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Introducción 

«Lo que conocernos es muy poco; lo que ignorarnos es inmenso .. . 
El hombre solo persigue quimeras.» Estas fueron las últimas pa­
labras de Pierre-Sirnon de Laplace poco antes de expirar a las 
nueve horas del lunes 5 de marzo de 1827. Exactamente en el 
mismo mes y en el mismo año, un siglo después, en que murió 
Isaac Newton, quien falleció el lunes 20 de marzo de 1727. Curio­
samente, poco antes de su muerte, Newton pronunció palabras 
similares: «Lo que sabemos es una gota de agua; lo que ignorarnos 
es el océano». 

Frecuentemente llamado el Newton de Francia, Pierre-Sirnon 
de Laplace (1749-1827) fue el científico por excelencia de finales 
del siglo xvm y principios del XIX. Este habilidoso matemático com­
pletó la mecánica de Newton, demostró la estabilidad del sistema 
solar y ofreció una sugerente hipótesis sobre su origen. Fundó la 
teoría matemática de la probabilidad y postuló una visión deter­
minista del universo. Y junto a Lavoisier y otros jóvenes discípu­
los, realizó contribuciones decisivas a la química y a la física 
matemática. 

Pero, ¿quién fue realmente el marqués de Laplace? ¿Quién era 
ese hombre que vio nacer un mundo nuevo, que en sus setenta y 
ocho años de larga vida viajó al corazón de las luces, conoció a los 
enciclopedistas, asistió al carnaval revolucionario, compartió 
mesa con los jacobinos, esquivó la guillotina, examinó y trató a 
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Napoleón, se subió al carro de los bonapartistas y, en el último 
momento, juró lealtad a los Borbones? 

Esta obra trata de despejar esa incógnita que toda biografía 
supone, ll.'.'Í como explicar lo esencial de sus múltiples e impor­
tantísimas aportaciones científicas. Contar las muchas vidas del 
marqués de Laplace requiere conectar su obra científica con su 
papel como figura social y política señera en esos años en que 
se abrió paso la Edad Contemporánea. A diferencia de su com­
patriota, Frarn;ois-René de Chateaubriand, Laplace nunca escri­
bió unas Memorias de ultratumba, pero perfectamente podría 
haberlo hecho, porque su turbulenta vida daba para ello. Laplace 
aprendió a compaginar la vida doméstica con una vertiginosa ca­
rrera científica que se vio envuelta en los grandes acontecimientos 
políticos y sociales que le tocó presenciar y en los que participó 
activamente: el de1Tlllnbe del Antiguo Régimen, los frenéticos vai­
venes de la Revolución, el ascenso y la caída del Imperio napoleó­
nico y, finalmente, la Restauración borbónica. 

Por desgracia, aún persiste en la historia de la ciencia la ten­
dencia a considerar el tiempo que dista entre Newton y Einstein 
como un período de relativa calma, en el que los científicos de la 
talla de Laplace se dedicaron meramente a perfeccionar la mecá­
nica newtoniana, antes de que el electromagnetismo hiciera su 
aparición y la teoría de la relatividad lo trastocara todo. Sin em­
bargo, este libro pretende añadir una cierta dosis de inestabilidad 
a ese remanso de aguas tranquilas que se pretende fue el ambiente 
científico de esos siglos, el XVIII y el XIX, quiere retratar a personas 
vivas, inmersas en sus fórmulas y laboratorios, apasionadas, car­
gadas de instrumentos, impregnadas de saber práctico y estrecha­
mente vinculadas a un medio social y político amplio y vibrante. 
En lugar de una pálida y exangüe ciencia, se quiere mostrar que la 
ciencia que le tocó vivir a Laplace tiene historia, flexibilidad, san­
gre, en suma. 

El marqués fue mucho más que el símbolo de una gloriosa 
pero tranquila época científica. Destinado por sus padres a ser un 
vulgar cura de provincias, Laplace se convirtió en un académico 
precoz en el París de la Ilustración, popularizó la ciencia durante 
la Revolución francesa, extendió el uso del Sistema Métrico Deci-
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mal, renovó las instituciones docentes imperantes en Francia, fue 
ministro del Interior y ocupó cargos y dignidades desde los que 
trazó la política científica francesa para toda una generación, pre­
cisamente la que desarrolló y modernizó múltiples disciplinas 
científicas, perfeccionando el método científico -experimenta­
ción, modelización, revisión- hasta sus últimas consecuencias y 
haciendo, en definitiva, de la ciencia un pilar fundamental del 
nuevo orden social. 

La ciencia moderna comenzó con Galileo y Newton en el siglo 
XVII. Pero hasta finales del xvrn y comienzos del XIX no se convirtió 
en un factor determinante en la vida cotidiana. Junto con otros 
científicos, también protagonistas en esta obra (D'Alembert, Con­
dorcet, Carnot, Monge, Fourier, etc.), Laplace contribuyó a que la 
ciencia comenzara a dejar su huella en los pensamientos y las 
costumbres de los hombres corrientes, de manera que esos dos­
cientos años de cultura científica transcurridos han resultado más 
explosivos que cinco mil años de cultura precientífica. No en 
vano, comentando las obras de Laplace, Napoleón llegó a escribir 
que contribuían a la renovación de la nación, porque «el progreso 
y el perfeccionamiento de las matemáticas están íntimamente li­
gados con la prosperidad del Estado». 

Así pues, las páginas que vienen a continuación no solo ana­
lizan la vida personal o los trabajos científicos de Pierre-Simon de 
Laplace, sino que también exploran la función que desempeñó en 
la cambiante y convulsa sociedad de su tiempo. En esta semblanza 
biográfica, la historia personal e intelectual del científico francés 
se alterna con la historia social y política. Las matemáticas tam­
bién revolucionaron la faz del mundo en la época. 

Asistimos al nacimiento de Laplace en un pequeño pueblo 
normando. Lo seguimos a través de sus años de infancia y juven­
tud, y en su paso por el colegio y la universidad, cuando decidió 
abandonar la teología por las matemáticas. Visitamos de su mano 
el París ilustrado, donde fue apadrinado por D'Alembert e inició 
una meteórica carrera científica, labrada con tesón, aunque no 
siempre honestamente. Un período de aprendizaje que terminó 
con la coronación de su ambición más profunda: ganar un sillón 
en la Academia de Ciencias. Para entonces ya dominaba con sol-
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tura las herramientas del análisis matemático: el cálculo y las 
ecuaciones diferenciales. 

El académico Laplace, transformado ahora en sabio y filósofo 
oficial, pondrá enseguida la primera piedra de lo que es su gran 
contribución al desarrollo de la ciencia: la «progresiva matemati­
zación de los cielos y de la tierra», recurriendo, respectivamente, 
a la mecánica de Newton y a la naciente teoria de la probabilidad. 
Dos áreas de investigación, la probabilidad y la mecánica celeste 
( el propio Laplace acuñó el término), a las que consagrará el resto 
de su vida científica. Su labor de profundización de la mecánica de 
Newton le permitirá, precisamente, demostrar la estabilidad del 
sistema solar, ratificando la victoria de Newton sobre Descartes. 
Sobre este punto, conviene advertir que, tras la muerte del cien­
tífico inglés, la visión newtoniana del universo todavía estaba en 
disputa con la cartesiana, porque quedaban bastantes problemas 
abiertos en el ámbito de la mecánica celeste. En concreto, Laplace 
abordó las anomalías que suponían algunos movimientos celestes 
para la teoria de Newton, como el de algunos planetas y satélites, 
o el de los cometas. Logró explicarlos uno tras otro con la única 
ayuda de la ley de la gravitación universal. El «sistema del mundo» 
era, por tanto, estable. Los nuevos moradores del sistema solar 
que los telescopios habían ido descubriendo ( el planeta Urano, 
dos satélites más de Saturno y algunos asteroides) no ponían en 
peligro el orden reinante en el universo conocido. Lejos de ser un 
simple epígono de Newton, como frecuentemente lo describen los 
historiadores que saltan de Newton a Einstein, Laplace fue clave 
en el triunfo póstumo del gran filósofo natural inglés. Fruto del 
crédito obtenido fue su colaboración con Lavoisier, otro ilustre 
científico del momento, con el objetivo de extender a la «tierra» 
los éxitos del programa newtoniano aplicado a los «cielos», en 
particular en el ámbito de la química. 

Pero 1789 fue un año que can1bió la historia del mundo. Vere­
mos cómo el ciudadano Laplace vivió ese momento estelar para 
la humanidad. La Revolución francesa supo movilizar a la Ciencia, 
con mayúscula, y poner a los científicos en armas. De este modo, 
nuestro personaje se convirtió sucesivamente en un tecnócrata 
que impulsó la adopción del Sistema Métrico Decimal, en un pe-
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dagogo que transformó las obsoletas instituciones educativas 
francesas y, por último, bajo la bandera de Napoleón, en un hom­
bre de Estado, ministro y canciller del Senado. 

A continuación, nos ocuparemos de la gran obra que escribió 
durante los años revolucionarios: la Exposición del sistema del 
mundo. Este tratado de alta divulgación ofrece el estado de la cues­
tión sobre el conocimiento del mundo celeste en la época y, ade­
más, proporciona una coajetura más que razonable sobre el origen 
del sistema solar: la hipótesis nebular. Los sucesivos volúmenes de 
su monumental Mecánica celeste recogerían los resultados que al 
respecto iría cosechando durante más de veinticinco años. 

También nos detendremos en su otra gran obra de divulga­
ción: el Ensayo filosófico sobre las probabilidades. En ella sienta 
los cimientos de la teoría moderna de probabilidades y, en espe­
cial, formula la archiconocida regla de Laplace para el cálculo de 
la probabilidad de un suceso. La probabilidad era el núcleo de su 
concepción del conocimiento. Aunque la distinción aristotélica 
entre los cielos y la tierra ya no estaba vigente, solo la ciencia del 
cielo, en cuanto mecánica celeste, había seguido el seguro canüno 
de las matemáticas. Laplace concebía la probabilidad como una 
herramienta fundamental para matematizar también los fenóme­
nos terrestres. 

Por último, se tratarán los años del declive. Este hijo rebelde 
de la Revolución supo acercarse en el momento oportuno a la 
corte borbónica restaurada. En sus últimos años, Laplace recibió 
honores y condecoraciones. Y, lo que más nos interesa, fundó 
una influyente escuela de matemáticos, encargada de continuar 
el programa de matematización de toda la física siguiendo el mo­
delo del maestro. La escuela laplaciana comenzó a aplicar al 
mundo terrestre la misma forma matemática de proceder en 
el mundo celeste. Una senda que hoy día, para bien y para mal, 
aún seguimos. 

Pero la buena estrella irá poco a poco apagándose, y sus dis­
cípulos pasarán grandes apuros para continuar el proyecto. Con 
la muerte de Laplace desaparecía el legislador de la vida cientí­
fica francesa durante casi medio siglo. No obstante, su legado 
-aunque con luces y sombras- sigue vivo en nuestro presente. 
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Basta hojear cualquier libro de matemáticas o de física para des­
cubrir mil y un conceptos que llevan su nombre: la regla de La­
place, el desarrollo de Laplace, la transformada de Laplace, la 
ecuación de Laplace, el laplaciano ... Pero la deuda no acaba aquí: 
los filósofos hablan a menudo del demonio de Laplace y ,de su 
hipótesis cosmogónica. E, incluso, deberíamos acordarnos del 
«Newton de la Francia revolucionaria» cada vez que cogemos un 
metro para medir. 
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1749 El 23 de marzo nace Pierre-Simon 1795 Laplace participa en la fundación del 
de Laplace en Beaumont-en-Auge, un Instituto de Francia, de la Escuela 
pequeño pueblo de Normandía, Francia Politécnica y de la Escuela Normal. 

1765 Ingresa en el Colegio de Artes de la 1796 Se publica Exposición del sistema 
Universidad de Caen para iniciar la del mundo, una extensa obra en la 
carrera eclesiástica, pero en 1768 que Laplace expone su teoría sobre la 
abandona el colegio sin haberse formación del sistema solar: la hipótesis 
ordenado sacerdote. nebular. 

1769 Se muda a París, bajo la tutela de 1799 Se publica el primero de los cinco 
D'Alembert, gracias al cual consigue volúmenes del Tratado de m ecánica 
un puesto de profesor de Matemáticas celeste, obra en la que recopila todos los 
en la Escuela Militar de París. descubrimientos hechos en astronomía. 

Después de varios intentos, consigue 
Como ministro del Interior, Laplace 

1773 firma el decreto que establece el 
un puesto en la Academia de Ciencias. Sistema Métrico Decimal 

1783 Es presentada ante la Academia 1806 Napoleón le nombra conde del Imperio. 
Memoria sobre el calor, obra fruto 
de la colaboración con Lavoisier. 1812 Se publica Teoría analítica de las 

1784 Laplace es nombrado examinador 
probabilidades, el libro que dio lugar 
al nacimiento de la teoria moderna 

de cadetes en la escuela de artilleria, de probabilidades. 
lo que le permite entrar en contacto 
con figuras públicas en ascenso. 1814 Publicación de Ensayo jüosójico sobre 

Se presenta ante la Academia Sobre las 
las probabilidades, ensayo en el que 

1785 Laplace presenta al gran público los 
desigualdades seculares de los planetas principios y resultados más generales 
y satélites, y al año siguiente, Teoría de de la teoria de la probabilidad sin 
Júpiter y Saturno, dos memorias con valerse del análisis matemático. 
las que resuelve las anomalías en 
el movimiento de Júpiter y Saturno. 1817 Es nombrado marqués del reino 

de Francia. 
1787 Se publica Sobre la ecuación secular de 

la Luna, memoria con la que resuelve la 1825 Se publica el quinto y último volumen 
anomalía del movimiento de la Luna del Tratado de m ecánica celeste. 

1790 Laplace es nombrado miembro 1827 Pierre-Simon de Laplace muere en París 
de la Comisión de Pesos y Medidas. el 5 de marzo. 
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CAPÍTULO 1 

La forja de un científico 

Laplace destacó, desde muy pequeño, por 
atesorar grandes cualidades para las matemáticas. 

Nada más llegar a París, gracias a su talento se granjeó la 
atención de D'Alembert, quien lo introdujo en los principios 

del análisis y las aportaciones de Euler y Lagrange. Entre 
1769 y 1773, desde su humilde posición de profesor en la 

Escuela Militar, ofreció los primeros destellos de su 
prodigiosa habilidad para resolver ecuaciones 

diferenciales, que le abrieron las puertas 
de la Academia de Ciencias. 





Pierre-Sirnon de Laplace vino al mundo el 23 de marzo de 17 49 en 
una pequeña villa de la Baja Normandía llan1ada Beaumont-en­
Auge, cercana a la desembocadura del río Sena, en el norte de 
Francia, entre praderas, orquídeas y manzanos. Nació en la propie­
dad familiar, en un ambiente sin grandes lujos pero desahogado 
económicamente para la época. Algunos hagiógrafos bienintencio­
nados han querido pintar una familia que vivía en una pobreza ex­
trema a fin de engrandecer al personaje, pero sus padres eran 
acomodados hacendados rurales. Su padre, Pierre Laplace, se de­
dicaba al comercio de la sidra, y hacia mediados de siglo llegó a la 
alcaldía de Beaumont. Su madre, Marie Anne Sochon, pertenecía a 
una familia de graajeros afincada en un pueblo a pocos kilómetros. 
Los Laplace tenían otro hijo: una niña, llamada como la madre, 
cuatro años mayor que Pierre-Sirnon. Tan solo un año antes la pa­
reja había perdido a dos gemelos a los pocos días de nacer. Un año 
después, en 1750, nacería Olivier, el hermano menor, quien tam­
bién moriría tempranamente. 

Atendiendo a su nacimiento y a sus orígenes normandos, nadie 
sospecharía que Pierre-Sirnon de Laplace estaba llamado a ser uno 
de los científicos más grandes que el mundo ha conocido. Sin em­
bargo, ya en aquellos años de infancia y juventud se encuentran 
pistas importantes para comprender al hombre -científico, polí­
tico, marido, padre y amigo- en que se convertiría. 
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LA DIFÍCIL ELECCIÓN: LA TEOLOGÍA 
O LAS MATEMÁTICAS 

Pierre-Simon aprendió las primeras letras y las cuatro reglas en 
casa, probablemente bajo la atenta mirada de su tío Louis, más 
conocido en la comarca como el abate Laplace, un sacerdote ca­
tólico de buena formación cuya inclinación por las matemáticas 
pudo haber transmitido a su sobrino casi desde la cuna. Además, 
desde muy temprano la familia decidió que Pierre-Simon seguiría 
los pasos del tío Louis, abrazando los hábitos y labrándose un fu­
turo prometedor como eclesiástico. 

En 1756, a la edad de siete años, Pierre-Simon comenzó a ir a 
la escuela. Su padre, con la mediación del tío, logró que fuera ad­
mitido como alumno externo en el colegio que los benedictinos 
mantenían en su convento de Beaumont bajo el auspicio del duque 
de Orleans. El poco más de medio centenar de alumnos que tenía 
el colegio se preparaba estudiando intensamente para tomar la 
carrera de las armas, de las letras o de la Iglesia. Vestido con una 
larga sotana negra, que lo identificaba entre los últimos, Pierre­
Simon mostró estar muy bien dotado para los estudios desde los 
primeros cursos. 

Pierre-Simon permaneció en el colegio de los benedictinos 
hasta los dieciséis años. En 1765 tuvo que dejar su Beaumont natal 
y partir para Caen, donde entró en el Colegio de Artes de la univer­
sidad con la intención de seguir la carrera eclesiástica y adquirir una 
sólida formación en hun1anidades (latfu, griego, filosofía y, en espe­
cial, teología). Misteriosamente, solo tres años después, en 1768, 
dejó la Universidad de Caen sin haberse ordenado sacerdote. 

¿Por qué abandonó Laplace la carrera para la que llevaba pre­
parándose desde su más tierna infancia? La respuesta es bien co­
nocida: por su recién descubierto amor por las matemáticas. En 
esos dos años que estuvo en la Universidad de Caen, de la mano 
de dos profesores, Christophe Gadbled y Pierre le Canu, Laplace 
descubrió las matemáticas superiores, su afición por ellas y, lo que 
es más importante, su talento para la ciencia. 

El contraste entre las enseñanzas de Jean Adam, su profesor 
de Teología, y de Christophe Gadbled, su profesor de Filosofía y 
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Matemáticas, a quien Pierre le Canu asistía como ayudante, tuvo 
que marcar al joven Laplace. De resultas del choque su vocación 
religiosa quedó truncada. Buen conocedor de la nueva ciencia sur­
gida al calor del siglo XVII, Gadbled mantenía que la razón humana 
podía extender su dominio a todos los objetos del mundo natural. 
Sin quererlo, este sacerdote estaba apoyando la inversión de la 
tradicional primacía de la religión sobre la filosofía. Decidido a 
encaminar sus pasos hacia la ciencia, Laplace dejó Caen y aceptó 
provisionalmente un trabajo como profesor en el colegio de los 
benedictinos de Beaumont, del que había sido alumno. Pero esta 
dedicación tampoco le llenaría y, en 1769, con poco más de veinte 
años de edad, abandonó los parajes que le vieron nacer y enca­
minó sus pasos hacia París, la meca de la nueva ciencia. 

PARÍS, LA CAPITAL DE LA CIENCIA ILUSTRADA 

París sería el escenario alrededor del cual transitaría el resto de la 
vida de Laplace. Merece la pena, por tanto, detenerse a explorar 
el ambiente parisino de mediados del siglo XVIII, el Siglo de las 
Luces. París era por aquel entonces la capital europea de la Ilus­
tración. Era la ciudad de la luz. 

No resulta fácil resumir en unas pocas líneas todo lo que sig­
nificó para la historia de los estados europeos ese movimiento cul­
tural que aspiraba a disipar las tinieblas de la humanidad mediante 
la luz de la razón, y que a la postre desencadenó las revoluciones 
burguesas que acabaron con el Antiguo Régimen, de las que brota­
ron las nuevas naciones políticas (Estados Unidos en 1776, Francia 
en 1789, España en 1812). Al principio algunos monarcas acogie­
ron con agrado las nuevas ideas, convirtiéndose en déspotas ilus­
trados. Federico II en Prusia, Catalina la Grande en Rusia y los 
Barbones en Francia y en España rivalizaban entre sí por contar en 
su corte con las mejores cabezas de Europa. «Todo para el pueblo, 
pero sin el pueblo» era la fórmula. Estaban, sin saberlo, cavando 
su propia tumba. Los nuevos hombres no serían súbditos del rey, 
sino ciudadanos de la nación. 
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Personalidades como Frarn;ois Marie Arouet, más conocido 
como Voltaire (1694-1778), se mostraban hipercríticas con lastra­
diciones del pasado, rindiendo únican1ente culto a la diosa Razón. 
El optimismo racionalista se convirtió en la ideología que la as­
cendente burguesía hizo suya en los salones literarios, en las aca­
demias y hasta en sociedades secretas como la masonería. 

«Si no nos ayudamos con el compás del matemático 
y la antorcha de la experiencia, jamás podremos dar 
un paso hacia delante.» 
- VOLTAIRE. 

20 

En París, los ilustrados discutían, agitaban, probaban y repro­
baban todo, desde las ciencias naturales a los fundamentos de la 
revelación, desde la literatura a la moral. Pero, además, se intere­
saban por las ciencias útiles, y de esta manera, paralelamente a su 
interés por las matemáticas o la mecánica, acometían múltiples 
trabajos en geografía, náutica, minería e ingeniería. No solo teori­
zaban. Pertrechados con sus nuevas teorías e instrumentos cien­
tíficos, contribuían a la mejora en el trazado de mapas y en la 
construcción de barcos, canales, puertos, minas y fortificaciones. 
La distinción entre matemáticos puros y aplicados quedaba toda­
vía muy lejos. Se trataba de reformar las condiciones económicas 
y culturales heredadas. Desde París todas estas nuevas ideas se 
difundirían por el resto de países europeos y sus colonias. 

La elección de París para continuar la formación científica no 
era, por tanto, sorprendente. A diferencia de Laplace, la mayoría 
de sus futuros colegas en la Academia de Ciencias ya se habían 
trasladado a las proximidades de París una vez concluidos sus 
estudios elementales. Así, por ejemplo, los futuros matemáticos 
Nicolas de Condorcet (1743-1794) y Lazare Carnot (1753-1823), 
tras estudiar con los jesuitas y los oratorianos, completaron sus 
estudios en París, en la universidad y en escuelas especiales bajo 
el tutelaje de excelentes profesores que enseguida les mostraron 
los últimos descubrimientos científicos. París era el centro de gra­
vedad de la ciencia ilustrada. 
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EL ENCUENTRO CON D'ALEMBERT Y SU CÍRCULO 

Laplace rompía con el pasado y comenzaba una nueva aventura, 
muy probablemente contra la voluntad de su padre, para la que 
solo contaba con una carta de recomendación que su profesor y 
amigo de Caen, Pierre le Canu, le había escrito dirigida a uno de los 
matemáticos más prestigiosos de Pruis, Jean le Rond d'Alembert. 

D'Alembert apenas prestó atención a la carta de recomenda­
ción que portaba el chico recién llegado de provincias y que venía 
firmada por un profesor prácticamente desconocido. No se sintió 
impresionado y rehusó recibirlo. Laplace escribió entonces una 
carta a D'Alembert exponiéndole sus puntos de vista sobre los 
principios generales de la mecánica y esta vez sí le hizo caso, lo 

JEAN LE ROND D'ALEMBERT 

Cal ificado en la época de milagro de mi­
lagros, este amante de la matemática y 
de la filosofía, tanto como de los salones 
y de todo tipo de tertulias cortesanas, fue 
el arquetipo del parisino ilustrado. Nacido 
en París, D'Alembert (1717-1783) era hijo 
ilegítimo de un aristócrata, lo que motivó 
que fuera abandonado al nacer y criado 
por una fam ilia de vidrieros. De hecho, 
debe su nombre a que fue abandonado 
en las escalinatas de la iglesia de Sa int 
Jean le Rond. Pero D'Alembert llegó a 
ser uno de los filósofos y científicos fran­
ceses más conocidos internacionalmente 
gracias a una esmerada educación. Per­
sonalidad muy influyente en la corte, era 
además secretario perpetuo de la Aca­
demia de Ciencias de París. Su nombre 
ha quedado asociado para siempre al de Denis Diderot (1713-1784) por su 
participación en la elaboración de la famosa Enciclopedia, síntesis de todos 
los conocimientos científicos y humanos de la época. 
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llamó y le consiguió un puesto de profesor en la Escuela Militar 
de París. Esta última carta, y no la recomendación que traía con­
sigo desde Caen, fue la que hizo a D'Alembert cambiar de opinión: 

Señor Laplace, ved que hago poco caso de las recomendaciones. No 
teníais necesidad de ellas, os habéis dado a conocer mejor por vos 
mismo y esto me basta. Os debo mi apoyo. 

En su carta de cuatro páginas, Laplace mostraba que conocía 
los fundamentos de la mecánica y también que estaba familiari­
zado con las obras de Newton y de D'Alembert, lo que lo capaci­
taba para convertirse en un aspirante a filósofo natural, es decir, 
a científico ( aunque este último término no se hizo de uso co­
rriente hasta mediados del siglo xrx). 

Fue el matemático Jean Baptiste Joseph Fourier (1768-1830) 
quien contó por primera vez esta historia bastantes años después 
de que sucediera, con ocasión del elogio póstumo que la Acade­
mia de Ciencias le dedicara a Laplace. No es descartable que la 
historia fuera retocada para subrayar esa osadía del joven vein­
teañero que llama a la puerta del gran pope de las matemáticas 
francesas para impresionar al patriarca de cincuenta y dos años 
dando muestras de su talento. Sea como fuere, y aunque existen 
otras versiones de la historia (en que es el propio D'Alembert 
quien entrega un problema al joven para saber si es digno mere­
cedor de su ayuda, y este lo resuelve en una noche), el episodio 
parece verosímil. 

Hecho o ficción, el resultado fue el mismo: en 1 769 Laplace 
comenzó su carrera en París, bajo la protección del ilustre philo­
sophe, quien lo propuso como profesor de Matemáticas en la Es­
cuela Militar de la ciudad. 

Laplace había pasado a formar parte de la élite intelectual 
parisina cuyo centro era D'Alembert, y que incluía a otros mate­
máticos de renombre como Nicolas de Condorcet, el algebrista 
Etienne Bézout (1730-1783) o el astrónomo Joseph-Jéróme Le­
franc;ois de Lalande (1732-1807). Pero Laplace muy pronto fijó su 
vista en otro objetivo: lograr un puesto en la prestigiosa Academia 
de Ciencias de París. 

LA FORJA DE UN CIENTÍFICO 



EL ANÁLISIS Y LAS ECUACIONES DIFERENCIALES 

Pero para poder solicitar el ingreso en la Academia, Laplace terna 
que prepararse duro. Bajo la supervisión de D'Alembert, pasó horas 
leyendo y releyendo libros como Introducción al cálculo infinitesi­
mal (1748), Fundamentos del cálculo diferencial (1755) y Funda­
mentos del cálculo integral (1768) de Leonhard Euler, así como las 
últimas memorias publicadas por Joseph-Louis Lagrange, a fin de 
ponerse al día y aprender los últimos avances matemáticos: el análi­
sis y sus técnicas. Pero, ¿qué era el análisis? ¿Por qué era tan impor­
tante para un futuro filósofo natural como Laplace? 

Durante dos milenios, desde los antiguos pitagóricos y plató­
nicos, el conocimiento de los astros había estado escindido en dos 
saberes: uno de carácter cuantitativo y otro de carácter cualitativo. 
Se trataba, por un lado, de la astronomía y, por otro, de la cosmo­
logía y la física celeste. El conocimiento del mundo terrestre (la 
física terrestre) permanecía, por su parte, en un estado meramente 
cualitativo (la física de herencia aristotélica). En los siglos xvr y xvrr 
las cosas empezaron a cambiar al hilo de la consolidación de una 
nueva concepción mecánica de la naturaleza, basada en la práctica 
del experimento y en el avance del espíritu matematizador. 

Siguiendo la estela de bastantes matemáticos anteriores, 
Isaac Newton se proporua reducir los fenómenos naturales a leyes 
matemáticas. Intentó modelar matemáticamente las trayectorias 
de los planetas observadas por Copérnico (1472-1543), Tycho 
Brahe (1546-1601) y Kepler (1571-1630), así como las trayectorias 
de los cuerpos terrestres (los «graves») que había estudiado Gali­
leo (1564-1642). Newton formuló las leyes del movimiento de una 
forma matemática que relacionaba entre sí las magnitudes físicas 
y sus ritmos de cambio. Es decir, por ejemplo, el espacio reco­
rrido por el móvil con su velocidad, y la velocidad del móvil con 
su aceleración. Las leyes físicas quedaron, por tanto, expresadas 
por medio de ecuaciones diferenciales; estas y las derivadas sir­
vieron para medir los ritmos de cambio. 

Una ecuación diferencial es una ecuación en la que la princi­
pal incógnita es el ritmo de cambio de una magnitud, esto es, su 
diferencial o su derivada. Tanto el diferencial como la derivada de 
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LEONHARD EULER 

«Lean a Euler, él es el maestro de todos 
nosotros.» Estas palabras de Laplace ha­
cen justicia a Leonhard Euler (1707-
1783). Hijo de un pastor ca lv inista, e l 
matemático suizo ha sido quizás el más 
prolífico de cuantos han existido. Sus 
obras matemáticas completas ocupan 
casi cien volúmenes. Entre ellas, varios 
manuales de cálculo, donde introdujo la 
notación moderna para referirse a las 
funciones: el uso de f(x) . El d icho de que 
todos los libros de texto posteriores son 
copias de Euler, o copias de copias de 
Euler, tiene mucho de cierto. Euler hacia 
matemá ti cas sin esfuerzo aparente, 
como otros hombres respiran o las águi ­
las vuelan. A pesar de que sufrió una ce­
guera total durante los últimos diecisiete 
años de su vida, sigu ió produciendo a un ritmo desenfrenado gracias a su 
prodigiosa memoria (conocía la Eneida de memoria). 

Un filósofo mediocre 
El talento para la f ilosofía era, sin embargo, mediocre, lo que hizo que Voltaire 
lo ridiculizara en sus debates ante Federico 11 el Grande por defender con 
ternura , en sus Cartas a una princesa alemana, la sencilla fe del carbonero. 
Pero el ánimo de Euler por las disputas filosóficas no decreció por cu lpa de 
las pullas de Voltaire. En una ocasión, en presencia de la zarina Cata lina, in ­
crepó a Denis Diderot: «Señor, 

a+bn 
- - = X 

n 

y por lo tanto, Dios existe. Replique». Según la anécdota apócrifa, Diderot tuvo 
que retirarse del debate en un embarazoso silencio entre las risas burlonas 
de quienes si sabían matemáticas y habían captado la ironía. Euler disfrutó de 
una vida familiar feliz, rodeado de trece hijos, que pasó entre las Academias 
de Berlín y de San Petersburgo. El 7 de septiembre de 1783, después de char­
lar sobre los asuntos del día, el cíclope su izo «cesó de calcu lar y de vivir», 
según las muy citadas palabras de Condorcet. Suya es la ecuación que pasa 
por ser la más bella de las matemáticas, por cuanto aúna los números más 
importantes: é' + 1 = O. 
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una función representan cómo varía el valor de la función: si au­
menta, disminuye o permanece constante. La aceleración, por 
ejemplo, mide los cambios en la velocidad del móvil, dado que es 
el cociente de los diferenciales de la velocidad y del tiempo; en 
otros términos, es la derivada de la velocidad con respecto al 
tiempo, por lo que expresa, en consecuencia, la variación de la 
velocidad en el tiempo. 

Pero aunque Newton inventó - al mismo tiempo que lo hacía 
Gottf1ied Wilhem Leibniz (1646-1716) de un modo indepen­
diente- el cálculo diferencial, o método de fluxiones como él lo 
llamaba, y lo utilizó para obtener sus resultados, escribió todas las 
leyes astronómicas y mecánicas contenidas en sus célebres Phi­
losophiae naturalis principia mathematica (Principios mate­
máticos de la.filosofía natural, 1687) en el lenguaje de la geome­
tría heredada de Euclides y los griegos. Para él, calcular una deri­
vada era determinar una recta tangente a una curva, y calcular una 
integral (la operación inversa o contraria a derivar), determinar el 
área encerrada bajo la curva. Basta echar un vistazo a una página 
cualquiera de los Principia para que nos llevemos una completa 
desilusión: el libro que pasa por ser el máximo exponente de la 
revolución científica nos es prácticamente indescifrable. Es a 
Leibniz a quien debemos los símbolos de derivar («6») e integrar 
(«f»), así como las reglas de manipulación de esta notación, que 
son familiares a cualquier estudiante de matemáticas. 

Aunque el asunto de la recepción y difusión de los Principia 
ha hecho correr ríos de tinta, los newtonianos fueron ganando en 
número gracias a la significativa labor de autores como Pierre Va­
rignon (1654-1722), un jesuita amigo personal de Leibniz y profe­
sor en París, que tradajeron los conceptos mecánicos y las :figuras 
geométricas de Newton en ecuaciones, empleando esa maravillosa 
herramienta que era el cálculo diferencial en la versión de Leib­
niz, el cálculo infinitesimal. Dichos autores hicieron un magnífico 
favor a Newton al transformar su teoría en algo matemáticamente 
inteligible. Paralelamente, :filósofos como Voltaire y su compañera 
y amante, la marquesa Émilie de Chatelet (1706-1749), contribu­
yeron a dar a conocer los principios newtonianos con gran éxito 
entre el gran público no especialista del continente europeo. 
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Las leyes de Newton encontraron finalmente su expresión 
más natural en el lenguaje analítico de las ecuaciones diferencia­
les. Las figuras fueron sustituidas progresivamente por ecuacio­
nes. Pero la empresa de traducir la.filosofía natural de Newton 
del lenguaje geométrico en que fue escrita al nuevo lenguaje ana­
lítico (en el que hoy la conocemos) no fue, curiosamente, llevada 
a cabo por los matemáticos británicos. Sus artífices fueron los 
matemáticos del continente, principalmente de París, Berlín y San 
Petersburgo. La sorda rivalidad que estalló entre Newton y Leibniz 
a propósito de la paternidad del cálculo se transformó en abierta 
antipatía y hostilidad entre los defensores de uno y otro, entre los 
matemáticos británicos y los del continente, de modo que los pri­
meros, discípulos de Newton, se obstinaron en seguir utilizando 
sus métodos exclusivamente geométricos. Como consecuencia, 
las matemáticas de las Islas quedarían bastante rezagadas. 

La conversión gradual de la mecánica geométrica de Newton 
en mecánica analítica se produciría por obra y gracia de toda una 
generación de matemáticos continentales, entre los que se cuen­
tan Euler, D'Alembert y Joseph-Louis Lagrange. Una época he­
roica para las matemáticas en la que el análisis fue la disciplina 
reina, y en la que el cálculo diferencial e integral, y la teoría de las 
ecuaciones diferenciales conocieron un desarrollo extraordinario. 

«Tanta es la ventaja de un lenguaje [matemático] bien 
construido, que su notación simplificada a menudo se convierte 
en fuente de teorías profundas.» 
- PIERRE-SIMON DE LAPLACE, 

26 

La mecánica analítica supuso un notable avance con respecto 
a la mecánica de Newton. Al aproximarse la mecánica y el análi­
sis, alejándose de la geometría, estudiar un fenómeno físico y ha­
llar las ecuaciones diferenciales que lo gobiernan se hicieron sinó­
nimos. Así, tras el hallazgo de Newton de la ecuación diferencial 
«fuerza igual a masa por aceleración», que rige el movimiento de 
los sistemas de puntos y de los sólidos rígidos, Euler formuló un 
sistema de ecuaciones diferenciales que describía el movimiento 
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NEWTON Y LA PRIMERA ECUACIÓN DIFERENCIAL 

La ecuación diferencial más célebre es, 
sin duda, la que debemos a Isaac Newton 
(1642-1727): «Fuerza es igual a masa por 
aceleración». Simbólicamente: F = m · a, 
donde 

dv a--
dt 

(la aceleración es el cociente de los d i­
ferenciales de la velocidad y del tiempo, 
es decir, la derivada de la velocidad con 
respecto al tiempo). Pero, por sorpren­
dente que parezca, Newton nunca la 
escribió. En ninguna de las ediciones de 
los Principia aparece. Ni siquiera en tér­
minos geométricos. Su segunda ley ve-
nía a afirmar mediante palabras algo más general: «la fuerza es igual a la 
derivada del impulso». Expresado en notación moderna: 

d F - -(m·v). 
dt 

Toda fuerza que actúa sobre un cuerpo produce un impulso, un cambio en el 
movimiento. Y si suponemos que la masa del cuerpo es constante (pudiendo 
entonces sacar m de la derivada), recuperamos la expresión archiconocida 
F = m · a. Esta expresión apareció por vez primera en un tratado de mecánica, 
titulado Phoronomia , que fue publicado en 1716 por Jacob Hermann (1678-
1733) basándose en la cómoda notación de Leibniz. La fórmula sería popula­
rizada por Euler en su Mecánica o ciencia del movimiento expuesta analítica­
mente (1736) . Sin embargo, durante la mayor parte del siglo xv111, los 
matemáticos usaron otra expresión más general planteada por D'Alembert 
en su Tratado de dinámica (1743) y que lleva con justicia su nombre: el prin­
cipio de D'Alembert. 

de medios continuos, como el agua, el aire u otros fluidos sin vis­
cosidad. Y, más tarde, Lagrange enfocó su atención en las ondas 
del sonido, en las ecuaciones de la acústica. Según avanzaba el 
siglo XVIII, los matemáticos fueron extendiendo su dominio sobre 
el mundo al ir proponiendo nuevas ecuaciones diferenciales para 
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estudiar fenómenos provenientes de cualquier campo. Toda la na­
turaleza - sólidos, fluidos, ondas- quedaría modelada mediante 
este tipo de ecuaciones. El análisis matemático parecía tan ex­
tenso como la propia naturaleza. 

Ahora bien, una cosa era dar con las ecuaciones del fenó­
meno en cuestión y otra bien distinta llegar a resolverlas. La re­
solución de ecuaciones diferenciales, como ocurre con las ecua­
ciones algebraicas, no siempre es fácil. Es más, casi nunca lo es. 
Los sucesores de Newton plantearon y resolvieron algunas ecua­
ciones diferenciales relacionadas con el lanzamiento de proyec­
tiles o el movimiento de un péndulo, pero muchas otras se les 
resistieron. De manera inevitable, la resolución de problemas 
físicos exigía la resolución de ecuaciones diferenciales cada vez 
más complejas. 

En principio, hay dos tipos de estas ecuaciones: las lineales y 
las no lineales. Las del primer tipo se dan cuando la suma de dos 
soluciones es de nuevo una solución. Además, en una ecuación 
lineal ni la función incógnita ni su derivada están elevadas a nin­
guna potencia distinta de cero o uno. Las ecuaciones diferenciales 
lineales modelizan fenómenos en los que el efecto de una suma de 
causas es la suma de los efectos de cada una de ellas por sepa­
rado. Por el contrario, en los fenómenos y en las ecuaciones no 
lineales no se da esta suerte de proporcionalidad entre causas y 
efectos, de manera que la conjunción de dos causas distintas 
puede llegar a ser explosiva. Una no-linealidad que, como tendre­
mos ocasión de ver, está siempre detrás de los problemas más 
complejos de la mecánica que atacó Laplace. 

La teoría de las ecuaciones diferenciales lineales fue desarro­
llada por completo en poco tiempo. Mientras que sus antecesores 
resolvían cada ecuación diferencial que se presentaba recurriendo 
al ingenio, Euler y Lagrange enseñaron cómo resolver sistemáti­
camente todas las lineales. No ocurrió así con la teoría gemela, la 
de las no lineales. Los problemas no lineales -como, por ejemplo, 
la ecuación del péndulo- se resolvían linealizándolos, elimi­
nando todos los términos incómodos de la ecuación. En otras pa­
labras, dada una ecuación diferencial no lineal, se resolvía una 
lineal parecida y las soluciones de aquella se obtenían usando las 
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LAGRANGE: EL GEÓMETRA QUE DETESTABA LA GEOMETRÍA 

Joseph-Louis Lagrange (1736-1813) nació 
en Turín y era de ascendencia francoita­
liana. Ya desde muy pequeño se le des­
pertó el interés por las matemáticas tras 
leer un ensayo del astrónomo Edmond 
Halley glosando las virtudes del cálculo 
de Newton. Pronto estableció una estre­
cha relación con Euler, comunicándole 
sus primeros hallazgos. Con ellos Euler 
fue capaz de resol ver muchos proble­
mas que tenía planteados desde hacía 
tiempo. Pero, con admirable generosi­
dad, rehusó publicarlos hasta que La­
grange no hiciera lo propio, «para no 
privarle de ninguna parte de la gloria 
que se le debe». Al cabo de los años, en 
1766, cuando Euler abandonó Berlín para ir a San Petersburgo, Lagrange 
ocupó su lugar (se dice que Federico 11 exclamó que por fin había podido 
sustituir a un matemático tuerto por otro con los dos ojos). Allí escribió su 
obra maestra: Mecánica analítica (1788), una especie de poema científico por 
su elegancia formal. 

Geómetra a la fuerza 
Lagrange detestaba la geometría y se preciaba de que su tratado no contenía 
ni un solo dibujo: «No se encontrarán figuras en esta obra. Los que aman el 
análisis verán con placer cómo la mecánica se convierte en una nueva rama 
suya». Y, sin embargo, paradojas de la vida, el mayor honor que recibió en 
vida fue ser nombrado geómetra del Imperio por Napoleón. Entre sus apor­
taciones se cuentan una nueva generalización de las ecuaciones del movi­
miento, así como nuevos métodos para resolver ecuaciones diferenciales 
(método de variación de constantes). A la muerte de Federico 11, aceptaría la 
invitación de Luis XVI para regresar a París. A llí conocería a Laplace y se vería 
envuelto en los sobresaltos de la Revolución. De carácter depresivo, las gran­
des ingestas de té y café para dedicarse a las matemáticas term inaron por 
minar su salud. 

soluciones de esta como aproximación. Era el llamado método de 
perturbaciones. Sin embargo, esta técnica pronto se mostró insu­
ficiente, puesto que no funcionaba en múltiples casos. Y los mate-

LA FORJA DE UN CIENTÍFICO 



máticos ilustrados se lanzaron a una carrera en la búsqueda de 
métodos concretos que permitieran resolver ecuaciones particu­
lares. Sería en esta tarea donde Laplace cosecharía algunos de sus 
primeros éxitos, aportando técnicas matemáticas que a lo largo de 
los años iría mejorando. Exprimió al máximo las técnicas mate­
máticas que aprendió o que él mismo inventó en esos primeros 
años, en especial aquellas que tenían que ver con la integración, 
es decir, con la resolución, exacta o aproximada, de las ecuacio­
nes diferenciales que aparecían en mecánica y en astronomía. Ya 
desde su prin1er artículo en prensa, Laplace se interesó por esos 
métodos de integración por su utilidad. 

UNA CARRERA DE OBSTÁCULOS: LA ACADEMIA 
Y LA JOVEN PROMESA 

La Real Academia de Ciencias de París, creada en 1666 por Luis XIV 
con sede donde actualmente se encuentra el Museo del Louvre, era 
el centro que reunía a los grandes científicos de la época. Para 
optar a un puesto vitalicio en su seno, el candidato debía ganar 
antes el reconocimiento de sus miembros. Para ello debía enviar 
un artículo a uno de ellos, quien lo leía ante el resto de un modo 
resunüdo y abreviado, en la sesión que el secretario designaba a 
tal efecto. A continuación, hecha la lectura, otros dos nüembros 
escribían un informe para dictaminar la calidad del trabajo. 
Conseguir un puesto era vital -como sabía Laplace- para 
labrarse un futuro respetable como científico. Las academias 
ayudaban económicamente a los matemáticos y publicaban sus 
trabajos en revistas especializadas. 

La prin1era memoria enviada por Laplace a la Academia data 
del 28 de marzo de 1770. Sus evaluadores, entre los que estaba 
Condorcet, escribieron: 

Nos parece que el artículo del señor Laplace revela un mayor cono­
cimiento matemático y una mayor inteligencia en la manipulación 
del cálculo de la que se encuentra ordinariamente a su edad. 
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No obstante, en 1772, pese a las publicaciones y los elogios 
constantes, Laplace seguía sin lograr el acceso a la Academia de 
Ciencias. Frustrado y algo desesperado, pensó en emigrar a Prusia 
o Rusia emulando a Lagrange y Euler. 

Tras postularse reiteradamente para ingresar en la Acade­
mia, por fin ganó un puesto en la sección de mecánica en marzo 
de 1773. El día 31, tras haberse presentado el día anterior a una 
plaza en geometría, sin éxito, se presentó a otra en mecánica, a la 
que también concurrían Gaspard Monge (1746-1818) y Adrien 
Marie Legendre (1752-1833). Pero esta vez la suerte estuvo de su 
lado y, tras tres largos años de perseverar, se convirtió en miem­
bro de pleno derecho de la Academia. 

La alegría de nuestro protagonista y, por extensión, de su pa­
drino, D'Alembert, tuvo que ser enorme. El ambicioso sueño ape­
nas vislumbrado al ponerse en marcha hacia París se había 
cumplido con creces. 
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CAPÍTULO 2 

La estabilidad del sistema 
del mundo 

Los matemáticos y los astrónomos del siglo XVIII 

lidiaban sin éxito con cuatro cuestiones que la 
mecánica de Newton no había conseguido resolver: la 

forma de la Tierra, la órbita de los cometas, las anomalías 
en el movimiento de algunos planetas y satélites, 

y, en general, la estabilidad del sistema solar. 
Laplace adivinó que el principio de gravitación 

era la clave para encajar satisfactoriamente 
cada una de estas piezas sueltas. 





Una vez que consiguió entrar en la Academia, Laplace fue poco a 
poco escalando posiciones. Todos sabían de su talento matemá­
tico, aunque no siempre mostrara el debido respeto a Euler, La­
grange o el resto de sus colegas, de quienes a veces tomaba 
prestados sus resultados sin ni siquiera citarlos, lo que llegó a ser 
una constante de su carrera. Pero también comenzaron a saber de 
su difícil carácter, de su firmeza en las discusiones científicas. Un 
comportamiento colindante con la arrogancia que traspasaría los 
límites de la institución. 

En la década de 1770 comenzó a cobrar forma su gran apor­
tación a la ciencia: la prueba de que el sistema del mundo ( esto es, 
el sistema solar, el universo conocido) era estable y determinista. 
Su maestro D'Alembert había marcado en la agenda de los cientí­
ficos de la época la necesidad de completar el programa newto­
niano. No solo se trataba de lograr un ajuste perfecto entre la 
teoría y la observación; también había que iluminar por completo 
el universo recurriendo solo a unos cuantos p1incipios racionales, 
entre los que brillaba con luz propia el principio de gravitación 
universal de Newton. Era, al mismo tiempo, una cuestión cientí­
fica y filosófica. Un problema que necesitaba de sabios -científi­
cos, diríamos hoy- y filósofos, de savants y philosophes. Pero 
para poder explicar cabalmente las grandes aportaciones de La­
place, necesitamos trazar antes un bosquejo histórico del estado 
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de conocimiento del sistema del mundo a comienzos del último 
cuarto del siglo xvru. 

DEL UNIVERSO EN DISPUTA AL UNIVERSO 
OBSERVADO Y CALCULADO 

Los Principios de la.filosofía de René Descartes (1644) y los Prin­
cipios matemáticos de la.filosofía natural de Isaac Newton (1687) 
representan sendos hitos en el establecimiento de un saber acerca 
del universo alejado del marco aristotélico, dominante hasta en­
tonces. Sin embargo, las mecánicas de estos dos grandes filósofos 
naturales exhibían profundas diferencias. El tiempo le dio la razón 
a Newton y relegó las construcciones cartesianas al nivel de fanta­
sías gratuitas. La teoría newtoniana de la gravedad le ganó la par­
tida a la teoría cartesiana de los vórtices, condenándola al desván 
de las teorías metafísicas. Pero cuando nos adentramos en el siglo 
XVIII, la superioridad del sistema newtoniano frente al cartesiano no 
aparece como indiscutible desde el momento mismo de la apari­
ción en escena de los Principia. La concepción del univérso es­
taba en disputa, y el declive del cartesianismo ante el empuje del 
newtonianismo no fue súbito ni precipitado. 

Newton no murió una única vez, sino dos. Falleció en 1727; 
pero en 1693, poco después de la publicación de su gran obra, 
sufrió una grave crisis nerviosa que le hizo perder todo interés por 
las cuestiones de mecánica celeste, dejando en manos de sus dis­
cípulos la defensa de la ley de gravitación universal, una tarea 
nada fácil. La astronomía mecánica, concebida como saber frag­
mentado de la astronomía observacional, tenía como función rea­
lizar los cálculos matemáticos necesarios para explicar con rigor 
y precisión el sistema solar: los movimientos de los planetas y sus 
satélites en torno al Sol, las órbitas de los cometas, la forma de la 
Tierra, las mareas, la interpretación de la gravedad o «pesantez» 
en términos mecánicos ... Este largo etcétera de cuestiones abier­
tas se convirtió en el banco de pruebas donde verificar las dos 
grandes mecánicas en litigio: la cartesiana y la newtoniana. 
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Tanto los partidarios de Descartes como los de Newton com­
partían una concepción mecanicista de la naturaleza, así como la 
confianza en poder traducirla al lenguaje de las matemáticas de 
la época. Los cartesianos se apoyaban en una sugerente imagen: 
como todo el espacio está lleno, bien de materia sólida, bien de flui­
dos no siempre perceptibles, cualquier desplazamiento ha de ser 
en forma de remolino, torbellino o «vórtice», no en línea recta. 
Así, aplicado esto al contexto celeste, imaginaban que los plane­
tas orbitaban alrededor del Sol arrastrados por el torbellino de 
materia circundante. Por contra, los newtonianos cedían todo el 
protagonismo al Sol. Era este astro el que hacía girar los planetas 
en tomo suyo, gracias a la fuerza de gravitación, la cual quedaría 
plasmada en la ley de gravitación universal. 

«La fuerza con que se atraen dos cuerpos es proporcional 
al producto de sus masas e inversamente proporcional al 

cuadrado de la distancia que los separa.» 
- LEY DE GRAVITACIÓN UNIVERSAL DE NEWTON. 

Los vórtices cartesianos estaban en desacuerdo con muchos 
fenómenos bien conocidos, pero al menos explicaban la propaga­
ción del movimiento recurriendo únicamente al contacto, exclu­
sivamente mediante choques. Por el contrario, la misteriosa fuerza 
de gravedad de la que hablaba Newton, y que ponía en movimiento 
los planetas, actuaba a distancia desde el Sol, sin mediar contacto 
ni solución de continuidad. Una acción a distancia que tenía un 
cierto tufillo a magia. 

Leibniz, por ejemplo, fue uno de los más conspicuos defenso­
res de los vórtices de Descartes frente a la gravedad de Newton. El 
filósofo y matemático alemán señalaba la armonía de los vórtices, 
puesto que explicaban por qué todos los planetas y todos los saté­
lites del sistema solar giran en un mismo sentido y en unas trayec­
torias muy cercanas al plano. Todos estarían sumergidos dentro de 
un mismo torbellino en el que serían arrastrados en una misma di­
rección, como los barcos abandonados a la corriente del río, y, por 
tanto, seguirían un sentido común de giro, de Occidente a Oriente. 
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Este fenómeno tan relevante, nunca explicado por Newton, 
se convirtió en la objeción permanente de los cartesianos a los 
newtonianos. Según veremos en el capítulo 4, será el newtoniano 
Laplace quien consiga explicarlo satisfactoriamente, por medio de 
su hipótesis cosmogónica de la nebulosa. 

Conforme avanzó el siglo, las ideas de Newton fueron convir­
tiéndose en hegemónicas. De un universo disputado se pasó a un 
universo calculado y observado bajo las directrices de la mecá­
nica del científico inglés. No obstante, la defensa del cartesia­
nismo llegó a considerarse, concretamente en Francia, una 
cuestión de Estado (no se olvide que Descartes era francés). Y fue 
en este escenario geográfico donde se trataron los principales pro­
blemas de la mecánica celeste que enfrentaron a uno y otro bando, 
y en los que Laplace realizó aportaciones decisivas durante el úl­
timo cuarto de siglo. 

EL AMBICIOSO PROGRAMA CIENTÍFICO: 
CELESTE Y TERRESTRE 

Newton escribió los Principia en dieciocho meses de increíble 
concentración. Allí estableció los principios básicos de la me­
cánica teórica o racional -como decía él, para distinguirla de 
la de los artesanos-, es decir, de la ciencia del movimiento. Y 
a partir de la segunda ley del movimiento ( «la fuerza es igual a 
masa por aceleración»), junto a la primera ley de Kepler ( «la 
órbita de un planeta es una elipse, en uno de cuyos focos está 
el Sol»), dedujo la ley de gravitación universal, que recordemos 
que quedó enunciada así: «La fuerza con que se atraen dos cuer­
pos es proporcional al producto de sus masas e inversamente 
proporcional al cuadrado de la distancia que los separa» . La 
fuerza gravitatoria aumentaba con la masa, pero decrecía con 
la distancia. Esta ley explicaba tanto el movimiento de los pla­
netas como la atracción gravitatoria de los cuerpos sobre la Tie­
rra. Los Principia conmovieron el mundo de las matemáticas y 
de la filosofía natural. 
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Desde el comienzo de su carrera, Laplace quedó fascinado 
por dicha ley. Estaba escrito en los cielos que él sería precisa­
mente quien demostraría que esa ley era, en efecto, «universal», 
que daba razón de todos y cada uno de los fenómenos celestes. 

«Espero mostrar que, lejos de constituir una excepción al 
principio de gravitación, estos fenómenos [celestes] son su 

consecuencia necesaria.» 
- LAPLACE, SOBRE LA LEY DE GRAVITACIÓN UNIVERSAL DE NEWTON. 

Ajustando todos esos fenómenos bajo un único principio, La­
place esperaba hacer realidad su visión: un universo por completo 
determinista y estable. No obstante, el proyecto de investigación 
en que se embarcó no solo terúa por objeto el sistema solar o la 
mecánica celeste. La física terrestre también estaba en su punto 
de mira. En este campo trataría de lograr lo mismo que en el ce­
leste: encontrar unas pocas leyes muy generales que gobernaran 
los fenómenos físicos, químicos e incluso biológicos. Es aquí 
donde entra en juego su otra gran aportación: la teoría de la pro­
babilidad ( de la que trataremos más adelante, en el capítulo 5). La 
probabilidad era el puente entre las leyes necesarias del universo 
y las contingencias del conocimiento humano. 

LA FORMA DE LA TIERRA 

Ya los griegos habían atribuido a la Tierra una forma esférica, 
una teoría que quedó demostrada de modo práctico en 1522 con 
la circunnavegación de Femando de Magallanes (1480-1521) y 
Juan Sebastián Elcano (1476-1526), quienes rodearon por vez pri­
mera la esfera que imaginara Eratóstenes. Fue Copémico quien 
puso en movimiento la esfera terrestre, poniendo sobre el tapete 
otra cuestión candente para la ciencia ilustrada: la forma que ha 
de adoptar la Tierra en movimiento. Aquí no cabía negociación 
entre cartesianos y newtonianos. En los Principia, Newton 
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A la Izquierda, la 
Tierra newtoniana, 

con forma de 
sandía, y a la 

derecha, la Tierra 
cartesiana, con 

forma de melón. 
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había planteado que un cuerpo celeste sometido a un movimiento 
casi circular -como es la propia órbita de la Tierra- adoptaría 
la forma de un esferoide aplastado, achatado por los polos, es 
decir, con forma de sandía. Por el contrario, los cartesianos de­
fendían que, según la teoría de los vórtices, había de adoptar la 
forma de un esferoide alargado, achatado por el ecuador, es 
decir, con forma de melón, como muestra la figura anterior. 

El análisis de la figura terrestre representaba algo así como un 
experimento crucial para decidir entre las ideas de Newton y de 
Descartes. París fue, otra vez, el polo de atracción de los matemá­
ticos europeos. En 1733, el astrónomo Louis Godin (1704-1760) 
propuso la medición de un grado de meridiano cercano al ecuador. 
Un año después la expedición partió para el virreinato del Perú, 
perteneciente a la Corona española. Simultáneamente, Pierre­
Louis Moreau (1698-1759), señor de Maupertuis, proyectó, auxi­
liado por el matemático Alexis-Claude Clairaut (1713-1765), la 
realización de otra expedición, esta vez a Laponia, para medir un 
grado de meridiano cerca del polo Norte. El 13 de noviembre de 
1737 Maupertuis y Clairaut, que retornaron antes de lo previsto, 
anunciaron solemnemente ante la Academia de Ciencias de París 
que sus mediciones confirmaban que la Tierra era un esferoide 
achatado por los polos, dando la razón a Newton frente a Descartes. 

El bando newtoniano había ganado una importante batalla, 
pero no la guerra. Descartes, con sus vórtices y sus átomos enla-
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zados, lo explicaba todo y no predecía nada. Por el contrario, 
Newton, con la ley de gravitación, lo calculaba todo, aunque no 
explicaba casi nada. El origen de la fuerza de gravedad seguía 
siendo un misterio, pero el alto balance predictivo a su favor de­
terminó a la larga la victoria de su mecánica frente a la carte­
siana. La eficacia sería, desde entonces, uno de los valores en alza 
de la ciencia. 

Sin embargo, la cuestión de la forma de la Tierra no quedó por 
completo cerrada. Pues, aunque la Tierra estaba achatada por los 
polos, no adoptaba exactamente la forma de un esferoide. La 
atracción gravitatoria deformaba continuamente la figura de la 
Tierra, siendo un ejemplo paradigmático de ello las mareas. A par­
tir de entonces, los estudios sobre la atracción gravitatoria ejer­
cida y padecida por los esferoides fueron una constante. 

Un trabajo realmente fructífero al respecto fue el que el joven 
matemático Adrien Marie Legendre presentó en enero de 1783 ante 
la Academia. Laplace fue el encargado de leerlo y de informar de su 
contenido. En marzo presentó a la Academia un informe muy elo­
gioso. No era para menos. De su lectura Laplace salió sin duda es­
timulado para realizar sus propias investigaciones sobre la atracción 
gravitatoria de los esferoides. Poco tiempo después presentó una 
memoria, especialmente reseñable por tratarse de su primera publi­
cación a título individual (Teoría del movimiento y de la forma 

UN EXTRACTO DE LAS «CARTAS FILOSÓFICAS» DE VOL TAIRE 

«Un francés que llega a Londres encuentra las cosas muy cambiadas en fi lo­
sofía, como en todo lo demás. Ha dejado el mundo lleno; se lo encuentra vacío. 
En París se ve el universo compuesto de torbellinos de materia suti l; en Lon­
dres no se ve nada de eso. Entre nosotros, es la presión de la Luna la que 
causa el flujo del mar; entre los ingleses, es el mar el que gravita hacia la Luna. 
Entre vosotros, cartesianos, todo sucede por impulso del que nada se com­
prende; en el señor Newton es por una atracción cuya causa no se conoce 
mejor. En París, os figuráis la Tierra como un melón; en Londres, está ap lasta­
da por los dos lados. He aquí unas furiosas contradicciones.» 
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EL LAPLACIANO 

Se conoce como laplaciano un operador que, definido sobre una función 
w = f(x, y, z, t) de las coordenadas espaciales y del tiempo, calcula la suma de 
las segundas derivadas respecto de x, y, z: 

Laplace dedicó muchas horas de estudio a resolver las ecuaciones diferencia­
les de la física matemá tica en que esta expres ión aparecía. Tres de el las son 
realmente importantes: 

- t,,w = O: la denominada ecuación de La place o ecuación de continuidad, 
que expresa que un fluido perfecto en el que no hay remolinos es indes­
tructible. Esta ecuación codifica matemáticamente una perogrullada: si 
el fluido es incompresible, debe salir tanto fluido de cualquier pequeño 
volumen en un instante de tiempo como fluye dentro de él. Ahora bien, 
esta ecuación, cuando se la somete a razonamientos matemáticos, pro­
porciona conocimientos imprevis tos que ya no son una perogrullada. 
Permite anticipar la experiencia. A Laplace se le apareció estudiando el 
potencial gravitatorio ( la función que mide la fuerza gravitatoria con que 
un cuerpo, tenga la forma que tenga, atrae a una masa puntua l). 

- La ecuación del calor, que rige su difusión: 

L',,w=dw_ 
dt 

- La ecuación de ondas, que describe su propagación: 

d 2w 
t,,w = dt2 . 

elíptica de los planetas, 1784), donde ampliaba los desarrollos de 
Legendre, pero sin mencionarlo en parte alguna. No era la primera 
vez. Ya le había ocurrido de joven, antes de ingresar en la Academia, 
con Euler y Lagrange, de quienes tomó ideas sin citarlos. Ni sería la 
última vez en que Laplace cometería una falta de delicadeza de este 
calibre. Para colmo de males, el trabajo de Laplace apareció publi­
cado antes que el de Legendre, quien protestó amargamente: «Debo 
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observar que la fecha de mi memoria es anterior y ha permitido al 
señor Laplace profundizar sobre el tema». 

Pero, ¿qué tenía de especial el trabajo de Legendre para que 
Laplace lo plagiara con tanta rapidez? En él aparecían los hoy 
denominados polinomios de Legendre (injustamente llamados 
funciones de Laplace durante buena parte del siglo xrx), funciones 
especiales que aparecen en la resolución de ecuaciones diferen­
ciales. En concreto, aparecen en la solución de una ecuación muy 
importante para la mecánica celeste, que hoy llamamos ecuación 
de Laplace. Aunque la propia idea de esta ecuación y de la función 
que aparece en ella (la función potencial, denominada así por su 
discípulo Siméon Denis Poisson [1781-1840] y por George Green 
[1793-1841] mucho más tarde, en 1828) estaba ya implícita entra­
bajos anteriores que llevaban la firma de Euler y Lagrange, La­
place fue el primero en referirse explícitamente a ambas dentro 
de sus estudios gravitatorios. Ambas, ecuación y función, serían 
fundamentales para los trabajos decimonónicos sobre el calor, la 
electricidad y el magnetismo. Y quién lo iba a decir, pero la ecua­
ción de Laplace y los polinomios de Legendre serían indispensa­
bles para describir, dos siglos después, el comportamiento de los 
electrones en los átomos, porque reaparecen en la ecuación de 
Schrodinger de la mecánica cuántica. 

LA ÓRBITA DE LOS COMETAS 

La tradición aristotélica pretendía que los cometas eran fenómenos 
puran1ente atmosféricos; pero, una vez desechada esta hipótesis, 
los matemáticos newtonianos se enfrentaron al desafío de describir 
la trayectoria de estos peculiares viajeros celestes, popularmente 
considerados como augurio de catástrofes y malas noticias. Si la ley 
de gravitación conseguía aplicarse con éxito a estos cuerpos que 
viajaban fuera del sistema solar, se habría dado otro importante 
paso para considerar la fuerza de gravedad como verdaderamente 
universal. A esto hay que añadir que suponían un poderoso contra­
ejemplo a los vórtices cartesianos: si podían atravesar el sistema 
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A LA SOMBRA DE LAPLACE 

Adrien-Marie Legend re (1752-1833) fue, 
junto a Lagrange y Laplace, la tercera 
gran «L» de la matemát ica francesa del 
momento. Legendre mantuvo una est re­
cha relac ió n profes io nal con Lap lace, 
quien solo era tres años mayor. Fue sis­
temáticamente ocupando los cargos que 
este iba dejando vacantes. En 1775 ocu­
pó, g racias a D'Alembert, un cargo de 
pro fesor en la Rea l Escuela Mi li ta r de 
París y, en 1783, el puesto en la Academia 
que Lap lace dejó li bre al promocionar. 
Y as í unos cuantos más. Sin embargo, no 
lo hizo porque este le ayudara ni un ápice 
a prosperar. Laplace, que se aprovechó 
en varias ocasiones de las invest igaciones de su colega sin ni siquiera citar lo, 
vetó su nombramiento para diversos cometidos a lo largo de su vida. Pese a 
todas esas trabas en su camino, Legendre ganó el premio de la Academia de 
Ciencias de Berlín en 1782. Tanto fue el éxito que Lagrange preguntaría por él 
en una carta d irig ida al mismísimo Laplace. Se desconoce qué le contestó. 

solar y no se veían arrastrados por la comente del torbellino, es que 
posiblemente no existiera ningún vórtice en torno al Sol. 

En los Principia Newton había dejado escrito que los come­
tas estaban también regidos por la ley de gravitación, lo que signi­
ficaba que debían describir una trayectoria cónica. De la misma 
manera que describía el movimiento de los proyectiles mediante 
parábolas y el movimiento de los planetas mediante círculos y 
elipses, Newton imaginaba asimilar el movimiento de los cometas 
con alguna clase de cónica: una circunferencia, una elipse, una 
parábola o una hipérbola. Si el cometa describía una circunferen­
cia o una elipse, aunque fuera muy excéntrica, seguiría una órbita 
cerrada. Reaparecería cada cierto tiempo. En cambio, si trazaba 
una parábola o una hipérbola, seguiría una órbita abierta. Tras ser 
observado en su paso por el sistema solar, se perdería en la in-
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mensidad del universo. El hecho de que la mayoría de los cometas 
tardasen en regresar cerca de la Tierra mucho más tiempo que 
duraba la vida del astrónomo no ayudaba a sospechar que, al igual 
que los planetas, podían trazar órbitas elípticas, cerradas. 

El audaz Edmond Halley había descubierto en 1682 el cometa 
que lleva su nombre y conjeturado, a la vista de los datos orbita­
les, que era el mismo que había sido observado en 1531 y en 1607. 
El cometa regresaba tras un período de unos 75 o 76 años, reco­
rriendo una elipse muy alargada en tomo al Sol (véase la figura). 
Halley predijo incluso su regreso para finales de 1758 o principios 
de 1759. En Francia, desde reyes a académicos ilustrados estuvieron 
todos pendientes del acontecimiento. Clairaut refinó -basándose 
en cálculos previos de D'Alembert, al que no citó, lo que exacerbó 
las envidias y los celos entre ambos- la predicción de Halley. La 
aparición del cometa el 25 de diciembre de 1758 confirmó la predic­
ción de Halley quince años después de su muerte. Y, de paso, fue 
otra prueba más de la fertilidad de la mecánica de Newton frente a 
la de Descartes. Quedaba fuera de toda duda que los cometas po­
dían seguir órbitas elípticas, cerradas, aunque muy excéntricas. 

Los cometas estaban en la mente de los parisinos de la época. 
En 1773 Lalande, quien se consideraba a sí mismo «el astrónomo 
más famoso del universo» y se ufanaba de «ser tan feo como Só­
crates», decidió ocuparse de ellos. Este astrónomo libertino y 
ateo ferviente, capaz de comer arañas para demostrar que la arac-
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nofobia era irracional, presentó a la Academia un informe acerca 
de cómo los planetas podían perturbar la órbita de los cometas, 
haciendo cálculos sobre la posibilidad de que uno devastase la 
Tierra en 1789. El anuncio hizo revivir el miedo a una catástrofe 
planetaria en la capital francesa. El arzobispo de París recomendó 
cuarenta y ocho horas de oración para rebajar el pánico, y pidió 
que la Academia de Ciencias repudiara el informe. La Academia 
contestó que no podía repudiar las leyes de la astronomía. Y La­
lande intentó paliar la superstición generalizada argumentando 
que sería un azar extraordinario que dos cuerpos tan pequeños 
-el cometa y la Tierra- respecto a la inmensidad del espacio en 
que se mueven llegasen a encontrarse. 

Determinar con precisión la órbita de los cometas era un tema 
de actualidad. En 1776, el e:zjesuita y astrónomo Rudjer Boskovic 
(1711-1787) presentó a la Academia un método para calcular la 
trayectoria de los cometas. Pero terminó enfrentado a gritos con 
Laplace, quien le recriminó con muy malos modos que su método 
era intolerable. Mientras lo leía en voz alta, Laplace apostillaba: 
«¡Falso! ¡Ilusorio! ¡Erróneo!». La Academia hubo de nombrar una 
comisión que decidiera entre ambos contendientes. El dictamen 
emitido apuntaba que Laplace tenía razón, pero que esto no le au­
torizaba a tratar a Boskovic de la manera insultante y vejatoria en 
que lo había hecho. Al poco tiempo, Laplace se resarció presen­
tando su propio método para calcular la órbita de los cometas. 

No pasó mucho tiempo hasta que tuvo la ocasión de volver a 
demostrar su buen hacer con respecto al tema de los cometas. 
Britárúcos de adopción, aunque alemanes de origen, los hermanos 
Herschel, William (1738-1822) y Carolina (1750-1848), formaron 
un tándem excepcional en la exploración del espacio profundo 
armados con los modernos telescopios que ellos mismos fabrica­
ban. El 13 de marzo de 1781, William Herschel, infatigable obser­
vador de las estrellas, localizó un nuevo astro en el cielo. 
Primeramente pensó que se trataba de un cometa siguiendo una 
órbita elíptica o parabólica, ya que, a diferencia de las estrellas 
lejanas, no estaba fijo. Múltiples astrónomos (Boskovic, Lalande 
y Laplace, entre otros) se pusieron manos a la obra para calcular 
su órbita a partir de las tres fugaces observaciones. 
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Pero a todos les esperaba una sorpresa. No se trataba de un 
cometa, sino de un nuevo planeta, solo visible por el telescopio. 
Fue el astrónomo sueco Anders Johann Lexell (1740-1784) quien 
lo demostró: el nuevo astro seguía una órbita elíptica alrededor 
del Sol coplanaria con la del resto de planetas. Era el primer pla­
neta telescópico (no visible a simple vista) y el más exterior de los 
hasta ahora conocidos: Urano. Descubrir un nuevo morador del 
sistema solar era algo sensacional. Los antiguos griegos habían 
identificado como planetas ( es decir, etimológicamente astros 
errantes o vagabundos) cinco puntos de luz: Mercurio, Venus, 
Marte, Júpiter y Saturno, que se distinguían por moverse en el 
cielo con respecto al fondo de estrellas fijas, y por hacerlo en una 
estrecha franja ( el zodiaco) que rodea la trayectoria por la que 
transcurre el Sol (la eclíptica). Pero el número de planetas pern1a­
necía invariable desde hacía milenios. 

Además, Herschel, gran observador de Saturno, su planeta 
preferido a causa de sus anillos, descubrió otros dos satélites más 
a añadir a la lista de los cinco ya conocidos. Y en 1787 hizo lo 
propio con dos de los satélites de Urano: Titania y Oberón. A prin­
cipios del siglo xrx la lista de cuerpos celestes conocidos se engro­
saría con la de los denominados planetoides o asteroides (Ceres, 
Palas, Vesta y Juno). La vasta extensión que mediaba entre Marte 
y Júpiter se pobló de pequeños planetas. Sin contar los cometas, 
se conocían siete planetas mayores y un total de catorce satélites, 
incluida la Luna. Pero cuantos más moradores tuviera el sistema 
solar, más posibilidades había de que las perturbaciones gravita­
torias entre ellos lo descompensaran y se rompiera en mil peda­
zos. La cuestión de la estabilidad de dicho sistema era, según 
avanzaba el siglo, cada vez más urgente. 

LAS ANOMALÍAS SECULARES DE LOS PLANETAS 
Y SUS SATÉLITES 

En los Principia, Newton estableció que los planetas gravitan 
hacia el Sol, de la misma manera que los satélites gravitan hacia 
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sus respectivos planetas. Pero, re­
cíprocan1ente, el Sol gravita hacia 
los planetas, estos hacia sus satéli­
tes y, en definitiva, todos lo hacen 
entre sí. Cada cuerpo celeste no 
solo está sometido a los dictados 
gravitacionales del Sol, sino tam­
bién a la interacción gravitatoria 
con el resto. Tomando en cuenta 
solo el Sol y un planeta, Newton 
demostró que este seguía una 
elipse perfecta en su giro alrede­
dor del astro. Pero si, en aras del 
rigor y la precisión, tomaba tam­
bién en cuenta la influencia de los 
demás planetas sobre aquel objeto 
de estudio, observó que la órbita 
había de sufrir ciertas desviacio­
nes o perturbaciones en su trayec­
toria, con el peligro de salirse de 
su recorrido natural. Era el pro­
blema de las perturbaciones pla­
netarias, principal acicate de las 
investigaciones en mecánica ce­
leste durante el siglo XVIII. Un 
ejemplo se ilustra en la figura 1, en 
la que se muestra la Tierra atraída 
por el Sol pero a su vez por Júpi­

ter, con la consiguiente desviación de su órbita. 
Este problema físico estaba a su vez relacionado con otro, 

que es su contrapartida matemática: el denominado problema de 
los tres cuerpos o, en general, el problema de los n cuerpos, que 
trajo de cabeza a los matemáticos ilustrados. Puede enunciarse de 
manera muy sencilla: dados n cuerpos de distintas masas bajo 
atracción gravitacional mutua, se trata de determinar el movi­
miento de cada uno de ellos en el espacio. Aunque el problema 
tiene un enunciado aparentemente de gran simplicidad, su solu-
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ción no es en absoluto fácil. Newton resolvió geométricamente el 
problema de dos cuerpos para dos esferas moviéndose bajo atrac­
ción gravitacional mutua en los Principia. En 1734, Daniel Ber­
noulli (1700-1782) lo resolvió analíticamente en una memoria 
premiada por la Academia de Ciencias. Y, finalmente, Euler lo re­
solvió con todo detalle en su tratado Theoria motuum planeta­
rum et cometarum (Teorí,a del movimiento de los planetas y de 
los cometas), de 1744. La solución era que los dos cuerpos se mo­
vían necesariamente a lo largo de secciones cónicas: circunferen­
cia, elipse, parábola e hipérbola (figura 2). 

Tras ser resuelto el problema de los n cuerpos paran = 2, los 
matemáticos se enfrentaron al problema paran = 3. En parte, por­
que era el paso siguiente; y en parte, tan1bién, porque el conoci­
miento de los movimientos del sistema formado por el Sol, la 
Tierra y la Luna lo precisaba. Fue Newton el primero que asestó 
una estocada al problema. En 1702 accedió a publicar su teoría 
lunar. En una nota dedicada al lector aclaraba: 

La irregularidad en el movimiento de la Luna ha sido largo tiempo la 
queja de los astrónomos; y ciertamente siempre he contemplado 
como una gran desgracia que un planeta tan cercano a nosotros como 
lo está la Luna tenga su órbita tan distinta de una elipse. 

Sin embargo, sus cálculos se saldaron con un rotundo fracaso. 
Newton no estaba en condiciones de poder ofrecerlos con un mar­
gen de error aceptable. Según recordaría más tarde con amargura: 
«La cabeza nunca me dolía salvo con los estudios sobre la Luna». 
Euler, en la década de 1760, parece que fue el primero en estudiar 
el problema general de tres cuerpos moviéndose bajo influencia 
gravitacional mutua, aunque siempre mirando de reojo la Luna: 

El problema se reduce a tres ecuaciones diferenciales, que no solo 
no pueden ser integradas de ninguna forma, sino que también mues­
tran grandes dificultades en el modo de hacer aproximaciones. 

Clairaut, al igual que Euler, intentó resolverlo de forma 
exacta, quejándose de la dificultad y recurriendo en última instan-
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cia a aproximaciones bastante oscuras. Se iniciaron entonces dos 
programas de investigación paralelos, dado que parecía que dicho 
problema no podía resolverse exactamente por su gran compleji­
dad. Por un lado, se buscaron soluciones particulares exactas. Por 
otro, se buscaron soluciones generales aproximadas que fuesen 
útiles durante un lapso de tiempo, aplicando el método de pertur­
baciones que citamos anteriormente. 

En la búsqueda de soluciones particulares exactas Lagrange 
brilló con luz propia. En 1772, concurrió a un premio de la Acade­
mia de Ciencias de París con un trabajo titulado Ensayo sobre el 
problema de los tres cuerpos. Era consciente de que el tema no 
podía resolverse por integración -a diferencia de lo que ocurria 
con el de los dos cuerpos-, es decir, ofreciendo una función analí­
tica que fuera la solución general de las ecuaciones diferenciales 
del problema. No obstante, en ese trabajo Lagrange obtuvo algunas 
soluciones particulares muy interesantes. En algunos casos concre­
tos, si los tres cuerpos bajo estudio se encontraban en una determi­
nada configuración espacial y dos de ellos presentaban masas muy 
grandes en comparación con la del tercero, era posible dar con una 
solución exacta. Euler había encontrado una solución particular 
para el caso en que los tres cuerpos se encuentren en línea recta. 
Lagrange hizo lo propio para el caso de que los tres cuerpos se en­
cuentren en los vértices de un triángulo equilátero, los llamados 
desde entonces puntos lagrangianos. Pero para Lagrange estas so­
luciones no tenían realidad física. No eran más que un divertimento 
matemático. Sin embargo, en 1906, los astrónomos encontraron que 
los asteroides troyanos (un eajambre de asteroides situados sobre 
la órbita de Júpiter) formaban con el Sol y Júpiter la posición des­
crita por el matemático francés. Las soluciones a este problema 
particular de los tres cuerpos obtenidas de forma puramente teó­
rica por él tenían su confirmación física más de un siglo después. 
Sin ser consciente de ello, había resuelto el problema de los tres 
cuerpos restringido al sistema formado por el Sol, Júpiter y el aste­
roide Aquiles (véase la figura de la página siguiente). 

Pero, aún más, Lagrange también fue pionero en encontrar 
soluciones generales aproximadas al problema de los tres cuerpos. 
Dos casos demandaban especial interés: el sistema de tres cuerpos 
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formado por el Sol, Júpiter y Sa­
turno; y el formado por el Sol, la 
TieITa y la Luna. Se trataba de ex­
plicar el iITegular movimiento de 
nuestro satélite, así como el de los 
grandes planetas del sistema solar. 
Si se atiende exclusivamente al 
efecto preponderante de la atrac­
ción gravitatoria del Sol (por ser el 
astro de mayor masa), puede afir­
marse que la órbita de cada pla­
neta alrededor suyo sigue una 
elipse. Pero si se toma en conside-
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planetas, la trayectoria elíptica queda perturbada, produciéndose 
desviaciones o desigualdades; pero, ¿son estas acumulativas o se 
compensan a lo largo del tiempo? 

El objetivo era saber si las perturbaciones en el movimiento 
elíptico de los planetas eran -por decirlo en los términos que em­
pleaban Lagrange y Laplace- periódicas o seculares. En el primer 
caso, las desviaciones en la órbita de los planetas irían compensán­
dose y neutralizándose entre sí a la larga, de modo que la órbita 
permanecería estable sin una variación fundamental. Las variacio­
nes de tipo periódico harían, por tanto, que la órbita del planeta 
variase primero en un sentido y después en el opuesto, con lo que 
al final quedaría igual. En cambio, si eran seculares, las desviacio­
nes irían acumulándose e incrementándose indefinidamente, aun­
que con extrema lentitud, hasta sacar al planeta de su órbita elíptica 
y, en consecuencia, desestabilizar a largo plazo el sistema solar. Las 
variaciones de tipo secular causarían, por tanto, que la órbita del 
planeta variase en un solo sentido, terminando por descompen­
sarse. Como estas variaciones no se hacían apreciables sino en el 
transcurso de los siglos, se las denominaba precisamente seculares. 

Laplace tenía la convicción de que las principales perturba­
ciones que sufren las órbitas de los planetas (las relativas a su 
forma y posición, es decir, a la excentricidad de la elipse y al plano 
en que se encuentra confinada la órbita) no eran seculares sino 
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periódicas. Esto es, oscilan alrededor de unos valores medios y 
permanecen siempre acotadas dentro de unos límites bien deter­
minados. Como enseguida van1os a descubrir, Laplace resolvió el 
problema que suponían las anomalías observadas en el movi­
miento de Saturno y Júpiter, así como en el de la Luna. 

«Al sustituir en ella [la ecuación] los valores numéricos de las 
cantidades referentes a Júpiter y Saturno, quedé sorprendido 
al ver que resultaba nula.» 
- LAPLACE, SOBRE LA ECUACIÓN QUE DEMOSTRABA LA CONSTANCIA DE LOS MOVIMIENTOS MEDIOS 

DE LOS PLANETAS . 
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Comencemos, pues, estudiando las anomalías en el movi­
miento de Júpiter y Saturno. Según había constatado Halley en el 
siglo anterior, Júpiter aceleraba su movimiento, al tiempo que Sa­
turno lo ralentizaba. El primero estaba sometido a una acelera­
ción aparente, mientras que el segundo parecía frenarse poco a 
poco. Si estos movimientos continuaban indefinidamente, Júpiter 
chocaría contra el Sol y Saturno escaparía del sistema solar. 

Entre 1785 y 1786, Laplace resolvió el problema en un par de 
memorias geniales, tituladas Sobre las desigualdades seculares de 
los planetas y satélites y Teoria de Júpiter y Saturno. Al igual que 
Lagrange, Laplace era consciente de la imposibilidad de encontrar 
soluciones analíticas exactas al problema de los tres cuerpos, por 
lo que tenía que recurrir a soluciones aproximadas. Pero fue La­
place, y no Lagrange, el que logró dar con la verdadera expresión 
analítica del movimiento secular de los planetas. Consiguió dedu­
cir una ecuación donde le aguardaba una grata sorpresa. Había 
dado con uno de los fenómenos más notables del sistema del 
mundo: la constancia de los movimientos medios de los planetas. 

Las desigualdades seculares de Júpiter y Saturno se deriva­
ban de la ley de la gravitación de Newton y era posible, en princi­
pio, predecir tanto los estados pasados como futuros del sistema 
abarcándolos en una sola mirada a la fórmula. La aceleración del 
primero y la deceleración del segundo eran consecuencia de su 
acción recíproca. Y, lo que era todavía más importante, ambas 
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desigualdades resultaban periódicas y, por tanto, reversibles. 
Cada 450 años el comportamiento experimentaba un cambio de 
sentido: Júpiter se frenaba y Saturno, en cambio, se aceleraba, 
regresando a las posiciones iniciales cada 900 años. La razón es­
tribaba en que Laplace constató que cinco veces el período de 
Júpiter era aproximadamente como dos veces el de Saturno (su­
mando un total de 900 años), precisamente el factor que anulaba 
la ecuación de sus desigualdades seculares. Las irregularidades 
eran, por tanto, periódicas, con un período aproximado de nueve 
siglos. Laplace había explicado la aceleración de Júpiter y el re­
tardo de Saturno que tanto habían atormentado a los astrónomos 
desde Newton. Pero, ¿qué astrónomo podría advertir una regula­
ridad así, en un período de tiempo tan dilatado? 

Intentemos comprender, aunque sea de un modo intuitivo, 
cómo llegó Laplace a este brillante resultado. Buscó soluciones 
aproximadas de los problemas del movimiento planetario. Si no 
hubiese más que un planeta, este seguiría una órbita normal ( elíp­
tica) en tomo al Sol. Pero corno hay más de uno, la órbita real o 
perturbada puede considerarse, aproximadamente, como la órbita 
normal a la que se le suma el efecto de una pequeña perturbación 
(véase la figura), cuyos componentes se trata de identificar. 

Pero el análisis de las ecuaciones del movimiento orbital es 
muy difícil de abordar. Mientras que las ecuaciones diferenciales 
que describen el movimiento de un sistema formado por dos cuer­
pos son lineales, las ecuaciones que describen un sistema de tres o 
más cuerpos son no lineales. Y para hallar sus soluciones hay que 
emplear métodos de aproximación. Por relacionarlo con los térmi­
nos matemáticos que empleamos 
en el capítulo anterior: la solución 
de la ecuación diferencial no lineal 
correspondiente al problema real 
o perturbado se halla calculando 
la de una ecuación lineal parecida 
- cuando no se tiene en cuenta el 
tercer cuerpo- para, a continua­
ción, obtener la solución del pro­
blema de partida «perturbando» 
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esta última. En otras palabras, se halla una solución aproximada 
al problema de los tres cuerpos empleando lo que se sabe con 
certeza del problema de dos cuerpos. De este modo, se expresa 
la solución del problema real o perturbado (no lineal) como una 
variación de la solución del problema normal (lineal). 

El meollo de la cuestión estaba en determinar con precisión 
la cuantía de la perturbación ( que se suponía periódica). Laplace 
estudió detenidamente las perturbaciones que sufrían los planetas 
en las ecuaciones, quedándose solo con sus componentes princi­
pales ( con los primeros términos) y despreciando los restantes, 
por creerlos demasiado pequeños. Las soluciones halladas de esta 
manera no eran, por tanto, exactas, solo aproximadas. Pero la 
posibilidad de obtener soluciones útiles mediante un método 
aproximado se apoyaba en los siguientes factores: 

- El sistema solar está dominado por el Sol, que contiene el 
99,87% de la masa total del sistema. Esto significa que las 
órbitas de los planetas son casi elípticas, ya que las fuer­
zas perturbadoras de los planetas son pequeñas en com­
paración con la atracción ejercida por el Sol. 

- Júpiter posee el 70% de la masa planetaria, y por ello in­
fluye sobre el resto de los planetas de un modo apreciable. 
De modo que en el caso del sistema Sol, Júpiter y Saturno, 
se considera que el segundo también perturba el movi­
miento del tercero alrededor del sistema solar. Y recípro­
camente, dado que Saturno es el segundo planeta del 
sistema en tamaño y masa después de Júpiter. 

- Se sobreentiende que ni Júpiter ni Saturno perturban al 
Sol. Y si en lugar de Saturno se tratase de otro planeta 
menor, podría además despreciarse su efecto gravitatorio 
sobre Júpiter, lo que simplifica extraordinariamente los 
cálculos. 

Tras su éxito con Júpiter y Saturno, a Laplace solo le quedaba 
por explicar la anomalía del movimiento de la Luna. Lo hizo en 
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EL DESCUBRIMIENTO DE NEPTUNO 

La teoría de las perturbaciones lle­
varía, andado el tiempo, al descu­
brimiento de Neptuno, el octavo 
planeta, en 1846, y por casualidad de 
Plutón, en 1930, en las regiones más 
exteriores del sistema solar. El estu­
dio de las desviaciones en la trayec­
toria de los planetas jugó un papel 
fundamental en la predicción de 
nuevos moradores de nuestro siste­
ma antes de que el telescopio los 
vislumbrara. Partiendo de una inade­
cuación entre la posición de Urano 
predicha por la teoría de la gravita­
ción y la realmente observada, se 
llegó a la conclusión de que ten ía 
que estar causada por las perturbaciones de otro planeta aún más alejado. La 
predicción realizada por los astrónomos John Couch Adams (1819-1892) y 
Urbain Le Verrier (1811-1877) fue confirmada en la noche del 23 de septiembre 
de 1846 por el astrónomo Johann Gottfried Gal le (1812-1910), del Observatorio 
de Berlín. Había nacido Neptuno. Curiosamente, Le Verrier siempre pensó que 
las anomalías en el movimiento de Mercurio también podrían explicarse pos­
tulando otro nuevo planeta entre el Sol y Mercurio, llamado Vulcano, que 
perturbaría la órbita de este último. Sin embargo, la búsqueda sería infructuo­
sa, aunque hubo quien creyó verlo confundido con una mancha solar. Hoy 
sabemos que para explicar el movimiento anómalo de Mercurio la mecánica 
de Newton no basta y hay que echar mano de la teoría de la relatividad de 
Einstein. 

otro par de memorias presentadas entre 1 787 y 1 788, que llevaban 
por nombre Sobre la ecuación secular de la Luna. Por su cercarúa 
a nosotros, su movimiento era uno de los mejor estudiados. En 
1693 Halley había constatado una aparente aceleración de sumo­
vimiento medio con respecto al tiempo de los griegos. Nuestro 
satélite no solo está bajo la acción gravitatoria de la Tierra, sino 
también del Sol, que continuamente lo desvía de la elipse imagina­
ria que debería trazar en torno a la Tierra. 
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Para cuando Laplace atacó el problema, Lagrange ya había 
realizado sustanciosos avances en la aplicación de la ley de gravi­
tación universal a un problema concreto de la mecánica lunar, que 
le reportó otro premio de la Academia de Ciencias de París ( a lo 
largo de su vida cosecharía hasta cinco veces este distintivo galar­
dón). En 1764 ofreció una explicación del fenómeno que deno­
minó libración lunar. 

La Luna siempre nos presenta la misma cara, su cara visible, 
pero no la misma porción de ella, dado que experimenta un ligero 
movimiento de balanceo en el espacio que nos permite ver una 
pequeña parte de su cara oculta ( concretamente, desde la Tierra 
podemos divisar hasta un 59% de la superficie lunar, es decir, más 
del 50% esperable). Esta cuestión se inscribía, como es natural, 
dentro del problema de los tres cuerpos (Sol-Tierra-Luna) y re­
quería un estudio muy cuidadoso de la perturbación que causa­
ban la Tierra y el Sol en el movimiento lunar por medio de la 
atracción gravitatoria, tarea que Lagrange culminó con acierto. El 
movimiento de cabeceo de la Luna tampoco era secular. Era pe­
riódico. 

Para Laplace todas las restantes anomalías del movimiento 
lunar podían explicarse análogamente. Obtuvo soluciones aproxi­
madas sacando partido del hecho de que el Sol está lejos de la 
Tierra y de la Luna y suponiendo que solo ejerce una influencia 
pequeña sobre el movimiento relativo de ambas. Probó que el 
miedo a que nuestro satélite se precipitara sobre la Tierra o esca­
para hacia el Sol era infundado, porque la aceleración que se había 
constatado en su movimiento a lo largo de los últimos siglos era 
consecuencia de la variación de la excentricidad de la órbita te­
rrestre. Pero, conforme esta última fuera corrigiéndose (pues en 
el fondo era periódica), nuestro satélite comenzaría a experimen­
tar un movimiento contrario de deceleración. La variación en la 
velocidad de la Luna era, también, periódica. Empleando sus pro­
pias palabras: 

Tales irregularidades no son siempre crecientes: son periódicas, 
como las de la excentricidad de la órbita terrestre de que dependen, 
y no se repiten sino transcurridos millones de años. 
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Resumiendo, Laplace había llegado a demostrar que las órbi­
tas de los planetas y de sus satélites cambiaban gradualmente, 
pero siempre dentro de ciertos límites. Las variaciones en las ex­
centricidades e inclinaciones de sus órbitas permanecían siempre 
pequeñas y acotadas. Los efectos de las perturbaciones eran pe­
riódicos, no seculares ni destructivos. Las anomalías observadas 
en el movimiento del sistema solar en cortos períodos de tiempo 
desaparecían por completo al considerar períodos largos. Y todo 
ello gracias al análisis y a la ley de gravitación universal. Newton 
podía descansar tranquilo. Había vencido. 

LA DEMOSTRACIÓN DE LA ESTABILIDAD 
DEL SISTEMA SOLAR 

Simultáneamente apareció una cuestión muy relacionada con la 
del problema de los tres cuerpos y las anomalías orbitales: la cues­
tión de la estabilidad del sistema solar ( compuesto, en la época, 
de solo ocho cuerpos, el Sol y los siete planetas conocidos, sin 
contar sus satélites), cuya solución dependía en realidad de la 
resolución de dicho problema. El problema de los n cuerpos se 
reduce, en el campo astronómico, a preguntarse cuál será el as­
pecto del cielo dentro de un año, dentro de un siglo o dentro de 
un billón de años. Como vimos, Newton sabía que para dos cuer­
pos el problema era resoluble con exactitud para todo tiempo, 
pero que no ocurría así cuando un tercer cuerpo entraba en inte­
racción. Aunque débiles en comparación con la fuerza de atrac­
ción del Sol, las fuerzas entre los planetas no eran ni mucho menos 
despreciables, por cuanto a la larga podían desviar algún planeta 
de su órbita e incluso, en el límite, expulsarlo fuera del sistema 
solar. Las fuerzas interplanetarias podían estropear las bellas elip­
ses keplerianas, sin que fuera posible predecir el comportamiento 
del sistema en un futuro lejano. De hecho, en su obra De motu 
corporum in gyrum (Sobre el movimiento de los cuerpos en ór­
bita, 1684), Newton afirmaba que los planetas no se mueven exac­
tamente en elipses ni recorren dos veces la misma órbita. Además, 
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reconocía que definir estos movimientos para todo futuro excedía 
con mucho la capacidad del intelecto humano. 

Por consiguiente, seguía en pie esta acuciante pregunta: ¿es 
el sistema solar estable o inestable? ¿Permanecerá cada astro den­
tro de su órbita o se desviará en el futuro? ¿Acaso las anomalías 
que ya se observan en el movimiento de Júpiter y Saturno, así 
como en el de la Luna, representan el p1incipio del fin? Para 
Newton, si el sistema solar se iba desajustando, se necesitaba una 
solución drástica: era la mano de Dios la que reconducía a cada 
planeta dentro de su elipse, restableciendo la armonía cada cierto 
tiempo. Frente a Newton, Leibniz sostenía que el Creador no 
podía ser un fab1icante tan torpe. Para el alemán era un escándalo 
que el inglés hiciera intervenir a Dios en el sistema solar para ga­
rantizar la estabilidad. El Ser Perfecto no podía haber creado una 
máquina del mundo que tuviera que ser retocada y corregida cada 
cierto tiempo, como el relojero que diera cuerda a su reloj. 

Las últimas décadas del siglo XVIII no fueron ajenas a esta dis­
cusión y estuvieron dominadas por un miedo relacionado con la 
estabilidad del universo, especialmente a raíz de la posibilidad de 
colisión de un cometa contra la Tierra. Como consecuencia de las 
famosas perturbaciones gravitatorias, podía ser que un cometa, en 
su paso cerca de la Tierra, fuese capturado por esta, ocasionando 
un choque de consecuencias dramáticas para la vida humana. 
(Hoy sabemos, por ejemplo, que la influencia gravitacional de Jú­
piter ha causado que el período de la órbita del cometa Halle-Bopp 
disminuya de 4200 a 2800 años tras su último paso, en 1997.) 

¿Podía la teoría gravitacional de Newton dar razón de la apa­
rente estabilidad del sistema solar y, de paso, ponerla fuera de 
toda duda para los próximos eones? Para Laplace, las leyes del 
científico inglés podían predecir las trayectorias de todos los tipos 
de cuerpos celestes: planetas, satélites y cometas. Y además de­
mostraban que el sistema del mundo era estable. El universo es­
taba totalmente determinado. 

Entre 1785 y 1 788, Laplace mostró que ni las excentricidades 
ni las inclinaciones de las órbitas de los planetas estaban someti­
das a variaciones seculares, garantizando -en un cierto orden de 
aproxin1ación- la estabilidad del sistema: 
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Sus irregularidades seculares son periódicas y quedan contenidas 
en estrechos límites, de suerte que el sistema planetalio no hace sino 
oscilar alrededor de un estado medio del que no se aparta nunca 
salvo en una pequeña cantidad. 

Las órbitas de los planetas serían siempre prácticamente cir­
culares, sin grandes cambios en su excentricidad. Y el plano en 
que se mueven nunca oscilaría excediendo de tres grados. Ni Sa­
turno acabaría perdiéndose por el espacio infinito, ni Júpiter cae­
ría sobre el Sol o la Luna sobre la Tierra. La aceleración de Júpiter 
y la ralentización de Saturno estaban ocasionadas por pequeños 
efectos, de segundo orden, debidos a la posición relativa de ambos 
planetas respecto al Sol. Y, análogamente, la aceleración del mo­
vimiento medio de la Luna estaba causada por pequeños cambios 
en la excentricidad de la Tierra. Estas perturbaciones solo depen­
dían de la ley de gravitación y tendían a compensarse en el trans­
curso del tiempo. Seguían ciclos periódicos, pero extremadamente 
largos. El sistema del mundo formaba así una especie de máquina 
perfectamente engrasada. 

La conclusión de La.place no era otra que la afirmación de la 
estabilidad del universo sin necesidad de recurrir a la providencia 
divina ( corno Newton había hecho). Casi cien años después pare­
cía que el optimista Leibniz había triunfado sobre el agorero 
Newton. Dios no era ya una hipótesis necesaria para el buen 
orden planetario. Ningún cataclismo mecánico amenazaba el equi­
librio del sistema. La.place había demostrado que se trataba de un 
mecanismo totalmente aut01Tegulado que no precisaba de la inter­
vención de ningún relojero supremo. El universo estaba predeter­
minado a ser estable por los siglos de los siglos. 

Transcurridos más de doscientos años, los confortables y tran­
quilizadores pronósticos que hiciera La.place necesitan de más de 
una revisión. Su respuesta dista años luz de ser exacta. Creyó de­
mostrar la estabilidad del sistema solar no solo a corto plazo, sino 
también a largo plazo e, incluso, sin plazo alguno, hasta la noche 
de los tiempos. Pero los trabajos en mecánica celeste que hiciera 
el matemático francés Jules Henri Poincaré (1854-1912) a finales 
del siglo XIX y, en especial, los nuevos descubrimientos que ha arro-
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jado ya en pleno siglo xx la revolucionaria te01ia del caos han ma­
tizado bastante sus conclusiones. Adelante, vean1os por qué. 

Laplace pensaba que, si se podía resolver el problema de los 
tres cuerpos, no sería mediante una función sencilla, sino que la 
solución de las ecuaciones diferenciales vendría dada por una serie, 
esto es, por una suma de infinitas funciones ( que dependerían de 
parámetros orbitales como la excentricidad y la inclinación de la 
órbita o la masa del planeta). Esta serie tendría que satisfacer for­
malmente las ecuaciones del problema y, además, ser convergente 
para algunos valores de las variables. Lagrange había aportado solu­
ciones en forma de serie, pero no estaba nada claro que convergiese, 
es decir, que cuando se sustituyeran las variables por números con­
cretos extraídos de los datos astronómicos, la serie diese al sumar 
sus infinitos términos un valor concreto y no directamente infinito. 

En estas condiciones tan poco propicias para cálculos exac­
tos, Laplace decidió trabajar con aproximaciones, con series 
«truncadas». Es decir, dada la serie con sus infinitos términos, se 
quedaba solo con los principales, los que a priori más parecía que 
sumaban, despreciando el resto. Pensó que así obtendría estima­
ciones razonables del comportamiento planetario evaluando solo 
los primeros términos de la inacabable cadena de sumandos alge­
braicos, bajo el supuesto de que los restantes términos no ten­
drían mayores efectos. Así determinó soluciones aproximadas 
para el problema de los tres cuerpos y razonó que, aunque estas 
no coincidieran totalmente con las reales, las -pequeñas diferen­
cias que hubiera entre ambas no ocasionarían cambios significati­
vos. Tenía alguna buena razón para ello. 

Las series con que trabajó Laplace eran series de potencias, 
es decir, sumas de infinitas funciones que dependían de las suce­
sivas potencias del inverso de la masa del Sol. En el primer tér­
mino, dicha masa aparecía dividiendo. En el segundo, lo hacía el 
cuadrado de la masa solar. En el tercero, el cubo. Y así sucesiva­
mente. Dado que la masa solar era muy grande en comparación 
con la del resto de los planetas o satélites ( el cociente de la masa 
de un planeta entre la masa del Sol es del orden de 0,0001), La­
place se quedó solo con el primer término como solución aproxi­
mada, despreciando todos los términos a partir del segundo en 
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adelante, por considerarlos muy pequeños ( al elevar la masa solar 
al cuadrado, el cociente es ya del orden de 0,00000001). Es decir, 
simplificando, de tener A + B + C + .. . pasó a tener únicamente A. 
Este primer término A ofrecía una primera aproximación. 

La suma del primer término y del segundo (A + B) no cabe 
duda de que constituía una aproximación mejor, y la de los tres 
primeros términos (A + B + C) otra aún mejor. Pero el precio que 
había que pagar por mejorar las aproximaciones de esta manera era 
una complejidad cada vez mucho mayor en los cálculos. No obs­
tante, si los términos sucesivos iban siendo cada vez más pequeños 
( cada vez sumaban menos, como era el caso), podía resultar que la 
aproximación de primer orden (AJ ofreciera ya una solución aproxi­
mada suficientemente buena del valor total de la suma. El matemá­
tico francés operó siempre con aproximaciones de primer orden, 
despreciando los términos de segundo, tercer y sucesivo orden. 

Sin embargo, los matemáticos del siglo xrx se encargarían de 
mostrar que por desgracia la mayoría de las series de la mecánica 
celeste imaginadas por los matemáticos del siglo anterior no con­
vergían (su resultado daba infinito) y, por tanto, no eran solucio­
nes válidas ni daban buenas aproximaciones de las que extraer 
conclusiones sobre la estabilidad planetaria. Laplace se quedó con 
A y, aunque los términos restantes B + C + ... eran muy pequeños, 
no eran ni mucho menos despreciables, porque a la larga - en 
períodos de tiempo enormes- podían crecer y los can1bios serían 
apreciables. A lo largo de la cadena infinitamente larga podían 
hacer acto de presencia sumandos significativos que diesen al 
traste con la tendencia que se hubiera establecido a partir de la 
evaluación de los primeros. Concretamente, en sus ecuaciones del 
sistema Sol-Júpiter-Saturno (problema de los tres cuerpos), La­
place despreció términos matemáticos que creía muy pequeños 
pero que, en contra de lo que él suponía, podían crecer hasta des­
estabilizar el sistema solar. Con palabras que escribiría algunos 
años después y que dan testimonio de esta forma de operar (Ex­
posición del sistema del mundo, libro IV, cap. II): 

El cálculo confirmó la sospecha y me permitió saber que en general 
los movimientos medios de los planetas y sus distancias medias al 
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Sol son invariables, al menos si se desprecian las cuartas potencias 
de excentricidades e inclinaciones de las órbitas, así como los cua­
drados de las masas perturbadoras; lo que resulta más que suficien­
te para las necesidades actuales de la astronomía. 

Y añade en un pasaje algo más adelante ( cap. XVI): 

La extrema dificultad de los problemas relativos al sistema del mun­
do obliga a recurrir a aproximaciones que siempre dejan el temor de 
que las cantidades despreciadas tengan influencia sensible en los 
resultados. 

Efectivamente, en 1856, el matemático francés Urbain Le Ve­
rrier (1811-1877), célebre por el descubrimiento de Neptuno, re­
pasó los cálculos de Laplace y mostró que los efectos de los 
términos de orden superior despreciados podían llegar a ser sig­
nificativos y, por tanto, que sus soluciones aproximadas no podían 
emplearse para demostrar la estabilidad del sistema solar más allá 
de cierto umbral de tiempo, para una duración de tiempo definida. 

Seria a caballo entre el siglo XIX y xx cuando la serie de proble­
mas reabiertos en la mecánica celeste precisara de un hombre de 
talento que arrojara nueva luz sobre ellos: Poincaré. Este matemá­
tico francés, a menudo considerado el último universalista (hizo 
aportaciones en todos los campos de la matemática), mostraria 
que los resultados de Laplace eran válidos si se aproximaba in­
cluso hasta el segundo orden en la masa de los planetas, pero no 
ya si se hacía hasta el tercer orden. Esos términos tan pequeños 
que Laplace despreció en sus cálculos podían crecer sensible­
mente hasta desestabilizar la órbita del planeta. Puede ocurrir que 
los datos prácticos que el astrónomo proporciona al matemático 
equivalgan, para este, a una infinidad de datos teóricos muy próxi­
mos unos a otros, pero sin embargo distintos. Y que, entre esos 
datos haya algunos que mantengan eternamente a todos los astros 
a una distancia finita, mientras que otros lancen hacia la inmensi­
dad a alguno de esos cuerpos celestes. Pequeñas perturbaciones 
en las condiciones iniciales de los planetas pueden engendrar gran­
des variaciones en los estados finales. De modo que cualquier pe-
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queña perturbación de la solución periódica ( correspondiente a la 
elipse kepleriana) puede a la larga degenerar en una trayectoria 
inestable y errática. Caótica, en una palabra (figura 3). 

A día de hoy, en pleno siglo XXI, a partir de investigaciones 
punteras realizadas con modernos ordenadores, sabemos a cien­
cia cierta que existen ciertas regiones del sistema solar en que 
aparece un comportamiento caótico, aunque siempre para perío­
dos de tiempo muy superiores a los contemplados por Laplace. El 
irregular movimiento de la Luna, que escapa a cualquier cepo 
geométrico, es solo un caso leve de una enfermedad congénita. Un 
movimiento caótico digno de mencionarse lo constituye el movi­
miento tambaleante de Hiperión, una de las lunas de Saturno, cuya 
forma de patata provoca un deambular aparentemente fortuito. 
Este satélite va dando, literalmente, tumbos en su movimiento de 
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rotación. Además, en 1988, dos científicos del Massachusetts Ins­
titute of Technology (MIT), G. Sussrnan y J. Wisdorn, presentaron 
evidencia numérica de que el movimiento de Plutón es también 
caótico. La trayectoria del planeta enano es particularmente inte­
resante, porque su órbita, más excéntrica e inclinada que la de 
cualquiera de los planetas, se cruza con la de Neptuno ( en ocasio­
nes Plutón está más cerca del Sol que Neptuno), y podría ser que 
en un futuro no muy distante estuvieran lo suficientemente próxi­
mos corno para perturbarse mutuamente desencadenando una 
catástrofe cósmica. Sirviéndose de una supercornputadora, 
Sussrnan y Wisdorn calcularon la trayectoria de Plutón durante los 
próximos 845 millones de años y hallaron que dos condiciones 
iniciales cercanas determinaban dos trayectorias que divergían 
notablemente en un lapso de tan solo 20 millones de años (un 
margen de tiempo muy corto-si se tiene en cuenta que la edad del 
sistema solar se estima por lo bajo en unos 4 500 millones de años). 

Por otro lado, J. Laskar ha llevado a cabo una estimación de 
las zonas que podrían llegar a ocupar los planetas interiores del 
sistema solar en los próximos cinco mil millones de años. Las ór­
bitas actuales corresponden a las líneas en negrita que se mues­
tran en la figura 4, y la zona que puede llegar a visitar cada planeta 
corresponde a las regiones sombreadas. En el caso de Mercurio y 
Venus, ambas zonas se superponen, corno puede observarse en el 
trazo más oscuro, lo que depara un futuro incierto. La incertidum­
bre ha vuelto al seno del sistema del mundo. 

INVESTIGANDO CODO CON CODO CON CONDORCET 
Y LAVOISIER 

Pero Laplace aspiraba a mucho más. Su ambicioso programa cien­
tífico no se detenía en estudiar el cielo, también requería explorar 
el mundo terrestre: la aplicación de las matemáticas a la sociedad 
humana y a la física de los fluidos imponderables de la época ( el 
calor, la luz, la electricidad y el magnetismo, de los que Newton 
no había podido ocuparse en los Principia sino solo en la Óptica). 

LA ESTABILIDAD DEL SISTEMA DEL MUNDO 65 



66 

Laplace siempre se movió entre las matemáticas, la física y la quí­
mica como pez en el agua. 

En 1 783, formó parte junto a Condorcet de un proyecto que 
supuso un nuevo avance para los estudios demográficos y es­
tadísticos. Condorcet, quien era ya un decidido partidario de la 
aplicación de las matemáticas a la toma de decisiones humanas, 
veía en el cálculo de probabilidades una herramienta de Estado: 
la estadística. Ambos participaron en un comité académico para 
investigar el funcionamiento del hospital más grande de París, 
L'Hótel-Dieu, y emplearon su destreza en el cálculo de probabi­
lidades para comparar los índices de mortalidad del hospital con 
los de otros hospitales franceses. Además, en 1785, Laplace terció 
en el inicio de los estudios demográficos en Francia. Amparán­
dose en los registros de nacimientos que las parroquias llevaban 
desde antiguo, estimó que podía calcularse la población total del 
reino multiplicando por 26 el número de nacimientos. 

Pero también encontró tiempo para colaborar con otra de las 
grandes estrellas científicas del momento: Antaine Laurent de La­
voisier (1743-1794). Cuando Laplace entró en contacto con él, 
Lavoisier era un personaje público. Era jefe de los recaudadores 
de impuestos, puesto que había logrado tras casarse con su adine­
rada e inteligente mujer, Marie-Anne Paulze (1758-1836). Era, 
pues, un hombre rico, influyente en la corte, y también un repu­
tado experimentador en su laboratorio del Arsenal de París. Lavoi­
sier había arrinconado la teoría tradicional del flogisto al proponer 
su teoría de la combustión basada en la porción de aire que hoy 
llamamos oxígeno. Además, había reformado por completo las 
bases de la química, asentando una nueva nomenclatura. 

Laplace comenzó a colaborar con Lavoisier en 1777, y lo hizo 
esporádicamente durante más de quince años, junto a Claude­
Louis Berthollet (1748-1822), Antoine-Fran~ois de Fourcroy 
(1755-1809) y Alessandro Volta (1745-1827). De hecho, Laplace 
continuaría trabajando con Berthollet durante buena parte del 
resto de sus días, y sus últimos trabajos abordarían principalmente 
aspectos particulares de la física y la química. Pero, ¿cómo em­
pezó todo? La razón primordial de que entrara a trabajar con él es 
muy prosaica. El padre de Laplace, Pierre, seguía explotando sus 
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sultó letal para varios frailes 
de una congregación. Las autoridades civiles decidieron tomar 
cartas en el asunto, consultando con la recientemente creada Real 
Sociedad de Medicina de París, de la que Lavoisier era miembro 
fundador. A fin de sofocar el escándalo, Pie1Te Laplace estuvo de 
acuerdo en indemnizar generosamente a la congregación. Pero 
hubo de viajar a París y obtener un importante préstamo por parte 
de Lavoisier para superar sus dificultades financieras. Parece pro­
bable que como consecuencia de las condiciones del contrato, o 
quizás en gratitud, Laplace hijo comenzase a ayudar a Lavoisier 
en sus investigaciones. 

No obstante, dentro del quehacer diario, Lavoisier y Laplace 
se trataron como iguales. El savant experimental y el géometre 
se coordinaron a las mil maravillas. Generalmente, el primero 
llevaba la voz cantante en los experimentos, pero era el segundo 
quien realizaba los cálculos que demandaban. Lavoisier tenía 
la intención de seguir el «método de los geómetras», una etapa 
que se cerró con la presentación de la Memoria sobre el calor, 
leída en la Academia en 1 783. Desde luego, el mejor resultado 
al que llegaron fue la construcción del calorímetro (véase la fi­
gura), un ingenioso aparato diseñado para medir el calor interno 
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de los cuerpos. El calorímetro era una suerte de balanza para 
medir el calor de un cuerpo en función de la cantidad de hielo 
que derretía. Lavoisier, como comisionado del Tesoro, estaba 
acostumbrado a cuadrar balanzas de pagos. Y, como químico, a 
estudiar el balance de masa entre los reactivos y los productos 
de las reacciones químicas. Laplace, por su parte, estaba acos­
tumbrado a cuadrar las desigualdades astronómicas, así como a 
usar el cálculo de probabilidades como una suerte de aritmética 
moral que equilibrara nuestro conocimiento y nuestra ignoran­
cia. Era la tendencia a mensurar e igualar todo. Una tendencia a 
la que tampoco escapó la política, como veremos en el siguiente 
capítulo. 

REPUTACIÓN Y PRESTIGIO SOCIAL 

En 1783 murieron Euler y D'Alembert. El anciano philosophe fran­
cés, artífice de muchos de los cambios que habrían de venir, no 
llegó a verlos, pues murió en octubre de ese año. Lagrange quedó 
entonces como decano de la nueva generación de matemáticos 
que luchaba por abrirse paso: Laplace, Condorcet, Monge, Legen­
dre, Carnot ... Lagrange llegó a París en 1787, donde se incorporó 
a la Academia y se instaló en el Louvre, lugar en que le hospedó la 
reina María Antonieta, quien en su frivolidad disfrutaba de invitar 
al silencioso sabio a eventos sociales. Ese año Lagrange conoció 
personalmente a Laplace. Ya no era un discípulo prometedor de 
D'Alembert, sino una figura que brillaba con luz propia por haber 
demostrado «fuera de toda duda» la estabilidad del sistema del 
mundo. En la Academia, según dejó escrito un testigo de la época, 
«se pronunciaba sobre cualquier cosa». De resultas parece que 
incluso su relación con D'Alembert se resintió, porque Laplace 
relegaba su trabajo al pasado. Su ego le llevaba a creerse, no sin 
razón, el mejor matemático vivo de Francia. 

Si en 1773 Laplace era un humilde miembro de la sección de 
Mecánica de la Academia, en 1776 era ya miembro de la sección 
de Geometría, la especialidad más noble. Y, finalmente, en 1785, 
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tras el fallecimiento de un miembro de la gerontocracia, fue pro­
movido a pensionado. En doce años Laplace ascendió los pelda­
ños que llevaban del cargo más bajo al más alto. Pero su fortuna 
no acabó ahí. En 1784, consiguió presentar su candidatura en el 
ministerio y ser nombrado examinador de cadetes. Sería el suce­
sor de Bézout a la hora de examinar a los alumnos de las escuelas 
de artillería, aunque Monge copó el cargo de examinador para las 
escuelas navales. Monge y Laplace aseguraban así su carrera pro­
fesional, sobre todo económicamente. Y de rebote políticamente, 
pues gracias a ello entrarían en contacto con la mayoría de las 
figuras públicas en ascenso. Eran los primeros coqueteos con la 
política. 

Por esas fechas, y solo cuando había asegurado su carrera, 
Laplace -que ya rozaba la cuarentena- decidió casarse. Eligió 
para ello a una esposa veinte años más joven, algo que provocó 
murmullos en los salones parisinos. El 15 de mayo de 1788 con­
trajo matrimonio con Marie-Charlotte Courty de Romange (1769-
1862), una jovencita de buena familia, que le permitió trepar en la 
clase social y le dio rápidamente dos hijos: Charles-Émile, nacido 
un año después, que se dedicaría a la carrera militar y llegaría a 
obtener el grado de general, y Sophie-Suzanne, que fue su ojo de­
recho, pero que murió trágicamente en 1813 durante el parto de 
su primer hijo. 

A finales de la década de 1780, Laplace era ya el nuevo 
Newton. No en vano recibió el honor de ser nombrado miembro 
de la Royal Society de Londres. En esta década produjo sus resul­
tados más profundos, aquellos que le convirtieron en uno de los 
científicos más importantes e influyentes que han existido. La­
place siempre tuvo a gala ser un decidido newtoniano y haber 
demostrado que la ley de gravitación era el único principio nece­
sario para explicar la forma de los planetas, los movimientos de 
los fluidos que los recubren, sus órbitas, así como las de los saté­
lites y cometas, y, por último, la estabilidad del sistema solar. 
Puso a los astros en su sitio, y disolvió las dudas acerca del movi­
miento de Júpiter, Saturno y, en especial, la Luna. Francia y, en 
particular, París podían respirar tranquilos: la Luna no se estrella­
ría contra la Tierra, ni saldría despedida hacia el Sol. 
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Hacia 1789, Laplace creía probada la estabilidad del universo 
(aunque la elaboración de su modelo cosmológico fue posterior). 
Se sentía lo suficientemente respaldado como para escribir: 

Por virtud de su constitución y de la ley de la gravedad, el sistema 
del mundo goza de una estabilidad que solo puede ser destruida por 
causas externas, y estamos seguros de que su acción no ha sido 
detectada desde la época de las más antiguas observaciones hasta 
nuestros días. La estabilidad del sistema del mundo, que asegura su 
duración, es uno de los fenómenos más notables, en que se muestra 
en los cielos la misma intención de mantener el orden del universo 
que la naturaleza observa admirablemente sobre la tierra a fin de 
preservar los individuos y perpetuar las especies. 

El mundo parecía un lugar tranquilo y en orden. Sin embargo, 
ni el sistema astronómico era estable, ni lo era el sistema político 
y social en que los cortesanos giraban alrededor del rey como los 
planetas alrededor del Sol. En 1789 comenzó el proceso revolucio­
nario que cambiaría para siempre la historia. 
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CAPÍTULO 3 

Libertad, igualdad y matemáticas 

La Revolución francesa conf arma el trasf ando 
sobre el que maduró la ciencia moderna. Laplace ancló 

su destino a la estrella de un general emergente, Napoleón 
Bonaparte, y colaboró en el establecimiento de los pilares 

de un mundo nuevo. Con su firma en calidad de ministro del 
Interior, decretó el uso obligatorio del Sistema Métrico 

Decimal y dejó su impronta en dos instituciones 
educativas surgidas al calor de la Revolución: 
la Escuela Politécnica y la Escuela Normal. 





El año 1 789 está marcado con letras mayúsculas en la historia. 
Ese año el régimen absolutista fue derrocado por la Revolución. 
Pero una revolución no depende del azar. A finales de 1788, Fran­
cia era víctima de una sucesión de malas cosechas y de una coyun­
tura económica calamitosa que agravó la ruina del reino. Los 
crujidos eran perceptibles por doquier. Hacía falta un gran rey y 
Francia solo tenía a Luis XVI. Además, los despilfarros de la reina 
María Antonieta no ayudaban a mejorar su imagen a ojos del pue­
blo. Aunque ocultos detrás del esplendor de Versalles, los reyes 
fueron lentamente dándose cuenta del malestar que se instalaba 
en los tres estamentos sociales (nobleza, clero y tercer estado). 
Todos estaban descontentos, aunque cada uno por razones dife­
rentes. Las reformas eran más necesaiias que nunca. Y la ideolo­
gía ilustrada que predicaba la separación de poderes, la igualdad 
y la libertad parecía darles alas. El Siglo de las Luces llegaba a su 
precipitado y sangriento final. 

El rey convocó los Estados Generales para discutir la graví­
sima situación, cuya apertura solemne se produjo el 5 de mayo de 
1789. A la izquierda, el tercer estado, la burguesía. A la derecha, la 
nobleza y el clero, es decir, el trono y el altar ( de ahí deriva preci­
samente el uso de izquierda y derecha en sentido político). Tras 
vanas tentativas de conciliación, el 16 de junio los representantes 
del tercer estado, junto con algunos nobles y clérigos, se constitu-
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yeron en Asamblea Nacional. Los diputados juraron en la sala del 
juego de pelota del palacio de Versalles no disolverse hasta haber 
votado una constitución. El astrónomo Jean Sylvain Bailly (1736-
1793), amigo personal de Laplace, leyó el juramento en medio de 
un entusiasmo indescriptible; y, ante las escandalosas conmina­
ciones por parte de los monárquicos, respondió con unas célebres 
palabras: «La Nación reunida no recibe órdenes». 

Era el aldabonazo de la Revolución francesa, un periodo his­
tórico que sentó las bases del Estado moderno y dio el impulso 
definitivo a la ciencia moderna. Una oleada de cambios institucio­
nales recorreria el país. Los súbditos de la corona pasarian a ser 
ciudadanos. Francia dejaría de ser una monarquía para conver­
tirse en una república. Y la sociedad estamental dejaria de existir 
para transformarse en una sociedad burguesa. Desde el primer 
momento, los científicos tomarian parte entusiasta en el proceso 
revolucionario, a la vez que lo sufririan. No todos pertenecían a 
los mismos grupos, sino que había un amplio espectro, desde mo­
derados como Condorcet y Lavoisier hasta radicales como Carnot 
y Monge, pasando por escépticos como Lagrange y Legendre, y 
por oportunistas como Laplace. Durante la Revolución, los 
savants de la Academia dejarian de servir al reino para comenzar 
a hacerlo al Estado y la nación. Su trabajo seria nacionalizado. 

El 14 de julio de 1789 el pueblo se puso en marcha. Ante el 
miedo a una vuelta atrás, la muchedumbre parisina tomó la forta­
leza de la Bastilla y se hizo con las armas y la pólvora apilada allí 
por los soldados reales. «¿Es una rebelión?», preguntó el rey al 
enterarse de la noticia. «No, es una revolución», le respondieron. 
Al día siguiente, Bailly fue elegido primer alcalde de Paris y, pocos 
días después, entregó una escarapela tricolor -símbolo de los 
nuevos tiempos- al monarca. El 26 de agosto la Asamblea Cons­
tituyente proclamó la Declaración de los derechos del hombre y 
del ciudadano. El Antiguo Régimen había muerto. Libertad, igual­
dad y soberanía nacional son las palabras que resumen el año 1789. 

Pero el can1ino hasta la Constitución de 1791 seria largo. A la 
moda de los tres colores, presente en faldas y sombreros, se sumó 
la impaciencia popular, que cuajó en gestos sangrientos que ter­
minaron con alguna que otra cabeza pendiendo de una pica. La 
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FOTO SUPERIOR: 

El Juramento del 
Juego de pelota 
según el pintor 
Jacques-Louls 
David (1748-1825). 
En el centro, Ballly 
lee el manifiesto 
mientras levanta 
el brazo 
sol icitando 
silencio a la 
multitud. 

FOTO INFERIOR: 

Toma de la Bast/1/a, 
obra que el pintor 
Jean-Pierre Houil 
(1735-1813) realizó 
en 1789. En el 
centro se aprecia 
el arresto del 
marqués 
de Launay, 
gobernador 
de la Bastilla. 
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condena papal de los principios de la revolución no ayudó a cal­
mar los ánimos. Y en junio de 1791, Luis XVI, cautivo en París, 
aunque de oficio rey constitucional, planeó su fuga. Disfrazado de 
valet, él y la reina, vestida con sencillez para la ocasión, huyeron 
en plena noche. Pero serían capturados y arrestados en V arennes. 
Ya no era posible mantener la ficción de que el rey había alentado 
los aires de libertad que se respiraban por toda Francia. Además, 
las tensiones con Austria, Prusia, España y el resto de potencias 
hostiles a la Revolución amenazaban con estallar. 

Pese a este cielo con nubarrones que hemos pintado, Laplace 
- al igual que el resto de sus colegas académicos- vivió estos 
momentos de cerca, con una mezcla de miedo y esperanza. Los 
matemáticos de la Revolución francesa no fueron, ni mucho 
menos, ajenos a ella. Mientras el discreto Lagrange contemplaba 
los sucesos subversivos con manifiesto rechazo y antipatía, por­
que perturbaban el sosiego y la tranquilidad que tanto amaba, el 
honesto Legendre lo hacía con interés, aunque solo como espec­
tador. En cambio, Condorcet, Monge y Carnot participaban en las 
peripecias revolucionarias de forma apasionada. El caso de La­
place contrasta con los anteriores: participó en los acontecimien­
tos a favor de la Revolución, pero con más cálculo que pasión, 
como de hecho hizo toda su vida. Como buen oportunista en el 
ámbito político, se sirvió de la Revolución para medrar y perseguir 
sus fines: convertirse en el patrón de la ciencia francesa. 

En la mente de casi todos ellos estaba la urgente necesidad de 
introducir reformas en todas las esferas de la vida pública. No solo 
en la política y la sociedad, sino también en la técnica y la ciencia. 
La nueva sociedad nacida al calor de 1789 era propicia para ello. Así, 
en 1790 la Asamblea ratificó una de las propuestas más notables de 
la Academia: la adopción de un sistema decimal de pesos y medidas, 
cuyas principales unidades serían el metro, el litro, el gramo, el área 
y el estéreo. Era otro camino, más pacífico, para lograr la igualdad 
y la unificación entre las provincias de un país demasiado diverso, 
haciendo desaparecer el más antiguo de los particularismos, el de 
las medidas. Pero a la vez era un problema físico y matemático de 
gran calado, que se constituye por derecho propio como el núcleo 
del contenido científico del presente capítulo. 
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A LA SOMBRA DE LA GUILLOTINA: 
ROBESPIERRE, LAPLACE Y EL TERROR 

En un antiguo convento de jacobinos, un grupo de patriotas, en­
cabezados por el abogado Maximilien Robespierre (1758-1794), 
apodado «El Incon-uptible», tenían la costumbre de reunirse. En­
tre sus próximos estaba el médico Jean-Paul Marat (1743-1793). 
Algunos sabios como Carnot y Monge también asistieron con re­
gularidad a las sesiones del club. En la Asamblea estos diputados 
ocuparon los bancos más altos. Eran la «Montaña», sinónimo de 
las horas sangrientas que habrían de venir. En oposición a los 
radicales jacobinos, se encontraban los moderados girondinos 
(llamados así por proceder del departamento de la Gironda), con­
ducidos por el diputado y activo periodistaJacques-Pierre Brissot 
(1754-1793). En sus filas se contaba Condorcet. Finalmente, había 
un tercer grupo, la «Llanura», que se sentaba en los escaños más 
bajos y se inclinaba por unos u otros en función de sus intereses. 
Esta era la composición de la Asamblea Legislativa cuando en 
abril de 1 792 estalló la guerra, que el rey Luis alentaba secreta­
mente. En agosto los diputados apostrofaron de traidor y cobarde 
al monarca. Se produjo, entonces, la caída definitiva de la monar­
quía, formándose un gobierno provisional, en el que Monge y Car­
not acaparaiian grandes responsabilidades en la organización de 
la marina y del ejército. A propuesta de Condorcet, Monge tomó 
la cartera de Marina, y Carnot la de Guerra. 

Sinmltáneamente, el pueblo, encendido en su lucha contra los 
viles déspotas y los reyes conjurados (según rezaba La Marse­
llesa), protagonizó una insurrección popular en que las masas 
ocuparon el Ayuntanüento y formaron la Comuna de París. Y con 
la lüsteria asesina comenzaron los ajustes de cuentas. En la Aca­
demia de Ciencias el químico y jacobino Fourcroy, discípulo de 
Lavoisier, propuso depurar la institución de aquellos miembros 
conocidos por su incivismo ciudadano. El tiempo en que los ilus­
tres académicos proseguían despreocupados con sus hábitos de 
lectura e investigación estaba muy cerca de cambiar. No obstante, 
hasta que se llegó a ese punto de no retorno, Laplace desarrolló 
una actividad asombrosa, participando en múltiples comisiones y 
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CARNOT, EL GEÓMETRA JACOBINO 

Cuando prendió la chispa de la Revolu­
ción, el ingeniero Lazare Carnet (1753-
1823) se convirtió en uno de los jacobi­
nos más implicados en la organización 
del ejército. Conocido como el «Gran 
Carnet» o el «Organizador de la victoria» 
(según le apodó Robespierre), los logros 
de los ejércitos franceses se debieron, 
desde luego, a su capacidad planificado­
ra, tanto en el campo de batalla como en 
la retaguardia, donde reforzó la discipli­
na y dispuso levas obligatorias en masa. 
Napoleón dijo de él que «era el hombre 
más honrado y honesto de los que han 
figurado en la Revolución». Aunque de­
dicado a la defensa nacional, Carnet en­
contró tiempo para dedicarse a las ma­
temáticas. En 1797, durante una breve 
etapa de exilio político, escribió Reflexio­
nes sobre la metafísica del cálculo infini­
tesimal, donde mediaba en la cuestión de los fundamentos del análisis, en si 
este debía construirse sobre las flu xiones de Newton, los diferenciales de 
Leibniz o los límites de D'Alembert. Pero su gran obra es, sin duda, la Geome­
tría de posición (1803), por la que es considerado, junto a Monge, como uno 
de los creadores de la geometría pura moderna. Además, fue el primero de 
una saga familiar de la que saldrían grandes físicos (su hijo, Sadi Carnot, cé­
lebre por sus estudios en termodinámica), químicos y hasta presidentes de 
Francia. 

organismos a fin de atender las iniciativas emanadas de la Asam­
blea. Así, por ejemplo, en 1791 había entrado a formar parte de la 
Oficina de Consultas de Artes y Oficios, encargada de juzgar el 
aluvión de inventos y patentes que continuamente se recibía. Al 
final, solo una inesperada victolia permitió una imprevisible dis­
tensión. El 20 de septiembre de 1792, plimer día de la República y 
de la Convención Nacional, las tropas francesas lograron detener 
el avance de los prusianos en Valmy. Una nueva época en la histo-
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ria del mundo se abrió ese día en que los soldados franceses gri­
taron al vencer «¡ Viva la nación! ». La Revolución había sobrevivido. 

La Convención arrancó dominada por los girondinos, pero 
sufrió el acoso continuo de los jacobinos y, en especial, del dipu­
tado más votado de París, Robespierre. Con treinta y cuatro años, 
frío y elegante, desdeñoso y susceptible, de costumbres irrepro­
chables, Robespierre era uno de los vértices del triunvirato que 
formaba junto al ardiente Georges-Jacques Danton (1759-1794), 
orador sin igual, aunque menos honesto que el primero, y al terri­
ble Marat, responsable de las masacres y capaz de publicar en su 
periódico las direcciones particulares de los diputados enemigos 
a fin de que las masas pudiesen darles alcance. No obstante, las 
disensiones entre girondinos y jacobinos no fueron todavía deci­
sivas en este año I de la República. Por lo demás, en esas fechas, 
el doctor Joseph-Ignace Guillotin (1738-1814) estaba poniendo a 
punto una ingeniosa máquina con ayuda del doctor Antoine Louis 
(1723-1792). Todos los ciudadanos debían ser iguales entre sí, no 
solo en vida, sino también a la hora de morir. Se habían acabado 
los privilegios de los nobles en el momento de subir al cadalso. La 
louisette, llamada más tarde guillotine, estaba lista. Y el 21 de 
enero de 1793 Luis XVI fue guillotinado. La cuchilla cayó y el ver­
dugo mostró la cabeza al pueblo. 

La ejecución del rey sumió a Europa y a Francia en el desaso­
siego. A la guerra contra el extranjero se unió una violenta lucha 
en el interior entre girondinos y jacobinos. Los primeros, repre­
sentantes de la floreciente burguesía de propietarios y comercian­
tes, defendían un federalismo moderado de tintes económicos. 
Pero los segundos, empujados por el pueblo (los sans-culottes, 
que vestían un pantalón distintivo opuesto al calzón aristocrá­
tico), sostenían un centralismo igualitario. Ambos partidos se di­
rigían hacia el abismo. A la revolución de las pelucas empolvadas 
iba a seguir la de los gorros rojos. El 31 de mayo las campanas 
tocaron a rebato y las masas, excitadas por Marat, sirvieron de 
palanca al golpe de Estado jacobino. La guardia nacional detuvo 
a Brissot y al resto de jefes girondinos._ Y varios días después los 
jacobinos se hicieron con el poder en la Convención. Era el primer 
naufragio de la democracia moderna. A partir de ese momento, la 
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salvación pública primó sobre el parlamentarismo. Era el Terror. 
Un paréntesis sangriento, entre junio de 1793 y julio de 1794, do­
minado por dos hechos principales: la victoria de Francia contra 
la Europa coaligada en el exterior y las purgas sucesivas en el in­
terior. Este año II de la República es inseparable de la guillotina. 

El 13 de julio Marat fue apuñalado en la bañera -donde pa­
saba horas a fin de aliviar una dermatitis crónica- por una exal­
tada girondina, lo que sirvió de coartada al Comité de Salvación 
Pública, liderado por Robespierre, para desatar la persecución de 
los enemigos del pueblo. El terror estaba en el orden del día. 
Nadie escapaba a él. 

Y el 8 de agosto de 1 793 se ordenó la supresión de la Acade­
mia de Ciencias. «La República no necesita sabios», se dijo en 
pleno delirio a la búsqueda del enemigo interior. Tres meses más 
tarde se procedió a la depuración de varios miembros de la Comi­
sión de Pesos y Medidas que venía funcionando desde 1790. Entre 
ellos, Laplace, Condorcet y Lavoisier. Defenestrados por no ser 
buenos ciudadanos, bajo la acusación de «indignos de confianza 
por lo que se refiere a sus virtudes republicanas y su odio a los 
reyes». Pero, curiosamente, se mantuvo a Lagrange como presi­
dente de la misma. Aunque nunca fue partidario de la Revolución, 
Lagrange carecía de toda ambición política. 

No todos los cien.tíficos tendrían su suerte. La guillotina tiró 
por tierra las cabezas de quienes aún defendían las viejas ideas feu­
dales, pero también la de algún que otro revolucionario y científico. 
En 1794 varios de renombre conocerían la muerte: Condorcet, Bai­
lly y Lavoisier. El primero de ellos, secretario permanente de la 
Academia, perdió la vida a causa de la revolución cuyos cambios él 
mismo había sinceramente demandado. Tras un tiempo oculto, fue 
arrestado por haber militado en las filas girondinas. Y pese a haber 
sido presidente de la Asamblea, este desdichado, incansable opti­
mista respecto al progreso humano, vería la muerte en prisión el 24 
de marzo, donde se suicidó para evitar ser guillotinado. 

El segundo, el astrónomo Jean-Sylvain Bailly, había sido pre­
sidente de los Estados Generales y alcalde de París. Pero fue acu­
sado de complicidad con los monárquicos. Bailly, quien trabajaba 
en el Observatorio de París, era un buen amigo de Laplace, con 
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quien había colaborado en la evaluación de los proyectos de re­
forma de los hospitales de París. Intentando quitarse de en medio, 
abandonó París y se dirigió a Melun, donde Laplace permanecía 
retirado y (supuestamente) a salvo de los vientos de cambio. Ma­
dame Laplace intentó disuadirle y le escribió una carta en la que 
le indicaba, bajo expresiones encubiertas, que tampoco Melun era 
ya un lugar seguro. Sin embargo, haciendo caso omiso, Bailly se 
presentó en casa de los Laplace. Desafortunadamente, fue visto y 
reconocido a los pocos días por un soldado revolucionario. Arres­
tado y juzgado de vuelta en París, fue condenado a muerte. 

«Ha bastado un instante para hacer rodar su cabeza 
por el suelo, y tal vez se necesiten cien años 

para procurarnos otra cabeza semejante.» 
- LAGRANGE, SOBRE LA MUERTE DE LAVOISIER. 

Finalmente, el tercero, Lavoisier, sería guillotinado el 8 de 
mayo de 1794. Ocupaba el cargo de jefe de los recaudadores de 
impuestos del reino y concentraba gran paite del odio del pueblo 
por ser parte del sistema que favorecía las fortunas escandalosas. 
Era una cabeza visible del Antiguo Régimen ( de hecho, uno de los 
hombres más ricos) y, a pesar de sus tendencias liberales y refor­
mistas, y de haber saludado la llegada de la Revolución, sucumbió, 
como el resto de asentistas, cuando los jacobinos tomaron el poder. 

La fortuna de Laplace contrasta con la de sus antiguos colegas 
académicos y, en especial, con la de su amigo Bailly. Cuando la 
Academia fue cerrada y, a continuación, Laplace fue expulsado 
de la Comisión de Pesos y Medidas, así como relevado del cargo de 
examinador de artillería por no mostrar suficiente ardor republi­
cano a ojos de los jacobinos, se retiró a Melun, una pequeña ciudad 
cercana a París, a cincuenta kilómetros al sureste. Lo hizo con su 
mujer y sus dos hijos pequeños. Prudencia de sabio y cautela de 
político. Laplace temía las acciones de algunos radicales como 
Marat y de algunos agitadores como Brissot, a quienes no les gus­
taba nada aquel científico del Antiguo Régimen que tan bien nadaba 
en las aguas revolucionaiias. Con ambos había mantenido una 
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fuerte polémica doce años antes, en 1782. Marat, que era médico de 
formación, tema un campo de investigación preferido, el de la luz, 
sobre el que presentó varias memorias a la Academia de Ciencias. 
Pero las teorias y los experimentos ópticos de Marat horrorizaron 
a los académicos, incluyendo a La.place, por cuanto teman la osadía 
de disentir del gran Newton. Brissot, que llegaria a ser el dirigente 
más destacado de la facción girondina y, paradójicamente, ene­
migo acérrimo de Marat, sacó la disputa extramuros de la Acade­
mia, publicando un panfleto en forma de diálogo en el que parodiaba 
el quehacer diario de los académicos y su despotismo sabihondo. 
En él se presentaba a La.place como el arquetipo de newtoniano 
dogmático que, apoltronado en su sillón, desprecia con gesto arro­
gante los experimentos de muchos de sus colegas, porque desbor­
dan el plano estrictamente matemático en el que permanece 
enclaustrado. 

«Cuántos deben sus fortunas a los manejos 
de sus castas mitades.» 
- MARAT, EN Los CHARLATANES MODERNOS, EN REFERENCIA A LAVOISIER y LAPLACE. 

82 

Con la llegada de la revolución, Marat rescató la polémica del 
olvido y escribió, en 1791, una encendida diatriba contra los acadé­
micos titulada Los charlatanes modernos, donde descalificaba fu­
ribundamente a La.place y, de manera muy especial, a La.voisier. En 
concreto, Marat escribía que La.place era famoso por «su bonita 
mitad», aludiendo claramente a su esposa. El matrimonio de La.­
place con esta bella mujer veinte años más joven y perteneciente a 
la baja nobleza era visto por Marat como una artin1aña para medrar 
social y económicamente. Exactamente lo mismo se había dicho 
años antes del matrimonio de La.voisier con su joven mujer. Llovía 
sobre mojado. Es muy probable que el recuerdo de estas rencillas 
con los trapaceros Marat y Brissot empujara a La.place a tomar la 
decisión de alejarse de Paris durante el Terror. 

No obstante, ni siquiera en Melun pudo sustraerse a todas 
las obligaciones. Gozaba de demasiada reputación como cientí­
fico como para que el Comité de Salvación Pública prescindiera 
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· gratuitamente de sus servicios. Ocasionalmente se pidió su opi­
nión experta sobre el nuevo calendario que quería establecer la 
Revolución. 

El 24 de octubre de 1793 se decidió la suspensión del calen­
dario gregoriano, de origen religioso, y su sustitución por uno 
nuevo ideado por el matemático Charles-Gilbert Romme (1750-
1795) y el poeta Fabre d'Églantine (1750-1794). Mientras que el 
primero impulsó la adopción de una nueva manera de medir el 
tiempo que siguiera la base decimal ( al igual que lo harían los 
pesos y medidas), el segundo buscó secularizar el cómputo (tro­
cando el antiguo santoral por toda una panoplia de nuevas advo­
caciones, donde los nombres de los meses eran neologismos 
poéticos relacionados con la naturaleza: Vendimiario, Brumario, 
Frimario ... ). Romme planteó, contando con el consejo del astró­
nomo Lalande, que cada uno de los doce meses del año se divi­
diera en tres semanas de diez días cada una, llan1adas décadas. 
A los 360 días resultantes (12 x 30 = 360), se sumarían 5 días suple­
mentarios al final (tan1bién festivos y dedicados a la conmemora­
ción de la Revolución), hasta hacer un total de 365. Y tras cada 
franciada o período de cuatro años, se añadiría un año de 366 
días. Puestas así las cosas, el calendario republicano establecía un 
sistema de cómputo del tiempo análogo en todo al del antiguo 
calendario juliano (llamado así en honor a Julio César, quien lo 
instauró en el siglo r a.C.), y que se sabía que al cabo de los años 
mostraba un sensible desfase como consecuencia del cálculo 
inexacto del año trópico, es decir, del número de días que tarda el 
Sol en retomar a la misma posición dentro del ciclo de las estacio­
nes ( debido a la precesión de los equinoccios esta duración no 
coincide con la del año sideral, es decir, con la del tiempo que 
tarda la Tierra en completar una vuelta al Sol, que es de veinte 
minutos más). Por esta razón, el calendaiio republicano asunlió 
las mismas disposiciones que el calendario gregoriano ( denomi­
nado así por la reforma apadrinada por el papa Gregario XIII en el 
siglo XVI) que deseaba abolir: introducir un año bisiesto (esto es, 
de 366 días) cada cuatro años, pero dejando de añadir tres cada 
400 años (precisamente, los años múltiplos de 100 cuyo número 
de centenas no sea múltiplo de 4). Además, tras mucho pensarlo, 
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se convino que el día 1 del año I coincidiera con el 22 de septiem­
bre de 1792, cuando fue proclamada la República y, como no dejó 
de señalar Lalande, día del equinoccio de otoño. 

Laplace no estaba muy convencido de la utilidad del nuevo 
calendario, por cuanto la duración que proponía para el año no 
encajaba mejor con los datos astronómicos que la del calendario 
gregoriano. Iba, de hecho, a remolque de este, por lo que conside­
raba la refonna como gratuita. Pero hizo bien en guardarse su opi­
nión para sí. Buena prueba de ello es que logró mantener la cabeza 
sobre los hombros. Sin embargo, la vida del nuevo calendario seria 
muy corta, y el 1 de enero de 1806 seria abolido. Laplace haria valer 
su influencia ante el nuevo dirigente de Francia (Napoleón Bona­
parte) para que acabase con él, ordenando la restauración del ca­
lendario gregoriano. Tras poco más de trece años de existencia real, 
el nuevo calendario se extinguió la medianoche de un 10 de Nivoso 
del año XIV. 

Mientras tanto, Carnot, elegido miembro del Comité de Sal­
vación Pública, continuó ocupándose con éxito de las operacio­
nes militares, hábil desempeño que le permitió esquivar la 
guillotina, pues Robespierre lo había amenazado con que perdería 
la cabeza al primer desastre militar. Ni siquiera los propios jaco­
binos escapaban al terror desatado por Robespierre: Danton, para 
sorpresa de todos, fue ejecutado sumariamente. Cada vez más 
irritado, Carnot fue el auténtico animador de la conspiración que 
culminó, el 9 de Termidor del año 11 (28 de julio de 1794), con 
Robespierre víctima de su amada guillotina. La Convención ter­
midoriana marcó el punto en que la burguesía moderada volvió a 
hacerse con el control frente a los excesos de las masas. Al año 
siguiente, 1795, se aprobaría una nueva Constitución, se disolve­
ría la Convención y se establecería el Directorio, un comité de 
cinco miembros al que se confiaba ejercer el poder ejecutivo ( el 
omnipresente Carnot se reservaría, sin discusión, el Ministerio de 
la Guerra). Hay que poner mucho en el haber de los termidoria­
nos, a pesar de lo poco que estuvieron en el poder ( apenas un año 
de transición). Pusieron en pie una nueva organización de la en­
señanza. Si los jacobinos se centraron en la educación primaria 
( decretando una enseñanza gratuita, laica y obligatoria para todos 
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los niños), los termidorianos lo hicieron en la secundaria. La con­
fiaron a una serie de escuelas centrales de gran calidad que, junto 
a las humanidades, dejaban sitio a las ciencias, y que vinieron a 
sustituir la enseñanza tradicional de los colegios religiosos, supri­
midos por la Revolución. Por último, se puso la educación supe­
rior en manos de grandes escuelas: las escuelas normales y las 
escuelas especiales, como la Escuela Normal Superior y la Es­
cuela Politécnica. Y donde los profesores serían, como veremos, 
sabios consagrados: Laplace, junto a Lagrange y Monge, enseña­
ría matemáticas. 

LA REPÚBLICA DE LAS CIENCIAS 

Solo en este momento, cuando el reinado del Terror tocó a su fin 
y soplaban nuevos vientos, Laplace se arriesgó a regresar a París 
acompañado de su familia. El año largo de retiro en Melun no 
había sido en balde. Volvía a la capital, según se cuenta con fre­
cuencia, con un extenso manuscrito bajo el brazo, del que nos 
ocuparemos en el próximo capítulo. 

En este año de 1795, pasadas las horas más sangrientas de la 
Revolución, el Directorio creó un organismo científico que jugase 
un papel semejante al de la extinta Academia Real. Se trataba del 
Instituto Nacional de Ciencias y Artes. La Constitución del año III 
estipulaba la creación de un centro encargado de reunir a los 
hombres más sobresalientes en las ciencias y en las artes, de tal 
modo que constituyera una suerte de Enciclopedia viviente. El 
Instituto se concibió dividido en tres clases ( ciencias físicas y 
matemáticas, ciencias morales y políticas, literatura y bellas 
artes), cada una de las cuales constaba de varias secciones. Los 
matemáticos se repartían entre la sección de geometría ( a la que 
pertenecían Lagrange, Laplace y Legendre), la de mecánica (con 
Monge) y, en tercer lugar, la de astronomía (Lalande). Laplace 
fue uno de los matemáticos fundadores y se dedicó a organizar el 
Instituto desde sus inicios. De hecho, su primer discurso político 
lo pronunciaría en 1796 con ocasión de la presentación del pri-
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mer informe anual de la actividad del Instituto ante la Asamblea. 
Allí concluiría con retórica: «La existencia del hombre está ínti­
mamente ligada al progreso de las ciencias y de las artes, sin las 
cuales no hay libertad ni felicidad duraderas». Poco después re­
cibiría el encargo de dirigir la Oficina de Longitudes en su co­
nexión con el Observatorio de París, donde había ejercido el ma­
logrado Bailly. La intención de mejorar la seguridad de la navega­
ción y de competir con el predominio naval inglés llevó a reabrir 
el antiguo Observatorio como apéndice de la Oficina de Longitu­
des. La vida pública de Laplace no había hecho más que comen­
zar a relanzarse. 

LAPLACE TECNÓCRATA: 
EL SISTEMA MÉTRICO DECIMAL 

La infinita variedad de medidas disponibles en Francia escapaba 
a toda comprensión. Las medidas variaban no solo dentro de cada 
provincia, sino también dentro de cada comarca y casi de cada villa 
o ciudad. Se estima que había unos 800 nombres de medidas y, 
teniendo en cuenta su diferente cuantía en diferentes ciudades, 
unas 250 000 medidas en realidad distintas. Cada noble podía fijar 
en su feudo un sistema de unidades completamente diferente al 
de su vecino. El deseo de una medida general para todo el territo­
rio era una vieja aspiración. En abril de 1789, el astrónomo La­
lande propuso sin éxito al rey que tomara las medidas empleadas 
en París como patrón para todo el reino. Era un primer intento de 
estandarización, aunque no de racionalización. En Francia no 
hubo «estandarización racional» hasta la Revolución. 

La estandarización de las medidas sería una de las primeras 
exigencias en los Estados Generales. El 17 de junio de 1789, mien­
tras los . representantes del Tercer Estado se autoproclamaban 
Asamblea Nacional en la sala del juego de pelota del palacio de 
Versalles, los miembros de la Academia de Ciencias, entre ellos 
Laplace, se reunían en una sala del palacio del Louvre para formar 
una comisión que hiciera una propuesta en firme sobre la unifor-
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UN LÍO MONUMENTAL 

En La medida del mundo, el matemático y escritor francés Denis Guedj (1940-
2010) narra el arduo trabajo que supuso la medición de la cuarta parte de un 
meridiano terrestre con el fin de establecer el patrón de la unidad de medida 
conocida como «metro». El siguiente extracto da una idea de la confusión que 
reinaba antes de la instauración del Sistema Métrico Decimal y la necesidad 
de imp lantar unidades de referencia un iversales: 

Se reprochaba a la multiplicidad de dialectos lo que se reprochó a la diversidad de 

pesos y medidas: la leña se vendía por cuerdas, el carbón vegeta l por cestos, el 
carbón de piedra por sacos, el ocre por toneles y la madera de construcción por 
marcas o vigas. Se vendía la fruta para sidra por barricas; la sa l por moyos, sextarios, 

minas, minotes y celemines; y el mineral a espuertas. Se despachaba el v ino por 

pintas, chatos, jarras, galones y botel las. El aguardiente, por cuart illos. Los paños, 

cortinas y tapices se compraban por alnas o varas cuadradas; los bosques y prados 
se contaban en pértigas cuadradas; la v iña en cuarteras. Los boticarios pesaban en 

libras, onzas, dracmas y escrúpulos: la libra va lía doce onzas, la onza ocho dracmas, 

la dracma tres escrúpulos y el escrúpulo veinte g ranos. Las longitudes se medían 
en toesas y pies del Perú, que equivalían a una pulgada, una loña y ocho puntos del 

p ie de rey. iQué confusión! La Revo lución decidió uniformarlo todo. Instauró un 
sistema de medidas único y uniforme, asegurando la facilidad en los intercambios 

y la integridad en las operaciones comerciales. 

mización de los pesos y las medidas. La revolución métrica aca­
baba de arrancar, aunque tardaría más de una década en llegar a 
buen puerto. El proyecto conoció desde su origen un desarrollo 
zigzagueante, sujeto a los vaivenes políticos. Muchos fueron los 
avatares de la revolución científica de la época. 

El 27 de marzo de 1790, el obispo Talleyrand elevó a la Asam­
blea Nacional una propuesta al respecto emitida por Condorcet 
en nombre de la Academia: Memoria sobre la necesidad y los 
medios de volver uniformes, en todo el reino, todas las medidas 
de longitud y de peso. Talleyrand, asesorado por los científicos 
de la Academia, propuso a la Asan1blea la adopción de un revo­
lucionario sistema de pesos y medidas basado en tres únicos 
principios: 
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- El sistema seguiría la escala decimal. 

- Todas las unidades se definirían a partir de la unidad de 
longitud. 

- La unidad fundamental de longitud se extraería de la natu­
raleza. 

En mayo, el día 8, la Asamblea se pronunció a favor del nuevo 
sistema decimal de medidas, recomendando que fuera estable, 
uniforme y simple, y que se adoptara en común con Inglaterra y 
Estados Unidos. Los académicos buscaban un sistema de medidas 
que, por emplear palabras de Condorcet, «fuera válido para todos 
los pueblos y para todos los tiempos». 

La Academia, la primera institución depositaria del encargo 
de elaborar el Sistema Métrico Decimal, apostó desde el princi­
pio por un sistema de unidades en que los diferentes múltiplos 
y submúltiplos de las unidades fundamentales se determinasen 
multiplicando y dividiendo por potencias de 10 (siguiendo el pri­
mer principio). Por ejemplo, la unidad fundamental de longitud, 
que -según propuso el propio Laplace ( aunque otros autores ad­
judican la ocurrencia a Auguste-Savinien Leblond, un profesor de 
Matemáticas)- recibió el nombre de metro (medida, en griego), 
tendría los siguientes múltiplos: el decámetro (10 metros), el hec­
tómetro (100 metros) y el kilómetro (1000 metros). Así como los 
siguientes submúltiplos: el decímetro (la décima parte del metro, 
es decir, 0,1 metros), el centímetro (la centésima parte, 0,01 me­
tros) y el milímetro (0,001 metros). El Sistema Métrico sería, al 
igual que la aritmética, decimal. 

El segundo principio establecía que las unidades formarían 
un sistema ligado. Todas las unidades de superficie, volumen, ca­
pacidad y peso se definirían a partir de la unidad fundamental de 
longitud. Se derivarían del metro. La unidad de superficie recibiría 
el nombre de área, y equivaldría al cuadrado de diez metros de 
lado. La unidad de volumen se llamaría estéreo, equivalente a la 
cantidad de madera entrante en un cubo de un metro de arista. El 
litro sería la unidad básica de capacidad, igual a la cantidad de 
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agua que cabe en un cubo cuya arista mide la décima parte del 
metro. (Como era tradición, se hablaba de volumen para los sóli­
dos y de capacidad para los líquidos.) Por último, el gramo sería 
la unidad básica de peso, siendo equivalente al de la cantidad de 
agua pura a temperatura de deshielo que puede verterse en un 
cubo cuya arista mide la centésima parte del metro. 

Y el metro, la unidad fundamental de longitud, tendría un valor 
neutral que se tomaría, de acuerdo al tercer principio, de la natura­
leza. Al principio se definió el metro como la longitud de un pén­
dulo segundero, es decir, de un péndulo que bate segundos (aquel 
cuyo período es exactamente de dos segundos). El problema era 
que la longitud de este péndulo depende de dónde se realice el ex­
perimento, ya que la fuerza de gravedad terrestre que mueve el pén­
dulo varía con la latitud. Tomar la correspondiente al paralelo 45, 
que justamente pasa por Francia, no parecía una decisión muy uni­
versal para un sistema que se reclamaba internacional. En Estados 
Unidos, se prefería el paralelo 38. Y en Inglaterra, por descontado, 
el paralelo que cruzaba Londres. La consecuencia fue que tanto 
Inglaterra como Estados Unidos se descolgaron de la iniciativa. 

Tras meses de discusión en la recién formada Comisión de 
Pesos y Medidas, que presidía Lagrange, y de la que era miembro 
Laplace, se encontró una solución. El astrónomo y marino Jean­
Charles Borda propuso emplear la longitud de la diezmillonésima 
parte de la distancia entre el polo boreal y el ecuador. En otras 
palabras, la diezmillonésima parte del cuadrante de un meridiano 
terrestre. Tomar otra potencia de diez haría el metro demasiado 
grande o demasiado pequeño. La diezmillonésima parte daría una 
unidad de longitud semejante a la vara, la toesa del Norte y la 
toesa del Perú o toesa de la Academia (llamadas así porque se 
emplearon en las mediciones geodésicas de la figura de la Tierra 
en los años treinta del siglo XVIII), medidas tradicionales de curso 
aún legal. Era necesario, por tanto, como decretó la Asamblea en 
1791, medir un arco de meridiano, por ejemplo entre Dunkerque 
y Barcelona, para poder determinar la longitud del metro con sufi­
ciente precisión. Esta medida parecía a priori mucho más natural 
y universal, porque se refería a las propias dimensiones del globo 
que habitamos. No cabe duda de que el péndulo era más fácil de 
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LA REVOLUCIÓN DE LOS «SAVANTS» 

La creación del Sistema Métrico De­
cimal, sancionada por la Asamb lea 
Nacional, fue, junto a los derechos 
del hombre y del ciudadano, uno de 
los legados inmortales de la Gran 
Revoluc ión. Los sabios franceses, 
como sus homólogos políticos, bus­
caban la igualdad, en este caso me­
diante «unas medidas iguales para 
todos». Si todos los ciudadanos de­
bían ser iguales ante la ley y tener los 
m ismos derechos, tamb ién debían 
d isponer de las mismas medidas, de­
ducidas de un fenómeno natural uni­
versal, y que no fuesen arbitrarias en 
el sentido de basarse en la pulgada 

Una de las 16 placas de «metro» que colocó 
la Ofici na de Pesos y Medidas en la ciudad 
de París. 

o el pie del señor principal. Unificación del espacio, del tiempo y de la lengua, 
pero también de los pesos y medidas. Igualdad política e igualdad metrológi­
ca. Quizás esta conexión entre ciencia y política no sea fortuita. 

Una revolución también científica 
La Revolución movi lizó a los científicos, y viceversa . De hecho, sorprende 
descubrir el gran número de científicos que estuvieron involucrados en los 
acontecim ientos po lít icos: Bai ll y, el astrónomo, los geómetras Condorcet, 
Monge y Laplace, el ingeniero Carnot, los químicos Lavoisier, Fourcroy y Ber­
thol let... Algunos fi lósofos e historiadores de la c ienc ia proponen que la re la­
ción no es casual y que los polít icos aplicaron a su campo los m ismos princi­
pios que los científicos venían aplicando al suyo. De igua l manera que un gas 
se concebía ahora como un conjunto de molécu las, o un ser vivo como un 
conjunto de células, el Estado pasó a verse como un conjunto de ciudadanos: 
la nación. Lejos quedaba ya el tiempo en que Luis XIV, el Rey Sol, exclamaba: 
«i EI Estado soy yo!». 

medir; pero este dependía de la gravedad, la latitud y, adicional­
mente, del tiempo. 

Provisionalmente, mientras daba comienzo la aventura de 
medir el arco de meridiano entre Dunkerque y Barcelona, Borda, 
Lagrange y Laplace calcularon un valor aproximado del metro em-
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pleando los datos tomados en 17 40 por Cassini III. El tercer miem­
bro de esta fecunda dinastía de astrónomos midió el meridiano de 
Dunkerque a Perpiñán para mediar en la polémica sobre la forma 
de la Tierra ( era un cartesiano convencido) y, de paso, rediseñar 
el mapa de Francia. Borda, Lagrange y Laplace consideraron la 
longitud de un grado del meridiano medido por Cassini III. Multi­
plicaron ese número por 90 (los 90 grados del cuadrante o cuarto 
de meridiano), y luego, lo dividieron por 10 millones. Este valor se 
implantó en 1793 y, tomándolo como patrón, se fabricaron proto­
tipos en latón de una barra de un metro y de una pesa de un kilo­
gramo que enseguida se despacharon con destino a Estados 
Unidos (Inglaterra ya era abiertamente hostil a la reforma). 

En 1 795, pasado el paréntesis del Terror ( donde, al igual que 
otros, Laplace fue purgado de la Comisión), se fundaría, a instan­
cias de Carnot, la Oficina de Longitudes, que relanzó los trabajos 
para la reforma de los pesos y las medidas, contando con Lagrange 
y Laplace como fundadores. La Ley del 18 de Germinal del año 
III (7 de abril de 1795) instituiría definitivamente el Sistema Mé­
trico Decimal: se daba la primera definición aproximada del metro 
como fracción del meridiano te1Testre y se fijaba la nomenclatura 
de las unidades. Además, se decretaba la unidad monetaria: el 
franco sería la moneda oficial, equivaliendo a cinco gramos de 
plata. Paralelamente, se planteó la decimalización en la medida 
de la temperatura, naciendo la escala Celsius, donde un grado es 
la centésima parte de la temperatura necesaria para pasar hielo 
fundido a agua hirviendo. Pero, pese a todos estos avances, los co­
misionados para medir el arco de meridiano y definir exactamente 
el metro todavía no estaban de regreso ... 

Los astrónomos designados para la medición del meridiano 
entre Dunkerque y Barcelona fueron Pierre Méchain (1744-1804) y 
Jean-Baptiste Joseph Delambre (1749-1822). Ambos eran viejos 
conocidos de Laplace. Méchain era un apasionado cazador de co­
metas, que había colaborado con Laplace en la determinación de 
la órbita de alguno de estos escurridizos cuerpos celestes. Delam­
bre, por su parte, había realizado a instancias de Laplace algunas 
de las cuidadas observaciones planetarias que demandaban los cál­
culos en mecánica celeste. Los dos intrépidos astrónomos se pu-
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sieron en camino, en medio del caos revolucionario, en 1792. 
Delambre fue rumbo norte, hacia Dunkerque; y Méchain, rumbo 
sur, hacia Barcelona No obstante, sus ánimos eran muy distintos. 
El enérgico y entusiasta Delambre contrastaba con el meticuloso 
y atormentado Méchain. Pero compartían un objetivo: medir el 
metro, es decir, la diezmillonésin1a parte de la distancia entre el 
Polo Norte y el ecuador. 

Medir un arco de meridiano no es tarea fácil. No consiste en 
extender una cinta métrica desde Dunkerque hasta Barcelona, 
porque la Tierra no es plana, tiene relieve. Se trata, por tanto, de 
medir la distancia entre esos dos puntos sin que dependa de la 
configuración del terreno, de las montañas o los valles, hacién­
dolo sobre una imaginaria línea recta ( el meridiano). Para ello hay 
que recurrir al método de triangulación: gracias al uso de la trigo­
nometría, se pueden medir distancias inaccesibles, tomando como 
referencia las torres de iglesias o castillos fáciles de localizar. Los 
triángulos que Delambre y Méchain trazaron fueron poco a poco 
extendiéndose entre Dunkerque y Barcelona. Conforme triangu­
laban, realizaban mediciones gracias a ese instrumento de preci­
sión que era el círculo repetidor de Borda. Este aparato permitía 
al geodesta efectuar múltiples lecturas del mismo ángulo hasta 
eliminar prácticamente cualquier elTor de medida. Si en lugar de 
medir una única vez un ángulo, lo medimos, pongamos por caso, 
diez veces y sumamos los diez resultados, tomar como valor real 
del ángulo la suma total dividida entre diez minimiza notable­
mente el error. 

La Academia estimaba que las mediciones no durarían más de 
dos años, pero se prolongaron más de seis, por culpa de proble­
mas políticos y personales. Francia entró en guerra con media 
Europa, incluyendo los Países Bajos y España. Delambre terminó 
sus medidas y triangulaciones el 27 de agosto de 1797 en Rodez. 
Pero, pese a lo pactado, Méchain no apareció por ninguna parte. 
A la guerra en suelo hispano se unió un accidente del que Méchain 
salió muy mallierido, con un brazo inútil. Para cuando logró llegar 
a Rodez desde Barcelona, había cometido un grave error. Como 
consecuencia del conflicto bélico, Méchain tuvo que abandonar el 
castillo barcelonés de Montju'ic, dado que era zona militar, y, para 
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EL MÉTODO DE TRIANGULACIÓN 

Imag inemos, simplif icando, que Delambre y Méchain quisiesen med ir la d is­
tancia entre una ciudad A y otra ciudad B, pero entre ellas existiese un obs­
táculo inamovible: la montaña C, como se observa en la f igura. 

Empleando el teodolito o, para mayor precis ión, el círcu lo de reflex ión de 
Borda, pueden medirse los ángulos bajo los q ue se contem pla la cima de la 
montaña desde ambas ciudades, es dec ir, los áng ulos del triángulo en A y en 
B. Además, gracias a un barómetro, que mide las d iferencias de pres ión con 
la alt itud, se puede medir la altura de la montaña, es decir, la distancia entre 
H y C. Aplicando la trigonometría a esos datos, sabemos que la tangente del 
ángulo A es igual a la al t ura HC dividida entre la d istancia AH. Análogamente, 
la tangente del ángulo B es igual a la altura HC dividida entre la distancia HB. 
Despejando en ambas expres iones AH y HB, y luego sumando se obtiene: 

AB =AH+ HB = HC/ tan(A) + HC/ tan(B), 

esto es, el valor de la distancia real entre las c iudades A y B. 

completar sus mediciones, tomó la Fontana de Oro de Barcelona 
como referencia, pensando que ambos puntos, al ser tan cercanos, 
tendrían latitudes prácticamente similares. Pero no era así. Exis­
tía una diferencia de tres segundos. Y el en-or se contagió al resto 
de los cálculos. Y, en consecuencia, a la determinación de la lon­
gitud del metro. 

En 1 798, tras casi siete años de peripecias, Delambre y Mé­
ch~ remitieron los datos recogidos al Instituto de Francia. Sus 
resultados sirvieron para decidir la medida exacta del metro. Pero 
Méchain se había confundido y, preso del pánico, silenció la equi­
vocación. Acosado por la mala conciencia, Méchain reemprende­
ría las mediciones y moriría intentando revisarlas cerca de 
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Castellón de la Plana. En la medición del metro había un error, 
aunque es de un orden muy pequeño: el metro que calcularon De­
lambre y Méchain se quedó unos 0,2 milímetros más corto de lo 
que debería ser, una diferencia irrelevante para la vida cotidiana, 
pero fundamental en la ciencia de alta precisión. 

Finalmente, en la primera mitad de 1799, a iniciativa de La­
place, se convocó un encuentro, el primer congreso científico in­
ternacional de la historia, para presentar el nuevo sistema de 
pesos y medidas, reemplazando los valores provisionales y deján­
dolo tal y como hoy lo conocemos. En nombre del Directorio, Ta­
lleyrand invitó a todas las potencias aliadas o neutrales. Nueve 
países participaron ( entre ellos, los Países Bajos y España). Envia­
ron a París a algunos de sus sabios para conocer la labor realizada 
y transmitir los resultados a sus países de origen. En la comisión 
francesa figuraron las tres L (Lagrange, Laplace y Legendre), así 
como, lógicamente, Delambre y Méchain. Las grandes estrellas, 
los prototipos en platino del metro y del kilogramo patrón, fueron 
presentados en sociedad al resto de naciones. Estos patrones aún 
se conservan hoy en el Observatorio de París (aunque actualmente 
se define el metro no como la diezmillonésima parte del cuadrante 
de un meridiano terrestre, sino como la longitud del trayecto re­
corrido por la luz en el vacío durante 1/299 792 458 de segundo). 
«Las conquistas van y vienen», proclamó Napoleón Bonaparte, 
«pero este logro permanecerá para siempre». 

No obstante, introducir las nuevas medidas era más fácil de 
decir que de hacer. El pueblo llano no entendía el significado de 
esos extraños prefijos griegos y latinos, como son kilo- y centi-, 
y se hizo necesario enseñar compulsivamente su uso mediante 
campañas publicitarias y en las escuelas. En septiembre de 1801 
se prohibiría el uso de otras medidas distintas a las decimales. 
Pero esta ley sería papel mojado. Y al cabo del tiempo, en 1812, se 
terminaría regresando a las medidas tradicionales. Como satiri­
zaba un poeta de la época: «Para beber un cuartillo de vino o cor­
tar un alna de paño, o ajustar las agujas en el reloj familiar, ¿era 
realmente necesario medir el arco del meridiano?». Sin embargo, 
aunque el Sistema Métrico Decimal no se impuso en Francia, las 
conquistas de Napoleón tuvieron el efecto de extenderlo allende 
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sus fronteras. Una gesta que triunfó a pesar de su fracaso. Y así, 
aunque en Francia no se usaba, los Países Bajos y Bélgica lo adop­
taron en 1820 y 1830, respectivamente. Francia, la nación que lo 
patentó, no lo haría teóricamente hasta 1840. Ese año, Charles­
Émile, el hijo de Laplace, presidiría la comisión que presentaría la 
petición de recuperar el Sistema Métrico Decimal, en consonancia 
con los deseos de su padre (extinto hacía años). El tiempo le dio 
la razón. Por su parte, Alemania lo haría en 1868, coincidiendo con 
su unificación. Estados Unidos e Inglaterra lo legalizarían, pero 
sin desplazar sus antiguas medidas. En suma, la estandarización 
de las medidas y las pesas fue, desde luego, uno de los frutos que 
trajo la Revolución. Ofrecido por los científicos franceses a todos 
los hombres y a todos los tiempos, urbi et orbe, el metro simbo­
liza a los más de dos siglos de su creación los logros de aquella 
«globalización». 

LAPLACE PEDAGOGO: LA ESCUELA POLITÉCNICA 
Y LA ESCUELA NORMAL 

Entre 1789 y 1794 todo el entramado educativo del Antiguo Régimen 
se había venido abajo. Los colegios clericales estaban desiertos y 
vacíos. En 1795 se dieron los primeros pasos para institucionalizar 
la educación pública. De este modo se legisló la creación de una 
Escuela Central de Obras Públicas o Escuela Politécnica. Una gran 
escuela preparatoria de todos los estudios de ingeniería, de la que 
saldrían los futuros ingenieros civiles y militares. Y, de paso, el 
grupo de científicos más sólido que ha tenido Francia en toda su 
historia. Monge fue el padre putativo de la escuela. Pero terminó 
eclipsado por Laplace, quien no impartió docencia en ella pero per­
geñó los temarios, dado que fue nombrado examinador de final de 
carrera. Aunque concebida con una finalidad práctica inmediata, 
ligada a las campañas militares y a la incipiente industrialización 
del país, la escuela combinó, junto a la enseñanza de ciencias apli­
cadas (metalurgia, fortificación, construcción de puentes y carto­
grafía), la enseñanza de física y matemáticas. 
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CIUDADANO MONGE 

Gaspard Monge (1746-1818), gran crea­
dor de la geometría descriptiva y presti­
g ioso profesor de Matemáticas, era hijo 
de un simp le tendero. Desde muy peque­
ño d io muestras de ser un «niño de oro» 
por las buenas notas que obtenía en la 
escuela. De hecho, Monge conservó con 
orgullo algunos de esos boletines duran­
te toda su vida . Acabó ingresando en la 
Real Escuela de Ingenieros Militares de 
Méziéres, pero sus orígenes humi ldes le 
impid ieron progresar. 

El problema de la desenfilada 
Su ta lento para la geometría, sin embar­
go, le brindó la pos ibi lidad de darse a 
conocer entre sus superiores al resolver geométricamente el problema de la 
desenfilada, es decir, el problema de decidir cómo construir una fortificación 
para proteger del fuego enemigo una det erminada posición, por lo que le 
concedieron un puesto de profesor. Aplaudió vivamente la llegada de la Re­
volución, dado que de esta forma caía el régimen que lo había discriminado 
por su origen social. Pero, además, fue un hombre comprometido hasta la 
médu la con ell a, y un bonapart ista convencido: «Est e furioso republicano, 
capaz de declarar desde la tribuna de los jacobinos al esta llar la guerra que 
ofrecía sus dos hijas a los dos primeros so ldados que fuesen heridos, era el 
más du lce de los hombres y tenía una verdadera adorac ión para conmigo», 
escrib ió de él Napoleón. La ca ída de l emperador, de quien recib ió mil y un 
honores, marcó el prop io dec live de Monge. Moriría desengañado en 1818, al 
ver cómo se desmoronaba el mundo por el que había luchado. En diciembre 
de 1989, coincidiendo con el bicentenario de la Revolución, sus restos morta­
les fueron trasladados al Panteón de Hombres Ilustres de París. 

En el núsmo período se creó la Escuela Normal, destinada a la 
formación de nuevos cuadros de maestros y profesores con el fin 
último de lograr una enseñanza lo más uniforme posible en toda 
Francia. Su apertura tuvo lugar el primero de Pluvioso del año III 
(20 de enero de 1795) en el anfiteatro del Museo de Historia Na­
tural. Hasta el 30 de Florea! del núsmo año, Laplace, Lagrange y 

LIBERTAD, IGUALDAD Y MATEMÁTICAS 



Monge, entre otros, enseñaron a los maestros de los futuros ciuda­
danos de la nación. Estos tres grandes sabios explicaron matemá­
ticas elementales a sus poco instruidos pero entusiastas 1200 
alumnos. Sin embargo, el proyecto de la Escuela Normal solo so­
brevivió durante cuatro meses, aunque su influencia se dejó sentir 
en la renovación educativa corolario de los nuevos tiempos. 

Laplace dictó la lección inaugural en un anfiteatro abarro­
tado. Su propósito era presentar los descubrimientos matemáti­
cos más importantes. De las diez lecciones, la aritmética, el 
álgebra, la resolución de ecuaciones, la geometría elemental y la 
geometría analítica completaban las ocho prin1eras. La novena era 
para exponer el nuevo Sistema Métrico Decin1al; y la décima, para 
la teoría de la probabilidad. En esta última lección Laplace presen­
taba, por fin, uno de los tópicos que había compartido con el ma­
logrado Condorcet: la aplicación de las matemáticas a la sociedad 
mediante el cálculo de probabilidades. Casi dos décadas después, 
Laplace aprovecharía el borrador de su lección sobre probabili­
dad, publicándolo como introducción a uno de sus trabajos más 
in1portantes: la Teoria analítica de las probabilidades. Sería el 
llamado Ensayo jüosófico sobre las probabilidades, del que nos 
ocuparemos en el capítulo 5. 

TRAS LOS PASOS DE NAPOLEÓN: 
EL IMPERIO DE LAS CIENCIAS 

En 1785 Laplace examinó a un joven aspirante a teniente de artille­
ría, un cadete de nombre Napoleón Bonapaite (1769-1821). No pa­
rece que pasar por las manos pedagógicas de Laplace fuese una 
experiencia fácil de olvidar y, bastantes años después, el joven ge­
neral aún recordaba aquel encuentro en que hubo de exanlinarse 
ante el prestigioso matemático de los conocimientos adquiridos es­
tudiando los manuales de Euler, Bézout y Monge. Laplace examinó 
rutinariamente a ese jovencísimo cadete de dieciséis años; quedó 
en el puesto cuarenta y dos de los cincuenta y ocho candidatos, un 
resultado suficiente pai·a que pudiera iniciar una carrera promete­
dora Este encuentro tendría un peso decisivo el resto de su vida 
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El Directorio pronto se vio aquejado por una serie de proble­
mas económicos y sociales de difícil solución. En 1796 puso al 
frente del ejército francés en Italia a un joven general: Napoleón 
Bonaparte. Nada más llegar, el mequetrefe corso demostró ser un 
genio. Tras una impresionante campaña cuajada de victorias más 
allá de los Alpes, se apoderó del norte de Italia, arrebatándoselo a 
los austriacos. Sus hazañas le valieron el nombre de geómetra de 
las batallas y mecánico de la victoria. Lo acompañaban dos ilus­
tres científicos. Por un lado, el geómetra Monge. El joven general 
aún recordaba un encuentro previo que Monge había olvidado: 

Un joven oficial de artillería visitó el Ministerio de Marina en 1792; 
puede que no recordéis la ocasión, puesto que había más personas, 
pero aquel desconocido oficial siempre recordará vuestra amabilidad. 

Estas palabras marcaron el inicio de la gran amistad que 
siempre les uniría. Por otro lado, el químico Berthollet. Ambos se 
dedicaban a seleccionar las obras de arte y ciencia que los trata­
dos de paz concedían a los ejércitos franceses victoriosos. 

La popularidad de Bonaparte no dejó de aumentar, dentro y 
fuera del ejército, gracias al botín que llenaba las arcas francesas 
y a los importantes tesoros que continuamente enviaba en direc­
ción a París. Tanto fue así que el 25 de diciembre de 1797 el Ins­
tituto de Francia lo admitió como miembro de la clase de ciencias 
matemáticas, en sustitución del jacobino Carnot (que había par­
tido al exilio). Desde luego fue elegido por motivos políticos: La­
place había propuesto su candidatura con la esperanza de aliar el 
Instituto con la estrella política en auge. Sería con ocasión de la 
ceremonia de acceso al cargo cuando Laplace y Napoleón volvie­
ron a verse las caras. Berthollet y Laplace lo acompañaron en la 
recepción. No fue casual que fuesen sus padrinos. Con el primero 
le unía una grata amistad. Con el segundo, una profunda admira­
ción. Durante la cena de gala, Napoleón habló con los comensa­
les científicos de un problema de geometría sobre el que había 
estado pensando en Italia. Laplace exclamó con adulación: «¡Ge­
neral, esperábamos cualquier cosa de vos menos una lección de 
matemáticas!». 
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En parte por alejarlo de la patria, en parte por asestar una he­
rida mortal al gran enemigo del momento (Inglaterra), Talleyrand 
propuso al Directorio realizar un desembarco militar en Egipto. 
Esquivando la escuadra de Nelson, Napoleón logró llegar a Ale­
jandría el 1 de julio de 1798 y vencer al sultán de Egipto en la 
batalla de las Pirámides. Pero el almirante inglés destruiría la flota 
francesa y dejaría a Napoleón abandonado a su suerte. Prisionero 
de su conquista. De resultas pondria en marcha un macroexpe­
rimento social consistente en impulsar el progreso técnico y 
científico de Egipto. Napoleón dio libre curso a su actividad de 
administrador, poniendo a trabajar al ejército de 200 sabios que 
lo acompañaban. Entre ellos, Monge, Berthollet y Fourier. Laplace 
había rechazado el ofrecimiento de recluta para la expedición por 
considerarse -a sus casi cincuenta años- demasiado viejo. Los 
ingenieros, la mayor parte de ellos salientes de la Escuela Politéc­
nica, reorganizaron los servicios públicos, construyeron carrete­
ras y canales, estudiaron los jeroglíficos egipcios ... 

Pero la salvación de la República pasaba por una dictadura 
militar que reimpusiera el orden en un momento en que el peligro 
contrarrevolucionario acechaba. Napoleón tenía que regresar 
cuanto antes. Pese a su pasado jacobino, su innegable prestigio lo 
designaba como el elegido. Ayudado por Talleyrand y Fouché ( «el 
vicio apoyado en el crimen», diría Chateaubriand al verlos pa­
seando juntos en referencia a la aguda cojera del primero), Napo­
león escapó de Egipto de vuelta a Francia. Era el 18 de Brumario 
del año VIII (9 de noviembre de 1799). Bonaparte fue recibido a 
gritos de « ¡Abajo el dictador!» y zarandeado a su entrada a la Asam­
blea Pero contaba con una fuerza irresistible: sus soldados. Obligó 
al nombramiento de tres cónsules provisionales, siendo él uno de 
ellos. Había nacido el Consulado. En 1802, Napoleón se proclama­
ría cónsul único y vitalicio; y, finalmente, en 1804, se haría coronar 
emperador por el papa Pío VII. Era el Imperio, una etapa que vería 
su denominación certificada con la expansión territorial de los 
ejércitos napoleónicos por media Europa, desde España a Rusia. 

Aunque la fortuna lo abandonaría en 1814, Napoleón impon­
dría su huella en la historia política y científica de Francia. El 
nuevo dueño de los destinos en Francia honraría a Laplace y sus 
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colegas científicos como ningún otro dirigente lo había hecho 
antes ni lo haría después. Aunque los conocimientos científicos del 
general no pasaban de ser los elementales adquiridos en los ma­
nuales para las escuelas de artillería, profesaba verdadera devo­
ción por las matemáticas y los matemáticos. Conocía a Monge de 
los tiempos revolucionarios. Ambos se harían inseparables y man­
tendrían una sincera amistad. Fourier, que era más o menos de su 
misma edad, también contó con una buena relación. A Carnot, que 
no dudó en oponerse al emperador cuando se excedía dictatorial­
mente, siempre lo consideró íntegro y equilibrado, contando con 
él para desempeñar diversos cargos ( obviamente, fue ministro de 
Guerra durante el Consulado). Y con Lagrange siempre fue afec­
tuoso, y más de una vez se les vio reír a costa de su común amigo 
Monge. Para complacer aljacobino Monge, Napoleón solía ordenar 
a la orquesta que tocara La Marsellesa, mientras Lagrange y el 
propio Napoleón sonreían viéndolo cantar a pleno pulmón. 

En lo que toca a Laplace, Napoleón lo conocía desde adoles­
cente, como examinador de la Escuela de Artillería. Nunca les unió 
una estrecha amistad, pero el político admiró al científico y este se 
mantuvo cerca del político. En virtud de ello, Napoleón lo cata­
pultó a la cima y Laplace emergió como el máximo exponente de 
la ciencia napoleónica. No en vano, Napoleón dejó escrito a propó­
sito de los sucesivos volúmenes del Tratado de mecánica celeste 
de Laplace que fueron apareciendo durante sus años de esplendor: 

Deseo con ardor que las generaciones futuras, cuando lean la Mecá­
nica celeste, no olviden el sustento y la amistad que he dispensado 
a su autor [ ... ]. Esta obra me parece destinada a dar un nuevo lustre 
a la edad en que vivimos. 

Finalmente, mientras el Imperio francés comenzaba a resque­
brajarse, escribió en una carta a Laplace -fechada el 12 de agosto 
de 1812- tras recibir su Teoría analítica de las probabilidades: 

Hubo un tiempo en que hubiera leído con interés vuestro tratado 
sobre el cálculo de probabilidades. Pero actualmente he de limitarme 
a expresaros la satisfacción que siento cada vez que ofrecéis al mun-
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do nuevos trabajos que sirven para mejorar y extender la más impor­
tante de las ciencias, lo que contribuye a la gloria de la nación. El 
progreso y el perfeccionamiento de las matemáticas están íntima­
mente ligados con la prosperidad del Estado. 

Resumiendo, la relación cercana que Napoleón mantuvo con 
el círculo científico se tradujo en una simbiosis muy fructífera: su 
labor corno uno de los ejes de las reformas bonapartistas. La cien­
cia era un arma revolucionaria, porque contribuía a· hacer la na­
ción más segura y civilizada. Napoleón inventó la manera moderna 
de mecenazgo científico: a través del Estado. 

LA PLACE HOMBRE DE ESTADO: 
MINISTRO DEL INTERIOR Y CANCILLER DEL SENADO 

Nada más llegar al poder durante el Consulado, Napoleón nombró 
ministro del Interior a Laplace. Esta cartera se ocupaba del trans­
porte, el comercio, la industria, la higiene y la instrucción pública. 
En una carta conservada, Laplace firmaba corno «el ministro de 
Ciencias y Artes», corno si su nuevo desempeño fuera un apéndice 
ejecutivo del Instituto de Francia. Entre las acciones notables em­
prendidas por Laplace durante el tiempo en que estuvo al frente 
del Ministerio destaca la concesión de una generosa pensión de 
viudedad a la mujer de Bailly. Asimismo, aprovechó el cargo para 
acometer la reorganización de la Escuela Politécnica y relanzar re­
dobladarnente la adopción del Sistema Métrico Decimal. Suyo fue 
el decreto del 17 de Primario del año VIII (10 de diciembre de 1799) 
que establecía oficialmente los prototipos en platino de la longitud 
y del peso, y que exhortaba al uso de las nuevas medidas. No obs­
tante, posteriormente recularía y perrnitiria que el decímetro fuese 
rebautizado corno palma, el centímetro corno anchura del dedo y 
el milímetro corno trazo para no asustar a la gente común con la 
nueva nomenclatura. Laplace tranquilizó a sus colegas académicos 
diciendo que este retroceso era en la forma, pero no en el conte­
nido. Sin embargo, como ya vimos, seguirian otras retiradas. Sus 
sucesores relajarían, para su disgusto, la implantación del sistema. 
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Laplace permaneció en su puesto apenas seis semanas. El 25 
de diciembre de 1799 fue destituido. Napoleón eligió a su hermano 
Lucien para sustituirlo. En verdad, Napoleón tenía el ojo puesto 
en su hermano para el cargo desde su llegada al poder, pero al 
principio decidió disimular a fin de que no le acusaran de nepo­
tismo. Bastantes años después, cautivo ya en la isla de Santa 
Elena, el general menospreció la labor de Laplace. Aquí pesaba, 
naturalmente, la actitud posterior del científico para con él, apo­
yando la restauración monárquica. Napoleón escribió irritado: 

Laplace, geómetra de primer rango, era un administrador mediocre. 
Nombrado ministro del Interior, no presentaba cuestión alguna bajo 
su verdadero punto de vista; buscaba sutilezas en todo, no tenía sino 
ideas problemáticas, y pretendía en fin aplicar el cálculo infinitesimal 
a los asuntos de Estado. 

Rencores aparte, no parec_e que Laplace tuviera grandes dotes 
para la administración pública. Pero en la práctica no se trató de 
una dimisión, ya que nada más entregar la cartera fue promocio­
nado a otro cargo más acorde con sus aptitudes. Napoleón le 
otorgó inmediatamente la dignidad de senador. Al igual que a La­
grange, Monge y Berthollet. Posteriormente, sería presidente y 
canciller del Senado. En su nombre, Laplace encabezaría el cor­
tejo en la coronación de Napoleón como emperador en 1804 y le 
dirigiría estas laudatorias palabras recordándole sus inicios: 

Acabo de proclamar emperador de Francia al héroe a quien tuve la 
suerte, hace veinte años, de abrir la carrera que él ha recorrido con 
tanta gloria y felicidad para Francia. 

Aún más, en 1805 recibiría la más alta distinción: la Legión 
de Honor. «Os envidio, científicos, debéis estar dichosos de con­
vertiros en famosos sin mancharos de sangre», dijo Napoleón. 
Y poco más tarde pasó a formar parte de la aristocracia del linpe­
rio. En 1806 el emperador Napoleón I concedió a Laplace, así como 
a Lagrange, Monge y Camot, entre otros altos dignatarios, el título 
de conde del linperio. Otros matemáticos como Fourier (barón) y 
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Legendre (caballero) también recibieron honores. Napoleón dis­
pensó un grado de devoción inusitado a los matemáticos: seis de 
los grandes formaron parte de la nobleza del Imperio napoleónico. 

CALCULAR Y GOBERNAR 

Durante la década que transcurrió entre la toma de la Bastilla y el 
golpe de Estado que aupó a Napoleón Bonaparte al poder (1789-
1799), Laplace mantuvo, salvando la relativa marginación durante 
el bienio jacobino de 1793-1794, una intensa actividad pública que 
incluyó su participación en la Comisión de Pesos y Medidas y en 
la posterior Oficina de Longitudes, al frente de la cual estuvo con 
el encargo de dirigir el Observatorio de París y mejorar las obser­
vaciones astronómicas y geodésicas, contribuyendo de esta fom1a 
a la reforma del Sistema Métrico Decimal. Asimismo, fue nom­
brado miembro dentro de la clase de ciencias físico-matemáticas 
del Instituto de Francia, institución que sustituyó a la disuelta 
Real Academia de Ciencias de París. Además, formó parte de dos 
centros docentes que revolucionaron la enseñanza de las ciencias. 
Por un lado, fue profesor de Matemáticas en la Escuela Normal, 
donde impartió diez lecciones de alta divulgación científica a los 
futuros profesores de la nación. Por otro, desempeñó una impor­
tante labor de liderazgo en la Escuela Politécnica, donde se for­
maron las élites científicas francesas durante todo el siglo XIX. 

Pero su influencia no decayó cuando Napoleón tornó las rien­
das como primer cónsul y, luego, corno emperador. Laplace se 
convirtió en una figura política, llegando a ser nombrado ministro 
del Interior. Durante estos años de frenética actividad pública, 
Laplace continuó dedicándose a la ciencia. Lo hizo en un sentido 
amplio, del que ya hemos dejado constancia: organizando la vida 
científica francesa a su imagen y semejanza. La madurez científica 
de Laplace coincidió, por tanto, con el ascenso de Napoleón. El 
primero se sirvió del segundo de la misma manera que el segundo 
lo hizo con el primero. Dos perfectos simbiontes. 
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CAPÍTULO 4 

El origen del sistema 
del mundo 

En 1796 se publicó Exposición del sistema 
del mundo, una extensa obra en la que Laplace 

explicaba al gran público los distintos hilos de su 
grandiosa visión: un universo estable y regido por el 

principio de gravitación de Newton. Además, se aventuraba 
a explicar la formación del sistema solar sin recurrir a Dios. 

Aunque con mucho mayor detalle y refinamiento, 
esta teoría permanece en nuestros días como el 

fundamento básico de la formación estelar. 





Siempre se ha especulado con que Laplace comenzó a escribir 
las dos obras capitales a las que está dedicado este capítulo (la 
Exposición del sistema del mundo y el Tratado de mecánica 
celeste) durante su retiro en Melun. Más verosímil parece que la 
escritura de la primera de ellas, la Exposición, coincidiera con 
la preparación de las clases en la Escuela Normal. Este libro de 
alta divulgación supuso el broche perfecto a las diez lecciones 
que impartió, puesto que debido al poco tiempo de que dispuso 
apenas pudo desarrollar ante el auditorio los temas de astrono­
mía y mecánica que tanto le atraían. Publicada en 1 796, se convir­
tió pronto en un texto clásico que conoció múltiples reediciones 
en francés (cuatro de ellas en vida del autor: 1799, 1808, 1813 
y 1824), fue traducido al alemán en 1797 y al inglés en 1809, e 
incluso apareció en ruso y en chino. Tuvo, en suma, una extraor­
dinaria difusión. 

Esta elegante obra tenía por objeto presentar ante el pú­
blico cultivado, pero no necesariamente especialista en la mate­
ria, los progresos en el campo de la mecánica celeste. Laplace 
daba cuenta de los principales resultados sin recurrir a la ayuda 
de ninguna fórmula ni de ninguna figura. Una idea fija, no obs­
tante, vertebraba toda la exposición: la posibilidad de abordar por 
completo el estudio del sistema del mundo, es decir, del universo 
conocido, el sistema solar, bajo el prisma del principio de gravita-
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LAPLACESOBRELASNOVASYLASSUPERNOVAS 

Las estrellas va riables, cuyo brillo varía vis iblemente en poco tiempo, han sido 
observadas desde antaño. Por ejemplo: los astrónomos chinos registraron en 
el año 1054 la aparición repentina de 
una estrella que durante varias sema-
nas fue visible incluso de día. Pero tal 
vez la nova o supernova, por emplear 
la terminología al uso, más célebre sea 
la que observó Tycho Brahe en 1572. 
En la Exposición, Laplace escribió: 

En ocasiones se ha vis to a algunas 
estrellas aparecer casi de golpe y 

desaparecer tras haber brillado con el 

más intenso resplandor. Tal suced ió 
con la famosa estrella observada en 

1572 en la constelación de Casiopea. 

En poco tiempo aventajó en claridad 

a las más hermosas estrellas y al mis­
mo Júpiter; a continuación su luz se 

debilitó, y desapareció 16 meses des­

pués de su descubrimiento. 

_4-";~ 
.t" ¡,... ·. -~ ~t..,, 

~·: . ~. ~:• 
/': . '. )1-. .:. ';,. '· .. 

~ ·. ;.f· 
•' .... ~- .- . .. 

Remanente de la supernova observada por 
Tycho Brahe en 1S72. 

ción universal de Newton-el título de la obra traía a la memoria 
inmediatamente el Libro III de los Principia de Newton, que lle­
vaba por nombre «Sistema del mundo (tratado desde el punto de 
vista matemático)»-. Laplace logró una síntesis admirablemente 
estructurada, un sistema del mundo en que nada sucede sin razón. 
Se trata, por tanto, de un libro tardío pero heredero del espíritu 
divulgador ilustrado. Una llave para acceder al fascinante mundo 
de la astronomía y la mecánica de Newton tal y como quedaron 
configuradas en el Siglo de las Luces. 

Tras expresar el plan general de la obra, Laplace comienza 
con un bello pasaje. Si durante una hermosa noche despejada se 
sigue el espectáculo del cielo, se ve cómo cambia a cada instante. 
Entre ese infinito número de puntos rutilantes de luz que salpican 
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la bóveda celeste hay un puñado de astros que cada noche se 
mueven con respecto al fondo de estrellas fijas y cuyo movi­
miento está siempre comprendido en una franja estrecha de la 
esfera celeste denominada zodiaco. Son los planetas ( etimoló­
gicamente: los astros errantes o vagabundos). A los visibles a 
simple vista (Mercurio, Venus, Marte, Júpiter y Saturno), se unía 

. uno nuevo descubierto recientemente con ayuda del telescopio 
(Urano). Y a la lista de los planetas telescópicos, solo visibles con 
lentes potentes, se unirían a principios del XL'< los planetoides o 
asteroides. 

Laplace se remonta desde los movimientos aparentes de los 
planetas a sus movimientos reales. Y subraya que únicamente 
gracias a la teoría del sistema del mundo ha logrado el espíritu 
humano ascender esta empinada escalera, elevarse a través de 
las ilusiones de los sentidos, pasando del geocentrismo al helio­
centrismo. A continuación, repasa algunos sucesos celestes ex­
traordinarios, como la aparición de cometas, que se mueven en 
todos los sentidos, sin adoptar el plano ni la dirección común en que 
lo hacen todos los planetas. También se interesa por las estrellas, 
apuntando que esa luz blanca de figura irregular que rodea el 
cielo en forma de cinturón es la Vía Láctea, es decir, una nebulosa 
o enjambre de estrellas. En resumen, Laplace hace recuento de 
todos los objetos celestes, desde los más pequeños a los más 
grandes. 

Tras presentar la ley de gravitación universal, advierte: «Ve­
remos que esta gran ley de la naturaleza representa todos los fe­
nómenos celestes hasta en los menores detalles». Pero remite al 
lector a su Tratado de mecánica celeste para los detalles matemá­
ticos, recalcando que lo que va a exponer lo hace sin recurrir al 
análisis. Los planetas no solo responden a la permanente atrac­
ción del Sol, sino también a la de sus vecinos. La competitiva 
atracción de esos compañeros celestes añade una serie incons­
tante de pequeñas oscilaciones a un movimiento básico dominado 
por el Sol. A lo que parece una sinfonía perfecta se suman, pues, 
una serie de disonancias desafinantes. Pero que, como Laplace se 
ha encargado de demostrar (según se vio en el capítulo 2), no 
hacen peligrar la estabilidad del sistema del mundo. 
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EL ORIGEN DEL SISTEMA SOLAR: 
LA HIPÓTESIS NEBULAR 

En la primera edición de 1796, Laplace concluía el corto último 
capítulo de la obra, titulado «Consideraciones sobre el sistema del 
mundo y sobre los progresos futuros de la astronomía», conjetu­
rando cuál podría haber sido el origen del sistema solar. En edi­
ciones posteriores, Laplace desplazó su conjetura a una nota (la 
nota séptima y última del libro), siguiendo el ejemplo de Newton, 
quien relegó muchas de sus especulaciones en la Óptica a modo 
de apéndice. Sin embargo, para la tercera edición de 1813, esta 
nota se había convertido en una teoría en regla sobre el origen del 
sistema solar. En el espacio de unas pocas páginas, Laplace se 
aventuró en el terreno de la cosmología. No es de extrañar el im­
pacto que produjo, por cuanto su autor era la mayor autoridad 
viva en mecánica celeste y las explicaciones puramente raciona­
les del origen del mundo no abundaban. Sin embargo, Laplace 
difícilmente podía imaginar en 1 796 lo fan1osa y fructífera que iba 
a ser su especulación de salón. Su «fábula del mundo» - por de­
cirlo a la manera de Descartes- trataba de llegar allá donde no lo 
había conseguido Newton: comprender la estructura del universo 
conocido a partir de su historia, de su génesis. 

Su hipótesis cosmogónica ha dado en llamarse la hipótesis de 
Kant-Laplace, pero conviene advertir que esta vez Laplace no 
copió sin citar. En 1755 el filósofo Immanuel Kant publicó Histo­
ria general de la naturaleza y teoría del cielo, obra en la que in­
tentaba explicar cómo pudo originarse el mundo conocido: lo 
hacía de una manera análoga a la de Laplace, a partir de una ne­
bulosa primitiva. No obstante, el corpus kantiano no sería intro­
ducido en Francia hasta 1801; y la obra kantiana en que aparecía 
la hipótesis apenas fue distribuida debido a la quiebra del editor. 
En consecuencia, no puede establecerse ninguna clase de influen­
cia del filósofo prusiano sobre el matemático francés. 

Más presente tenía Laplace la hipótesis que el naturalista 
Georges-Louis Leclerc (1707-1788), conde de Buffon, había publi­
cado en 1778 dentro de su obra Historia natural. Este científico 
francés fue uno de los primeros sabios que pusieron en duda la 
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cronología bíblica. Pensaba que la configuración actual del sistema 
solar era consecuencia de que en el pasado remoto un cometa había 
chocado o pasado cerca del Sol, haciendo saltar fragmentos que 
habían comenzado a girar a su alrededor y que al enfriarse habían 
dado lugar a los planetas y sus satélites. Laplace conocía bien esta 
segunda hipótesis, pero de ningún modo la primera (la kantiana). 

La hipótesis laplaciana pretendía aclarar un hecho bien ates­
tiguado por la observación y que Newton nunca había logrado 
explicar frente a los cartesianos: todos los planetas y todos los 
satélites conocidos giran en el mismo sentido y en órbitas que 
están confinadas casi en el mismo plano; además, dichas órbitas 
tienen muy poca excentricidad (son prácticamente circulares) y 
se distinguen bien de las de los cometas ( que son bastante excén­
tricas, de giro a veces retrógrado y poseen diferentes inclinacio­
nes con respecto al plano en el que se mueven los planetas y 
satélites). Para Laplace, este fenómeno era altamente improbable 
y no podía deberse al mero azar, sino que tenía que tener una 
causa bien definida. Aún más, dado que todos los cuerpos celes­
tes, a excepción de los cometas, compartían unas características 
similares, argumentaba que tenía que ser porque compartían un 
origen común. Pero criticaba a Buffon que su teoría catastrofista 
solo explicaba por qué los planetas habían de moverse en el 
mismo sentido y en el mismo plano, pero no por qué tenían que 
hacerlo en órbitas escasamente excéntricas. 

Postuló que inicialmente el Sol tenía un tamaño mucho mayor 
que el actual y su atmósfera se extendía hasta los confines del 
sistema solar, conformando una especie de nebulosa primitiva. En 
ese estado, el Sol se parecería a las nebulosas que el telescopio 
mostraba. Conforme las moléculas más exteriores de la atmósfera 
solar fueron enfriándose, formaron anillos circulares en tomo a 
su estrella, que se condensaron en globos y originaron los distin­
tos planetas. Así, a causa del propio movimiento de rotación de la 
atmósfera solar, se explicaría que todos los planetas y sus satéli­
tes girasen en el mismo sentido y en el mismo plano. Además, 
según fuese perdiendo masa, esta atmósfera iría girando cada vez 
más rápido sobre sí misma, de modo que era natural que los pla­
netas más exteriores girasen más lentamente que los interiores 

EL ORIGEN DEL SISTEMA DEL MUNDO 111 



Recreación de la 
hipótesis nebular 

de Laplace. 

11 2 

alrededor del Sol. Por último, las distintas 
posiciones de los planetas se explicarían 
coincidiendo con los momentos críticos en 
que la fuerza centrífuga causada por la rota­
ción solar había superado la fuerza gravita­
toria que mantenía las moléculas solares 
atrapadas (véase la figura). Resumiendo: los 
múltiples anillos concéntricos de vapores 
que giraban en torno al Sol eran, en esa hi­
pótesis, el origen común de los planetas. 
Los cometas eran, en cambio, cuerpos ce­
lestes ajenos al sistema solar. 

A partir de 1811, con la presentación por 
parte de William Herschel de sus primeros 
trabajos sobre la evolución de las nebulosas, 
el estatuto filosófico de la hipótesis cosmo­
gónica de Laplace cambió radicalmente: de 
ser una mera especulación ilustrada pasó a 
ser un modelo plausible. Probablemente, el 
primer modelo cosmológico científico. Por 
un lado, Herschel estableció fuera de duda 
que algunas nebulosas eran enormes nubes 
gaseosas de aspecto lechoso y con un nú­
cleo luminoso, lo que se avenía muy bien 
con la idea de un Sol y una atmósfera solar 
gigantes. Por otro, mantuvo que ciertas es­
trellas pasaban a través de varias etapas 
de condensación nebular corno resultado de 
la atracción gravitatoria. Estimulado por el 

descubrimiento, Laplace inmediatamente lo reseñó para el perió­
dico oficial del gobierno, Le Moniteur Universel (Laplace y Hers­
chel se habían conocido en París en 1801, y el científico francés 
siempre tuvo en gran estima los descubrimientos del astrónomo 
británico). Corno consecuencia, durante muchos años la hipótesis 
laplaciana se conoció también por el sobrenombre de hipótesis 
de Laplace-Herschel. Hasta que, a finales del siglo XIX, el físico ale­
mán Herrnann von Helmholtz (1821-1894) rescató la aportación 
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AGUJEROS NEGROS 

En la edición de 1796 de la Exposición, 
Laplace realizó una curiosa digresión, 
postu lando el fenómeno que hoy co­
nocemos como agujero negro. Lapla­
ce afirmó que la fuerza de gravedad 
producida por un cuerpo luminoso 
que fuese 250 veces más grande que 
el Sol provocaría que los rayos de luz 
no pud iesen escapar de su superficie, 
siendo reabsorbidos y determinando 
que la estrel la fuera en rea lidad invi­
sib le. En la cuarta edic ión de la obra 
Laplace eliminó su atrevida especula­
ción; pero, a pet ición de un astróno­
mo alemán, pub licó los cálculos ma­
temáticos que le habían llevado a 
hacer esa suposición. 

Simulación de lo que se vería al observar 
un agujero negro de unos diez soles de 
masa desde 600 km de distancia, 
con la Vía Láctea justo detrás. 

kantiana y la rebautizó como la hipótesis de Kant-Laplace. Una 
expresión que hizo fortuna, paralelamente al proceso por el cual 
fueron elevándose voces críticas con la hipótesis (un argumento 
de peso es que no todos los planetas y satélites del sistema solar 
giran en el mismo sentido: Tritón, el satélite de Neptuno descu­
bierto en 1846, no gira en sentido directo sino retrógrado). 

EL «TRATADO DE MECÁNICA CELESTE» (1799-1825) 

Durante los años de actividad política y didáctica, Laplace conti­
nuó dedicándose a la ciencia de prin1era línea. Quería escribir una 
monografía que recopilase todos los descubrimientos, actualiza­
dos con los suyos propios, en la más noble de las disciplinas cien­
tíficas, la astrononúa, explicándolos en el lenguaje preciso del 
análisis. Para ello acuñó un nuevo término: mecánica celeste, que 
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terminó arraigando. Entre 1799 y 1825 aparecieron los cinco volú­
menes de su Tratado de mecánica celeste, donde presentaba so­
luciones analíticas de todos los problemas planteados sobre el 
sistema del mundo. Los dos primeros, cerca de 1 500 páginas, apa­
recieron en septiembre de 1799. Los dos siguientes lo hicieron, 
respectivamente, en 1802 y 1805. Y, finalmente, veinte años des­
pués, en 1825, lo hizo un quinto y definitivo volumen, del que nos 
ocuparemos en el capítulo 6, puesto que su contenido no perte­
nece tanto al campo de la mecánica celeste propiamente dicha, 
sino al de la física matemática terrestre que propugnó Laplace en 
sus últimos años de influencia. 

Esta obra monumental incorpora descubrimientos y resulta­
dos de Newton, Clairaut, D'Alembert, Euler, Lagrange y, por des­
contado, el propio Laplace, aunque este descuidó frecuentemente 
reconocer la fuente de muchos de ellos, dejando la impresión de 
que todos eran suyos. La Mecánica es un tratado matemático para 
especialistas. Sin embargo, a diferencia de los Principia de 
Newton, no está organizado a la manera de la geometría euclídea, 
sino del moderno análisis, en el que Laplace se había educado. Se 
trataba de sintetizar todos los resultados alcanzados durante el 
siglo XVIII de una forma sistemática y racional: se plantea la ecua­
ción diferencial que describe el problema y, a continuación, se 
resuelve, ofreciendo la solución, generalmente en forn1a de serie 
de potencias. Ahora bien, muchas veces Laplace se salta pasos de 
las demostraciones, como si una vez convencido de la veracidad 
de un resultado, no le importara demasiado ofrecer con rigor 
todas las pruebas de ello. 

Un doble objetivo animaba a Laplace a escribir este sesudo 
tratado. El interés por la mecánica celeste tenía en la época unas 
raíces socioeconómicas muy claras: el cálculo cada vez más pre­
ciso de las «efemérides», esto es, de las tablas con las posiciones 
de los planetas, muy útiles para determinar la posición de los bar­
cos cuando la tierra firme estaba fuera de la vista. Por otro lado, 
se buscaba averiguar si todos los fenómenos celestes podían ex­
plicarse mediante la ley de gravitación y deducirse de ella. Una 
letanía acompaña cada página del tratado: el principio de gravita­
ción es la ley de la naturaleza que gobierna el sistema solar. 
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Al mismo tiempo, la obra constituye un libro de texto, una 
colección de investigaciones punteras, un manual de referencia y 
un almanaque. En el prefacio al tercer volumen, Laplace resumió 
con sonoridad el alcance de sus resultados: 

Hemos dado los principios generales del equilibrio y del movimien­
to de los cuerpos. La aplicación de estos principios a los movi­
mientos de los cuerpos celestes nos condujo, por razonamientos 
geométricos [analíticos], sin ninguna hipótesis, a la ley de atracción 
universal, de la que son casos particulares la acción de la gravedad 
[terrestre] y el movimiento de proyectiles. Consideramos después 
un sistema de cuerpos sometido a esta gran ley de la naturaleza y 
obtuvimos, mediante un análisis apropiado, las expresiones gene­
rales de sus movimientos, de sus formas y de las oscilaciones de 
los fluidos que los cubren. A partir de esas expresiones hemos de­
ducido todos los fenómenos conocidos del flujo y reflujo de las 
mareas, la variación de la gravedad en fuerza sobre la superficie de 
la Tierra, la precesión de los equinoccios, la libración de la Luna 
y la forma y rotación de los anillos de Saturno. Hemos deducido, 
además, a partir de la misma temia de la gravedad, las principales 
ecuaciones de los movimientos de los planetas, en particular, los 
de Júpiter y Saturno, cuyas grandes anomalías tienen un perío­
do de más de 900 años. 

En resumen, Laplace plasmó todos los problemas astronó­
micos que había resuelto en los veinte años previos. Ahora bien, 
pese a su enfoque profundamente teórico, el Tratado de mecá­
nica celeste precisó de la realización de numerosas observaciones, 
que fueron llevadas a cabo diligentemente por Delambre, Alexis 
Bouvard (1767-1843) y otros jóvenes discípulos. Además, Jean-Bap­
tiste Biot (177 4-1862) y Siméon Denis Poisson, dos jóvenes mate­
máticos salientes de la Escuela Politécnica, fueron los encargados 
de leer las prnebas de imprenta y verificar los cálculos del maestro. 

Fue una síntesis magistral, tan completa que sus inmediatas 
sucesoras poco pudieron añadir. Tras su publicación, su autor fue 
comparado con Ptolomeo y Newton; y su obra, con el Almagesto 
o los Principia. El Tratado de mecánica celeste fue traducido 
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rápidamente al alemán, y un poco más adelante al inglés (la tra­
ducción, comentada por el navegante estadounidense Nathaniel 
Bowditch, data de 1829). Solo con el paso de las décadas empe­
zaron a aparecer los prin1eros elementos que chirriaban. Aunque 
el Tratado dominó el panorama durante buena parte del siglo xrx, 
algunos de sus resultados tuvieron que ser revisados, tanto en el 
plano teórico (resolución en falso de la cuestión de la estabilidad 
del sistema solar) como en el plano práctico. En este último caso, 
la explicación dada por Laplace de las anomalías seculares de la 
Luna ( causadas supuestamente por la oscilación de la excentrici­
dad de la órbita terrestre) solo explicaba una porción de la acele­
ración del movimiento medio de nuestro satélite. En vida Laplace 
tuvo que volver una y otra vez sobre la cuestión (lo hizo en 1809, 
1811, 1820 y 1827, el año de su óbito). Pero la sucesiva corrección 
de las fórmulas no logró zanjarla. El Newton de la era napoleónica 
no pudo tomarse un respiro. De hecho, en una carta fechada en 
1826, Legendre se congratulaba irónicamente de que se probara 
que «nuestro inmortal colega está equivocado». 

La edad de oro de la mecánica celeste se cerraría con la gran 
obra de otro matemático francés: Los nuevos métodos de la mecá­
nica celeste, de Jules-Henri Poincaré. Las nuevas técnicas matemá­
ticas permitieron refinar la aplicación de la mecánica de Newton a 
la astrononúa. Era, no obstante, el canto del cisne de la mecánica 
celeste de raigambre newtoniana. A principios del siglo xx, un 
joven físico alemán llan1ado Albert Einstein construyó un marco 
teórico alternativo, que reformuló por completo el concepto de 
gravedad y posibilitó elaborar una nueva teoría del universo. 

DIOS EN LA OBRA DE LAPLACE 

Cuentan que cuando Laplace le entregó a Napoleón un ejemplar de 
los primeros dos tomos del Tratado de mecánica celeste, este le 
comentó: «Monsieur Laplace, me dicen que habéis escrito este ex­
tenso tratado sobre el sistema del mundo sin haber mencionado a 
su Creador, ¿es cierto?». Pregunta a la que Laplace contestó: «Sire, 
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no he tenido necesidad de esa hipótesis». Cuando supo de esta 
conversación, dicen que el escéptico Lagrange -agnóstico, diría­
mos hoy día- añadió: «En todo caso no deja de ser una bella hi­
pótesis». Pero, ¿por qué Laplace hizo esta profesión de ateísmo? 

Napoleón sabía perfectamente que Newton había apelado a 
Dios para explicar tanto la estabilidad como el origen del sistema 
del mundo, y le extrañaba que Laplace no lo citara ni una sola vez 
a lo largo del Tratado . Era algo sorprendente. Al final de la Óptica, 
Newton había escrito: 

Un destino ciego jamás podría hacer que todos los planetas se mo­
vieran así, con algunas irregularidades apenas apreciables que pue­
den proceder de la acción mutua entre planetas y cometas, y que 
probablemente se harán mayores con el paso de un largo período de 
tiempo hasta que al cabo ese sistema se vea precisado de que su 
autor lo vuelva a poner en orden. 

Una reforma o ajuste que, según Newton, había de realizar el 
propio Creador. La «mano de Dios» tenía que conducir cada pla­
neta de vuelta a su órbita. Enojado, Leibniz había criticado viva­
mente la intervención de la divinidad para reordenar el sistema 
solar, por parecerle que eso era tener una idea más bien estrecha 
de la sabiduría y potencia divinas. La respuesta del newtoniano 
Clarke había sido que, si así fuera, si el reloj siguiese funcionando 
siempre sin la asistencia del relojero, bien podría prescindirse del 
relojero, o sea, de Dios. 

Tanto Lagrange como Laplace habían intentado evitar la con­
clusión entresacada por Newton, y seguida más tarde por Euler, 
de que la providencia divina tenía que intervenir cada cierto 
tiempo para restablecer el orden en el universo. Lagrange inició el 
programa, analizando algunas excentricidades y probando que 
ningún planeta podía escapar al espacio infinito. Laplace analizó 
el resto y las inclinaciones, concluyendo que tampoco podían 
abandonar el plano en que se mueven. Además, las expresiones 
matemáticas de las desigualdades seculares que afectaban a Júpi­
ter y Saturno, así como a la Luna, no contenían -cuando se 
aproximaba hasta el primer orden en la masa de los planetas, 
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según vimos en el capítulo 2- témúnos exponenciales que pudie­
sen crecer indefinidamente desestabilizando a largo plazo el sis­
tema. Ni Saturno abandonaría el sistema solar, ni la Luna se 
precipitaría contra la Tierra. La obra más célebre de Laplace co­
ronaba el trabajo de Newton en mecánica, explicando las anoma­
lías orbitales que tanto preocuparon al inglés como meras 
perturbaciones que solo dependían de la ley de gravitación y ten­
dían a compensarse en el transcurso del tiempo. 

Laplace explicaba la estabilidad del sistema del mundo sin 
recurrir a Dios. Ahora bien, para demostrarlo hacía que todos los 
planetas girasen en órbitas casi circulares, en el mismo sentido y 
en el núsmo plano. En el capítúlo 2 del Libro IV de la Exposición 
del sistema del mundo podemos leer: 

He logrado demostrar que sean cuales sean las masas de los planetas, 
por el mero hecho de moverse todas en el mismo sentido y en órbi­
tas poco excéntricas y poco inclinadas entre sí, sus desigualdades 
seculares son periódicas y están contenidas en unos estrechos lími­
tes, de suerte que el sistema planetario no hace sino oscilar alrededor 
de un estado medio del que no se aparta nunca sino en una pequeña 
cantidad. 

Quedaba, por tanto, un fleco pendiente. Explicar por qué los 
planetas se mueven todos en el mismo sentido y en órbitas copla­
narias casi circulares. Newton, por descontado, apelaba al Crea­
dor. En ediciones posteriores de los Principia, introdujo un 
escolio final en el que dejó constancia de este singular fenómeno: 

Todos esos movimientos tan regulares no tienen causas mecánicas, 
puesto que los cometas se mueven en todas las partes del cielo y en 
órbitas muy excéntricas [ ... ]. Esa admirable disposición del Sol, los 
planetas y los cometas no puede ser sino obra de un Ser inteligente 
y omnipotente. 

Y en la Óptica reprodujo la misma idea siendo aún más ex­
preso, tras haberse convencido de que la disposición de los plane­
tas era precisamente aquella que aseguraba su estabilidad: «El 
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ciego destino nunca podria haber hecho que todos los planetas se 
moviesen en una y la misma dirección». 

Mediante la hipótesis cosmogónica de la nebulosa primitiva, 
Laplace logró explicar el origen del sistema solar y, sobre todo, 
su buen orden ( el giro común en órbitas aproximadamente circu­
lares y coplanarias) sin recurrir a la divinidad. Jubiló al Creador 
en su papel de mantenedor de la armonía del universo, agrade­
ciéndole los servicios prestados. Laplace había demostrado que 
el concurso divino no era necesario para explicar la estabilidad 
ni el origen del sistema del mundo. Las dos razones astronómicas 
que habían llevado a Newton a postularlo. 
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CAPÍTULO 5 

Probabilidad y determinismo 

Mucho más que cualquier otro matemático 
anterior, Laplace contribuyó a domesticar el azar. 
Recopiló y sintetizó las ideas de sus predecesores, 

definiendo con precisión qué entendía por_probabilidad. 
Emparejó el cálculo de probabilidades con el análisis, 

dando lugar a la teoría moderna de la probabilidad. 
Y fusionó esta teoría con la estadística, aplicándola 

a nuevos dominios, a problemas demográficos, 
sociales, jurídicos y, por descontado, 

astronómicos. 





El cálculo en los juegos de azar que conoció el siglo XVII acabó 
dando sus frutos a finales del siglo siguiente, cuando a partir de él 
se desarrollaron la teoria de la probabilidad y la estadística teórica 
o matemática. No deja de tener su gracia, como no dejó de señalar 
Laplace, que una ciencia que comenzó con consideraciones sobre 
monedas, dados, urnas y barajas se convirtiera pasado el tiempo 
en uno de los objetos más importantes del conocimiento humano. 

A mediados del siglo XVI el matemático renacentista Gero­
lamo Cardano (1501-1576) había escrito el Libro de los juegos de 
azar. Este astrólogo y jugador empedernido ( capaz de predecir 
su propia muerte) empleaba el término probabilidad ( que viene 
de probare, esto es, de probar o aprobar) para cuantificar el grado 
de credibilidad de una opinión y, de paso, la posibilidad de ocu­
rrencia de una apuesta. Habria que esperar a 1654, cuando Blaise 
Pascal (1623-1662) y Pierre de Fermat (1601-1665) entablaron co­
rrespondencia, para asistir al nacimiento del cálculo de probabili­
dades como tal. Instigados por la obsesión por el juego de Antoine 
de Gombaud (1607-1684), caballero de Méré, estos dos matemá­
ticos franceses resolvieron el llamado problema de los puntos: si 
dos jugadores acuerdan jugar a tres rondas pero se les interrumpe 
antes de que puedan terminar (presuntamente por la policía, ya 
que el juego estaba prohibido), ¿cómo deberian repartirse el di­
nero apostado sobre la mesa si uno ha ganado dos partidas y el 
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otro solamente una? Este problema relativo a los juegos de azar, 
propuesto por un hombre de mundo a un austero jansenista y a un 
abogado amante de las matemáticas, señala el origen del cálculo 
de probabilidades, de la «geometría del azar». 

Los primeros cultivadores del cálculo en los juegos de azar 
acabaron viendo en él un modelo para inferir conocimiento acerca 
de otras porciones del mundo. Así, en 1657, Christiaan Huygens 
(1629-1695) publicó Calculando en los juegos de azar, obra en la 
que aplicó sistemáticamente el álgebra al cálculo de apuestas e 
introdujo la noción de esperanza o ganancia más probable -la 
ganancia media si el juego se repite muchas veces- para determi­
nar si un juego era o no justo (lo era si el valor de la apuesta coin­
cidía con el valor de la esperanza del juego). Pero, además, en 
colaboración con su hermano, acuñó el concepto de esperanza de 
vida. A partir de las tablas de mortandad de la ciudad de Londres 
que publicó John Graunt -padre de la aritmética política-, los 
hermanos Huygens y Edmond Halley calcularon probabilidades 
de vida futura, como si vivir o morir se tratara de un juego a cara 
o cruz. Se decía, por ejemplo, que el 36% de los londinenses vivía 
una media de 3 años. Era como si al nacer los padres sacasen al 
azar una papeleta de una urna en que 36 de las 100 papeletas lle­
vasen la frase «Su hijo no va a vivir más de 3 años». Un macabro 
experimento mental, pero que recoge bastante bien esta analogía 
pionera entre juegos de azar y estadística. 

El siguiente gran hito en esta panorámica de la historia de la 
probabilidad que estamos trazando es elArs conjectandi (Arte de 
conjeturar), de Jakob Bemoulli. Este tratado inconcluso vio la luz 
en 1713 con carácter póstumo. En él se extiende el uso de la com­
binatoria para determinar todas las posibilidades de ocurrencia de 
un suceso y, de este modo, calcular más fácilmente su probabili­
dad. Pero más importante es que se ataca por vez primera el pro­
blema de la probabilidad inversa, es decir, inferir la probabilidad 
de un suceso a partir de la experiencia (a posteriori) cuando no 
puede deducirse a priori ( antes de la experiencia, mediante razo­
namientos lógicos o psicológicos). Jakob Bemoulli estableció el 
teorema áureo (hoy conocido como teorema de Bemoulli): la fre­
cuencia relativa de un suceso tiende a aproximarse a un número 
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TEOREMA ÁUREO 

Supongamos que tenemos un cierto suceso A que tiene una probabilidad de 
ocurrencia que llamaremos p , y que repetimos n veces el experimento para 
determinar la ocurrencia o no-ocurrencia de A. Si el suceso A ha aparecido m 
veces, mediante m/ n podemos hallar la frecuencia relativa de aparición de A , 
es decir, la proporción de veces que ha aparecido dicho suceso. La diferencia, 
en términos absolutos, entre la probabilidad p y la frecuencia relativa m/ n 
mide el error que cometeríamos si usásemos la frecuencia relativa como 
aproximación de la verdadera probabilidad. Bernoulli demostró que, si repe­
timos el experimento las veces suficientes, la probabilidad de esa diferencia 
puede hacerse tan pequeña como queramos, es decir, que la probabilidad de 
esa diferencia tiende a cero al tender n a infin ito. En términos matemáticos 
esto se expresa diciendo que si E es un número positivo tan pequeño como 
queramos, se verifica que: 

Este teorema formalizaba la ley del azar o ley de la estabilidad de la frecuen­
cia: hay, por decirlo con un término de la época, «certeza moral» de que a la 
larga la frecuencia relativa de un suceso no se desvía significativamente de su 
probabilidad. Se trataba de la ley de los grandes números, empleando el nom­
bre acuñado en el siglo x1x por Poisson, discípulo de Laplace, en su forma más 
sencilla. 

fijo (la probabilidad del suceso) conforme aumenta el número de 
repeticiones del experimento aleatorio. 

Para J akob Bemoulli este teorema posibilitaba calcular empí­
ricamente las probabilidades desconocidas. Permitía definir la pro­
babilidad de una forma objetiva, invirtiendo el teorema. En efecto, 
si la frecuencia se aproxima a la probabilidad según crece el nú­
mero de observaciones, ¿por qué no definir la probabilidad a partir 
de la frecuencia? Mediante el recurso a la inducción parecía facti­
ble definir la probabilidad como el límite de la frecuencia; y no ya 
hacerlo de una forma meran1ente lógica o subjetiva ( como un 
grado de creencia). No obstante, Abraham de Moivre (1667-1754), 
matemático francés afincado en Inglaterra (por su irredento calvi-
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LA FAMILIA BERNOULLI 

Jakob Bernoulli (1654-1705) estudió teo­
logía por insistencia de su padre, pero 
pronto la abandonó para ser profesor de 
Matemáticas en la Universidad de Basilea 
hasta su muerte. El hermano más joven 
de Jakob, Johann (1667-1748), también 
quedó fascinado por las matemáticas, 
sucediendo a su hermano en el cargo 
ocupado en la universidad, aunque en 
vida las fricciones con él fueron constan­
tes. Ambos hermanos tenían una natura­
leza quisquillosa que les llevaba a enfren­
tarse por ser el primero en resolver los 
acertijos matemáticos. Así, el problema 
de la braquistócrona (la curva del des- Jakob Bernoulli. 

censo más rápido), planteado como un 
desafío para los matemáticos europeos, degeneró en una agria polémica so­
bre quién lo había resuelto antes: si Jakob, Johann, Leibniz o Newton (quien 
lo resolvió tras un fatigado día de trabajo en la Casa de la Moneda londinense 
y lo hizo público anónimamente, pese a que, como dijera uno de los hermanos, 
al león se le reconoce por sus garras). Johann, el más pendenciero de los dos, 
terminaría echando de casa a su hijo Daniel (1700-1772), por haber obtenido 
un premio de la Academia Francesa al que aspiraba él mismo. 

nismo, era hugonote), famoso por su tratado La doctrina del azar 
(1718), defendía que la regularidad estadística que postulaba el teo­
rema áureo necesitaba obligatoriamente del concurso de Dios para 
funcionar. Laplace, como enseguida tendremos ocasión de expli­
car, heredó esta crisis abierta en el fundamento de la probabilidad. 

Pero hay algo más que lleva la firn1a de Jakob Bernoulli. Este 
dedicó la última parte de su enjundioso tratado a la aplicación del 
cálculo de probabilidades a cuestiones civiles, morales y econó­
micas. Con sus propias palabras: 

Ar s conj ectandi se define como el arte de medir lo más exacto po­
sible la probabilidad de las cosas, para que en nuestros juicios o 
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acciones podamos siempre elegir o seguir lo que será encontrado 
como lo mejor [ ... ]. En esta unidad se resume toda la sabiduría del 
filósofo y toda la prudencia del político. 

No había que relegar, por tanto, el uso de la probabilidad a los 
juegos de azar. Este será, junto a definir correctamente la proba­
bilidad y acercar el cálculo de probabilidades al análisis, uno de 
los ejes principales de la aportación de Laplace. 

DE LOS EFECTOS A LAS CAUSAS 

Antes de Laplace no había «temía de la probabilidad», sino «teoría 
o doctrina del azar» y, en todo caso, «cálculo de probabilidades». 
En sus manos, la probabilidad cobró carta de naturaleza como cien­
cia matemática. Una pieza clave es su temprana memoria de 1773 
titulada Sobre la probabilidad de las causas de los sucesos. En este 
trabajo retoma, sin saberlo, el testigo de la inferencia bayesiana, 
una rama de la estadística y la probabilidad debida al reverendo 
Thomas Bayes (1702-1761 ), de quien se había publicado una memo­
ria póstuma al respecto en 1763. Pero en Inglaterra, no en Francia. 

A juicio de Laplace, no se trataba ya de calcular la probabili­
dad de los sucesos, sino de sus causas. Las situaciones en que in­
terviene el azar son, generalmente, de dos tipos. En el primero, el 
azar aparece en los resultados; por ejemplo, cuando conocemos la 
composición de una urna en que hay bolas blancas y negras, y nos 
planteamos cuál será el resultado de una extracción. A partir de 
las causas (la composición de la urna, que sí conocemos), calcu­
lan1os la probabilidad de los resultados, de sacar blanca o negra. 
Hay, en cambio, un segundo tipo de situación en que el azar no 
aparece en los resultados, sino en las causas. Conocemos el resul­
tado de la extracción (ha salido una bola negra) y queremos calcu­
lar la composición de la urna, que nos es desconocida. A partir de 
los resultados (ha salido negra), determinamos la probabilidad 
de las causas, de cada posible composición de la urna Pasamos, de 
los efectos a las causas (véase la figura de la página siguiente). 
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En la primera 
situación 

(izquierda), no 
sabemos qué bola 

sacaremos, pero 
se supone que 
conocemos la 

composición de la 
urna. En cambio, 

en la segunda 
situación 

(derecha), la duda 
estriba en conocer 
la composición de 
la urna, que nos es 

? 

desconocida, a L_ 
partir de la bola 

extraída. 
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Uno de sus primeros avances fue enunciar y demostrar el 
teorema de Bayes (llamado así por Augustus de Morgan muchos 
años después, que vindicó la prioridad de su compatriota), que de 
seguro desconocía. Lo que aquí nos interesa es explicar la idea 
latente tras la fórmula de Bayes que redescubrió Laplace. Imagi­
nemos una urna que puede tener dos composiciones diferentes: la 
primera contiene 2 bolas blancas y 3 bolas negras, y la segunda, 
3 blancas y 2 negras. Se extrae una bola al azar y resulta ser negra, 
¿qué composición de la urna es más probable? Intuitivamente, a la 
luz del color de la bola extraída, parece claro que la primera com­
posición tiene que ser más probable que la segunda (dado que en 
esta última hay menos bolas negras). El teorema de Bayes-Laplace 
no hace sino cuantificar numéricamente esta intuición. 

Las dos causas que han podido originar el suceso «sacar bola 
negra» son, precisamente, las dos posibles composiciones de la 
urna. Si se supone a priori que ambas composiciones son igual­
mente probables (50% para cada una de ellas), la utilización de la 
fórmula de Bayes lleva a que la probabilidad de la primera compo­
sición ha subido, tras la extracción de la bola negra, al 60%, mien­
tras que la probabilidad de la segunda composición ha bajado al 
40%. Las probabilidades a priori (50% y 50%) han sido rectificadas 
a posteriori (60% y 40%). Un resultado incontrovertible, puesto 
que en la primera composición hay más bolas negras que en la 
segunda y, por lo tanto, cabe esperar una mayor probabilidad de 
que la bola haya sido extraída en esas condiciones. 
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Para Laplace, al igual que para Bayes, este poderoso teorema 
posibilitaba aprender de la experiencia y, en el límite, legitimar la 
inducción. Siiva como ilustración que Laplace se planteó -como 
ya hiciera el conde de Buffon- calcular la probabilidad de que el 
Sol salga mañana, teniendo en cuenta el número de días que ha 
venido amaneciendo ininterrumpidamente. Aplicando el teorema 
de Bayes, Laplace llegó a la llamada regla de sucesión. 

«Si un hecho se repite seguidamente cualquier cantidad de 
veces, la probabilidad de que ocurra una vez más es igual a este 

número más 1 y dividido por este mismo número más 2.» 
- REGLA DE SUCESIÓN DE LAPLACE . 

Así, si suponemos que el Sol ha salido invariablemente du­
rante 5 000 años, o sea, 1826 213 días (!,aplace pensaba que la Tie-

EL TEOREMA DE BA YES 

Este teorema establece que la probabilidad de cada causa, conocido el suce­
so, es igual a una fracción con un numerador, que es el producto de la proba­
bilidad del suceso que se sigue de esta causa por la probabilidad de la causa, 
y un denominador, que es la suma de los productos de la probabilidad del 
suceso dada cada una de las causas por la probabi lidad de cada causa. Este 
enunciado que parece un trabalenguas tiene hoy día una expresión simbólica 
muy precisa que puede encontrarse en cualquier libro de texto: 

( 
1 

) 

P(BIA; )P(A; ) 
P A¡ B - -n~~~~~ 

¿P(BIAk)P(Ak ) 
k-1 

donde P(A;IB) es la probabilidad a posteriori (es decir, la de la causa conocido 
el suceso); P(BIA) es la probabilidad del suceso supuesta la causa; y, final ­
mente, P(A) es la probabilidad a priori (es decir, la de la causa antes de que 
ocurra el suceso). Gracias a la fórmula de Bayes las probabilidades a priori 
pueden rectificarse a posteriori. En otras palabras, podemos tomar mejores 
decisiones basándonos en la experiencia. 
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rra era muy joven), la probabilidad de que salga mañana es de 
1826214/1826215 (= 99,9999%). El quid de la cuestión está en que, 
por esta regla, cuanto más mayores nos vayamos haciendo, mayor 
resultará la probabilidad de vivir más. De modo que una persona 
de ochenta años tendrá mayor probabilidad de vivir un día más que 
una de solo veinte años, lo que carece de sentido. La otra dificultad 
que sale al paso de Bayes, de La.place y de todos los seguidores de 
la inferencia bayesiana es la manera en que se asignan probabilida­
des a priori. En el ejemplo que hemos puesto parece plausible su­
poner que las dos posibles composiciones de la urna sean en 
principio equiprobables, es decir, que tengan exactamente la 
misma probabilidad (50%). Pero puede ser dudoso que en todas las 
situaciones en las que hay incertidumbre, uno admita que debe 
asignar a los sucesos la misma probabilidad o una que dependa del 
estado de información en que se encuentre cada uno (probabilidad 
subjetiva). ¿Es posible, por otra parte, determinarla objetiva­
mente? ¿Acaso de modo inductivo, como aproximación de la fre­
cuencia, según quería Bemoulli? La vitalidad de esta controversia 
arrastró a La.place y aún es patente en el siglo XXI, donde matemá­
ticos y filósofos siguen discutiendo la validez de cada enfoque. 

En 1780 Laplace presentó Memoria sobre las probabili­
dades, en la que refina su estudio de la cuestión. Comienza se­
ñalando que hay tres maneras de determinar la probabilidad: a 
priori, es decir, por razonamientos lógicos; a posteriori, esto es, 
a partir de la experiencia, y, una tercera forma, que muchas veces 
parece indistinguible de la primera, mediante razonamientos que 
nos permitan juzgar la mayor o menor verosimilitud de la ocu­
rrencia de los sucesos. En el caso de la competición entre dos 
jugadores, con el primer método estableceríamos la equiproba­
bilidad (ambos tienen un 50·% de oportunidades de ganar). Me­
diante el segundo método, conjeturaríamos las probabilidades 
respectivas de ganar a partir de los resultados de algunas de sus 
partidas ( si el primer jugador ha ganado siete de diez partidas, 
diríamos que su probabilidad de ganar es del 70%). Finalmente, 
mediante el tercer método, si sabemos que el primer jugador es 
mucho más habilidoso y diestro en el juego que el segundo, se 
puede suponer que su probabilidad de ganar sea, por ejemplo, 
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del 80%. En el primer caso determinamos, según Laplace, la 
probabilidad «absoluta» (hoy se dice probabilidad lógica). En el 
segundo, la probabilidad «aproximada» (probabilidad objetiva). 
Y, en el tercero, la probabilidad «relativa» a nuestros conocimien­
tos o creencias (probabilidad subjetiva) . Además, Laplace distin­
gue entre azar y probabilidad. El azar no tiene, según su filosofía 
determinista, realidad en sí mismo. Nada sucede sin causa y, por 
tanto, el azar únicamente expresa nuestro desconocimiento de 
la causa subyacente a un suceso, siendo la probabilidad el medio 
más adecuado para solventar esta ignorancia de los principios y 
las causas que actúan detrás de los fenómenos. 

«Los problemas fundamentales de la vida no son más que 
problemas de probabilidades[ ... ]. En el fondo la teoría de la 

probabilidad es solo sentido común reducido a cálculo.» 

Pero Laplace no solo se dedicó a diseccionar el corazón de la 
probabilidad, sino que también centró su atención en mostrar su 
extrema utilidad para la estadística y la demografía. En su disqui­
sición, analiza las probabilidades de nacimientos según el sexo, 
recurriendo a los datos de las parroquias francesas para determi­
nar las probabilidades a priori que necesita para aplicar el teorema 
de Bayes. Infiere, de acuerdo a los hechos que venían ocurriendo, 
que la probabilidad de que nazca un niño es muy ligeramente supe­
rior a la de que nazca una niña, y afirma que es razonable esperar 
que el número de niños nacidos supere al de niñas en París durante 
los próximos 179 años. Todo un ejemplo de inferencia estadística. 

Pero sus aplicaciones de la probabilidad a otros can1pos con­
taban, pese al apoyo de Condorcet, con un enemigo acérrimo: su 
propio padrino, D'Alembert, quien una y otra vez había reiterado 
sus dudas sobre la utilidad del cálculo de probabilidades. Laplace 
iría más allá que sus predecesores y pondría continuamente de 
relieve la utilidad de esa parte del cálculo de probabilidades que 
va de los efectos a las causas para las ciencias observacionales y 
experimentales, donde frecuentemente se conocen los resultados 

PROBABILIDAD Y DETERMINISMO 

- LAPLACE. 

131 



132 

pero no sus causas. La aproximación bayesiana a la inferencia 
estadística que defendió se transformó, a caballo entre los siglos 
XIX y xx, en una más entre las herramientas puestas al día por los 
estadísticos Karl Pearson (1857-1936), Ronald A. Fisher (1890-
1962), Egon Pearson (1895-1980, hijo del primero) y Jerzy Neyman 
(1894-1981). Estos cuatro matemáticos interesados por la gené­
tica, la eugenesia y la biología, y que compartían un talante clara­
mente antibayesiano, pusieron a punto los métodos estadísticos 
modernos. Pero fue gracias a la contribución de Laplace que la 
estadística dejó de ser una ciencia meramente descriptiva para 
transformarse en una ciencia inductiva, capaz de hacer prediccio­
nes ( aunque, por su método, sea puramente deductiva, matemá­
tica). Una nueva estrella brillaba en el finnamento. 

LA REGLA DE LAPLACE 

La teoría de la probabilidad que propuso Laplace se articula en 
torno a la célebre regla de Laplace. Aunque definiciones más o 
menos similares pueden encontrarse en trabajos anteriores de 

EL ERROR DE D'ALEMBERT 

En la Enciclopedia, D'Alembert se encargó de escribir el artículo dedicado a 
la probabilidad. Su hostilidad para con esta noción contrastaba con el entu­
siasmo que mostraban Condorcet y Laplace. Pero hay más, D'A lembert cal­
culó la probabilidad de obtener una cara (c) y una cruz(+) al tirar dos mone­
das y se equivocó. Afirmaba que la probabilidad es 1/3, dado que 
supuestamente solo hay un caso favorable (cara y cruz) entre los tres posibles 
(dos caras, dos cruces, y cara y cruz). Su error fue que no reparó en que pue- · 
de obtenerse una cara y una cruz de dos formas distintas: cara-cruz (c+) y 
cruz-cara ( +c) . Por tanto, la probabilidad real es 2/ 4, puesto que hay dos 
casos favorables entre los cuatro posibles (cc, ++, c+, +c). Laplace no dejó 
escapar la ocasión de mostrar el error de su antiguo maestro. 

PROBABILIDAD Y DETERMINISMO 



Bernoulli y De Moivre, esta regla para determinar la probabilidad 
de un suceso aparece formulada expresamente en una memoria 
suya fechada en 1774. 

«La probabilidad de un suceso es igual al número de casos 
favorables dividido por el número de todos los casos posibles.» 

- REGLA DE LAPLACE, 

La probabilidad de un suceso es, en consecuencia, un número 
entre O y l. Cuando vale 1, la probabilidad se transforn1a en cer­
teza. Estamos ante un suceso seguro. En cambio, cuando vale O se 
habla de un suceso imposible. En este caso estamos en una situa­
ción genuina de incertidumbre. Por ejemplo, si una urna contiene 
siete bolas, de las que cinco son blancas y dos son negras, la pro­
babilidad de extraer una bola negra es, aplicando dicha regla, de 
2/7 (= 29%), puesto que hay dos bolas negras (2 casos favorables) 
entre las siete bolas que contiene la urna (7 casos posibles). 

La regla de Laplace supone que todos los casos, favorables y 
posibles, son entre sí igualmente probables. En caso de que haya 
alguno que tenga una probabilidad mayor o menor que el resto de 
ocurrir, la probabilidad del suceso ha de deternünarse con ayuda 
de la regla de la suma, que tan1bién se encuentra en Laplace: si un 
suceso puede ocurrir de dos o más formas incompatibles entre sí, 
la probabilidad del suceso es igual a la suma de cada una de las 
probabilidades de cada caso favorable. Por ejemplo, la probabili­
dad de sacar un as o un rey al extraer una carta de una baraja es­
pañola es la suma de la probabilidad de sacar un as ( que es 4/40, 
porque hay cuatro ases en las cuarenta cartas) y de la probabili­
dad de sacar un rey ( 4/40, puesto que solo hay cuatro reyes en la 
baraja): 4/40 + 4/40 = 8/40 ( = 20%). 

Además, puede ocurrir que el suceso del que queremos calcu­
lar la probabilidad no sea simple sino compuesto. En este caso, la 
regla de Laplace tan1poco sirve y hay que echar mano de la regla 
del producto, que también se halla en Laplace: si para que un su­
ceso se verifique han de hacerlo a su vez dos sucesos que depen­
den uno del otro, la probabilidad del suceso de partida es igual al 

PROBABILIDAD Y DETERMINISMO 133 



134 

EL REPARTO DE LAS APUESTAS 

Según ideó el caballero de Méré, dos jugadores A y B apuestan uno contra 
otro 32 monedas de oro, lo que hace un total de 64, que se llevará el prime­
ro de los jugadores que gane tres partidas. Pero ambos jugadores tienen que 
interrumpir el juego antes de terminar, ¿cómo deberían repartirse el dinero 
apostado si uno ha ganado dos partidas y el otro solamente una? Este pro­
blema había sido resuelto en falso por Luca Pacioli en el siglo xv, quien pro­
puso que los jugadores debían repartirse el dinero de las apuestas en función 
del número de victorias: como han jugado tres partidas, dos de las cuales las 
ha ganado A y B solo una, 2/3 del dinero serían para A y 1/3 para B. Cardano 
llegó a la conclusión de que esta solución no podía ser correcta, porque no 
tenía en cuenta el número de partidas que le faltaban a cada jugador para 
hacerse con el premio en su totalidad. 

Una solución compartida 
Fueron Pascal y Fermat quienes llegaron a la solución correcta, aunque por 
métodos diferentes: «Ya ve [le escrib ió el primero al segundo] que la verdad 
es la misma en Toulouse que en París». Si se supone que A y B son igual de 
duchos o habilidosos en el juego (esto es, la probabilidad de que cada uno 
gane al otro es de 1/2) la probabilidad de que A gane la tercera partida antes 
de que lo haga Bes de 3/4, dado que tiene dos opciones para ello: o bien 
gana a la primera (con probabilidad 1/2, quedando el tanteo 3-1), o bien gana 
a la segunda perdiendo la primera (con probabilidad 1/2 · 1/2 = 1/4, quedan­
do el tanteo 3-2). La suma de las probabilidades de ambas opciones da, 
efectivamente, 3/4. En cambio, la probabilidad de que B gane es de solo 1/4, 
dado que ha de hacerlo dos veces seguidas (1/2 · 1/2 = 1/4). Por tanto, el 

producto de la probabilidad del primer suceso por la probabilidad 
del segundo suceso supuesto que ha ocurrido el primero. Es lo 
que hoy día se conoce como la fórmula de la probabilidad condi­
cionada. Pongamos un ejemplo: la probabilidad de sacar un seis 
con un único dado es 1/6, ¿cuál será la probabilidad de obtener 
dos seises seguidos? Por la regla del producto sabemos que será 
la multiplicación de la probabilidad de obtener el primer seis (1/6) 
por la probabilidad de obtener el segundo seis ( que vuelve a ser 
1/6, dado que estos dos sucesos son independientes entre sí): 
1/6 -1/6 = (1/6)2 = 1/36 ( = 2,8%). 
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reparto justo sería de 3/4 para A (48 monedas) y 1/4 para B (16 monedas). 
Laplace general izó el «problema de los pun tos» bajo el supuesto de que 
ambos jugadores no tuviesen la misma probabi lidad de ganar. 

-
A ha ganado dos 

partidas y B 
únicamente una 

(2-1) 

1 

1 1 

A gana la siguiente B gana la siguiente 
partida y el juego partida y empata a 

termina con el tanteo A a dos victorias 
de 3·1 para A (2-2) 

1 

1 1 

A gana la siguiente B gana otra vez y 
partida y el juego el juego concluye 

termina con el tanteo con el tanteo 
de 3-2 para A de 2-3 para B 

Esquema de las distintas posibilidades de acabar el juego. 

LA «TEORÍA ANALÍTICA DE LAS PROBABILIDADES» (1812) 

La primera edición de esta obra tardía -Laplace contaba ya con 
sesenta y dos años cumplidos- fue publicada en 1812, acompa­
ñada de una dedicatoria sumamente elogiosa a Napoleón, donde 
se apuntaba que «el cálculo de probabilidades se aplica a las cues­
tiones más importantes de la vida, que en su mayor parte no son 
más que problemas de probabilidad». Napoleón contestaría refi-

. riéndose a la probabilidad como «la primera de las ciencias». Tras 
décadas dedicado en cuerpo y alma a la mecánica celeste, Laplace 
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recuperó sus tempranos trabajos sobre la probabilidad y envió a 
la imprenta un tratado que ponía orden en la materia. 

Como el propio título de la obra indica, el objetivo de La.place 
era ofrecer una teoría analítica de la probabilidad, es decir, acer-
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car esas dos disciplinas (el análisis y el cálculo de probabilidades) 
que hasta la fecha discurrían por canúnos independientes. Si antes 
de su intervención el cálculo de probabilidades se servía del álge­
bra, a partir de él lo haría básicamente del análisis (gracias a las 
denominadas funciones generatrices). 

Destaca que Laplace discute el teorema central del límite, un 
elemento fundamental para la estadística y la teoría de la probabi­
lidad. Averigüemos por qué. En su memoria de 1773 Laplace se 
había planteado un problema muy interesante. Un astrónomo 
quiere determinar la posición real de una estrella tras haber reali­
zado una serie de observaciones. Se trata de estin1ar esa magnitud 
a partir del conjunto de mediciones. No basta con tornar la media 
aritmética de los resultados, porque hay que demostrar que el valor 
elegido es aquel que precisamente minimiza la probabilidad de 
error, siendo este, corno es natural, la diferencia entre el valor real 
y el valor observado. Laplace interpretó que la posición real de la 
estrella funcionaba corno causa de las posiciones observadas, de­
pendiendo los errores del azar. En estos términos, mediante una 
utilización ingeniosa del teorema de Bayes, llegó a la conclusión de 
que existe una curva que representa la distribución del error en 
tomo al valor real. La curva es simétrica y decreciente a partir de 
ese valor central, en el sentido de que cuanto más nos alejarnos 
de él menos probable es que cometamos tanto error al medir. Lo 
más probable es, por tanto, que el valor que elijamos corno real se 
encuentre en un entorno cercano de ese valor central, donde la 
curva alcanza su máximo. Resolviendo una ecuación diferencial, 
Laplace llegó a que la curva de la dist1ibución de los errores (fi­
gura 1) viene dada por una función de tipo exponencial: 

e-,.,:¡ 
cp(x) = 2. 

Laplace no llegó originariamente a la distribución normal, 
también de tipo exponencial (aunque con una fómrnla diferente) 
e introducida por De Moivre a principios del siglo XVIII. La curva 
normal de distribución de los errores está relacionada con el mé­
todo de mínimos cuadrados (figura 2), que consiste en ajustar 
sobre el conjunto de observaciones una curva que minimice el 
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error cuadrático y que fue dado a conocer por Legendre en 1805, 
en su obra Nuevos métodos para la determinación de las órbi tas 
de los cometas. Pero un joven matemático alemán, llamado Carl 
Friedrich Gauss, afirmó haber sido el primero en utilizarlo en 
1801. Este incidente provocó que ambos matemáticos se enzarza­
ran en una agria disputa por la prioridad del descubrimiento. 

Gauss fue el primer astrónomo en calcular la órbita del aste­
roide Ceres, descubierto el primer día del siglo XIX, el 1 de enero 
de 1801. Estudiando la serie de observaciones del recorrido de 
Ceres en el cielo, el alemán obtuvo su órbita y predijo dónde sur­
giría de nuevo. Para ello empleó un método de su invención: el de 
mínimos cuadrados, aunque lo mantuvo en secreto en su diario. 
El método sirve para ajustar una trayectoria en una serie de pun­
tos, de forma que minimice la suma de los cuadrados de los erro­
res, es decir, de las diferencias entre los valores observados y los 
valores de la trayectoria (los cuadrados se toman para dar el 
mismo valor a una discrepancia por defecto que por exceso). 

En 1809 Gauss hizo su entrada triunfal en el mundo de la as­
trononúa con la obra Teoría del movimiento de los cuerpos celes­
tes, donde exporúa el método de los núnimos cuadrados dentro de 
la teoría de errores. Gauss demostró que la distribución de los 
errores está conectada con el método de los mínimos cuadrados. 
En efecto, una vez determinada la curva que minimizaba el error 
cuadrático medio, Gauss observó que los errores cometidos en la 
aproximación se distribuían aleatoriamente alrededor de un valor 
medio. Esta distribución simétrica con forma de campana no era 
otra que la «normal» o «campana de Gauss» (figura 3), una fun­
ción que responde a la siguiente expresión: 

1 _E:_ 
<j>(x )= ~ e 2 

-,,,2n 

Como puede observarse, la gráfica de la función empleada por 
Laplace guardaba cierta similitud con la campana de Gauss, aunque 
esta última es más suave y no tiene un pico en el valor central. La 
distribución normal se suporúa que era la distribución universal de 
los errores, una suerte de ley natural. No obstante, el nombre de ley 
normal se debe a Adolphe Quetelet (1796-1874) -quien introdujo 
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el concepto de «hombre medio»- y a Francis Galton (1822-1911), 
primo de Charles Darwin, quienes a mediados de siglo la aplicarian 
profusamente en sus estudios sociales y concluirian que la mayoría 
de las características naturales se distribuyen «normalmente» (por 
ejemplo, la mayor parte de las personas tiene una altura media; 
habiendo pocas personas que sean muy altas o muy bajas). 

La lectura de la obra de Gauss sirvió a Laplace de estímulo 
para que desarrollara la Teoría analítica de las pr obabilidades 
importando varios de los descubrimientos del matemático alemán 
(método de mínimos cuadrados, distribución normal) al dominio 
de la probabilidad. Se trataba del teorema central del límite: si una 
medida es el resultado de la suma de un gran número de factores 
sometidos a error, se distribuye normalmente con independencia 
de cómo lo haga cada uno de los factores en particular. Con otras 
palabras, este teorema justifica que, bajo ciertas condiciones bas­
tante generales, es plausible modelar una característica bajo estu­
dio como si proviniese de una distribución normal. No podemos 
predecir el comportamiento individual de una variable o indivi­
duo, pero sí el comportamiento promedio de una población. Este 
resultado, como manifestación de la ley de los grandes números, 
de la regularidad estadística subyacente en el mundo, era para 
Laplace una prueba matemática más del orden del universo. 

r- - -
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Por último, la Teoría analítica recoge una larga lista de apli­
caciones de la probabilidad en astronomía y geodesia (teoría de 
errores), estadística y demografía ( esperanzas de vida) e, incluso, 
en cuestiones legales (matemática electoral) . Como resultado cu­
rioso digno de señalarse, anotemos que Laplace calculó que la 
erradicación de la viruela incrementaría la esperanza de vida en 
Francia en tres años. 

En resumen, Laplace fusionó el cálculo de probabilidades y la 
estadística con el análisis, dando lugar a la teoría moderna de pro­
babilidades, que tendría un gran predicamento durante los dos si­
glos siguientes. Sin embargo, la Teoría analítica fue un libro árido, 
de modo que sus logros tuvieron un impacto limitado, y muchos de 
ellos de hecho tuvieron que ser redescubiertos a mediados del siglo 
XIX. La fundamentación de la teoría de la probabilidad sobre el aná­
lisis que practicó Laplace perduró hasta 1933, cuando el matemá­
tico soviético Andréi Kolmogórov (1903-1987) reasentó el cálculo 
de probabilidades sobre la teoría de la medida Kolmogórov pro­
puso una serie de axiomas que respetasen las intuiciones funda­
mentales plasmadas en la definición clásica ( en concreto, la regla 
de Laplace, solo aplicable a casos equiprobables) y en la definición 
frecuentista ( en particular, el teorema de Bernoulli, solo aplicable 
a fenómenos susceptibles de repetirse) de la probabilidad. Por su 
parte, la interpretación subjetiva de la probabilidad ( como grado 
de creencia en una proposición o de adhesión a la verificabili­
dad de un suceso, variable en cada persona) fue formalizada en 
1937 por el estadístico italiano Bruno de Finetti (1906-1985) y di­
fundida por Leonard J. Savage (1917-1971) en 1954, quien resucitó 
la «inferencia bayesiana» que tanto debe al propio Laplace. 

EL «ENSAYO FILOSÓFICO 
SOBRE LAS PROBABILIDADES» (1814) 

Este popular ensayo, concebido a partir de la décima lección 
dictada en la Escuela Normal en 1795, fue publicado original­
mente como introducción a la segunda edición de la Teoría ana-
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LA APUESTA DE PASCAL 

Blaise Pasca l (1623-1662) aplicó los razo­
namientos probabilísticos a la toma de 
decisiones en el ámbito teológico. Su ar­
gumento era el siguiente: Dios existe o 
no existe. Si no ex iste, lo m ismo da creer 
en él como que no. Pero si ex iste, creer 
que no existe provoca la condenación 
eterna, mientras que creer trae la salva­
ción y la g loria. Como la salvación es pre­
ferible a la condenac ió n ( la gana nc ia 
esperada es mucho mayor), una persona 
razonable actuará como si Dios existiera, 
aunque crea que la probabilidad de que 
ex ista es pequeña. La razón es que, aun 
cuando la probabilidad de la .existencia 
de Dios sea extremadamente pequeña, tal pequeñez será supuestamente 
compensada por la gran ganancia que se obtendrá, o sea, la g loria eterna. En 
térm inos probabil íst icos: mientras que la esperanza de no creer es siempre 
cero, la esperanza de creer es positiva (porque el valor pequeño de la proba­
bilidad de existencia de Dios se compensa al multip li carlo por la ganancia 
infinita que se obtiene al creer). 

Un razonamiento falaz 
En el Ensayo, Laplace expresó sus dudas sobre la apuesta de Pascal, apuntan­
do que este razonamiento era falaz. A su juicio, la esperanza de creer no era 
positiva sino cero, porque la probabilidad de existencia de Dios era inf ini ta­
mente pequeña, y al multiplicarla por la ganancia infinita de creer no sa lía ya 
una cantidad positiva sino evanescente (como si dijéramos: O · oo = O), unas 
declaraciones que no pasaron sin levantar ampol las y suscitar las réplicas de 
otros dos matemáticos de prestigio, August in Louis Cauchy y Paolo Ruffini 
(ambos católicos y detractores de la aplicación de la probabil idad a las cien­
cias morales). 

lítica de las probabilidades, pero muy pronto, en 1814, fue 
editado por separado. El objetivo de su autor era presentar, sin 
valerse del análisis, los principios y resultados más generales de 
la teoría de la probabilidad. Le animaba el mismo espíritu di­
vulgador que le llevó a escribir la Exposición del sistema del 
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mundo. Había una buena razón para ello, pues a su juicio, la vida 
misma, sus problemas, no escapan a la esfera de las probabilida­
des. Lo más atractivo es que Laplace pone continuamente al lec·­
tor ejemplos de aplicación del cálculo de probabilidades a las 
ciencias políticas y morales. Si este cálculo se había revelado tan 
eficaz en las ciencias naturales, ¿por qué no iba a serlo también 
en las ciencias humanas? Estaba, sin saberlo, anticipando el por­
venir: el nacimiento de las ciencias sociales. Su sugerencia no 
caeria en saco roto. 

Así, comienza estudiando la probabilidad de los testimonios. 
Imaginemos, por ejemplo, que un hecho llega a nuestro conoci­
miento a través de veinte testigos, de modo que el primero lo ha 
comunicado al segundo, este al tercero y así sucesivamente. Si la 
probabilidad de que cada testigo transmita al siguiente el hecho sin 
deformarlo es de 9/1 O ( es decir, del 90 %, una probabilidad bastante 
alta), la probabilidad de que el hecho llegue a nosotros sin mancha 
a través de los veinte testigos es, en cambio, de (9/10)2º .. 0,12 (una 
probabilidad muy baja). ¡Solo hay un 12% de posibilidades de que 
el hecho haya llegado hasta nosotros sin remiendos ni añadiduras! 

A continuación se ocupa de las elecciones, las decisiones de 
las asambleas y las sentencias de los tribunales. Laplace equipara 
los procesos de toma de una decisión con la extracción de una 
bola de una urna, representando las bolas blancas las decisiones 
justas, y las negras, las ir\justas. Por medio de complejos cálculos 
determinó cuál seria la probabilidad de error en el veredicto de un 
tribunal en función del número de jueces que lo formaran y del 
número de votos que hiciesen falta para condenar al acusado. 

El cálculo de probabilidades le servía a Laplace incluso para 
analizar la posible existencia de Dios. 

LA FE DEL ATEO LAPLACE 

Entre los historiadores y filósofos de la ciencia Laplace es gene­
ralmente recordado por su gráfica reafirmación en el determi­
nismo, que ha sido denominada como demonio de Laplace, por la 
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superinteligencia que postulaba. Este célebre y estremecedor pa­
saje se encuentra en las primeras páginas de la Teoría analítica 
de las probabilidades y del Ensayo .filosófico sobre las probabili­
dades, aunque Laplace ya lo tenía presente cuarenta años antes, 
porque pertenecía a la tradición filosófica en que se fom1ó como 
científico. En efecto, aunque ateos para el Dios cristiano ( con la 
notable excepción de Euler), los géometres philosophes conce­
bían como posible la existencia de un Ser Supremo o de una Inte­
ligencia Suprema. Condorcet fue precursor en proponer una 
situación hipotética que, muchos años más tarde, Laplace resca­
taría y popularizaría: la hipótesis de una Inteligencia Absoluta con 
poderes ilimitados de cálculo que hace las veces de meta final del 
quehacer matemático. La primera formulación del «determinismo 
laplaciano» aparece en un artículo publicado en 1776. Pero el 
credo laplaciano está más desarrollado en las páginas del inicio 
del Ensayo (1814): 

Debemos, pues, considerar el estado presente del universo como el 
efecto de su estado anterior y como la causa del siguiente. Una inte­
ligencia que, en un instante dado, conociera todas las fuerzas de que 
se halla animada la naturaleza, así como la situación respectiva de 
los seres que la componen, si, además, fuera lo suficientemente am­
plia como para someter estos datos a análisis, podría abarcar en una 
sola fórmula los movimientos de los cuerpos más grandes del uni­
verso y los del átomo más pequeño: nada le resultaría incierto y, 

tanto el futuro como el pasado, se hallarían presentes a sus ojos. La 

mente humana ofrece en la perfección que ha sabido dar a la astro­
nomía un débil esbozo de esta inteligencia. Sus descubrimientos en 
mecánica y en geometría, junto al de la gravitación universal, han 
puesto a su alcance comprender en las mismas expresiones analíti­
cas los estados pasados y futuros del sistema del mundo. 

Esta era la fe del ateo Laplace. Todo, arriba y abajo, en los 
cielos y en la Tierra, obedece a un pequeño número de leyes natu­
rales que se cumplen invariablemente. En la &tposición escribía: 
«Todo deriva de ellas tan necesariamente como el regreso de las 
estaciones». «La curva trazada por una simple molécula de aire o 
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de vapor está determinada de una forma tan exacta como las ór­
bitas planetalias», aduce en el Ensayo. En el campo de la mecá­
nica celeste el sueño de una Inteligencia Suprema se había hecho 
realidad. Sin embargo, según Laplace, cuando descendemos a la 
Tierra la ignorancia de las múltiples causas que producen los su­
cesos nos previene de hacer aserciones con la misma certeza. 
Dada la imposibilidad de un conocimiento total, el hombre lo 
compensa determinando los diferentes grados de posibilidad. En 
consecuencia, debernos a la debilidad de la mente humana una de 
las más delicadas e ingeniosas teorías matemáticas, la ciencia del 
azar o de las probabilidades, donde el azar no es más que la me­
dida de nuestra ignorancia de las causas. 

Corno el universo es determinista, en el sentido de que todo 
acontecimiento está enlazado causalmente, la previsibilidad no es 
exclusiva de los fenómenos celestes. Pero los hechos terrestres, 
aunque estrictamente predecibles, no lo son más que de forma 
probabilística. La verdadera originalidad de Laplace descansa en 
impulsar esa rama nueva de las matemáticas, que abarcaría no 
solo la matemática de los juegos y de las urnas hipotéticas, sino 
también la estimación de los errores científicos, la estadística, la 
cuantificación de las evidencias e incluso la causalidad filosófica. 

Hoy, dos siglos más tarde, sabernos que Laplace acertó al su­
gerir la fecundidad de la ciencia de las probabilidades, pero tam­
bién que se equivocó al creer que el sueño de la Inteligencia 
Suprema estaba prácticamente cumplido en el campo de la mecá­
nica celeste. El universo newtoniano parecía constituir el mejor 
ejemplo de un mecanismo perfecto de relojería: en él todo estaba 
predeterminado, y conociendo con precisión los detalles de una 
causa podían predecirse, con igual exactitud, los efectos de la 
misma. Pero el sistema del mundo albergaba, corno vimos en el 
capítulo 2, la semilla del caos. 

La mecánica y las leyes de la física son en realidad mucho 
más ricas de lo que Laplace soñó que fuera posible. Él creía firme­
mente que un sistema determinista, un sistema que siguiera las 
leyes de Newton, tenía que ser necesariamente predecible. Sin 
embargo, corno descubriera Poincaré, un sistema que obedezca 
las leyes de Newton puede convertirse en caótico e impredecible. 

PROBABILIDAD Y DETERMINISMO 145 



146 

Una de las consecuencias más revolucionarias y dramáticas de la 
teoría del caos es, precisamente, que refuta la ecuación «determi­
nismo= predictibilidad» que Laplace sustentara. En 1908, en Cien­
cia y método, Poincaré escribió: 

Si conociésemos exactamente las leyes de la naturaleza y la situación 
del universo en el instante inicial, podríamos predecir con exactitud 
la situación del universo en un instante ulterior. Pero, aun cuando 
las leyes naturales no guardaran más secretos para nosotros, no 
podemos conocer la situación inicial más que aproximadamente. Si 
esto nos permite predecir la situación ulterior con la misma aproxi­
mación, que es todo lo que necesitamos, decimos que el fenómeno 
ha sido predicho, que está regido por leyes. Pero no acaece siempre 
así: puede suceder que pequeñas diferencias en las condiciones ini­
ciales produzcan algunas muy grandes en los fenómenos finales. Un 
pequeño error al inicio engendrará un error enorme al final. La pre­
dicción se vuelve imposible. 

Aun conociendo las leyes con absoluta precisión, cualquier 
pequeño error de medida o de cómputo le impediría al demonio 
de Laplace predecir el futuro del sistema del mundo más allá de 
cierto umbral de tiempo. Las palabras de Poincaré simbolizan la 
muerte de este demonio sabelotodo a manos del caos. 
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CAPÍTULO 6 

La estrella se apaga 

Con la caída de Napoleón y el regreso de los 
Barbones, Laplace dejó de ser conde y senador 

para convertirse en marqués y par de Francia. En plena 
reacción política monárquica siguió dirigiendo la ciencia 

del reino como lo hiciera durante la república y el imperio. 
A su alrededor aglutinó una floreciente escuela de físicos 

matemáticos, basada en dos pilares fundamentales: 
la matematización y la mecanización de la naturaleza. 

La muerte le encontraría aquilatando su legado 
científico, cuyo brillo aún hoy nos fascina. 





El año 1810 marcó el cénit del esplendor napoleónico. Pero los 
sucesivos reveses en la campaña de Rusia y el desgaste continuo 
de la guerra de guerrillas en España aceleraron el desplome del 
Imperio francés. A finales de marzo de 1814 los ejércitos enemigos 
convergían a toda prisa hacia París. Como las cosas no estaban 
claras, Laplace decidió abandonar la capital francesa. Así, mien­
tras Talley:rand negociaba la paz con las potencias vencedoras, el 
Senado votó el 2 de abril, con la ausencia de Laplace, el destrona­
miento de Napoleón l. Dos días después, tras su regreso a París, 
Laplace :ratificó con su firma la decisión del Senado. El 6 de abril 
Napoleón abdicaba y se retiraba a la isla de Elba. 

Luis XVIII, hermano del defenestrado Luis XVI, fue nom­
brado nuevo rey de Francia. En nombre del Senado, del que aún 
era su canciller, Laplace le dio la bienvenida a París. Laplace 
había sobrevivido a Napoleón. Había sabido traicionarlo a 
tiempo. No obstante, las relaciones entre ambos se habían ido 
enfriando poco a poco. En 1813, según cuenta el químico Chap­
tal (quien, por cierto, también ocupó el cargo de ministro del 
Interior), Napoleón había comentado lo siguiente tras reencon­
trarse con Laplace: «Oh, observo que habéis adelgazado». La­
place contestó: «Sire, he perdido a mi única hija [murió dando a 
luz]». A lo que el emperador respondió con sequedad: «Pero no 
hay razón para que perdáis peso. Sois un matemático, poned este 
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suceso en una ecuación y encontraréis qué hay que sumar para 
, que salga cero», 

La monarquía borbónica recién restaurada estableció una 
carta otorgada o constitución que confirmaba bastantes de los lo­
gros del código civil napoleónico, de espíritu muy liberal. Pero en 
febrero de 1815 Napoleón escapó de Elba y reconquistó el poder, 
dando inicio al Imperio de los Cien Días. Con la vuelta de Napo­
león, Laplace corrió a alejarse de París. Monge y Carnot, en cam­
bio, se apresuraron a ponerse de nuevo bajo sus órdenes. El 
segundo, por no variar, tomó la cartera de Guerra. Fourier, por su 
parte, permaneció distante al principio, aunque terminó sumán­
dose a la aventura. Pero Napoleón fue derrotado por Wellington 
en la batalla de Waterloo y desterrado definitivamente a la isla de 
Santa Elena. 

El regreso de Luis XVIII en julio de 1815 desató un «terror 
blanco» que se manifestó en la purga de científicos bonapartistas. 
Monge, por ejemplo, fue expulsado tanto de la Escuela Politécnica 
como de la Real Academia de Ciencias ( que sustituía al Instituto 
de Francia). Tras la depuración, el sillón de Monge lo ocuparía 
ese fanático realista que fue Augustin Louis Cauchy (1789-1857), 
padre del análisis moderno, que medró a su costa. Algunos cole­
gas le retirarían el saludo. 

En lo que respecta a Laplace, este vería generosamente re­
compensada su fidelidad, siendo nombrado par de Francia, es 
decir, miembro del nuevo Senado borbónico, la Cámara de los 
Pares. Además, sería nombrado marqués en 1817. No es de ex­
trañar, por tanto, que en la edición de 1820 de la Teoría analí­
tica de las probabilidades no se encontrara rastro de la servil 
dedicatoria a Napoleón. Ni que en 1826 se negara a firmar una 
declaración de la Academia en pro de la libertad de prensa. El 
camaleónico Laplace demostró gran versatilidad para pasar del 
ardor republicano al monarquismo servil. A la acusación de 
oportunista o chaquetero descarado hubiera podido responder: 
«No es eso, porque, si bien cambié de lealtad, me mantuve 
firme a mi principio, que es el de vivir y morir como mandamás 
de la ciencia francesa» . En el fondo fue, como suele decirse, 
pragmático. 
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LA ESCUELA LAPLACIANA 

En 1806, animado por su esposa, Laplace había adquirido una pe­
queña mansión en Arcueil, una localidad cercana a París. Notar­
daron en instalarse y pasar largas temporadas en la propiedad. En 
la vecindad vivía el químico Berthollet, a quien Laplace conocía de 
los tiempos del Arsenal de Lavoisier. Berthollet había montado en 
su casa una biblioteca y un laboratorio. Ambos comenzaron a pa­
trocinar, a sus expensas, a un grupo de jóvenes talentos. A partir 
de esta colaboración informal surgió la Sociedad de Arcueil, el 
germen de la escuela laplaciana de física matemática, que durante 
más de una década marcaría el rumbo y el ritmo de la ciencia 
francesa. 

Un año antes, en 1805, Laplace había terminado el prefacio 
del cuarto volumen del Tratado de mecánica celeste con estas 
palabras proféticas: «Nada más me resta». Desde ese momento 
fueron la probabilidad y, en especial, la física los temas en los que 
volcó su genio. Laplace dio un gran empujón al movimiento de 
matematización de numerosas disciplinas físicas que hasta enton­
ces habían pem1anecido como especulaciones más bien cualitati­
vas y metafísicas. Trató de llevarlas al grado de perfección de la 
astronomía. Aunque la aplicación de la geometría a la óptica venía 
de antaño, otros campos físicos aún no habían sido abordados 
matemáticamente. Así, atacó los dominios de la capilaridad (fenó­
meno por el cual los líquidos ascienden hasta cierta altura por 
tubos de sección muy pequeña), el sonido, el calor, etc. Estos tra­
bajos acabaron agrupados en el tomo V del Tratado de mecánica 
celeste (1825). 

En el capítulo 2 dejamos constancia de que la gran osadía 
de Galileo y Newton había sido unificar cielo y tierra tras más de 
veinte siglos de divorcio. Laplace aspiraba a hacer realidad un 
sueño que no parecía descabellado. Quería mostrar que no solo 
era posible una mecánica celeste, sino también una «mecánica te­
rrestre» hasta el núnimo detalle. Para ello relanzó una idea que ya 
había sugerido en la Exposición del sistema del mundo: existen 
fuerzas entre las moléculas inversamente proporcionales a una 
potencia de sus distancias. Unas fuerzas que siguen, por tanto, 
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una ley de estructura similar a la ley de gravitación de Newton. 
No en vano, el conocimiento de la ley de Coulomb sobre la fuerza 
eléctrica reforzó su fe en una ley según el inverso del cuadrado 
de la distancia. Se trataba, por tanto, de continuar el programa 
newtoniano por otros medios. De estudiar la luz, el calor, la elec­
tricidad, el magnetismo y la afinidad química siguiendo la espe­
culación microfísica del propio Newton en la «cuestión 31» de la 
Óptica. 

Esta ambición de explicar todo mediante fuerzas atractivas y 
repulsivas es lo que los historiadores de la ciencia han designado 
con el nombre de programa mecánico-molecular de la física la­
placiana. Este programa conducía a una visión del mundo cohe­
rente y armoniosa, donde las leyes de la física establecidas a 
nuestra escala de percepción se transferían a los últimos consti­
tuyentes de la materia guardando una notable semejanza matemá­
tica. Todos los fenómenos físicos eran reductibles a materia y 
fuerza, a corpúsculos en movimiento. Este reduccionismo meca­
nicista era indisociable de la formulación laplaciana del determi­
nismo que vimos en el capítulo anterior. 

Entre 1805 y 1820 el programa laplaciano dominó la física 
francesa gracias al poder que Laplace ostentaba en sus institucio­
nes. Entre los que se hicieron asiduos a la Sociedad de Arcueil, 
destacan Gay-Lussac (1778-1850), Ampere (1775-1836), Malus 
(1775-1812), Biot y, sobre todo, Poisson, el discípulo más fiel. 
También Cauchy y Arago (1786-1853), aunque este último se dis­
tanció precipitadamente por rencillas con Poisson a la hora de 
ingresar en el Instituto. E, incluso, el viajero y naturalista Alexan­
der van Humboldt (1769-1859). 

La física laplaciana se anotó unos cuantos éxitos. Sin em­
bargo, aunque tuvo una influencia decisiva sobre la física matemá­
tica francesa del siglo xrx, esta escuela goza hoy de mala 
reputación. En efecto, Laplace y los laplacianos se opusieron 
tanto a la teoría del calor de Fourier como a la teoría de la luz de 
Fresnel (1788-1827). Fueron a contracorriente de ciertas etapas 
que han marcado la evolución de la física. 

Fourier, por ejemplo, elaboró su teoría sobre la difusión del 
calor al margen de los planteamientos laplacianos. Durante años 
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LA LEY DE COULOMB 

En 1785, el ingeniero y académico 
francés Charles-Augustin Coulomb 
(1736-1806) tuvo el mérito de medir 
la fuerza eléctrica entre dos esferas 
cargadas, que era directamente 
proporcional a sus cargas e inver­
samente proporcional al cuadrado 
de la distancia que las separa . 
Como vemos, una ley por completo 
análoga a la de gravitación. Para 
lograrlo construyó un instrumento 
realmente original: una suerte de 
balanza capaz de medir la fuerza 
de atracción o repulsión entre dos 
cargas eléctricas. 

Balanza de torsión 
El invento se compone de una base 
de madera que sostiene una caja 
cilíndrica de cristal , cerrada en su 
parte superior por una cubierta 
atravesada en su centro por un ci­
lindro hueco, también de cristal. 

..__,._ _ _ Micrómetro 

Hilo de plata 

Esfera fija 
electrizable 
desde el 
exterior 

Cinta graduada 

La balanza de torsión de Coulomb. 

Alrededor de la caja hay una cinta graduada colocada a media altura. El cilin­
dro, a su vez, se cierra en su extremo superior por el micrómetro, que puede 
girar y también está graduado, y del que pende un hilo muy fino de plata, que 
se prolonga hasta el interior de la caja de cristal, donde sostiene una aguja o 
varilla horizontal. Por un orificio en la cubierta de cristal se introduce una 
bolita aislada, con un mango de vidrio, que puede ser electrizada desde el 
exterior. El proceso _consistía en medir los ángulos de torsión que experimen­
taba la varilla móvil sujeta por el hilo como resultado de la fuerza de atracción 
o repulsión con la esferita fija previamente electrizada; A partir de estos datos 
se deducían las fuerzas existentes entre ambos elementos debido a la carga 
eléctrica. En su honor la unidad de carga eléctrica lleva el nombre de culombio. 

trabajó en una teoría matemática que explicase la propagación del 
calor desde una perspectiva fenomenológica, sin comprometerse 
con ninguna de las dos hipótesis físicas en boga ( el calor como 
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FOURIER, UN MATEMÁTICO ACALORADO 

Jean-Baptiste Joseph Four ier (1768-
1830), hijo de un modesto sastre, no 
pudo ingresar en el cuerpo de ingenieros 
de l rey por no pertenecer a la nobleza. 
Pronto sobresalió como profesor de Ma­
tem áticas, pero tamb ién de Fi losofía, 
Historia o Retórica. Seleccionado como 
alumno de la Escuela Normal en el año 111 
de la Revolución, Monge percibió rápida­
mente sus cualidades y lo nombró su 
asistente en la Escuela Politécnica. Exce­
lente físico matemático, fue amigo de 
Napoleón y, al igual que Monge, lo acom­
pañó en su expedic ión a Egipto. A su 
regreso se convirtió en prefecto de Gre­
noble, mandando drenar las marismas a 
fin de extirpar el paludismo. Fourier man­
ten ía la cur iosa op inión de que el ca lor 
del desierto era el ambiente ideal para una vida sana y, de acuerdo con ello, 
se envolvía en ropas como una momia y vivía en habitaciones demasiado 
calientes. Murió a los sesenta y dos años, en 1830. 

fluido repartido por toda la naturaleza, como mantenía Laplace, o 
como resultado del movimiento de las partículas de materia). 
Cuando en 1807 Fourier presentó su memoria en el Instituto, La­
grange, que junto a Laplace y Legendre había sido designado para 
juzgarla, la tachó de imprecisa y fue rechazada. Afortunadamente, 
Fourier no se desanimó y en 1811 presentó otra memoria más 
elaborada para optar a un premio propuesto por el Instituto que 
sería asignado al año siguiente, en 1812. Durante el transcurso de 
la lectura de la memoria, donde Fourier anticipaba su gran idea de 
las series tligonométricas, Lagrange, que de nuevo formaba parte 
del jurado, se levantó al instante gritando: «¡eso es imposible, eso 
es imposible!». Aunque Fourier fue premiado, debido a sus resul­
tados físicos, su trabajo no fue publicado debido a sus «errores 
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matemáticos» hasta 1822, · cuando Lagrange ya había muerto y 
Fourier era secretario perpetuo de la Academia Real (gracias al 
voto de Laplace). Pudo, por fin, dar a la imprenta la famosa ecua­
ción contenida en la Teoría analítica del calor. Laplace, aunque 
no comulgaba con el enfoque de Fourier y seguía anclado en la 
anticuada teoría de ese fluido sutil e imponderable que era el «ca­
lórico», apreció enseguida el progreso matemático que represen­
taban las series trigonométricas o de Fourier frente a las clásicas 
series de potencias. 

Otra muestra de la fragmentación del programa laplaciano 
nos la ofrece el desarrollo de la teoría ondulatoria de la luz por 
parte de Fresnel, en abierta oposición a la teoría corpuscular 
aceptada por su escuela. Este ingeniero depositó su trabajo en la 
Academia en 1815, pero hasta 1819 no fue premiado. Frente a 
Newton (que defendía que la luz era un chorro de corpúsculos), 
Fresnel argumentaba, al igual que hiciera Huygens, que la luz era 
una onda. El astrónomo Frarn;ois Arago, quien había trabajado 
sobre la refracción de la luz bajo la supervisión de Laplace, tomó 
partido por la concepción ondulatoria, que explicaba ciertos fenó­
menos de difracción inexplicados desde la óptica corpuscular. 
Para desmayo y consternación de Biot y Poisson, Fresnel ganó el 
premio de la Academia en 1819. Al final, se formó un pequeño 
grupo antilaplaciano, acaudillado por el beligerante Arago, que 
aspiraba a tomar el relevo de Laplace como político de la ciencia. 
Su estandarte era la defensa de la teoría ondulatoria de la luz de 
Fresnel frente a los discípulos de Laplace. 

Las reuniones de la Sociedad de Arcueil fueron constantes y 
regulares entre 1806 y 1813, pero a partir de 1814 prácticamente 
cesaron. Un mal augurio. Las señales de aislamiento e indiferencia 
comenzaron a multiplicarse entre 1815 y 1820, de modo que en el 
decenio siguiente la escuela laplaciana se vio progresivamente 
desbancada de su posición preeminente. Berthollet murió en 1822 
y la influencia de Laplace decayó exponencialmente. Aunque 
nunca perdió el respeto público, su fijación en un tipo de matemá­
tica tributaria del análisis ilustrado y su newtonianismo militante 
fueron factores que le impidieron captar la importancia de los 
nuevos desarrollos en física. 
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EL LEGADO DEL NEWTON DE FRANCIA 

No es fácil describir las sutilezas de un personaje multifacético 
como Laplace. Ante sus contemporáneos aparecía serio, estirado 
y arribista. No son pocos los testimonios conservados de su arro­
gancia. Por no recordar las críticas que levantaron sus manifesta­
ciones a favor del ateísmo. Siempre quería imponer su opinión en 
toda clase de discusiones. Además, Laplace no reconocía la auto­
ría de las numerosas ideas de otros que utilizó y mezcló con las 
suyas. Una conducta recalcitrante durante toda su vida. De joven 
le sucedió con Euler y Lagrange. Más tarde, con Legendre, a quien 
«tomó prestados» sus polinomios. Y, finalmente, con Bayes. La­
place era una especie de zorro que borra con la cola sus propias 
huellas. 

«El hombre más insolente y malévolo que conozco.» 
- EL ASTRÓNOMO LALANDE SOBRE LAPLACE. 
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A Laplace se lo vincula frecuentemente con Lagrange, pero no 
se parecen ni en cualidades personales ni en su trabajo. La humil­
dad de este último contrasta con la vanidad y altanería del primero. 
Adicionalmente, Lagrange es un matemático muy cuidadoso en sus 
escritos, muy claro y elegante. Laplace creó métodos matemáticos 
nuevos, pero nunca se preocupó de presentarlos con rigor, sino de 
usarlos, ciertamente, con gran destreza e ingenio para estudiar la 
naturaleza. Para Laplace, la matemática era un medio, no un fin en 
sí mismo. Era esencialmente un virtuoso en la manipulación de 
expresiones matemáticas por encima de su rigor. Formulaba y 
aproximaba series para resolver ecuaciones diferenciales con gran 
velocidad, capaz de realizar tediosos cálculos con ellas que ocupa­
ban hojas y más hojas. Como matemático puro, siempre estuvo a 
la sombra de Lagrange. En cambio, como matemático aplicado, 
físico y hombre de mundo, lo superó ampliamente. 

Cuando se encontraba un problema matemático en sus inves­
tigaciones, Laplace solía resolverlo casi de pasada, sin molestarse 
en mostrar cómo había obtenido el resultado. Nathaniel Bowditch 
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(1773-1838), el marino y astrónomo estadounidense que tradujo 
cuatro de los cinco volúmenes del Tratado de mecánica celeste al 
inglés, añadiendo explicaciones, contó que cada vez que se encon­
traba con la frase «es fácil ver que ... » sabía que le esperaban horas 
de duro trabajo para rellenar las lagunas. 

Pero estas manchas en su expediente no deben ensombrecer 
su genio. La física y, en general, la ciencia comenzaron una nueva 
etapa -sobre cuyos cimientos se construiría el mundo mo­
derno- con la publicación en 1687 de los Principia de Newton. 
Pero, pese a lo que se suele creer, la física newtoniana no nació 
completa, perfecta. Nació inacabada. Tres matemáticos, Euler, 
Lagrange y Laplace se distribuyeron entre sí el mundo cuya exis­
tencia había descubierto Newton. Se internaron en terrenos que 
habían sido considerados impenetrables y pusieron de modo defi­
nitivo, y en esto reside su fama merecida, bajo el dominio de un 
único principio, de una ley unificada, todo lo que de confuso y 
misterioso había en los movimientos de los cuerpos celestes. Esa 
ley era, cómo no, la ley de gravitación universal. Antes de Laplace 
nuestro sistema solar parecía destinado a perder Saturno, a ver a 
este planeta, acompañado de sus anillos, hundirse gradualmente 
en regiones desconocidas. Júpiter, por su parte, ese globo al lado 
del cual la Tierra es tan poca cosa, se hundiría en la materia incan­
descente del Sol. Finalmente, los hombres verían la Luna precipi­
tarse sobre la Tierra. Laplace demostró, dentro de un orden de 
aproximación, que el sistema del mundo era estable y que ninguna 
de estas catástrofes cósmicas sucedería. 

Pierre-Simon de Laplace fue, en suma, uno de los más grandes 
newtonianos de todos los tiempos. Más que un innovador fue un 
vindicador de Newton. Nunca fue revolucionario, como lo fue el 
propio Newton o lo sería Einstein. Jamás cuestionó el marco que 
heredó. Aunque esto no quiere decir ni mucho menos que no hiciera 
grandes descubrimientos: la ecuación de Laplace, el carácter cí­
clico de las desigualdades seculares de Júpiter y Saturno, así como 
de la Luna, la estabilidad del sistema del mundo, la hipótesis nebu­
lar, la teoría analítica de la probabilidad, la regla de Laplace, las 
bases de la inferencia estadística, la transformada de Laplace, el 
desarrollo de Laplace para calcular determinantes, etc. Por no men-
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LA TRANSFORMADA DE LAPLACE 

La mayoría de matemáticos, físicos e ingenieros actuales se acuerdan del 
científico francés cuando emplean la «transformada de Laplace» para resolver 
ecuaciones diferenciales. Aunque una idea similar se encuentra en Euler, fue 
él quien la formalizó en una serie de memorias entre 1782 y 1785. Este método 
consiste básicamente en «transformar» la ecuación diferencial en una suerte 
de ecuación algebraica más fácil de resolver. Sin embargo, no se haría popu­
lar hasta finales del sig lo x1x, cuando el ingeniero eléctrico Ol iver Heaviside 
(1850-1 925) propusiera una especie de cálculo operacional para resolver ecua­
c iones diferenciales usando la transformada. En el periodo que abarca la 
Segunda Guerra Mundial, los manuales y las tablas de transformadas de La­
place conocerían una notable difusión, ya que se usaron con asiduidad en la 
investigación del radar. No hay duda de que Laplace, siempre tan sensible a 
las necesidades del Estado, hubiera apreciado el esfuerzo. 

tar su decidido impulso al Sistema Métrico Decimal o su defensa 
filosófica del determinismo y la causalidad. Un currículum al al­
cance de muy pocos. Las creaciones que portan su nombre siguen 
siendo he1Tamientas científicas inestimables doscientos años des­
pués. No es de extrañar, por tanto, que su figura haya recibido tan­
tos honores, desde un promontorio de la Luna que lleva su nombre 
hasta una placa entre las de los setenta y dos científicos franceses 
conmemorados en la Torre Eiffel. 

Pero el legado de Laplace no se agota en sus aspectos cientí­
ficos. Su obra no es solo científica, sino también social. Tanto la 
política científica como la filosofía de la ciencia portan su sello. 
Laplace imprimió su impronta sobre nuestra visión de la ciencia 
y sus ambiciones, así como sobre el papel de las matemáticas en 
la comprensión del mundo y su devenir. A lo largo de estas pági­
nas hemos perfilado el riquísimo contexto histórico que le tocó 
en suerte vivir. Una larga nómina de protagonistas (D'Alembert, 
Condorcet, Lavoisier, Carnot, Legendre, Lagrange, Monge, 
Fourier ... ) ha desfilado por estas páginas, asistiendo al naci­
miento convulso de la modernidad política y científica. Laplace 
fue, sucesivamente, vasallo del rey, ciudadano de la República, 
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ministro, senador, conde del Imperio napoleónico y marqués de 
la monarquía borbónica restaurada. Siempre maptuvo buenas re­
laciones con el poder de turno, de modo que las cambiantes cir­
cunstancias· políticas francesas no fueron un obstáculo para su 
ambición personal ni sus planes y programas científicos. Es así 
que puede decirse que fue el último filósofo natural y el primer 
científico moderno, porque pensaba la naturaleza en términos 
exclusivamente matemáticos, excluyendo cualquier disquisición 
metafísica. 

William Whewell (1794-1866) popularizó el término cientijico 
(scientist) a mediados del siglo XIX, en la década de 1840, pero no 
fue quien lo acuñó. Lo hizo el sanguinario Jean-Paul Marat, quien 
en 1792 fue la primera persona que etiquetó a los sabios (savants) 
como científicos (scientijiques), al referirse burlonamente a su 
proyecto de medir la Tierra para crear un sistema de pesos y me­
didas uniformes. Laplace vivió a caballo entre esos dos mundos y, 
de facto, lideró gran parte .del proceso revolucionario por el que 
los sabios dieciochescos se transformaron en los cientijicos deci­
monónicos. Los primeros pertenecían aún al Antiguo Régimen; los 
segundos, a la nueva sociedad surgida al calor de la Revolución, 
donde los matemáticos no eran ya servidores del rey sino de la 
nación. La ciencia adquirió nuevos roles en el servicio público, 
tanto en la educación como en la resolución de problemas socia­
les. El nuevo mundo político sustentaba al nuevo profesionalismo 
científico que Laplace ayudó a alumbrar. 

Asimismo, él fue probablemente el primer positivista. Fue la 
ciencia del cielo, en cuanto mecánica celeste, la que gozó de un 
estatuto privilegiado debido a su capacidad para expresarse en el 
lenguaje de las matemáticas y para predecir con gran exactitud 
acontecimientos futuros. Y fue esta ciencia la que, con Laplace 
como punto de inflexión, proporcionó los ingredientes metodoló­
gicos de la nueva ciencia contemporánea que comenzó su anda­
dura con la Revolución francesa y llega hasta nuestros días. Para 
Laplace la mecánica celeste era el paradigma de lo que tenía que 
ser una ciencia. El modelo que debía marcar las pautas de la in­
vestigación científica. La receta era simple: calcular y predecir. 
Había que aplicar al mundo terrestre la misma forma de proceder 
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en el mundo celeste. Toda una lección de filosofía positivista de la 
ciencia. En cierto modo, Laplace anticipó la doctrina del filósofo 
decimonónico francés Auguste Comte (1798-1857), para quien la 
astrononúa mecánica era la primera de las ciencias, el espejo en 
el que el resto habían de mirarse. Convencido de la universalidad 
y la potencia de las matemáticas, Laplace partió a la conquista de 
múltiples territorios que hasta entonces se habían escapado, como 
la teoría de la probabilidad, la estadística, la demografía, la mate­
mática electoral, la teoría del calor, etc. Y contribuyó con su tena­
cidad a forjar una extraña convicción, fortalecida a la vez por la 
cultura de los ingenieros, según la cual las matemáticas están en 
la base de todo conocimiento y toda acción. Una senda por la que 
aún hoy caminamos. 

LOS ÚLTIMOS AÑOS 

En marzo de 1823 se cumplió el cincuenta aniversario de la en­
trada de Laplace en la Academia. La celebración, realizada el 24 
de abril, fue un acto muy especial en que se le rindió tributo como 
gran patrón de la ciencia francesa. De los colegas académicos que 
le habían dado la bienvenida a la Academia en 1 773 apenas si que­
daba alguno vivo. Condorcet, Lavoisier y Bailly habían sido vícti­
mas de la Revolución. Lagrange, Monge, Delambre y Berthollet 
habían muerto, respectivamente, en 1813, 1818 y, por partida 
doble, en 1822. Solo Legendre, con quien le unía un acendrado 
antagonismo, vivía todavía. 

Laplace se mantuvo mentalmente activo hasta prácticamente 
el final de sus días, pese a que diversos achaques le fueron mi­
nando la salud. Fue en este tiempo cuando comenzó a interesarse 
por la vida privada de su admirado Newton, con quien ya le com­
paraban en vida. Trataba de comprender qué podía haber llevado 
al ilustre inglés a abandonar la ciencia por la teología y a dar a 
Dios un papel tan central en el sistema del mundo. Y, sin embargo, 
él, el Newton de la Francia revolucionaria y napoleónica, había 
imaginado un universo por completo determinista. 

LA ESTRELLA SE APAGA 161 



162 

Un frío día de finales de febrero de 1827 Laplace se sintió mal 
al llegar a casa tras una sesión en la Oficina de Longitudes. La 
fiebre le obligó a guardar reposo. Al día siguiente su condición 
empeoró. Nunca más se levantaría del lecho. El sábado 3 de marzo 
se encontró un poco mejor y pudo recibir a las visitas. Poisson, 
acompañado de Bouvard, se acercó a su maestro: <<Monsieur La­
place, aquí está vuestro buen amigo Bouvard, cuyos cálculos ayu­
daron a alumbrar vuestros bellos descubrimientos sobre Júpiter y 
Saturno, cuya fama nunca morirá». Con voz clara, tras un mo­
mento de silencio, Laplace pronunció lo que serían sus últimas 
palabras: «Lo que conocemos es muy poco, lo que ignoramos es 
inmenso ... El hombre solo persigue quimeras». Unas palabras que 
no pudieron sino recordar a los presentes aquellas otras de 
Newton: «Veo que he sido corno un niño pequeño, jugando en la 
orilla del mar [ .. . ] mientras el gran océano de la verdad se exten­
día inexplorado ante mí». 

Laplace murió a las nueve de la mañana del lunes 5 de marzo 
de 1827. Newton lo había hecho exactan1ente una centuria antes, 
el lunes 20 de marzo de 1727. 
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