repeticién de, o bien p—1 o bien un divisor de p—1. Es por ello
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que 1/3 = 0,33333... y 1/7 = 0,142857142857..., pero 1/6 = 0,2, sin
repeticion periédica. La discusion anterior deberia servir para en-
tender que el pequefio teorema es uno de los resultados més im-
portantes de la teoria de nimeros.

«He aqui el teorema fundamental que se cumple en cada
grupo finito, llamado habitualmente pequeio teorema
de Fermat, porque Fermat fue el primero en probar

una parte especial de €él.»

— ANOTACION DEL MATEMATICO ALEMAN KurT HENSEL EN SU LIBRO
TEORIA DE NOMEROS (ZAHLENTHEORIE, 1913).

Por supuesto que Fermat, fiel a su costumbre, no dejé ninguna
demostracién. Este fue demostrado por Euler, que ignoraba que
Leibniz, unos afios antes, lo habia demostrado a su vez, aunque
el resultado no se publicé hasta el siglo xx. La demostracién de
Leibniz usa matematicas al alcance de Fermat, con lo que es po-
sible que la demostracién de Fermat, si existié, discurriera por
lineas similares.

De todas formas, las aplicaciones posteriores evidentemente
no fueron intuidas por Fermat. Para él, el teorema era una herra-
mienta para probar la primalidad de ciertos nimeros, como 2"-1.
Era uno de sus atajos para evitar la criba de Eratdstenes. Por
ejemplo, gracias a su pequeio teorema, Fermat fue capaz de ata-
car nimeros de la forma a"—1 con a>2, que nunca son primos;
reduciendo los candidatos a sus divisores primos a un conjunto
menor. Como es facil de ver, estos nimeros son una generaliza-
cién de los niimeros de Mersenne. También le permitié atacar de
la misma forma, limitando la forma de sus posibles factores, ni-
meros de la forma a" + 1, que, segln afirmé, solo son primos si a
es par y n de la forma 2™, Fue en el curso de esta investigacion
cuando descubrié6 los llamados primos de Fermat, que cumplen
estas dos condiciones y otra mas, que m sea primo: 2% +1, con p
primo.

Pero la intuicién de Fermat fall6 en esta ocasién. Euler en-
contré un contraejemplo con p = 5. El nimero resultante es divi-
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sible por 641. Fermat era consciente de que no podia probar este
resultado, y reflejé su frustracion por ello durante muchos afios;
en 16569, anuncié una prueba a su amigo Carcavi, pero dado el
contraejemplo de Euler, esa prueba, de haber existido, segura-
mente era errénea. En todo caso, estd claro que el pequefio teo-
rema le permitia a Fermat eliminar de sus cdlculos todo un
conjunto de niimeros primos candidatos a divisores de niimeros
de cierta forma, lo cual agilizaba las pruebas de primalidad de di-
chos niimeros; sin embargo, para su gran frustracién, nunca logré
lo que ambicionaba: un teorema que le permitiera deshacerse de
todos los primos eliminables para dichos tipos de niimeros.

A dia de hoy no existe un método verdaderamente eficiente
y seguro para generar nimeros primos de tamafio arbitrario; no
existe una férmula cerrada como la que encontré Euclides para
los niimeros perfectos pares. La mayoria de los métodos de ge-
neracién de primos requieren conocer todos los primos hasta
un cierto nimero previo, o bien saber si los nimeros vecinos al
candidato a primo son factorizables. De ahi que las pruebas de
primalidad sean fundamentales: en general, primero se busca un
candidato a primo y luego se prueba si lo es.

A finales de 1640, Fermat parecia haber perdido interés en las
sumas de divisores propios. Sus siguientes exploraciones en teo-
ria de niimeros emparentan directamente con su tltimo teorema.

LOS TRIANGULOS RECTANGULOS
Y EL ENFOQUE GENERALISTA

Los triangulos rectdngulos racionales son ternas racionales —lla-
madas pitagéricas— de niimeros z, ¥ y 2 que cumplen el teorema
de Pitagoras: 2%+ y?=2%

Estas ternas son muy antiguas y se encuentran ya en Babilo-
nia y en Egipto. Pero Euclides demostré que dados dos niimeros
racionales p y q, 2 = p*+ ¢% x =p*-¢° e y =2pqg es una terna pitagoé-
rica. Se sigue inmediatamente que el niimero de ternas pitagéricas
es infinito, porque los racionales son infinitos.
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Diofanto dedicé el Libro VI de su Aritmética a resolver pro-
blemas relacionados con este tipo de tridngulos, tal como acos-
tumbraba: caso por caso. Su método de solucién implicaba
plantear una ecuacién o un sistema de dos ecuaciones. El pro-
blema es que, en ocasiones, esto daba como resultado un niimero
racional negativo, algo que para él no tenia sentido, dado que nin-
gun tridngulo tiene lados de longitud negativa. En otras ocasiones,
su método fallaba porque ciertas condiciones necesarias para su
éxito no se cumplian, a saber, que en las ecuaciones resultantes el
coeficiente de 2° sea un cuadrado, o bien lo sea la constante. Dio-
fanto escogié sus problemas cuidadosamente para que cumplie-
ran estas condiciones y la solucién fuera siempre positiva,
haciendo la «trampa» de solo proponer problemas solubles a tra-
vés del método propuesto.

La obra de Diofanto fue editada por Claude Gaspard Bachet de
Méziriac, en Francia, en 1621. Fue a partir de esta edicién que Fer-
mat trabé conocimiento con Diofanto, y fue en esta edicién donde
escribio su famosa anotacion del tltimo teorema en el margen.

Fermat se interesé por los tridngulos rectangulos, con impor-
tantes novedades: en primer lugar, limité su estudio solo a los
numeros naturales. En segundo, en vez de resolver casos particu-
lares con numeros especificos, Fermat tomé el método de solu-
ci6én de Diofanto y lo plante6 en términos generales. Mientras
Diofanto estaba limitado por el lenguaje del dlgebra verbal, Fer-
mat, siguiendo a Vieta, ya utilizaba un algebra simbélica que le
permitia una mayor capacidad de abstraccién. Asi las cosas, Fré-
nicle escribié a Fermat en 1641 proponiéndole un problema: en-
contrar un tridngulo en el que el cuadrado de la diferencia de los
dos catetos exceda al cateto menor por un cuadrado (recorde-
mos que todos los nimeros deben ser enteros, y por tanto, los
cuadrados son siempre cuadrados perfectos): (x-y)%=y+2% Los
problemas diofantinos, invariablemente, llevan a ecuaciones de
este tipo.

Fermat resolvié no sin esfuerzo el problema, pero dos afios
después ya tenia un método. Propuso a Pierre Briilart de Saint-
Martin tres problemas similares, a fin de despertar su interés en la
teoria de niimeros. Briilart y el propio Frénicle reaccionaron con
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indignacién. Segiin ellos, los problemas no tenian solucién. Sentian
que Fermat se burlaba de ellos, que intentaba dejarlos en ridiculo.
Pero el tolosano aseguré, a través de Mersenne, que la solucién
existia, sin especificarla. Sin embargo, la presién de Mersenne hizo
que esta vez sus resultados fueran revelados al cabo de un tiempo.

«Usted me pregunta si el niimero 100895598 169 es primo
o [...] compuesto. A esta pregunta yo le respondo que este
nimero es compuesto y que se obtiene del producto de
estos dos: 898 423 y 112303, que son primos.»

— FERMAT A MERSENNE A PROPOSITO DEL PEQUERO TEOREMA.

82

La supuesta imposibilidad estribaba en que el método de Dio-
fanto daba un resultado negativo; pero Fermat habia resuelto el
nudo gordiano. En efecto, cuando obtenia una raiz negativa, reex-
presaba la ecuacién utilizando esa raiz y un cambio de variable, y
resolvia por el método de Diofanto la ecuacion resultante. Si vol-
via a dar una raiz negativa, reexpresaba de nuevo, iterando hasta
que, finalmente, le resultara una raiz positiva. Fermat habia explo-
tado la indeterminacién de la ecuacion para inventar un ingenioso
método de solucion.

Al utilizar este enfoque generalista, basado en la teoria de
ecuaciones, Fermat rompia de manera definitiva con el pasado
diofantino abocado a soluciones particulares, un salto que sus
contemporaneos no lograron comprender. En cuanto a Fermat,
habiendo resuelto el problema, se desentendié de los niimeros
cuadrados; sin embargo, su relacién con Frénicle y Briilart se vio
seriamente deteriorada.

LA DESCOMPOSICION DE NUMEROS Y LA PARTICION
DE LOS PRIMOS IMPARES

En otra carta de 1640 a Frénicle, Fermat anunci6 que habia encon-
trado una teoria general de la descomposicién de un niimero en
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sumas de dos cuadrados. El origen de ello fue un comentario de
Bachet a un problema de Diofanto; descomponer un nimero N en
la suma de dos cuadrados de cuatro formas distintas.

La descomposicion de niimeros en sumandos es un problema
similar a la factorizacién. Si en esta se buscan divisores, en la
descomposicion se buscan sumandos. Como es obvio, los suman-
dos tienen que ser de un cierto tipo, ya que encontrar sumandos
cualesquiera es trivial. Fermat resolvi6 el problema, generalizan-
dolo a encontrar todas las formas en las que un nimero dado se
puede descomponer en la suma de dos cuadrados.

La solucién es una férmula que no escribiremos aqui. Baste
apuntar que la relevancia del resultado est4 en que Fermat logré,
de nuevo, un método general, y en que para probarlo us6 una
curiosa propiedad de los primos, mucho mas importante que el
problema en si. En efecto, Fermat sabia que los niimeros primos
de la forma 4k-1 no pueden expresarse como la suma de dos
cuadrados. También, aunque la demostracion le costé un mayor
esfuerzo y fue realizada con su método de descenso infinito, de-
mostré que los nimeros primos de la forma 4k + 1 siempre se pue-
den descomponer en la suma de dos cuadrados, y esa suma es
tnica. Fermat habia logrado partir los primos impares en dos gru-
pos disjuntos segiin si obedecen o no cierta propiedad. Usé estos
dos resultados para demostrar que el problema de Bachet se
podia reducir a determinar, dado un nimero N, cuintos de sus
divisores primos son de la forma 4k-1 y cuantos de la forma
4k + 1. En efecto, salvo el niimero dos, todos los primos se pueden
escribir de una forma u otra, dado que ambas formas cubren todos
los niimeros impares. Por tanto, solo los divisores primos de la
forma 4k + 1 pueden formar dos sumandos y el nimero de formas
en que se puede descomponer N no es otra cosa que un problema
de combinatoria.

Nuevamente, vemos la potencia de la estrategia de concen-
trarse en los divisores primos. Es poco lo que podemos decir sobre
un nimero N general. Pero jsi que podemos hacer afirmaciones
sobre sus divisores primos, que literalmente rebosan propiedades
interesantes! Y ello nos lleva a descubrir algo sobre el nimero N.
Esta es la fructifera estrategia que Fermat usé una y otra vez. El
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mismo se habia quejado a Mersenne, en 1636, de que no existian
principios generales en la aritmética para resolver problemas.
Pocos afios después, el propio Fermat habia establecido sélida-
mente algunos de esos principios.

NUMEROS POLIGONALES

Después de 1644, Fermat dejo stbitamente de escribir a sus corres-
ponsales, en un silencio que duraria diez afios. A ello contribuyé,
sin lugar a dudas, la muerte en 1648 de su principal corresponsal,
el padre Mersenne, y el hecho de que sus relaciones con sus otros
dos corresponsales habituales, Frénicle y Briilart, se habian en-
friado al punto de la ruptura. ’

Este hiato fue roto cuando Blaise Pascal, hijo de Etienne, se
dirigié a Fermat para plantearle el problema que inauguraria la
teoria de la probabilidad. Durante esta correspondencia, Fermat
aproveché para plantear problemas en teoria de niimeros, con-
fiando en interesar a Pascal en esta. Citando una frase de Francis
Bacon: «Muchos deben pasar para que el conocimiento crezca»,
Fermat decfa que era importante crear una cofradia de matemati-
cos que, compitiendo entre si pero también colaborando, trabaja-
ran para resolver los problemas planteados por dicha teoria. Uno
de los resultados que Fermat comunicé es de una gran belleza.
Para explicarlo, hay que volver a la otra gran preocupacién aritmé-
tica de los pitagéricos, los niimeros triangulares y su generaliza-
cién, los niimeros poligonales.

Un ntimero triangular es aquel que puede descomponerse de
forma que los sumandos formen un tridngulo (figura 1). Por ejemplo,
el nimero 10 tiene esta propiedad: 10=1+2+3+4, es decir, es la
suma de los cuatro primeros nimeros naturales. El niimero 10 es-
taba en el corazén de la mistica pitagérica. Se referian a él como el
tetraktys y representaba los cuatro elementos, la armonia de las
esferas y el ordenamiento del espacio (0 dimensiones, 1 dimensién,
2 y 3 dimensiones, representadas por cada linea). Los pitagéricos
rezaban al tetraktys y juraban por él, considerdndolo engendrador
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de dioses y hombres y fuente de la cambiante creacién. También el
1, el 3, el 6 y el 15 son niimeros triangulares (figura 2). El 6 es el pri-
mer nimero perfecto. De hecho, todo niimero perfecto es triangular.

El concepto es facilmente generalizable. Un niimero ser4 cua-
drado si puede descomponerse en sumandos que formen un cua-
drado (evidentemente, todos iguales). Niimeros cuadrados son el
1,el4,el9, el 16, el 25... y asi sucesivamente (figura 3).

Estamos ya en condiciones de enunciar el resultado de Fer-
mat: todo niimero es, o bien triangular, o bien la suma de dos o
tres numeros triangulares. También es, o bien, cuadrado, o bien
la suma de dos, tres o cuatro cuadrados. También pentagonal, o
bien la suma de dos, tres, cuatro o cinco pentagonales. Y asf su-
cesivamente.

Ademas de en su correspondencia a Pascal, Fermat dejé con-
signado este resultado en otro de los margenes de la Aritmética
de Diofanto. No es sorprendente que lo acompaiiara de una ob-
servacién casi idéntica a la del Gltimo teorema: «La demostracién
de este maravilloso resultado no tiene cabida en este margen,
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pero pienso escribir un libro sobre este tema». Como en tantas
otras ocasiones, Fermat falt6é a su promesa. Dicho tratado no fue
escrito jamés, y la prueba nunca se encontré. Lagrange y Gauss
probarian casos particulares y, finalmente, Cauchy daria con una
prueba general en 1812. En todo caso, Fermat no logré interesar
a Pascal. En 1654, este contestaba con una carta cortés y humilde
en la que se presentaba a si mismo como incapaz de estar a la
altura matemética de Fermat, instadndole a que prosiguiera sus
estudios y publicara sus resultados.

LA ECUACION DE PELL Y DESALIENTOS DIVERSOS

Dado que no podia recurrir directamente a Frénicle, ante el re-
chazo de Pascal, Fermat discurrié un nuevo plan. Habia entrado
en contacto con la matematica del inglés John Wallis a través de
un libro que le habia proporcionado Digby. Tanto él como Wallis
habian adoptado un enfoque muy semejante para resolver proble-
mas de sumas de potencias de enteros. Lleno de esperanza por
ello, Fermat se dirigié a Wallis, procurando interesarlo en los pro-
blemas que Pascal habia rechazado.

Sin embargo, la estrategia de Fermat para abordar a Wallis
fue distinta. Si a su amigo Pascal le habia pedido colaboracién, a
Wallis lo retaria. El 3 de enero de 1657, desde Castres, Fermat
escribié una carta a Claude Martin de Laurendiére, con la peticién
de que la difundiera por la comunidad matemaética. En ella se ha-
blaba de dos problemas particulares. Fermat se envanecia di-
ciendo que la Galia Narbonesa (es decir, la Francia del Sur) daria
la solucién si Inglaterra, Flandes y la Galia Céltica (es decir, Paris)
eran incapaces de hacerlo. Habia en este parrafo un reto implicito
a Frénicle, que tuvo oportunidad de leer la carta.

Estos problemas —y otros muchos que Fermat abordé en su
correspondencia sin tratarlos explicitamente— requerian del co-
nocimiento de las propiedades de la ecuaciéon de Pell, cuya solu-
cién general Fermat habia, sin lugar a dudas, encontrado:
x%—py*=1, con p primo.
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Por desgracia, Fermat no obtuvo la respuesta que esperaba.
Sus corresponsales consideraban irresolubles sus problemas. De
forma que, poco después, Fermat revel6 algunas de sus bazas y
planteé la necesidad de resolver problemas tedricos de indole
més general. En particular, Fermat exponia la ecuacién de Pell y
pedia soluciones.

Esta carta es practicamente un credo. Fermat empezaba que-
jandose de la falta de investigadores que propusieran y resolvie-
ran problemas puramente aritméticos (de teoria de niimeros). Lo
atribuia a la contaminacién que la geometria y sus métodos habfan
proyectado sobre la aritmética. Su proyecto, dice, es eliminar esa
influencia y tratar la aritmética como una ciencia por sf misma,
tan sutil, rigurosa y dificil como la propia geometria, y declaraba
lo siguiente: «Asi que la aritmética debe redimir la doctrina de los
nimeros naturales como un patrimonio en si mismo».

El programa de Fermat era ahora explicito. Sin saberlo del
todo, ya que él sentia que revivia un arte antiguo, estaba sentando
las bases de algo totalmente nuevo: una ciencia aritmética que,
sin influencia de la geometria, se pudiera estudiar por si misma
con el mismo provecho que la geometria griega. Por desgracia,
nadie hasta Euler lo vio asi. Fermat estaba solo entre sus con-
temporaneos. Frénicle resolvi6 el primer problema y mandé cua-
tro soluciones. Era incapaz, y probablemente Fermat lo sabia, de
abordarlo en términos de técnicas de solubilidad generales. La
respuesta de Wallis no podia ser mas desalentadora. Escribi6 al
vizconde William Brouncker, que le habia hecho llegar el reto, que
no existian ecuaciones generales para resolver esos problemas,
para los que él, ocupado en otros menesteres, no tenia tiempo.
Y ofrecia, despectivamente, su solucién trivial a ambos proble-
mas: el nimero uno. Esta respuesta no llegé a Fermat. Se quedé
en Paris, donde Digby se la ensefi6 a Frénicle, quien a su vez deci-
di6 debatir con Wallis si el nimero uno podia ser considerado un
numero. Pero lo que sf llegé fue una solucién de Brouncker, con
la que Wallis estuvo de acuerdo. Fermat vio que ni Brouncker ni
Wallis habian entendido los problemas: él insistia en soluciones
enteras, y Brouncker le habia hecho llegar un método para encon-
trar soluciones fraccionarias.

LA MODERNA TEORIA DE NUMEROS



Fermat respondié a Digby con una carta en la que decia que
cualquier tonto podia encontrar la solucién de Brouncker y Wallis,
y después de reflexionar sobre la tradicional enemistad entre in-
gleses y franceses, lanzaba lo que los ingleses consideraron un
insulto, aunque es bastante probable que el bienintencionado Fer-
mat intentara solamente «consolar» a los ingleses respecto de su
falta de talento matematico: «ninglin campo puede albergar cual-
quier cosecha». Echando mas sal en la herida, el tolosano afiadié
a esta carta una dura critica del libro de Wallis que Digby le habia
entregado.

«Esperamos estas soluciones, las cuales, si Inglaterra
o Bélgica o la Galia Celta, no las producen,
entonces la Galia Narbonesa lo hara.»

— EXTRACTO DE LA CARTA QUE FERMAT ESCRIBIO EL 3 DE ENERO DE 1657 A CLAUDE
MARTIN DE LAURENDIERE LANZANDO UN RETO A LOS MATEMATICOS EUROPEOS.

La respuesta de Fermat lleg6 a todos los interesados, pero la
polémica subsiguiente excluyé al tolosano, convirtiéndose en una
justa entre Frénicle y Digby, por un lado, y Wallis y Brouncker por
el otro. Wallis insisti6é en que estos problemas, de los que se podia
concebir una gran variedad, no ofrecian ninguna utilidad ni difi-
cultad alguna. No lograba ver los aspectos teéricos que Fermat
encontraba en ellos. Eran divertimentos sin sentido, y no mere-
cian la atencién «de toda Inglaterra, Francia y Holanda».

Wallis también mostré su aburrimiento sobre las proposicio-
nes negativas de Fermat, de las que su iltimo teorema es sola-
mente el ejemplo mas famoso. En efecto, el inglés consideraba
que habia un niimero infinito de tales proposiciones, a cual més
aburrida e inconsecuente, y se preguntaba por qué Fermat daba
tanta importancia a asombrar a Frénicle con sus «audaces» afir-
maciones sobre ecuaciones particulares con un nimero limitado
(o cero) de soluciones. Como hemos visto, Wallis se equivocaba
gravemente. Los problemas planteados por Fermat daban lugar a
investigaciones muy fructiferas.
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Fermat, sin embargo, no se rendia. Su dltima carta a Digby, en
junio de 1658, demostraba que todavia tenia esperanzas de que
Wallis y Brouncker entendieran las cosas a su manera. Mucho méis
conciliadora y adulatoria, simplemente pedia que los ingleses re-
conocieran su error. Wallis nunca contesté. Se limité a incluir la
carta como colofén de su libro sobre esta polémica. El intento
fermatiano de hacer que la teoria de niimeros cruzara el canal de
la Mancha habia fracasado. Como ironia final, John Pell, un mate-
matico inglés de poca monta, copid la ecuaciéon de Fermat —que,
por otro lado, ya era conocida en la India— del libro de Wallis.
Dicha copia lleg6 a las manos de Euler, que, ignorante de su auto-
ria, llamé a dicha expresion ecuacién de Pell. Nuevamente, Fer-
mat habia sido traicionado por la posteridad.

El cada vez mas rendido y amargado Fermat haria un intento
postrero de interesar a todos por su pasién y por el mundo que
solo él habia intuido. Dicho intento lleva el ilustre nombre del
matematico neerlandés Christiaan Huygens, quien habia escrito
en 1656 al tolosano instdndole a publicar sus resultados.

Fermat, finalmente, hizo un pequerio tratado que hizo llegar a
Carcavi con la intencién de que este se lo enviara a Huygens. En
este tratado habla, entre otras cosas, del método de descenso infi-
nito que ya se ha comentado en conexion con el dltimo teorema, y
explica cémo lo usé para demostrar su resultado sobre la descom-
posicién de primos 4k+1 en una suma de dos cuadrados, esbo-
zando apenas la prueba. Otra vez el secretismo de Fermat volvia a
ganar la partida: resultados enunciados sin demostracion, pruebas
apenas esbozadas, proyectos de investigacién incompletos.

Al final, Fermat alegaba que no tenia tiempo para escribir un
tratado completo, pero que si otros matematicos pudieran llenar
las lagunas (refiriéndose especificamente a Frénicle y Carcavi),
«la posteridad tal vez me agradeceria por haber mostrado que los
antiguos no lo sabian todo».

Huygens le reiteré su admiracion, pero, como Pascal antes
que é€l, decliné participar en la nueva teoria de nimeros. Igual
que otros matematicos de la época, no veia la utilidad de entrete-
nerse en esos problemas. Huygens era un matemético aplicado,
un hombre interesado en problemas de fisica y su solucion a tra-
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vés de las matematicas. En cambio, a Fermat esos problemas no
le interesaban. La disonancia entre ambas maneras de abordar las
matematicas era irresoluble. Si al principio de su correspondencia
Huygens era entusiasta con el ya viejo Fermat, la continuacién de
esta le llevo progresivamente al tedio. Ademaés de no entender los
descubrimientos de Fermat en teoria de nimeros, la notacién de
este, fiel a su maestro Vieta, le resultaba fatigosa comparada con
la mas clara de Descartes; los problemas que planteaba Fermat, o
bien eran triviales o bien habian sido resueltos con anterioridad,
ya que Fermat le enviaba a veces sus investigaciones antiguas,
ignorando tal vez que algunas de ellas habian quedado obsoletas.
Poco a poco, la correspondencia decayé, y con ello la dltima opor-
tunidad de que un discipulo adoptara sus investigaciones.
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CAPITULO 4

La geometria analitica

Fermat no se limit6 a la teoria de niimeros.

En el siglo xvii la geometria analitica y el calculo
comenzaban a surgir, y Fermat fue una pieza fundamental
en el establecimiento de sus primeros resultados. Aqui,
a diferencia de lo que le sucedi6 en teoria de nimeros,
el matematico francés formo parte de un esfuerzo
colectivo y sus descubrimientos fueron plenamente
reconocidos durante su vida.






De nuevo, para entender las aportaciones de Fermat, hay que dar
un salto atrds hasta llegar al nacimiento del dlgebra. Después de
su enorme gloria helenistica, las matematicas occidentales langui-
decieron durante la Edad Media. En Europa es dificil encontrar
una obra original en matematicas hasta Leonardo Fibonacci, que
vivié a caballo entre los siglos xu y xm. En cambio, en el mundo
musulmén la herencia griega fue adoptada y transformada de
forma decisiva. Los musulmanes tradujeron a Aristételes, Eucli-
des, Ptolomeo, Apolonio y Diofanto, entre otros muchos autores
griegos, preservando su conocimiento. Pero también hicieron dos
contribuciones fundamentales. Desarrollaron decisivamente el
dlgebra y adoptaron la notacién numérica india, extendiéndola
con el uso de decimales.

Es imposible concebir el desarrollo de la matematica occi-
dental sin el lenguaje de los niimeros indoarabigos. Los griegos no
podian expresar los niimeros irracionales. Esa incapacidad de ex-
presar algo es un obsticulo al pensamiento. Solo cuando uno es
capaz de conceptualizar una cosa es posible razonar sobre ella.
Por esta razén la introduccién de los nimeros indoardbigos fue
una de las grandes revoluciones cientificas. Nos daban, en primer
lugar, el cero. Era posible, finalmente, pensar que «nada» era ex-
presable. También ofrecian una forma de escribir decimales, acer-
cdndonos a la expresién de nimeros irracionales. Ademads, el
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sistema indoarabigo nos dio la posibilidad de calcular algoritmi-
camente (es decir, con base en reglas) las operaciones més basi-
cas: la suma, la sustraccion, la multiplicacién, la divisiéon. En vez
de usar el abaco, imprescindible si se utilizan nimeros romanos,
por primera vez era posible hacer operaciones mentalmente de
acuerdo con las sencillas reglas que todo escolar puede aprender.

La otra gran innovacién del islam fue la sistematizacién del
algebra. El que tal vez fuera su mayor matematico, Muhammad
ibn Musa al-Khwarizmi (780-850), escribi6 un tratado sistematico
de 4lgebra en el que categorizé diversos tipos de ecuaciones y
describié como los dos lados de una ecuacién son como los platos
de una balanza equilibrada, con lo que lo que se resta o suma de
un lado debe restarse o sumarse del otro.

Gracias al triunfo de los algoritmos y a la adopcién y conoci-
miento del dlgebra drabe fue posible el desarrollo de una de las
escuelas modernas de la matemaética de los siglos xvi y xvi, los
cosistas, que no eran otra cosa que calculistas que se basaban en
la tradicién arabe y en sus propios descubrimientos para hacer
cdlculos efectivos. Antes que nada pragmaticos, no tenian dema-
siado tiempo para el rigor griego: habian vuelto a los tiempos de
las recetas y a la utilizacion de una panoplia de problemas repre-
sentativos para ilustrar sus métodos. En esta mezcla de tradicio-
nes se desarroll6 la carrera de Fermat. Por un lado, la tradicién
cosista de resolucién de problemas; por otro, los geémetras y su
pasién por los grandes resultados sistematicos. Pero la ltima
pieza, y la mas importante para entender a Fermat, es el maestro
del maestro, Francois Vieta: es la argamasa que une las dos ver-
tientes de la carrera de Fermat y apunta el camino a la gran sinte-
sis que lograria el matematico tolosano. Dicha argamasa tomoé la
forma del dlgebra simbdlica y la teoria de ecuaciones.

Ya Diofanto, en la época helenistica, habia usado ocasional-
mente simbolos para representar cantidades numéricas, pero fue
Vieta quien introdujo de forma definitiva un nuevo lenguaje que,
como la notacién indoardbiga, permitia expresar cosas inexpresa-
bles hasta entonces. Vieta fue el primero en usar letras de forma
sistemdtica para referirse por un lado a las constantes y por otro
a las incégnitas.
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El dlgebra simbélica permite representar un niimero sin saber
exactamente qué nimero es. Yano es «la cosa», es la x. De hecho,
como en el caso del dltimo teorema, se pueden expresar nime-
ros «que tal vez ni siquiera existen», los x, y, 2 de la ecuacion de
Fermat. Ello implica que se puede razonar sobre clases enteras
de problemas, y hacer aseveraciones sobre un niimero infinito de
problemas similares conociendo solo su estructura algebraica, la
relacion entre las variables a través de una ecuacién. Es decir, es
posible hablar de ecuaciones de una forma general. Por ejemplo,
se puede decir de forma rdpida y sencilla que a®*-b>=(a +b) (a-b),
y que esto se cumple para cualesquiera a y b. El dlgebra simbélica
libera nuestra mente de las pesadas descripciones verbales y nos
permite razonar a otro nivel, de la misma forma que los nimeros
indoarédbigos nos ayudan a calcular. Esta revolucién fue posible
gracias a Vieta y, posteriormente, a Descartes.

Tras la anterior exposicion, se hace necesario detenerse un
poco en ciertos conceptos. Los matematicos griegos hacian prue-
bas rigurosas, usualmente constructivas. Estas pruebas se llama-
ban «sintéticas», e iban desde las hipétesis del teorema hacia su
conclusion, con reglas légicas, paso a paso. Pero rara vez un ma-
tematico toma un camino tan directo cuando esta descubriendo
sus resultados. El matematico, y los griegos no eran una excep-
cién, usa métodos heuristicos, informales, para comprobar si
tiene razén o no, antes de intentar una prueba. En Grecia, los ca-
minos tentativos con los que el matematico intentaba indagar
sobre la prueba, una especie de andamiaje que desaparece de la
exposicién final de la prueba, se llamaba andlisis (hay que hacer
notar que dicha palabra tiene un significado totalmente distinto en
la matematica actual), mientras que la prueba era la sintesis. El
andlisis procede a partir de la conclusiéon hacia las hipoétesis,
mientras que una prueba normal, rigurosa y sintética procede
siempre en sentido contrario. Para desesperacion de sus lectores
de los siglos xv1 y xvi, los griegos no dejaban trazas de su método
analitico. Borraban sus huellas para dejar solamente el rigor y la
belleza de la prueba sintética. Papo, escribiendo siglos después de
las cumbres de la matemaitica helenistica, fue uno de los pocos
autores que dejo trazas analiticas.
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A primera vista, esta forma de proceder parece extrafia. Los
reciprocos de los teoremas no tienen por qué ser ciertos (véase, por
ejemplo, el pequefio teorema de Fermat). De ahi que la traduccién
del andlisis (en direccion contraria) en prueba sintética (en la direc-
cién, digamos, correcta, de las hip6tesis a la conclusién), no sea
automadtica. Pero los griegos se valieron de ingeniosos métodos para
poder invertir sus analisis y convertirlos en una demostracién en
toda regla. En particular, observaron que en geometria, en muchas
ocasiones, los pasos si son invertibles. En otras ocasiones, introdu-
jeron hipétesis auxiliares para que dichos pasos fueran invertibles.

El analisis, tal como lo practicaban los griegos, encontré tam-
bién vida entre los algebristas arabes y los cosistas. Ahora bien,
las ecuaciones del dlgebra son esencialmente invertibles. Si se van
aplicando las reglas de conversién de una ecuacién, el camino
inverso siempre puede transitarse. Por ejemplo, podemos pasar
de escribir a®-b? a escribir (a +b) (a—b)..., o bien hacerlo al revés.
Esto es asf porque dos expresiones iguales entre si son libremente
intercambiables. Vieta se dio cuenta de esto y descubrié que si
basaba el andlisis en el dlgebra, utilizando tinicamente manipula-
ciones de ecuaciones e identidades, sus demostraciones serian
automaéticamente verdaderas. Esto le llevé a postular, de forma
revolucionaria, que analisis y dlgebra eran una y la misma cosa, lo
que €l llamo arte analitico.

Habia ahora una forma general de razonar sobre las ecuacio-
nes, y un problema podia resolverse en dos pasos: el plantea-
miento, que es la traduccién al dlgebra simbdlica del problema en
la forma de una ecuacién, y 1a manipulacién algebraica hasta dar
con la solucién. Lo que se practica en las clases de matematicas
en el instituto. De esta manera, en vez de enfocarse en la solucién
misma de una ecuacién particular, como habian hecho los cosis-
tas, Vieta se concentro en las reglas para manipular la ecuacién:
sumar términos de ambos lados, restar términos, elevar a poten-
cias, extraer raices, multiplicar o dividir por factores, buscando
férmulas generales de manipulacion, que dependieran solo de la
estructura de la ecuaciéon. Buena parte del tratado de Vieta estd
dedicado a catalogar las identidades mediante las cuales se llevan
a cabo esas manipulaciones.
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Si vemos 3 + 2, nuestra tendencia natural es hacer la suma y
poner un 5, como hacian los cosistas. Pero con ello perdemos la
estructura de la expresion original, el hecho de que es una suma. Y
por tanto, no podemos razonar de forma general sobre sumas. Al
impedir estas reducciones, el dlgebra simbdlica nos permite razo-
nar sobre estructuras. Podriamos decir que el dlgebra simbélica se
concentra en la sintaxis de la ecuacién, olvidando su contenido, su
significado, hasta la solucién final. Al mismo tiempo, el dlgebra de
Vieta sugeria que los objetos con los que trataba, constantes e in-
cégnitas, no necesariamente eran niimeros. Podian ser cualquier
cosa: angulos para hablar de trigonometria, elementos geométri-
cos... Cualquier cosa en la que tuviera sentido sumar, multiplicar,
elevar a potencias, etc. El dlgebra, que habia sido nada mas que una
rama de la aritmética enfocada a la solucién de problemas numé-
ricos, se convertia asi en el lenguaje universal de las matematicas.

«La matematica es la ciencia del orden y la medida, de bellas
cadenas de razonamientos, todos sencillos y faciles.»

— RENE DESCARTES.

Llegados a este punto, deberia resultar evidente la importan-
cia que el trabajo de Vieta, que Fermat conocié en Burdeos, tuvo
en nuestro personaje. En efecto, en Fermat hemos visto ya esa
misma tendencia de ir de lo particular a lo general, de analizar la
estructura de las ecuaciones que resuelven una clase de proble-
mas, la supremacia del método por encima de los problemas es-
pecificos. Vieta no solo propone métodos y soluciones; plantea un
programa matemético que Fermat llevé hasta sus dltimas conse-
cuencias. Pero no estaba solo. Otro gran pensador, René Descar-
tes, habia llegado a las mismas conclusiones, partiendo de la
filosofia y llegando al dlgebra como una herramienta de clarifica-
cién del pensamiento. Los tres, Vieta, Descartes y Fermat, funda-
rian los métodos de la matemdtica moderna, divorcidndolos para
siempre de las elegantes construcciones de Euclides y los geéme-
tras griegos. Donde antes hubo trazos con regla y compas, ahora
vendrian las manipulaciones algebraicas sobre objetos cada vez
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maés extraordinarios. El dlgebra, en efecto, se convirtié en sus
manos en la forma de razonamiento matematico por excelencia.

Si bien la deuda matematica de Fermat con Vieta es evidente,
continia siendo polémico hasta qué punto este influy6é a Descar-
tes. Algunos historiadores piensan que Descartes conocia las
obras de Vieta, como afirmé Beaugrand; otros creen que Descar-
tes, como él mismo afirmaba, llegé a sus resultados de forma in-
dependiente. Pero siendo un mejor sistematizador que Vieta, su
notacién resulté ser mucho méas clara —recuérdese que una bue-
na notacién, en matematicas, puede iluminar, mientras que una
notacién oscura puede confundir el pensamiento— y su teoria de
ecuaciones era tan superior a la de Vieta que, en el lapso de una
generacion, se impuso por completo, haciendo que el maestro de
Fermat cayera en el olvido. Ahi donde Vieta usaba agotadoras ca-
suisticas muy a tono con su mente de abogado, Descartes aplicaba
su mente de filésofo para construir grandes sistemas.

A pesar de sus intuiciones revolucionarias, Vieta seguia atado
al pasado en algunos aspectos. Para él, una incégnita elevada al
cuadrado tenia un significado muy especifico: es un cuadrado real,
geométrico, un drea. Lo mismo una incégnita elevada al cubo: es
un cubo, un volumen. Y a pesar de que era capaz de imaginar po-
tencias superiores (cuarticas, quinticas), que no tenian un signifi-
cado geométrico evidente, no logr6 dar un paso fundamental:
pensar que un polinomio podia ser no homogéneo, es decir, que
sus términos podian tener potencias distintas: ax’®+ bx®*+cxr=d.
Para €él, esto era como sumar peras con manzanas, una linea con
un cubo, un cuadrado con un punto. No tiene sentido geométrico.
Esto le llevé a formular una ley de homogeneidad: los polinomios
deben ser sumas de monomios del mismo grado. Cuadrados con
cuadrados, cubos con cubos.

Evidentemente, Vieta tenia todo el peso del pasado griego en
sus hombros, en el que los nimeros no tenian dimensién pero las
figuras geométricas si. Combinar ambos no tenia sentido. Para los
griegos era inevitable que el concepto de dimensién estuviera aso-
ciado con la multiplicacion de elementos geométricos: dos lineas
multiplicadas dan un rectdngulo y un rectingulo por una tercera
linea da un paralelepipedo.
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Fermat tuvo problemas para librarse de esta restrictiva forma
de pensar, que impide concebir polinomios mas generales. Lo
logré, pero, de la forma a la que ya nos tiene acostumbrados, sin
haber puesto en un terreno teédrico firme su renuncia a aplicar
dicha ley. Descartes, en cambio, razoné su abandono de la ley
de homogeneidad. Fue el primero en usar los superindices a los
que estamos tan habituados para denotar la operacién de elevar

RENE DESCARTES

Sin duda, René Descartes (1596-1650) es
la figura mas relevante de |a filosofia del
siglo xvi. Le distingue sobre todo su re-
curso a la duda sistematica, su renuncia
a creer nada que no pudiera probar, ex-
presada con enorme fuerza en su cogito,
ergo sum. Nacido en La Haye, en la Tu-
rena francesa, se gradud en la Universi-
dad de Poitiers en Derecho, pero pronto
fue alistado en el ejército de Maurice de
Nassau, combatiendo en Flandes contra
Espafia. Participé también en la Guerra
de los Treinta Afos bajo el mando del
duque Maximiliano | de Baviera, asi como
en el mismo asedio de La Rochelle en el
que Alejandro Dumas imaginé a sus
mosqueteros. Estando en campana, tuvo
una iluminacién: todas las verdades te-
nian que estar encadenadas y basadas

en una verdad primera, su «pienso, luego existo». Descartes se convencié de
que la razon era la via al conocimiento. La mayor parte de su vida, después
de licenciarse del ejército, transcurrio en la Republica Holandesa, saltando de
una ciudad y una universidad a otra. En 1637 publicé el Discurso de/ método
con sus apéndices. Cuatro afios después verian la luz las Meditaciones filosc-
ficas. Condenado y perseguido en el mundo catdlico, Descartes fue invitado
por Cristina de Suecia para ser su tutor. Se dice que las manias de la reina de
madrugar y de mantener las ventanas abiertas terminaron por minar la salud
del pensador, que murid de neumonia un 11 de febrero. El papa Alejandro VII

incluyd sus obras en el indice de libros prohibidos trece afios después.
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a una potencia, y lo hizo en parte para librarse de los vicios de
la notacién previa. Vieta escribia cosas como: B- A quad + G pla-
numA=Zsolido. Quad, planum y solido son las potencias a las
que se elevan A, G y Z respectivamente para conservar la homo-
geneidad, con una obvia interpretacién geométrica.

Descartes rechazé dicha interpretacion, diciendo:

Yo mismo estuve mucho tiempo engafiado por estos nombres [cua-
drado, cubo]... Finalmente observé después de muchos experimen-
tos que no hay nada que con esta interpretacién se pueda resolver
que no pueda resolverse de forma mas sencilla y clara sin ella, y que
tales nombres deben ser rechazados para evitar que confundan el
pensamiento.

Descartes postula que, dado que, por ejemplo, un tridngulo
con un cierto dngulo y con lados a y 1 es similar a un tridngulo con
el mismo angulo y lados ab y b, todos los problemas geométricos
son escalables entre si y la unidad que uno elija es arbitraria. En
otras palabras, el producto ab, que tiene grado dos y es, por tanto,
un cuadrado, no es distinto en absoluto del nimero lineal b. Asi,
no cabe pensar que representan objetos matematicos distintos.
Dimensionalmente son iguales.

Vieta cay6 en el olvido y Descartes se impuso. Esto tiene su
importancia, porque la absoluta fidelidad de Fermat al maestro
Vieta oscurecid las propias aportaciones del tolosano, que con
frecuencia eran oscuras para contemporaneos y sucesores que
habian adoptado la notacion y las ideas de Descartes. Ello es
otro de los factores que llevé a Fermat, a su vez, a ser incom-
prendido.

Hay otra faceta del trabajo de Vieta que ilumina la obra de
Fermat. Ya se ha comentado que Vieta tenia una gran fe —por lo
general justificada— en su arte analitico, fe que iba aparejada con
un cierto desdén hacia la forma sintética en la que los griegos
habian construido sus pruebas. Afirmaba en su Introduccion al
arte analitico (1571) que, dado que el andlisis que él proponia
implicaba que todos los pasos de una demostracién eran reversi-
bles, la sintesis a 1a manera griega ya no era necesaria.
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Fermat tomé este principio de Vieta como uno de los funda-
mentos de su investigacién matematica y, junto con su habitual
desidia para escribir tratados completos, dicha adopcién clarifica
por qué se top6 con tanta incomprension entre sus contempora-
neos: en efecto, dados unos pocos pasos analiticos que le permi-
tian —o eso creia él— vislumbrar la demostracion, para Fermat,
como para Vieta, hacer la demostracion a la griega no tenia ya
sentido. Era redundante. El problema, claro, es que sus contem-
poridneos no estaban tan imbuidos como él del programa analitico
de Vieta. Fermat no supo ver esa disonancia, y ello le ocasion6 no
pocos desencuentros y amarguras. Finalmente, es curioso sefialar
que, como ya se ha visto en varios ejemplos, Fermat usaba dlgebra
simbolica para sus manipulaciones, pero casi siempre planteaba
el resultado en términos verbales. ;Hay mejor ejemplo de cémo
Fermat estaba a caballo entre dos tradiciones, entre un mundo
matematico que moria y otro que empezaba a nacer?

LA GEOMETRIA ANALITICA

Es momento de detenerse un poco en la cronologia. En el capitulo
anterior se hizo referencia a casi toda la vida matemaética de Fer-
mat, cronolégicamente hablando. Pero la «otra vida» que ahora se
tratara transcurrié en paralelo y fue incluso anterior en algunos
aspectos, por lo que conviene volver atras en el tiempo, a los aiios
de Burdeos.

Fermat estuvo en Burdeos en la segunda mitad de la década de
1620. Para entonces, habia perfeccionado su método de maximos
y minimos y habia comenzado la restauracién de la obra de Apolo-
nio de Perga sobre los lugares geométricos planos, la linea recta y
el circulo. Dicha obra se perdid, pero el hecho de que Papo descri-
biera sus resultados permitié a los matematicos de los siglos xv y
xv1, convertidos en verdaderos arquedlogos del saber, intentar
estas reconstrucciones. El programa de Vieta implicaba, en pri-
mera instancia, dicha reconstruccién; y en segunda, la transforma-
cién de los resultados clasicos al nuevo lenguaje del arte analitico.
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Fermat logré restituir buena parte de la obra de Apolonio,
segun la habia resumido Papo, que habia generalizado los 147 teo-
remas y 8 lemas que contenia la obra original a apenas 16, pero un
teorema, en particular, le impedia avanzar. La demostracién par-
cial que habia dado no le satisfacia. A su vuelta a Toulouse en
1631, Fermat habia empezado a analizar dicho problema a la luz
de una nueva técnica. Ya en 1635 existen claros indicios de que
usaba dicha técnica para resolver problemas cléasicos. Finalmente,
escribié su teoria en un pequeno tratado llamado «Introduccion a
los lugares geométricos planos y sélidos» (en latin, Ad locos pla-
nos et solidos isagoge, a partir de ahora, Isagoge), que envié a
Paris —a Mersenne y Roberval— en algiin momento entre finales
de 1636 y principios de 1637. Esa es la época en la que Fermat
comenzoé su correspondencia con Mersenne, inundando Paris de
resultados asombrosos, no solo en teoria de nimeros, sino sobre
geometria y lo que, corriendo el tiempo, se llamaria célculo. Sus
trabajos atrajeron la atencién de un matematico francés que tra-
bajaba en problemas similares, Gilles de Roberval (1602-1675),
que se convirtié en devoto admirador del magistrado de Toulouse.

La Isagoge era el primer paso de una gran revolucién. Vieta ya
habia planteado resolver problemas geométricos con métodos al-
gebraicos, pero sus problemas se limitaban a encontrar ciertos
puntos que cumplieran una cierta razén o intersecciones entre fi-
guras geométricas simples, como una recta y un circulo, en los
que la solucion era, invariablemente, un punto. Fermat habia visto
méas all, logrando un resultado revolucionario: nada méas ni nada
menos que reducir toda la geometria (la reina de las ciencias
seguin Platén) a la humilde dlgebra que, hasta una generacién an-
terior, solo habia servido para resolver problemas numéricos sin
aparente trascendencia matematica. El matematico tolosano
habia inventado la geometria analitica. Nos apresuramos a sefialar
que otro gran pensador lo hizo de forma casi simultdnea e inde-
pendiente: René Descartes, al que se le suele atribuir la primicia,
hasta el punto de que las coordenadas que usamos reciben el nom-
bre de «cartesianas». Pero si bien no cabe duda de que las ideas
de Descartes estaban maduras antes que las de Fermat, fue este
tiltimo quien publicé primero.
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El segundo capftulo de la presente obra trata cémo los mate-
maticos buscan puentes entre campos que, a primera vista, son
distintos y no tienen ninguna relaciéon. Uno de los primeros ejem-
plos de esa actividad de tender puentes es la geometria analitica,
llamada asi porque usa el arte analitico —el dlgebra— para descri-
bir toda la geometria. De pronto, todos los problemas geométricos
pueden resolverse con el dlgebra, a partir de la definicién de cur-
vas como lugares geométricos.

Un lugar geométrico es un conjunto, usualmente infinito, de
puntos: lo que llamamos una curva, a pesar de que no todas sean
curvas en el sentido coloquial. Dicho conjunto debe cumplir una
cierta propiedad. Por ejemplo, todos los puntos que equidistan de
un punto fijo definen el lugar geométrico llamado «circulo», y todos
los puntos cuya distancia a un punto dado es igual a la distancia a
una recta dada definen el lugar geométrico llamado «parabola». De
esta forma, se pueden definir curvas cada vez mas complejas.

Estudiando los lugares geométricos definidos por Apolonio,
Fermat, al igual que Descartes, tuvo una iluminacién: dichos luga-
res geométricos, cuando estaban en un plano, podian ser descritos
por completo como una ecuacién indeterminada en dos incégnitas.

La dimensionalidad no dependia, como habian pensado todos
hasta entonces, del grado de la ecuacion, de si era cuadrética o
ctibica. Dependia del nimero de in-
cognitas. Asi, si se tenian dos incégni-
tas, tendriamos curvas en un plano L)
(dos dimensiones). Si se tenia una
sola, tendriamos los puntos sobre li-
neas (una dimensién) que analizaba
Vieta. Si teniamos tres, tendriamos su-
perficies en las tres dimensiones del
espacio.

No importaba si una ecuacion era

Gréfica en dos
dimensiones de
una curva cubica,
cuya ecuacién
general es
y=ax*+bxi+cx+d.

un polinomio de grado tres; su di-
mension no era una superficie en tres
dimensiones, sino, si tenian dos incé6g-
nitas, una humilde curva en dos (véase
la figura).
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Nada impide ahora analizar polinomios de grado superior.
Esta traslacion del concepto de dimensionalidad fue la puerta que
abrié la reduccién de la geometria al dlgebra. Pero ademas, dichas
incégnitas se relacionaban a través de una ecuacién indetermi-
nada, es decir, una ecuacién con un nimero infinito de puntos: el
lugar geométrico.

Previamente a la geometria analitica, los lugares geométricos
se describian de acuerdo con sus propiedades, o bien, como en el
caso de las cénicas, como intersecciones de un volumen y una
superficie. La geometria analitica cambi6 el paradigma por com-
pleto, permitiendo que el nimero limitado de curvas que habian
estudiado los griegos, y que tenian que construirse una a una, se
multiplicara hasta el infinito. Esto no es una exageracién. En
efecto, el nimero de ecuaciones en dos incégnitas es infinito, y
como a cada una de ellas corresponde una curva, el nimero de
posibles curvas es también infinito.

Adicionalmente, la algebraizacién de la geometria permitia
introducir la enorme flexibilidad de las operaciones algebraicas,
sumas, restas, multiplicaciones, divisiones, elevacién y potencias
y extraccién de raices, que, junto con la teoria de ecuaciones, per-
mitian resolver muchos problemas de forma casi mecanica. Com-
parado con el laborioso método constructivo de los geémetras
griegos, la geometria analitica era un método extraordinariamente
poderoso para resolver problemas, como Fermat demostro al
abordar algunos teoremas de Papo que nunca habian sido resuel-
tos, y un problema de Galileo, en el que corrigié al propio maestro
toscano: mientras Galileo pensaba que una bala de cafién que cae
hacia el centro de una Tierra en movimiento sigue una trayectoria
circular, Fermat descubrié que la trayectoria es una espiral. Gali-
leo, en correspondencia con Fermat, acepté la correccion.

Ahora bien, el programa de Descartes, aunque riquisimo en
sus consecuencias, no fue perseguido por el autor. Su intencién
era mostrar una nueva forma de pensar, mis que encontrar nue-
vos resultados matematicos. Paradéjicamente, en 1637, cuando la
carrera matematica de Fermat apenas comenzaba, Descartes, por
voluntad propia, concluia la suya. La Geometria que publico era
parte de un libro en el que habia tres tratados cientificos, precedi-
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dos del celebérrimo Discurso del método. Su Geometria no era
otra cosa, a sus 0jos, que una ilustracion del método que habia
descubierto, una prueba incontrovertible del poder de su filosofia.
Publicada en 1637, la obra es el canto del cisne matematico de
Descartes, justo por los afios en los que Fermat comenzaba su

APOLONIO Y LAS CONICAS

Apolonio de Perga (ca. 262-ca. 190 a.C.) sistematizo el estudio de las curvas
llamadas conicas, a las que dio los nombres que hoy tienen. Las conicas se
definen por la interseccion de un plano con un cono en diversos dngulos.
Se puede demostrar que, salvo casos degenerados, la totalidad de las coni-
cas esta contemplada en los casos ilustrados: si se corta el cono de forma
paralela a la generatriz, el resultado es una parabola. Si el angulo del plano
con el eje es mayor que el angulo de la generatriz, el resultado es una elipse,
y en el limite en el que el plano es perpendicular al eje, un circulo. Finalmente,
si el angulo entre plano y generatriz es menor, el resultado es una hipérbola
con dos ramas. Las propiedades formuladas por el matematico de Perga para
definir estas curvas permitieron que cada una de ellas tuviera una caracteris-
tica definitoria que la distinguia de todas las otras cdnicas, expresada en
forma de una proporcion. A partir de tales caracteristicas fue que Descartes
y Fermat construyeron su estudio de las ecuaciones correspondientes.

Circulo Elipse Pardbola Hipérbola
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mayor efervescencia. Los
dos genios apenas se encon-
traron. Este hecho no debe
interpretarse como un gesto
desdeiioso a la enorme con-
tribucion de Descartes; sim-
plemente, es de reseiiar que
su genio matematico reful-

llustracién del
método de
coordenadas de
Fermat y de la
forma como
define un lugar
geométrico.
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gi6 en unos pocos anni mi-
rabiles. Era sobre todo un
fil6sofo, y Fermat un mate-
mético de pura cepa. Su forma de abordar los problemas era dis-
tinta. Para Descartes, bastaba con establecer el método; para
Fermat, era necesario aplicarlo a la resolucién de cuestiones ma-
tematicas.

Tal como queda dicho, el interés de Fermat en la geometria
analitica surgio de sus intentos para restaurar la obra de Apolonio.
A partir de tal restauracion llegé a las ideas que dejoé sentadas en
su Isagoge, donde se puede leer la siguiente frase:

Siempre que dos cantidades [dos incégnitas] se encuentren en igual-
dad..., existe un lugar geométrico... tal que el punto final de una [de
estas cantidades] describe una linea recta o una curva.

Segiin el historiador Carl Boyer, esta afirmacion constituye
una de las mayores revoluciones de la historia de las matematicas.
No es directamente demostrable; se trata de un postulado. Pero
Fermat dedica el resto de su pequeiio tratado a ilustrar su utilidad,
analizando un tipo particular de curvas: las conicas, la linea recta
y el circulo (al que la Antigiiedad no consideraba una cénica).

Fermat, al igual que Descartes, no definié el sistema de coor-
denadas rectangulares que tan familiar resulta hoy en dia. Su geo-
metria analitica es monoaxial: solo define el eje de las abscisas.
Sin embargo, es evidente que utiliza implicitamente el eje de las
ordenadas al definir distancias.

En la figura se muestran los elementos de la geometria anali-
tica de Fermat. Tenemos una ecuacion con dos incégnitasx e y y

LA GEOMETRIA ANALITICA



una constante ¢, f(x,y) =c. La distancia x, es claramente el valor
de la abscisa, mientras que la ordenada esta dada por el valor de
la longitud del segmento y . Nétese que el angulo o no necesaria-
mente es recto, como ocurriria en el sistema actual de coordena-
das cartesianas. De hecho, el angulo es arbitrario (autores
posteriores caerian en la cuenta de que es mucho més sencillo
hacer que o sea recto). El punto que se mueve sobre el lugar
geométrico es A. Podemos verlo moverse a la posicién A’, que
corresponde a una abscisa x, y una ordenada y,. El punto a obser-
var es que f(x,y ) =f(x,y,)=c; es decir, la ecuacién se cumple
para todos los puntos A sobre el lugar geométrico, y, reciproca-
mente, los puntos A estdan totalmente definidos por la ecuacién.
Esta es la correspondencia clave entre geometria y dlgebra que
proporciona la geometria analitica —la notacién es anacrénica;
Fermat no hubiera usado la notacién de funcién f(z,y)—.

Hay un concepto implicito en esta exposicion que fue funda-
mental en el desarrollo del célculo: la variacién continua. Al usar
un eje monoaxial Fermat se concentré6 en como se mueve un
punto sobre la curva que define el lugar geométrico. Esto es con-
ceptualmente distinto del proceso de representar graficamente
puntos en un plano con dos ejes coordenados e interpolar la curva
entre ellos, que es como la mayoria de nosotros hemos aprendido
a hacer una grafica. La visién de Fermat es dinamica: corresponde
a un punto que se mueve de una cierta forma, es decir, que tiene
una cierta trayectoria, y por tanto, casi sin quererlo, Fermat le dio
realidad fisica a su geometria analitica, introduciendo una forma
de ver las cosas que resultaria fundamental en los trabajos poste-
riores de Newton, Leibniz y la familia Bernoulli. Otra caracteris-
tica a resaltar del sistema de Fermat es que solo incluye cantidades
positivas, tanto para las abscisas como para las ordenadas, por lo
que sus curvas estan siempre en el primer cuadrante del plano y,
por tanto, a veces pierden entre la mitad y las tres cuartas partes
de su extension. Una parabola con vértice en el origen y foco en
el eje x, por ejemplo, seria solo media parabola.

El teorema central que Fermat demuestra en su Isagoge es
que todas las cénicas, ademads de la linea recta y el circulo, pueden
ser expresadas por ecuaciones generales de segundo grado o de
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primer grado, en el caso de la recta. Fermat divide todas las ecua-
ciones posibles de primer o segundo grado en siete casos «cané-
nicos», demostrando que cualquier ecuacién de primer o segundo
grado se puede reducir a uno de esos siete casos, que correspon-
den respectivamente a un circulo, una elipse, una parabola y dos
tipos de hipérbola y dos tipos de linea recta. Las demostraciones
de cada uno de los casos son mas prolijas de lo que Fermat acos-
tumbraba, pero aun asf obvian varios pasos que le parecian evi-
dentes, por provenir de obras clisicas tales como los Data de
Euclides, el tratado de Cdénicas de Apolonio o las propias obras
de Vieta.

Al igual que Vieta, Fermat omite invariablemente la prueba
sintética, la ruta que nos llevaria desde el lugar geométrico hasta
su ecuacion correspondiente, considerandola trivial y utilizando
solo el método analitico para ir desde la ecuacién hasta el lugar
geométrico. Pero estd claro en todo momento que Fermat piensa
—como en efecto ocurre— que sus teoremas son bidireccionales,
es decir, que también se da que para todo lugar geométrico hay una
ecuacion. Finalmente, en sus pruebas Fermat utilizd, sin destacar-
las demasiado, una serie de transformaciones tipicas de la geome-

SOLUCIONES GRAFICAS A ECUACIONES DE GRADO SUPERIOR

En un apéndice que circuld poco tiempo después de su /sagoge, Fermat di-
sefid un método general para convertir una ecuacién cubica o cuartica en un
sistema de ecuaciones de segundo grado. Se trata de buscar un punto de
interseccién entre dos curvas. Asi, la ecuacién determinada x*+bx?=bc, me-
diante la introduccion de una nueva variable y, se convierte en dos ecuaciones
indeterminadas: x*+bx=by, c=xy. Claramente, se trata de la interseccién en-
tre una parabola y una hipérbola. Por desgracia, el mismo espiritu geométrico
del método impidié a Fermat buscar mas de una raiz (una interseccion), dado
que, influido por los griegos, le bastaba una sola raiz positiva. El tolosano
utilizé estos resultados para atacar la clasificacion de curvas de Descartes, en
una polémica que hoy en dia se antoja estéril, ya que dichas clasificaciones se
han vuelto irrelevantes.

LA GEOMETRIA ANALITICA



tria analitica, tales como trasladar un circulo para que su centro
coincida con el origen de coordenadas, rotar una parabola o hacer
un cambio de variable. Fermat ya sabia que podia llevar a cabo
estas transformaciones sin que su resultado perdiera generalidad.

Habiendo establecido una geometria analitica plana, Fermat
se lanzo a continuacion a tratar de extender sus resultados a tres
dimensiones. Sin embargo, sus herramientas matemaéticas fallaron
en este intento. La falta de un sistema de coordenadas demostré
ser fatal; la visualizacién de los resultados geométricos en tres
dimensiones sin sus correspondientes coordenadas es demasiado
dificil, y Fermat no logré nunca la tan deseada extensién.

Descartes fue el primero en filosofar sobre el dlgebra como
una especie de proceso mental que clarificara el pensamiento,
pero esta claro que Fermat, menos inclinado a la filosofia, era un
firme adherente a ese programa. Entre los dos lograron establecer
una forma nueva de pensamiento matemético que continta hasta
nuestros dias. Seguramente Fermat no lo sabia, pero €l seria uno
de los dltimos matemaéticos en interesarse de forma tan profunda
por los clasicos. Queriendo restaurar la tradicién clisica a través
del rescate de sus obras mas emblematicas, en realidad la estaba
enterrando. Las herramientas que habia usado para desentrafiar
los misterios olvidados de Grecia habian inaugurado un mundo
novedoso, que haria que muchos de los métodos clasicos griegos
cayeran en la irrelevancia.

LA GEOMETRIA ANALITICA
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CAPITULO 5

Contribuciones de Fermat
al calculo diferencial e integral

La geometria analitica seria la base sobre la
que se asentarian otros resultados revolucionarios,

y muy particularmente, el calculo. Fermat cayé en la cuenta
de que, toda vez que podia usar una ecuacién para describir
por completo una curva, podia utilizar manipulaciones
algebraicas para razonar sobre las propiedades
de esa curva. Pero, para llegar a esa conclusion,
tuvo que seguir un tortuoso camino.






Ya en Burdeos —donde estableci6 contacto con el circulo de se-
guidores de Vieta y recibi6 clases privadas de mateméticas de Jean
de Beaugrand—, en su juventud, Fermat habia dado con un mé-
todo para encontrar valores maximos y minimos que, como prece-
dia a su invencién de la geometria analitica, no estaba basado en
esta. Sin embargo, a lo largo de unos quince afios, volvié sobre este
tema una y otra vez, escribiendo pequefios tratados sobre él y ha-
blando del mismo en su correspondencia. En dichos escritos se
refleja la transformacién del pensamiento de Fermat respecto al
método. Lo cierto es que, como el jurista tolosano solia hacer,
prometioé en una de sus cartas a Mersenne que, cuando tuviera
tiempo, escribirfa un gran tratado sobre el tema, cosa que nunca
sucedié. Se trata de otra oportunidad perdida porque, de haberlo
hecho, no es descabellado pensar que hoy atribuiriamos a Fermat
la invencién del célculo diferencial.

Por desgracia, Fermat nos tiene ya acostumbrados a esta
forma de proceder algo anarquica. Descartes dijo una vez con des-
dén que Fermat era un solucionador de problemas (a la manera
cosista), no un gran sistematizador. Tal vez tenia algo de razén. Al
genio de Toulouse le bastaba comprobar que un método funcio-
naba para asegurarse de su generalidad, y se olvidaba de demos-
trarlo. Su indagacién sobre maximos y minimos no fue una
excepcion.

CONTRIBUCIONES DE FERMAT AL CALCULO DIFERENCIAL E INTEGRAL
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LA CONTROVERSIA CON DESCARTES

Hacia 1636, circulaba ya en Paris una memoria de Fermat llamada
Método para determinar mdximos y minimos y tangentes a li-
neas curvas (que llamaremos, a partir de ahora, el Methodus, por
su nombre en latin). Escrito probablemente en 1629, el Methodus
consistia en apenas seiscientas palabras. Era un par de recetas,
de algoritmos. No habia ni una indicacion de cé6mo habia llegado
al resultado ni una prueba del mismo. Como veremos, la falta de
claridad del Methodus le daria no pocos dolores de cabeza. Tal
como estaba escrito, el método resultaba absurdo. Casi de inme-
diato, gracias a la intervencién de Descartes, el Methodus desaté
una enorme polémica, y ello llevé a Fermat, por primera y prac-
ticamente Unica vez en su vida, a explayarse en la explicacién de
los fundamentos de su método a lo largo de los afios. Hasta cinco
memorias, incluyendo en ellas una carta a Briilart, llegé a escribir
nuestro personaje al respecto. La mas importante de ellas fue la
Investigacion analitica del método de mdximos y minimos (en
adelante, Investigacién analitica), en la que retine las dos ver-
tientes de su pensamiento derivando por un lado de Vieta y, por
otro, de los antiguos: Euclides y Papo.

En efecto, en Papo encontré un problema en el que se intentaba
obtener un méximo. Estos problemas nos son familiares hoy en dia.
Por ejemplo, encontrar la figura geométrica que englobe el mayor
volumen con la menor area superficial (la esfera). O bien, como
problema inverso, determinar si un panal de abeja es una forma
6ptima de cubrir el plano. Como puede verse, este tipo de investiga-
ciones tienen mucho que ver con la optimizaciéon de recursos. En
todo caso, a Fermat le llamo la atencion que el maximo que buscaba
Papo fuera «tinico y singular». Dadas sus dotes de humanista, Fer-
mat pudo entender el griego que el propio traductor de Papo al latin,
Federico Commandino, daba por imposible. Papo hablaba de un
extremo que era Unico. A partir de ello, y de sus lecturas de Vieta,
se planteé c6mo manipular la ecuacién cuadratica que describia el
problema de Papo para hacer que la solucién fuera tinica.

Recordemos que una ecuacién cuadratica suele tener dos rai-
ces (decimos «suele» porque, en tiempos de Fermat, habia raices
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LA SINCRISIS DE VIETA

La sincrisis consiste en combinar ecuaciones similares para obtener expresio-
nes que relacionan sus raices con sus coeficientes. Por ejemplo, de la ecuacion
bx-x?=c, que tiene una raiz x, se puede obtener la ecuacién by-y?=c, donde
vy es la otra raiz. Vieta igualaba ambas ecuaciones: bx-x?=by-y? de donde

P

X=y

Bx-y)=x’-y* e b=

=X+Y

y, sustituyendo, c=(x+y) x-x*=x?+xy-x?*=xy. De esta forma, tanto b como ¢

estaban expresados en términos de x e y.

que no eran aceptables, desde las irracionales hasta las complejas,
pasando por las negativas). El caso es que Vieta habia inventado
un método para expresar los coeficientes de una ecuacién en tér-
minos de dos de sus raices, al que llamé sincrisis.

Fermat utiliz6 este método para manipular su ecuacién cua-
dritica de una forma novedosa. Plante6 que existia una raiz x y
llamé a su otra raiz x + k, donde h, segin él mismo aclara, puede
ser cualquier valor. A continuacién seguia un paso decisivo y
extrafio. Fermat «adigual6» la ecuacién con valor x con la ecua-
cion con valor x + h: f(x) =f(x + k). Llamoé a esta operacién «adi-
gualar», usando un término prestado de Diofanto. Sin embargo,
en realidad, en toda la teoria de ecuaciones de Vieta no existe
justificacién matematica formal para llevar a cabo esta extrana
operacion.

Por si fuera poco, Fermat se dedicé luego a eliminar varios
términos que contuvieran k dividiendo por h:

S(x) _JS(x+h)
h R

Finalmente, decreté que k era cero y que, por tanto, las dos
raices eran una sola. Esa es la forma de asegurar la unicidad, fi-
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EL METODO DE MAXIMOS Y MINIMOS DE FERMAT

llustremos el método con un ejemplo: dividir el segmento AB en un punto E,
de forma que AE-EB seaun maximo.

L ! |
I T 1
A E B

Sea AB=b.

1. Entonces, si AE = a, EB=b-a.

2. Por tanto, el producto del que se debe encontrar un maximo es ab-a%

3. Cambiemos ahora la incognita original & por a+e, que es la otra raiz. Por
tanto, el segmento AB es ahora a+e y el segmento EB es b-a-e, con lo
que el producto de ambos es ab-a?+be-2ae-e

4. Se adigualan (2) y (3), de modo que: ab-a*+be-2ae-e? = ab-a* Se sim-
plifica: be-2ae-e?=0 <> be=2ae+e? Esta operacién es similar a la sincrisis,

adigualando en vez de igualando.

5. Se divide hasta que en uno de los miembros no aparezca ninguna e:
b=2a+e.

6.Se hace que e sea cero: b=2a.
7. Por tanto, a = %

Se trata, evidentemente, del punto medio del segmento.

jando una raiz y haciendo que la otra se iguale a ella. Pero, en
efecto, lo que al parecer hizo Fermat, en medio del proceso, fue

dividir por cero sin ninguna justificacion tedrica.

Esto se parece mucho a lo que se hace hoy en dia al calcular
la derivada, cuya definicién no fue dada hasta el siglo xix por Cau-
chy, e igualdndola a cero, que es la forma como encontramos
maximos y minimos. Dicha similitud ha llevado a varios matema-
ticos —Lagrange, Pierre-Simon Laplace, Charles Fourier— e his-
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toriadores de la ciencia a decir que Fermat inventé el célculo
diferencial. Desgraciadamente, no fue asi.

Es cierto que Fermat se estaba aproximando a los métodos
del céalculo diferencial moderno. Esa hk, en el pensamiento de
Gottfried Leibniz e Isaac Newton, es una cantidad infinitesimal,
algo que, dicho de la forma mas vulgar posible, no es cero, pero se
puede considerar en ciertas circunstancias como cero. Solo
cuando Cauchy logré formalizar el concepto de limite, estas ideas
tuvieron una expresién matematica rigurosa.

Fermat no hacia esta distincién entre cantidades finitas e in-
finitesimales, al menos no en sus trabajos sobre miximos y mini-
mos y tangentes, que ocuparon una parte relativamente temprana
de su vida matematica. Dicha distincién es fundamental. Fermat
consideraba que h, la distancia a la raiz original, era totalmente
arbitraria, tan grande o pequeiia como se quiera. A todas luces,
este es un pensamiento muy distinto al de los infinitesimales, que
deben ser arbitrariamente pequenos. De hecho, Fermat nunca
considerd que sus maximos y minimos pudieran ser locales, no
globales. Un méaximo local solo puede encontrarse usando méto-
dos infinitesimales. De todas formas, es de justicia apuntar que el
método de Fermat llegaba incluso a discernir si una solucion era
un maximo o un minimo, siguiendo lo que en la actualidad se co-
noce como «el criterio de la segunda derivada». '

La reconstrucciéon anterior del pensamiento de Fermat esta
basada en la Investigacion analitica. Es bastante seguro que el
tolosano empezé con el problema mencionado de Papo, y los his-
toriadores han logrado reconstruir, a partir de sus multiples memo-
rias, su razonamiento. De todas formas, como era su costumbre
inveterada, incluso cuando formulé los pasos de una demostra-
cion, como hizo en la Investigacion analitica, Fermat se quedaba
corto en sus explicaciones. Obviaba pasos, confiaba en que el lec-
tor llenara los huecos. Y el lector tenia que ser un experto que su-
piera de memoria que tal paso se justificaba por un teorema de
Apolonio o tal otro por un teorema de Papo, o un tercero porque
Vieta lo habia demostrado. Peor atin, en el Methodus original, como
hemos dicho, no habia ni estos esbozos de prueba de la Investiga-
cion analitica, ni la menor justificacién de las extrafias manipula-
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ciones que emprendia nuestro personaje: Fermat se limitaba a dar
el algoritmo. Evidentemente, una receta sin la menor explicacién
y con divisiones por cero chocé a sus contemporineos, que, si eran
amigos de Fermat, le pidieron explicaciones, y si no lo eran, le
atacaron sin misericordia. Ademas, el Methodus se limitaba a resol-
ver dos problemas ya resueltos, uno de Euclides y otro en el que
encontraba tangentes a parabolas. El método, al menos en aparien-
cia, no tenia nada de novedoso y si mucho de problemaético.

En el propio Methodus Fermat habia formulado una forma de
encontrar una tangente a cualquier curva dada. Con orgullo, decia
que ese método era totalmente general y funcionaba siempre pero
no justificaba su aserto, algo que a estas alturas no sorprendera a
nadie. El método para encontrar tangentes se derivaba natural-
mente de su método de maximos y minimos. En efecto, Fermat
cay6 en la cuenta de que, como las curvas cldsicas griegas —co6ni-
cas, circulos y lineas rectas— estaban definidas en términos de
proporciones, resolver el problema de la tangente era equivalente
a encontrar el minimo de una cierta razén entre dos cantidades.
Su método de miximos y minimos servia por igual para maximizar
o minimizar una cierta cantidad o una razén. Por tanto, encontrar
una tangente era una aplicacién natural.

Veamos con detalle el método de Fermat. Sea la parabola
mostrada en la figura. Buscamos la tangente al punto B, la recta
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BE . Fermat consideraba el punto O arbitrario, exterior a la paré-
bola. Aqui se ve claramente que Fermat estaba lejos atin del con-
cepto de infinitésimo; en el cdlculo infinitesimal, el punto O de-
beria estar arbitrariamente cerca del punto B. Acto seguido,
consider6 la propiedad de la pardbola, definida por Apolonio en
forma de proporcién:

BC?/ ZI% =CD/ DI. Como OI >7ZI, C'_D'/'ITI‘:\»'B_CE‘/W.
Por semejanza de los tridngulos BCE' y OIFE se tiene que
%/W-@/E‘.,porlo que CD/ DI >CE® | IE®.

Sean CD =d, Cl=e y CE =a. Este dltimo segmento es la
subtangente. Entonces,

d a®
>
d-e (a-e)

y d(a—e)*>a*(d-e), de donde da’-2dae +de* > da>-a’e.

Seguidamente se adigualan ambos miembros de la desigual-
dad: da®-2dae + de*=da’*-a’e, y eliminando y transponiendo tér-
minos: de®+ a’e=2dae. Dividiendo por e: de + a*=2da. Finalmente,
Fermat ignoré el término que contiene e: a®=2da, por lo que a =2d.
De esta forma se halla el punto E, determinando la subtangente a
la pardbola (CE ).

El Methodus se escribi6 antes de que Fermat inventara la geo-
metria analitica. Su tnica visién de las curvas clésicas seguia
siendo la de Apolonio. Es por ello que Fermat seguia empleando
las definiciones geométricas del griego en vez de su posterior vi-
sién algebraica. Pero en la Investigacion analitica esto habia
cambiado, y Fermat ya era capaz de utilizar el gran poder de sus
ecuaciones algebraicas para atacar tanto el problema de méaximos
y minimos como el de tangentes. De hecho, cada vez habia menos
diagramas en sus escritos. Le bastaba con la ecuacién, que definia
totalmente una curva, para analizar a fondo sus propiedades. Me-
diante dicha ecuacién seria capaz de buscar miximos y minimos,
por un lado, y tangentes por otro. El método algebraico revelaba
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LAS TANGENTES A LAS CURVAS MECANICAS

En su Geometria, Descartes habia hecho una distincién entre curvas geomé-
tricas y mecanicas. Las primeras tenian expresion en ecuaciones algebraicas,
es decir, polinomios. En cambio, las curvas mecanicas no tenian tal expre-
sion; su definicion se daba a partir del movimiento de un punto de acuerdo
con ciertas reglas. Descartes creyd imposible analizar las curvas mecanicas
en su Geometria. En cambio, Fermat, en una memoria de 1640 sin titulo
abordd tres curvas geomeétricas, la cisoide, la concoide y el folio de Descar-
tes, pero también una curva mecanica: la cicloide, la «Helena de las curvas»,
asi llamada por la atraccién que ejercia. En efecto, la cicloide es la respues-
ta a una aparente paradoja de Aristételes sobre la distancia que recorren
dos puntos ubicados en dos circulos concéntricos que ruedan sobre una
linea. Conceptualmente, la cicloide corresponde al movimiento de un punto
en una rueda conforme
esta se desplaza. Al
analizar este problema,
Fermat se vio obligado,
«con el proposito de
evitar irracionalidades»,
segun sus palabras, a
adigualar el segmento
RB de la tangente con
el segmento RN de la
curva. Comenzaba ya a
pensar en términos de
segmentos arbitraria-

mente pequefios.

de nuevo su gran poder. Todavia llegaria més lejos en afios poste-
riores, practicamente llegando al concepto de una distancia arbi-
trariamente pequefia en su tratamiento de la tangente a la cicloide,
es decir, quedandose en el borde mismo del célculo diferencial.
Pero Fermat se dio cuenta a medias del gran poder de sus
herramientas. Obsesionado, como todos sus contemporineos y
como su maestro Vieta, en restituir la gran obra de los griegos, no
reparé en que su pensamiento habia derivado por otros derrote-
ros, que habia inaugurado una nueva forma de hacer matemaéticas.
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Atrapado por el pasado, no lograra entender cabalmente la impor-
tancia de sus logros.

Recordemos, en efecto, que la derivada de un punto dado
sobre una curva se define como la pendiente de la tangente en ese
punto. Fermat no lo veia... porque en realidad no se le ocurrié
tratar la pendiente como una ecuacién. De hecho, no calculé pen-
dientes. Calculé subtangentes, es decir, la proyeccion de la tan-
gente sobre el eje de las abscisas, concluyendo con razén que una
vez calculada dicha proyeccién, dibujar la tangente era trivial. Se-
guramente, es por esa razén que nunca aprecié que la pendiente
se puede expresar también como una curva definida por una ecua-
cién. Fermat era incapaz de ver que existia una relacion entre dos
ecuaciones en dos variables, en la que la derivacién es una forma
de convertir una en otra. Sea como sea, tenemos que volver a la
fecha en que el Methodus comienza a circular: la geometria anali-
tica y las justificaciones de la Investigacion analitica estaban en
el futuro. En el Methodus solo hay recetas. Entender y creer a
Fermat requeria buena voluntad, y por las fechas en que circulaba
el Methodus habia un hombre muy malhumorado con Pierre de
Fermat, y muy poco dispuesto a ofrecerle esa buena voluntad. Ese
hombre era nada mas y nada menos que Descartes.

Descartes ignoraba la existencia de Fermat. En 1637, cuando
apenas comenzaba la correspondencia de Fermat con Parfs,
habia dado los toques finales a su célebre Discurso del método,
que incluia como apéndices tres ensayos en los que intentaba
ilustrar la potencia de su filosofia. Uno de ellos era la Didptrica;
otro, la Geomelria, en la que por primera vez Descartes exponia
su vision de la teoria de ecuaciones y la geometria analitica. Es-
taba seguro de que nadie habia hecho nada igual. Envanecido,
pensaba que habia refundado la filosofia formulando las reglas
del pensamiento correcto, e ilustrando cémo se aplicaban a la
matematica y la fisica.

Para entonces, Descartes ya habia entrado en polémica con
algunos matematicos. La suerte quiso que dichos matematicos fue-
ran Roberval y el maestro de Fermat, Beaugrand, precisamente los
amigos con los que Fermat contaba en esa época, cuando comen-
zaba a ser conocido en los circulos de Paris. Descartes habia criti-
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cado duramente la Geostdtica de Beaugrand. A su vez, Beaugrand
habia acusado a Descartes de haber plagiado la teoria de ecuacio-
nes de Vieta, su maestro. Segiin parece, Beaugrand habia utilizado
ademas su puesto de secretario del rey, que daba las autorizacio-
nes de impresion, para escamotear una copia de la Didptrica de
Descartes, que terminé en manos de Fermat antes de su publica-
cién, con lo que Mersenne se gand la furia de Descartes.

Mersenne, preocupado, pidié a Fermat que no comentara el
tratado en publico, sino que dirigiera toda la correspondencia a
través de él. Ignorando todo lo que habfa pasado, Fermat inter-
pret6 esto como una peticiéon de comentarios, asi que, inocente-
mente, envid una carta en la que decia que la Didpirica le parecia
el intento de un investigador de indagar, a tontas y a locas, en la
oscuridad, y que sus resultados eran el fruto de un argumento
circular: el autor habria tomado, de todas las opciones, solo la que
le permitia llegar a su conclusién, con lo que dicha conclusién
estaba contenida en las premisas. El caso es que, increiblemente,
Mersenne envié la carta de Fermat a Descartes, después de una
vacilacién inicial. Mds o menos al mismo tiempo, Descartes habia
recibido una copia del primer tratado de Fermat, su reconstruc-
cién de los lugares geométricos planos de Apolonio. Siendo un
trabajo de juventud, Descartes lo desdefié. Fermat, concluyé, ob-
viamente no estaba a su altura intelectual.

Descartes pensé que Fermat no habia entendido su Didpirica,
asi que le recomendo, a través de Mersenne, que la leyera bien,
afiadiendo que si estudiaba también su Geometria podia llegar a
ser un aventajado alumno. Resulta evidente que Descartes habia
subestimado a su oponente. Poco después recibiria copias del Me-
thodus y la Isagoge enviadas por Fermat, que tal vez habia sentido
su orgullo herido y queria demostrar su valia. Seguramente, en ese
momento Descartes cayé en la cuenta de su error: Fermat no era
alguien a quien se pudiera despreciar, era un matematico de pri-
mera fila. De hecho, jhabia descubierto también la geometria ana-
litica, de la que tan orgulloso estaba el propio Descartes!

En vez de reconocer el talento de su adversario, Descartes
pensé paranoicamente que Fermat era parte de una conspiracién,
en la que también estaban sus odiados Roberval y Beaugrand,
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para destruir la obra de su vida, su joya, el Discurso del método 'y
sus aplicaciones. En efecto, en una carta a Mersenne en enero de
1638, Descartes se quejaba de que se intentaba ahogar a su hijo
intelectual en la propia cuna. Y aunque no lo dijera explicitamente,
es muy posible que también pensara que, a través de las indiscre-
ciones de Beaugrand y Mersenne, Fermat habia plagiado su geo-
metria analitica. A continuacién se exponen algunos fragmentos
de las respuestas de Descartes a Mersenne:

Mayo de 1637

[...] me habéis enviado una proposicién de un matemaético, un con-
sejero de Toulouse, muy bella y que mucho me ha agradado. Porque
en la medida en que es facilmente soluble por lo que he escrito en

mi Geometria, [...] espero que este consejero, si es un hombre abier-
to y honesto, serd una de las personas que sacaran mayor partido de
mi trabajo [...]

18 de enero de 1638

[...] no quiero siquiera nombrarle, a fin de que no se sienta tan aver-
gonzado por los errores que le he encontrado, y porque mi intencién
no es insultar a nadie, sino solamente defenderme. Y como siento
que €l no perderd ocasién de envanecerse a mi costa en muchos
escritos, creo que es apropiado que mucha gente vea mi defensa. [...]
Y si a pesar de ello €l os dice que quiere enviarme otros escritos, os
ruego que le pidais que los reflexione de mejor manera que los pre-
cedentes; si no fuera asi, os ruego que no me los enviéis.

Sea como sea, Descartes encontré el punto débil de su adver-
sario: no era la geometria analitica, era el Methodus. En efecto, en
su falta de método, en su ausencia de justificacién o demostra-
cién, Descartes encontré una forma ideal de atacar a Fermat. Sus
objeciones eran de dos tipos. En primer lugar, de forma ponzo-
fiosa, devolveria a Fermat el cumplido de «a tontas y a locas».
Segin Descartes, la obra de Fermat no ofrecia ningin resultado
original. Habia llegado a sus conclusiones, conocidas previa-
mente, por casualidad y sin esforzarse. A tdtons («a tientas»), la
misma expresién que Fermat habia empleado con él. Fermat habia
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demostrado como obtener la tangente a una pardbola. Segin Des-
cartes, sin embargo, el método era el mismo para cualquier otra
curva sin cambiar nada, lo cual era claramente absurdo dado que
la tangente a una parabola no es igual a la tangente a una elipse.
En segundo lugar, desmentia que el método de tangentes se deri-
vara del método de maximos y minimos.

Como hemos visto, la respuesta de Descartes —siempre a tra-
vés de Mersenne— fue devastadora en su tono, en el que desdena
abiertamente al tolosano sin mencionar siquiera su nombre, di-
ciendo que, si Fermat no reconsideraba, él no se dignaria a leer los
otros resultados de Fermat que este habia prometido enviar. Al
mismo tiempo, daba muestras de su paranoia, acusando a Fermat
de haberle atacado sistematicamente, cuando este solo habia arre-
metido una vez contra su Didptrica.

«[Preferiria] no decir nada sobre el articulo que me habéis
enviado [el Methodus), porque no hay nada que se pueda
decir que aproveche a quien lo escribi6 [...].»

— DESCARTES EN UNA CARTA ENVIADA A MERSENNE EL 18 DE ENERO DE 1638,
EN REFERENCIA AL METHODUS DE FERMAT.
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Mersenne, en esta polémica, tuvo el raro talento de empeorar
las cosas. En vez de enviar la respuesta de Descartes directamente
a Fermat, la turné a su vez a los enemigos parisinos de Descartes,
Etienne Pascal y Roberval, que, ni tardos ni perezosos, entraron
en la polémica como elefante en cacharreria, a menudo malinter-
pretando el trabajo de su defendido. Esto confirmo los peores te-
mores de Descartes: habia una conspiracién en su contra, y
Fermat no era mas que un peén en manos de los parisinos.

De todas formas, Descartes se habia pasado de listo. Si bien
su segunda critica, que el método de tangentes no se derivaba del
de maximos y minimos, es entendible dada la oscuridad del Me-
thodus, su primera objecién era absurda. Descartes afirmaba que
el método de Fermat daba la misma tangente para toda curva co-
nocida, pero faltaba a la verdad, porque cambiar la palabra «para-
bola» por «elipse» requeriria no solo esa sustitucién, sino también
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cambiar la definicion matemaética de la pardbola por la de elipse,
y si esto se hiciera, el método de Fermat funcionaria.

Descartes coronaba su carta con una enorme condescenden-
cia, recomendando de nuevo a Fermat que leyera con cuidado la
Geomelria, en la que, afirmaba, estaba todo lo que Fermat creia
haber descubierto. Solo a través de su libro, implicaba Descartes,
se podia llegar a la verdad. Enfrentado a un genio matematico de
su misma talla, Descartes no pudo asimilarlo: se habia convencido
de que el monopolio de la verdad era suyo.

Para demostrar su punto, Descartes, convencido de estar de-
batiendo con un peso liviano, lanz6 un reto: pidié a Fermat que
encontrara la tangente a una curva dada, que la posteridad llama-
ria «folio de Descartes». Sin dudarlo, y para asombro de su adver-
sario, Fermat respondié con la solucién correcta. En su respuesta,
Fermat derivaba el resultado de dos formas. La segunda esta ba-
sada en las propias ideas de Descartes; utilizando la normal para
calcular la tangente; de esa manera queria demostrar a su adver-
sario que su método daba los mismos resultados, pero de forma
mas simple. Sin embargo, Fermat nunca logré que su heuristica de
adigualar, que, segiin aseguraba, provenia de los griegos, fuera
plenamente aceptada por sus adversarios. Pero, como era tipico
en él, pensaba que, si funcionaba, tenia que ser verdadera. En todo
caso, por fortuna para los historiadores, la polémica continué por
un tiempo, obligando a Fermat, por primera vez, a justificar sus
resultados con cierto detalle.

En el fondo, todo era un malentendido. En la Investigacion
analitica ya estaba claro que la objecién de Descartes de que el
método de tangentes no estaba basado en el de maximos y mini-
mos era falsa. Y, finalmente, un mediador al gusto de Descartes, el
matematico francés Gérard Desargues (15691-1661), dio una res-
puesta saloménica a la polémica: Descartes tenia razén de haber
desconfiado porque la presentacion de Fermat en el Methodus no
era suficientemente clara, pero, en el fondo, Fermat tenia razén:
su método de tangentes era perfectamente universal. Ambos gi-
gantes habian chocado por un problema de egos. O mas bien, del
ego del filésofo, ya que Fermat se comportd, por lo general, de
forma bastante correcta. Descartes acepto el veredicto a regaia-
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dientes, e incluso se disculpé ante Fermat por sus insultos, pero
no perdié oportunidad, en el futuro, de justificarse a si mismo al
tiempo que intentaba empaiiar la reputacién de Fermat. Fermat
continuaria su polémica contra Descartes y sus seguidores veinte
afios después, con su adversario ya fallecido. En escritos posterio-
res es evidente la admiracién que tenia por Descartes, que se tras-
luce a pesar de sus criticas. En cierto sentido, aunque nunca
abandoné a Vieta, Fermat hizo caso a Descartes y adopto en parte
la Geometria. Pero las heridas que la polémica causé, la forma
desdefiosa con la que Descartes le traté y los intentos de este por
desprestigiarle ante la comunidad matematica de su tiempo nunca
llegaron a sanar.

LA CUADRATURA

En el curso de sus investigaciones sobre tangentes y maximos y
minimos, Fermat acercé gradualmente su concepto de una adi-
gualdad arbitraria al concepto, mucho més moderno, de una
cuasi-igualdad aproximada, incluso arbitrariamente cercana hasta
el punto de ser practicamente cero. Pero fue en su método de
cuadraturas cuando dio el paso final hacia lo infinitesimal, hacia
las cantidades arbitrariamente pequefas. Para entonces habia de-
jado atrds sus métodos de tangentes y maximos y minimos, y
nunca los reviso a la luz de sus nuevas ideas.

El problema de las cuadraturas se habia planteado desde la
Antigiiedad, a partir de las obras de Eudoxo y Arquimedes. En
general, dicho problema consiste en encontrar el drea limitada por
una cierta curva y una recta (normalmente el eje) o, cuando la
curva envuelve por completo un punto como en el caso de las
espirales, el drea delimitada por la curva y ese punto. Tal como lo
hacian los antiguos, esta drea se expresa construyendo un rectan-
gulo cuya drea sea igual al area buscada, es decir, encontrando el
producto de dos mimeros racionales a y b que conforman los
lados del rectdngulo. En realidad, en muchos casos se obtenian
varios rectidngulos cuyas 4reas, sumadas, daban el 4rea buscada.
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Muy pronto los griegos se dieron cuenta de que cuadrar cier-
tas curvas era muy dificil. En particular, una de las més elementa-
les: el circulo. Por més esfuerzos que hicieron, los griegos no
pudieron construir un rectingulo con lados racionales que tuviera
la misma 4rea. La razén de tales fracasos no se descubrié hasta
el siglo xix: el niimero =, con el que se expresa necesariamente el
area del circulo, no puede expresarse ya no digamos de forma
racional, sino ni siquiera como el resultado de una ecuacién alge-
braica. En la actualidad, tales niimeros son llamados trascenden-
tes, y son parte de los niimeros irracionales.

La dificultad de cuadrar ciertas curvas en términos racionales
no escapaba a Fermat, pero, como hemos dicho, su geometria
analitica habia dado lugar a un nimero infinito de curvas. En par-
ticular, curvas de grado superior al cuadrado de las cénicas eran
de pronto perfectamente tratables como ecuaciones. Asi que, en
vez de obsesionarse por curvas no cuadrables como el circulo,
Fermat aplicé su método a las curvas de grado superior. La con-
viccién de Fermat de que dichas curvas estaban perfectamente
determinadas por su ecuacién poco a poco le llevé a no preocu-
parse por la representacién geométrica. En sus cartas y tratados,
con cada vez mayor énfasis, olvidaba la gréfica de la curva y se
concentraba en la manipulacién algebraica. Como siempre, Fer-
mat empez6 su trabajo a partir de un griego. Esa vez no era Apo-
lonio ni Diofanto, sino Arquimedes. Sus trabajos definitivos sobre
el tema fueron publicados por su hijo Clément-Samuel, después
de su muerte, y aunque fueron incomprendidos por personas de
la talla de Huygens, el autor ya no estaba presente para, como hizo
con Descartes, aclarar lo que queria decir.

Volviendo a los tempranos tiempos de su correspondencia
con Mersenne y Roberval, en 1636, encontramos a un Fermat ocu-
pado con el tratado sobre espirales de Arquimedes, en el que este
habia determinado la cuadratura de la espiral que lleva su nombre.
Fermat extendié este método a otras espirales, como la que habia
definido para el problema de Galileo mencionado anteriormente.
Fermat ret6 a Roberval a encontrar la cuadratura de la pardbola
solida, una funcién cibica: y®=kx, que considerd por primera vez
y que se parecia mucho a una parabola. Roberval contesté de in-
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mediato. Tenia ya un método si-

8 milar al de Fermat, basado en un

D 3 G teorema de suma de potencias de
L/E/,’ F enteros que el tolosano habia en-
contrado durante sus investigacio-

nes sobre teoria de niimeros, y en

lustracion del
método de
exhaucion,
acotando el drea
bajo la curva entre
un drea mayor y
una menor.
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c el antiguo «método de exhaucién»,
inventado por Eudoxo y aplicado
por Arquimedes. Consiste en aco-
tar el 4rea que buscamos entre dos

sumas (véase la figura). Una de las sumas es la de los rectingulos

mayores DEFG —circunscritos— al drea real bajo la curva; la otra
es la de los rectangulos menores HIFG —inscritos— a dicha area.

Evidentemente, el drea real esta entre las dos sumas. El método de

exhaucién consistia en proponer un area y demostrar por una doble

reduccién al absurdo que era la tinica que podia estar entre ambas
sumas; no podia ser sino el drea real.

El método de Fermat y Roberval fallaba para ciertas curvas,
como rapidamente se dieron cuenta ambos. Pero Fermat pareci6
desinteresarse del tema. Sin embargo, en 16568, respondié casi in-
mediatamente a la reciente obra de Wallis sobre cuadraturas ha-
ciendo circular un tratado propio que, claramente, tenia que haber
estado rumiando durante muchos afios.

En su Tratado de cuadraturas, Fermat demostraba lo lejos
que habia llegado. Su método ahora era aplicable a todas las hipér-
bolas de grado mayor que dos, que se le habian resistido veinte
afios antes. Habia cambios radicales. Ahi donde Arquimedes (y los
métodos tempranos del propio Fermat y de Roberval) buscaban
sumas finitas, Fermat ahora aceptaba la posibilidad de una suma
infinita de rectangulos en el eje de las abscisas. Era la tinica forma
de analizar el area bajo una hipérbola, ya que la alternativa impli-
caba no un nimero infinito de rectangulos, sino un nimero finito
de rectangulos, uno de los cuales tenia drea infinita. Un rectdngulo
de drea infinita sumado a otros rectangulos da un drea infinita. En
cambio, un infinito de rectdngulos puede, en ciertas condiciones,
dar un area finita. Pero ademas, el método de Fermat se alejaba del
método de exhaucién en el hecho fundamental de que ya no nece-
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sitaba acotar el 4rea entre dos sumas. Le bastaba una sola suma en
la que se adigualaba el lado superior de cada rectangulo con un
segmento muy pequefio de la hipérbola. Cuanto mas pequefio fuera
el segmento, mds cercana era esa adigualdad, y por tanto, més cer-
cana estaba el drea bajo el segmento de curva al drea del rectdn-
gulo correspondiente. La diferencia es sutilisima, pero fundamental.

Tan sutil que Fermat no se dio cuenta de lo importante que
era el cambio. Su concepto de adigualdad habia cambiado: ya no
se trataba de adigualar cantidades finitas cualesquiera. Fermat
habia encontrado los infinitésimos. Sin embargo, estaba seguro
de continuar la tradicién de Arquimedes. No entendi6 que el salto
conceptual que habfa dado era tan grande que sus admirados
maestros griegos no podian ya seguirle al terreno inexplorado
que estaba abriendo. De nuevo, sin darse cuenta enterraba la tra-
dicién que tanto respetaba. En efecto, la cuadratura de curvas es
la operacién que hoy en dia llamamos integracién, aunque, como
en el caso de las tangentes, Fermat no supo ver que el drea bajo
una curva era también una ecuacién.

LA RECTIFICACION

Si cuadrar significa encontrar un area rectangular igual a otra
determinada por una curva, rectificar significa encontrar una
linea recta igual en longitud a la de una linea curva. Una vez mas,
el problema se remonta a los griegos.

Aristételes habia dictaminado que era imposible encontrar
una linea recta igual en longitud a una linea curva. Su autoridad
era tan grande que, en el siglo xvi, la mayoria de los matematicos
estaba de acuerdo, a pesar de que ya se habian logrado algunas
rectificaciones, en particular por Arquimedes. Siguiendo a dicho
maestro, Fermat estaba convencido de la posibilidad de recti-
ficar curvas. Su trabajo al respecto es la tinica instancia de un
tratado de Fermat que fue publicado de forma impresa en vida
del autor, como un apéndice de la obra de un amigo, el jesuita
tolosano Antoine de Lalouvere (1600-1664), en el tardio afio de
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1660. Sin embargo, se publicé de
forma anénima. Su autor sola-
mente se identificaba por unas
iniciales que no se correspondian
con las de Fermat. Los seguidores
de Descartes, emulando al maes-
tro, estaban convencidos de que
Aristételes tenia razén. Fermat,
en su tratado, habia decidido de-

llustracién

del método de
rectificacién
de curvas de
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Fermat.

mostrar que los cartesianos se
equivocaban.

En el Tratado de rectifica-
cion, de forma clarisima, Fermat adiguala un segmento de tan-
gente dado DE con el arco que subtiende dicho segmento, FE
(véase la figura). Para adigualar, obliga a que dicho segmento sea
arbitrariamente pequeiio: estaba usando infinitésimos. Grosso
modo, Fermat estaba pensando en la curva como si ésta estuviera
formada por una cantidad enorme de segmentos rectilineos muy
pequeiios, cada uno de ellos tangente a la curva. La suma de esos
segmentos infinitesimales daria la longitud de la curva (la rectifi-
cacion).

El siguiente paso era encontrar la suma de estos segmentos,
y Fermat lo resolvié con lo que hoy llamariamos un «cambio de
variable». Fue un golpe de genio: el cambio de variable definiria
una parabola ordinaria —de grado dos— cuya cuadratura es igual
al valor de la suma que estamos buscando. En otras palabras, Fer-
mat convirtio el problema de rectificacién en un problema de cua-
dratura ya conocido y resuelto por él mismo. No contento con
ello, defini6é una familia infinita de curvas basadas en una pardbola
generalizada y demostré que si esta es rectificable, todas las
demas lo son. Lo hizo demostrando que siempre podria construir
la parabola ordinaria asociada que acabamos de mencionar. De
esta forma, su victoria sobre los cartesianos fue total. No solo
habia logrado rectificar una curva; habia demostrado que el ni-
mero de curvas rectificables es infinito.

Pero precisamente ese paso de reducir la rectificacién a una
cuadratura fue lo que volvié a impedir a Fermat ver que el resul-
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LA METODOLOGIA DE LOS DOS TRATADOS TARDIOS DE FERMAT

El Tratado de cuadraturas emplea buena parte de los descubrimientos ante-
riores de Fermat, desde su método de maximos y minimos, que permite divi-
dir las curvas en segmentos que crecen o decrecen monoténicamente, la
geometria analitica, a través de rotaciones y traslaciones de eje que le permi-
ten manipular esos segmentos), y, por supuesto, la nocién de adigualdad.
Como era de esperar, es un tratado analitico. En cambio, el Tratado de recti-
ficacién es, metodolégicamente, muy distinto a todo lo que Fermat habia
escrito hasta el momento. En efecto, el tolosano se alejaba de su método
expositivo analitico y adopté el método sintético griego, el de los clasicos
como Euclides. Su razonamiento analitico, que era su forma normal de discu-
rrir, estaba por tanto escondido. Por qué lo hizo es un misterio, pero tal vez
tenga que ver con el peso de la tradicion. La laboriosidad que implicaba es-
cribir semejante obra, similar a la de Newton en los Principia, a su vez podria

explicar por qué no utilizé este enfoque en ningun otro sitio.

tado de su rectificacion era otra ecuacién. No se dio cuenta de que
estaba casi tocando los principios fundamentales del cilculo.
Habia logrado pensar en infinitesimales, un paso esencial en el
descubrimiento del cilculo, pero esto no solo no le llevé a revisar
su trabajo sobre tangentes y maximos, sino que tampoco supo
interpretar sus resultados como ecuaciones: pensaba en subtan-
gentes y dreas.

Anos después —y en parte gracias a los trabajos de Fermat—
Leibniz y Newton darian independientemente con las ideas cen-
trales del calculo: el uso de infinitésimos. Pero, sobre todo, con la
idea fundamental de que la operacién de calcular la pendiente de
la tangente a una curva A da como resultado una ecuacién B, y
que la operacion de encontrar la cuadratura de la curva B da como
resultado la ecuacién A. En otras palabras, que encontrar pen-
dientes y cuadraturas, derivar e integrar, son operaciones comple-
mentarias como la suma y la resta. Este es el teorema fundamental
del célculo.

+,Como es posible que Fermat no se diera cuenta de que tenia
al alcance de la mano el descubrimiento de dicho teorema? Es
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desesperante. Como el caballero Perceval, Fermat contemplaba el
Santo Grial, sin lograr reconocerlo, lo cual le impidi6 reclamar el
triunfo de haberlo hallado. En todo caso, la gran sintesis que Leib-
niz y Newton lograron es un ejemplo més de esos grandes puentes
entre problemas aparentemente disimbolos que, como hemos vis-
to, lograron el propio Fermat y Descartes con la geometria anali-
tica y Taniyama, Shimura y Wiles con la conjetura que lleva el
nombre de los dos primeros.

Y con este Moisés que vislumbra la tierra prometida pero no
llega a ella, casi hemos terminado nuestra historia. Falta el canto
del cisne, que es tan revolucionario como el resto de sus aporta-
ciones.

CONTRIBUCIONES DE FERMAT AL CALCULO DIFERENCIAL E INTEGRAL



CAPITULO 6

La probabilidad
y el principio de Fermat

Las contribuciones de Fermat a la matematica
no se agotan en las dos grandes vertientes que hemos
tratado hasta ahora, la teoria de nimeros por un lado, y la
geometria analitica y el cdlculo por otro. Junto con Pascal,
se le acredita haber inventado la teoria de la probabilidad,
y en sus ultimos afos se dedicé a revivir su polémica
con Descartes sobre 6ptica.






Hablar de «leyes del azar» es, a primera vista, un despropdésito.
,Coémo el azar, algo que, por definicién, no es predecible, puede
tener leyes? Si, en pleno siglo xxi, este concepto nos parece asom-
broso, en tiempos de Fermat era inconcebible. Pero dichas leyes
existen, y Fermat tuvo un papel fundamental en desarrollarlas a
instancias de Blaise Pascal.

Como era costumbre, todo comenzo con un problema. Blaise
Pascal, cuyo padre habia sido uno de los corresponsales parisinos
de Fermat, un intimo del circulo de Mersenne, se dirigi6é a Fermat
en 1654, recordandole su amistad con su fallecido padre, para
plantearle una cuestién. Para entonces, Fermat habia guardado
anos de silencio epistolar. A pesar de que volvié en la década de
1650 con brio renovado, y parece muy claro que no podria haberlo
hecho sin haber estado trabajando en privado durante buena parte
de ese tiempo, la muerte de Beaugrand, Descartes, Etienne Pascal
¥y, sobre todo, Mersenne, sus ocupaciones profesionales, ademas
de la peste y el agitado clima politico de la Fronda, mantuvieron a
Fermat en un profundo aislamiento que la carta de Pascal vino
a romper.

Pascal habia trabado conocimiento con un tal Antoine Gom-
baud, chevalier de Méré, un verdadero tahir. Habia deducido al-
gunas reglas heuristicas para saber cuando apostar y cuando no,
basadas en observaciones empiricas. El caballero le plante6 a Pas-
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cal un problema basado en el llamado «juego de puntos», en el que
un jugador apuesta que podri obtener un cierto resultado, diga-
mos un seis tirando un dado, en un nimero N de jugadas; digamos
en ocho, como en el ejemplo de Gombaud. La cuestién es que se
apuesta una cierta cantidad y se tira el dado hasta que, o bien han
transcurrido las ocho jugadas sin que salga un seis, lo cual signi-
fica que el apostador pierde, o bien ha salido un seis, en cuyo caso
el que tira el dado gana. La pregunta que hizo Gombaud a Pascal
fue la siguiente: ;Qué ocurre si se interrumpe el juego antes de
terminar, digamos, después de tres tiradas? ;De qué forma seria

BLAISE PASCAL

Nacido en Clermont, en el centro de la
geografia francesa, Blaise Pascal (1623-
1662) fue un genio precoz. A la edad de
doce afos, el joven presento a su padre,
Etienne, la prueba de que la suma de los
angulos de un triangulo cualquiera es
180°, uno de los teoremas capitales de
los Elementos de Euclides, libro que el
nifio desconocia... Impresionado, Etienne
se hizo cargo personalmente de su for-
macion. Alrededor de la misma edad,
perfecciond la primera maquina calcula-
dora mecanica conocida, disefiada para
ayudar a su padre en los célculos fisca-
les, muy similar a las que se usaron hasta
mediados del siglo xx. Etienne tuvo un
accidente, y para cuidarlo, Blaise contra-
to a dos jovenes que profesaban el jan-
senismo, una corriente catolica muy si-
milar al calvinismo, a la que se oponian vehementemente los jesuitas. Blaise
se convirtio al jansenismo, arrojandose a los brazos de una préactica religiosa
severisima, pero al cabo de un tiempo retomod sus estudios. Blaise Pascal
desarrolld importantes trabajos en hidrostatica v en el estudio de las cénicas,
pero su fe continud siendo su preocupacién principal. Su aportacién mas
conocida es la relativa al tridngulo que lleva su nombre.
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justo repartir la apuesta? Pascal plante6 este problema y algunos
similares en una carta que no ha sobrevivido. Sin embargo, cono-
cemos la respuesta de Fermat.

Tanto Fermat como Pascal tenian claro que habia que calcu-
lar el niimero de casos posibles por un lado y el niimero de casos
favorables a un jugador por el otro (el resto de casos son favora-
bles al otro jugador). Después, habia que dividir el segundo ni-
mero por el primero, lo que hoy conocemos como probabilidad,
aunque ninguno de ellos us6 ese nombre. Finalmente, se multipli-
caria esa probabilidad por el monto de la apuesta. El resultado es
lo que en la actualidad se llama valor esperado.

Hay otro principio fundamental que ambos aceptan inmedia-
tamente: los eventos son independientes entre si. La probabilidad
de obtener un seis en el quinto intento es independiente de lo que
haya sucedido hasta ese momento. Esto parece trivial a poco que
se sepa de teoria de probabilidad, pero recordemos que hay millo-
nes de personas en el mundo que piensan que la loteria de Navi-
dad acabara en cuatro porque «ya toca», porque hace mucho que
no acaba en ese niimero.

Pascal habia hallado un valor para el cuarto intento; es decir,
después de tres intentos fallidos, suponiendo que ambos jugado-
res consideraran la alternativa de parar el juego o tirar un cuarto
dado, cuél deberia ser la forma justa de repartir el bote. Cabe ob-
servar que esto no es el problema original de Gombaud; se limita
a una sola tirada después de los tres fallidos. Pascal encontré que
si la tirada no se llevaba a cabo, el jugador que lanza el dado debe-
ria recibir 125/1 296 de la apuesta original, alrededor del 10%, pro-
ducto de considerar las probabilidades de haber acertado en la
primera tirada, en la segunda y en la tercera, es decir, en el pa-
sado. De acuerdo con esto, el jugador que lanza el dado tiene de-
recho a alrededor del 10% de la apuesta.

Pero Fermat decia que no era asi: «Si mi oponente me ofrece
ese 10% para que no tire una vez mas, seria un error aceptarlo», La
probabilidad de obtener un seis en una tirada més es la misma que
en cualquier otra tirada, 1/6, alrededor del 17%. Pascal vio su error
y aceptd la solucion de Fermat; el pasado no importa. Lo tnico
que importa, para calcular la probabilidad, es el futuro.
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Pero a continuacién Pascal plante6 algunas dudas. En primer
lugar, intenté simplificar el problema reduciéndolo a un juego de
monedas (cara o cruz), de forma que los momios estuvieran igua-
lados para ambos jugadores. A partir de ello, utilizando un método
recursivo, cuya algebra es bastante compleja, propuso la solucién
al problema completo, considerando ya no solo la cuarta tirada,
sino también el resto de posibilidades: que el tirador ganara en la
quinta, sexta, séptima u octava tirada o que perdiera al cabo de
todas ellas.

Fermat respondi6 que el andlisis de Pascal era correcto, pero
propuso un método mucho mas simple. En vez de la complicada
respuesta algebraica de Pascal, el tolosano realizé simplemente
un recuento de casos posibles y eligié entre ellos los favorables.
Sin embargo, con una intuicién increible (dado que ni él ni Pascal
hicieron ningtin esfuerzo empirico para confirmar sus resultados),
hizo algo muy curioso: no se detuvo cuando el tirador habia ga-
nado, sino que consideré casos en los que este ganaria en las tira-
das quinta a séptima, si la partida seguia.

Segiin Fermat, habia que considerar todos esos casos para
computar correctamente la probabilidad. Solo de esta forma se
podia estar seguro de contar correctamente todos los casos po-
sibles y todos los casos favorables. Acertaba, pero ni Pascal ni
muchos de los que conocieron su método —en particular Rober-
val— entendieron al principio por qué. ;Por qué habia que conti-
nuar el juego cuando uno de los jugadores ya habia ganado? Era
absurdo considerar esos casos, dado que en un juego real la ac-
cién se detendria en cuanto alguien ganara, de la misma forma que
se detiene un partido de tenis cuando uno de los jugadores llega a
tres de cinco mangas ganadas, lo haga en tres o lo haga en cinco.
Es cierto, comentaba Pascal en su respuesta, que dos jugadores
pueden seguir jugando después de que uno haya ganado, y que,
por légica, el resto de las jugadas no alterara el resultado, pero,
;qué ocurriria si fueran tres o mas?

Imaginemos que hay tres jugadores que tienen igual probabi-
lidad de ganar. Si uno de ellos ha ganado, digamos, a la cuarta
oportunidad, no le conviene seguir el juego, porque otro de los
Jjugadores podria empatarle. Esto no ocurre con dos jugadores,
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EL TRIANGULO DE PASCAL

Aunque Pascal no descubrié el tridngulo, si fue el primero en Occidente en
explorarlo a fondo. Antes que él, varios matematicos indios, persas, chinos y
occidentales habian tratado aspectos de esta curiosa estructura. La propiedad
mas elemental del tridangulo es que una casilla dada es el resultado de sumar
las dos casillas encima de ella. De este principio tan sencillo se deriva una
enorme cantidad de resultados.

Por ejemplo, el desarrollo de un binomio elevado a una potencia n-1 tendra,
en cada uno de sus términos, los coeficientes correspondientes a la enésima
fila del triangulo. Asi:

(@+b)° =1

(a+b) =1-a+1:b
(@+b)? =1-a +2ab+1-b?

(a+b)® =1-3°+3a°b+3ab? +1-b?

(a+b)* =1-a* +4a°b+6a°b* + 4ab* +1- b°,

Otra aplicacion inmediata del triangulo es el calculo de combinaciones. En
efecto, la casilla k de la fila n corresponde a todas las formas de escoger k
elementos entre n, sin importar el orden.

n_ n!
k (n-Ikk!’

Por ejemplo, si tenemos cuatro elementos y queremos escoger dos de ellos
sin importar el orden, podemos hacerlo de seis formas:

4 |_ 4! -4-3-2-6
2] @4-2121 2-2 ’

Esta férmula es la que Pascal exploté para calcular las probabilidades del
juego de los puntos.
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pero puede ocurrir con tres o més. Pascal le pregunté a Fermat:
«;Coémo entonces se puede seguir sosteniendo que hay que consi-
derar todos los casos hasta el total de las ocho jugadas?». ;No
estaba Fermat considerando un caso poco realista?

Pascal no solo planted la pregunta. Se respondié a si mismo
utilizando su tridngulo para calcular todas las combinaciones po-
sibles. La respuesta que obtuvo, segin le parecid, no era la co-
rrecta, y ahi creyo encontrar una paradoja en el método de Fermat.
A esa carta, la mas compleja que escribié Pascal, fechada el 24 de
agosto de 1654, Fermat respondié muy brevemente.

El error de Pascal era obvio para el magistrado tolosano:
habia olvidado que, aunque se tomaran en cuenta todas las com-
binaciones, porque se asumiera que el juego continuara hasta el
final, ello solo tendria el efecto de considerar todos los casos po-
sibles. Los casos favorables, por ejemplo, al jugador A, eran solo
aquellos en los que A ganaba aunque B y C le empataran después.
Ese empate era irrelevante porque A ya habia ganado. Es como si
un partido de fiitbol terminara 2-1 pero los jugadores acordaran,
para divertirse, seguir jugando un rato més. El resultado oficial,
independientemente de si el equipo perdedor empata después, se-
guird siendo 2-1. En otras palabras, hay que tener en cuenta el

LA APUESTA DE PASCAL

Es curioso el hecho de que Pascal usara la teoria de la probabilidad en una de
sus mas importantes obras teoldgicas. El matematico francés fue un impor-
tante pensador catdlico, influido por el jansenismo. En sus célebres Pensées,
libro que comenzé a raiz de la muerte de su padre pero que no terminé jamas,
Pascal plantea la creencia en Dios de forma utilitarista, como una apuesta: si no
creemos en El, pero existe en realidad, nos habremos condenado eternamente;
por tanto, lo racional es creer en El, porque incluso si no estamos seguros,
el valor esperado —la salvacion eterna— es infinitamente mayor si creemos
que si no creemos (la condenacién eterna). Este argumento ha sido criticado
por varios fildsofos, pero lo relevante aqui es apreciar como el pensamiento
matematico habia permeado la filosofia de Pascal.
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orden en el que ocurren los casos favorables. Si calculamos los
casos favorables basdndonos en el orden, la paradoja desaparece.

Pascal acept6 la explicacién de Fermat y dio por resuelto el
problema. Ni Pascal ni Fermat volvieron activamente a la teoria de
la probabilidad. De todas formas, de esta breve correspondencia
habian surgido ideas seminales importantisimas para el posterior
desarrollo de la teoria de la probabilidad, que continué primero
Christiaan Huygens y, posteriormente, la genial familia Bernoulli.

La correccién de Fermat sobre el espacio de muestra es poco
intuitiva, y cuesta mucho entenderla. Veamoslo con un ejemplo.
Pongamos por caso que una persona dice que tiene dos hijos, de
los cuales uno es varén. ;Cudl es la probabilidad de que su otro
hijo sea varén? La mayor parte de la gente respondera: 50%. Pero
esto es incorrecto. Hay cuatro posibilidades en el espacio de
muestra, que podemos listar de la forma siguiente: VH, VV, HV,
HH. Claramente, la cuarta posibilidad se descarta por la informa-
cién que nos han proporcionado. Pero quedan tres, no dos posibi-
lidades igualmente probables. Por tanto, la probabilidad de que el
otro hijo sea varén es de 1/3.

Pascal y Fermat habian planteado la forma de razonar sobre
el futuro. Este era, si no completamente predecible evento a
evento, si predecible en general, cuando eventos similares se re-
piten lo suficiente. Era un cambio asombroso, cuyas aplicaciones
futuras apenas podian vislumbrar.

En un memorial dirigido a la Academia de Mersenne, Pascal
hablaba de sus trabajos matematicos, terminando con la corres-
pondencia que habia mantenido con Fermat. Ahi aseguraba que
ambos habian logrado algo paradéjico:

Asi, juntando el rigor de las demostraciones de la ciencia con la in-
certidumbre del azar, y conciliando ambas cosas en apariencia con-
trarias, puede, obteniendo su nombre de las dos, atribuirse con razén
el asombroso titulo de «geometria del azar».

Pascal, pues, tenia ya plena conciencia del logro: encontrar

que el azar se repartia, como norma general, de forma «justa» (son
sus palabras, algo teoldgicas), y que dicho reparto era matemati-
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zable, porque cuando se refiere a geometria, Pascal en realidad
quiere decir matematicas. Por desgracia, al tiempo que la corres-
pondencia entre Pascal y Fermat se desarrollaba, el primero ya
habia enfermado gravemente. En alguna de sus cartas le coment6
al tolosano que estaba en cama y que, a pesar de haber recibido su
carta, no habia tenido oportunidad de leerla. Blaise Pascal desa-
rrolld, casi seguramente, un cancer de estémago que terminaria
con sus dias. Enfermo desde los veinte aios, presa de atroces
cefaleas, Pascal se consumia lentamente.

Seis anos después de su breve correspondencia, en 1660, sa-
bedor de que Pascal habia ido a su natal Clermont desde Paris
para una cura, Fermat le propuso una entrevista personal. El tolo-
sano tampoco se sentia ya con fuerzas de emprender el viaje, y le
propuso a Blaise un punto intermedio. Pero Pascal respondi6 que
no le era posible. Asimismo, participaba a Fermat que le hubiera
encantado conocerle personalmente, no por la matematica (la
geometria, decia él), que no le harfa dar ya ni dos pasos, sino por
el placer de conversar con una persona a la que tanto admiraba.
Llamando a Fermat «el mayor ge6metra de Europa», expresaba al
mismo tiempo indiferencia por tal oficio, asegurandole que las
cualidades de su alma eran mas valiosas que todo su conocimiento
matemaético. El te6logo habia ganado la partida sobre el cientifico
en el corazon del enfermo Pascal.

Sea como fuere, Pascal le comunicé que su propésito era vol-
ver a Paris de la forma més suave posible:; a través de canales.
Adivinamos que su sufrimiento le hacia imposible siquiera la idea
de subirse a una diligencia. Pascal muri6 con treinta y nueve afios,
como el verdadero asceta que fue toda su vida. Su religiosidad le
convencié de que el sufrimiento era una condicién natural del
hombre, y aceptd su cruz con valor y estoicismo. Vio cé6mo el jan-
senismo que tanto habia defendido era declarado hereje por el
papa y por tanto suprimido por el rey, escribi6é una postrera obra
en defensa de sus ideas, y falleci6 el 18 de agosto de 1662. Fermat
se habia quedado solo. Estaba Christiaan Huygens, como posible
discipulo, pero el holandés, aunque reconocia su genio, era inca-
paz de entenderle. El gran genio matematico del siglo xvi no logré
crear una escuela.
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LA OPTICA Y EL PRINCIPIO DE FERMAT

Recordemos que la polémica con Descartes comenzé con unas
observaciones de Fermat sobre la Didptrica, uno de los apéndices
del Discurso del método. No hemos abundado en el capitulo ante-
rior en las objeciones de Fermat, debido, entre otras cosas, a que
fueron muy brevemente debatidas entre los dos. Rdpidamente, la
polémica se centré en los métodos de méiximos y minimos y las
tangentes. Pero hacia el final de su vida, y con el fallecimiento de
Descartes ocho afios antes, Fermat revivié la polémica en lo que
fue su tltima contribucién a la ciencia.

«Me encantaria saber lo que él [Fermat] respondera,
tanto sobre la carta adjunta a esta, donde respondo a su obra

sobre maximos y minimos, como a la precedente, donde repliqué

a su demostracién contra mi Diépirica. Pues he escrito ambas
para que €l las lea, si me hacéis esa merced.»

— DESCARTES EN UNA CARTA ENVIADA A MERSENNE EL 18 DE ENERO DE 1638,

Pierre de Fermat fue, sobre todo, un matematico. Su interés
por la fisica, lo que entonces se llamaba «filosofia natural», fue
muy marginal, limitado a algunos comentarios en defensa de las
ideas geoestaticas de su amigo Beaugrand y a la famosa polémica
con Descartes sobre 6ptica. Fermat no entré en dicha polémica
por propio pie. Pensé que tanto Mersenne como Beaugrand le pe-
dian un comentario sobre el trabajo de Descartes, e hizo ese co-
mentario con la mejor voluntad, sin darse cuenta de que ello le
acarrearia la enemistad del filésofo.

Las objeciones de Fermat en el temprano aio de 1637, cuando
su correspondencia con Mersenne apenas comenzaba, eran fun-
damentalmente filos6ficas. Fermat era un firme defensor del em-
pirismo que habia encontrado en Francis Bacon.

Segiin Fermat, la verdad en las ciencias fisicas solo podia ser
encontrada a través de la experimentacién, como habia hecho Ga-
lileo. Descartes daba un paso atras, siempre segtiin Fermat: usaba
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un método racionalista, totalmente aristotélico, para intentar lle-
gar a verdades sobre la naturaleza.

Habia otro elemento que permeaba la critica inicial de Fer-
mat hacia la Didptrica. Descartes habia evitado publicar uno de
los apéndices de su obra, El tratado del mundo, en el que expli-
caba sus principios fisicos, por miedo a la Inquisicién. No hacia
muchos afios que Galileo habia sido condenado, y Descartes de-
fendia un sistema heliocéntrico, igual que Galileo. Asi que Des-
cartes se abstuvo de publicar, privando a la Diéptrica de su
Jjustificacién fisica y dejandola en un simple tratado matematico.
Por tanto, Fermat no tenia forma de conocer las ideas fisicas de
Descartes. Tan solo conocia su metodologia general racionalista.
Y los principios matematicos de la Didptrica se le antojaron arbi-
trarios, sin ninguna base.

Veamos a continuacién lo que Fermat no conocia. La luz,
para Descartes, es un impulso que se comunica por colisién
entre particulas muy sutiles, como bolas de billar (practicamente
toda la fisica cartesiana se basa en colisiones). Como simil Des-
cartes hablaba del bastén de un ciego, que al chocar con algo,
transmite el impulso de ese choque a la mano del ciego. La luz
opera con el gjo de forma similar, siendo el bastén la sucesién de
particulas que colisionan unas con otras. Su transmisién, ade-
mas, es instantanea.

Descartes seguia razonando que el impulso, al ser una
«fuerza» (la fuerza cartesiana no es la misma que la fuerza newto-
niana con la que estamos familiarizados), podia descomponerse
vectorialmente, A partir de ello derivaba las leyes de la reflexién,
que para él era como el choque de una bola de billar contra una
pared inamovible (como se puede comprobar, dicho choque tiene
la misma propiedad que la reflexién: el 4ngulo de incidencia y el
de salida son iguales). De forma mas polémica, Descartes deri-
vaba la ley de la refraccién —lo que hoy conocemos como ley de
Snell— de la conjetura de que, al cambiar a un medio mas denso,
era necesario que la luz ejerciera mas fuerza para poder transmi-
tirse, contrarrestando la resistencia del medio.

El modelo de Descartes tenia un problema: en un universo
de bolas de billar, si cambiar de medio es, por ejemplo, atravesar
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REFLEXION Y REFRACCION

La reflexién especular (figura 1) ocurre cuando la luz es total o parcialmente
reflejada por una superficie reflejante, como un metal o un charco de agua.
Segun sabemos hoy —aunque esto era todavia algo polémico en el siglo xvi—,
la ley de reflexion de la luz dice que:

1. El rayo incidente PO, el rayo reflejado OQ y la normal estan en el mismo
plano, por lo que dicho plano es perpendicular a la superficie.
2.0,=60,

i

3.PO y OQ se encuentran en lados opuestos de la normal.

La refraccion (figura 2) ocurre cuando la luz pasa de un medio transparente
de cierta densidad a uno de densidad distinta. Se evidencia con la familiar
imagen de la cuchara que parece «doblada» cuando estd parcialmente sumer-
gida en agua. La ley de refraccién, conocida como ley de Snell, dice que el
seno del angulo entre el rayo incidente y la normal es al seno del angulo entre
la normal y el refractado como las respectivas velocidades son una a otra, y
como el inverso de los respectivos indices de refraccidon uno a otro:

sengy v _n
senf, v, n

FIG. 2
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una tela muy delgada, el 4ngulo previsto por la bola que atraviesa
dicha tela se aleja de la normal, es decir, el dngulo crece. En
cambio, lo que se observa en Optica es que el dngulo decrece.
Para explicar esta discrepancia, Descartes imaginé un apaiio fi-
sico: una explicacién ad hoc, sin ninguna base ya no digamos
experimental, sino siquiera fundamentada en sus propios princi-
pios fisicos, Ahora bien, toda esta explicacién solo tiene sentido
si se conocen los principios de la fisica cartesiana. La justifica-
cién de la teoria de la luz de Descartes estd en su fisica, no en sus
matematicas.

Fermat no se dio cuenta de que necesitaba entender la fisica
cartesiana para comprender la Didptrica, ni Descartes ni los car-
tesianos advirtieron que Fermat ignoraba la fisica subyacente.
Para ellos, Fermat simplemente no la entendia. En cambio, el to-
losano veia injustificadas las derivaciones cartesianas. Otra vez
estaba inmerso en un didlogo de besugos, como tantos en los que
particip6é Fermat durante su vida. De todas formas, la fisica carte-
siana hubiera repugnado a Fermat; y hubiera hecho bien, porque
Descartes se equivocaba al reducir todo el mundo a colisiones
entre particulas.

La polémica en aquella época no duré demasiado. Pero en
1658, Claude Clerselier contacté a Fermat para consultarle sobre
la controversia, dado que estaba preparando una edicién de las
cartas de Descartes. Clerselier solo estaba interesado en averi-
guar si existian mas de las dos cartas de Fermat que habia encon-
trado, pero este le contesté con una larga carta en la que, ademas
de las objeciones que habia planteado en 1637, afiadia otras nue-
vas. Para su asombro, Clerselier vio que Fermat queria reabrir la
polémica. '

A esas alturas Descartes habia muerto, pero el resentimiento
de Fermat contra el hombre que le habia menospreciado y habia
intentado manchar su reputaciéon no habia decaido. Es posible
también que, en ese momento de su vida, amargado por los muilti-
ples fracasos en interesar a sus contemporaneos por la teoria de
nimeros, Fermat considerara que los ataques de Descartes habian
contribuido a que no se le hiciera caso. Su caracter, afable al prin-
cipio en medio de las discrepancias, se habia agriado. Sea como
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fuere, Clerselier y otro matemaético francés, Jacob Rohault, con-
testaron defendiendo a Descartes. Fermat no se amiland, volvié a
la carga, y esta nueva polémica se prolongé durante cuatro afos.
La falta de interés que habia mostrado en 1637 por involucrarse en
cuestiones fisicas habia desaparecido del todo: estaba listo para
la batalla.

Quiso la suerte que Fermat estuviera en continuo contacto,
por razones profesionales, con Marin Cureau de la Chambre, se-
cretario del canciller del Reino, Séguier, con el que Fermat, en
tanto portavoz del Parlamento, tenia que despachar asuntos ofi-
ciales. Cureau de la Chambre también tenia inquietudes cientifi-
cas, y acababa de publicar, precisamente en 1657, un libro sobre
Optica, llamado Luz, dedicado al cardenal Mazarino. Cureau envié
una copia a Fermat, que lo ley6 y respondié manifestando su
acuerdo con Cureau y su alegria de que el trabajo de este «pondria
a M. Descartes y todos sus amigos a la defensiva».

Cureau habia planteado un principio fisico que ya se conocia
desde la Antigiiedad: «La naturaleza opta siempre por el camino
mads corto». Dicho principio habia sido postulado especificamente
para casos de reflexién por Herén de Alejandria (ca. 10-70). De
acuerdo con Herén, Cureau limitaba dicho principio a la reflexién.
Fermat, en cambio, lo generalizaba a la refraccién, afiadiendo la
hipétesis de que la razén entre la resistencia al paso de la luz de
ambos medios determina el trayecto més corto. Como acostum-
braba a hacer, no demostraba lo que afirmaba. Simplemente lo
esbozaba.

Ahora bien, aunque Fermat lo planteé en estos términos, un
andlisis detallado de su razonamiento revela que no estaba calcu-
lando el camino mas corto. Estaba calculando, en realidad, el
tiempo mas corto. Fermat habia cambiado el principio de Herén:
no midié distancias, sino tiempos. ;Por qué, entonces, intenté Fer-
mat enmascarar su razonamiento, basandolo en la autoridad del
matematico griego? Por un lado, falté a su conviccién empirista.
El principio de Fermat, que asi se llama ahora, era en ese mo-
mento un postulado axiomatico mas que un resultado empirico.
Fermat, para luchar contra Descartes, acept6 los términos de este:
matematizacion de la naturaleza y renuncia al empirismo, razo-
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nando a partir de postulados, como si la fisica fuera una rama de
las matematicas.

Pero, de forma mds importante, Fermat se acogié a un princi-
pio de autoridad y enmascaré su verdadero método. Esta claro
por qué: tanto Cureau como Descartes pensaban que la luz se pro-
pagaba de forma instantianea, o, dicho de otro modo, que su velo-
cidad era infinita. Pero para hablar del tiempo que tarda la luz en
atravesar un medio dado es obvio que hay que asumir que la velo-
cidad de la luz es finita. Sin duda, Fermat queria evitar esa polé-
mica, en la que no tenia argumentos sélidos, y prometi6é enviarle
a Cureau una demostracion de la ley de refraccién basada en ese
principio. Cuatro afios después, ain no lo habia hecho. Cureau le
imploré que se diera a la tarea, pero Fermat contestd que no tenia
tiempo de realizar los complejos cdlculos necesarios. Sin em-
bargo, finalmente Fermat accedi6 y derivo la ley de refraccién del
principio que lleva su nombre, usando su método de maximos y
minimos.

Es asombroso cémo, en Fermat, los temas recurren una y
otra vez. Por otro lado, es l6gico: el principio de Fermat es un
ejemplo de lo que se conoce en fisica como principios extrema-
les, que requieren calcular un maximo o un minimo; en este caso,
el tiempo minimo. La formulacién de la mecénica o de la 6ptica en
términos de dichos principios tiene una importancia capital. En
mecanica, por ejemplo, dichos principios son més béasicos que las
leyes de Newton, y de una aplicacién mucho mayor: el principio
de minima accién es vilido tanto para la mecinica newtoniana
como para la relatividad o la mecanica cuintica; lo tinico que cam-
bia es la definicién detallada de lo que hay que minimizar. Fermat,
por tanto, estaba planteando, una vez mas, un formalismo con un
futuro inmenso.

En todo caso, el tolosano logré derivar la ley de refracciéon a
partir de su principio, que, esta vez si, era postulado de forma
explicita. Y para su enorme sorpresa, jera la misma ley que habia
derivado Descartes! Claramente, la derivacién de Fermat era
mucho mejor. En primer lugar, se habia basado en un principio de
gran elegancia y simplicidad, que, ahora sabemos, es de aplicacion
universal en éptica sin que sea necesario hacer conjeturas sobre
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la naturaleza de la luz (solo sobre la finitud de su velocidad). En
segundo, no requiere hipétesis ad hoc. Se deriva naturalmente del
principio mismo.

Fermat estaba feliz. Los cartesianos verian confirmada la ley
de refraccién, que, a su vez, estaba derivada de una forma mucho
mas convincente que la que habia usado Descartes. Nuevamente,
la ingenuidad de nuestro personaje traiciond sus expectativas. Los
cartesianos estrictos, como Clerselier, no podian transigir, no po-
dian abandonar al maestro. La polémica continué, ahora centrada
en la derivacién de Fermat.

Es una ironia que la dltima carta conocida que Fermat escri-
bié sobre un tema cientifico, en 1662, fuera para defender su deri-
vacién, dado el poco interés que mostré durante toda su carrera
por la fisica matematica, la cual, le decia a Mersenne en su pri-
mera carta, ni le interesaba ni se sentia capacitado para ejercerla.
Sabemos, por su tltima carta a Pascal, que ya desde 1660 se sentia
enfermo y sin las fuerzas necesarias para hacer el trayecto a Cler-
mont. Al afio siguiente, hizo gestiones para que su hijo Clément-
Samuel heredara sus cargos. El fin, intuia, estaba cercano.

A partir de 1662 todo es silencio. Lo poco que se sabe de los
tltimos afios de Fermat se deriva de su carrera profesional. En
1663 el intendente del Languedoc, Bezin de Bésons, escribié a Col-
bert la carta donde analizaba a los consejeros del Parlamento de
Toulouse, considerando a Fermat un gran erudito politicamente
inofensivo, e incluso algo torpe en cuestiones profesionales. Ni
Séguier antes que él ni Colbert tenian nada que temer del ingenuo
magistrado, el sabio que se recreaba en las certidumbres matema-
ticas al tiempo que huia de la politica.

Pero el magistrado sigui6 trabajando. Su sentido del deber
era excepcional. Como ya se ha dicho, con frecuencia impidié que
su dedicacion a las matematicas fuera mayor de la que fue. E1 9 de
enero de 1665 dictd su dltimo acto judicial. Apenas tres dias des-
pués, Pierre de Fermat murié en Castres, la ciudad con la que tan
ligada estuvo su carrera profesional, y fue enterrado sin pompa en
el cementerio local. Su panegirico fue publicado, probablemente
por Pierre de Carcavi, en el Journal de Savants del 9 de febrero
de 1665, expresando preocupacién de que su desperdigada obra
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pudiera editarse finalmente en un magnus opus para que el mundo
conociera la genialidad de Fermat:

Con gran tristeza hemos sabido de la muerte de M. de Fermat, con-
sejero del Parlamento de Toulouse. Fue una de las mas brillantes
mentes de este siglo, un genio tan universal y de tal calibre que, si
los sabios no hubieran sido testigos de su mérito extraordinario,
apenas podriamos creer todo lo que de él se ha dicho, y nos queda-
riamos cortos en sus alabanzas.

Pero, como hemos dicho, su obra pudo no sobrevivirle. El
amor de hijo de Clément-Samuel, recopilando pacientemente sus
obras, como el aduanero de Lao Tse, primero en sus comentarios
a la Aritmética de Diofanto y luego en una Varia Opera Mathe-
matica, fue el primer paso para preservar sus obras. También
Jacques de Billy y John Wallis, cada uno por su cuenta, publicaron
elementos de la obra de Fermat. Sin embargo, no era suficiente;
importantes cartas en manos de Carcavi, que inexplicablemente
no proporcioné al primogénito, y de muchos otros corresponsa-
les, no fueron publicadas hasta mucho maés tarde. Inevitable-
mente, las epistolas de Fermat se desperdigaron conforme morian
los destinatarios. No fue sino hasta el siglo xix cuando un bibli6-
filo anuncié que habia comprado buena parte de los manuscritos
de Fermat en Metz. Los eventos revolucionarios de 1848 hicie-
ron que la coleccién volviera a perderse. Pero entre 1879 y 1891
Charles Henry y Paul Tannery emprendieron la titdnica tarea de
recuperar las obras de Fermat a partir de las obras publicadas y
de colecciones privadas. Gracias a ellos su herencia ha llegado a
nosotros.

En cuanto al propio Fermat, diez afios después de su muerte,
fue inhumado en la célebre y bellisima iglesia de los agustinos de
Toulouse. Ahi descansé, durante més de cien afos, una de las
mentes cientificas mas privilegiadas de todos los tiempos, hasta
que sus restos se perdieron durante la Revolucién francesa.
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