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KURT GODEL cambié con su trabajo lo manera de entender los matematicas.
Los dos «teoremas de incomplefitud» que formuld en 1931 revelaron, por medio
de las herramientas de lo l6gica formal, lo fragilidad de los fundomentos del gran
edificio matemdtico que se venia construyendo laboriosamente desde la época de
Fuclides. En adelante, la comunidad cientifica iba a verse obligada a admifir que la
validez de una conjetura podia estar més alld de todo intento racional de demostro-
Gion, y que la intuicion nunca podria ser desterrada del reino de los matemdticas.
Formado en la prolifica Viena de entreguerras, GGdel pronto se interesd por la episte-
mologia y los teorias de la demostracion. Como su amigo Albert Einsfein, cuestiond
lus certezas de la ciencia del momento y, del mismo modo, su vida estuvo marcada
por la querra y el exilio.
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Introduccion

En el afio 1930, el 16gico checo Kurt Godel demostré un teorema,
hoy conocido como el «teorema de incompletitud de Godel», que
cambié para siempre el modo de entender las matematicas. Esen-
cialmente, el teorema de Godel demuestra que si se utilizan méto-
dos de razonamiento seguros y confiables, métodos a prueba de
error, entonces es inevitable que existan problemas matematicos
que nunca podran ser resueltos. Siempre habra problemas mate-
maticos cuya solucién estara fuera del alcance de esos métodos.

Antes de que Godel expusiera por primera vez su teorema,
los matematicos tenian una confianza ilimitada en el hecho que,
con suficiente tiempo, paciencia y esfuerzo, todo problema plan-
teado podria ser resuelto. Una famosa lista de 23 problemas, por
ejemplo, habia sido presentada por el matemdtico aleman David
Hilbert en la conferencia inaugural del Segundo Congreso Inter-
nacional de Matematicas, celebrado en Paris en 1900. En su con-
ferencia, muy memorable y estudiada, Hilbert vaticind que sus
23 problemas guiarian gran parte de la investigacién matematica
a lo largo del siglo xx.

Los problemas de Hilbert, obviamente, eran muy dificiles y
estaba claro que muchos de ellos tardarian décadas en ser resuel-
tos, como en efecto asi fue. El décimo problema, por ejemplo, fue
respondido en 1970 (traducido a un lenguaje moderno, ese pro-
blema pedia determinar si cierto tipo de ecuaciones, llamadas



«diofanticas», pueden ser siempre resueltas por un ordenador). El
octavo problema, por su parte, conocido como la «hipétesis de
Riemann», todavia no ha sido resuelto. Sin embargo, ni Hilbert, ni
ninguno de sus colegas en aquel afo de 1900 dudaba de que, tarde
o temprano, se encontraria solucién a todos los problemas. El
propio Hilbert resumié este pensamiento en la frase: «Debemos
saber, sabremos» (« Wir miissen wissen, wir werden wissen» en
aleman), frase con la que se sinti6 tan identificado que inclusive la
hizo inscribir en su epitafio, tal vez como un mensaje a las genera-
ciones futuras, o tal vez como un desafio péstumo a Goédel (Hil-
bert fallecié en 1943, trece afos después de que Godel anunciara
su teorema).

Ahora bien ;qué es exactamente un problema matematico?
.Qué queremos decir cuando afirmamos que los problemas de Hil-
bert eran dificiles? ;Puede considerarse dificil el desafio: «calcule
la suma de todos los niimeros entre uno y un millén»?

La mayoria de los problemas que estudia la ciencia matema-
tica tienen la forma de una «conjetura». Una conjetura es una afir-
macion de la que se sospecha que es verdadera, pero de la que
todavia no se sabe con certeza si es verdadera o falsa. Un ejemplo
famoso es la llamada «conjetura de Goldbach», conocida con ese
nombre porque fue formulada por primera vez por el matemético
prusiano Christian Goldbach, en 1742:

Cualquier nimero par mayor que 2 puede escribirse como la suma
de dos nimeros primos.

Los ntimeros primos son aquellos que solamente son divisi-
bles por 1 y por si mismos; el nimero 1, por razones técnicas, no
se considera primo. Veamos, por ejemplo, que lo que afirma la
conjetura se cumple para los nimeros pares hasta el 12:

4=2+2
6=3+3
8=3+5
10=3+7
12=565+7
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La conjetura habla de los pares mayores que 2, por lo que el 2
mismo queda fuera de la lista. Si se pudiera encontrar un solo
ejemplo en el cual la conjetura fallara; es decir, si se encontrara
un «contraejemplo», un nimero par que no pudiera escribirse
como suma de dos primos, entonces la conjetura seria falsa. Tal
contraejemplo todavia no ha sido hallado, de hecho, en el mo-
mento de escribir estas lineas, se ha comprobado, usando ordena-
dores, que todos los nimeros pares hasta 10'® (un 1 seguido de 18
ceros) pueden escribirse como suma de dos primos.

Pero, ;cémo podria justificarse que es verdadera, si ése fuera
el caso? ;Que la conjetura haya sido verificada para todos los
nimeros pares hasta 10'® es suficiente para asegurar que es ver-
dadera? No, porque podria fallar en el nimero par inmediato si-
guiente a 10" (que es 10'*+2). ;Y si la verificamos para 10" +2,
basta con eso? No, porque podria fallar para 10® + 4. Y asi suce-
sivamente, no importa cuintas verificaciones empiricas hagamos,
nunca podremos abarcar a todos los niimeros pares, porque es-
tos nunca se terminan, siempre habra una infinidad de nimeros
pares que hayan escapado a nuestras verificaciones, entre los
cuales podria esconderse un contraejemplo.

Si la conjetura fuera verdadera, la Gnica forma de compro-
barlo es mediante una «demostracién». Es decir, mediante un ra-
zonamiento general que pruebe la afirmacién de una vez para todos
los casos posibles. Veamos una muestra de demostracién (por su-
puesto, no podemos mostrar una demostracién de la conjetura
de Goldbach, porque hasta ahora nadie ha encontrado ninguna).
A modo de ejemplo, demostremos la afirmacién: «Todos los niime-
ros primos mayores que 2 son impares», La afirmacién involucra a
una infinidad de nimeros (a todos los primos mayores que 2); sin
embargo, podemos abarcarlos a todos en un mismo razonamiento:

Todos los niimeros primos mayores que 2 son impares. Demostra-
cién: Si hubiera un niimero primo mayor que 2 que fuera par, enton-
ces ese numero seria divisible por 2, pero eso es imposible porque,
al ser primo, solo puede ser divisible por 1 y por si mismo. Es impo-
sible que sea muiiltiplo de 2, entonces es imposible que sea par; por
lo tanto, es impar.
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Podemos entender una demostracién como un razonamiento
que engloba, en una sola argumentacién, una cantidad potencial-
mente infinita de casos particulares. Todos los problemas mate-
maticos «dificiles» involucran a una cantidad potencialmente
infinita de objetos, ya sean niimeros, ecuaciones u otros. Por ese
motivo, «calcular la suma de todos los nimeros entre uno y un
millén», aunque largo y trabajoso, no es «dificil» en el sentido que
le dan a esa palabra los matematicos, ya que el cilculo implica a
una cantidad bien definida de nimeros y dicha operacién puede
completarse en un lapso de tiempo que empieza y termina, sin
extenderse indefinidamente.

Resolver el problema que plantea la conjetura de Goldbach
(o, en realidad, el que plantea cualquier otra conjetura) consiste
en encontrar un contraejemplo que la refute, o una demostracién
que la pruebe.

Ahora bien, si alguien propone un razonamiento que supues-
tamente demuestra una conjetura, ,cémo podemos estar seguros
de que ese razonamiento es correcto? Si surge una controversia,
es decir, si alguien no estd convencido de que el razonamiento es
valido, ;jcuales son los criterios que permiten zanjar la duda acerca
de la validez de la demostracién? Antes de contestar a estas pre-
guntas, veamos otro ejemplo histérico.

En 1909, el matematico francés Emile Borel definié el con-
cepto de «nimero normal». No es necesario para nuestros fines
entrar en todas las complejidades de la definicién de Borel, basta
con decir que un nimero es normal cuando sus cifras decimales
se comportan estadisticamente como si hubieran sido generadas
al azar, y que esto sucede tanto si el nimero se escribe en base 10
(como es usual), o en binario, o en hexadecimal o en cualquier
otrabase de numeracion. Por ejemplo, esta claro que 0,101010101...
no es un nimero normal (sus cifras decimales se comportan
demasiado prolijamente como para parecerse a cifras generadas
al azar). Por el contrario, se conjetura que m=3,1415926... y
2= 1,41421356... si son nimeros normales, aunque esta conjetura
no ha sido todavia demostrada, ni refutada.

El caso es que Borel, ademas de definir los nimeros norma-
les, demostré que existe una infinidad de ellos, es decir, que el
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listado de niimeros normales jamas se termina. Sin embargo, su
demostracion usaba unos métodos muy indirectos; podriamos
decir que mas que demostrar que habia una infinidad de niimeros
normales, demostré que esa infinitud de nimeros no podia no
existir. Ahora bien, el punto central de esta historia es que ni
Borel, ni nadie, era capaz de aportar en 1909 ni siquiera un solo
ejemplo de nimero normal. Habia algunos nimeros, como los
mencionados mas arriba, de los cuales se sospechaba que eran
normales, pero ninguno del que se supiera con certeza que lo era.
Es decir, Borel demostro6 que existian infinitos niimeros de cierto
tipo, pero no podia mostrar un ejemplo de ellos. ;Es aceptable
esta situacién? ;Podemos admitir que se hable de nimeros de los
cuales no se puede mostrar ni siquiera un ejemplo? A principios
del siglo xx muchos matematicos comenzaron a desconfiar de
estas demostraciones que involucraban familias (como la de los
nimeros normales) formadas por infinitos niimeros. Desconfia-
ban de que fuera licito trabajar con esas familias usando las mis-
mas reglas que se usan para familias finitas (es decir, que no se
extienden indefinidamente). Esta desconfianza estaba avalada por
el hecho de que en 1902, el filésofo y matemadtico britdnico Ber-
trand Russell habia encontrado algunas contradicciones légicas
asociadas a razonamientos de ese tipo.

A principios del siglo xx, la cuestion de cémo determinar la
validez de un razonamiento matemaético no estaba nada clara.
Habia muchas controversias y discusiones al respecto que di-
vidian fuertemente la opinién de los matematicos. Pero final-
mente, después de casi un cuarto de siglo de debates, en 1930
se lleg6 a un acuerdo acerca de cudles eran los criterios claros
y concretos que debia cumplir una demostracién para ser acep-
tada como correcta, criterios objetivamente establecidos més
alld de cualquier subjetividad. Esencialmente, el criterio consis-
tia en que los razonamientos pudieran ser verificados por un
ordenador, un juez imparcial que se limitaba a calcular sin caer
en engaiios lingiiisticos. Desde luego, esa es la version actual
del acuerdo al que llegaron los matematicos, ellos lo expresa-
ban de modo diferente, ya que en 1930 atn no existian los orde-
nadores.
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Pero, precisamente en el lugar y el momento en que los mate-
maéticos se habian reunido para acordar cudles eran los métodos
de razonamiento seguros y confiables, aquellos que jamés los po-
drian conducir a error, Kurt Goédel levanté la mano (literalmente)
para pedir la palabra y anunciar su teorema de incompletitud: si
nos atenemos a esos métodos a prueba de error, entonces siempre
habran conjeturas verdaderas que no podran ser demostradas,
siempre habran problemas matematicos que no podran ser re-
sueltos. Podemos tener métodos de razonamiento seguros, pero
de esa forma habréan problemas que siempre seremos incapaces de
resolver. O podemos tener la capacidad potencial de resolver
todos los problemas, pero sin la certeza de que los hemos resuelto
bien. Nunca podremos tener certeza en los métodos y a la vez la
potencialidad de resolver todos los problemas.

En realidad Gédel presenté dos teoremas de incompletitud,
el primero de los cuales es conocido asimismo como «el teorema
de Godel», mientras que el segundo también recibe el nombre de
«segundo teorema de Godel».

Este libro es la historia del descubrimiento de Godel y de sus
consecuencias para la filosofia de las matemadticas. En el primer
capitulo se expone el proceso histérico que lleva a la controversia
sobre los métodos de demostracién en matemaéticas y cudl fue el
papel que jugé en ella el teorema de Godel, y en el segundo capi-
tulo se expone el teorema en si y una explicacién de cémo fue
demostrado por Godel. Ahora bien, en una etapa histérica en la
que casi todos los métodos de demostracién matematica estaban
en entredicho ;c6mo escapd Godel a esa controversia? Es decir,
;como logré convencer a todos de que su demostracién si era
correcta? La respuesta a esta pregunta es analizada en el tercer
capftulo, mientras que el cuarto estd dedicado a otros trabajos de
Godel, entre ellos sus investigaciones sobre la teoria de la relati-
vidad. En el quinto, y dltimo capitulo, se discuten algunas conse-
cuencias filoséficas del teorema de Godel relacionadas con la
naturaleza de la verdad matematica.
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1906 El 28 de abril nace Kurt Gédel en
Brno, Imperio austrohiingaro (actual
Repiiblica Checa), hijo de Rudolf Gédel
y Marianne Handschuh. Tiene solo
un hermano, mayor que él, llamado
Rudolf, como su padre.

1912 Gédel sufre un ataque de fiebre
reumédtica; esta enfermedad ser4 el
disparador de su hipocondria, un rasgo

dominante en su personalidad.

1923 Ingresa en la Universidad de Viena para
estudiar fisica tedrica; sin embargo,
las clases del profesor Philipp
Furtwingler hardn que se vuelque en
las matematicas.

1926 Es invitado a participar del Circulo
de Viena, un grupo de intelectuales
fundado en 1922 por el filésofo aleman
Moritz Schlick que se retinen a discutir
sobre ciencia y epistemologia. En
este ambito, Gtdel toma contacto con
los debates en torno a la teoria de la
demostracién y decide dedicarse a la
légica matematica.

1929 Godel completa su tesis doctoral,
que presenta al afio siguiente ante la
Universidad de Viena.

1930 Del 5 al 7 de septiembre se celebra en
la ciudad de Koénigsberg un congreso
dedicado al tema de la teoria de la
demostracion y temas relacionados
con ella. En la sesion plenaria del 7 de

septiembre Gédel anuncia por primera
vez su teorema de incompletitud.

1931 Se publica Sobre las proposiciones
Jormalmente indecidibles de los
Principia Mathematica y sistemas
relacionados, el articulo que contiene
el enunciado y la demostracion de su
teorema de incompletitud.

1933 Es nombrado Privatdozent (docente ad
honérem) en la Universidad de Viena.
Comienza una serie de viajes a Estados
Unidos para dictar diversos cursos
y conferencias.

1938 Se casa con Adele Porkert, una
bailarina divorciada, seis afios mayor
que éL

1939 Presionado por los nazis, que han
tomado el control de Austria, Godel
y su esposa huyen a Estados Unidos.
Nunca volverdn a Europa.

1940 Godel se incorpora al Instituto de
Estudios Avanzados de Princeton,
donde inicia una cédlida amistad con
Albert Einstein.

1951 Dicta la conferencia Gibbs, en la que
analiza algunas posibles consecuencias
filosé6ficas de su teorema de
incompletitud.

1978 Kurt Godel fallece en el hospital de
Princeton la tarde del 14 de enero.
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CAPITULO 1

La crisis de los fundamentos

A principios del siglo xx las matematicas
atravesaban una de sus crisis mas profundas.

El primer tercio del siglo fue testigo de un debate acerca
de qué métodos de razonamiento debian considerarse como
validos y si debia, o no, aceptarse la existencia del infinito.
Kurt Godel estaba destinado a intervenir en esta crisis
de un modo decisivo. Pero, ;como lleg6 a gestarse
ese debate? ;Por qué, después de mas de dos mil
quinientos ainos de éxito ininterrumpido, los
matematicos comenzaron a dudar
de su propia ciencia?






Todos los grandes hombres y mujeres de la historia alguna vez
fueron nifnos. Aunque es una verdad de Perogrullo, una afirmacién
que no puede sorprendernos, sin embargo no deja de ser curioso
pensar que hubo un dia en el que Mozart no conocia ain ni si-
quiera el nombre de las notas musicales, que hubo un momento
en el que Leonardo da Vinci todavia no habia mezclado colores...
o un tiempo en el que Kurt Godel atin no habia estudiado l6gica.
Pero, a pesar de que el conocimiento todavia no habia llegado, la
mente inquisitiva ya estaba alli desde el principio. En efecto, du-
rante su infancia en la ciudad checa de Brno, Gddel fue un nifio
tan curioso, tan lleno de ansias de saber, tan insistente en sus
preguntas acerca de todo lo que veia, que su familia lo llamaba
Herr Warum, que en alemén significa «El Sefior Por qué».

Su padre, Rudolf, habia nacido en Viena y abandonado tem-
pranamente sus estudios para dedicarse al comercio, con gran
éxito. En 1906, en el momento de nacer su hijo Kurt, Rudolf Gédel
era director y copropietario de una de las empresas textiles méas
importantes de Brno, lo que no es poco decir, ya que Brno era una
de las ciudades industriales més importantes del Imperio austro-
hingaro y destacaba precisamente por la calidad y cantidad de
sus industrias textiles.

Rudolf Godel tuvo dos hijos: el mayor, también llamado Ru-
dolf, y Kurt. Ninguno de los dos sigui6 sus pasos en el camino de
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la industria o el comercio. Rudolf hijo llegé a ser un médico muy
reconocido en Viena, donde dirigié una importante clinica. Kurt,
por su parte, es considerado el légico mas influyente de los tiem-
pos modernos, el mas relevante desde Aristételes y uno de los pen-
sadores mas trascendentes del siglo xx. La madre de estos dos
nifos se llamaba Marianne, era alemana, y habia estudiado litera-
tura tanto en su pais como en Francia. Podemos adivinar en ella
una sensibilidad artistica diferente a la de Rudolf padre, y es tal vez
por eso que Kurt, que fue un nifio timido e introvertido, estuvo
siempre muy apegado a ella. Muchos de sus bidgrafos dicen que
Kurt se sentia un poco perdido cuando su madre no estaba en casa.
La timidez y la introversion lo acompanarian durante toda su vida.
Godel nunca fue el alma de las fiestas; nadie se reia a carcajadas
con sus chistes, pero tampoco lo necesitaba. Las mentes mas bri-
llantes del siglo xx le prestaron atencién, no por sus bromas sino
por sus ideas, que cambiaron el modo de ver las matematicas y tal
vez la ciencia. A lo largo de su vida cultivé pocas, aunque muy in-
tensas amistades. Uno de sus amigos mas entrafiables fue Albert
Einstein, quien méas adelante regresara a estas paginas.

En la escuela fue un alumno brillante. Destacaba en matema-
ticas, por supuesto, y también en idiomas. Ain hoy, muchos de
quienes viven en Europa Oriental conocen, aunque sea un poco,
los idiomas de sus vecinos; algo de checo, una pizca de aleméin,
algunas palabras de ruso, etcétera. Godel, que consideraba el ale-
man como su lengua nativa, probablemente no fuera la excepcion
a esta regla. Pero aun en ese contexto poliglota, su gusto y su fa-
cilidad para los idiomas eran notables. Ya desde joven hablaba y
escribia perfectamente en inglés y en francés; en los afos sucesi-
vos su biblioteca siempre contuvo una gran cantidad de dicciona-
rios y gramaticas de diversas lenguas.

Cuando tenia seis afios, Godel sufrié una crisis de fiebre reu-
matica que lo mantuvo en cama durante varios dias, y de la que se
recupero por completo, al menos fisicamente. Tiempo después, su
curiosidad natural lo llevé a leer acerca de la enfermedad que
habia padecido. A través de esas lecturas se entero de que la fiebre
reumatica puede dejar como secuela una debilidad crénica del
corazon; y Godel pasé toda su vida convencido de que ese habia
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sido el caso, aunque los médicos le aseguraron lo contrario una y
otra vez. Mas todavia, sin ningiin motivo racional, pasé el resto de
su vida bajo la certidumbre de que si su corazén se enfriaba, mo-
riria. Tanto es asi que, aun en dias de intenso calor, Gédel usaba
siempre ropa de abrigo.

Muchos afios después, su hermano Rudolf atribuiria a esta
primera crisis el origen de la profunda hipocondria que seria una
de las caracteristicas mas destacadas de la personalidad de Kurt.
Tal vez fuera también el origen de las muchas crisis de salud que,
por razones fisicas o psicolégicas, el gran genio sufriria a lo largo
de toda su vida y que muchas veces lo mantuvieron postrado du-
rante semanas, alejado de todo trabajo intelectual.

Mientras que en 1912, a sus seis afos de edad, Kurt Goédel, que
aiin no sabia nada de légica, sufria la primera crisis de su vida, las
matemadticas como ciencia atravesaban también su propia crisis,
y en ambos casos dejarian profundas huellas. Y aunque por aquel
entonces auin no lo sospechaba, Gédel estaba destinado a interve-
nir de manera decisiva en la segunda.

EL INFINITO DE ARISTOTELES

La crisis que atravesaban las matemaéticas en 1912, y que hoy es
conocida como la «crisis de los fundamentos», se habia desenca-
denado en 1902, cuatro afios antes del nacimiento de Godel, a raiz
de una muy breve carta que Bertrand Russell le escribié a su co-
lega, el alemén Gottlob Frege.

«El infinito siempre es en potencia, nunca en acto.»

— PALABRAS DE ARISTOTELES EN SU METAFISICA.

Es imposible entender cémo una carta de apenas una pagina
desencadené una polémica que duraria mas de veinticinco afios a
menos que estudiemos el devenir histérico que llevd a esa precisa
encrucijada. En realidad, la carta de Russell a Frege no fue mas
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que la piedrecilla que desencadend el alud que se habia venido
gestando durante décadas. El proceso histérico que llevo a ese
punto comenzd con Aristételes y con uno de los conceptos mas
esquivos, dificiles y maravillosos que haya creado el pensamiento
humano: el infinito.

;Qué es el infinito? ;Qué queremos decir, por ejemplo,
cuando afirmamos que la secuencia 1, 2, 3, 4, 5,... es infinita? En
el siglo v a.C., Aristételes postuld que podemos responder a esta
pregunta de dos maneras diferentes.

Para visualizar la primera forma de entender el infinito, imagi-
nemos un pueblo milenario que se haya impuesto la tarea, transmi-
tida de generacién en generacién, de contar y anotar todos los
nimeros de lasecuencia 1, 2, 3, 4, 5,... ;Podran algin dia anotarlos
todos? La verdad es que no importa si dedican a esa tarea anos,
décadas o miles de millones de siglos; nunca jamas terminaran de
contarlos y anotarlos por completo. El motivo es que cualquiera
que sea el punto hasta donde haya llegado la cuenta, siempre ha-
bra un niimero mas por escribir. Si llegaron hasta el 100, les habra
faltado el 101. Si llegaron hasta el 1000, les faltard el 1001. Si llega-
ron al trillén, les faltara an el trillén mas uno. Nunca llegaran al
ultimo nimero, simplemente porque ese tltimo nimero no existe.

Observemos, sin embargo, que las anotaciones de ese hipoté-
tico pueblo en ningliin momento contendran una totalidad infinita
de niimeros. En los primeros tiempos habran anotado unos cien-
tos, luego unos miles, mas tarde unos millones o billones de ni-
meros, pero siempre la cantidad anotada sera finita (porque con
el tiempo suficiente los nimeros anotados podrian recorrerse
completamente de principio a fin). La infinitud de la secuencia se
manifiesta en la caracteristica casi inasible de «nunca terminar»,
una propiedad futura inalcanzable, no un rasgo presente de modo
positivo. A esta forma de ver el infinito Aristételes la llamé el «in-
finito potencial», o «infinito en potencia».

La segunda forma de pensar el infinito consiste en verlo como
una particularidad presente «en acto». En este caso, no debemos
pensar en un pueblo milenario que anota niimeros generacion tras
generacion, sino en un ser sobrenatural que los ha anotado todos,
absolutamente todos, en un acto de voluntad casi divina (seria
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inadecuado decir que los ha anotado de principio a fin, porque no
hay un fin). Es muy dificil, por no decir imposible, captar lo que
esto implica. ;Somos capaces de representarnos un todo que esta
integramente presente pero que nunca, absolutamente nunca, ter-
mina? De hecho, es imposible mostrar situaciones «reales» en las
que el infinito en acto aparezca. La vida entera del universo, con-
tada desde el Big Bang, tiene una cantidad solo potencialmente
infinita de segundos. Segiin las teorias vigentes, el universo en su
totalidad tendria solamente una cantidad finita de particulas suba-
témicas. Ya sea porque en verdad es inimaginable, ya sea porque
no existe en la realidad fisica, ya sea por razones filos6ficas mas
profundas, Aristételes dictaminé que el infinito en acto no existe.

«Hay un concepto que es el corruptor y el desatinador
de los otros. No hablo del Mal cuyo limitado imperio
es la ética; hablo del infinito.»

— JorGe Luis BORGES. AVATARES DE LA TORTUGA, EN Discusion (1932).

Alo largo de siglos, concretamente hasta bien entrado el siglo
xX1x, este rechazo al infinito en acto fue sostenido uninimemente
por la ortodoxia occidental, tanto filoséfica como matematica. En
la Edad Media, el pensamiento escolastico reforzé este rechazo al
agregarle una dimension religiosa. El infinito en acto, segin los
escolasticos, era un atributo exclusivo de la Divinidad, y preten-
der que la mente humana fuera capaz de abarcarlo o compren-
derlo por entero era, por lo tanto, una herejia.

A modo de pequeiia muestra, exhibamos tres ejemplos en los
que este rechazo al infinito en acto se hizo manifiesto. El primero
es breve, aunque terrible. En el ano 1600, Giordano Bruno fue
condenado a morir en la hoguera en parte por haber afirmado en
una de sus obras que el universo contiene infinitos mundos. El
segundo ejemplo: en 1638, Galileo Galilei plante6 un argumento
matematico que, segin la visién de la época, demostraba que el
infinito en acto es un concepto contradictorio en si mismo. El ra-
zonamiento, conocido como la «paradoja de Galileo», dice asf:
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EN POTENCIA O EN ACTO

En el siglom a.C., Euclides de Alejandria
escribio los Elementos de geometria, el
libro de matematicas mas influyente de
todos los tiempos (tanto que hasta
principios del siglo xix todavia era usa-
do como libro de texto en algunas uni-
versidades europeas). La obra de Eucli-
des esta dividida en trece libros, y el
séptimo, el octavo y el noveno estan
dedicados a la aritmética. La proposi-
cién 20 del Libro IX enuncia que hay
infinitos numeros primos, pero es inte-
resante observar el modo exacto en
que esta afirmacion esta expresada:
«Hay mas numeros primos que cual-
quier cantidad [finita] propuesta de
numeros primos». Es decir, en el enun-
ciado de Euclides se hace referencia a
un infinito en potencia, no en acto. No
se dice que «hay infinitos primos», sino
que «dada cualquier cantidad finita de Estatua de Euclides en el Museo de Historia
primos, siempre hay alguno mas». Natural de la Universidad de Oxford.

pensemos una vez mas en la secuencia 1, 2, 3, 4, 5,... Contenida en
esta secuencia, encontramos a la formada por los niimeros cua-
drados, que son aquellos que se obtienen multiplicando un nu-
mero por si mismo: 1, 4, 9, 16, 25,...

Ahora bien, basados en el principio aristotélico de que el todo
es mayor que cualquiera de sus partes, debemos concluir que hay
més niimeros en general que niimeros cuadrados en particular,
siendo que estos son solamente una parte de aquellos.

Pero, decia Galileo, si las secuencias 1, 2, 3,4, 5,...y 1, 4, 9,
16, 25,... fueran infinitas en acto, entonces seria posible establecer
un emparejamiento perfecto entre ambas. Al 1 le corresponderia
el 1, al 2 le corresponderia el 4, al 3 le corresponderia el 9 y asi
sucesivamente:
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Cada nimero de la primera secuencia se corresponderia
exactamente con otro de la segunda, sin que faltara o sobrara

ninguno por cualquiera de ambas partes. Si pueden emparejarse
perfectamente, esto quiere decir que hay tantos niimeros cuadra-

dos como nimeros en general, contradiciendo lo que dijimos.

previamente: la parte seria igual al todo, no menor que él. El in-
finito en acto, concluyé Galileo, es un absurdo. De hecho, casi
doscientos cincuenta afios después el matematico alemén Georg
Cantor (1845-1918) se encontraria ante la misma situacién, pero
su conclusion seria exactamente la opuesta. Cantor concluyé
que el principio aristotélico omne totum est maius sua parte
—~«el todo es mayor que las partes»— debe ser abandonado
cuando se habla del infinito.

El tercer ejemplo es un parrafo de una carta escrita en 1831
por el matemético aleman Carl Friedrich Gauss (1777-1855):

Protesto contra el uso de magnitudes infinitas como algo completo,
lo que en matematicas nunca se permite. El infinito es simplemente
una forma de hablar, el significado real es un limite con ciertos ran-
gos de aproximacién indefinidamente cercanos, mientras que a otros
se les permite incrementarse sin restriccion.

Decia Gauss que el infinito es solamente una magnitud (siem-
pre finita) a la que se le permite crecer sin limitaciones y que
nunca puede ser entendido como algo completo. Una vez més,
vemos rechazado el infinito en acto.

Estos son solamente tres ejemplos de los muchos que podrian
citarse en el mismo sentido. Sin embargo, apenas cuarenta afios
después de la carta de Gauss, Georg Cantor se vio forzado a intro-
ducir en las matematicas, y en el pensamiento humano en general,
a ese monstruo tantas veces resistido: el infinito en acto.
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ARQUIMEDES Y EL INFINITO

El Método de Arquimedes (siglo
a.C.) se considerd perdido duran-
te siglos. Se sabia, por diversas
referencias, que en él el autor des-
cribia los razonamientos fisicos
que le habian permitido conjetu-
rar teoremas geométricos que
después demostraria con todo
rigor légico en sus otros libros.
Sin embargo, el contenido exacto
de la obra permanecié descono-
cido hasta 1906 cuando, para
gran sorpresa de todos, por pura
coincidencia, se descubrit en Es-
tambul una copia de la obra. Se
trataba en realidad de un pa-
limpsesto, es decir, un codice es-
crito en pergamino que habia sido
borrado (por suerte imperfecta-
mente) y reutilizado en la confec-
cién de un manuscrito diferente.
Las técnicas de 1906 permitieron
reconstruir una parte de la obra
original, pero varios fragmentos
no pudieron ser recuperados en
aquel momento. El trabajo reco-  Arquimedes por Jean Goujon. Fachada del palacio
menzo a principios del siglo xxi,  del Louvre, Paris.

cuando un grupo de expertos, uti-

lizando técnicas modernas de iluminacion y de analisis de imagenes, lograron
avanzar en el desciframiento de E/ Método. Parte de lo que descubrieron su-
giere que Arquimedes trabajé explicitamente con el infinito en acto. La histo-
ria esta narrada en El cddigo de Arquimedes, de R. Netz y W. Noel. Segun
estos expertos, para comparar el volumen de dos cuerpos, Arquimedes los
suponia cortados en infinitas lonjas de ancho infinitesimal y concluia que am-
bos volumenes eran iguales porque era posible emparejar las tajadas que
formaban uno de ellos con las tajadas que formaban al otro. Esto implica, no
solo trabajar con el infinito en acto, sino también admitir la comparacion entre
dos infinitos mediante el emparejamiento de sus componentes, como haria
Cantor a finales del siglo xix. Si estos descubrimientos se confirman, habra que
reescribir una parte de la historia del infinito y otorgarle a Arquimedes, antes
que a Cantor, la prioridad por la introduccion del infinito en acto.
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EL INFINITO DE CANTOR

En 1870, Georg Cantor era un joven y desconocido matematico que
comenzaba a hacer sus primeras investigaciones en la Universidad
alemana de Halle; habia estudiado en Berlin, que en aquella época
era uno de los centros de investigacién matemética mas importan-
tes del mundo (otros centros destacados de la época eran Gotinga,
también en Alemania, y Paris). Alli, en Berlin, entre 1867 y 1869
Cantor habia hecho sus primeros trabajos bajo la direccion de
Leopold Kronecker, quien anos mas tarde se transformaria en su
peor enemigo. Esos primeros trabajos de investigaciéon no impre-
sionaron mucho a sus profesores, quienes incluso opinaron que
Cantor jamas llegaria a crear una obra genuinamente original o
que dejara huella en la historia de las matematicas (opinién errada,
si alguna vez hubo alguna). Y es asi que, en 1870, Cantor debié
trasladarse del centro principal de Berlin a la periferia de Halle.

Cuando un matemético investiga, su objetivo es siempre la re-
solucién de un problema especifico. Incluso hoy en dia, si se le
pregunta a un matematico en qué tema esta trabajando, su res-
puesta seguramente consistira en el enunciado del problema que
esta intentando resolver. Para entender el problema que estudiaba
Cantor en 1870 debemos hablar brevemente de las series de Fourier.

A principios del siglo xix el matematico francés Joseph
Fourier desarrollé un método que le permitia descomponer cual-
quier onda periédica en una sumatoria de ondas elementales es-
pecificas (todas las cuales resultan de modificar la amplitud, la
frecuencia o la fase de una onda inicial tinica). Fourier utilizé este
método con gran éxito para estudiar fenomenos ondulatorios
como la propagacion del calor o la vibracién de una cuerda. Como
estas sumatorias normalmente involucran una cantidad infinita
(en potencia) de ondas, y en matematicas a una sumatoria infi-
nita se la suele llamar una «serie», a este método se le dio el nom-
bre de «series de Fourier». Actualmente sigue siendo una
herramienta esencial en muchas ramas de las matematicas, asi
como de la fisica y de la ingenieria.

En la década de 1860, también en Halle, el matematico ale-
man Eduard Heine trabajaba en el problema de determinar si la
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SERIES DE FOURIER

El matematico francés Jean-Baptiste Joseph Fourier (1768-1830) establecié
a principios del siglo xix gue toda onda o sefal periddica es la sumatoria de,
en general, infinitas ondas sinusoidales. La figura 1 representa una sefal pe-
riodica con saltos o discontinuidades en todos los nimeros enteros impares
(positivos y negativos), mientras gue la figura 2 muestra la onda sinusoidal

bésica.
¥=x ¥ =sen(x)
1{ 1 —
3 /2 a4/ 1 /2 3 2 3w 2 a o1 2 3\
§ - -1
Fi5.1 FIG, 2

La sefial de la figura 1 es la sumatoria de infinitas ondas que resultan de mo-
dificar de diversas maneras la onda basica de la figura 2. Por ejemplo, pode-
mos comprimirla o dilatarla, vertical u horizontalmente, En las figuras 3y 4 se
representan, respectivamente, una dilatacion vertical de la onda de la figura
2 y una compresion también vertical.

descomposicién de una onda periédica en una sumatoria de ondas
elementales es siempre tinica.

La pregunta sobre la unicidad de una cierta descomposicion es
muy comun en mateméticas. Tomemos los niimeros naturales (que
son los nimeros que forman la ya mencionada secuencia 1, 2, 3,
4,...). Recordemos que los niimeros primos son aquellos que sola-
mente son divisibles por 1 y por si mismos (por ejemplo, 2, 3, 5,y 11
son primos, mientras que 9 no lo es porque es divisible por 3).

Se sabe desde hace milenios (ya lo sabia Euclides en el siglo
m a.C.) que todo nimero natural mayor que 1 es, o bien primo, o
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La figura 5 muestra una compresién horizontal de la onda de la figura 2. Las
ondas también pueden estar desplazadas vertical u horizontalmente; en la
figura 6 se representa la onda de la figura 2 desplazada horizontalmente.

y=cos(x)
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y=sen(x/2)

bien se puede escribir como producto de primos. El 1 es un caso
especial que por razones técnicas se deja aparte: no es primo ni
producto de primos, aunque los motivos de esta separacién no son
relevantes en el tema que nos ocupa. Por ejemplo: 12=2x2x 3;
9=3x3; 156 = 3x 5. Ahora bien, ;existird alguna otra forma de escri-
bir el 12 como producto de primos? ;O la escritura 2x2x3 es la
tnica posible? La respuesta es que, salvo variaciones triviales como
cambiar el orden de los ntimeros, o agrupar el 2x2 como 2? la
tnica forma de escribir el 12 como producto de primos es 2x2x 3,
v lo mismo sucede con todos los demds niimeros naturales.
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La descomposicién en primos es siempre tinica y esta unicidad
le agrega una dimensién extra a la descomposicion en si, crea un
vinculo mas fuerte entre los niimeros y sus componentes primos,
una relacién de exclusividad que hace que las propiedades de la
descomposicion (o «factorizacién») en primos sean més potentes.

Heine se preguntaba si existiria un vinculo similar entre una
onda periédica y sus ondas elementales. ;Seria tiinica esa descom-
posicion, asi como es unica la descomposiciéon en primos? En la
década de 1860, Heine logré demostrar que para ciertos tipos de
ondas periddicas (por ejemplo, para aquellas que no tienen «sal-
tos» o discontinuidades), la descomposicién en ondas elementa-
les es realmente tinica. Sin embargo, no habia encontrado una
demostracion general que abarcara todas las situaciones posibles.
Entre otras cosas, no habia podido demostrar la unicidad en el
caso de que en cada periodo la onda tuviera una cantidad infinita
(en potencia) de saltos. De modo que cuando Cantor llegé a Halle
en 1870, Heine le propuso que trabajara en esta pregunta: ;es
siempre Unica la descomposiciéon de una onda periédica, aun
cuando la cantidad de saltos en cada periodo pudiera crecer inde-
finidamente?

Cantor se abocé a estudiar el problema y en 1871 obtuvo una
primera respuesta: la descomposicion de una onda periodica es
unica, aun cuando la cantidad de saltos o discontinuidades crezca
ilimitadamente, siempre y cuando esos saltos estén distribuidos de
una determinada manera. Es decir, para que se garantizara la uni-
cidad, la forma en que los saltos iban apareciendo debia cumplir
ciertas condiciones especificas. Pero encontré algunas dificultades
a la hora de expresar esos requisitos de una manera concreta,
exacta y elegante. Seguramente tenia una intuicién muy precisa de
cudles eran las particularidades que queria enunciar, pero se le
escapaba el modo de transmitirla en palabras claras y precisas.

Entre 1872 y 1873, muy gradualmente, Cantor se fue dando
cuenta de que explicar esas condiciones con claridad implicaba
considerar las discontinuidades de las ondas como conjuntos in-
finitos en acto. Mds aiin, requeria comparar entre si diferentes
conjuntos infinitos, de manera similar a como doscientos cin-
cuenta aiios antes Galileo habia comparado los niimeros naturales
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con los cuadrados (lo que a su vez lo llevaba a abandonar el prin-
cipio aristotélico de que el todo es mayor que las partes). Peor
todavia, descubrié que esa comparacion lo conducia a la deduc-
cién de que habia conjuntos infinitos mas grandes que otros.

Tan revolucionarias eran estas ideas, tan contrarias a todo lo
establecido durante milenios, que Cantor tardé nada menos que
diez afios en aceptarlas plenamente; le llevé una década recono-
cer que necesitaba introducir el infinito actual en las matematicas.
Finalmente, en 1883 escribi6 un largo articulo titulado Funda-
mentos para una teoria general de conjuntos (con el subtitulo
Una investigacion matemdtico-filosdfica sobre la teoria del infi-
nito) en el que no solo defendié la introduccién del infinito en
acto, sino que ademas afirmé que le resultaba completamente ine-
vitable dar ese paso. Cantor inicié su articulo casi pidiendo discul-
pas por su decision:

La precedente exposicion de mis investigaciones en teoria de con-
Jjuntos ha llegado a un punto en el que su continuacion depende de
una extension del verdadero concepto de niimero més alla de los
limites conocidos, y esta extension va en una direccion que hasta
donde yo sé no habia sido antes explorada por nadie.

La dependencia en que me veo respecto de esta extensién del con-
cepto de nimero es tan grande, que sin esta dltima apenas me seria
posible dar sin violencia el menor paso adelante en la teoria de con-
Juntos; valga esta circunstancia como justificacion, o si es necesario
como excusa, por la introduccion de ideas aparentemente extranas
en mis consideraciones.

La teoria de conjuntos a la que Cantor hace mencion era su
forma de denominar el estudio de las totalidades infinitas como si
fueran un objeto en si mismo, y propuso que esta teoria fuera el
fundamento mismo de las matematicas. Los nimeros, sus opera-
ciones y todos los conceptos matematicos podian definirse, segin
Cantor, a partir de nociones conjuntistas.

Pero, ;qué es la teoria de conjuntos? Un conjunto, segin la de-
finicién de Cantor, es «la reunién en un todo de objetos de la reali-
dad o de nuestro pensamiento». Por ejemplo, a los niimeros 1, 2, 3,
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4, 5,... podemos reunirlos en una totalidad que llamamos «conjunto
de los nimeros naturales». Los niimeros son los «elementos» o
«miembros» de esa totalidad y el conjunto pasa a ser un «objeto» en
si mismo, factible de ser estudiado. Podemos pensar también en el
conjunto formado solamente por el nimero 1, o por los dias de la
semana, o por las personas nacidas el 20 de julio de 1899. La teoria
de conjuntos es, entonces, el estudio de las propiedades y las rela-
ciones mutuas de los conjuntos o totalidades.

«La teoria de conjuntos [infinitos] es un campo en el que nada es
evidente por si mismo, cuyos enunciados verdaderos son a
menudo paradéjicos y cuyos enunciados plausibles son falsos.»

— FELix HAUSDORFF, MATEMATICO ALEMAN, EN 1914,

30

La propuesta de Cantor era definir los niimeros y sus opera-
ciones a partir de los conjuntos. ;Cémo puede hacerse esto? Por
ejemplo, el nimero 0 puede definirse como la cantidad de elemen-
tos del conjunto vacio (que es el conjunto que no tiene miembros).
El nimero 1 puede definirse como la cantidad de elementos de
cualquier conjunto que cumpla la propiedad: «el conjunto tiene
algin miembro, y ademas si x e ¥ son miembros del conjunto en-
tonces x = y».

Por otra parte, tenemos la operacién conjuntista llamada
«unién». Dados dos conjuntos, la unién de ambos consiste en reu-
nir en un nuevo conjunto a los elementos de ambos. Por ejemplo,
la unién del conjunto que contiene como elemento a la ciudad de
Paris y del que contiene a la ciudad de Roma, es el conjunto que
contiene a ambas ciudades a la vez. La suma de niimeros se puede
definir, segin la propuesta de Cantor, a partir de esta operacién
conjuntista. Sin es la cantidad de elementos de un conjunto y m es
la cantidad de elementos de otro (que no tenga elementos en comiin
con el primero), entonces n + m se puede definir como la cantidad
de elementos del resultado de la unién de los dos conjuntos.

Como era esperable, y como el mismo Cantor probablemente
habia previsto, su teoria de los infinitos gener6 un fuerte rechazo.
Su antiguo maestro, Leopold Kronecker, llegé a decir de Cantor
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que era un corruptor de la juventud y utilizé su influencia, que no
era poca, para presionar a las revistas cientificas alemanas para
que no publicaran los trabajos de Cantor.

A pesar de la oposicién inicial, con el correr de los afos la
teoria de conjuntos y el infinito en acto comenzaron a ser acepta-
dos. ;Por qué se produjo este cambio? ;Logré Cantor convencer
a Kronecker? Para responder a estas preguntas vale la pena recor-
dar el principio de Planck, que dice que «una nueva verdad cienti-
fica no triunfa porque convence a sus opositores y les hace ver la
luz, sino més bien porque sus opositores terminan muriendo y una
nueva generacion crece familiarizada con ella».

Al escribir estas palabras, Planck pensaba en la mecanica cudn-
tica, pero bien puede aplicarse su principio a la teoria de conjuntos.
A fines del siglo xix una nueva generaciéon de matemadticos, entre
ellos el aleman David Hilbert, empezo a ver en la teoria de Cantor
un aporte fundamental para las matemaéticas. Ya se sabe que la ju-
ventud suele estar bien dispuesta a romper con tradiciones milena-
rias, de modo que es probable que aquella nueva generacion no se
sintiera incomoda al romper con la vision aristotélica del infinito.

En 1890, un ano antes de la muerte de Kronecker, Cantor fue
elegido presidente de la recién creada Unién Matematica Alemana
y su idea de tomar la teoria de conjuntos como base y fundamento
de las matematicas comenzaba a ganar adeptos. Uno de los méis
dedicados fue el 16gico aleman Gottlob Frege.

FREGE Y RUSSELL

Gottlob Frege nacié en 1848; es decir, pertenecia a la misma gene-
racién que Cantor, tres ailos mayor. Sin embargo, Frege estuvo
entre aquellos que aceptaron la teoria de conjuntos desde el co-
mienzo y fue, de hecho, uno de los defensores de la idea de que
debia servir como base y fundamento para todo el resto de las
matematicas.

Aunque estaba de acuerdo con Cantor en su idea general,
Frege tenia fuertes criticas formales hacia su trabajo. Segiin Frege,
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Cantor utilizaba en sus articulos cientificos un lenguaje demasiado
coloquial sin una clara distincién entre axiomas (afirmaciones que
se aceptan sin demostracion) y teoremas (afirmaciones que se de-
muestran a partir de los axiomas). Cantor apelaba todo el tiempo
alaintuicion del lector, practica que Frege llamaba «psicologismo»
y que deploraba por completo. Las matematicas, segin €1, debian
utilizar un lenguaje riguroso, con simbolos especialmente creados.
Todos los razonamientos utilizados debian estar expresados con
claridad en ese lenguaje, sin ambigiiedades y sin apelar a la intui-
cién, lo cual requeria a su vez que se estipulara claramente cuiles
eran los axiomas utilizados. Una vez hecho esto, se podia proceder
ala fundamentacion conjuntista de los niimeros y de sus operacio-
nes. Frege dedicé muchos afios, en realidad casi toda su vida
adulta, a desarrollar este programa. En una de sus obras funda-
mentales, Conceptografia (1879) —Begriffsschrift en aleman—

CONCEPTOGRAFIA

F)
La palabra alemana Begriffs- fox,p)
schrift, que Gottlob Frege usaba A
para referirse a la escritura sim- F(x)
bdlica que cred para la l6gica v b a F(a)
las matematicas, suele traducirse 2
como «conceptografia», que lite- . f(b,a)
ralmente significa «dibujo de r
conceptos». Como se muestra en F(b)
la figura, el simbolismo de Frege F(y)
se asemeja, tal como su nombre F3 I
sugiere, mas a un dibujo lineal Fx.y)
que a un texto escrito. La figura a Fa)
expresa el teorema 71 del libro -y
Begriffsschrift y su traduccion —_—

seria: f es un procedimiento y F

representa una propiedad que se

preserva cuando se aplica el procedimiento 7. Si x cumple la propiedad e y se
obtiene de x por aplicacion del procedimiento f, entonces y también cumple
la propiedad.
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explica su lenguaje simbélico, muy diferente, desde todo punto de
vista, de nuestra escritura habitual (més que un texto parece un
dibujo lineal). Este hecho hizo que resultara muy arduo de com-
prender para los lectores de aquella época (sigue resultando muy
dificil de comprender en la actualidad). Tal vez Frege deseaba de-
liberadamente que su simbologia se apartara del lenguaje natural,
a fin de que no pudiera ser confundida con este, pero estratégica-
mente resulté ser un error, ya que dificulté 1a penetracién de su
obra en el ptiblico que hubiera podido estar interesado en ella.

En 1893, Frege publicé el primer tomo de su Fundamentos de
la aritmética, la primera parte de la obra de su vida, en la que ex-
pone la definicion rigurosa de los niimeros naturales a partir de la
légica y la teoria de conjuntos. Casi una década después, en 1902
(cuatro afios antes del nacimiento de Gédel), cuando ya habia en-
viado a la imprenta el segundo tomo de los Fundamentos, Frege
recibio una carta de Bertrand Russell, fechada en Friday’s Hill, Has-
lemere (Reino Unido) el 16 de junio de 1902 y que apenas ocupaba
una pagina; sin embargo, basté para desencadenar la crisis de los
fundamentos. En su carta, Russell comenzaba elogiando el trabajo
de Frege. Se manifestaba completamente a favor de lo que inten-
taba hacer en sus Fundamentos. «<Pero —decia Russell en la
carta— he encontrado una pequefia dificultad.»

;Cudl era esa «pequena dificultad» que Russell encontré? Uno
de los axiomas en los que Frege basaba la teoria de conjuntos era
el llamado «axioma de comprensiéon». Expresado brevemente,
este axioma dice que a cada propiedad se le asocia un conjunto
(el conjunto de todos los entes que satisfacen esa propiedad). Por
ejemplo, a la propiedad «ser un ntimero par» le corresponde el
conjunto formado por todos los nimeros pares; a la propiedad
«ser un planeta del sistema solar» le corresponde el conjunto de
todos los planetas del sistema solar; y asi sucesivamente.

La primera impresion que uno tiene al leer este axioma es que
se trata de una afirmacion perfectamente inocente, incapaz de ge-
nerar problema alguno. Sin embargo, Russell tomé la propiedad
de «ser un conjunto que no es miembro de si mismo».

Reflexionemos acerca de esta idea de Russell. Para empezar,
los conjuntos estdn formados por miembros (existe también el
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conjunto vacio, que no tiene miembros, pero podemos dejarlo de
lado en nuestro andlisis). Por ejemplo, el conjunto de los planetas
del sistema solar tiene, hasta donde sabemos, ocho miembros:
Mercurio, Venus, Tierra, Marte, Jupiter, Saturno, Urano y Nep-
tuno. El objeto «conjunto de los planetas del sistema solar» es un
ente abstracto, que vive solamente en nuestro pensamiento y que
retine bajo una misma etiqueta a esos ocho planetas. Cada uno de
los miembros de ese conjunto, en cambio, es un planeta concreto,
no un ente abstracto. El conjunto de los planetas del sistema solar
no aparece listado entre sus propios miembros: el conjunto de los
planetas del sistema solar no es un miembro de si mismo. Russell
expresaba esta misma idea de la siguiente manera: «un conjunto
formado por caballos no es un caballo» (podemos montar a ca-
ballo, pero no sobre un ente abstracto). Algunos conjuntos si son
miembros de si mismos. Pensemos, por ejemplo, en el conjunto de
todos los entes abstractos. El mismo es un ente abstracto, y por lo
tanto, un miembro de si mismo.

Regresemos ahora al axioma de comprensién. Asociado a la
propiedad «ser un conjunto que no es miembro de si mismo» te-
nemos el conjunto R, que esta formado por todos los conjuntos
que no son miembros de si mismos. Formulémonos la siguiente
pregunta: jes R elemento de si mismo? Si R es miembro de si
mismo, entonces cumple la propiedad que define a R. Por lo tanto,
R no es miembro de si mismo. Esto es una contradiccién. Pero si
R no es miembro de si mismo, entonces no cumple la propiedad
que define a R. Por lo tanto, si no cumple la propiedad, R si es
miembro de si mismo. Tenemos otra contradiccion.

Es decir, R no puede ser miembro de si mismo, pero tampoco
puede dejar de serlo. Esto es una imposibilidad 16gica. El conjunto
R (cuya existencia es habilitada por el axioma de comprension)
no puede existir porque su existencia genera una contradiccion
légica. Asi, el axioma de comprension, que parecia tan inocente,
es en realidad autocontradictorio. Este descubrimiento se conoce
actualmente como la «paradoja de Russell».

El descubrimiento de que la teoria de conjuntos es contra-
dictoria desencadend la crisis de los fundamentos. Si un axioma
en apariencia tan inocente como el de comprension generaba una
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EL BARBERO DE RUSSELL

En 1904, el filésofo y matematico brita-
nico Bertrand Russell (1872-1970) dio una
version popularizada de su paradoja. En
ella, Russell proponia imaginar un pueblo
en el que hubiera un Unico barbero que
afeitara a todos los hombres que no se
afeitaban a si mismos. Nos preguntamos
entonces si el barbero se afeita, o no se
afeita, a si mismo. La respuesta es que el
barbero no puede afeitarse a si mismo...,
pero que tampoco puede evitar hacerlo.

contradiccién ;qué podiamos esperar de la teoria de Cantor con
sus infinitos en acto y sus «infinitos mas grandes que otros»? La
situacién era peor aun, porque la teoria de Cantor habia pene-
trado en dreas esenciales de las matemadticas, como el célculo o
la topologia.

El descubrimiento de Russell hizo que los matematicos se
cuestionaran la validez de todos los desarrollos matematicos de,
por lo menos, los treinta afios previos. Provocé que pusieran en
duda la validez de cualquier razonamiento que involucrara el infi-
nito y, de hecho, que llegaran a preguntarse el sentido y el signi-
ficado de las matematicas. ;Cudl era, en definitiva, el objeto de
estudio de las matematicas? ;Qué criterios aseguraban la validez
de sus razonamientos?

Frege mismo sinti6 que el descubrimiento de Russell echaba
por tierra todo su trabajo. En el segundo volumen de sus Funda-
mentos de la aritmética insert6 las siguientes frases:

Dificilmente puede un cientifico encontrarse con algo més indesea-
ble que ver ceder los cimientos justamente cuando se termina la
obra. Tal es la situacién en la que me ha puesto una carta del sefior
Bertrand Russell, estando la obra a punto de terminar de imprimirse.
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Inmediatamente después, Frege abandoné la lucha y se retiré
de manera definitiva. Aunque vivio hasta 1925, nunca volvié a ocu-
parse del tema de los fundamentos.

EL LOGICISMO Y EL INTUICIONISMO

;,Qué reacciones provocoé el descubrimiento de la paradoja de
Russell? En primera instancia se propusieron dos soluciones. El
primer intento se debié al mismo Russell y fue expresado en su
Principia Mathematica, la monumental obra que escribi6 junto a
su maestro Alfred North Whitehead.

La propuesta de Russell, que se dio en llamar logicismo, consis-
tia en retomar el trabajo de Frege, pero enmendando los errores que
llevaron a la crisis. Russell decia que toda paradoja nacia de una
cierta autorreferencia. Por ejemplo, la famosa paradoja del menti-
roso, que se produce cuando uno se pregunta si la frase «esta oracién
es falsa» es verdadera o falsa, nace de analizar una frase que habla
de si misma. La propia paradoja de Russell surge al preguntarnos si
cierto conjunto cumple la propiedad que define al propio conjunto.

Para evitar estas situaciones, el logicismo propuso una modi-
ficacién radical del lenguaje 16gico mediante la llamada «teoria de
los tipos». El concepto general consistia en imponer al lenguaje
matematico una rigida jerarquia en la que cada afirmacién solo
podia referirse a entes o afirmaciones ubicadas en los estratos
inferiores. De este modo, la misma estructura del lenguaje evitaba
las autorreferencias y, por ende, las paradojas.

En el nivel cero de la jerarquia estaban los individuos; en el
nivel 1, las afirmaciones que hablaban de los individuos; en el nivel
2, las afirmaciones que hablaban de las afirmaciones de tipo 1; y
asi sucesivamente. Por ejemplo:

1,2, 3, 4,.... (Individuos, tipo 0)

«2+2=4» (afirmacién de tipo 1, que habla de individuos)
«Es verdad que “2 +2=4"» (afirmacién de tipo 2, que habla de
la anterior).
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Sin embargo, por diversos motivos técnicos, Russell se vio
obligado a complejizar su estratificacién y a introducir reglas ar-
bitrarias y antiintuitivas. Como consecuencia, el sistema perdié
toda fuerza de conviccion y el mismo Russell acabé por abando-
narlo. Aunque algunos de los elementos introducidos por el logi-
cismo han sobrevivido hasta hoy, la verdad es que hacia 1920 la
influencia global de esta escuela habia casi desaparecido.

La segunda propuesta se conocié como «intuicionismo» o
«constructivismo», y fue liderada por el matemaético neerlandés
L.E.J. Brouwer (1881-1966).

«La solucién de los problemas que hasta ahora rondaban al
infinito matematico es probablemente el mayor de los logros

de los que nuestra época pueda enorgullecerse.»

— BerTrAND RusseLL, EN 1910.

Los intuicionistas decian que las paradojas se debian lisa y
llanamente a la introduccién del infinito en acto y que este con-
cepto era, tal como habian dicho Aristételes y Galileo, contradic-
torio en sf mismo. Toda la teoria de Cantor era un sinsentido que
debia ser abandonado y las matemadticas, en lo que al infinito to-
caba, debian volver a la situacién anterior a 1870.

La base de las matematicas debian ser los nimeros natu-
rales, con sus operaciones de suma y producto. Estos nliimeros
no necesitaban ser definidos, sino que estaban dados en nuestra
mente por una intuicién bésica a priori. Desde luego, los ni-
meros no debian ser entendidos como formando una totalidad
infinita acabada, sino como el resultado de un proceso continuo
de generacion (al estilo del pueblo milenario que imagindbamos
péginas atrds) que empezaba con el niimero uno y continuaba
indefinidamente por aplicacién de la nocién de sucesor (el 1 es
el primer elemento, 2 es el sucesor de 1, 3 es el sucesor de 2, y
asf sucesivamente).

Para poder afirmar que existe un objeto matemaético (diferente
de los naturales) era necesario que este pudiera ser construido en
una cantidad finita de pasos a partir de los niimeros naturales me-
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L.E.J. BROUWER

Luitzen Egbertus Jan Brouwer nacio en
Réterdam, Holanda, el 27 de febrero de
1881 (apenas dos anos antes de que Can-
tor publicara el articulo en el que intro-
dujo por primera vez el infinito en acto
en las matematicas). En 1904, siendo un
estudiante recién graduado, demostré
algunos resultados originales sobre mo-
vimientos continuos en cuatro dimensio-
nes que fueron publicados por la Real
Academia de Ciencias de Amsterdam. Su
tesis doctoral, publicada en 1907, traté
sobre el problema de los fundamentos
de las matematicas. En ese trabajo in-
trodujo las primeras ideas sobre el intui-
cionismo. También hizo contribuciones
importantes a la topologia, donde de-
mostré el famoso «teorema de punto fijo» que lleva su nombre. Curiosamente,
la demostracion de este teorema no se ajusta a los estandares intuicionistas.
En 1935 comenzé a dedicarse a la politica y practicamente se alejo de la in-
vestigacion matematica, aunque siguio ligado a ella como editor de la revista
Compositio Mathematica, que también habia fundado. Brouwer fallecié el 2 de
diciembre de 1966 en Blaricum, Holanda, en un accidente de trafico.

diante un procedimiento mecanico definido con rigurosidad. Un ob-
jeto que no pudiera ser construido de esta manera simplemente no
existia. En cierto modo, los intuicionistas retomaban con este con-
cepto la idea contenida en un adagio atribuido a Leopold Kronecker:
«Dios cre6 los niimeros naturales, todo lo demés lo creé el hombre».

Por otra parte, segtin los intuicionistas, para que la definicién
de una propiedad fuera valida debia siempre existir un procedi-
miento mecanico (entiéndase, programable en un ordenador, ya
que un algoritmo no es otra cosa que una receta mecdanica) capaz
de comprobar si la propiedad se verifica, o no. Por ejemplo, una
propiedad vélida para los intuicionistas es la de «ser un niimero
primo», ya que siempre es posible verificar en una cantidad finita
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de pasos si un niimero es primo o no. Para saber si 17677 es primo
basta dividirlo por todos los niimeros menores que él. Si en ningtiin
caso la divisién es exacta, entonces el niimero es primo. El proce-
dimiento que hemos descrito no es el mejor (hay métodos mas
rapidos para saber si un niimero es primo), pero siempre nos da
una respuesta correcta en una cantidad finita de pasos.

Para ver un ejemplo de una propiedad no admitida por el
planteamiento intuicionista, definiremos un niimero, al que llama-
remos p, basindonos en los digitos de n=3,14159265... (que,
como sabemos, es un nimero irracional, es decir, tiene infinitas
cifras decimales no periddicas). El niimero p queda determinado
de la siguiente manera: si entre los digitos de m aparece alguna vez
una secuencia de exactamente quince ceros seguidos, entonces
p es el digito (distinto de cero) que sigue inmediatamente después
de la primera aparicion de esos quince ceros. Si nunca aparecen
exactamente quince ceros seguidos, entonces p vale 0. Conviene
aclarar que entre los digitos de n calculados hasta la actualidad
esa seguidilla de quince ceros no ha aparecido.

;Existe el niimero p? ;Cudnto vale? En 1900 Hilbert escribi6
que si definimos un objeto matematico y esa definicion no es au-
tocontradictoria, entonces podemos afirmar que el objeto existe.

Casi cualquier matematico de hoy en dia contestaria que p
existe. Es mas, todos ellos coincidirian en decir que, aunque toda-
via no sepamos exactamente cudnto vale p, si podemos afirmar
que es un ntimero entre 0 y 9. En el instante en que conozcamos si
esa seguidilla de quince ceros aparece o no aparece en x, en ese
preciso momento sabremos el valor exacto de p. Sin embargo,
para la filosofia intuicionista p no existe, porque esta definido a
partir de una propiedad que no es verificable en una cantidad fi-
nita de pasos, porque x tiene infinitas cifras decimales y la verifi-
cacién requeriria recorrerlas todas. Si entre los digitos hasta hoy
calculados de nt hubieran ya aparecido quince ceros seguidos, en-
tonces p existiria y sabriamos su valor exacto. Es més, si en el
futuro se encontraran esos quince ceros, entonces p empezaria a
existir en ese preciso momento.

Hoy p no existe, tal vez exista en el futuro. Lo mismo podria-
mos decir de la préxima novela aiin no escrita de cualquier escri-
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tor contemporianeo. La comparacién no es caprichosa, porque
para los intuicionistas las matematicas son un proceso dindmico,
un proceso creativo similar a la literatura aunque regido por reglas
més estrictas. Las matemaéticas se crean (respetando determina-
das reglas), no se descubren.

«Las generaciones futuras contemplaran la teoria de conjuntos
[infinitos] como una enfermedad de la que nos hemos
recuperado.»

— HENRI POINCARE, MATEMATICO FRANCES, EN 1908,

40

Como por ahora p no existe, tampoco tiene valor, y es erro-
neo en consecuencia decir que estd entre 0 y 9. Toda afirmacion
referida a p es un sinsentido. Es incorrecto decir que «p es impar
0 p no es impar», o que «es igual o es distinto de 1».

También el estatus de los niimeros irracionales era cuestio-
nado por los intuicionistas. Estos niimeros solo eran considerados
como el resultado, nunca alcanzable, de aproximaciones sucesi-
vas. Por ejemplo, para los intuicionistas, los digitos de x no exis-
ten como una totalidad acabada (otro argumento a favor de la
inexistencia de p).

Entre 1905 y 1920, L.E.J. Brouwer fue dando forma a un pro-
grama global para las matematicas basado en estas ideas. A lo
largo de esos afios escribié diversos articulos y libros en los que
explicaba c6mo llevar a la practica su filosofia. Y lentamente ese
programa comenz6 a ganar adeptos entre muchos de los matema-
ticos mas prestigiosos de la época, como por ejemplo el francés
Henri Poincaré (1854-1912). De modo que hacia 1920 la teoria de
Cantor (quien habia fallecido en 1918) comenzé a correr serio
riesgo de ser abandonada. Pero no todos los matematicos estaban
a favor del intuicionismo. Uno de ellos era el aleman David Hilbert.

Hilbert fue uno de esos jévenes mateméticos que habian
aceptado rapidamente la teoria del infinito. En 1890 apoyé6 la can-
didatura de Cantor a la presidencia de la Unién Matematica Ale-
mana. Ambos, ademads, se conocieron en persona, fueron amigos
y mantuvieron una intensa correspondencia.
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DAVID HILBERT

David Hilbert nacid el 23 de enero de
1862 en Konigsberg, Alemania (actual-
mente Kaliningrado, Rusia) y en 1885 se
doctoré en matematicas en la universi-
dad de esa misma ciudad. Diez afos mas
tarde fue invitado a ocupar un puesto en
Gotinga (uno de los dos centros de in-
vestigacion mas importantes de Alema-
nia, junto con Berlin), posicion que ocu-
paria por el resto de su carrera. Hizo
importantes contribuciones al dlgebra, la
geometria, el analisis y los fundamentos
de las matematicas, entre otras ramas de
esa ciencia. En 1899 reformulo los Ele-
mentos de Euclides, corrigiendo algunas
lagunas logicas que no habian sido ad-
vertidas por mas de dos mil cien afios. El
trabajo resultante, Fundamentos de geo-
metria, es una obra destacada en la his-
toria de la légica matematica. Desde luego, es muy recordada también su
conferencia inaugural del Segundo Congreso Internacional de Matematicas,
celebrado en Paris en 1900, en la que inmortalizo una frase que quedaria para
siempre asociada a su nombre y en la que expreso la conviccion de que no
existen problemas matematicos irresolubles: «Debemos saber, y sabremos»
(«Wir missen wissen, wir werden wissen»). Hilbert fallecié en Gotinga el 14 de
febrero de 1943.

En 1900, Hilbert fue elegido para dar la conferencia inaugural
del Segundo Congreso Internacional de Matematicas, celebrado
en Paris. Se trataba de un puesto de honor y un reconocimiento a
la que ya en ese momento era una brillante carrera. Todavia hoy,
mas de cien anos después de dictada, esa conferencia es famosa
y su texto completo puede encontrarse en Internet. De hecho, se
han escrito libros enteramente dedicados a su anélisis.

En su disertacion, Hilbert plante6 23 problemas matematicos
en aquel momento ain no resueltos pertenecientes a diferentes
ramas de esa ciencia y que, €l creia, guiarian la investigacién ma-
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tematica a lo largo del siglo xx. El primero de ellos estaba relacio-
nado con la teoria de Cantor. Este problema es conocido como la
«hipétesis del continuo» y habia sido planteado por primera vez
por el propio Cantor en la década de 1880, aunque jamas lleg6 a
resolverlo. Méas adelante volveremos sobre este mismo problema
porque Gddel hallé una solucién parcial en 1940; la resolucién fue
completada por Paul Cohen.

La decisién de ubicar la hipétesis del continuo en el primer
lugar de su lista debe interpretarse como un apoyo explicito de
Hilbert a la teoria de conjuntos de Cantor. En los primeros afios
de la polémica sobre los fundamentos de las matematicas, Hilbert
se mantuvo aparte, tal vez porque confiaba en que el punto de
vista intuicionista caeria derrotado por su propio peso. Pero hacia
1920, como ya dijimos, el logicismo comenzé a declinar, mientras
que el intuicionismo cada vez ganaba méas adeptos. Es por eso que,
finalmente, Hilbert decidié intervenir en persona. Bajo el lema
«Del Paraiso que Cantor creé para nosotros nadie podra expulsar-
nos» se propuso frenar el intuicionismo. El modo que encontré
para hacerlo fue proponer una tercera solucién para el problema
planteado por la paradoja de Russell, una solucién calculada para
atraer a los partidarios del intuicionismo y a la vez mantener inc6-
lume la teoria de Cantor.

JAtraer a los intuicionistas pero a la vez salvar la teoria de
Cantor? Parecia una tarea imposible, porque los intuicionistas,
precisamente, rechazaban de plano el infinito en acto como un
concepto absurdo y sinsentido. Pero Hilbert era Hilbert, y con
inteligencia, habilidad y astucia, lo logré.

EL PROGRAMA DE HILBERT

En 1920, Kurt Gédel tenia catorce afios de edad y en su Brno natal
tal vez ya sofiaba con seguir una carrera cientifica. Al mismo
tiempo, en Gotinga, Alemania, David Hilbert, de cincuenta y ocho
afos, comenzaba la labor, que le demandaria una década, de her-
manar a los intuicionistas con el infinito en acto.
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Como ya se ha expuesto, el pensamiento intuicionista estaba
totalmente dominado por la idea de finitud. Solo existian los obje-
tos matemadticos que podian construirse mecanicamente a partir
de los niimeros naturales en una cantidad finita de pasos. Niime-
ros irracionales como m 0 V2 solo podian ser vistos como el re-
sultado inalcanzable de sucesivos cédlculos basados en férmulas
especificas.

La propuesta de Hilbert consistié esencialmente en llevar
esta exigencia de finitud de los objetos matematicos a los razo-
namientos matematicos. Podemos parafrasear su idea de la si-
guiente manera: establezcamos métodos de razonamiento tales
que la correccién de nuestras argumentaciones sea verificable
algoritmicamente en una cantidad finita de pasos (un algoritmo
es una receta mecanica programable en un ordenador). Asegu-
rémonos ademads, de esa misma manera «finitista», que nuestras
demostraciones nunca nos llevaran a una paradoja. Una vez lo-
grado este objetivo, nuestras teorfas podran hablar sin temores
de cualquier objeto, incluso del infinito en acto.

Mis concretamente, el programa de Hilbert, también llamado
«programa formalista», planteaba que toda teoria matematica
debia estar basada en axiomas, es decir, en ciertas afirmaciones
bésicas aceptadas como verdaderas. Cualquier otra verdad de la
teoria debia ser demostrable a partir de esos axiomas mediante
razonamientos cuya validez fuese verificable mecanicamente en
una cantidad finita de pasos. Ademas, la consistencia de esos axio-
mas (el hecho de que nunca nos conducirian a una paradoja, como
si le habia sucedido a Frege) debia ser también verificable de la
misma forma mecanica, o algoritmica.

En principio, la intencién era desarrollar este programa para
la aritmética, la teoria que se refiere a las propiedades de la suma
y el producto de nimeros naturales (es decir, la teoria que habla
de los niimeros mas sencillos y de las operaciones més simples).
Hilbert, al igual que los intuicionistas, sostenia que la base de to-
das las mateméticas debia ser la aritmética, y no la teoria de con-
juntos. Una vez establecida una base sélida para la aritmética,
seria facil lograr un fundamento igualmente sélido para todas las
demas teorias.
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APROXIMACIONES DE 2

Para los intuicionistas, v/2 solo existe como el resultado inalcanzable al que se
van acercando asintéticamente sucesivas aproximaciones. Estas aproxima-
ciones, a su vez, deben ser calculadas siguiendo ciertas formulas bien espe-
cificadas. Existen muchisimas féormulas que permiten calcular aproximaciones
sucesivas de 2. Una de las mas antiguas, y al mismo tiempo de las méas sen-
cillas, era ya conocida por Herén de Alejandria en el siglo i. Traducida al len-
guaje moderno, la «receta» de Heron para aproximar \% dice asi:

— Paso 1: Tome un numero positivo cualquiera.
— Paso 2: Llame x al niumero elegido y calcule

(%)
—|x+—]
2 X
— Paso 3: Aplique la misma férmula al resultado obtenido.
— Paso 4: Siga aplicando la misma férmula tantas veces como desee.

Por ejemplo, si en el primer paso elegimos el 5, al aplicar la férmula por pri-
mera vez obtendremos 2,7. Si introducimos el 2,7 en la férmula obtendremos
1,72037037...; luego 1,4414553...; luego 1,41447098... y asi sucesivamente, acer-

candonos cada vez mas a /2.

El problema de hallar un sistema de axiomas para la aritmé-
tica habia sido ya formulado por Hilbert en su conferencia de 1900
(era el segundo problema de la lista), aunque aquella formulacién
no incluia la exigencia de la verificacién mecénica de los razona-
mientos. Sin embargo, la cuestion algoritmica si aparecia en otro
problema, el décimo, que preguntaba si siempre seria posible de-
terminar mecénicamente si cierto tipo de ecuaciones (llamadas
diofanticas) tenian, o no, solucién. Como vemos, dos de las ideas
centrales del programa formalista ya aparecian, aunque por sepa-
rado, en aquella conferencia de Paris.

Se ha dicho a veces que Hilbert proponia que el trabajo del
matematico debia reducirse a un proceso mecanico, equivalente
al de un ordenador, que calcula pero no piensa. Ese no es el caso.
El proceso creativo de los matematicos no sufriria ninguna altera-
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LOS AXIOMAS DE PEANO

En su conferencia de 1900, David Hilbert
planted como primer problema el hallar
un conjunto de axiomas para la aritméti-
ca que permitieran demostrar todas las
verdades de la teoria (aunque sin hacer
referencia a la necesidad de una verifica-
cion mecanica de la correccién de los
razonamientos utilizados). En su diserta-
cion, Hilbert no menciond la existencia
de trabajos anteriores en ese sentido.
Esta omisién despertd el malestar de
Giuseppe Peano, matematico italiano,
presente en la conferencia de Hilbert,
quien habia propuesto en 1889 un con-
junto de axiomas para la aritmética con
la intencion de que estos permitieran de-
ducir todos los enunciados aritméticos verdaderos. Los axiomas de Peano, tal
el nombre con el que se los conoce actualmente, tienen como elementos
primitivos al nimero 1, y a los signos de la suma (+), del producto () y de la
funcién sucesor (S):

— Axioma 1: S(x) nunca es igual a 1, es decir, 1 no es el sucesor de ningun
numero.

— Axioma 2: Si S(x) = S(y) entonces x = y.

— Axioma 3: x + 1= 5(x).

— Axioma 4: x + S(y) = S(x + ).

— Axioma S:x - 1=x.

— Axioma 6: x-S(W)=x-y+x.

— Axioma 7: Si puede probarse que el 1 cumple una cierta propiedad y que
siempre que x la cumple, entonces S(x) también, puede dedu-
cirse que la propiedad vale para todos los numeros naturales.

El ultimo axioma, llamado «esquema de induccién», expresa el hecho de que
todos los nimeros naturales se obtienen a partir del 1 por aplicaciones repe-
tidas de la funcion sucesor. Si una propiedad vale para el 1y podemos asegu-
rar que se propagara de cada numero a su sucesor, entonces la propiedad
valdra para todos los numeros naturales. Una consecuencia del teorema de
Goédel es que si incluimos la condicién de que los razonamientos deban ser
verificables algoritmicamente, entonces existen verdades aritméticas que son
indemostrables a partir de estos axiomas, es decir, que la aritmética asi plan-
teada es incompleta.
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cién; el caracter mecanico corresponde solamente a la verifica-
cién posterior de la validez de los argumentos usados por el
matematico, no al descubrimiento de los argumentos en si. Para
destacar esta diferencia, Hilbert hablaba de dos ciencias: la mate-
matica y la metamatemaética. La segunda, mecénica y finitista, ten-
dria como objeto la revision de los métodos de la primera.

Entre 1920 y 1930, Hilbert publicé una serie de articulos en
los que fue exponiendo de manera gradual su programa y mos-
trando cémo podia ser llevado a la practica. Otros matemaéticos se
comprometieron también con la idea y presentaron aportes signi-
ficativos a favor de ella. El propio Gédel, en 1929, en la que fue su
tesis doctoral, mostré que era posible establecer métodos de ra-
zonamiento cuya correccién fuese verificable algoritmicamente.
Ese mismo afio, el matematico polaco Moisés Presburger exhibi6
una serie de axiomas cuya consistencia era verificable algoritmi-
camente y que permitian demostrar, aunque no todas las verdades
aritméticas, si una parte no despreciable de ellas. Se trataba de
dos triunfos importantes para el programa formalista.

Al mismo tiempo, el intuicionismo iba perdiendo su ascen-
diente entre los matematicos. Muchos de quienes habian simpati-
zado con las ideas generales de Brouwer comenzaban a sentir que
llevarlas a la practica, con el consecuente abandono de los razona-
mientos conjuntistas, traeria mas pérdidas que beneficios. El pro-
grama formalista, por su parte, ofrecia una alternativa que era al
mismo tiempo aceptable filoséficamente y realizable en la practica.

Llegado 1930, estaba claro que Hilbert habia vencido. Solo fal-
taba crear el ambito adecuado para que los intuicionistas presen-
taran dignamente su rendicién. Se organizé entonces un congreso
sobre fundamentos de las matematicas. La sede elegida fue Kénigs-
berg, la ciudad natal de Hilbert (una eleccién que, por supuesto, no
fue casual). El congreso se desarroll6 entre el viernes 5 y el do-
mingo 7 de septiembre; el lunes 8 estaba previsto que el Parla-
mento de Konigsberg le otorgara a Hilbert el titulo de ciudadano
de honor. Todo estaba preparado para el gran triunfo del maestro.

El viernes expusieron sus trabajos los matematicos menores,
los desconocidos. Uno de ellos, Kurt Godel, resumi6 su tesis doc-
toral. El sdbado expusieron los mayores, entre ellos Hans Hahn,

LA CRISIS DE LOS FUNDAMENTOS

47



quien dirigio la tesis doctoral de Gédel. Brouwer, enemistado con
Hilbert por motivos que iban més alla de la mera discusion acadé-
mica, no estaba presente; el expositor del punto de vista intuicio-
nista fue Arendt Heyting. Hilbert, que padecia problemas de salud,
tampoco acudié y su principal representante fue John von Neu-
mann, uno de sus discipulos. También estaba representado el lo-
gicismo, en la persona del filésofo Rudolf Carnap. El domingo se
cerrd con una sesién plenaria en la que se resumieron los puntos
de vista del intuicionismo, el formalismo y el logicismo. Las con-
clusiones estuvieron a cargo de Heyting, quien cerrd su exposi-
cién diciendo que la relacion entre el intuicionismo y el formalismo
habia sido finalmente aclarada y que ya no era necesario que con-
tinuara la lucha entre ambas escuelas. En sus propias palabras:
«Si se completa el programa de Hilbert, hasta los intuicionistas
abrazaran el infinito». Los intuicionistas se habian rendido. Hil-
bert habia triunfado.

«Comparados con la inmensa expansion de las modernas
matematicas, qué suponen los lamentables restos, los escasos
resultados aislados, incompletos e inconexos que los
intuicionistas han obtenido.»

— MANIFESTACION DE DAviD HILBERT SOBRE LA ESCUELA INTUICIONISTA.
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Cuentan todos los testigos que, en ese mismo momento, un
joven matematico levanté timidamente la mano para pedir la pa-
labra. Era delgado, usaba gafas y probablemente estaba muy ner-
vioso. Ese joven, Kurt Godel, anuncié que habia demostrado un
teorema que probaba que si se exige que las demostraciones sean
verificables mecdanicamente, entonces es imposible dar axiomas
para la aritmética que permitan demostrar todas las verdades de
la teoria. Siempre habra afirmaciones verdaderas que sean inde-
mostrables a partir de los axiomas propuestos. (Hoy en dia se
conoce a esta afirmacién como el primer teorema de incompleti-
tud de Godel.)

Mas ann, si los axiomas propuestos permiten demostrar una
parte significativamente amplia de las verdades aritméticas, en-
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tonces serd imposible probar su consistencia por métodos mecé-
nicos. (Este es el segundo teorema de incompletitud de Godel.)
En otras palabras, el programa de Hilbert era completa y absolu-
tamente irrealizable.

Podemos representarnos una escena que nunca sucedio, pero
que tal vez refleje el &nimo de los formalistas aquella tarde de
domingo. Imaginemos a Hilbert llamando por teléfono a John von
Neumann para preguntarle cémo habia salido todo y a este res-
pondiéndole: «Tengo una buena noticia y una mala noticia. La
buena es que los intuicionistas se han rendido. La mala es que un
tal Godel dice que nosotros también hemos perdido».

+Cémo logré Godel demostrar su teorema? ;Como es posible
probar que, no importa los axiomas que se propongan, siempre
habra una afirmacién verdadera pero indemostrable a partir de
ellos? La demostracién de Godel, una de las mayores proezas in-
telectuales del siglo xx, serd el tema central del préximo capitulo.
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CAPITULO 2

El primer teorema de Godel

El primer teorema de incompletitud
de Godel dice que, dado cualquier conjunto de
axiomas para la aritmética, siempre habra un enunciado
aritmético verdadero que es indemostrable a partir de ellos,
si es que solo se admiten los métodos de demostracion
avalados por el programa de Hilbert. La demostracién
de este teorema consiste esencialmente en obtener
un enunciado autorreferente que dice de si mismo
«yo no soy demostrable».






Después de terminada la Primera Guerra Mundial, el Imperio aus-
trohiingaro se fragmenté en diversas regiones. Algunas, entre
ellas Austria, Hungria, Yugoslavia y Checoslovaquia, se transfor-
maron en paises independientes. Otras pasaron a formar parte de
naciones ya existentes como Italia o Rumania. En esta particion,
Brno, la ciudad donde vivia la familia G6del, quedé incorporada a
Checoslovaquia. Afios mas tarde, Kurt Godel recordaria que desde
ese momento su padre siempre se sintié como un austriaco en el
exilio. Es posible que ese sentimiento influyera de algiin modo en
la decisién de enviar a sus dos hijos a estudiar en la Universidad
de Viena, un modo, aunque sea indirecto, de volver a la patria.
Godel ingres6 en la Universidad de Viena en 1923 con la inten-
cién de estudiar fisica. Podemos suponer que su curiosidad innata
lo habia llevado desde muy pequefio a hacerse preguntas como por
qué caen las cosas que soltamos, o por qué algunos objetos flotan y
otros no, o por qué brilla el Sol; todas ellas preguntas relacionadas
con la fisica. Sin embargo, el propdsito formal de dedicarse a esta
ciencia parece haberse cristalizado a los quince afios de edad, des-
pués de haber leido acerca de la teoria de Goethe sobre los colores
y su oposicién al enfoque que le daba Newton a la teoria del color.
Se sabe muy poco sobre la vida privada de Godel durante sus
anos de estudiante en Viena. Estuvo a punto de casarse con una
mujer diez afos mayor que él, pero sus padres se opusieron y Kurt
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desistié de su propésito. No hay referencias a otras relaciones
personales o amistades intimas. En apariencia, dedicaba la mayo-
ria de su tiempo al estudio. Una vez en la universidad, el propdsito
de dedicarse a la fisica no duré mucho tiempo. En esos afos en-
sefiaba en Viena Philipp Furtwingler, un matematico alemén es-
pecializado en aritmética superior. Furtwingler nacié en 1869 en
Elze (en el centro de Alemania) y se habia doctorado en Gotinga
en 1896, bajo la direccién de Félix Klein, uno de los matematicos

mas importantes de finales del siglo xix.

LA TEORIA DEL COLOR DE GOETHE

Johann Wolfgang von Goethe (1749-
1832) fue un novelista, dramaturgo vy
poeta aleman, y uno de los principales
representantes del Romanticismo. Ade-
mas de su muy conocida obra literaria,
Goethe escribié también varios tratados
cientificos sobre fisica, zoologfa y bota-
nica. Muchas de sus ideas acerca de es-
tos temas provocaron diversas contro-
versias en su época, aunque algunas de
ellas fueron reivindicadas en décadas
posteriores. Por ejemplo, su clasificacion
de las plantas y sus conceptos sobre la
morfologia animal fueron retomados por
Charles Darwin y otros naturalistas del
siglo xix. En su libro Teoria de los colores
(Zur Farbenlehre, en aleman), escrito en
1810, Goethe sostuvo que el estudio del  Retrato de Goethe por el pintor alemén
color no debe reducirse a los aspectos  Joseph Karl Stieler.

fisicos de la luz, sino que debe incluir la

reflexion sobre la percepcion humana. Para Goethe, la 6ptica de Newton era
incompleta y solamente un caso particular dentro de su propia teoria. Las
ideas de Goethe sobre la luz no fueron recibidas con interés por los fisicos de
su tiempo; incluso no suelen ser incluidas en las obras sobre historia de la
ciencia. Hoy en dia, sin embargo, se acepta que es necesario distinguir, como
hacia Goethe, entre el espectro dptico tal como lo estudié Newton y el fené-
meno mas amplio de la percepcidén humana del color.
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Las clases de Philipp Furtwingler eran famosas por su exce-
lencia y su claridad. El niimero de estudiantes que se inscribian en
sus cursos era tan grande (llegaron a ser mas de cuatrocientos a
la vez) que los alumnos tenian que dividirse en dos grupos y cada
leccién debia ser impartida dos veces, una para cada grupo. Como
curiosidad, Furtwingler estaba parapléjico y desde su silla de rue-
das le dictaba a un ayudante lo que debia escribir en la pizarra.

El joven Godel quedé tan impactado por las clases de Furtwin-
gler que abandono su decisién de estudiar fisica y se volcé en las ma-
tematicas. Sin duda, un notable ejemplo de cémo un profesor puede
afectar en la vida de sus alumnos. De todos modos, unos veinticinco
afos mas tarde, en Princeton, Gédel tuvo la oportunidad de despun-
tar un poco el «vicio» de la fisica. En 1949 y 1950 publicé sendos
trabajos sobre la teoria de la relatividad, los vinicos dos trabajos cien-
tificos de Gddel no relacionados con la 16gica matematica, y que se-
guramente fueron el resultado de sus conversaciones con Einstein.

Una pequeiia coincidencia: Philipp Furtwiingler terminé sus
estudios en Gotinga en 1896 y permanecié alli hasta 1912, afio
en que se incorporo a la Universidad de Viena. Mientras tanto, en
1895 llegaba a Gotinga quien por entonces era una joven promesa
de la matematica alemana, David Hilbert. Aunque no hay registros
al respecto, podemos tener la certeza de que ambos se conocie-
ron, Philipp Furtwingler, quien hizo que Godel se dedicara a las
matematicas, y David Hilbert, cuyo trabajo matematico de toda la
década de 1920 se veria «destruido» por los teoremas de Gidel.
;Habra sabido alguna vez Furtwingler que él fue quien inspird a
Godel a dedicarse a las matematicas? ;Se lo habra dicho Godel
alguna vez? No lo sabemos, pero puede ser interesante especular
acerca de qué pudo haber pensado Furtwingler al respecto.

EL CIRCULO DE VIENA
Volvamos a Goédel y a sus afios en la universidad. En aquel

tiempo, a principios de la década de 1920, la vida intelectual de
Viena estaba organizada, de manera més o menos informal, en
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circulos (Kreise, en alemén). Estos circulos eran grupos que se
reunfan semanalmente en los cafés de la ciudad para discutir
sobre los més diversos temas, como por ejemplo, entre otros, fi-
losofia, politica o psicoandlisis (Freud vivia y trabajaba en Viena
en esos afnos).

Aunque tal vez hubo decenas de grupos, muchos de ellos con
miembros en comiin, el més importante de todos, aquel cuyos de-
bates perduraron en el tiempo, fue el fundado en 1922 por Moritz
Schlick, quien era ademas profesor de Gddel en el curso de filoso-
fia de la ciencia de la universidad. Al principio, Schlick adopt6
para el grupo el nombre de Asociacién Ernst Mach, pero méas
tarde fueron conocidos simplemente como el «Circulo de Viena»
(Der Wiener Kreis).

Formaron parte del grupo, entre otros, los filésofos Rudolf
Carnap y Ludwig Wittgenstein y el filésofo y matemético Hans
Hahn (quien dirigiria la tesis doctoral de Godel). También Karl
Popper participé de varias discusiones. De hecho, una de sus
obras més importantes, La ldgica de la investigacion cientifica
(en alemén, Logik der Forschung) aparecié por primera vez en
una serie de publicaciones del Circulo.

La incorporacién al grupo se producia estrictamente por invi-
tacion; Godel recibi6 la suya de Schlick en 1926 y asisti6é con re-
gularidad a las reuniones hasta 1928, aunque solamente como
oyente. En el momento de ser invitado a unirse al Circulo, Gédel
era un mero estudiante; eso habla mucho del prestigio que comen-
zaba a ganarse entre sus profesores.

Los temas que trataba el Circulo de Viena eran la filosofia de
la ciencia en general y el lenguaje de la ciencia en particular. En
esas reuniones se discutia también sobre matemaéticas, en espe-
cial sobre las soluciones propuestas por Russell, Brouwer y Hil-
bert al problema de la crisis de los fundamentos. Es seguramente
alli donde Go6del adquirié por primera vez su profundo conoci-
miento sobre el programa formalista.

Su participacién en el Circulo de Viena llevé a Godel en 1928
a la resolucién definitiva de consagrarse a la 16gica matematica.
Al afio siguiente completé su tesis doctoral sobre un problema
relacionado con el programa de Hilbert (aunque todavia no se tra-
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MORITZ SCHLICK

Moritz Schlick fue un filésofo aleman,
nacido en 1882. Inicialmente estudio fisi-
ca con Max Planck en la Universidad de
Berlin; su tesis doctoral, presentada en
1904, se tituld «Sobre la reflexion de la
luz en un medio no-homogéneo». Sin
embargo, no dedicoé su vida a la fisica,
sino a la filosofia. Su primera obra filosé-
fica, La sabiduria de la vida, se publico en
1908 y su ensayo La naturaleza de la ver-
dad segun la I6gica moderna (Das We-
sen der Wahrheit nach der modernen
Logik) aparecié dos afios mas tarde,
Poco después de ello, volcé su atencidén
en la epistemologia vy la filosofia de la
ciencia, temas de estudio que ya no
abandonaria. En 1922, Schlick se hizo
cargo de la catedra de filosofia de las ciencias inductivas de la Universidad de
Viena, y ese mismo afio fundé el Circulo de Viena como foro para discutir
nuevos horizontes filosoéficos, alejados de la metafisica y centrados en el em-
pirismo. El Circulo dejé de reunirse en 1936, afo en que Moritz Schlick fue
asesinado en Viena por un estudiante de la universidad (algunos historiadores
dicen que el estudiante estaba alterado mentalmente, otros afirman que era
pro-nazi; las dos opciones, por supuesto, no son excluyentes).

taba de su famoso teorema de incompletitud, que seria presentado
en septiembre de 1930 en el congreso de Konigsberg).

Godel present6 su tesis a la Universidad de Viena el 6 de fe-
brero de 1930. Ese mismo afio le dio la forma de un articulo. Este
trabajo, su primera publicacién cientifica, aparecié6 en el volumen
37 (1930) de la revista Monatshefte fiir Mathematik und Physik
bajo el titulo «La completitud de los axiomas del célculo l6gico de
primer orden». El teorema que se demuestra alli, hoy conocido
como el «teorema de completitud de Godel», fue tomado en su
momento como una indicacién de que el programa de Hilbert
podia ser cumplido.
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EL TEOREMA DE COMPLETITUD

Para entender el teorema de completitud de Gédel debemos pro-
fundizar antes en la teoria de la demostracién matematica segin
el programa de Hilbert. Este programa, recordemos, pedia hallar
un conjunto de axiomas que permitieran demostrar todas las ver-
dades de la aritmética mediante razonamientos verificables algo-
ritmicamente. Pero ;,qué es exactamente la aritmética? ;Cudles
son esas verdades que uno quiere demostrar?

«El objetivo de mi teoria es el de establecer de una vez
por todas la certidumbre de los métodos matematicos.»

— Davip HiLBerT EN SoBRE EL ivFiINiTO (1925).

58

La aritmética es la rama de las matematicas que habla de las
propiedades de la suma y el producto de los nimeros naturales: 1,
2, 3, 4, b, 6, 7,... e involucra conceptos tales como «nimero
primo», «ntimero perfecto», «ntimero triangular» o «nimero par».
La teoria en si estd formada por todas las afirmaciones (también
llamadas proposiciones o enunciados) relativas a esas nociones,
como por ejemplo: «1 + 1 = 2», «2 es par», «5 es primo», «Todo
nimero divisible por 4 es par» o «La suma de dos niimeros impa-
res da como resultado un niimero par». Los axiomas buscados por
Hilbert serian un conjunto de verdades bésicas de las cuales fuese
posible deducir, con las condiciones ya expuestas para los razo-
namientos, todas las demas afirmaciones aritméticas verdaderas,
entre ellas, las mencionadas mas arriba.

Por otra parte, ;qué significa que la validez de los razonamien-
tos que demuestran esas verdades sea verificable algoritmicamente?
Esto quiere decir que, al menos en principio, deberia ser posible
programar un ordenador de tal modo que fuera capaz de determinar
en una cantidad finita de pasos si una demostracién matematica es
vélida o no. De acuerdo con esta idea, introduciriamos la demostra-
cién en la maquina, esta la procesaria siguiendo una receta previa-
mente programada, y al cabo de un tiempo (tal vez largo, tal vez
corto, pero en cualquier caso siempre finito), la maquina nos diria si
el razonamiento es valido o si contiene algin error.
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Ahora bien, en general, verificar la correccion de una demostra-
cién matematica no es un trabajo sencillo, a veces ni siquiera para
los especialistas. Por ejemplo, cuando en 1995 Andrew Wiles pre-
sent6 su demostracién del tltimo teorema de Fermat, a la cual le
habia dedicado siete afos de trabajo, los especialistas que la revisa-
ron encontraron una laguna légica, un paso que ellos entendian que
no estaba debidamente justificado. A Wiles, por supuesto, ese error
se le habia pasado por alto y necesit6é todo un afio para corregirlo.
Finalmente, en 1996 pudo presentar una demostracién completa.

Mostremos un ejemplo menos complejo. Pongamos que a y b
son dos niimeros que suponemos iguales y ademas diferentes de
cero. A partir del hecho de que a=b podemos desarrollar la si-
guiente «demostracién» de que 1=2 (para mayor claridad nume-
ramos los sucesivos pasos légicos del razonamiento):

l.a=b Por hipdétesis.

2.a-b=b-b En el paso 1, multiplicamos
ambos miembros por b.

3.a-b=>b* En el paso 2, reemplazamos
b-bpor b

4.a-b-a’*=b*-a® En el paso 3, restamos a® en

ambos miembros.
5.a-(b-a)=(b+a) - (b-a) Se deduce de 4, por igualdades
algebraicas conocidas.

6.a=b+a En 5, cancelamos (b-a) en
ambos miembros.

T.a=a+a En 6, reemplazamos b por a,
ya que ambos son iguales.

8.a=2-a Porque a+a =2-a.

9.1=2 En 8, dividimos ambos miem-

bros por el nimero a.
Obviamente, el razonamiento anterior es incorrecto, pero
;dénde esti la equivocacién? El fallo estd en el salto que va del

paso 5 al paso 6. En él, de la igualdad

a-(b-a)=(b+a)-(b-a)

EL PRIMER TEOREMA DE GODEL

59



60

eliminamos el paréntesis (b—a) y concluimos que a=b + a. Esto
es erréneo porque (b—a) vale 0 (dado que a=>0) y un 0 que esté
multiplicando no puede cancelarse en una igualdad. Traducido a
nimeros, suponiendo por ejemplo que a y b valgan 2, el salto del
paso 5 al 6 equivale a haber dicho que como 2-0=4-0 (que es ver-
dad) entonces 2=4.

Pero ;,cémo podriamos «enseiiarle» a un ordenador a detec-
tar esta clase de errores? Un ordenador es solo una maquina; no
razona, sino que sigue ciegamente la «receta» que hayamos pro-
gramado en su memoria. Para que un ordenador sea capaz de ve-
rificar la correccién de un razonamiento matematico un requisito
necesario es que este pueda ser traducido a una sucesién de enun-
ciados cada uno de los cuales, o bien es un axioma, o bien se de-
duce de enunciados precedentes por la aplicacién de reglas
légicas bien precisas y especificadas de antemano.

Veamos un ejemplo de demostraciéon matematica expresado
de esta manera. Para poder mostrarlo necesitamos primero algu-
nos axiomas que nos sirvan de punto de partida. En 1889, mucho
antes de que fuera descubierta la paradoja de Russell, el matema-
tico italiano Giuseppe Peano habia propuesto un conjunto de
axiomas que (él suponia) permitian demostrar todas las verdades
aritméticas. Estos axiomas se basaban en las operaciones de
suma (+) y producto (-), y en la nocién de «sucesor» (indicada con
la letra S).

Entendia Peano que la sucesion de los niimeros naturales se
obtenia a partir del nimero 1 por aplicaciones repetidas de la fun-
cién sucesor. De este modo, el 2 se define como el sucesor del 1,
en simbolos S(1) = 2; el 3 es, por definicién, el sucesor del 2, o sea
S(2) = 3; y asi indefinidamente.

Para nuestro ejemplo de demostracién bastara con tomar dos
de los axiomas de Peano, aquellos que se refieren a la suma:

Axioma 1: Cualquiera que sea el nimero x, vale que x+1=
= 8(x).

Axioma 2: Cualesquiera que sean los nimeros x e y, vale que
Sx+y)=x+SW).
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El primer axioma nos dice que el sucesor de un nimero x
siempre se obtiene suméandole 1. El segundo axioma puede tradu-
cirse como (x +¥) + 1 =2 + (y + 1). A partir de estos dos axiomas
vamos a demostrar que 4=2+2.

Pero ;,es realmente necesario demostrar que 4=2+2? ;No es
un hecho obvio? Aunque en efecto es obvio, segin el programa
de Hilbert toda afirmacién verdadera que no sea un axioma debe
ser demostrada a partir de ellos. Excepto los enunciados que
hayan sido explicitamente indicados como axiomas, no hay
otras afirmaciones que se acepten por si mismas como verda-
deras.

Probemos entonces que 4=2+2, pero anotemos el razona-
miento de tal modo que pueda ser procesado por un ordenador.
Insertaremos ademds algunos comentarios para que nosotros,
seres humanos, podamos seguir la idea (véase el esquema):

LSx+y)=x+S(y) Axioma?2.

2.82+1)=2+8(1) Tomamosx=2ey=1enelaxioma?2.

3.82+1)=2+2 Reemplazamos S(1) por 2 en el paso
anterior.

Comentario: Los tres pasos que siguen forman una pequeiia
«subdemostracién» en la que se prueba que 2 + 1 =3; de este modo,
en el paso 3 podremos reemplazar S(2 + 1) por S(3).

4 x+1=8) Axioma 1.

5.2+1=802) Tomamos x = 2 en el axioma 1.

6.2+1=3 En el paso anterior reemplazamos
S(2) por 3.
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Comentario: Ahora podemos reemplazar S(2 + 1) por 3, en el
tercer paso.

7.83)=2+2
8.4=2+2 Reemplazamos S(3) por 4 en el paso previo.

.Es necesario tanto preciosismo para demostrar meramente
que dos mas dos es cuatro? Si, es necesario, si es que queremos que
el ordenador sea capaz de verificar la correccién del razonamien-
to. El ordenador no piensa; por lo tanto, debemos «llevarlo de la
mano», paso a paso, indicandole mediante el uso de reglas esta-
blecidas de antemano qué es lo que hemos hecho exactamente en
cada etapa del razonamiento.

«El mundo real esta sujeto a cambios constantes. [...] Pero tales
cambios, por profundos que sean, nunca destruiran la verdad
de una sola ley l6gica o aritmética.»

— RupoLr CARNAP EN FUNDAMENTACION LOGICA DE LA FISICA.
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;Qué es lo que haria el ordenador para comprobar que nues-
tra demostracion es correcta? Para empezar, registraria el primer
enunciado y verificaria si se trata de un axioma. Esta comproba-
cién se hace simbolo a simbolo, de la misma manera que un pro-
cesador de texto verifica la ortografia de un documento,
comprobando letra por letra si las palabras escritas en él aparecen
en el diccionario que el ordenador tiene cargado en su memoria.

Recordemos que cada enunciado debe ser, o bien un axioma,
o bien debe deducirse de enunciados precedentes. En nuestro
ejemplo, la maquina comprobaria que, en efecto, el primer enun-
ciado es uno de los axiomas de la lista (el primer enunciado debe
ser un axioma, no puede deducirse de enunciados anteriores sim-
plemente porque no los hay). El ordenador, por supuesto, no «en-
tiende» el significado del axioma, solo comprueba que el primer
enunciado aparece en el listado que le fue previamente cargado.

Terminada la primera comprobacién, la maquina pasaria al
segundo enunciado, S(2+1)=2+58(1), y verificaria que no se
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trata de un axioma (ya que no esta en la lista). Este segundo
enunciado deberia entonces deducirse del primero por aplica-
cién de alguna regla 16gica. Para poder hacer esta comproba-
cién, el ordenador deberia tener cargado en su memoria un
listado con las reglas de la l6gica, es decir, las reglas que indican
qué conclusiones pueden extraerse de determinadas premisas
(véase el esquema).

En el caso de nuestra demostracion, la regla que permite ir
del paso 1 al paso 2 es aquella que dice que si un enunciado co-
mienza con «Cualesquiera sean los nimeros x e y, vale que...»,
entonces en la expresién que sigue a continuacién las letras x e y
pueden reemplazarse libremente por nimeros cualesquiera. En
nuestro ejemplo, la letra x es reemplazada por el nimero 2 y la
otra, por el niimero 1.

Estas reglas logicas van mas alld de la aritmética, son reglas
generales que valen en cualquier rama de las matemaéticas. Por ese
motivo, los enunciados que las expresan son llamados enunciados
universalmente vdlidos (también se los llama axiomas ldgicos,
precisamente porque expresan las reglas del razonamiento 16gico).

Ya hemos mencionado una de estas reglas. Otros dos ejem-
plos son: «Si x = y entonces y = x» y «Si dos expresiones numé-
ricas son iguales, entonces cualquiera de ellas puede ser reem-
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EL LENGUAJE FORMAL

Tanto el programa de Hilbert como la demostracién de Gédel suponen que
todos los enunciados aritméticos estan escritos en un lenguaje formal con
simbolos establecidos de antemano. Hay diferentes elecciones posibles para
los simbolos, una seleccién de las cuales es la siguiente:

¥: Se llama «cuantificador universal» y se lee «Para todo». Indica que
la propiedad qgue se enuncia es vélida para cualquier nimero.

= Es el simbolo de implicacién; «P = Q» significa «Si P entonces Q».
: Es el simbolo de la negacion; «- P» significa «no-P».
: Signo igual.
: Numero uno.
1 Indica «sucesor».
: Simbolo de la suma.

+ (punto): Simbolo del producto.

( ): Paréntesis.

Xy Xy Xyt Variables.

+ U ni

Algunas presentaciones prefieren tomar al O como primer elemento, lo que
no representa una diferencia esencial. Usando los simbolos que hemos dado
aqui, el numero 2 se escribe como S(1), es decir, el siguiente del 1. El niumero
3 se escribe como S[S(1)], es decir, el siguiente del siguiente del 1. Y asi su-
cesivamente.

plazada por la otra». Esta tltima regla es la que justifica el salto
del paso 2 al paso 3, en el cual S(1) es reemplazado por 2.

En realidad, si existe un niimero potencialmente infinito de
enunciados universalmente validos ;cémo podriamos entonces
cargarlos a todos en la memoria de un ordenador? Si no pudiéra-
mos hacerlo, este seria incapaz de verificar la validez de cualquier
razonamiento y, en consecuencia, el programa de Hilbert seria
inmediatamente irrealizable. Pero al mismo tiempo, ningiin orde-
nador concebible tiene la capacidad de contener «infinitos»
enunciados. '

Por fortuna, en su teorema de completitud Gédel demostré
que, aunque la cantidad de reglas légicas es potencialmente infi-
nita, todo razonamiento puede realizarse usando solo doce de
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ellas. Si cargamos en la memoria del ordenador esas doce reglas,
entonces este serd capaz de verificar la correccién de cualquier
demostracion.

Cuando este teorema se publicé a principios de 1930 quedé
claro que la base l6gica necesaria para el programa de Hilbert
estaba asegurada: era posible verificar mecdnicamente la correc-
cién de las demostraciones aritméticas. El problema que quedaba
por resolver era hallar un conjunto de axiomas que (en base a esas
doce reglas) permitiera demostrar todas las verdades aritméticas.

El teorema de completitud no suscité una gran emocién en el
ambiente matemaético. Se entendia que Godel tan solo habia es-
crito prolijamente la prueba de un hecho que todos daban por
cierto; tan grande era la confianza en que el programa de Hilbert
podria completarse con éxito. Unicamente quedaba pendiente el
problema de hallar los axiomas para la aritmética.

EL TEOREMA DE INCOMPLETITUD

Establecida la base légica que otorgaba la facultad de realizar de-
mostraciones verificables algoritmicamente, solo faltaba hallar
los axiomas que permitieran demostrar todas las verdades aritmé-
ticas. Lamentablemente para el programa de Hilbert, este objetivo
es inalcanzable. El teorema que expone esta imposibilidad se co-
noce como el «primer teorema de incompletitud de Gédel», 0 més
familiarmente, como el teorema de Gddel:

Si elegimos como axiomas cualquier conjunto de enunciados arit-
méticos verdaderos y exigimos que las demostraciones que hagamos
a partir de ellos sean verificables algoritmicamente, entonces habra
al menos un enunciado verdadero que no puede ser demostrado a
partir de esos axiomas.

Godel probé este teorema en 1930 y, como ya sabemos, lo

expuso abiertamente por primera vez en el congreso de Konigs-
berg, el 7 de septiembre de ese afio. El articulo con el desarrollo
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LAS DOCE REGLAS LOGICAS

En su tesis doctoral, presentada en 1930, Gédel demostré que todo razona-
miento que sea verificable algoritmicamente puede fundamentarse usando
solo doce reglas légicas, que listamos a continuacion. En lo que sigue, «P=>Q»
es una abreviatura de «Si P entonces Q» y « VxP(x)» es una abreviatura de
«Todo x cumple la propiedad P».

1. Si vale el enunciado Q, entonces, cualquiera que sea P, vale el enunciado
«P =>Q».
2. Si vale «P=(Q=>R)» y también vale «P=>Q» entonces vale «P =R».
3. Si vale «no-Q@=+no-P» entonces también vale «P=> Q».
4, Si vale « ¥xP(x)» entonces vale «P(n)», donde n es un numero cualquiera.
5. Si vale « ¥x[(P=Q(x)]» entonces vale «P=[ ¥xQ(x)]», siempre que la letra
X no aparezca en P.
6. Cualquiera que sea el numero x, vale que x=x.
7. Cualesquiera que sean los numeros x e y, vale que si x=y entonces y=x.
8. Cualesquiera que sean los numeros x, ¥, Z vale que si x=y e y=z entonces
xX=2z.
9. Si x=y entonces puede reemplazarse x por y en cualquier expresion nu-
mérica.
10. Si x=y entonces puede reemplazarse x por y en cualquier enunciado.
1. Si vale Py vale «P=>Q» entonces vale Q.
12. Si vale P(x) para un x genérico entonces vale « FxP(x)».

En general, las diez primeras reglas se presentan como enunciados universal-
mente validos, mientras que a las dos ultimas se les da una presentacion di-
ferenciada como «reglas de inferencia». Esta distincién es puramente técnica
y no tiene relevancia para nuestros fines.

de la demostracién fue enviado a la revista Monatshefie fiir Ma-
thematik und Physik en noviembre y aparecié en el volumen 38
(1931), una publicacién cuya relevancia para la légica es solo
comparable con la Metafisica de Aristételes. La exposicién de la
demostracion fue tan clara y transparente que no generd ni la mas
minima controversia.

Pero, jcémo es posible demostrar un hecho de esa enverga-
dura? ;Cémo puede probarse que cualquiera que sea el conjunto
de axiomas que se elija (si los razonamientos son verificables al-
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goritmicamente) entonces siempre habri alguna verdad que es
indemostrable a partir de ellos? Nos proponemos ahora explicar
la demostracién de este hecho y para ello iremos, paso a paso, por
los puntos principales del razonamiento de Gédel.

LA IDEA GENERAL DE LA DEMOSTRACION

Aqui comienza la explicacién de la demostracién del teorema de
Godel. Supongamos que se han elegido como axiomas algunos
enunciados aritméticos verdaderos. Observemos en primer lugar
que el hecho de que los axiomas sean afirmaciones verdaderas
garantiza que todos los enunciados que se demuestren a partir de
ellos seran también verdaderos, ya que de premisas verdaderas (si
los métodos de razonamiento son correctos) solo pueden ex-
traerse conclusiones verdaderas. Este hecho nos asegura que nin-
gin enunciado demostrable sera falso; sin embargo, no nos
garantiza de ninguna manera que todas las verdades seran demos-
trables. De hecho, nuestro objetivo es probar que existe necesa-
riamente algin enunciado aritmético verdadero que no puede ser
demostrado a partir de esos axiomas (si nos ajustamos a los mé-
todos de demostracion del programa de Hilbert).

La idea general de la prueba de Godel consiste en obtener un
enunciado G que diga: «G no es demostrable». En otras palabras,
G puede escribirse como: «Esta afirmacién no es demostrable».

El enunciado G es autorreferente y dice de si mismo que no
es demostrable (en todo lo que sigue, la palabra «demostrable»
siempre debe entenderse como «demostrable a partir de los axio-
mas propuestos»). Probemos que este enunciado G es una verdad
no demostrable. .

Para comenzar, observemos que G es verdadero, o falso. Si G
fuera falso, debido alo que G dice de si mismo, concluiriamos que
G es demostrable. Luego G seria a la vez falso y demostrable, pero
esto es imposible (porque dijimos que partiendo de axiomas ver-
daderos solamente podrian demostrarse enunciados verdaderos).
Por lo tanto, G no puede ser falso.
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En consecuencia, G es verdadero y, por lo que dice de si
mismo, no es demostrable. Deducimos asi que G es un enunciado
verdadero y no demostrable (véase el esquema).

NUMEROS Y AFIRMACIONES

La idea anterior, aunque esencialmente correcta, tiene un pro-
blema: G deberia ser una afirmacién aritmética. Ahora bien, en
principio, los enunciados aritméticos se refieren a propiedades de
los nimeros naturales, no hablan de otros enunciados, y mucho
menos de si mismos. ;Cémo podemos vencer esta limitacién?
+Cémo podemos hacer que, a pesar de todo, un enunciado aritmé-
tico si se refiera a otro enunciado? Si los enunciados hablan de
nimeros y necesitamos que se refieran a otras afirmaciones, la
manera de hacerlo es equiparar niimeros con afirmaciones:

Numeros <> Afirmaciones

El asunto es asociar a cada enunciado aritmético un nimero
natural, de tal modo que hablar de ese niimero equivalga a hablar
del enunciado correspondiente. Por ejemplo, si a una afirmacioén
Ple correspondiera el niimero 457, entonces podemos pensar que
cualquier enunciado que hable del 457 estd hablando al mismo
tiempo de P.
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A cada enunciado aritmético se le asocia entonces un ni-
mero, que llamaremos su niimero de Gddel, o su cédigo. La asig-
nacién de nimeros de Godel se hace de una manera especifica y
bien establecida que, inclusive, es programable en un ordenador.
Sin embargo, a efectos de entender a grandes rasgos la idea de la
demostracién del teorema de incompletitud no es necesario dete-
nerse en los detalles técnicos de esta asignacién. Los ejemplos
que mostraremos a continuacién son puramente hipotéticos y sir-
ven solo para ilustrar el concepto general. Imaginemos que:

«4 =2 + 2» <> c6digo 67
«2 es par» <> codigo 223
«162 es divisible por 18» <> cddigo 103
«4 es impar» <> cédigo 149
«171 es par» <> codigo 61.

Insistimos en este punto: los c6digos no se asignan al azar ni
arbitrariamente. Por el contrario, debe existir un algoritmo que,
dado un enunciado, permita calcular de forma exacta cuél es su
c6digo. También debe existir un algoritmo inverso que, dado un
c6digo, recupere a qué enunciado corresponde. Mas atin, en la
realidad, los cédigos, cuando son calculados correctamente, pue-
den llegar a tener decenas de cifras. Por ejemplo, en el cdlculo
real, al enunciado «1 = 1» le corresponde el c6digo 2 187000 000 000.

Notemos que los enunciados de los dos tltimos ejemplos son
falsos. Esto muestra que se le asignan nimeros de Godel a todos
los enunciados, tanto a los verdaderos como a los falsos. Por una
conveniencia técnica, también se le asignan niimeros de Godel a
las expresiones genéricas, tales como «x es par» 0 «x es multiplo
de 18». Expresiones que no se refieren a un nimero especifico,
sino a un nimero variable x. A estas expresiones Bertrand Russell
las llamaba funciones proposicionales.

En si mismas, las funciones proposicionales no son enuncia-
dos, ya que un enunciado, por definicién, debe ser verdadero o
falso, mientras que la verdad o falsedad de «x es par» depende de
cudl sea el valor que se elija para x. Cada vez que reemplazamos x
por un nimero especifico obtenemos un enunciado concreto que
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serd verdadero o falso dependiendo del x elegido. Por ejemplo, si
en «x es par» reemplazamos x por el nimero 8, entonces obtene-
mos el enunciado verdadero «8 es par». En cambio, si reemplaza-
mos x por el nimero 3, obtenemos el enunciado falso «3 es par».

Dijimos antes que a cada funcién proposicional se le asocia
también un nimero de Gédel (igual que para los enunciados, estos
cédigos se calculan de un modo preciso mediante un algoritmo
previamente establecido). A modo de ejemplo hipotético pode-
mos imaginar que:

«x es divisible por 18» <> cédigo 162
«x es par» <> codigo 171.

Notemos que a «x es par» le asignamos el cédigo 171, mientras
que al enunciado «2 es par» le corresponde el codigo 223. Es co-
rrecto que los cédigos sean diferentes, ya que se trata de objetos
lingiiisticos diferentes. De la misma manera, «1 es par», «3 es par»,
«4 es par»... tienen todos niimeros de Godel diferentes entre si.

Finalmente, se le asigna ademés un nimero de Gédel a cada
sucesion finita de enunciados (que es calculado en base a los c6-
digos de los enunciados que forman la sucesion). La idea de esta
asignacion es garantizar que toda demostracion esté también
identificada por un cédigo. Por ejemplo, a la siguiente demostra-
cién de «4 = 2 + 2» a partir de los axiomas «S(x + ¥) =x + S(y)» y
«x + 1 =S(x)»:

S+ =2+S@W).ceeirinnnn 173
SR +1)=2+8(1) iviivinaiinn 199
S2+1)=2+2 .. 13
Z+1a8E)  coeeiene 37
2+ 1=8(2)  sesnean 83
2+1=3 . 7

S8)=2+2 i 251
4=2+2 e 67

le puede corresponder, hipotéticamente, el c6digo 2414 871965597,
que hemos calculado como el producto de los cédigos de los
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LA NUMERACION DE GODEL

<éCoémo se define en realidad la numeracién de Gédel? Para definirla, cada
enunciado y cada funcion proposicional debe expresarse primeramente usan-
do los simbolos del lenguaje formal. Gédel asigné a cada simbolo de ese
lenguaje un numero impar:

4 1
= 3
- 5
= 7

1 9
5 n
+ 13

. 15
( 17
) 19
X, 21
X, 23
X 25

La cantidad de variables es potencialmente infinita. A las restantes (x,, x,,...)
les corresponden los nimeros 27, 29, y asi sucesivamente. A continuacidn,
Godel asignd los codigos de los enunciados y de las funciones proposiciona-
les. Para mayor claridad, expliquemos el método sobre un ejemplo concreto.
{Qué codigo le corresponde, por ejemplo, al enunciado «1 = 1»? Los pasos para
calcularlo son los siguientes:

1. Fijémonos primero en los cédigos de los simbolos que forman el enuncia-
do:9,7,9.

2. Como hay tres simbolos, tomamos ahora, en orden, los tres primeros
numeros primos: 2, 3, 5.

3. El cédigo es entonces: 2° - 37 - 5° = 2187000000 000. (Obsérvese que
los primos son las bases de las potencias y los cddigos de los simbolos
son los exponentes.)

Para calcular el numero de Godel de una sucesion finita de enunciados se
procede de manera similar, solo que en el paso 1se toman, en orden, los cé-
digos de los enunciados que forman la sucesion, y en el dltimo paso se trans-
forman en los exponentes de los primos.

EL PRIMER TEOREMA DE GODEL




enunciados que la forman (y que estdn indicados junto al enun-
ciado correspondiente).

Por supuesto, como en los casos anteriores, debe existir una
«receta» mecanica que indique cémo debe ser calculado el cédigo
de una sucesion de enunciados y otra receta inversa que, dado un
codigo, permita recuperar la sucesién de enunciados que le co-
rresponde. Nuestra receta de calcular el cédigo de la sucesién
como el producto de los cédigos individuales no es vilida porque
ignora el orden de los enunciados en la sucesion (si permutamos
los enunciados, el cédigo de la sucesion resultante sigue siendo el
mismo, y esto no deberia suceder porque al permutarlos se ob-
tiene en realidad una sucesion diferente). Sin embargo, dado que
se trata solamente de un ejemplo hipotético, no nos preocupare-
mos por esta cuestion.

«SER DEMOSTRABLE» ES EXPRESABLE

Los cddigos, o niimeros de Gédel, no solamente logran que un
enunciado aritmético hable de otro enunciado, sino que ademas
podemos hacer que se refiera a la demostrabilidad de ese enun-
ciado. Por ejemplo, dada una afirmacién P, podremos escribir un
enunciado aritmético que diga «P no es demostrable». Veamos
como se consigue este objetivo.

Una vez que se ha elegido un conjunto de axiomas, queda
perfectamente fijado cudles enunciados son demostrables y cui-
les no lo son (aunque puede ser muy dificil determinar en la prac-
tica si un enunciado dado es demostrable o no). A cada enunciado
demostrable, a su vez, le corresponde un niimero de Godel. Tene-
mos entonces un conjunto de niimeros bien establecido: el con-
junto formado por los cédigos de los enunciados demostrables.

Godel probé que este conjunto queda caracterizado por una
propiedad aritmética bien definida. En otras palabras, probé que
«Ser el c6digo de un enunciado demostrable» es una propiedad
expresable en el lenguaje de la aritmética (que usa como elemen-
tos bésicos la suma, el producto y las operaciones légicas). En
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otras palabras, la propiedad «x es el cédigo de un enunciado de-
mostrable» puede traducirse a una propiedad numérica expresa-
ble en términos de sumas, productos y operaciones légicas. Como
suele decirse, «Ser demostrable» es expresable.

Destaquemos que esta parte de la argumentacién de Gédel es
la que depende fundamentalmente del hecho de que el programa
de Hilbert solo admite demostraciones verificables algoritmica-
mente. Si se permitieran otros métodos de razonamiento (habla-
remos de ellos en el dltimo capitulo), entonces no habria forma de
garantizar que la propiedad «x es el cédigo de un enunciado de-
mostrable» es expresable en términos aritméticos.

«Todos los principios de la matematica se reducen
a principios de la l6gica.»

— WiLLARD VAN ORMAN QUINE EN DESDE UN PUNTO DE VISTA LOGICO.

74

Como probé Godel que «Ser demostrable» es expresable?
En principio, prob6 que cualquier propiedad numérica que sea
verificable algoritmicamente (como por ejemplo «Ser un nimero
primo», «Ser par» o «Ser divisible por 9») es siempre expresable
en términos de sumas, productos y operaciones légicas.

Ahora bien, que un enunciado P sea demostrable significa que
existe una demostraciéon (como las que admite el programa de
Hilbert) de la cual P es el enunciado final. A modo de ejemplo, ya
mostramos una demostracion de «4 =2 + 2» a partir de los axiomas
«Sx+y)=x+SW)»y«x +1=8()» Recordemos que a esa de-
mostracién, en cuanto sucesion de enunciados, le corresponde el
nimero de Godel 2414871965597. Recordemos ademas que a
«4=2+2» le corresponde el 67. Traducido a cédigos, que «4 =2 +2»
sea demostrable significa que existe una secuencia finita de enun-
ciados, cuyo cédigo es 2414871965597, que es una demostracion,
¥ que su enunciado final es aquel que tiene el cédigo 67.

«Ser el codigo de una demostracién» es una propiedad verifi-
cable algoritmicamente porque, dado el cédigo, para hacer la ve-
rificacién, el ordenador aplicaria primero el programa que
recupera la secuencia de enunciados correspondiente a ese c6-
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ENCONTRAR O VERIFICAR

La teoria de la demostracion plantea dos
problemas que, aunque similares, no de-
ben ser confundidos. El primer problema
pide, dado un enunciado P, hallar una
demostracion de él (o bien probar que
esa demostracion no existe). El segundo
problema plantea, si se ha propuesto una
demostracién para un enunciado, deter-
minar si la demostracion es correcta, o si
no lo es. El segundo problema puede ser
dificil, pero el primero lo es mucho mas.
Si los métodos de demostracion son los
adecuados, el segundo problema, el de
determinar si una demostracion propues-
ta es correcta o no, puede resolverse
algoritmicamente. El problema de hallar
una demostracion, en cambio, No es re- g matemitico briténico Andrew Wiles.
soluble de esa manera.

El dltimo teorema de Fermat

Un ejemplo concreto estd dado por el ultimo teorema de Fermat. En 1637,
Pierre de Fermat afirmoé que si n>2, entonces la ecuacion x" + y" = z" no tiene
solucién en los nimeros naturales. Fermat aseguré tener una demostracion
de este hecho, pero jamas la reveld. El problema de hallar una demostracion
del ultimo teorema de Fermat se volvié famoso y fue resuelto finalmente por
Andrew Wiles en 1996 (Wiles presentd una primera demostracién en 1995,
pero esta resultd tener un error, que fue subsanado casi un afio mas tarde).
Determinar la correccién de la demostraciéon de Wiles fue un trabajo que
demando algunos dias de esfuerzo; hallar la demostracion, en cambio, nece-
sitd mas de trescientos cincuenta afios.

digo, y luego aplicaria a esa secuencia de enunciados el algoritmo
que determina si se trata, o no, de una demostracion:

Cédigo de la sucesién — Sucesion de enunciados — jEs una
demostracién?

Cada paso puede realizarse algoritmicamente.
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Por lo tanto, dados x e ¥, 1a propiedad «y es el c6digo de una
demostracion que termina en el enunciado de c6digo x» es tam-
bién una propiedad verificable algoritmicamente, ya que al proce-
dimiento anterior solo hay que agregarle la verificacién de que la
secuencia termina con el enunciado que corresponde al nimero
de Godel x. Como la propiedad es verificable algoritmicamente,
entonces la funcién proposicional «y es el cédigo de una demos-
tracién que termina en el enunciado de cédigo x» es expresable
en términos de sumas, productos y operaciones légicas.

Finalmente concluimos que la expresion «Existe algin y que
es el cddigo de una demostracién que termina en el enunciado de
cdodigo x» también es expresable en términos aritméticos. Pero, si
la leemos con atencién, veremos que esta uiltima expresién dice
que existe alguna demostracién del enunciado de cédigo x; en
otras palabras, que el enunciado de cédigo x es demostrable. De-
ducimos asi que la funcién proposicional «x es el cédigo de un
enunciado demostrable» es expresable en términos aritméticos.

Por lo general, esta traduccién aritmética es tan complicada
que su escritura explicita podria llegar a ocupar decenas de pagi-
nas. Sin embargo, a efecto de entender la idea de la demostracién
de Godel, supondremos, a modo de ejemplo hipotético, que la pro-
piedad que caracteriza a los cédigos de los enunciados demostra-
bles es la de «Ser un primo que puede escribirse como suma o resta
de tres primos consecutivos». Asumimos entonces que «x es el c6-
digo de un enunciado demostrable» equivale a «x es un primo que
puede escribirse como suma o resta de tres primos consecutivos».

Antes de continuar, entendamos bien esta propiedad aritmé-
tica. Los niimeros primos son aquellos que solamente son divisi-
bles por 1 y por si mismos. Hay infinitos primos y los primeros
son: 2,3, 5,7, 11, 13, 17, 19, 23,... (como ya dijimos en el capitulo
anterior, por razones técnicas el 1 no se considera primo).

El niimero 23, por ejemplo, es primo, y ademas puede escri-
birse como suma o resta de tres primos consecutivos, ya que
23=17+19-13 (nétese que 13, 17 y 19 son consecutivos en la su-
cesion de los niimeros primos, aunque no los hayamos escrito en
ese orden al hacer las operaciones). En nuestro ejemplo, podemos
asegurar que 23 es el codigo de un enunciado demostrable. Por el
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contrario, el 149 es un nimero primo que no puede escribirse
como suma o resta de tres primos consecutivos. Pero 149 es, en
nuestro ejemplo hipotético, el cédigo del enunciado «4 es impar».
Por lo tanto, decir que «149 no es un primo que se pueda escribir
como suma o resta de tres primos consecutivos» equivale a decir
que «El enunciado “4 es impar” no es demostrable» (y, en efecto,
no es demostrable porque hemos supuesto que los axiomas son
enunciados verdaderos y en consecuencia ningiin enunciado falso
es demostrable). Repitamos este concepto, porque aqui esta el
corazon de la demostracién de Goédel. El enunciado:

«149 no es un primo que se pueda escribir como suma
o resta de tres primos consecutivos»

es, en principio, la afirmacién de una propiedad aritmética relativa
al nimero 149. Pero, via la numeraciéon de Godel, a ese mismo
enunciado podemos atribuirle también el significado:

«El enunciado “4 es impar” no es demostrable».

Hay aqui dos niveles de lectura para «149 no es un primo que
se pueda escribir como suma o resta de tres primos consecuti-
vos». Por un lado, un nivel meramente aritmético, literal, en el que
interpretamos el enunciado como expresando una propiedad del
numero 149. Por otro lado, tenemos un nivel de lectura superior,
o metamatematico, que depende de la numeracion de Godel, y en
el que interpretamos el enunciado como diciendo que la afirma-
cién «4 es impar» no es demostrable.

EL METODO DE AUTORREFERENCIA

Hemos visto que, via la numeracién de Gédel, hay enunciados arit-
méticos que se refieren a otros enunciados aritméticos. Veremos
ahora cémo podemos obtener un enunciado que se refiera a si
mismo.
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Supongamos, en otro ejemplo hipotético, que 101 fuera el c6-
digo de un cierto enunciado Q. Bajo esta suposicién, el enunciado
«101 es impar» se estaria refiriendo a @ y diria que «El cédigo de @
es impar». Ahora bien, imaginemos que buscamos a qué enunciado
corresponde el cédigo 101 (es decir, nos preguntamos quién es Q) y
que descubrimos que 101 es el mimero de Godel de «101 es impar».
En ese caso, «101 es impar» estaria en realidad refiriéndose a si
mismo y podria traducirse como «Mi c6digo es un niimero impar».

. Es verosimil el ejemplo que acabamos de dar? ;Es realmente
posible construir un enunciado que se refiera a su propio cédigo?
La respuesta es si. En su articulo, Godel expuso un método siste-
matico que permite escribir enunciados aritméticos que se refie-
ran a su propio cédigo. Si P es una propiedad aritmética cualquiera
(como «Ser un niimero par» 0 «Ser un nimero primo»), este mé-
todo, al que llamaremos método de autorreferencia, explica cémo
escribir un enunciado que puede traducirse como «Mi cédigo
cumple la propiedad P». La herramienta esencial de este método
es una funcién, que indicaremos como d(x), a la que Godel llamé6
«funcién diagonal».

;Qué es una funcién? Una funcién es una regla que, mediante
un procedimiento especifico, a cada nimero x le asigna otro ni-
mero, que puede ser igual o diferente a @, pero que es calculado
sin ambigiiedad (a un mismo & no le pueden corresponder dos
nimeros diferentes). Reglas de este estilo son, por ejemplo, «Mul-
tiplicar el nimero x por si mismo» o «Sumarle 3 al niimero x». Al
nimero 2, por citar un ejemplo, la primera funcién le asigna el 4 y
la segunda, el 5. En particular, nos interesan aqui las funciones
que, como las que acabamos de mencionar, pueden expresarse en
términos de sumas, productos y operaciones légicas.

Las funciones proposicionales reciben ese nombre porque se
parecen a funciones, solo que no asignan ntimeros, sino proposi-
ciones. Por ejemplo, la funcién proposicional «x es par», le asigna
al 2, no otro ntimero, sino la proposicion «2 es par».

Ahora bien, en la escritura de las funciones proposicionales
podemos insertar funciones numéricas, siempre que estas sean
expresables en términos de sumas, productos y operaciones 16gi-
cas. De este modo, podemos escribir «x + 3 es primo» o también
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«x* es multiplo de 18» y ambas son, con pleno derecho, funciones
proposicionales.

Hechas estas aclaraciones, veamos ahora la definicion de la
funcién d(x), que en realidad se calcula solamente para nimeros
que son los cédigos de funciones proposicionales. Para mayor cla-
ridad, explicaremos la definiciéon sobre un ejemplo. Tomemos el
codigo de una funcién proposicional, por ejemplo 171, que hemos
supuesto es el nimero de Godel de la expresion «x es par». A
continuacién, en esa funcién proposicional reemplazamos x por
el nimero 171. Obtenemos asi el enunciado «171 es par». El c6-
digo de este enunciado es d(171), el nimero que la funcién diago-
nal le asigna al 171:

171 — corresponde a «x es par» — reemplazamos x por 171 —
— «171 es par» — d(171) es el cédigo de «171 es par».

En los ejemplos iniciales dijimos que «171 es par» tiene como
codigo el nimero 61. Por lo tanto, d(171) = 61. La funcién diago-
nal, al nimero 171 le asigna el 61.

A modo de segundo ejemplo, calculemos d (162), siendo 162
el codigo de «x es divisible por 18»:

162 — corresponde a «x es divisible por 18» — reemplazamos
x por 162 — «162 es divisible por 18» — d(162) es el cddigo
de «162 es divisible por 18».

Como «162 es divisible por 18» tiene cddigo 103, entonces
d(162) = 103.

Todos los pasos que definen a la funcién diagonal pueden
calcularse algoritmicamente, por lo tanto, su definicién es expre-
sable usando sumas, productos y operaciones légicas. Esta cir-
cunstancia nos da derecho a insertar la funcién numérica d(x) en
la expresién de una funcién proposicional, del mismo modo que
en ejemplos anteriores lo hicimos con x2 o 2+ 3. De este modo,
por ejemplo, podemos escribir la expresion «d(x) es par».

Supongamos ahora que a «d(x) es par» le corresponde el c6-
digo 423 y apliquemos el procedimiento para calcular d (423):
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423 — corresponde a «d(x) es par» — reemplazamos x por
423 — «d(423) es par» — d(423) es el codigo de «d(423) es

par».

Observemos bien el ultimo paso: d(423) es el cédigo de
«d(423) es par». Es decir, «d(423) es par» puede leerse como un
enunciado autorreferente que estd hablando de su propio cédigo
y que dice «Mi cédigo es un nimero par». Si «d(423) es par» tu-
viera por cddigo al nimero 503, entonces el enunciado podria
reescribirse como «503 es par» y estaria diciendo, falsamente, que

su propio cédigo es par.

EL TEOREMA DE GOODSTEIN

Tomemos un numero natural cualquie-
ra, por ejemplo el 25. A partir de él, va-
mos a construir una sucesién de nime-
ros, llamada «sucesion de Goodstein de
semilla 25» (por Reuben Louis Good-
stein [1912-1985], el matematico inglés
que definid este mecanismo por prime-
ra vez). Para obtener el segundo nume-
ro de la sucesidn, escribimos el 25 como
suma de potencias de 2, de manera que
cada potencia aparezca exactamente
una vez (el 1 es potencia de 2 porque
2°=1):

25=2442%+1,

Y escribimos también cada exponente
como suma de potencias de 2:

25227 422141,

El segundo numero de la sucesion se obtiene reemplazando cada 2 por un

3en 22 +2% 11y luego restando 1:

(3 +34D-1=3% + 3% = 7625597485068
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El método de autorreferencia nos dice que el mismo procedi-
miento puede aplicarse a cualquier propiedad aritmética P. Toma-
mos la funcién proposicional «x cumple la propiedad P» y la
transformamos en «d(x) cumple la propiedad P». Si el cédigo de
esta ultima expresién es el niimero n, entonces «d(n) cumple la
propiedad P» puede leerse, via la codificacién de Godel, como un
enunciado autorreferente que dice «Mi cédigo cumple la propie-
dad P». Veamos ahora cémo este método nos lleva finalmente al
enunciado G buscado.

Ya dijimos que «Ser el c6digo de un enunciado demostrable»
es una propiedad expresable en términos de sumas, productos y
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El segundo numero de la sucesién de Goodstein de semilla 25 es
7625597 485 068. Para obtener el tercer nimero reemplazamos cada 3 por
un 4 en 3¥ +3*'y restamos 1. Nos queda 4*' + 4% -1, operacién que da como
resultado un ndmero de 155 cifras. Previo al siguiente paso hay que escribir
a 4% +4*'_1 como suma de potencias de 4, en la que cada potencia apa-
rezca como maximo tres veces y en la que los exponentes sean también
suma de potencias de 4. Notese que 4% + 4% 1 no esta escrito de esa for-
ma, ya que hay una resta. La escritura correcta es:

B Tt . o= e ﬂ"lk“’

= o

/S LMY, LD LI LN L D L S B L B LS U L DA S0 . P, P

Para obtener el cuarto nimero reemplazamos cada 4 por un 5 y restamos 1.
Es decir:

5% 455455455 4 5HMI L ghk gkl gk gk BW L5, 5454141,

El resultado de este ultimo calculo es un numero de mas de dos mil cifras.
Para obtener el siguiente nimero, reemplazamos cada 5 por un 6 y restamos
1. Y asi sucesivamente. La sucesidn parece crecer indefinidamente. Sin em- :
bargo, el teorema de Goodstein, demostrado por Goodstein hacia 1950, |
afirma gue, no importa cudl sea la semilla inicial, la sucesién siempre llegara 4
en una cantidad finita de pasos al numero 0. La demostracion de Goodstein '
usaba conceptos de la teoria de conjuntos y quedaba abierta la posibilidad ;
de que no fuera realizable a partir de los axiomas de Peano. Esto fue confir- |
mado en 1982 por Laurie Kirby y Jeff Paris, quienes demostraron que el i
teorema de Goodstein es, en efecto, indemostrable a partir de los axiomas
de Peano mediante razonamientos verificables algoritmicamente.
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operaciones légicas. Resulta obvio que lo mismo sucede con su
negacién. Por lo tanto, podemos escribir la funcién proposicional:

«x no es el codigo de un enunciado demostrable»
que, segun dice el método de autorreferencia, transformamos en:
«d(x) no es el cédigo de un enunciado demostrable».
Si su c6digo es el nimero m, entonces:
G: «d(m) no es el cddigo de un enunciado demostrable»

tiene como cddigo al nimero d(m) y puede leerse como un enun-
ciado autorreferente que habla de su propio cédigo y dice: «Mi
propio cédigo no corresponde a un enunciado demostrable». En
otras palabras, G dice:

«G no es demostrable».

Como vimos al principio de la demostracién, este enunciado
G resulta ser verdadero y a la vez no demostrable (recordemos
que «demostrable» siempre significa «demostrable a partir de los
axiomas propuestos»). Hemos probado que existe un enunciado
G que es verdadero y no demostrable, y hemos descrito los pasos
necesarios para escribirlo. Queda asi demostrado el primer teo-
rema de incompletitud de Godel.

Una aclaracién importante: el desarrollo que hemos hecho
no es en realidad una demostraciéon formal del primer teorema de
incompletitud de Godel. Solamente es una introduccion, 1til para
entender las ideas principales, pero que no explica los detalles espe-
cificos de como esas ideas son llevadas a la practica. El lector intere-
sado en esos detalles puede profundizar en obras técnicas de 16gica
matematica, algunas de las cuales se mencionan en la bibliografia.

Una pregunta interesante es como se veria el enunciado G en
nuestro ejemplo hipotético. Recordemos que en este ejemplo, la
propiedad que caracteriza a los cddigos de los enunciados demos-
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LA PARADOJA DEL MENTIROSO

Una de las paradojas mas antiguas que se conocen es la llamada «paradoja
del mentiroso». Una manera de formularla es preguntarse si la afirmacion
«Esta oracidn es falsa» es verdadera o falsa. Si la afirmacion es verdadera,
entonces, por lo que dice de si misma, resulta ser falsa. Pero si es falsa, tam-
bién por lo gue dice de si misma, resulta ser verdadera. Caemos asi en un
sinsentido, un circulo vicioso que nos lleva de la verdad a la falsedad, vy de
la falsedad a la verdad, una y otra vez. En su articulo de 1931, Gédel explico
que su demostracion esta inspirada en la paradoja del mentiroso, solo que
en lugar de escribir un enunciado que hablara de su propia falsedad, Godel
escribio un enunciado que hablaba de su propia no demostrabilidad. El enun-
ciado «Esta oracion es falsa» es un sinsentido paraddjico. En cambio, el
enunciado «Esta oracion no es demostrable a partir de los axiomas propues-
tos» es una verdad no demostrable.

trables es la de «Ser un primo que puede escribirse como suma o
resta de tres primos consecutivos». Tomariamos entonces la fun-
cién proposicional «x no es un primo que puede escribirse como
suma o resta de tres primos consecutivos», que transformamos en
«d(x) no es un primo que puede escribirse como suma o resta de
tres primos consecutivos». Supongamos que a esta dltima expre-
sién le corresponde el nimero 909.

Entonces el enunciado G seria:

«d(909) no es un primo que puede escribirse como
suma o resta de tres primos consecutivos».

Supongamos ademas que d(909) sea el niimero 43. En conse-
cuencia, G seria:

«43 no es un primo que puede escribirse como suma o
resta de tres primos consecutivos».

Como ya se ha indicado antes, G tiene dos niveles de lectura.
En un nivel elemental es la expresion de una propiedad aritmética
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del nimero 43. Solamente cuando lo vemos a través del cristal de
la codificacién de Godel se transforma en autorreferente y puede
leerse como diciendo de s mismo que no es demostrable. En el
capitulo siguiente veremos que esta observacién sobre los dife-
rentes niveles de lectura permite superar una paradoja aparente
que surge del andlisis del segundo teorema de Godel.

UNA VERDAD NO DEMOSTRABLE

Una pregunta que suele surgir en relacion al primer teorema de
incompletitud es la siguiente: si G es una afirmacién no demostra-
ble, ;cémo podemos asegurar que es verdadera?

La respuesta es que «demostrable» es un término relativo.
Dado un conjunto A de axiomas, existe un enunciado verdadero
G que no es demostrable a partir de esos axiomas (usando los
métodos de demostraciéon admitidos por el programa de Hilbert).
Pero nada impide que G sea demostrable a partir de otros axiomas
o mediante otros métodos de demostracién.

Aunque todavia no se sabe con certeza, el Gltimo teorema de
Fermat podria ser un ejemplo de verdad no demostrable a partir
de los axiomas de Peano. Este teorema, conjeturado por primera
vez por Pierre de Fermat en 1637, afirma que si n>2, entonces
x"+y"=2" no tiene solucién en los niimeros naturales. Después de
numerosos intentos por parte de muchisimos matematicos, el teo-
rema fue finalmente demostrado por Andrew Wiles en 1996.

Sin embargo, la demostracion de Wiles excede con mucho los
métodos o los axiomas usuales de la aritmética. El tiltimo teorema
de Fermat es verdadero (Wiles lo demostré), pero ;es demostrable,
por ejemplo, a partir de los axiomas de Peano mediante los métodos
del programa de Hilbert? Hoy por hoy no se sabe la respuesta a esta
pregunta, pero la suposicién méas razonable parece ser que no, que el
dltimo teorema de Fermat no es demostrable a partir de los axiomas
de Peano mediante razonamientos verificables algoritmicamente.

Sin embargo, si G no es demostrable a partir de un conjunto
A de axiomas, es perfectamente posible agregarle al conjunto A
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un nuevo axioma, de tal modo que G si sea demostrable a partir
del sistema ampliado, al que llamaremos A'. Claro esté que para A'
también vale el teorema de Goédel y por lo tanto habrd un enun-
ciado aritmético G' que no es demostrable a partir de él.

Podemos agregarle a A' un nuevo axioma que permita demos-
trar G', y obtendremos asi un conjunto A" donde G' es demostra-
ble. Pero para A" habrd un nuevo enunciado no demostrable G".
Podemos agregarle un nuevo axioma a A", pero entonces habra
un G'"" indemostrable... Y asi indefinidamente:

A — (G no demostrable.

A' = A + otro axioma — G demostrable, pero G' no.

A" =A' + otro axioma — G y G' demostrables, pero G'" no.
A'"'= A" + otro axioma — G, G'y G" demostrables, pero G'"' no.

Agregando axiomas de uno en uno jamas podré alcanzarse la
completitud (es decir, la posibilidad de demostrar todas las verda-
des). Pero, ;podria alcanzarse por otros medios? Nos referiremos
a esta pregunta en el ultimo capitulo.
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CAPITULO 3

El segundo teorema de Godel

Hilbert tard6 diez afos en elaborar su programa, un
periodo repleto de lucha y debates. Después de todo ese
esfuerzo, cuando el primer teorema de incompletitud de

Godel demostré que el programa era irrealizable, ;se rindi6é
Hilbert sin pelear? ;No busco grietas en la demostracion de
Godel? ;Ni siquiera protest6? En este capitulo analizaremos
como Godel logro presentar la demostracion de su
teorema de incompletitud de tal manera que nadie
pudiera dudar de su validez, ni siquiera Hilbert.






La publicacién de su primer teorema de incompletitud, en 1931,
transformé a Godel en una celebridad internacional... dentro del
mundo de las mateméticas. Su nombre empezé a ser conocido en
todos los foros y congresos, y su demostracién se transformé
(como sigue siendo hoy en dia) en un clésico del razonamiento
matematico. Sin embargo, Godel no pudo disfrutar en seguida de
su bien ganada fama, porque después de completar su articulo su-
frié un colapso nervioso de tal magnitud que lo mantuvo alejado de
la vida publica por varios meses. Casi con total seguridad, fue el
resultado del estrés provocado por la presentacion de su teorema.
En realidad, en ese articulo de 1931, Gédel presentaba dos
teoremas. Uno de ellos es el ya mencionado primer teorema de
incompletitud, también conocido como «el» teorema de Godel.
Este teorema es el que enunciamos y demostramos en el capitulo
anterior, y al que volveremos en este mismo capitulo. Recordemos
que dice que si elegimos como axiomas aritméticos cualquier con-
junto de enunciados verdaderos, y solo admitimos demostraciones
verificables algoritmicamente, entonces habré siempre un enun-
ciado verdadero que no es demostrable a partir de esos axiomas.
El segundo teorema que Godel presentaba en ese articulo de
1931 es hoy conocido como el «segundo teorema de incompleti-
tud», o «segundo teorema de Godel», y habla de la imposibilidad
de verificar algoritmicamente la verdad de un conjunto de axio-
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mas aritméticos. Volveremos a este teorema mas adelante, en este
mismo capitulo. Hay que decir que el articulo no contenia una
demostracién detallada de este segundo teorema, sino que Godel
se limitaba a exponer a grandes rasgos la idea general de cémo
deberia probarse y adelantaba que escribiria una segunda parte
del articulo en la que expondria la demostracién completa. Sin
embargo, el colapso nervioso le impidié escribir esa segunda
parte en los meses siguientes, y cuando finalmente se recuperé
tomé conciencia de que las demostraciones de sus dos teoremas
(incluso la del segundo, que estaba apenas insinuada) habian re-
cibido tal aceptacién que consideré innecesaria cualquier aclara-
cién posterior, por lo que esa segunda parte del articulo jamas fue
escrita. (El titulo original del articulo, en alemén, termina con el
numeral romano «I», indicando asi que se trata solamente de una
primera parte. En las traducciones al espafiol, al inglés u otros
idiomas, el numeral romano suele ser omitido.)

Superada su crisis nerviosa, Gédel ingresé en 1933 en la Uni-
versidad de Viena como docente ad honérem (Privatdozent, en
aleméan). En aquella época, en las universidades del centro de
Europa, el cargo ad honérem era el modo usual de ingresar en la
carrera docente. Pero ademaés, como ya dijimos, Godel se habia
transformado en una celebridad internacional y en consecuencia,
ese mismo afo fue invitado a dar una conferencia en la reunién
anual de la American Mathematical Society de Estados Unidos.

En ese primer viaje a Estados Unidos, Gédel conoci6 a Albert
Einstein, quien habia emigrado a ese pais en 1932. Entre ambos
nacié inmediatamente una calida amistad, que dur6 hasta 1955,
ano del fallecimiento de Einstein. En el préximo capitulo volvere-
mos a hablar de esta relacién, muy apreciada por ambos.

En los dos afios siguientes, 1934 y 1935, Godel volvié a viajar a
Estados Unidos, aunque en estas dos ocasiones invitado por el Ins-
tituto de Estudios Avanzados de Princeton. En esta institucién dio
varios cursos y conferencias, ya no solamente sobre sus dos teore-
mas de incompletitud, sino también sobre otros temas que habia
abordado en investigaciones posteriores. Entre ellos, por ejemplo,
el problema siguiente: ;existe un algoritmo que, dado un conjunto
de axiomas y un enunciado P, permita determinar si P es demostra-
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EL INSTITUTO DE ESTUDIOS AVANZADOS DE PRINCETON

Fundado en 1930, el Instituto de Estudios Avanzados de Princeton (Nueva
Jersey, Estados Unidos) tenia el objetivo de reunir a la élite de la investigacion
cientifica internacional; la realizacion de este objetivo queda reflejada en los
nombres de quienes formaron parte de su cuerpo de investigadores, entre
otros, Kurt Gédel, Albert Einstein, Julius Robert Oppenheimer (fisico tedrico
estadounidense, famoso por ser el director cientifico del proyecto Manhattan),
John von Neumann, Oskar Morgenstern (estos dos ultimos, creadores en con-
junto de la teoria de juegos) y Hermann Wey! (notable fisico-matematico

aleman).

ble a partir de esos axiomas? Gddel obtuvo algunas soluciones par-
ciales, aunque el problema seria resuelto completamente en 1936
por el légico norteamericano Alonzo Church, quien demostré que
no existe un algoritmo con las caracteristicas planteadas. Este pro-
blema, junto con ofros planteados por el mismo Gédel o por otros
légicos inspirados en las investigaciones de Godel, dieron inicio a
la teoria de la computabilidad, que es el estudio de bajo qué condi-
ciones un problema matematico es resoluble algoritmicamente.
En estos vigjes a Estados Unidos, Godel mostré sus métodos,
sus ideas, los problemas que estaba pensando y estas exposiciones
dieron por si solas impulso al desarrollo de la escuela norteameri-
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ALONZO CHURCH

Alonzo Church fue uno de los principales
representantes de la escuela norteame-
ricana de légica matematica, practica-
mente iniciada por los cursos y conferen-
cias que Godel dicté en Estados Unidos
en la década de 1930. Church nacié en
Washington el 14 de junio de 1903 y es-
tudié matematicas en la Universidad de
Princeton, donde se doctord en 1927, Su
director de tesis doctoral fue Oswald Ve-
blen (que ayudo a organizar el Instituto
de Estudios Avanzados de Princeton y
fue ademas quien invité a Gédel a dar
sus primeras conferencias alli). Church
hizo aportes de primer nivel a la logica
matematica, la teoria de la computabili-
dad (que investiga qué problemas matematicos pueden ser resueltos algorit-
micamente y cudles no) y la informatica tedrica. Es el creador del «calculo-
lambdan», todavia hoy una herramienta esencial en el estudio de la teoria de
algoritmos. Church fallecié en Estados Unidos en 1995.

cana de l6gica matematica, en la que brillaron Willard van Orman
Quine, Stephen Cole Kleene y el ya mencionado Alonzo Church.
Pero también dieron impulso a la l6gica matematica en general;
comparado con otros matematicos, Godel publicé muy pocos tra-
bajos cientificos, pero cada uno de ellos abrié una rama de la 16-
gica e introdujo métodos e ideas que siguen vigentes hoy en dia.

EL «ANSCHLUSS»

Mientras Godel gozaba de los frutos de su creciente prestigio aca-
démico, la situacién politica en Viena se volvia cada vez mas com-
plicada y violenta. Tras su ascenso al poder, Adolf Hitler habia
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declarado su intencién de que Austria se transformara en parte
de Alemania. Con ese objetivo en la mira, Hitler inicié una serie de
presiones politicas y militares sobre su vecino pais. Estas presio-
nes comenzaron en 1931 con la exigencia de que el partido nazi,
que hasta ese momento estaba proscrito, fuera reconocido en
Austria y se le diera participacién en el Gobierno. Sin embargo, en
las elecciones austriacas de abril de 1932 los nazis no obtuvieron
la victoria que esperaban, por lo que pasaron a la oposicion y re-
currieron al terrorismo. Ese fue el inicio de una serie de atenta-
dos, magnicidios e intentos de golpes de estado que hacia 1937
llevaron a Austria al borde de la guerra civil.

Hasta donde se sabe, los primeros aiios de esta turbulencia
politica no afectaron especialmente la vida de Gédel, que conti-
nué sin interrupciones con sus investigaciones y sus viajes a Es-
tados Unidos. Pero el 22 de junio de 1936, Moritz Schlick, uno de
sus mentores y fundador del Circulo de Viena, fue asesinado por
un estudiante universitario. Al conocer la noticia, Godel sufrié un
nuevo colapso nervioso del que tardaria varios meses en recupe-
rarse. Ese afio iba a desplazarse nuevamente a Estados Unidos,
pero debié cancelar el viaje y no pudo reiniciar su trabajo docente
hasta 1937.

En febrero de 1938 Hitler lanzé un ultimatum: Austria debia
adherirse voluntariamente al III Reich o seria incorporada por la
fuerza. Después de varias idas y vueltas, que incluyeron dos cam-
bios de Gobierno, en marzo se convoco un referéndum para que
la gente votara a favor o en contra de la anexién a Alemania. El
voto no era secreto; la papeleta, con el voto a la vista, era recibida
por un oficial de las SS que la colocaba en la urna. Bajo estas cir-
cunstancias, no es sorprendente que la anexién a Alemania ganara
con mas del 99% de los sufragios y, como consecuencia, el 12 de
marzo Austria se transformo en una provincia de la Alemania nazi
(esta accién fue llamada el Anschluss, palabra alemana que signi-
fica «unién» o «anexién»).

Inmediatamente los nazis reformaron el sistema universitario
austriaco y dejaron sin trabajo a varios intelectuales, entre ellos
Godel. Esto no impidié, sin embargo, que contrajera matrimonio,
en septiembre de 1938, con Adele Porkert, una bailarina divor-
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ciada, seis afios mayor que él, a quien Godel habia conocido en
1927. Tal vez el matrimonio fue un paso previo necesario para
emigrar juntos, una decisién que Go6del ya veia como posible.
Ambos formaron siempre una pareja muy unida, y aunque no eran
propensos a las manifestaciones ptblicas de cariiio, todo parece
indicar que se quisieron mucho.

«Es importante buscar demostraciones de consistencia, aunque
toda demostracion de consistencia es relativa en el sentido

de que no podemos prestarle mas confianza de la que le
prestamos al sistema légico en cuyo seno se desarrolla

la demostracién de consistencia.»

— WiLLARD VAN OrMAN QUINE EN DESDE UN PUNTO DE VISTA LOGICO,

94

En 1938 y también en 1939, Godel viajo otra vez al Instituto de
Estudios Avanzados, y en estos viajes, ademds de dar sus habitua-
les cursos y conferencias, se procuré los contactos institucionales
necesarios para preparar su futura admisién como profesor, en el
caso de que tuviera que abandonar Austria. De regreso a Viena
después del segundo de estos viajes, fue atacado por un grupo de
estudiantes de ultraderecha que, segin cuenta una anécdota muy
repetida, su esposa espant6 a paraguazos.

Las presiones sobre Gédel aumentaban, su presencia como
intelectual independiente era una molestia para los nazis, y final-
mente en octubre de 1939 fue incluido en una «lista negra». Esto
oficializaba su caricter de desocupado y bajo el régimen nazi los
desocupados eran casi automaticamente reclutados en el ejército.
En efecto, poco después Godel recibi6 la temida orden de reclu-
tamiento. Como tinica respuesta, Kurt Gédel y Adele Porkert hu-
yeron de Austria hacia Estados Unidos (igual que tantos otros
cientificos europeos de aquella época, entre ellos, Albert Einstein
y John von Neumann). :

La guerra entre Alemania, Francia e Inglaterra ya habfa co-
menzado para ese entonces, de modo que Godel y su esposa tuvie-
ron que vigjar a Estados Unidos por el camino mas largo, a través
de Rusia, Jap6n y el océano Pacifico. Godel llegé al Instituto de
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FOTO SUPERIOR:
Hitler saluda a

la muchedumbre
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FOTO INFERIOR
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El mateméatico
alemdan David
Hibert en la
década de 1930.
El llamado
«programa de
Hilbert» perseguia
que la matematica
fuese formulada
sobre unas bases
sdlidas y légicas.
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Estudios Avanzados en 1940, donde, gracias a sus contactos pre-
vios, pudo ingresar inmediatamente con el cargo de profesor invi-
tado. En 1946 fue incorporado de modo permanente y en 1948
adopt6 la ciudadania norteamericana.

Godel nunca regresé a Austria o a Checoslovaquia; y aunque
anos mas tarde la Universidad de Viena le ofrecié cargos y hono-
res, no los acepto. En realidad, jamés volvié a pisar suelo europeo.

SEMANTICO O SINTACTICO

Antes de seguir a Gédel a Princeton, retrocedamos otra vez en el
tiempo hasta septiembre de 1930 y recuperemos la imagen de ese
joven que levantaba timidamente la mano en el congreso de
Konigsberg para anunciar su primer teorema de incompletitud.

Ubicados de nuevo en ese momento histérico, hay una pre-
gunta que surge naturalmente y que todavia no nos hemos formu-
lado: después de diez afios de elaborar su programa, de diez afios
de pensar y de escribir, ;Hilbert se «rindi6» sin luchar? ;No in-
tent6 cuestionar el razonamiento de Godel? La verdad es que la
demostracién de Godel escap6 a toda discusién y fue aceptada de
inmediato, de manera unanime, inclusive por Hilbert. La explica-
cién es que Godel no solamente pensé muy bien su demostracién,
sino que también, en especial, tuvo mucho cuidado en el modo de
presentarla. A continuacién desarrollaremos con cuidado esta
idea, que es fundamental para la comprensién del teorema de
Godel.

Como ya dijimos, el programa de Hilbert solo aceptaba como
validas aquellas demostraciones que fueran verificables algoritmi-
camente y hacia septiembre de 1930 esa restriccién habia llegado
a ser aceptada por todos los matematicos, contando entre ellos a
los intuicionistas quienes, segin palabras de Arendt Heyting,
«abrazarian» el infinito siempre que las demostraciones se ajusta-
ran a ese criterio.

Ahora bien, asi como Hilbert en su momento habia mostrado
una propuesta calculada para convencer a los intuicionistas,
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Godel, con el mismo espiritu, expuso la demostracién de su pri-
mer teorema de incompletitud de tal manera que fuera evidente
que su correccién era verificable algoritmicamente, que fuera
obvio que cumplia las condiciones del programa de Hilbert. Y tan
claro resulté este hecho que ni siquiera Hilbert pudo expresar
dudas al respecto.

«Como es bien sabido, el progreso de la matematica hacia

una exactitud cada vez mayor ha llevado a [...]
que las deducciones pueden llevarse a cabo segin
unas pocas reglas mecanicas.»

— KurT GODEL, EN LA INTRODUCCION A SOBRE LAS PROPOSICIONES
FORMALMENTE INDECIDIBLES... (1931)

. Coémo logro Godel este objetivo? ;Como consigui6 que fuera
innegable que la demostracién de su teorema era verificable por
un ordenador? La explicacién reside en lo que podemos llamar la
«dualidad seméantico-sintactica».

En l6gica matematica, un concepto relativo a una secuencia
de simbolos es sintdctico si ese concepto depende solamente de
los simbolos que forman la secuencia, sin que tenga la menor im-
portancia su significado, si es que ese significado existe. Por ejem-
plo, si afirmamos que la secuencia de letras «Kuna mbwa
nyekundu» estd formada por 18 caracteres (contando espacios),
estamos refiriéndonos a un concepto sintactico. En efecto, es po-
sible verificar por simple inspeccién de los simbolos que lo que
estamos diciendo es correcto, sin que nos interese saber si esa
serie de letras posee, 0 no, algiin sentido. Otros conceptos sintac-
ticos serian «La primera letra es una K» o «No aparece la letra h».

Por el contrario, un concepto es semdntico si depende del
significado que la secuencia transmite. Por ejemplo, si decimos
que «Kuna mbwa nyekundu» es verdadera, entonces es claro que
nos estamos refiriendo a un concepto seméantico, porque no pode-
mos decidir si es «verdadera» o «falsa» a menos que sepamos pre-
viamente qué significado nos quiere transmitir esa secuencia de
letras (si es que acaso hay alguno).
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Es verdadero

La verdad es que si hay un sentido: «Kuna mbwa nyekundu»,
en suajili, significa «Existen perros rojos» (véase el esquema).
Hecha esta aclaracién podemos ahora preguntarnos si la oracién
es verdadera o falsa, pero aun asi la respuesta no es sencilla porque
;qué significa que un perro sea rojo? ;Tiene que haber nacido con
el pelaje de ese color? ;Aceptariamos como de color rojo a un
perro que haya sido tefiido? Por otra parte, no todos los seres hu-
manos percibimos el color de la misma manera. Todas estas dis-
quisiciones tienen el objetivo de exponer el hecho de que los
aspectos sintacticos del lenguaje son didfanos y que no se prestan
a confusiones. Por el contrario, los aspectos semanticos son pro-
pensos a la confusion y la paradoja. En concordancia con esta idea,
la premisa fundamental del programa de Hilbert consistia en pedir
que la validez de los aspectos semanticos de las matematicas fuera
controlada mediante métodos sintcticos. La sintaxis, clara e indu-
bitable, debia poner coto a la seméntica, propensa a paradojas.

EL PRIMER TEOREMA REVISITADO
Decimos entonces que Kurt Godel present6 la demostracion de

su primer teorema de incompletitud de tal manera que resultara
evidente para todos que era verificable por un ordenador. ;Cémo
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lo consigui6é? Godel expuso el enunciado y cada paso de la de-
mostracion del teorema apelando solamente a conceptos sintic-
ticos.

En el capitulo anterior formulamos el primer teorema de
incompletitud de Godel (o teorema de Goédel) de la siguiente
manera:

Si elegimos como axiomas cualquier conjunto de enunciados
aritméticos verdaderos y exigimos que las demostraciones que
hagamos a partir de ellos sean verificables algoritmicamente,
entonces habra al menos un enunciado verdadero que no pue-
de ser demostrado a partir de esos axiomas.

En esta formulacién del teorema aparece el concepto seman-
tico de «verdadero». Por lo tanto, no es esta la forma en que Godel
lo present6 en su articulo de 1931. La formulaciéon de Godel es
equivalente, solo que est4 escrita usando solamente conceptos
sintacticos.

Nuestra intencion en lo que sigue es definir los conceptos sin-
tacticos que usé Godel y reformular en consecuencia su primer
teorema de incompletitud.

Digamos para comenzar que «Ser una demostracion (que se
ajusta a los requisitos del programa de Hilbert)» si es una propie-
dad sintéctica, ya que es verificable por un ordenador mediante
inspecciones simbolo a simbolo. En consecuencia, la idea de
«enunciado demostrable» es también sintictica, dado que un
enunciado P es demostrable si existe una demostracién que ter-
mina en él.

Inclusive el concepto de «enunciado» puede traducirse sin-
tacticamente. En principio, la definicién aristotélica dice que un
enunciado es una expresion a la que se le puede atribuir un valor
de verdad (ya sea verdadero o falso). Por ejemplo:

«x es primo»

no es un enunciado porque su valor de verdad depende de quién
sea x. En cambio:
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«Existe algiin x que es primo»,
«Para todo x vale que x es primo»

si son enunciados, verdadero el primero y falso el segundo.

Ahora bien, este concepto eminentemente semantico puede
traducirse sintdcticamente: un enunciado es una expresion que no

AUTORREFERENCIA SINTACTICA

En su Principia Mathematica Bertrand Russell afirmé que todas las paradojas
conocidas nacen siempre de la autorreferencia. Es decir, todas las parado-
jas surgen de enunciados que, directa o indirectamente, se refieren a si mis-
mos. El modo de evitar toda paradoja, decia Russell, es eliminar en el lengua-
je toda traza de autorreferencia. Ahora bien, el enunciado G de Godel es
autorreferente. éSignifica esto que es paraddjico? En realidad, Gédel observd
que hay dos tipos de autorreferencia, que podemos llamar semantica y sin-
tactica. En la semantica, el enunciado autorreferente habla de una caracteris-
tica semantica de si mismo. Tal es el caso de «Esta oracién es falsa», que es
la afirmacién que provoca la paradoja del mentiroso. En la autorreferencia
sintactica, en cambio, el enunciado autorreferente habla de una caracteristica
sintdctica de si mismo. Un ejemplo seria: «Esta oracién tiene cinco palabras».
La autorreferencia semantica, como bien decia Russell, es siempre peligrosa
y nos lleva al borde de la paradoja. La autorreferencia sintactica, en cambio,
no conlleva ningun riesgo. ¢Por qué? Porque la autorreferencia sintactica es
solo una autorreferencia aparente: la oracién parece hablar de si misma, pero
en realidad hay un desdoblamiento: el «significado» de la oracion habla de los
«simbolos» que la forman, el significado no habla de si mismo. Cuando deci-
mos «Esta oracién tiene cinco palabras», en realidad decimos:

«"“Esta oracion tiene cinco palabras” tiene cinco palabras»,
cuya negacion es:

«"Esta oracién tiene cinco palabras” no tiene cinco palabras».
Hablamos de los simbolos, no del sentido, por lo que no hay riesgo de para-
doja. El enunciado G de Gédel dice de si mismo que no es demostrable, es
decir, se esta refiriendo a una caracteristica sintactica de si mismo. Como la

autorreferencia es sintactica, entonces razonar a partir de G jamas nos lleva-
ra a una paradoja.
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tiene variables (letras como x, ¥, 2) que puedan ser libremente
reemplazadas por nimeros. Es decir, es una expresién en la que,
o bien no hay variables, tal como sucede en «4=2+2», o bien
todas ellas estan precedidas por expresiones del tipo «Para todo
a vale que...» o «Existe algin x que...», tal como sucede en los
dos ejemplos previos. En otras palabras, que una expresién sea, o
no, un enunciado es una condicion que puede verificarse por ins-
pecciones simbolo a simbolo, sin que sea necesario recurrir al
significado de estos. Por lo tanto, «<enunciado» y «enunciado de-
mostrable» son dos conceptos sintacticos que Godel pudo usar en
la formulacién de su teorema.

CONSISTENCIA

Otro concepto esencial para la formulacién sintactica del primer
teorema de incompletitud es el de consistencia. Un conjunto de
axiomas es consistente si no existe ningin enunciado P tal que P
y no-P sean ambos simultdneamente demostrables a partir de esos
axiomas (sintacticamente, no-P se obtiene simplemente colo-
cando a la izquierda de P un simbolo que indique negacién).

Aunque en lo que sigue vamos a ver qué relacién hay entre ser
«consistente» y ser «verdadero», debe quedar claro que la consis-
tencia es un concepto puramente sintactico (porque depende de
la nocién sintactica de demostrabilidad).

Observemos que si todos los axiomas son enunciados verda-
deros, entonces el conjunto de axiomas es consistente. En efecto,
como deciamos en el capitulo anterior, de premisas verdaderas
solo se obtienen conclusiones verdaderas. Ahora bien, de los
enunciados P y no-P, exactamente uno de ellos es falso; por lo
tanto, si los axiomas son todos verdaderos, es imposible que Py
no-P sean simultdneamente demostrables (el que sea falso no sera
demostrable).

;Significa esto que «conjunto consistente de axiomas» es
equivalente a «conjunto de axiomas verdaderos»? La pregunta
es delicada y merece ser analizada con cuidado.
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Comencemos por preguntarnos si el enunciado «2 es primo»
es verdadero, o si es falso. Ante esta pregunta, la primera reaccién
de casi cualquier persona seria decir que es evidentemente verda-
dero. Sin embargo, una respuesta més ajustada a la realidad seria
decir «depende». Depende del universo del discurso del que este-
mos hablando. Si damos por sobreentendido que hablamos de los
numeros naturales, entonces el enunciado es, en efecto, verda-
dero; pero en otros contextos podria ser falso.

En primer lugar, recordemos que un nimero (diferente de 1)
es primo si es divisible solamente por 1 y por si mismo. Otra forma
de exponer el mismo concepto es la siguiente: 2 es primo porque
la nica forma de expresarlo como producto de dos nimeros
es la trivial: 2 = 2 x 1 (la escritura 2 = 1 x 2 no cuenta como dife-
rente porque intervienen los mismos niimeros). El niimero 15, por
ejemplo, no es primo porque puede escribirse, ademas de la forma
trivial 15 = 1 x 15, también como 15 = 3 x 5.

Pero, jes cierto que 2 = 2 x 1 es esencialmente la tinica forma
de escribir al 2 como producto de dos niimeros? Si pensamos en
el universo de los niimeros naturales, si. Pero existen otros uni-
versos posibles.

Ampliemos nuestro universo numeérico e incluyamos a todos
los mimeros que se obtienen multiplicando v/2 por un nimero natu-
ral (o por el cero) y luego sumando otro niimero natural (o el cero).
Por ejemplo, este universo contiene a los niimeros 3 + 4 v/2 0 7+/2.
Este universo contiene también al propio V2 , que se escribe como
0+1+2 , ¥ a todos los naturales, que se pueden escribir como:

1=1+02
Sm24 02
3=8+02.

Ahora bien, en este universo, el 2 ya no es primo, porque
puede escribirse como 2 = v/2 x /2. El enunciado «2 es primo» es
verdadero en los niimeros naturales, pero falso en el otro universo
que hemos definido (véase el esquema).

Entonces, ;cudl es la relacién entre la consistencia y la ver-
dad? La respuesta estd dada por el llamado «teorema de Lowen-
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- é2esprimo?

Universo: 1, 2, 3 TSR Universo: 2 +V2 V2,3 +7V2,..

Respuesta: si Respuesta: no

heim-Skolem» (demostrado en 1915 por Leopold Lowenheim para
un caso particular y en 1919 por Thoralf Skolem para el caso ge-
neral), que dice que un conjunto de axiomas es consistente si
existe algiin universo en el que todos los axiomas son enunciados
verdaderos. Por lo tanto, el conjunto formado por los dos axiomas

Paratodo xrvaleque x + 0 = x,
2 no es un niimero primo,

es consistente, ya que hay un universo en el que los dos son simul-
tdneamente verdaderos. Sintdcticamente, esto significa que no
existe un enunciado P tal que P y no-P sean ambos demostrables
a partir de esas dos premisas.

Un momento... j;podemos tomar «2 no es primo» como
axioma? ;Los axiomas no deberian ser «evidentes por si mismos»?
En el mundo puramente sintdctico, en el que verdad y falsedad no
existen, no tiene sentido hablar de enunciados «evidentes por si
mismos». Cualquier enunciado puede ser tomado como un
axioma. La tnica condicién es que el conjunto total sea consis-
tente. ;Por qué la consistencia es esencial? ;Qué sucede si un con-
junto de axiomas es inconsistente? Seméanticamente, esto significa
que no hay ningin universo posible en el que todos los enunciados
sean simultdneamente verdaderos. Pero, ;jtiene la inconsistencia
de un sistema de axiomas alguna consecuencia sintictica? La res-
puesta es que si, porque:

Si un conjunto de axiomas es inconsistente, entonces cual-
quier enunciado es demostrable a partir de él.
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Demos la idea de cémo puede demostrarse sintdcticamente
esta afirmacién. Supongamos que existe algin enunciado P tal que
el conjunto de axiomas permite demostrar tanto P como no-Py to-
memos un enunciado @ cualquiera. Queremos probar que @ es de-
mostrable. Para ello, recordemos algunas de las reglas de la l6gica:

a) De «P» se deduce siempre «no-Q = P».

b) De «no-Q = P» se deduce «no-P=>Q».

¢) De «P» y de «P=>@» se deduce «@» (que es conocida como
regla del modus ponens).

Observemos que todas las reglas estdn formuladas sintactica-
mente, apelando a la forma de los enunciados y no a su signifi-
cado. Suponemos, dijimos, que «P» y «no-P» son demostrables.
Entonces tenemos:

1. «P» es demostrable, por hipotesis.

2. Se deduce que «no-Q = P» es demostrable, por la regla a).

3. Luego, «no-P=@» es demostrable, por la regla b).

4. «<no-P» es demostrable, por hipétesis.

5. De «no-P» (punto 4) y de «<no-P=> @» (punto 3), por laregla
de modus ponens, se deduce Q.

6. Luego @ es demostrable.

Como @ era un enunciado cualquiera, deducimos que todo
enunciado es demostrable a partir de los axiomas. Es decir, cual-
quier enunciado es demostrable a partir de un conjunto inconsis-
tente de axiomas.

Observemos que el razonamiento que hemos hecho es pura-
mente sintactico. No hemos apelado al significado de P ni de @, ni
a conceptos semanticos como «verdadero» o «falso». Solo nos
hemos basado en las reglas sinticticas de lalégica y en la «forma»
de los enunciados. Este es el tipo de argumento sintdctico que
Godel usé para exponer la demostracion de su teorema.

Cuando Bertrand Russell descubrié su paradoja, en realidad
estaba probando que el sistema de axiomas que habia propuesto
Frege era inconsistente. Veamos esta idea con mas detalle. Recor-
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UN EJEMPLO DE RUSSELL

Cierta vez, dando una conferencia para
el publico en general, Bertrand Russell
comentd que si un conjunto de axiomas
es inconsistente, entonces cualquier afir-
macion es demostrable a partir de ellos.
En realidad, Russell enuncié este hecho
en su version semantica, gue afirma que
partiendo de una premisa falsa puede
demostrarse cualquier cosa. Inmedia-
tamente Russell fue desafiado por la
audiencia a demostrar que Smith (uno
de los espectadores) era el papa partien-
do de la premisa falsa de que 1=0. Para
hacer la demostracion, Russell razono
asi: Si 1=0, entonces, sumando 1a ambos
miembros, deducimos que 2=1. Pense-
mos ahora en el conjunto formado por
Smith y el papa. Ese conjunto tiene dos
miembros, pero como 2=1, entonces po-
demos decir que el conjunto tiene sola-
mente un miembro. Es decir, Smith y el
papa son una y la misma persona.

demos que Russell definié un conjunto R formado por todos los
conjuntos que no son miembros de si mismos.

Si R es miembro de sif mismo, entonces se deduce que no lo
es. Esto es una contradiccién, que surge de suponer que R es
miembro de si mismo, entonces la contradiccién demuestra, por
el absurdo, el enunciado «R no es miembro de si mismo». Pero, de
suponer que R no es miembro de si mismo, llegamos a la conclu-
sion de que si lo es. Esto demuestra, también por el absurdo, el
enunciado «R es miembro de si mismo». Por lo tanto, la paradoja
de Russell muestra en realidad que existe un enunciado tal que él
y su negacion son ambos demostrables a partir de los axiomas de
Frege. En otras palabras, como dijimos antes, muestra que los
axiomas de Frege son inconsistentes.
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INCONSISTENCIA Y COMPLETITUD

A partir de un conjunto inconsistente de axiomas todo es demos-
trable. Asociado a esta idea surge un nuevo concepto sintéctico,
el de completitud. Un conjunto de axiomas es completo si para
todo enunciado se cumple que, o bien él, o bien su negacién (al
menos uno de ambos) es demostrable.

Podemos afirmar entonces que cualquier conjunto inconsis-
tente es completo, porque dado cualquier enunciado P, tanto P
como no-P, ambos enunciados, son demostrables. Pero se trata de
una completitud trivial que no nos da ninguna informacién ya que
todo, absolutamente todo, es demostrable, inclusive aquellos
enunciados que son autocontradictorios, como por ejemplo «Para
todo x vale que x es diferente de si mismo».

Mas interesante seria tener un conjunto de axiomas que fuese
a la vez completo y consistente. Un conjunto de axiomas que tu-
viera estas caracteristicas se acercaria a cumplir el objetivo del
programa de Hilbert. En efecto, si el sistema es consistente, en-
tonces sus enunciados serian verdaderos en algin universo, y si
es completo, todas las verdades relativas a ese universo serian
demostrables (véase el esquema).

-

~ Conjunto inconsistente
de axiomas.

Q= demostrable '.' :' = no demostrable
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Pero el programa Hilbert queria axiomatizar la aritmética, no
un universo cualquiera. jHay alguna manera sintdctica de plan-
tear este objetivo? La respuesta, como veremos a continuacién,
es que si.

ENUNCIADOS FINITISTAS

Hay ciertos enunciados aritméticos cuya verdad o falsedad puede

ser verificada algoritmicamente en una cantidad finita de pasos,

enunciados que los intuicionistas aceptarian considerar como ver-

daderos o falsos sin cuestionamientos, principalmente porque no

involucran la idea de infinito (ni siquiera en el sentido potencial).
Por ejemplo:

«2+3=5»
«3xT=21»
«45 es divisible por 9»
«2 es primo»

(en todos los casos referidos al universo de los niimeros natura-
les) son enunciados finitistas verdaderos. El enunciado «2x3=10»
es finitista y falso. En cambio:

«Todo nimero par mayor que 2 es suma de dos nimeros
primos»

no es un enunciado finitista, ya que involucra un nimero infinito
de casos. En efecto, este enunciado equivale a: «4 es suma de dos
primos y 6 es suma de dos primos y 8 es suma de dos primos y...
(v asi sucesivamente)».

Observemos que «36 es suma de dos primos» es un enun-
ciado finitista. En efecto, si 36 fuera suma de dos primos, estos
necesariamente deben ser menores que 36. Hay solo 11 primos
menores de 36 (que son 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31) y 55
parejas que pueden formarse con ellos. Para ver si el enunciado
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LA CONJETURA DE GOLDBACH

La afirmacion de que todo numero par
es suma de dos primos es conocida
como la «conjetura de Goldbach». Este
nombre se debe a que fue formulada por
Christian Goldbach en 1742, en una carta
escrita al famoso matematico suizo
Leonhard Euler (1707-1783). Al momento
de redactar estas lineas no se sabe si la
conjetura es cierta o no. Se ha verificado
que es verdadera para una gran cantidad
de numeros pares, pero nadie ha hallado
hasta ahora una demostracion general que la pruebe para todos los casos, asi
como tampoco se ha encontrado un ejemplo en el que la conjetura falle.

es verdadero, basta con probar una por una esas 55 parejas y ver
si para alguna de ellas la suma es 36. El enunciado es verdadero,
yaque 36=5+31.

En cambio, en el enunciado «43 es suma o resta de tres pri-
mos consecutivos», el hecho de que hablemos de suma o resta
implica que los primos involucrados puedan llegar a ser tan gran-
des como se quiera. La bisqueda de primos posibles es potencial-
mente infinita, por lo que el enunciado no es finitista.

Ahora bien, si proponemos un conjunto de axiomas para la
aritmética, 1o menos que podemos pedirle es que sea capaz de
demostrar todos los enunciados finitistas verdaderos. Cabe hacer
notar que en lo que acabamos de decir la palabra «verdadero» esta
asociada a enunciados finitistas. En ese contexto restringido,
«verdadero» o «falso» pasan a ser condiciones sinticticas, ya que
son verificables mecinicamente en una cantidad finita de pasos.
Planteado desde la sintaxis, el programa de Hilbert pedia hallar un
conjunto consistente y completo de axiomas para la aritmética
que fuera capaz de demostrar todos los enunciados finitistas ver-
daderos. El primer teorema de incompletitud prueba, precisa-
mente, que este objetivo es inalcanzable.
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LA DEMOSTRACION DE GODEL REVISITADA

Llegamos asi a la formulacion sintictica del primer teorema de
incompletitud de Godel:

Si un conjunto de axiomas aritméticos es consistente y per-
mite demostrar todos los enunciados finitistas verdaderos,
entonces es incompleto; es decir, existe un enunciado G tal
que ni G, ni no-G, ninguno de los dos, es demostrable. (Enten-
demos siempre que solo se admiten demostraciones verifica-
bles algoritmicamente.)

Observemos que, en efecto, en esta version del teorema sola-
mente aparecen conceptos sintacticos («consistente», «incom-
pleto», «enunciado» y «demostrable»). La nocién de «verdad»
aparece asociada a enunciados finitistas, es decir, en su version
mas restringida y sintactica.

Esta es la formulacién sintictica que presenté Godel en su
articulo de 1931, e igualmente sintacticos fueron los argumentos
que usoé para demostrarlo. A continuacién, hagamos un repaso de
la demostracién que vimos en el capitulo anterior, con la inten-
cién de ver que puede ser repetida a partir de conceptos exclusi-
vamente sintacticos:

— Paso 1. Supongamos que tenemos un conjunto consistente
de axiomas aritméticos que permiten demostrar todos los
enunciados finitistas verdaderos (no indicamos ya que sean
enunciados verdaderos, porque estamos apelando sola-
mente a conceptos sintacticos). Tenemos que probar que
existe un enunciado G tal que ni G ni no-G son demostrables.
Como vimos en el capitulo anterior, Godel le asigna un
c6digo (o nimero de Godel) a cada enunciado y a cada
funcién proposicional, solo que ahora debemos destacar
que la asignacién se hace de manera puramente sintdc-
tica, basidndose en los simbolos que forman cada enun-
ciado o funcién proposicional, con independencia de cual
sea su significado. También, e igualmente de manera sin-
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tactica, se le asigna un cédigo a cada sucesién de enuncia-
dos y, en particular, se le asigna un cédigo a cada demos-
tracion.

— Paso 2: A continuacién, Gédel demuestra que la funcién
proposicional:

«y es el codigo de una demostracion del enunciado de c6-
digo x»

puede traducirse a una propiedad aritmética que vincula
a los nimeros x e y. Ademds, prueba que, cualesquiera

sean los nimeros n y 7, el enunciado:

«n es el cédigo de una demostracién del enunciado de cé-
digo r»

es siempre finitista.
— Paso 3: Godel plantea la funcién proposicional:

«No existe y que sea el codigo de una demostracién del
enunciado de cédigo x».

— Paso 4: Godel define la funcién diagonal. Si 7 es el cédigo
de la funcién proposicional P(x), entonces d(n) es el c6-
digo de P(n). Por lo tanto, la definicién de la funcién dia-
gonal, que se basa esencialmente en el mecanismo de
asignacion de codigos, es sintactica.

— Paso 5: A partir de los pasos 3 y 4, el método de autorrefe-
rencia le permite a Godel escribir un enunciado G:

«No existe y que sea el cédigo de una demostracién del
enunciado de c6digo m»,

cuyo cddigo es el propio nimero m.
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— Paso 6: Vamos a probar ahora, sintdcticamente, que G no
es demostrable. Supongamos, por el absurdo, que G fuera
demostrable. Existiria entonces una demostracién de G, y
a esa demostracion le corresponderia un cédigo, digamos
que ese codigo es un nimero k. Por lo tanto:

«k es el cédigo de una demostracion del enunciado de c6-
digo m»

seria un enunciado verdadero (porque m es el cédigo de G
y k es el c6digo de una demostracién de G) y ademas es fini-
tista, porque es posible verificar su verdad en una cantidad
finita de pasos (es posible verificar algoritmicamente que k
es en efecto el c6digo de una demostracion de G). Como es
finitista y verdadero, entonces, por hipétesis, el enunciado es
demostrable. De este hecho, una de las reglas de la l6gica nos
permite deducir que también es demostrable el enunciado:

«Existe y que es el coédigo de una demostracién del enun-
ciado de cédigo m».

Esquema de la

prueba de que
Supongamos que G no es
- demostrable.

gy Partimos
: suponiendo que G

si es demostrable.
Las flechas
indican las
sucesivas
consecuencias
que se obtienen
de esa suposicién
inicial hasta llegar
a la conclusién de
que la negacién
de G también
seria demostrable.
Esto ditimo es
una contradiccion;
por lo tanto, G
no puede ser
demostrable.

es demostrable.

:

Existe una demostracién de G, con codigo k.
!
¥

ks S 500N NS Bonie
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Si se compara este ultimo enunciado con el que hemos lla-
mado G, resulta claro que este 1iltimo es no-G. Estamos di-
ciendo entonces que G y no-G serian a la vez demostrables.
Esto contradice que el conjunto de axiomas es consistente.
Hemos llegado a una contradiccion. Este absurdo proviene
de suponer que G es demostrable; por lo tanto, concluimos
que G no es demostrable (véase el esquema de la pagina
anterior).

OMEGA-CONSISTENCIA

Cuando en el texto hemos demostrado que el enunciado no-G no es demos-
trable, nos basamos en el hecho de que si una propiedad P cumple que:

el enunciado «1 no cumple la propiedad P» es demostrable

el enunciado «2 no cumple la propiedad P» es demostrable

el enunciado «3 no cumple la propiedad P» es demostrable
..y asi sucesivamente,

entonces el enunciado «Existe algun x que cumple la propiedad P» no es
demostrable. Pero, ées esto cierto? Veamoslo primero semanticamente. Su-
pongamos que P es una propiedad aritmética que cumple:

el enunciado «1 no cumple la propiedad P» es verdadero

el enunciado «2 no cumple la propiedad P» es verdadero

el enunciado «3 no cumple la propiedad P» es verdadero
..y asi sucesivamente,

es decir, para cualquier nimero n es verdad que «n no cumple la propiedad
P». Esta claro entonces que el enunciado «Existe algun x que cumple la pro-
piedad P» es falso (porque hemos dicho que ni 1, ni 2, ni 3, etc,, cumplen la
propiedad). Pero es falso, si el universo del que estamos hablando es el de los
numeros naturales. Sin embargo, «Existe algun x que cumple la propiedad P»
podria ser cierto si hablamos de otros universos. Por ejemplo, si la propiedad
P es «x?=2» y el universo es el de los nimeros generados a partir de ».5. en-
tonces 1 no cumple la propiedad, tampoco 2, ni 3, etc. Pero «Existe algun x
que cumple la propiedad P» es verdadero porque J2 si la cumple. Llegados
aqui, équé sucede sintacticamente? Tenemos otra vez la propiedad P, pero
ahora supongamos que:
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— Paso 7: Probemos ahora que no-G tampoco es demostra-
ble. Una vez mas, hagdmoslo por el absurdo. Supongamos
que no-G si es demostrable y lleguemos a una contradic-
cién. Como el conjunto de axiomas es consistente, si no-G
es demostrable, entonces G no puede serlo. Esto quiere
decir que no existe una demostracién de G; por lo tanto,
ningin nimero es el cédigo de una demostracién de G: el
nimero 1 no es el cédigo de una demostracién de G, tam-

«1 no cumple la propiedad P» es demostrable

«2 no cumple la propiedad P» es demostrable

«3 no cumple la propiedad P» es demostrable
...y asi sucesivamente.

¢Es cierto que «Existe algun x que cumple la propiedad P» no es demostrable?
En realidad, dado gue en algunos universos es verdadero, no podemos afirmar
tajantemente que nunca sera demostrable. La demostracién de que no-G no
es demostrable tiene una laguna ldgica porgue no podemos afirmar que el
enunciado «Existe algun x que cumple la propiedad P» no sera demostrable.
Para zanjar este problema, Gédel introdujo la nocién sintactica de la «xomega-
consistencia». Un conjunto de axiomas es omega-consistente si cada vez que
los enunciados, «1 no cumple la propiedad P», «2 no cumple la propiedad P»,
etc., son todos demostrables, entonces «Existe algun x que cumple la propie-
dad P» no es demostrable. (De alguna manera, esto es forzar sintacticamente
gue el universo de referencia sea el de los niumeros naturales.) Por lo tanto,
en principio, en el enunciado sintactico del primer teorema de Gédel, donde
dice que el conjunto de axiomas es «consistente», habria que incluir xomega-
consistente».

La aportacién de Rosser

Afortunadamente, en 1936 el Iégico norteamericano John B. Rosser, en un
articulo de apenas dos paginas, modifico el razonamiento de Gédel para que
también valiera bajo la hipétesis de la consistencia. De este modo, gracias a
Rosser, en el enunciado del teorema de Gddel se puede omitir la mencion
a la omega-consistencia y puede escribirse, sin faltar a la verdad, tal como lo
hemos hecho en el texto. La modificacion que hizo Rosser al razonamiento
de Gédel consistio en cambiar el enunciado autorreferente «Este enunciado
no es demostrable» por este otro: «Si este enunciado es demostrable, enton-
ces su negacion también lo es».
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no-G = Ex

poco el 2, ni el 3, y asi sucesivamente. De manera que, en
consecuencia:

«1 no es el cédigo de una demostracién del enunciado de
cédigo m»

«2 no es el cédigo de una demostracién del enunciado de
codigo m»

«k no es el cédigo de una demostracién del enunciado de
cédigo m»

etc.

son todos enunciados finitistas verdaderos. Al ser finitistas
y verdaderos, son demostrables. Luego:

«Existe y que es el cédigo de una demostracién del enun-
ciado de cédigo m»

Supongamos que

es demostrable. :
G no es demostrable H
(porque los axiomas son consistentes) :

son finitistas
| verdaderos.

' son demostrables.

cemvssecssemcassua-|jAbsurdol

| no es demostrable.

EL SEGUNDO TEOREMA DE GODEL




no es demostrable. Pero este enunciado es no-G, luego
no-G no seria demostrable; sin embargo, esto contradice
la suposicién de que no-G si es demostrable. El absurdo
prueba que no-G, después de todo, no es demostrable
(véase el esquema).

Queda asi probado, sintdcticamente, que tanto G como no-G,
ninguno de los dos, es demostrable. En resumen, la demostracién
del primer teorema de incompletitud puede traducirse por com-
pleto a conceptos y argumentos sinticticos, tal como exige el pro-
grama de Hilbert. Este modo de presentar la demostracién, basada
exclusivamente en argumentos sintécticos verificables de manera
mecanica, la puso a salvo de cualquier cuestionamiento.

EL SEGUNDO TEOREMA

El programa de Hilbert pedia, segiin hemos dicho, hallar un con-
junto consistente de axiomas para la aritmética de tal modo que
para todo enunciado P, o bien él, o bien su negacién, fuera de-
mostrable. Pero ademas pedia que la consistencia de esos axiomas
fuera verificable algoritmicamente, pues esta verificacién algorit-
mica de la consistencia nos daria la certeza de que los axiomas
nunca nos llevarian a una paradoja. En su articulo de 1931, Godel
demostré un segundo teorema, el llamado «segundo teorema de in-
completitud», que prueba que este objetivo es también irrealizable.

En la mayoria de los libros de divulgacién este teorema suele
enunciarse de la siguiente manera:

«Ningin conjunto de axiomas consistente que contenga sufi-
ciente aritmética puede probar su propia consistencia».

Tratemos de aclarar el significado de estos términos. En pri-
mer lugar, la frase «que contenga suficiente aritmética» se refiere
simplemente a la condicién ya mencionada de que el conjunto de
axiomas del que estamos hablando sea capaz de demostrar todos
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los enunciados finitistas verdaderos. Ahora bien, ;cémo podria un
conjunto de axiomas probar, o no probar, su propia consistencia?
En principio, los axiomas aritméticos solo permiten probar enun-
ciados que hablen de nimeros, no enunciados que hablen de la
consistencia de un conjunto de axiomas. Pero ya nos habiamos
enfrentado a un problema similar en el capitulo anterior, cuando
queriamos escribir un enunciado aritmético que hablara de si
mismo. ;Cémo logramos que un enunciado aritmético, que en
principio habla de niimeros, hable de si mismo? La manera de lo-
grarlo fue identificar a los enunciados con sus cédigos, de modo
tal que hablar de un enunciado equivaliera a hablar de su cédigo.

«Es necesario un método directo para la demostracion
de la consistencia de los axiomas de la aritmética.»

— Davip HILBERT, EN LA CONFERENCIA INAUGURAL DEL SEGUNDO CONGRESO INTERNACIONAL

16

DE MATEMATICAS, CELEBRADO EN Paris en 1900.

En el caso que ahora nos ocupa, en el que queremos escribir
un enunciado aritmético que hable de la consistencia de un con-
junto de axiomas, la numeracién de Godel vuelve una vez més en
nuestra ayuda.

Como deciamos antes, si un conjunto de axiomas es inconsis-
tente, entonces cualquier enunciado es demostrable a partir de él.
Por el contrario, si el conjunto es consistente, siempre habra un
enunciado que no es demostrable (ya que para cualquier P, o bien
€él, o bien su negaci6n, al menos uno de los dos, no lo es). Por lo
tanto, que un conjunto de axiomas sea consistente es equivalente
a que haya al menos un enunciado que no es demostrable a partir
de él. Asi, que un sistema sea consistente equivale a decir:

«Existe algin enunciado que no es demostrable».
Retomemos el ejemplo hipotético del capitulo anterior. Supo-
niamos alli que a todos los enunciados les correspondian cédigos

que eran nimeros primos y a los enunciados demostrables, en par-
ticular, les correspondian primos que son suma o resta de tres pri-
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mos consecutivos. En este contexto, el enunciado anterior
afirmaria que «Existe algiin niimero primo que no es suma o resta
de tres primos consecutivos», que en otro nivel de lectura diria:
«Existe el cédigo de un enunciado, que no es el cédigo de un enun-
ciado demostrable», es decir, «Existe un enunciado no demostra-
ble»; en otras palabras, «El conjunto de axiomas es consistente».

Tenemos dos niveles de lectura para «Existe algiin niimero
primo que no es suma o resta de tres primos consecutivos»: un
nivel aritmético, el que aparece a simple vista, en el que solamente
se enuncia una propiedad aritmética; y también un nivel superior
de lectura, que depende de la numeracién de Gédel, en el que se
enuncia la consistencia del conjunto de axiomas. Tenemos enton-
ces el segundo teorema de incompletitud:

Si un sistema de axiomas aritméticos es consistente y puede
demostrar todos los enunciados finitistas verdaderos, enton-
ces el enunciado aritmético que afirma la consistencia del

conjunto de axiomas no es demostrable a partir de esos mis- .

mos axiomas.

Comentemos la idea de la demostracion de este teorema, tal
como hizo Godel en su articulo de 1931. En su primer teorema de
incompletitud, Godel demuestra que:

«Si el conjunto de axiomas es consistente, entonces G no
es demostrable».

Observemos que el enunciado que dice «G no es demostra-
ble» es el propio G. Es decir, G = «G no es demostrable». Por lo
tanto, en la afirmacién anterior, donde dice «G no es demostra-
ble», podemos poner simplemente G. O, lo que es lo mismo, en su
primer teorema, Godel probé que:

«Si el conjunto de axiomas es consistente, entonces vale G».

Ahora bien, si fuera posible probar que el sistema de axiomas
es consistente, entonces tendriamos que el enunciado «Si el con-
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Primer teorema de Gédel |

J-i entonces

i Si , ""{: entonces &

Demostracién del segundo teorema de Gddel

*® | es demostrable, entonces - es demostrable.

st

junto de axiomas es consistente, entonces vale G» seria demostra-
ble. Es decir: «Si el conjunto de axiomas es consistente, entonces
vale G» es demostrable, entonces «El conjunto de axiomas es con-
sistente» seria demostrable.

Por la regla de modus ponens, G seria demostrable. Esto es
un absurdo, porque ya hemos probado que G no es demostrable.
Concluimos asi que «El conjunto de axiomas es consistente» no
es demostrable a partir de los axiomas (véase el esquema).

En el dltimo capitulo veremos algunas consecuencias filosé-
ficas de los dos teoremas de incompletitud de Godel.
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CAPITULO 4

(Godel y Einstein

Kurt Godel y Albert Einstein fueron muy
amigos y pasaron muchos horas juntos durante el tiempo
que compartieron en Princeton. Una consecuencia de esa
relacién fueron los tres articulos que escribié Godel sobre
la teoria de la relatividad de Einstein, sus unicos
trabajos publicados totalmente ajenos
a la 16gica matematica.






A pesar de todos sus problemas politicos y econémicos (los pri-
meros, causados por los nazis, los segundos por la crisis de 1929),
en la década de 1930 Viena era una ciudad bulliciosa y alegre, con
una vida nocturna rica y diversa que se mezclaba con la no menos
diversa vida intelectual. En sus cafés, sus cabarés y sus clubes
nocturnos se escuchaba miusica y se bailaba, y también se discutia
sobre arte, ciencia y filosofia. En el mismo bar donde se reunia el
Circulo de Viena, por la noche sonaban orquestas de jazz.

En contraste, Princeton era pequeiia y provinciana, sin clubes
nocturnos ni cabarés, una ciudad, en realidad, carente de toda
vida nocturna. Tal vez seria una exageracion decir que Princeton
estaba al servicio de su universidad y del Instituto de Estudios
Avanzados, instituciones independientes aunque con muchos
lazos en comuin, pero la verdad es que era dificil salir a la calle sin
encontrarse con profesores, estudiantes o graduados de una u
otra casa de estudios, personas convencidas de pertenecer a la
élite intelectual del planeta.

Godel recibi6 este cambio de clima casi como una bendiciéon.
Se adapt6 rapidamente a este nuevo estilo de vida, mas acorde
con su forma de ser, reconcentrada y volcada fuertemente a los
aspectos intelectuales de la existencia. Adele, en cambio, nunca
logré sentirse cémoda en Princeton. Ella, que habia sido bailarina
en los clubes nocturnos de Viena, extraiiaba la miisica y el bullicio,
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y la mayor parte del tiempo se sentia triste y sola; como los Godel
nunca tuvieron hijos, Adele mitigaba en parte su soledad con una
larga coleccién de mascotas, entre perros, gatos y pijaros. Sus ca-
rencias en el uso del idioma inglés y la falta de amigos (con la sola
excepcion de algunos vecinos) aumentaban su aislamiento.

En Princeton, G6del hizo muy pocos amigos, pero, a diferen-
cia de Adele, se traté de una decisién deliberada y no de un des-
tino impuesto por las circunstancias. La mayorfa de sus amigos
se contaban entre sus colegas del Instituto de Estudios Avanza-
dos; dos de los més cercanos fueron Oskar Morgenstern y, por
supuesto, Albert Einstein.

«Hasta ahora no he encontrado mi “fama” agobiante

para nada. Eso comienza solamente cuando uno se vuelve
tan famoso que es reconocido en la calle hasta por
cualquier nifio, como es el caso de Einstein.»

— PALABRAS DE GODEL A S5U MADRE EN REFERENCIA A SUS PRIMEROS TIEMPOS
EN PRINCETON Y SUS PASEOS CON EINSTEIN.
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Einstein y Gdel se habian conocido en 1933 durante la primera
visita de Godel a Estados Unidos, cuando ambos fueron presenta-
dos por Paul Oppenheim, quimico alemén emigrado también por
causa de los nazis. Se reencontraron en 1940 con la llegada de Godel
a Princeton y en breve tiempo se hicieron muy buenos amigos.

Ambos eran muy reservados sobre sus mutuas relaciones y la
mayoria de lo que se sabe de la amistad entre Godel y Einstein, muy
poco tal vez, proviene principalmente de la correspondencia que
Godel mantenia con su madre, que atin seguia viviendo en Brno.
Sabemos que todas las mafianas, entre las diez y las once, Einstein
pasaba a buscar a Godel por su casa y ambos iban caminando hacia
el Instituto, trayecto que les demandaba més o menos media hora y
durante el cual conversaban sobre fisica, politica o filosofia. A la una
o dos de la tarde ambos regresaban a casa, también conversando.

Algunos retazos de esas conversaciones se conservan en las
cartas de Godel. Einstein, segin parece, era bastante optimista
acerca del destino de la humanidad, aunque con algunas reservas.
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Gdodel, por el contrario, era marcadamente pesimista, una actitud
nada infrecuente en los primeros afios de la era nuclear, cuando
el desastre atémico parecia estar a la vuelta de la esquina.

La imagen de Gédel y Einstein, hablando en alemédn mientras
iban y volvian tranquilamente por Princeton, se volvié familiar para
todos. En esos afios, Einstein comenté que lo més importante que
habia hecho en Princeton fue acompaiiar a Gédel en sus caminatas.

Cuenta una anécdota que durante uno de esos paseos, un con-
ductor de automévil reconocié a Einstein y que, de la sorpresa,
casi se estrella contra un arbol. Gédel, en cambio, adusto y casi
siempre vestido con sombrero, abrigo y guantes (aun en pleno ve-
rano), no era tan ficilmente reconocible para la gente de la calle.

Einstein fallecié en 19565, un duro golpe para Gdédel, aunque
no hizo manifestacién publica de su pena. Después de la muerte
de su buen amigo le escribié a su madre:

El hecho de que la gente nunca me mencione en conexién con
Einstein es muy satisfactorio para mf (y lo seria también para
él, ya que era de la opinién de que, incluso un hombre famoso,
merece tener vida privada). Después de su muerte he sido
invitado un par de veces para decir unas palabras sobre él,
pero naturalmente no he aceptado.

UNIVERSOS EN ROTACION

Una consecuencia tangible de las conversaciones entre Godel y
Einstein fueron los articulos de Godel sobre la teoria de la relati-
vidad, los tinicos de sus trabajos publicados sin conexién directa
con la l6gica matemaética.

El primero de esos articulos, escrito en inglés, se titul6 «Un
ejemplo de un nuevo tipo de soluciones cosmolégicas a las ecua-
ciones einstenianas del campo gravitatorio», y se publicé en la
revista Reviews of Modern Physics, volumen 21, nimero 3, pagi-
nas 447-450, del afio 1949. En ese articulo Gédel planteé una solu-
cion a las ecuaciones de Einstein que consiste en la descripcién
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de un universo en rotacién, homogéneo, cerrado y estable (es
decir, no en expansion) con lineas de tiempo cerradas. Estas «li-
neas de tiempo cerradas» permitirian, en teoria, viajes en el
tiempo, y de hecho, harian que en ese universo el tiempo no exis-
tiera en el sentido en el que habitualmente lo entendemos, ya que
pasado y futuro serian indistinguibles.

Estaba claro, incluso para Godel, que este universo, hoy cono-
cido como «el universo de Godel», no era el nuestro. Es decir, aunque
la descripcién hallada por Gédel es consistente con las ecuaciones
de Einstein, no describe el universo real. No por eso, sin embargo, la
solucién de Godel carece de interés. Como él mismo escribi6:

El mero hecho de la compatibilidad con las leyes de la natu-
raleza de los universos en los que no se puede distinguir un
tiempo absoluto y, por lo tanto, en los que no puede existir
un lapso objetivo de tiempo, arroja algo de luz sobre el signi-
ficado del tiempo también en los universos en los que se
puede definir un tiempo absoluto.

Las anteriores palabras estdn tomadas de Una observacién
sobre la relacion entre la teoria de la relatividad y la filosofia idea-
lista, publicado también en 1949 como participacién en un volumen
editado por P.A. Schilpp dedicado a la obra de Einstein. El libro era
parte de una coleccién titulada La biblioteca de fildsofos vivientes,
ala que Godel ya habia contribuido en 1944 en el volumen dedicado
a Bertrand Russell. A diferencia de los otros dos, este segundo ar-
ticulo sobre la relatividad estaba escrito en un lenguaje carente de
toda férmula matematica y accesible al ptiblico en general. En él,
(Go6del estudia algunas de las consecuencias filoséficas que pueden
extraerse de la teoria de la relatividad en relacién a la naturaleza del
tiempo, «ese ente misterioso y aparentemente contradictorio que,
por otra parte, parece constituir la base de la existencia del mundo
y de nuestra propia existencia» (la cita es del mismo articulo).

En este trabajo, Godel sostiene que la relatividad provee «una
prueba inequivoca de la concepcién de los filésofos que, como
Parménides, Kant y los idealistas modernos, niegan la objetividad
del cambio y consideran que el cambio es una ilusién o una apa-
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riencia debida a nuestro especial modo de percepcién». Godel
explica esta idea basdndose en el hecho de que el cambio sola-
mente existe en relacién a un lapso objetivo de tiempo, pero que
esta nocién de «lapso de tiempo objetivo» no es vilida en un uni-
verso relativista en el que cada observador tiene un «ahora» pro-
pio que es incomparable con el «ahora» de los demés observadores.
En conclusioén, si no hay tiempo objetivo, no hay cambio.

Godel continida diciendo que «James Jeans ha sacado la con-
clusién de que no hay razén para abandonar la idea intuitiva de que
hay un tiempo absoluto que dura objetivamente. No creo que la
situacién justifique esta conclusién», y explica este disentimiento
basdndose en las soluciones por él halladas en su articulo anterior.
Si hay universos sin tiempo objetivo que son compatibles con las
ecuaciones de la relatividad y nuestro universo es, por supuesto,
compatible con esas ecuaciones, entonces no podemos concluir
necesariamente que en nuestro universo hay un tiempo objetivo.

En 1952 apareci6 publicado su tercer y 1iltimo trabajo sobre la
relatividad. Se titulé Universos rotatorios en la teoria general de
la relatividad y fue en realidad su exposicién en el Congreso Inter-
nacional de Matematicas realizado en Cambridge (Massachusetts),
en 1950. En é1 Godel expone nuevas soluciones a las ecuaciones de
Einstein, nuevamente constituidas por universos en rotacion, aun-
que en este caso no todas ellas tienen lineas temporales cerradas.

Las soluciones de Godel, aunque no describen el universo real,
abrieron la biisqueda de soluciones no ortodoxas para las ecuacio-
nes de Einstein, un campo en el cual, una vez mds, Gtdel fue pionero.

En realidad, Gédel publicé todos sus trabajos cientificos sobre
légica matematica a lo largo de solamente diez afios, entre 1930 y
1939 (mientras atin vivia en Viena, aunque los dos tltimos articulos,
de 1938 y 1939 respectivamente, fueron publicados, en inglés, en
revistas norteamericanas). En su etapa de Princeton, Gtédel ya no
publicé descubrimientos cientificos sobre l6gica, y en sus escritos
de esos afios (con la tinica excepcién de los articulos ya menciona-
dos sobre la teoria de la relatividad) se dedicé sobre todo a comen-
tar las consecuencias filoséficas de sus investigaciones previas.

El dltimo trabajo cientifico sobre 16gica matematica firmado
por Godel aparecié en la forma de un libro de unas setenta pégi-
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JAMES JEANS

James Hopwood Jeans, a quien Godel
cita en el segundo de sus articulos sobre
la teoria de la relatividad, fue un fisico,
matemadtico y astrénomo briténico naci-
do en 1877 en el condado de Lancashire.
Estudio en la Universidad de Cambridge
y ensefod en ese mismo centro hasta que
se traslado a la Universidad de Princeton
en 1904, donde trabajé como profesor
de Matematica Aplicada. Volvié a Cam-
bridge en 1910. Jeans hizo contribucio-
nes importantes a la mecanica cuantica,
la teoria de la radiacion y la evolucion
estelar. Su analisis de los cuerpos en ro-
tacion le llevd a concluir gue la teoria de
Laplace de que el sistema solar se formo
a partir de una nube de gas era errénea.
En su lugar, propuso que los planetas se
condensaron a partir de material expul-
sado del Sol por una hipotética colision con otra estrella; sin embargo, actual-
mente esta teoria no es aceptada. Escribio varios libros de divulgacion sobre
fisica y cosmologia, que le dieron fama como excelente divulgador de la cien-
cia. En uno de ellos, El universo misterioso, escribio:

La corriente del conocimiento se dirige hacia una realidad no mecanica:
el universo empieza a parecerse mas a un gran pensamiento que a una
gran maquina. La mente ya no parece ser un intruso accidental en el
reino de la materia... mas bien debemos saludarlo como el creador y
gobernador del reino de la materia.

James Jeans fallecio en el condado de Surrey, Inglaterra, en 1946.

nas, publicado por la Princeton University Press en 1940, aunque
no fue escrito directamente por Godel, sino que se trata de la edi-
cién de los apuntes de un curso que dicté en 1938-1939 en el Ins-
tituto de Estudios Avanzados. El libro se titula La consistencia
del axioma de eleccion y la hipdtesis generalizada del continuo
con los axiomas de la teoria de conjuntos y expone la resolucién
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parcial del primero de los problemas que David Hilbert planteé en
su famosa conferencia de 1900, un problema inicialmente formu-
lado por Georg Cantor y que es conocido como la «hipétesis del
continuo».

CARDINALES

Para entender qué es la hip6tesis del continuo debemos volver a
la teoria de Cantor sobre el infinito, que ya tratamos en el primer
capitulo. Recordemos que un conjunto, segtin las palabras del pro-
pio Cantor, es la «reunién en un todo de objetos de la realidad
o de nuestro pensamiento». Tenemos asi, por ejemplo, el conjunto
de todos los dias de la semana, el conjunto de todos los meses del
afio o el conjunto de los nimeros naturales pares. Algunos de
estos conjuntos son finitos, otros son infinitos.

Un conjunto es finito cuando es posible contar sus miembros
uno por uno, y esta cuenta termina en algin momento. En los
conjuntos infinitos, en cambio, la cuenta nunca termina. Si tene-
mos un conjunto finito podemos perfectamente hablar de cudntos
miembros tiene; por ejemplo, el conjunto de los dias de la semana
tiene siete miembros, y el de los meses del afio, doce. A la canti-
dad de miembros de un conjunto, los mateméticos lo llaman su
«cardinal»; de este modo, podemos decir que el cardinal del con-
junto formado por las letras de la palabra «mar» es tres.

El objetivo de Cantor era darle sentido a la idea de cardinal,
o de cantidad de miembros, pero en el caso de los conjuntos infi-
nitos. Sin embargo, ;c6mo puede hablarse de la «cantidad de
miembros» de un conjunto infinito? ;Puede decirse algo, aparte
del hecho obvio de que esa cantidad es «infinita»? Para responder
a estas preguntas Cantor partié de esta simple idea: imaginemos
que en un gran salén hay una gran cantidad de nifios en movi-
miento y al mismo tiempo un gran nimero de sillas (figura 1), y
que nos gustarfa saber si hay la misma cantidad de unos y otras.
Una manera de hacerlo es contar los nifios uno por uno, hacer lo
mismo con las sillas, y luego comparar los dos resultados.
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Pero hay una manera mas directa de hacer esta comparacion,
y es pedirles a los nifios que se sienten, uno en cada silla. Si todos
los nifios han logrado sentarse y no ha quedado ninguna silla
vacia, entonces podemos decir que hay exactamente la misma
cantidad de sillas que de nifios, o en otras palabras, que el cardinal
del conjunto de las sillas y el cardinal del conjunto de los nifios
son iguales. En terminologia matematica, se diria que hemos es-
tablecido una correspondencia biyectiva (o uno-a-uno) entre un
conjunto y el otro (a cada nifio le corresponde una silla, y a cada
silla, un nifo) (figura 2, pagina anterior).

Podemos decir asi que dos conjuntos finitos tienen el mismo
cardinal si es posible establecer una correspondencia biyectiva
entre uno y otro. La idea esencial de Cantor fue extender esta
nocién a conjuntos infinitos, no la de contar miembros uno por
uno, sino la de establecer correspondencias biyectivas entre con-
juntos como forma de comparar sus cardinales.

Con esta idea en mente, Cantor definié que dos conjuntos
infinitos tienen el mismo cardinal si es posible establecer entre
ellos una correspondencia biyectiva, es decir, si se puede empa-
rejar a sus respectivos miembros, de modo que a cada miembro
del primer conjunto le corresponda exactamente un miembro del
segundo, y viceversa.

Por ejemplo, ya vimos en el primer capitulo que el conjunto
de todos los niimeros naturales (formado por los niimeros 1, 2, 3,
4,...) puede ponerse en correspondencia biyectiva con el de los
nimeros cuadrados (1, 4, 9, 16,...):

Naturales Cuadrados
IS —— =
— =
SR
6

- 75

;o s W N

+— > 36
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Al conjunto de los nimeros naturales se lo suele indicar con
la letra N (la letra designa a la totalidad de los niimeros en tanto
objeto en si mismo). Ahora bien, si a los niimeros naturales le
agregamos sus opuestos (es decir, los negativos -1, -2, -3, -4,...)
y también agregamos el cero, obtenemos el llamado conjunto de
los ntimeros enteros, que en el lenguaje matematico suele indi-
carse con la letra Z, que es la inicial de la palabra alemana «Zahl»,
que significa «nimero».

Cantor observé que el conjunto de los niimeros enteros tiene
también el mismo cardinal que N. En otras palabras, que hay tan-
tos niimeros naturales como enteros:

Naturales Enteros

iy ——— )

N o AW N
LV

En la correspondencia entre Ny Z, el 1 de N se empareja con
el 0 de Z; los demas niimeros impares de N se emparejan con los
negativos de Z, mientras que los pares de N se emparejan con
los positivos de Z. Observemos que, tal como debe suceder, a
cada miembro de N le corresponde exactamente un miembro de
Z sin que falte o sobre ninguno.

Los naturales son solamente una parte de los enteros; sin em-
bargo, los dos conjuntos tienen, en el sentido definido por Cantor,
la «misma cantidad de elementos» (en lenguaje matematico, am-
bos conjuntos tienen el mismo cardinal). Como ya comentamos
en el primer capitulo, el principio aristotélico de que «el todo es
mayor que cualquiera de sus partes» no se aplica a conjuntos in-
finitos.
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EL ARGUMENTO DIAGONAL

Para ir todavia mas alld de los enteros, es necesario hacer una
referencia breve a una manera muy comun de representar los ni-
meros en la llamada «recta numérica»,

-2 -1 o] 1 2

Fragmento de la recta numérica, con algunos nimeros enteros marcados en ella.

La recta numérica es, en principio, simplemente una linea recta
cualquiera, que se transforma en «numérica» cuando asignamos nu-
meros a sus puntos. Para representar a los enteros, el modo maés
sencillo es asignarle a un punto cualquiera el niimero 0 y a otro punto
diferente el 1. Una vez asignados estos dos niimeros, los naturales
se van ubicando més all4 del 1, manteniendo siempre la misma dis-
tancia entre un niimero y su siguiente. Los negativos, finalmente, son
los simétricos con respecto al 0. Es evidente que, una vez que se han
asignado todos los enteros, quedan todavia muchos puntos caren-
tes de nimeros; en los espacios intermedios entre entero y entero
aparecen otros nimeros. Por ejemplo, 1/2=0,5 estd exactamente en
el punto medio entre 0 y 1; 4/3=1,333... estd a un tercio de camino
entre 1y 2; J2=1,4142... estdentre 1y 1,5 (mucho més cerca de 1,5
que de 1); t=3,1415... estd un poco més alld de 3:

-2 <15 - 0 05 11333. 2 3T

Se llama conjunto de los niimeros reales (y suele indicarse
con la letra R) al conjunto formado por los niimeros que comple-
tan toda la recta numérica. A cada punto de la recta numérica le
corresponde un niimero real, y viceversa. Entre los niimeros rea-
les, por supuesto, estdn los enteros, también todos los que hemos
mencionado més arriba, como /2 y n, y ademés otros infinitos
nimeros como 12,22222 o -2,01001000100001...

Los conjuntos N y Z, segiin vimos, tienen el mismo cardinal,
pero... ;sucedera lo mismo con N y R? La respuesta, uno de los
descubrimientos fundamentales de Cantor, es que no; N y R no
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tienen el mismo cardinal, es imposible establecer una correspon-
dencia biyectiva entre ambos. La demostracién de este hecho con-
siste en ver, precisamente, que cualquier intento de poner en
correspondencia biyectiva a los niimeros naturales con los reales
fracasard, y esto sucederd porque es inevitable que quede al menos
un nimero real sin asignar. Si los nimeros naturales nombraran
sillas y los reales indicaran nifios, vamos a exhibir un procedi-
miento que permite siempre hallar un nifio que ha quedado de pie.

Para entender la idea, haremos la demostracién sobre un
ejemplo especifico, aunque quedara claro que el procedimiento
funciona bien en todos los casos. Mostremos entonces un intento
concreto de asignar un nimero real a cada natural y veamos cé6mo
es posible encontrar un real que ha quedado fuera de la asignacién
(en la figura siguiente solo se muestran los nimeros del 1 al 5,
pero la lista en realidad sigue indefinidamente).

imr=—e SN S
2—— 11,0000000..
D= DL 20 A0
e T A1 59 2.6 .

A —— o\ SRS S T

No estd claro cudl es la regla por la que se han asignado los
nimeros, pero ese dato no es relevante porque el método que mos-
traremos funciona cualquiera que sea la regla de asignacién. Como
primer paso de este método, centremos nuestra atencién en las ci-
fras que se encuentran detris de la coma decimal:

o ) e R e
e —— e RO RO D000 .
SEew— LR OEEE O
44— 2 114158926 ..

Grrsr——be SR R T
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A su vez, dentro de ese recuadro
IT=———* 2,3333333.. que hemos dibujado, fijémonos en la dia-
2% 00006000 .2 gonal que comienza en el extremo supe-
rior izquierdo y que va descendiendo
hacia la derecha (véase la figura). El
papel destacado de esta linea de nime-
ge=— el b ke ros hace que a esta demostracién se la
conozca con el nombre de la «demostra-

cién de la diagonal».

Samme——owsiCl FI O R
e 15 L1 4T 5 AR

NATURALES Y RACIONALES

Podria pensarse que el hecho de
que N y B tengan distinto cardi-
nal consiste en que N es discreto
(es decir, su representacion gra-
fica estd en puntos aislados),
mientras que R no lo es (entre
dos numeros reales siempre hay
otros reales, no hay puntos aisla- ] 3 s n 1
dos en R). Sin embargo, ese no 3 24 2z 24 3
es el caso. Para verlo, tomemos

el conjunto de los nimeros racio-

nales, que suele representarse con la letra @, y que contiene a todos los nu-
meros racionales, que son aquellos que se pueden representar como una
fraccion (es decir, como el cociente de dos numeros enteros). Por ejemplo,
1/2=0,5y -4/3=-1,333... son racionales, mientras que v2 =1,4142... y T=3,1415...
no lo son (aunque cierto, no es obvio que J2 y T NO son racionales y se requie-
re una demostracion matematica para justificarlo). Los enteros estan incluidos
en los racionales ya que, por ejemplo, 6=6/1. Aunque no completan toda la
recta numeérica, los racionales no son discretos: entre dos nimeros racionales
siempre hay otro numero racional. Por ejemplo, entre dos niumeros raciona-
les estéd siempre su promedio. De este modo, entre 1/3 y 1/2 esta

Oy
o=
=1
K| — 4
'w|w1
|

1.1
23 5

2 12

y entre 1/3 y 5/12 esta el promedio de ambos, y entre 1/3 y ese promedio esta
el promedio de ambos, y asi sucesivamente (esquema superior).
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El nimero que buscamos (el que queda fuera de la asigna-
cién) comenzara con 0,... y sus cifras decimales estaran determi-
nadas por los niimeros que aparecen en la diagonal. Para obtener
la primera cifra decimal del nimero tomamos la primera cifra
de la diagonal y le sumamos 1 (si fuera un 9, tomamos un 0). En el
ejemplo, el primer niimero de la diagonal es un 3, asi que nuestro
niimero empezara con 0,4...

Para obtener la segunda cifra decimal del nimero sumamos
1 al segundo nimero de la diagonal (si es un 9, tomamos un 0).

A pesar de que @ es denso y N es discreto, es posible establecer una corres-
pondencia biyectiva entre ambos. Una manera de hacerlo es la mostrada en
el esquema inferior, donde aparecen todos los nimeros racionales, y las fle-
chas indican un recorrido que, a la larga, pasara una vez por cada fraccion. El
modo de establecer la correspondencia es el siguiente: al primer numero del
recorrido (que es el O) le corresponde el natural 1, al segundo (que es el 1) le
corresponde el natural 2, al tercero (que es 1/2) le corresponde el 3, y asi
sucesivamente. Una aclaracion: la fraccion -2/2 ocupa el séptimo lugar en el
recorrido y, en principio, deberia tener asignado el nimero natural 7. Sin em-
bargo, -2/2 es igual a -1 (-1y -2/2 son el mismo numero escrito de modo di-
ferente) y al -1 el recorrido le habia asignado previamente el natural 5. No
podemos asignar el 5 al -1y el 7 al -2/2, que es el mismo numero. El modo de
resolver este problema es simplemente omitir al -2/2 y asignarle el 7 a la

fraccion siguiente, que es -2/3.

-44—-3 -2 -1 0—»1 2 —»3 4—» 5

-4/2 -3/2 -2/2 -V/2 « V2 22 32 422 5;2
—4)3 -3/3 -2}3 /3 ——1/352/3 3)3 4/3 5)3
-4/4 -3/44-2/4<-/4 1/4 < 2/4 «-3/4 4,;14 5%4
—4/55-3/55-2/55-V/5 ——»1/5 - 2/5 > 3/5-» 4/5 5}5
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Para la tercera cifra decimal usamos el tercer nimero de la diago-
nal, y asi sucesivamente. En nuestro ejemplo, el nimero buscado
comienza con 0,41162...:

I
T2 TS S s
I
Rem—— =L 00 Q00005
—
Semr—e 0 108 0 4 10 . 0, 4
gt —ob | 3, 141I5926...

.
— g

—=m

B —— 1.1111111...

El niimero que acabamos de calcular no esté asignado a nin-
gin natural; se nos ha pasado por alto en la asignacién. ;Cémo
podemos estar seguros de eso? De esta manera: el niimero que
calculamos no puede ser el que estd asignado al 1 porque ambos
difieren en la primera cifra decimal. Tampoco puede ser el que
estd asignado al 2, porque ambos difieren en la segunda cifra de-
cimal. Tampoco puede ser el que estd asignado al 3, porque ambos
difieren en la tercera cifra decimal. Y asi sucesivamente.

Dado que hay un niimero que escapé a la asignacién, enton-
ces nuestro ejemplo no puede constituir una correspondencia bi-
yectiva entre N y R. Cualquier otro intento fracasar4 por la misma
razén; por lo tanto, no existe una correspondencia biyectiva entre
Ny R, y en consecuencia podemos afirmar que los dos conjuntos
no tienen el mismo cardinal.

LA HIPOTESIS DEL CONTINUO

El cardinal de los niimeros reales es mayor que el de los naturales.
Cantor demostro este hecho en 1873 y acto seguido se pregunté si
habria un cardinal intermedio. Es decir, ;existird algin conjunto
que tenga un cardinal mayor que N, pero menor que R? Durante
afos hizo muchos intentos por encontrar un conjunto intermedio
entre N y R, pero jamis logré encontrar alguno. Finalmente, en
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PAUL COHEN

TR WA

Paul Joseph Cohen nacié en Long
| Branch, Nueva Jersey, Estados Unidos,
i en 1934; sus padres eran inmigrantes
i polacos. Desde muy pequeiio Cohen

demostré habilidades matematicas ex-
traordinarias, y fue considerado un nifio
prodigio. Esto le permitié, a pesar de los
esCcasos recursos economicos de sus pa-
dres, estudiar en las escuelas de mayor
nivel académico de Nueva York. Cursé
; sus estudios superiores en la Universidad

de Chicago, donde se doctord en 1958
con un trabajo en el que generalizaba el
problema de la unicidad de la escritura
de una funcién periédica en series de
Fourier (el mismo que Cantor habia tra- T LI B RO R AL 0
tado a principios de la década de 1870 y ;
que lo llevd al desarrollo de su teoria de

los infinitos). Cohen hizo aportes muy significativos a diversas areas de las
j matematicas, como la teoria de numeros, el andlisis matematico y la I6gica.
i En 1966, durante el Congreso Internacional de Matematicas de Moscu recibio
la medalla Fields, el premio matematico mas importante que existe, por su u
trabajo sobre la hipdtesis del continuo. Paul Cohen fallecié en California en

marzo de 2007.

1878 formulé la conjetura de que tal conjunto intermedio no existe;
a esa conjetura se la conoce como la hipdtesis del continuo: «No
existe un conjunto A tal que card(N) < card(4) < card(R)».

Cantor intenté demostrar esta conjetura durante muchos
afios, aunque sin éxito. Al llegar el afio 1900, el problema de deter-
minar si la conjetura era cierta o no seguia atn sin solucién y
precisamente entonces, como ya dijimos, Hilbert lo puso en el
primer lugar de la lista de problemas en su famosa conferencia del
congreso de Paris.

La solucién del problema, al menos la conocida hasta ahora,
se obtuvo en dos etapas. La primera la completé Godel a fines de
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la década de 1930. En concreto, en 1938 y 1939 Godel publicé
sendos articulos en los que exponia en forma resumida distintos
aspectos de la primera parte de la solucién, que expuso con todo
detalle en un curso dictado en el Instituto de Estudios Avanzados,
cuyos apuntes se editaron en forma de libro en 1940.

La segunda parte de la solucién la obtuvo en 1963 Paul
Cohen, matematico norteamericano que también trabajaba en el
Instituto de Estudios Avanzados. Dicen que la primera persona a
la que Cohen le mostro su solucién fue a Goédel, pero que cuando
fue a verlo este se encontraba en plena crisis manfaco-depresiva
y no quiso dejarlo entrar a su casa, por lo que Cohen tuvo que
pasarle los papeles por debajo de la puerta. Pocos dias después,
Godel lo llamé por teléfono invitindolo a tomar el té y Cohen
tomo esta invitacién como una sefal de que su solucién era co-
rrecta; y, en efecto, tan correcta era que por ese trabajo Paul
Cohen recibié la medalla Fields, el equivalente matemético del
premio Nobel.

LA SOLUCION DE GODEL Y COHEN

;Cudl es la respuesta? ;La hipé6tesis del continuo es verdadera o
es falsa? En realidad, podemos decir que todavia no se sabe, por-
que la respuesta que Godel y Cohen encontraron es que ni la hip6-
tesis del continuo ni su negaciéon pueden ser demostradas a partir
de los axiomas de la teoria de conjuntos. Es decir, estos axiomas
son insuficientes para determinar la verdad o falsedad de la afir-
macién. Sillamamos HC al enunciado que dice que «No existe un
conjunto de cardinal intermedio entre N y R» entonces HC es,
para la teoria de conjuntos, un ejemplo perfecto del primer teo-
rema de incompletitud de Gédel: ni ella ni su negacién son demos-
trables.

+Como demostraron Godel y Cohen este hecho? Para enten-
derlo, imaginemos por un momento que el simbolo «#» designa
una operaciéon numeérica genérica, no especificada, y supongamos
que esta operacién cumple los dos axiomas siguientes:
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— Axioma 1: La operacion es conmutativa, es decir, a* b=b*a.

— Axioma 2: La operacion tiene un elemento neutro, es decir,
un nimero tal que operar con €l no produce nin-
glin cambio (si a ese elemento neutro lo llama-
mos e, entonces axe=a).

Se llama «modelo» a cualquier ejemplo concreto, a cualquier
operacién especifica, que cumpla esos axiomas. Por ejemplo, la
suma de niimeros enteros es un modelo, ya que la suma es conmu-
tativa y tiene un elemento neutro (que es el 0). El producto de
numeros enteros es también un modelo, ya que esa operacion es
también conmutativa y tiene un elemento neutro (que es el 1). La
resta de enteros, en cambio, no es un modelo porque no es con-
mutativa (por ejemplo, 2 — 3 no es lo mismo que 3 - 2).

A partir de estos axiomas es posible demostrar sintactica-
mente (segun la terminologia del capitulo anterior) que no puede
haber dos elementos neutros diferentes. Es decir, que siey e¢' son
ambos elementos que cumplen el axioma 2, entonces necesaria-
mente e=e¢'. La demostracién es como sigue: Supongamos que e y
e' cumplen ambos el axioma 2. Entonces, como ¢ es elemento neu-
tro, exe'=¢' (al operar con e no se produce ningin cambio). Pero
e' también es neutro, entonces e'x¢=e (al operar con €' no se pro-
duce ningin cambio). Tenemos asi que:

e=e'xe=exe'=¢', y en consecuenciae=e'.

Toda afirmacién que se deduzca de los axiomas serd valida
necesariamente en todos los modelos, porque esa misma demos-
tracién es reproducible en cada ejemplo concreto. Por lo tanto, en
cualquier ejemplo que cumpla los axiomas 1 y 2 ocurrird que el
neutro de la operacién es tinico. Esto sucede, por supuesto, en
el caso de la suma (donde no hay otro neutro més que el 0) y en el
del producto (donde el 1inico neutro es el 1).

Llamemos ahora «absorbente» a cualquier nimero f tal que
al operar con €l el resultado es nuevamente f (es decir, axf=f), ¥
consideremos la afirmacién P: «La operacién tiene un elemento
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cExiste elemento absorbente?

Arriba, axiomas de
una operacion
conmutativa con
neutro. Abajo a la
izquierda, un
ejemplo que
cumple esos
axiomas, pero que
no tiene elemento
absorbente. Abajo
a la derecha, un
ejemplo en el que
si hay elemento
absorbente. Luego
la existencia o no
existencia de
elemento
absorbente no se
puede deducir de
los axiomas de la
la parte superior
del esquema.

140

Axiomas
Conmutativa: asb=b+a

Modelo Neutro: a-e=a Modelo
Suma Producto
Conmutativa:a+b=b+a Conmutativo:a-b=b-a
Neutro:a+0=a Neutro:a-1=a

¢Existe elemento absorbente?
Si

absorbente». La pregunta es ;puede deducirse P de los axiomas
1y 2? ;Puede deducirse la negacion de P? Es decir, del hecho
de que una operacion sea conmutativa y tenga neutro, ;podemos
deducir que tiene un elemento absorbente? ;O podemos deducir
que no lo tiene?

Si la existencia de un elemento absorbente fuera demostrable
a partir de los axiomas, entonces toda operacién conmutativa y
con neutro tendria un elemento absorbente. Sin embargo, esto no
es asi, porque la suma de enteros, que es conmutativa y con neu-
tro, no tiene elementos absorbentes. Por lo tanto, la afirmacion P
no es demostrable a partir de los axiomas 1y 2.

Ahora bien, si la inexistencia de un elemento neutro fuera
demostrable, entonces ninguna operacién que cumpliera los axio-
mas 1y 2 tendria elementos absorbentes. No obstante, el producto
de enteros si lo tiene, ya que el 0 es absorbente, de manera que la
negacion de P tampoco es demostrable a partir de los axiomas. La
existencia o inexistencia de elemento neutro es indecidible a par-
tir de los axiomas 1 y 2: no puede ser demostrada ni refutada a
partir de esos axiomas (véase el esquema de esta pagina).

Godel hace un razonamiento similar en su segundo articulo
sobre la teoria de la relatividad para refutar el hecho, planteado
por James Jeans, de que, dentro de la teoria de la relatividad es
posible definir la nocion de «tiempo absoluto». Godel le responde
que, puesto que él ha hallado modelos de la teoria en los que esa
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nocioén no existe, entonces no es posible deducir de las ecuacio-
nes de Einstein la existencia necesaria de un tiempo absoluto.

Volviendo al problema de Cantor, la manera en que Godel y
Cohen demostraron que la hipétesis del continuo es indecidible a
partir de los axiomas de la teoria de conjuntos es similar a la que
hemos usado anteriormente para mostrar que P es indecidible con
respecto a los axiomas 1y 2. En sus articulos de 1938 y 1939, y con
mas detalle en el libro de 1940, G6del muestra un modelo que
cumple los axiomas de la teoria de conjuntos para el cual la hipé6-
tesis del continuo es verdadera, es decir, un modelo en el que no
hay conjuntos con cardinales intermedios entre N y R (de manera
similar a cémo nosotros encontramos un modelo en el que no hay
elementos absorbentes). Esto demuestra que HC no puede ser re-
futada (si fuera refutable a partir de los axiomas seria falsa en
todos los modelos).

«El cambio es una ilusién a una apariencia debido a nuestro
especial modo de percepcion.»

— KurT GODEL, EN UN ARTiCULO DE 1949,

En 1963 Cohen encontré un modelo de los axiomas de la teo-
ria de conjuntos en el cual si existe un conjunto con un cardinal
intermedio entre Ny R, es decir donde HC es falsa y demostré asi
que HC no puede ser probada a partir de los axiomas de la teoria
de conjuntos.

Pero, en el modelo estandar, el que uno tiene en mente cuando
formula los axiomas de la teoria de conjuntos, ;la hipétesis del
continuo es verdadera o falsa? Esa pregunta todavia esta sin res-
puesta. Muchos especialistas en el tema opinan que falta encon-
trar un axioma, una afirmacién que todos los interesados estén de
acuerdo en aceptar como verdadera, y que permita finalmente re-
solver la cuestién. Es decir, un axioma que finalmente permita
demostrar o refutar HC en el modelo estandar. La intuicién gene-
ral, basada en argumentos filoséficos, intuiciéon que también com-
partian Godel y Cohen, es que la hipétesis del continuo es, en
realidad, falsa.

GODEL Y EINSTEIN 141






CAPITULO §

Las consecuencias del trabajo
de Godel

Los teoremas de incompletitud
de Godel marcaron un punto de inflexién en todas

las investigaciones relacionadas con la filosofia de las

matematicas. Hoy en dia no existe texto de filosofia de
las matematicas que no se refiera a los teoremas de Godel,
los enuncie, los analice y saque conclusiones de ellos que

muchas veces son motivo de debate. A decir verdad,
el estudio de las consecuencias de los teoremas
de incompletitud apenas se ha iniciado y tal
vez dure décadas, o siglos.






En Princeton, Godel encontré un clima social tranquilo y anodino,
perfectamente adecuado a su forma de ser, en el que se sentia
muy cémodo. Sin embargo, este entorno favorable no atenué su
hipocondria ni sus excentricidades sino que, muy por el contrario,
con el correr de los afos sus «rarezas» se fueron acentuando
hasta tal punto que en 1941 el entonces director del Instituto de
Estudios Avanzados, Frank Aydelotte, se sinti6 obligado a pregun-
tarle al médico personal de Godel si existia algiin peligro de que
su mal (su incipiente paranoia) adquiriera una forma violenta
que fuera peligrosa para él mismo o para los demas. Aunque el
médico respondié que ese peligro no existia, no deja de ser signi-
ficativo que la pregunta fuera formulada.

Godel estaba dominado por el temor a las enfermedades, tanto
reales como imaginarias. Vivia convencido, por ejemplo, de que de la
calefaccién y del aire acondicionado emanaba un aire «malo», per-
judicial para la salud. También tenia un temor obsesivo al frio y no
era extrafo verlo en pleno verano usando abrigo, bufanda y guantes.
Paraddjicamente, este miedo a la enfermedad venia acompainado
por una desconfianza total hacia los médicos, que se transformé
lentamente en un recelo hacia la gente en general. Su tendencia a
la soledad era cada vez mayor y a veces pasaba largos periodos en
los que evitaba todo contacto fisico con otras personas, con la sola
excepcion de su esposa Adele y dos o tres amigos muy cercanos.
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Desde su llegada a Estados Unidos, Adele tuvo una vida triste
y solitaria, centrada principalmente en cuidar a su fragil marido,
una necesidad que, con el pasar del tiempo, se fue haciendo cada
vez mas apremiante. En los comienzos de este periodo, recibié la
ayuda de Oswald Veblen, el primer amigo de Godel en Princeton

FRANK AYDELOTTE

Franklin Ridgeway Aydelotte nacid¢ en un pueblo del condado de Gibson,
en el estado de Indiana, Estados Unidos, en 1880, y estudid literatura ingle-
sa en la Universidad de Indiana, donde se gradud en 1911. Entre 1921 y 1940
fue director del colegio Swarthmore, una institucion educativa en la que
introdujo reformas muy innovadoras. Entre 1939 y 1947 fue director del
Instituto de Estudios Avanzados de Princeton, en Nueva Jersey. Durante el
periodo de Aydelotte como director del Instituto de Estudios Avanzados,
el centro tenia muchos profesores notables, entre los que se encontraban
Albert Einstein, el propio Gédel o John von Neumann. Aydelotte fallecié en
1956 en Princeton.

Fotografia
tomada el 14 de
marzo de 1951,
el dia en que
Einstein
cumplia setenta
y dos afios. En
la imagen, junto
a Einstein
aparecen Frank
Aydelotte y su
esposa.
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y quien habia hecho los contactos para que fuese incorporado al
Instituto de Estudios Avanzados; poco después, la responsabili-
dad de compartir el cuidado de Gédel pasé a manos de Albert
Einstein. La amistad entre ambos (que se profundizé especial-
mente a partir de 1942) fue una etapa de relativa calma para Godel;
los paseos que hacian juntos eran, podria decirse, terapéuticos
para él y aunque las excentricidades no desaparecieron del todo,
se atenuaron de manera notable. Es de comprender, entonces, que
la muerte de Einstein en 1955 fuera un duro golpe para Godel y
que marcara un recrudecimiento de su hipocondria y su paranoia.
Fue en realidad el inicio de un camino descendente que ya nunca
se detuvo, a pesar de que Oskar Morgenstern, otro de los amigos
de Godel en Princeton, tomara el lugar de Einstein en el intento de
ayudar a Adele a cuidarlo.

«Parece claro que la fecundidad de sus ideas seguira
estimulando nuevos trabajos. A pocos matematicos se les
concede este tipo de inmortalidad.»

— OBITUARIO QUE LE DEDICO A GODEL EL DIARIO THE TiMEs DE LONDRES.

Su enfermedad mental fue empeorando y hacia mediados de
la década de 1970 derivé en un delirio persecutorio; Godel vivia
obsesionado con la idea de que querian envenenarlo. Las tnicas
personas en las que confiaba eran Adele y Morgenstern, y la ver-
dad es que se negaba absolutamente a comer a menos que Adele
probara antes los alimentos.

Oskar Morgenstern fallecio el 26 de julio de 1977, poco des-
pués Adele tuvo que ser hospitalizada durante seis meses por di-
versos problemas de salud y Godel, que se quedd solo con sus
miedos y sus obsesiones, practicamente dejé de comer. Su
cuerpo, de por si no muy fuerte, se debilité rdpido por la inani-
cién. Como consecuencia de todo esto, Gddel tuvo que ser inter-
nado en el hospital de Princeton, donde falleci6 la tarde del 14 de
enero de 1978, El certificado de defuncién indicé como causa
de muerte «malnutricién e inanicién provocados por problemas
personales».
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OSKAR MORGENSTERN

Oskar Morgenstern fue un economista y
matematico nacido en Silesia (actual-
mente parte de Polonia) en 1902. Estudio
en las universidades de Viena, Harvard y
Nueva York. En Viena asisti¢ a unos fa-
mosos seminarios organizados por Karl
Menger (profesor de la Universidad de
Viena) y de los que también participd
Godel. Durante la Segunda Guerra Mun-
dial emigré a Princeton y ya en Estados
Unidos, en 1944 publicé conjuntamente
con John von Neumann el libro Theory
of Games and Economic Behavior (Teo-
ria de juegos y comportamiento econc-
mico) que supuso el inicio de la moderna
teoria de juegos. Morgenstern fallecio en
1977 en Princeton, Nueva Jersey, Esta-
dos Unidos.

Pero, en cierto modo, Gédel nunca murid; su obra, sus ideas,
su pensamiento, sus teoremas todavia viven; sus métodos de de-
mostracion siguen siendo estudiados y utilizados hoy en dia, y no
es exagerado decir que seguiran siendo analizados durante siglos.

Como dice el matematico norteamericano John Allen Paulos
en su libro Mds alld de los niimeros:

El 16gico matematico Kurt Godel fue uno de los gigantes
intelectuales del siglo xx y, en el supuesto de que la especie
se conserve, probablemente serd una de las pocas figuras
contemporaneas recordadas dentro de mil afios. [...] No se
trata de un caso de autocomplacencia por parte de los ma-
tematicos, a pesar de que en todas las disciplinas sea co-
rriente alentar una cierta miopia profesional. Sencillamente
es verdad.
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LA CONFERENCIA GIBBS

Aunque después de 1950 publicé muy poco, no por eso Godel dejé
de pensar y escribir, y al momento de su muerte habia dejado un
nimero impresionante de manuscritos inéditos, dedicados princi-
palmente a la filosofia y a la teologia, con investigaciones, entre
otros temas, sobre la existencia de Dios, la transmigracién de las
almas o el andlisis de los trabajos filoséficos de Gottfried Leibniz.
Todos estos manuscritos, dado que Godel no habia dejado instruc-
ciones acerca de qué hacer con ellos, fueron heredados por su
esposa Adele quien, a su vez, antes de su fallecimiento en 1981, los
doné a la biblioteca del Instituto de Estudios Avanzados, donde
todavia se conservan.

Entre estos papeles inéditos se destaca el texto de la «confe-
rencia Gibbs», que Godel fue invitado a dictar en la reunién anual
de la American Mathematical Society celebrada en Providence,
Estados Unidos, el 26 de diciembre de 1951. Segiin los testigos,
Godel se limitoé a leer rapidamente el manuscrito que llevaba pre-
parado, sin admitir preguntas ni comentarios al finalizar, aunque
si hubo un entusiasta aplauso, comprensible dado lo infrecuente
de poder ver y oir en persona a un genio del nivel de Godel.

En los afios siguientes, Godel se dedicé a corregir y retocar el
manuscrito con la intencién de publicarlo; sin embargo, nunca
logré darle una forma que fuera para él satisfactoria. Finalmente,
fue publicada en 1994 como parte de un volumen titulado Kurt
Gadel, ensayos inéditos.

;Por qué es tan interesante la conferencia Gibbs? Porque en ella
Godel analizé profundamente (mas que en cualquier otro de sus es-
critos) las que él entendia que eran las consecuencias filoséficas de
sus teoremas de incompletitud. En concreto, Godel sostuvo en esa
conferencia que sus teoremas demostraban que el platonismo ma-
tematico era la postura correcta en la filosofia de las matematicas.

,Qué es el platonismo? La pregunta en realidad es: ;la mate-
matica, se crea o se descubre? ;Es una creacién humana, de la
misma forma que lo es la misica y la literatura? ;O, por el contra-
rio, los matematicos descubren hechos que existen en una reali-
dad externa preexistente a ellos?
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El platonismo sostiene que los objetos matematicos tienen
una existencia objetiva, y que el trabajo de los mateméticos con-
siste en descubrir las caracteristicas de esos objetos. El nombre,
desde luego, proviene de Platén, quien afirmaba que nuestras per-
cepciones son solamente el reflejo deformado de una realidad su-
perior que existe en el «<mundo de las ideas». En ese mismo mundo
de las ideas habitarian los objetos que los matematicos investigan;
aunque dentro del platonismo matematico hay diferentes matices,
esa es la idea esencial.

«El famoso teorema de incompletitud de Gédel muestra que no
hay ningin método de prueba formal [sintactico] con el que
poder demostrar todas las verdades de la matematica.»

— WIiLLARD VAN ORMAN QUINE, SOBRE EL TEOREMA DE GODEL.
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La postura opuesta, que hoy en dia suele recibir el nombre de
«formalismo», y que recoge parte de las ideas del intuicionismo y
del programa de Hilbert, sostiene que la matematica es simple-
mente una creacién humana, similar en ciertos aspectos a la mu-
sica. La matematica, segin este punto de vista, es esencialmente
un juego lingiiistico (un juego sintdctico) en el que hay ciertos pun-
tos de partida, que son los axiomas, y ciertas reglas légicas que
permiten operar a partir de ellos. El trabajo del matematico consis-
tirfa en descubrir hacia dénde nos llevan las reglas de juego (no
muy diferente en el fondo al trabajo de un ajedrecista que busca la
jugada 6ptima en una cierta posicién). En definitiva, el platonismo
mantiene que los objetos matematicos existen por si mismos, y los
matematicos descubren sus propiedades, mientras que el forma-
lismo afirma que los objetos matematicos no existen por si mis-
mos, y tienen propiedades que los matematicos les atribuyen.

Las dos posturas tienen sus matices, las dos tienen sus puntos
fuertes y sus puntos débiles, y las dos conviven hoy en dia en el
pensamiento de los matemadticos. John D. Barrow, un filésofo de
las matemaéticas contemporineo, ha escrito: «Los matematicos
son formalistas de lunes a viernes y platonistas los fines de se-
mana». Es decir, para el trabajo diario, a la hora de demostrar

LAS CONSECUENCIAS DEL TRABAJO DE GODEL



teoremas y escribir articulos, la postura formalista es la mas con-
veniente, porque en tltima instancia toda la «verdad» descansa en
axiomas cuya eleccion no necesita de ulteriores justificaciones
(en el formalismo solo se requiere que los axiomas sean consis-
tentes, no que reflejen una verdad externa). Sin embargo, los fines
de semana, cuando se relajan, los matematicos sienten en su fuero
interno que trabajan con «objetos de verdad», cuya existencia es
independiente y real (signifique esto lo que signifique).

Ambas posturas aparecen claramente diferenciadas en rela-
ci6én a la cuestion de la hipétesis del continuo. Vimos en el capi-
tulo anterior que la hipétesis del continuo (HC) es indecidible con
respecto a los axiomas de la teoria de conjuntos. Ahora bien, jes
verdadera o es falsa? Para el formalista puro (aunque hoy en dia
casi nadie es formalista puro), la pregunta no tiene sentido. Los
axiomas son reglas de juego elegidas arbitrariamente que no refie-
ren a ninguna «verdad» exterior, solo existen los conceptos sin-
tacticos de «demostrable» o «no demostrable», no los de «verdad»
o «falsedad». Segin este punto de vista, es tan licito agregar a la
teoria de conjuntos un nuevo axioma en el que HC sea demostra-
ble, como agregar otro en el que sea refutable. De este modo po-
drian convivir dos teorias de conjuntos diferentes, de la misma
forma que conviven diferentes juegos de gjedrez (hay un ajedrez
chino y uno japonés, por ejemplo), con algunas variantes entre las
reglas de uno u otro, sin que sea necesario creer que hay un «aje-
drez verdadero».

Para el platonismo, en cambio, los axiomas de la teoria de
conjuntos reflejan una verdad que existe objetivamente y en la
cual HC es, o bien verdadera, o bien falsa, y lo que falta es un
axioma «evidente por si mismo» que permita decidir la cuestion.

Godel era decididamente platonista y en un articulo publicado
en 1947 bajo el titulo sQué es el problema del continuo de Can-
tor? escribi6: «Debe observarse [...] que, desde el punto de vista
aqui adoptado, una prueba de la indecidibilidad de la conjetura de
Cantor a partir de los axiomas aceptados de la teoria de conjuntos
[...] de ningin modo resolveria el problema. Pues si se acepta
que el significado de los simbolos primitivos de la teoria de con-
juntos [...] es correcto, entonces los conceptos y teoremas de la
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¢CUAL ES EL AJEDREZ VERDADERO?

El ajedrez chino es un juego de
estrategia, de la misma familia 0.0,0,6,0,86,0,0,0
qgue el ajedrez occidental y el }
shogi (o ajedrez japonés). Se

cree que todos ellos provienen :
) i)

del juego llamado chaturanga,
que se practicaba en la India en
el siglo VI. Para los formalistas
(que enfatizan los aspectos sin-
tacticos de las matematicas), la
accion de elegir axiomas para
una teoria matematica no es
muy diferente a determinar las
reglas de un juego de tablero. El
ajedrez occidental, el chino o el
japonés son todos juegos de ta-
blero emparentados, pero no (E} (D (3a) @ D'G'D'OD
hay uno que sea «verdadero» y
los otros «falsos». De manera si-
milar, dado que la hipotesis del  Tablero de ajedrez chino con la posicién inicial
continuo (o HC) es indecidible  de las fichas.

con respecto a los axiomas de la

teoria de conjuntos, entonces es tan legitimo agregar a HC, o bien a su nega-
cién, como nuevo axioma. En ambos casos se obtienen diferentes teorias de
conjuntos (diferentes reglas de juego), sin que pueda decirse que una sea
«verdadera» o la otra «falsa». Para los platonistas, en cambio, la teoria de
conjuntos se refiere a una realidad objetiva en la que la hipotesis del continuo
es realmente verdadera o falsa.

5 i e St T

teoria de conjuntos describirian alguna realidad bien determinada
en la cual la conjetura de Cantor deberia ser cierta o falsa». Mas
tarde, en 1963, al completar la demostracién de la indecidibilidad
de HC, Paul Cohen acordé con este punto de vista y arriesgoé su
sospecha de que la conjetura de Cantor es en realidad falsa.
Ahora bien, como ya dijimos, en la conferencia Gibbs de 1951,
Godel sostuvo que sus teoremas de incompletitud demostraban la
validez del punto de vista platonista. Veamos, en un apretado resu-
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men, cudl era el argumento de Godel.
Todos tenemos en nuestra mente una

intuicién de qué son los niimeros natu-

rales, entendemos cémo se definen Q0000000
sus operaciones fundamentales y cua- | Q0000000
les son sus propiedades bésicas.Perci- = 54 QD PP PP P
bimos, por ejemplo, que multiplicar 8 : 20000000
por 5 se equipara a la operacion «fi-

sica» de formar ocho columnas con SAAA LA Al
cinco objetos cada una (figura 1). 1 8-5

Tenemos, en consecuencia, un ..

«modelo mental» de los niimeros natu-
rales, de esos entes, o esa estructura que los matematicos estudian.
Por otra parte, el primer teorema de incompletitud demuestra que
ese modelo no puede ser completamente caracterizado por méto-
dos sintécticos, es decir, si nos limitamos a los métodos sint4cticos
de razonamiento, siempre habra verdades inalcanzables. Los méto-
dos sintdcticos de demostracion son insuficientes para abarcar
todas las propiedades de ese modelo que, semanticamente, somos
capaces de comprender. Esto implica, segin Godel, que ese modelo
mental, esos entes que llamamos «nimeros naturales», con todas
sus propiedades o relaciones mutuas, existe en una realidad plat6-
nica que se encuentra mas alla de la mera lingiiistica (figura 2).
Estas conclusiones de Godel han sido cuestionadas por 16gi-
cos contemporaneos, como por ejemplo, Solomon Feferman o

Semdntica Sintactico

Antitesis y sintesis

S — - e — M |
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LOS AXIOMAS DE LA TEORIA DE CONJUNTOS

La paradoja de Russell se resolvio finalmente gracias a una reformulacion de
los axiomas de la teoria de conjuntos propuesta, en primer lugar, por el ma-
tematico aleman Ernst Zermelo en 1908 y perfeccionada pocos afos después
por el también aleman Abraham Fraenkel. Aunque existieron otras propuestas
equivalentes (una de ellas presentada por el propio Gddel), la teoria axioma-
tica de Zermelo-Fraenkel (o Z-F, como se la suele llamar) es hoy en dia la
teoria de conjuntos por excelencia:

1. Dos conjuntos son iguales si tienen exactamente los mismos miembros.
2. Existe el conjunto vacio.

3. Dados x e y existe el par ordenado (x,y).

4. La union de conjuntos también es un conjunto.

5. Existe al menos un conjunto infinito.

6. Toda propiedad que pueda ser expresada en el lenguaje formal de la
teoria de conjuntos puede ser usada para definir un conjunto.

7. Dado un conjunto, existe siempre el conjunto formado por todos sus
subconjuntos.

8. Dada una familia finita o infinita de conjuntos no vacios existe siempre un
conjunto que contiene exactamente un miembro de cada conjunto de la
familia.

9. Ningun conjunto es miembro de si mismo.

El axioma clave para evitar la paradoja de Russell es el sexto, que especifica
en qué propiedades pueden basarse las definiciones de los conjuntos. Este
axioma, en combinacion con el noveno, permite demostrar que el conjunto
paraddjico de Russell simplemente no existe.

Panu Raatikainen, quienes han sostenido que los argumentos de
Godel se basan en supuestos cuya validez es cuestionable (como
el hecho de que en todas las mentes humanas existe un mismo
modelo de los nimeros naturales). El hecho es que, al momento
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actual, no existe todavia un consenso unanime acerca de qué rela-
cién existe entre los teoremas de Goédel y la naturaleza de los ob-
jetos matematicos. Después de todo, solamente han pasado poco
mas de ochenta anos desde la publicacién de los teoremas de
Gdodel, un tiempo demasiado breve como para pretender que haya
alguna conclusion filoséfica definitiva.

LA VERDAD MATEMATICA

Se ha dicho en muchos libros de divulgacién que el primer teorema
de incompletitud de Godel prueba que es imposible hallar un con-
junto de axiomas para la aritmética que permita demostrar todas
las verdades de esta teoria; pero esa afirmacién, en realidad, no es
correcta. Como ya hemos dicho muchas veces, esto es verdad so-
lamente si nos limitamos a los métodos de demostracién admitidos
por el programa de Hilbert. Sin embargo, existen otros métodos de
demostracién.

.Es posible dar un ejemplo de una demostraciéon que escape a
los canones admitidos por el programa de Hilbert? La respuesta es si.
Para mostrar un ejemplo, recordemos los axiomas de Peano, que son
axiomas que se refieren a los niimeros naturales y que toman como
elementos primitivos a la suma, el producto y la funcién sucesor:

Axioma 1: Ningin nimero tiene como sucesor al 1.

Axioma 2: Si dos niimeros tienen el mismo sucesor, entonces
son iguales.

Axioma 3: El sucesor dex esx + 1.

Axiomad: (x+y)+1l=x+ (y + 1).

Axioma 5: El producto de x por 1 es x.

Axiomab6:x-(y+1)=x-y +x.

Axioma 7: Si el 1 cumple una cierta propiedad y se puede ase-
gurar que siempre que x cumple la propiedad, en-
tonces su sucesor también la cumple, entonces,
bajo esas condiciones, se puede asegurar que todo
nimero cumple la propiedad.
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Vamos a demostrar a continuacién que los axiomas de Peano
son consistentes. Comencemos por observar que los siete axio-
mas son enunciados verdaderos (en el universo de los niimeros
naturales). Ya hemos dicho que de premisas verdaderas solamente
pueden deducirse afirmaciones verdaderas; por lo tanto, ningin
enunciado falso podra deducirse de los axiomas de Peano. Pero
también hemos dicho que si un conjunto de axiomas es inconsis-
tente, entonces todo enunciado es demostrable a partir de éL
Dado que hay enunciados que no son demostrables a partir de los
axiomas de Peano (los enunciados falsos no son demostrables),
concluimos que los axiomas de Peano son consistentes.

Ahora bien, el segundo teorema de incompletitud dice que no
se puede demostrar la consistencia de los axiomas de Peano...,
pero acabamos de demostrarla. ;Cémo es posible? La respuesta,
por supuesto, es que el segundo teorema de incompletitud dice,
en realidad, que no es posible demostrar la consistencia de los
axiomas de Peano usando los métodos del programa de Hilbert.
La demostracioén de consistencia que acabamos de hacer, en con-
secuencia, es un razonamiento correcto, pero que escapa a las
restricciones de ese programa: la correccién de la demostracion
no es verificable algoritmicamente.

Esto nos lleva directamente a una consecuencia de los teore-
mas de Godel: no existe un algoritmo que pueda verificar en todos
los casos la verdad o falsedad de un enunciado aritmético (si asf
fuera, la computadora podria verificar la correccién de la demos-
tracién de consistencia que hemos hecho mas arriba, lo cual, por
el segundo teorema de Godel, es imposible). En otras palabras,
Jjamds se podré programar una computadora de modo que pueda
demostrar todas las conjeturas de la aritmética (se trata de una li-
mitacién esencial que los avances tecnolégicos no podran supe-
rar), las computadoras jamés superaran a los matematicos (aunque,
como veremos mas adelante, tampoco queda claro que los mate-
maéticos sean siempre capaces de superar a las computadoras).

Vemos asi que el segundo teorema de incompletitud pasa a
ser falso si admitimos métodos seméanticos de demostracién.
Pero, ;qué ocurre con el primer teorema de Godel? Pues bien,
puede probarse que si admitimos métodos semanticos, entonces
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De P se deduce Q

E
hayy =

Universos donde P es verdadero

En todo universo donde P es verdadero... ... @ también lo es.

toda verdad aritmética es demostrable a partir de los axiomas de
Peano, donde, como vimos en la demostracién anterior, por mé-
todos semanticos entendemos métodos basados fuertemente en
la nocién de «verdad». Concretamente, la regla l6gica que se usa
en estos razonamientos es esencialmente la siguiente: de P se de-
duce @ si en todo universo (o modelo) donde P sea verdadera
sucede siempre que @ también es verdadera (véase la figura). Re-
tomemos el ejemplo de demostracion que vimos en el capitulo 2 y
preguntémonos si es valida la siguiente deduccién:

De la igualdad (a-b)-a=(a-b)-c deducimos que a=c.

Donde P es un enunciado «(a-b)-a=(a-b)-b» y Q es «a=c».
La deduccién no es véilida porque existe un modelo (un ejemplo)
en el que P es verdadera, pero @ falsa. En efecto, si tomamos
a=b=2y c=3 ocurre que P es verdadera y Q, falsa.

Ahora bien, dado un enunciado existe un nimero potencial-
mente infinito de universos donde puede llegar a ser verdadero.
Esto quiere decir que si en un paso de una demostracién seman-
tica decimos que de P se deduce @, para verificar que esto es
correcto tendriamos que verificar los potencialmente infinitos uni-
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versos donde P es verdadero y comprobar que en todos ellos €
también es verdadero. Esta comprobacioén (que involucra un nu-
mero infinito de verificaciones) no puede ser realizada por una
computadora, pero tampoco queda claro que pueda ser realizada
por una mente humana.

De alguna manera, esto equipara a las matematicas con las
ciencia facticas. En fisica, pongamos por caso, toda teoria es pro-
visional. Que la atraccion gravitatoria entre dos cuerpos dismi-
nuye con el cuadrado de la distancia es una afirmacién provisional
porque nunca podremos verificar la intensidad de la atraccién gra-
vitacional de todos los pares de cuerpos que existan en el universo

LAS GEOMETRIAS NO EUCLIDEAS

La geometria de Euclides, expuesta en
su obra Efementos de geometria (siglo
ma.C.), es una teoria basada en cinco pos-
tulados, o axiomas, que traducidos al len-
guaje moderno pueden formularse como
sigue:

1. Por dos puntos puede trazarse una
Unica recta.

2. Un segmento puede prolongarse por
cualquiera de sus extremos.

3. Con cualquier centro y cualquier radio
puede trazarse una circunferencia.

4., Todos los angulos rectos son iguales El matemético italiano Eugenio Beltrami,
entre si.

5. Por un punto exterior a una recta puede trazarse una unica paralela a ella.
Los cuatro primeros postulados son palmariamente evidentes; en cambio, el

quinto tiene una complejidad conceptual mayor y puede no resultar tan obvio
como los otros. De hecho, la formulacién original de Euclides para el quinto
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a todas las distancias posibles. La afirmacién es verdadera...,
mientras no se encuentre una situacién en la que falle.

Ocurre algo similar con las demostraciones seménticas; po-
demos asegurar que de P se deduce ... mientras no se encuentre
un universo en el que P sea verdadero, pero @ falle. El programa
de Hilbert queria deshacerse de esta incertidumbre al proponer
métodos de demostracion cuya correccion fuera verificable de
una vez para siempre.

Repitamos lo dicho mas arriba: todo enunciado aritmético
verdadero puede demostrarse a partir de los axiomas de Peano, si
admitimos métodos semdnticos. Pero jamis podremos tener la

postulado era aun mucho mas compleja (la que se muestra mas arriba, que
es la formulacién més conocida, fue propuesta por el matematico inglés John
Playfair a finales del siglo xix). Es interesante agregar, ademas, que en sus
demostraciones Euclides utiliza lo menos posible el quinto postulado (como

si él mismo desconfiara un poco de su validez).

La demostraciéon de Eugenio Beltrami

Durante muchos siglos se creyo que el quinto postulado era en realidad un
teorema que podia demostrarse a partir de los otros cuatro. A lo largo del
tiempo se hicieron muchos intentos de lograr una demostracion, pero todos
fracasaron. Finalmente, en 1868, Eugenio Beltrami demostré que el quinto
postulado es indecidible con respecto a los otros cuatro, es decir, que ni el
postulado ni su negacion pueden ser demostrados a partir de ellos. Este fue,
histéricamente, el primer ejemplo conocido de indecidibilidad con respecto a
un conjunto de axiomas, décadas antes de que Goédel demostrara su teorema.
En realidad, el quinto postulado tiene dos negaciones: una de ellas dice que
por un punto exterior a una recta no pasa ninguna paralela a ella, la otra ne-
gacion dice que pasa mas de una paralela. Tanto el quinto postulado como
sus negaciones pueden ser agregados a los otros cuatro y en todos los casos
se obtiene un conjunto consistente de axiomas. Cuando se agrega el quinto
postulado se obtiene, por supuesto, la geometria de Euclides; en los otros dos
casos se obtienen las llamadas geometrias no euclideas. Hoy en dia se acepta
que las tres son igualmente vélidas; las geometrias no euclideas son las mas
adecuadas para describir un espacio einsteniano curvado por la presencia de
masas, mientras que la geometria euclidea es la que mas se adapta a nuestra

percepcion de los fendmenos cotidianos.
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certeza absoluta de que esos métodos seménticos son correctos.
Podemos tener métodos de razonamiento seguros y confiables,
como querfa Hilbert, pero de ese modo no podremos probar todas
las verdades. O podemos tener la capacidad de conocer potencial-
mente todas las verdades aritméticas, pero sin la certeza de que
nuestros métodos sean correctos. Seguridad y confiabilidad, o la
capacidad de conocer todas las verdades, podemos tener una u
otra, pero no las dos al mismo tiempo.

HUMANOS VERSUS ORDENADORES

En esencia, jes la mente humana superior a un ordenador? ;No-
sotros «pensamos», mientras que el ordenador solamente «cal-
cula»? O, por el contrario, no hay una diferencia esencial y algin
dia el avance tecnolégico nos permitira crear inteligencias artifi-
ciales, androides, como los que nos muestra la ciencia ficcién,
cuyo pensamiento es indistinguible del humano.

La controversia en torno a este tema comenzé a mediados del
siglo xx, con el desarrollo de los primeros ordenadores electréni-
cos, y desde entonces se han escrito decenas, quiz4 hasta cente-
nares de libros y articulos con argumentos, refutaciones, debates
y conjeturas sobre esta cuestion sin que haya hasta ahora a la vista
alguna respuesta que satisfaga a todos los involucrados.

Por todo lo dicho, es evidente que serfa imposible en unas
pocas lineas hacer ni siquiera un breve resumen de todos los ar-
gumentos a favor o en contra de una u otra postura. Solamente
nos interesa mencionar aqui que los teoremas de incompletitud de
Godel han sido usados mas de una vez en las discusiones sobre
este tema, sobre todo como argumento a favor de que la mente
humana es esencialmente superior a un ordenador.

La explicacién, en pocas palabras, seria la siguiente; hemos
mostrado mas arriba una demostracién de la consistencia de los
axiomas de Peano y nuestra capacidad humana de captar la no-
cién seméntica de «verdad» nos convence de que es correcta; sin
embargo, el segundo teorema de Godel prueba que la correccién
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de esa demostracién no puede ser verificada por un ordenador.
Hemos encontrado asf una tarea (la verificacién de la correccién
de la demostracién de que los axiomas de Peano son consistentes)
que la mente humana puede hacer, pero un ordenador no (y esta
imposibilidad es esencial, jamas podré ser superada por los avan-
ces tecnolégicos futuros). Por lo tanto, la mente humana es supe-
rior al ordenador.

«En la medida en que se refieren a la realidad, las proposiciones
de la matematica no son seguras y, viceversa, en la medida en
que son seguras, no se refieren a la realidad.»

— ALBERT EINSTEIN, EN UNA CONFERENCIA PRONUNCIADA EL 27 DE ENERO DE 1921,

El argumento parece convincente, pero no es decisivo. La de-
mostracién de la consistencia de los axiomas de Peano se basa en
nuestra intuicién de que esos axiomas son enunciados verdade-
ros; pero, jes infalible esa intuicién? En realidad no lo es, ya ha
fallado antes. Le fall6 a Frege, por ejemplo, quien durante afios
estuvo convencido de la consistencia de sus axiomas, hasta que
Bertrand Russell descubrié que uno de ellos era autocontradic-
torio. ;Podria surgir, en algin dfa futuro, un nuevo Russell que
nos muestre una paradoja de los axiomas de Peano, alguien que nos
diga que, después de todo, son inconsistentes? Aunque seria muy
sorprendente (como lo fue para Frege), no se puede descartar esa
posibilidad.

No podemos, por lo tanto, vanagloriarnos de superar a los
ordenadores, porque jaméds podremos tener la certeza de que
nuestros razonamientos seménticos son correctos. Debemos
aprender a vivir con la incertidumbre de que quizi en el futuro se
descubra que todos (o casi todos) nuestros razonamientos son
incorrectos.

(Podria ocurrir tal descubrimiento? ;Es verosimil esa posibi-
lidad? La verdad es que si; en realidad, la discusién iniciada con
el descubrimiento de la paradoja de Russell nunca llegd a ser
terminada. Las tres propuestas que se hicieron a principios del
siglo xx, intuicionismo, logicismo y formalismo (o el programa de
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Hilbert), fallaron por diferentes motivos y no han sido reempla-
zadas por otro programa de alcance equivalente. ;Cudl es exacta-
mente la naturaleza de los objetos matematicos? ;Existe un nivel
intermedio entre los razonamientos puramente sinticticos y los
razonamientos libremente semanticos que permita superar la in-
completitud de los teoremas de Gidel asegurando a la vez la con-
sistencia? ;Existe realmente una diferencia tan tajante entre
«sintactico» y «semdntico» o los que llamamos conceptos seman-
ticos no son mas que conceptos sinticticos mas sofisticados (en
los que se trabaja con grupos de simbolos en lugar de con sim-
bolos individuales)? Todavia hay muchas preguntas sin respues-
tas... afortunadamente.
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