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Introducción 

En el año 1930, el lógico checo Kurt Godel demostró un teorema, 
hoy conocido como el «teorema de incompletitud de Godel», que 
cambió para siempre el modo de entender las matemáticas. Esen­
cialmente, el teorema de Godel demuestra que si se utilizan méto­
dos de razonamiento seguros y confiables, métodos a prueba de 
error, entonces es inevitable que existan problemas matemáticos 
que nunca podrán ser resueltos. Siempre habrá problemas mate­
máticos cuya solución estará fuera del alcance de esos métodos. 

Antes de que Godel expusiera por primera vez su teorema, 
los matemáticos tenían una confianza ilimitada en el hecho que, 
con suficiente tiempo, paciencia y esfuerzo, todo problema plan­
teado podría ser resuelto. Una famosa lista de 23 problemas, por 
ejemplo, había sido presentada por el matemático alemán David 
Hilbert en la conferencia inaugural del Segundo Congreso Inter­
nacional de Matemáticas, celebrado en París en 1900. En su con­
ferencia, muy memorable y estudiada, Hilbert vaticinó que sus 
23 problemas guiarían gran parte de la investigación matemática 
a lo largo del siglo xx. 

Los problemas de Hilbert, obviamente, eran muy difíciles y 
estaba claro que muchos de ellos tardarían décadas en ser resuel­
tos, como en efecto así fue. El décimo problema, por ejemplo, fue 
respondido en 1970 (traducido a un lenguaje moderno, ese pro­
blema pedía detemünar si cierto tipo de ecuaciones, llamadas 
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«diofánticas», pueden ser siempre resueltas por un ordenador). El 
octavo problema, por su parte, conocido como la «hipótesis de 
Riemann», todavía no ha sido resuelto. Sin embargo, ni Hilbert, ni 
ninguno de sus colegas en aquel año de 1900 dudaba de que, tarde 
o temprano, se encontraría solución a todos los problemas. El 
propio Hilbert resumió este pensamiento en la frase: «Debemos 
saber, sabremos» ( « Wir müssen wissen, wir werden wissen» en 
alemán), frase con la que se sintió tan identificado que inclusive la 
hizo inscribir en su epitafio, tal vez como un mensaje a las genera­
ciones futuras, o tal vez como un desafío póstumo a Godel (Hil­
bert falleció en 1943, trece años después de que Godel anunciara 
su teorema). 

Ahora bien ¿qué es exactamente un problema matemático? 
¿Qué queremos decir cuando afirmamos que los problemas de Hil­
bert eran difíciles? ¿Puede considerarse difícil el desafío: «calcule 
la suma de todos los números entre uno y un millón»? 

La mayoría de los problemas que estudia la ciencia matemá­
tica tienen la forma de una «conjetura». Una conjetura es una afir­
mación de la que se sospecha que es verdadera, pero de la que 
todavía no se sabe con certeza si es verdadera o falsa. Un ejemplo 
famoso es la llamada «cortjetura de Goldbach», conocida con ese 
nombre porque fue formulada por primera vez por el matemático 
prusiano Christian Goldbach, en 1742: 

Cualquier número par mayor que 2 puede escribirse corno la suma 
de dos números primos. 

Los números primos son aquellos que solamente son divisi­
bles por 1 y por sí mismos; el número 1, por razones técnicas, no 
se considera primo. Veamos, por ejemplo, que lo que afirma la 
cortjetura se cumple para los números pares hasta el 12: 
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4=2+2 
6=3+3 
8=3+5 
10 = 3+7 
12 = 5 + 7 



La conjetura habla de los pares mayores que 2, por lo que el 2 
mismo queda fuera de la lista. Si se pudiera encontrar un solo 
ejemplo en el cual la conjetura fallara; es decir, si se encontrara 
un «contraejemplo», un número par que no pudiera escribirse 
como suma de dos p1imos, entonces la conjetura sería falsa. Tal 
contraejemplo todavía no ha sido hallado, de hecho, en el mo­
mento de escribir estas líneas, se ha comprobado, usando ordena­
dores, que todos los números pares hasta 1018 (un 1 seguido de 18 
ceros) pueden escribirse como suma de dos primos. 

Pero, ¿cómo podríajusti.ficarse que es verdadera, si ése fuera 
el caso? ¿Que la conjetura haya sido verificada para todos los 
números pares hasta 1018 es suficiente para asegurar que es ver­
dadera? No, porque podría fallar en el número par inmediato si­
guiente a 1018 (que es 1018 +2) . ¿Y si la verificamos para 1018 +2, 
basta con eso? No, porque podría fallar para 1018 + 4. Y así suce­
sivamente, no importa cuántas verificaciones empíricas hagamos, 
nunca podremos abarcar a todos los números pares, porque es­
tos nunca se terminan, siempre habrá una infinidad de números 
pares que hayan escapado a nuestras verificaciones, entre los 
cuales podría esconderse un contraejemplo. 

Si la conjetura fuera verdadera, la única forma de compro­
barlo es mediante una «demostración». Es decir, mediante un ra­
zonamiento general que pruebe la afirmación de una vez para todos 
los casos posibles. Veamos una muestra de demostración (por su­
puesto, no podemos mostrar una demostración de la conjetura 
de Goldbach, porque hasta ahora nadie ha encontrado ninguna). 
A modo de ejemplo, demostremos la afirmación: «Todos los núme­
ros primos mayores que 2 son impares». La afirmación involucra a 
una infinidad de números (a todos los primos mayores que 2); sin 
embargo, podemos abarcarlos a todos en un mismo razonamiento: 

Todos los números primos mayores que 2 son impares. Demostra­
ción: Si hubiera un número primo mayor que 2 que fuera par, enton­
ces ese número sería divisible por 2, pero eso es imposible porque, 
al ser primo, solo puede ser divisible por 1 y por sí mismo. Es impo­
sible que sea múltiplo de 2, entonces es imposible que sea par; por 
lo tanto, es impar. 
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Podemos entender una demostración como un razonamiento 
que engloba, en una sola argumentación, una cantidad potencial­
mente infinita de casos particulares. Todos los problemas mate­
máticos «difíciles» involucran a una cantidad potencialmente 
infinita de objetos, ya sean números, ecuaciones u otros. Por ese 
motivo, «calcular la suma de todos los números entre uno y un 
millón», aunque largo y trabajoso, no es «difícil» en el sentido que 
le dan a esa palabra los matemático~, ya que el cálculo implica a 
una cantidad bien definida de números y dicha operación puede 
completarse en un lapso de tiempo que empieza y termina, sin 
extenderse indefinidamente. 

Resolver el problema que plantea la conjetura de Goldbach 
(o, en realidad, el que plantea cualquier otra conjetura) consiste 
en encontrar un contraejemplo que la refute, o una demostración 
que la pruebe. 

Ahora bien, si alguien propone un razonamiento que supues­
tamente demuestra una conjetura, ¿cómo podemos estar seguros 
de que ese razonamiento es correcto? Si surge una controversia, 
es decir, si alguien no está convencido de que el razonamiento es 
válido, ¿cuáles son los criterios que permiten zanjar la duda acerca 
de la validez de la demostración? Antes de contestar a estas pre­
guntas, veamos otro ejemplo histórico. 

En 1909, el matemático francés Émile Borel definió el con­
cepto de «número normal». No es necesario para nuestros fines 
entrar en todas las complejidades de la definición de Borel, basta 
con decir que un número es normal cuando sus cifras decimales 
se comportan estadísticamente como si hubieran sido generadas 
al azar, y que esto sucede tanto si el número se escribe en base 10 
(como es usual), o en binario, o en hexadecimal o en cualquier 
otra base de numeración. Por ejemplo, está claro que O, 10101010 l. . . 
no es un número normal (sus cifras decimales se comportan 
demasiado prolijamente como para parecerse a cifras generadas 
al azar) . Por el contrario, se conjetura que n = 3,1415926 ... y 
-J2 = 1,4142135 ... sí son números normales, aunque esta conjetura 
no ha sido todavía demostrada, ni refutada. 

El caso es que Borel, además de definir los números norma­
les, demostró que existe una infinidad de ellos, es decir, que el 
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listado de números normales jamás se temüna. Sin embargo, su 
demostración usaba unos métodos muy indirectos; podríamos 
decir que más que demostrar que había una infinidad de números 
nom1ales, demostró que esa infinitud de números no podía no 
existir. Ahora bien, el punto central de esta historia es que ni 
Borel, ni nadie, era capaz de aportar en 1909 ni siquiera un solo 
ejemplo de número normal. Había algunos números, como los 
mencionados más arriba, de los cuales se sospechaba que eran 
normales, pero ninguno del que se supiera con certeza que lo era. 
Es decir, Borel demostró que existían infinitos números de cierto 
tipo, pero no podía mostrar un ejemplo de ellos. ¿Es aceptable 
esta situación? ¿Podemos admitir que se hable de números de los 
cuales no se puede mostrar ni siquiera un ejemplo? A principios 
del siglo xx muchos matemáticos comenzaron a desconfiar de 
estas demostraciones que involucraban familias ( como la de los 
números normales) formadas por infinitos números. Desconfia­
ban de que fuera lícito trabajar con esas fanülias usando las mis­
mas reglas que se usan para familias finitas ( es decir, que no se 
extienden indefinidamente). Esta desconfianza estaba avalada por 
el hecho de que en 1902, el filósofo y matemático británico Ber­
trand Russell había encontrado algunas contradicciones lógicas 
asociadas a razonamientos de ese tipo. 

A principios del siglo xx, la cuestión de cómo determinar la 
validez de un razonamiento matemático no estaba nada clara. 
Había muchas controversias y discusiones al respecto que di­
vidían fuertemente la opinión de los matemáticos. Pero final­
mente, después de casi un cuarto de siglo de debates, en 1930 
se llegó a un acuerdo acerca de cuáles eran los criterios claros 
y concretos que debía cumplir una demostración para ser acep­
tada como correcta, criterios objetivamente establecidos más 
allá de cualquier subjetividad. Esencialmente, el criterio consis­
tía en que los razonamientos pudieran ser verificados por un 
ordenador, un juez imparcial que se limi_taba a calcular sin caer 
en engaños lingüísticos. Desde luego, esa es la versión actual 
del acuerdo al que llegaron los matemáticos, ellos lo expresa­
ban de modo diferente, ya que en 1930 aún no existían los orde­
nadores. 
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Pero, precisamente en el lugar y el momento en que los mate­
máticos se habían reunido para acordar cuáles eran los métodos 
de razonamiento seguros y confiables, aquellos que jamás los po­
drían conducir a error, Kurt Godel levantó la mano (literalmente) 
para pedir la palabra y anunciar su teorema de incompletitud: si 
nos atenemos a esos métodos a prueba de error, entonces siempre 
habrán conjeturas verdaderas que no podrán ser demostradas, 
siempre habrán problemas matemáticos que no podrán ser re­
sueltos. Podemos tener métodos de razonamiento seguros, pero 
de esa forma habrán problemas que siempre seremos incapaces de 
resolver. O podemos tener la capacidad potencial de resolver 
todos los problemas, pero sin la certeza de que los hemos resuelto 
bien. Nunca podremos tener certeza en los métodos y a la vez la 
potencialidad de resolver todos los problemas. 

En realidad Godel presentó dos teoremas de incompletitud, 
el primero de los cuales es conocido asimismo como «el teorema 
de Godel», mientras que el segundo también recibe el nombre de 
«segundo teorema de Godel». · 

Este libro es la historia del descubrimiento de Godel y de sus 
consecuencias para la filosofía de las matemáticas. En el primer 
capítulo se expone el proceso histórico que lleva a la controversia 
sobre los métodos de demostración en matemáticas y cuál fue el 
papel que jugó en ella el teorema de Godel, y en el segundo capí­
tulo se expone el teorema en sí y una explicación de cómo fue 
demostrado por Godel. Ahora bien, en una etapa histórica en la 
que casi todos los métodos de demostración matemática estaban 
en entredicho ¿cómo escapó Godel a esa controversia? Es decir, 
¿cómo logró convencer a todos de que su demostración sí era 
correcta? La respuesta a esta pregunta es analizada en el tercer 
capítulo, mientras que el cuarto está dedicado a otros trabajos de 
Godel, entre ellos sus investigaciones sobre la teoría de la relati­
vidad. En el quinto, y último capítulo, se discuten algunas conse­
cuencias filosóficas del teorema de Godel relacionadas con la 
naturaleza de la verdad matemática. 
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1906 El 28 de abril nace Kurt Godel en 
Bmo, Imperio austrohúngaro (actual 
República Checa), hijo de Rudolf Godel 
y Marianne Handschuh. Tiene solo 
un hermano, mayor que él, llamado 
Rudolf, como su padre. 

1912 Godel sufre un ataque de fiebre 
reumática; esta enfermedad será el 
disparador de su hipocondría, un rasgo 
dominante en su personalidad. 

1923 Ingresa en la Universidad de Viena para 
estudiar física teórica; sin embargo, 
las clases del profesor Philipp 
Furtwangler harán que se vuelque en 
las matemáticas. 

1926 Es invitado a participar del Círculo 
de Viena, un grupo de intelectuales 
fundado en 1922 por el filósofo alemán 
Moritz Schlick que se reúnen a discutir 
sobre ciencia y epistemología. En 
este ámbito, Godel toma contacto con 
los debates en tomo a la teoría de la 
demostración y decide dedicarse a la 
lógica matemática. 

1929 Godel completa su tesis doctoral, 
que presenta al año siguiente ante la 
Universidad de Viena. 

1930 Del 5 al 7 de septiembre se celebra en 
la ciudad de Konigsberg un congreso 
dedicado al tema de la teoría de la 
demostración y temas relacionados 
con ella. En la sesión plenaria del 7 de 

septiembre Godel anuncia por primera 
vez su teorema de incompletitud. 

1931 Se publica Sobre las proposiciones 
formalmente indecidibles de los 
Principia Mathematica y sistemas 
relacionados, el artículo que contiene 
el enunciado y la demostración de su 
teorema de incompletitud. 

1933 Es nombrado Privatdozent ( docente ad 
honórem) en la Universidad de Viena. 
Comienza una serie de viajes a Estados 
Unidos para dictar diversos cursos 
y conferencias. 

1938 Se casa con Adele Porkert, una 
bailarina divorciada, seis años mayor 
que él. 

1939 Presionado por los nazis, que han 
tomado el control de Austria, Godel 
y su esposa huyen a Estados Unidos. 
Nunca volverán a Europa. 

1940 Godel se incorpora al Instituto de 
Estudios Avanzados de Princeton, 
donde inicia una cálida amistad con 
Albert Einstein. 

1951 Dicta la conferencia Gibbs, en la que 
analiza algunas posibles consecuencias 
filosóficas de su teorema de 
incompletitud. 

1978 Kurt Godel fallece en el hospital de 
Princeton la tarde del 14 de enero. 
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CAPÍTULO 1 

La crisis de los fundamentos 

A principios del siglo xx las matemáticas 
atravesaban una de sus crisis más profundas. 

El primer tercio del siglo fue testigo de un debate acerca 
de qué métodos de razonamiento debían considerarse como 
válidos y si debía, o no, aceptarse la existencia del infinito. 

Kurt Godel estaba destinado a intervenir en esta crisis 
de un modo decisivo. Pero, ¿cómo llegó a gestarse 
ese debate? ¿Por qué, después de más de dos mil 

quinientos años de éxito ininterrumpido, los 
matemáticos comenzaron a dudar 

de su propia ciencia? 





Todos los grandes hombres y mujeres de la historia alguna vez 
fueron niños. Aunque es una verdad de Perogrullo, una afirmación 
que no puede sorprendernos, sin embargo no deja de ser curioso 
pensar que hubo un día en el que Mozart no conocía aún ni si­
quiera el nombre de las notas musicales, que hubo un momento 
en el que Leonardo da Vinci todavía no había mezclado colores ... 
o un tiempo en el que Kurt Godel aún no había estudiado lógica. 
Pero, a pesar de que el conocimiento todavía no había llegado, la 
mente inquisitiva ya estaba allí desde el principio. En efecto, du­
rante su infancia en la ciudad checa de Brno, Godel fue un niño 
tan curioso, tan lleno de ansias de saber, tan insistente en sus 
preguntas acerca de todo lo que veía, que su familia lo llamaba 
Herr Warum, que en alemán significa «El Señor Por qué». 

Su padre, Rudolf, había nacido en Viena y abandonado tem­
pranamente sus estudios para dedicarse al comercio, con gran 
éxito. En 1906, en el momento de nacer su hijo Kurt, Rudolf Godel 
era director y copropietario de una de las empresas textiles más 
importantes de Brno, lo que no es poco decir, ya que Brno era una 
de las ciudades industriales más importantes del Imperio austro­
húngaro y destacaba precisamente por la calidad y cantidad de 
sus industrias textiles. 

Rudolf Godel tuvo dos hijos: el mayor, también llamado Ru­
dolf, y Kurt. Ninguno de los dos siguió sus pasos en el camino de 
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la industria o el comercio. Rudolf hijo llegó a ser un médico muy 
reconocido en Viena, donde dirigió una in1portante clínica. Kurt, 
por su parte, es considerado el lógico más influyente de los tiem­
pos modernos, el más relevante desde Aristóteles y uno de los pen­
sadores más trascendentes del siglo xx. La madre de estos dos 
niños se llamaba Marianne, era alemana, y había estudiado litera­
tura tanto en su país como en Francia. Podemos adivinar en ella 
una sensibilidad artística diferente a la de Rudolf padre, y es tal vez 
por eso que Kurt, que fue un niño tímido e introvertido, estuvo 
siempre muy apegado a ella. Muchos de sus biógrafos dicen que 
Kurt se sentía un poco perdido cuando su madre no estaba en casa. 
La timidez y la introversión lo acompañarían durante toda su vida. 
Godel nunca fue el alma de las fiestas; nadie se reía a carcajadas 
con sus chistes, pero tampoco lo necesitaba. Las mentes más bri­
llantes del siglo xx le prestaron atención, no por sus bromas sino 
por sus ideas, que cambiaron el modo de ver las matemáticas y tal 
vez la ciencia. A lo largo de su vida cultivó pocas, aunque muy in­
tensas amistades. Uno de sus amigos más entrañables fue Albert 
Einstein, quien más adelante regresará a estas páginas. 

En la escuela fue un alunmo brillante. Destacaba en matemá­
ticas, por supuesto, y también en idiomas. Aún hoy, muchos de 
quienes viven en Europa Oriental conocen, aunque sea un poco, 
los idiomas de sus vecinos; algo de checo, una pizca de alemán, 
algunas palabras de ruso, etcétera. Godel, que consideraba el ale­
mán como su lengua nativa, probablemente no fuera la excepción 
a esta regla. Pero aun en ese contexto políglota, su gusto y su fa­
cilidad para los idiomas eran notables. Ya desde joven hablaba y 
escribía perlectamente en inglés y en francés; en los años sucesi­
vos su biblioteca siempre contuvo una gran cantidad de dicciona­
rios y gramáticas de diversas lenguas. 

Cuando tenía seis años, Godel sufrió una crisis de fiebre reu­
mática que lo mantuvo en cama durante varios días, y de la que se 
recuperó por completo, al menos físicamente. Tiempo después, su 
curiosidad natural lo llevó a leer acerca de la enfermedad que 
había padecido. A través de esas lecturas se enteró de que la fiebre 
reumática puede dejar como secuela una debilidad crónica del 
corazón; y Godel pasó toda su vida convencido de que ese había 
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sido el caso, aunque los médicos le aseguraron lo contrario una y 
otra vez. Más todavía, sin ningún motivo racional, pasó el resto de 
su vida bajo la certidumbre de que si su corazón se enfriaba, mo­
riría. Tanto es así que, aun en días de intenso calor, Godel usaba 
siempre ropa de abrigo. 

Muchos años después, su hermano Rudolf atribuiría a esta 
primera crisis el origen de la profunda hipocondría que sería una 
de las características más destacadas de la personalidad de Kurt. 
Tal vez fuera también el origen de las muchas crisis de salud que, 
por razones físicas o psicológicas, el gran genio sufriría a lo largo 
de toda su vida y que muchas veces lo mantuvieron postrado du­
rante semanas, alejado de todo trabajo intelectual. 

Mientras que en 1912, a sus seis años de edad, Kurt Godel, que 
aún no sabía nada de lógica, sufría la primera crisis de su vida, las 
matemáticas como ciencia atravesaban también su propia crisis, 
y en ambos casos dejarían profundas huellas. Y aunque por aquel 
entonces aún no lo sospechaba, Godel estaba destinado a interve­
nir de manera decisiva en la segunda. 

EL INFINITO DE ARISTÓTELES 

La crisis que atravesaban las matemáticas en 1912, y que hoy es 
conocida como la «crisis de los fundamentos», se había desenca­
denado en 1902, cuatro años antes del nacimiento de Godel, a raíz 
de una muy breve carta que Bertrand Russell le escribió a su co­
lega, el alemán Gottlob Frege. 

«El infinito siempre es en potencia, nunca en acto.» 
- PALABRAS DE ARISTÓTELES EN SU META.FÍSICA, 

Es imposible entender cómo una carta de apenas una página 
desencadenó una polémica que duraría más de veinticinco años a 
menos que estudiemos el devenir histórico que llevó a esa precisa 
encrucijada. En realidad, la carta de Russell a Frege no fue más 
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que la piedrecilla que desencadenó el alud que se había venido 
gestando durante décadas. El proceso histórico que llevó a ese 
punto comenzó con Aristóteles y con uno de los conceptos más 
esquivos, difíciles y maravillosos que haya creado el pensamiento 
humano: el infinito. 

¿Qué es el infinito? ¿Qué queremos decir, por ejemplo, 
cuando afirmamos que la secuencia 1, 2, 3, 4, 5, ... es infinita? En 
el siglo rv a.C., Aristóteles postuló que podemos responder a esta 
pregunta de dos maneras diferentes. 

Para visualizar la primera forma de entender el infinito, imagi­
nemos un pueblo milenario que se haya impuesto la tarea, transmi­
tida de generación en generación, de contar y anotar todos los 
números de la secuencia 1, 2, 3, 4, 5, ... ¿Podrán algún día anotarlos 
todos? La verdad es que no importa si dedican a esa tarea años, 
décadas o miles de millones de siglos; nunca jamás terminarán de 
contarlos y anotarlos por completo. El motivo es que cualquiera 
que sea el punto hasta donde haya llegado la cuenta, siempre ha­
brá un número más por escribir. Si llegaron hasta el 100, les habrá 
faltado el 101. Si llegaron hasta el 1000, les faltará el 1001. Si llega­
ron al trillón, les faltará aún el trillón más uno. Nunca llegarán al 
último número, simplemente porque ese último número no existe. 

Observemos, sin embargo, que las anotaciones de ese hipoté­
tico pueblo en ningún momento contendrán una totalidad infinita 
de números. En los primeros tiempos habrán anotado unos cien­
tos, luego unos miles, más tarde unos millones o billones de nú­
meros, pero siempre la cantidad anotada será finita (porque con 
el tiempo suficiente los números anotados podrían recorrerse 
completamente de principio a fin) . La infinitud de la secuencia se 
manifiesta en la característica casi inasible de «nunca terminar», 
una propiedad futura inalcanzable, no un rasgo presente de modo 
positivo. A esta forma de ver el infinito Aristóteles la llamó el «in­
finito potencial», o «infinito en potencia». 

La segunda fonna de pensar el infinito consiste en verlo como 
una particularidad presente «en acto». En este caso, no debemos 
pensar en un pueblo milenario que anota números generación tras 
generación, sino en un ser sobrenatural que los ha anotado todos, 
absolutamente todos, en un acto de voluntad casi divina ( sería 
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inadecuado decir que los ha anotado de principio a fin, porque no 
hay un fin). Es muy difícil, por no decir imposible, captar lo que 
esto implica. ¿Somos capaces de representarnos un todo que está 
mtegramente presente pero que nunca, absolutamente nunca, ter­
mina? De hecho, es imposible mostrar situaciones «reales» en las 
que el infinito en acto aparezca. La vida entera del universo, con­
tada desde el Big Bang, tiene una cantidad solo potencialmente 
infinita de segundos. Según las temías vigentes, el universo en su 
totalidad tendría solamente una cantidad finita de partículas suba­
tórnicas. Ya sea porque en verdad es inimaginable, ya sea porque 
no existe en la realidad física, ya sea por razones filosóficas más 
profundas, Aristóteles dictaminó que el infinito en acto no existe. 

«Hay un concepto que es el corruptor y el desatinador 
de los otros. No hablo del Mal cuyo limitado imperio 

es la ética; hablo del infinito.» 
- JORGE LUIS BORGES. AVATARES DE LA TORTUGA, EN DISCUSIÓN (1932). 

A lo largo de siglos, concretamente hasta bien entrado el siglo 
XIX, este rechazo al infinito en acto fue sostenido unánimemente 
por la ortodoxia occidental, tanto filosófica corno matemática. En 
la Edad Media, el pensamiento escolástico reforzó este rechazo al 
agregarle una dimensión religiosa. El infinito en acto, según los 
escolásticos, era un atributo exclusivo de la Divinidad, y preten­
der que la mente humana fuera capaz de abarcarlo o compren­
derlo por entero era, por lo tanto, una herejía. 

A modo de pequeña muestra, exhibamos tres ejemplos en los 
que este rechazo al infinito en acto se hizo manifiesto. El primero 
es breve, aunque terrible. En el año 1600, Giordano Bruno fue 
condenado a morir en la hoguera en parte por haber afirmado en 
una de sus obras que el universo contiene infinitos mundos. El 
segundo ejemplo: en 1638, Galileo Galilei planteó un argumento 
matemático que, según la visión de la época, demostraba que el 
infinito en acto es un concepto contradictorio en sí mismo. El ra­
zonamiento, conocido corno la «paradoja de Galileo», dice así: 
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EN POTENCIA O EN ACTO 

En el sig lo 111 a.c., Eucl ides de Alejandría 
escribió los Elementos de geometría, el 
libro de matemáticas más influyente de 
todos los tiempos (tanto que hasta 
principios del siglo x1x todavía era usa­
do como libro de texto en algunas uni­
versidades europeas). La obra de Eucli­
des está dividida en trece libros, y el 
séptimo, el octavo y el noveno están 
dedicados a la aritmética. La proposi­
ción 20 del Libro IX enuncia que hay 
infinitos números primos, pero es inte­
resante observar el modo exacto en 
que esta afirm ación está expresada: 
«Hay más números primos que cual­
quier cantidad [fin ita] propuesta de 
números primos». Es decir, en el enun­
ciado de Euclides se hace referencia a 
un infinito en potencia, no en acto. No 
se d ice que «hay infinitos primos», sino 
que «dada cualquier cantidad finita de Estatua de Euclides en el Museo de Historia 

primos, siempre hay alguno más». Natural de la Universidad de Oxford. 

pensemos una vez más en la secuencia 1, 2, 3, 4, 5, ... Contenida en 
esta secuencia, encontramos a la formada por los números cua­
drados, que son aquellos que se obtienen multiplicando un nú­
mero por sí mismo: 1, 4, 9, 16, 25, .. . 

Ahora bien, basados en el principio aristotélico de que el todo 
es mayor que cualquiera de sus partes, debemos concluir que hay 
más números en general que números cuadrados en particular, 
siendo que estos son solamente una parte de aquellos. 

Pero, decía Galileo, si las secuencias 1, 2, 3, 4, 5, .. . y 1, 4, 9, 
16, 25, ... fueran infinitas en acto, entonces sería posible establecer 
un emparejamiento perfecto entre ambas. Al 1 le correspondería 
el 1, al 2 le correspondería el 4, al 3 le correspondería el 9 y así 
sucesivamente: 
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1 .... 1 
2 .... 4 
3 .... 9 
4 .... 16 
5 .... 25 

Cada número de la primera secuencia se correspondería 
exactamente con otro de la segunda, sin que faltara o sobrara 
ninguno por cualquiera de ambas partes. Si pueden emparejarse 
perfectamente, esto quiere decir que hay tantos números cuadra­
dos como números en general, contradiciendo lo que dijimos . 
previamente: la parte sería igual al todo, no menor que él. El in­
finito en acto, concluyó Galileo, es un absurdo. De hecho, casi 
doscientos cincuenta años después el matemático alemán Georg 
Cantor (1845-1918) se encontraría ante la misma situación, pero 
su conclusión sería exactamente la opuesta. Cantor concluyó 
que el principio aristotélico omne totum est maius sua parte 
- «el todo es mayor que las partes»- debe ser abandonado 
cuando se habla del infinito. 

El tercer ejemplo es un párrafo de una carta escrita en 1831 
por el matemático alemán Carl Friedrich Gauss (1777-1855): 

Protesto contra el uso de magnitudes infinitas como algo completo, 
lo que en matemáticas nunca se permite. El infinito es simplemente 
una forma de hablar, el significado real es un límite con ciertos ran­
gos de aproximación indefinidamente cercanos, mientras que a otros 
se les permite incrementarse sin restricción. 

Decía Gauss que el infinito es solamente una magnitud (siem­
pre finita) a la que se le permite crecer sin limitaciones y que 
nunca puede ser entendido como algo completo. Una vez más, 
vemos rechazado el infinito en acto. 

Estos son solamente tres ejemplos de los muchos que podrían 
citarse en el mismo sentido. Sin embargo, apenas cuarenta años 
después de la carta de Gauss, Georg Cantor se vio forzado a intro­
ducir en las matemáticas, y en el pensamiento humano en general, 
a ese monstruo tantas veces resistido: el infinito en acto. 
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ARQUÍMEDES Y EL INFINITO 

El Método de Arquímedes (siglo 111 
a.C.) se consideró perdido duran­
te siglos. Se sabía, por diversas 
referencias, que en él el autor des­
cribía los razonamientos físicos 
que le habían permitido conjetu­
rar teoremas geométricos que 
después demostraría con todo 
rigor lógico en sus otros libros. 
Sin embargo, el contenido exacto 
de la obra permaneció descono­
cido hasta 1906 cuando, para 
gran sorpresa de todos, por pura 
coincidencia, se descubrió en Es­
tambul una copia de la obra. Se 
trataba en realidad de un pa­
limpsesto, es decir, un códice es­
crito en pergamino que había sido 
borrado (por suerte imperfecta­
mente) y reutilizado en la confec­
ción de un manuscrito diferente. 
Las técnicas de 1906 permitieron 
reconstruir una parte de la obra 
original, pero varios fragmentos 
no pudieron ser recuperados en 
aquel momento. El trabajo reco- Arquímedes por Jean Goujon. Fachada del palacio 

menzó a principios del siglo xx1, del Louvre, París. 

cuando un grupo de expertos, uti-
lizando técnicas modernas de iluminación y de análisis de imágenes, lograron 
avanzar en el desciframiento de El Método. Parte de lo que descubrieron su­
giere que Arquímedes trabajó explícitamente con el infinito en acto. La histo­
ria está narrada en El código de Arquímedes, de R. Netz y W. Noel. Según 
estos expertos, para comparar el volumen de dos cuerpos, Arquímedes los 
suponía cortados en infinitas lonjas de ancho infinitesimal y concluía que am­
bos volúmenes eran iguales porque era posible emparejar las tajadas que 
formaban uno de ellos con las tajadas que formaban al otro. Esto implica, no 
solo trabajar con el infinito en acto, sino también admitir la comparación entre 
dos infinitos mediante el emparejamiento de sus componentes, como haría 
Cantor a finales del siglo x1x. Si estos descubrimientos se confirman, habrá que 
reescribir una parte de la historia del infinito y otorgarle a Arquímedes, antes 
que a Cantor, la prioridad por la introducción del infinito en acto. 
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EL INFINITO DE CANTOR 

En 1870, Georg Cantor era un joven y desconocido matemático que 
comenzaba a hacer sus primeras investigaciones en la Universidad 
alemana de Halle; había estudiado en Berlín, que en aquella época 
era uno de los centros de investigación matemática más in1portan­
tes del mundo ( otros centros destacados de la época eran Gotinga, 
también en Alemania, y París). Allí, en Berlín, entre 1867 y 1869 
Cantor había hecho sus primeros trabajos bajo la dirección de 
Leopold Kronecker, quien años más tarde se transformaría en su 
peor enemigo. Esos primeros trabajos de investigación no inlpre­
sionaron mucho a sus profesores, quienes incluso opinaron que 
Cantor jamás llegaría a crear una obra genuinamente original o 
que dejara huella en la historia de las matemáticas ( opinión errada, 
si alguna vez hubo alguna). Y es así que, en 1870, Cantor debió 
trasladarse del centro principal de Berlín a la periferia de Halle. 

Cuando un matemático investiga, su objetivo es siempre la re­
solución de un problema específico. Incluso hoy en día, si se le 
pregunta a un matemático en qué tema está trabajando, su res­
puesta seguramente consistirá en el enunciado del problema que 
está intentando resolver. Para entender el problema que estudiaba 
Cantor en 1870 debemos hablar brevemente de las series de Fourier. 

A principios del siglo XIX el matemático francés Joseph 
Fourier desarrolló un método que le permitía descomponer cual­
quier onda periódica en una sun1atoria de ondas elementales es­
pecíficas (todas las cuales resultan de modificar la amplitud, la 
frecuencia o la fase de una onda inicial única). Fourier utilizó este 
método con gran éxito para estudiar fenómenos ondulatorios 
como la propagación del calor o la vibración de una cuerda. Como 
estas sumatorias normalmente involucran una cantidad infinita 
(en potencia) de ondas, y en matemáticas a una sumatoria infi­
nita se la suele llamar una «serie», a este método se le dio el nom­
bre de «series de Fourier». Actualmente sigue siendo una 
herramienta esencial en muchas ramas de las matemáticas, así 
como de la física y de la ingeniería. 

En la década de 1860, tan1bién en Halle, el matemático ale­
mán Eduard Reine trabajaba en el problema de determinar si la 
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SERIES DE FOURIER 

El matemático francés Jean-Baptiste Joseph Fourier (1768-1830) estableció 
a principios del siglo x1x que toda onda o señal periódica es la sumat oria de, 
en general, infinitas ondas sinusoidales. La figura 1 representa una señal pe­
riódica con saltos o discontinuidades en todos los números enteros impares 
(positivos y negativos), mientras que la figura 2 muestra la onda sinusoida l 
básica. 

y=x y= sen(x) 

FIG. 1 FIG. 2 

La señal de la figura 1 es la sumatoria de infinitas ondas que resu ltan de mo­
dificar de diversas maneras la onda básica de la figura 2. Por ejemplo, pode­
mos comprimirla o dilatarla, vert ical u horizontalmente. En las figuras 3 y 4 se 
representan, respectivamente, una d ilatación vertical de la onda de la figura 

·2 y una compresión también vertical. 

descomposición de una onda periódica en una sumatoria de ondas 
elementales es siempre única. 

La pregunta sobre la unicidad de una cierta descomposición es 
muy común en matemáticas. Tomemos los números naturales ( que 
son los números que forman la ya mencionada secuencia 1, 2, 3, 
4, ... ). Recordemos que los números primos son aquellos que sola­
mente son divisibles por 1 y por sí mismos (por ejemplo, 2, 3, 5, y 11 
son primos, mientras que 9 no lo es porque es divisible por 3). 

Se sabe desde hace milenios (ya lo sabía Euclides en el siglo 
III a.C.) que todo número natural mayor que 1 es, o bien primo, o 
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y= 2 sen(x) 

\ :j 
y = 1/2 sen(x) 

~ o 
~ o 

-1 

2 

FIG.3 FIG. 4 

La figura 5 muestra una compresión horizontal de la onda de la figura 2. Las 
ondas también pueden estar desplazadas vertical u horizontalmente; en la 
figura 6 se representa la onda de la figura 2 desplazada horizontalmente. 

y= sen(x/2) y= cos(x) 

FIG. 5 FIG. 6 

bien se puede esc1ibir como producto de primos. El 1 es un caso 
especial que por razones técnicas se deja aparte: no es primo ni 
producto de primos, aunque los motivos de esta separación no son 
relevantes en el tema que nos ocupa. Por ejemplo: 12 = 2 x 2 x 3; 
9 = 3 x 3; 15 = 3 x 5. Ahora bien, ¿existirá alguna otra forma de escri­
bir el 12 como producto de primos? ¿O la escritura 2 x 2 x 3 es la 
única posible? La respuesta es que, salvo variaciones triviales como 
cambiar el orden de los números, o agrupar el 2 x 2 como 22, la 
única forma de escribir el 12 como producto de primos es 2 x 2 x 3, 
y lo mismo sucede con todos los demás números naturales. 
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La descomposición en primos es siempre única y esta unicidad 
le agrega una dimensión extra a la descomposición en sí, crea un 
vínculo más fuerte entre los números y sus componentes primos, 
una relación de exclusividad que hace que las propiedades de la 
descomposición ( o «factorización») en primos sean más potentes. 

Reine se preguntaba si existiría un vínculo similar entre una 
onda periódica y sus ondas elementales. ¿Sería única esa descom­
posición, así corno es única la descomposición en primos? En la 
década de 1860, Reine logró demostrar que para ciertos tipos de 
ondas periódicas (por ejemplo, para aquellas que no tienen «sal­
tos» o discontinuidades), la descomposición en ondas elementa­
les es realmente única. Sin embargo, no había encontrado una 
demostración general que abarcara todas las situaciones posibles. 
Entre otras cosas, no había podido demostrar la unicidad en el 
caso de que en cada período la onda tuviera una cantidad infinita 
( en potencia) de saltos. De modo que cuando Cantor llegó a Halle 
en 1870, Reine le propuso que trabajara en esta pregunta: ¿es 
siempre única la descomposición de una onda periódica, aun 
cuando la cantidad de saltos en cada período pudiera crecer inde­
finidamente? 

Cantor se abocó a estudiar el problema y en 1871 obtuvo una 
primera respuesta: la descomposición de una onda periódica es 
única, aun cuando la cantidad de saltos o discontinuidades crezca 
ilimitadamente, siempre y cuando esos saltos estén distribuidos de 
una determinada manera. Es decir, para que se garantizara la uni­
cidad, la forma en que los saltos iban apareciendo debía cumplir 
ciertas condiciones específicas. Pero encontró algunas dificultades 
a la hora de expresar esos requisitos de una manera concreta, 
exacta y elegante. Seguramente tenía una intuición muy precisa de 
cuáles eran las particularidades que quería enunciar, pero se le 
escapaba el modo de transmitirla en palabras claras y precisas. 

Entre 1872 y 1873, muy gradualmente, Cantor se fue dando 
cuenta de que explicar esas condiciones con claridad implicaba 
considerar las discontinuidades de las ondas corno conjuntos in­
finitos en acto. Más aún, requería comparar entre sí diferentes 
conjuntos infinitos, de manera similar a corno doscientos cin­
cuenta años antes Galileo había comparado los números naturales 
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con los cuadrados (lo que a su vez lo llevaba a abandonar el prin­
cipio aristotélico de que el todo es mayor que las partes). Peor 
todavía, descubrió que esa comparación lo conducía a la deduc­
ción de que había cortjuntos infinitos más grandes que otros. 

Tan revolucionarias eran estas ideas, tan contrarias a todo lo 
establecido durante milenios, que Cantor tardó nada menos que 
diez años en aceptarlas plenamente; le llevó una década recono­
cer que necesitaba introducir el infinito actual en las matemáticas. 
Finalmente, en 1883 escribió un largo artículo titulado Funda­
mentos para una teoría general de conjuntos ( con el subtítulo 
Una investigación matemático-filosófica sobre la teoría del infi­
nito) en el que no solo defendió la introducción del infinito en 
acto, sino que además afirmó que le resultaba completamente ine­
vitable dar ese paso. Cantor inició su artículo casi pidiendo discul­
pas por su decisión: 

La precedente exposición de mis investigaciones en teoría de con­
juntos ha llegado a un punto en el que su continuación depende de 
una extensión del verdadero concepto de número más allá de los 
límites conocidos, y esta extensión va en una dirección que hasta 
donde yo sé no había sido antes explorada por nadie. 
La dependencia en que me veo respecto de esta extensión del con­
cepto de número es tan grande, que sin esta última apenas me sería 
posible dar sin violencia el menor paso adelante en la teoría de con­
juntos; valga esta circunstancia como justificación, o si es necesario 
como excusa, por la introducción de ideas aparentemente extrañas 
en mis consideraciones. 

La teoría de cortjuntos a la que Cantor hace mención era su 
forma de denominar el estudio de las totalidades infinitas como si 
fueran un objeto en sí mismo, y propuso que esta teoría fuera el 
fundamento mismo de las matemáticas. Los números, sus opera­
ciones y todos los conceptos matemáticos podían definirse, según 
Cantor, a partir de nociones cortjuntistas. 

Pero, ¿qué es la teoría de conjuntos? Un cortjunto, según la de­
finición de Cantor, es «la reunión en un todo de objetos de la reali­
dad o de nuestro pensamiento». Por ejemplo, a los números 1, 2, 3, 
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4, 5, ... podemos reunirlos en una totalidad que llamamos «co:ajunto 
de los números naturales». Los números son los «elementos» o 
«miembros» de esa totalidad y el cortjunto pasa a ser un «objeto» en 
sí mismo, factible de ser estudiado. Podemos pensar también en el 
cortjunto formado solamente por el número 1, o por los días de la 
semana, o por las personas nacidas el 20 de julio de 1899. La teoría 
de cortjuntos es, entonces, el estudio de las propiedades y las rela­
ciones mutuas de los cortjuntos o totalidades. 

«La teoria de cortjuntos [infinitos] es un campo en el que nada es 
evidente por sí mismo, cuyos enunciados verdaderos son a 
menudo paradójicos y cuyos enunciados plausibles son falsos.» 
- FÉLIX HAUSDORFF, MATEMÁTICO ALEMÁN, EN 1914. 

30 

La propuesta de Cantor era definir los números y sus opera­
ciones a partir de los co:ajuntos. ¿Cómo puede hacerse esto? Por 
ejemplo, el número O puede definirse como la cantidad de elemen­
tos del cortjunto vacío ( que es el cortjunto que no tiene miembros). 
El número 1 puede definirse como la cantidad de elementos de 
cualquier co:ajunto que cumpla la propiedad: «el co:ajunto tiene 
algún miembro, y además si x e y son miembros del co:ajunto en­
tonces x = y». 

Por otra parte, tenemos la operación cortjuntista llamada 
«unión». Dados dos cor\juntos, la unión de ambos consiste en reu­
nir en un nuevo cortjunto a los elementos de ambos. Por ejemplo, 
la unión del co:ajunto que contiene como elemento a la ciudad de 
París y del que contiene a la ciudad de Roma, es el co:ajunto que 
contiene a ambas ciudades a la vez. La suma de números se puede 
definir, según la propuesta de Cantor, a partir de esta operación 
cor\juntista. Si n es la cantidad de elementos de un cortjunto y m es 
la cantidad de elementos de otro ( que no tenga elementos en común 
con el primero), entonces n + m se puede definir como la cantidad 
de elementos del resultado de la unión de los dos co:ajuntos. 

Como era esperable, y como el mismo Cantor probablemente 
había previsto, su teoría de los infinitos generó un fuerte rechazo. 
Su antiguo maestro, Leopold Kronecker, llegó a decir de Cantor 
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que era un corruptor de la juventud y utilizó su influencia, que no 
era poca, para presionar a las revistas científicas alemanas para 
que no publicaran los trabajos de Cantor. 

A pesar de la oposición inicial, con el correr de los años la 
teoría de conjuntos y el infinito en acto comenzaron a ser acepta­
dos. ¿Por qué se produjo este cambio? ¿Logró Cantor convencer 
a Kronecker? Para responder a estas preguntas vale la pena recor­
dar el principio de Planck, que dice que «una nueva verdad cientí­
fica no triunfa porque convence a sus opositores y les hace ver la 
luz, sino más bien porque sus opositores terminan muriendo y una 
nueva generación crece familiarizada con ella». 

Al escribir estas palabras, Planck pensaba en la mecánica cuán­
tica, pero bien puede aplicarse su principio a la teoría de cortjuntos. 
A fines del siglo XIX una nueva generación de matemáticos, entre 
ellos el alemán David Hilbert, empezó a ver en la teoría de Cantor 
un aporte fundamental para las matemáticas. Ya se sabe que la ju­
ventud suele estar bien dispuesta a romper con tradiciones milena­
rias, de modo que es probable que aquella nueva generación no se 
sintiera incómoda al romper con la visión aristotélica del infinito. 

En 1890, un año antes de la muerte de Kronecker, Cantor fue 
elegido presidente de la recién creada Unión Matemática Alemana 
y su idea de tomar la teoría de cortjuntos corno base y fundamento 
de las matemáticas comenzaba a ganar adeptos. Uno de los más 
dedicados fue el lógico alemán Gottlob Frege. 

FREGE Y RUSSELL 

Gottlob Frege nació en 1848; es decir, pertenecía a la misma gene­
ración que Cantor, tres años mayor. Sin embargo, Frege estuvo 
entre aquellos que aceptaron la teoría de conjuntos desde el co­
mienzo y fue, de hecho, uno de los defensores de la idea de que 
debía servir corno base y fundamento para todo el resto de las 
matemáticas. 

Aunque estaba de acuerdo con Cantor en su idea general, 
Frege tenía fue1tes críticas formales hacia su trabajo. Según Frege, 
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Cantor utilizaba en sus artículos científicos un lenguaje demasiado 
coloquial sin una clara distinción entre axiomas ( afirmaciones que 
se aceptan sin demostración) y teoremas (afhmaciones que se de­
muestran a partir de los axiomas). Cantor apelaba todo el tiempo 
a la intuición del lector, práctica que Frege llamaba «psicologismo» 
y que deploraba por completo. Las matemáticas, según él, debían 
utilizar un lenguaje riguroso, con símbolos especialmente creados. 
Todos los razonamientos utilizados debían estar expresados con 
claridad en ese lenguaje, sin ambigüedades y sin apelar a la intui­
ción, lo cual requería a su vez que se estipulara claramente cuáles 
eran los axiomas utilizados. Una vez hecho esto, se podía proceder 
a la fundamentación conjuntista de los nún1eros y de sus operacio­
nes. Frege dedicó muchos años, en realidad casi toda su vida 
adulta, a desarrollar este progran1a. En una de sus obras funda­
mentales, Conceptografía (1879) -Begriffsschrift en alemán-

CONCEPTOGRAFÍA 

La palabra alemana Begriffs­
schrift, que Gottlob Frege usaba 
para referirse a la escritura sim­
bólica que creó para la lógica y 
las matemáticas, suele traducirse 
como «conceptografía», que lite­
ral mente significa «d ibujo de 
conceptos». Como se muestra en 
la f igura, el simbolismo de Frege 
se asemeja, tal como su nombre 
sugiere, más a un dibujo linea l 
que a un texto escrito. La figura 
expresa el teorema 71 del libro 
Begriffsschrift y su traducción 
sería: fes un procedimiento y F 
representa una propiedad que se 

b a 

a 

F(y) 

f(x,y) 

F(x) 

F(a) 

f(b,a) 

F(b) 

F(y) 

f(x,y) 

F(a) 

f(x,a) 

preserva cuando se aplica el procedimiento f. Si x cumple la propiedad e y se 
obtiene de x por aplicación del procedimiento f, entonces y también cumple 
la propiedad. 
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explica su lenguaje simbólico, muy diferente, desde todo punto de 
vista, de nuestra escritura habitual (más que un texto parece un 
dibujo lineal). Este hecho hizo que resultara muy arduo de com­
prender para los lectores de aquella época (sigue resultando muy 
difícil de comprender en la actualidad). Tal vez Frege deseaba de­
liberadamente que su simbología se apartara del lenguaje natural, 
a fin de que no pudiera ser confundida con este, pero estratégica­
mente resultó ser un error, ya que dificultó la penetración de su 
obra en el público que hubiera podido estar interesado en ella. 

En 1893, Frege publicó el primer tomo de su Fundamentos de 
la aritmética, la primera parte de la obra de su vida, en la que ex­
pone la definición rigurosa de los números naturales a partir de la 
lógica y la teoría de cortjuntos. Casi una década después, en 1902 
( cuatro años antes del nacinüento de Godel), cuando ya había en­
viado a la imprenta el segundo tomo de los Fundamentos, Frege 
recibió una carta de Bertrand Russell, fechada en Friday's Hill, Has­
lemere (Reino Unido) el 16 de junio de 1902 y que apenas ocupaba 
una página; sin embargo, bastó para desencadenar la crisis de los 
fundamentos. En su carta, Russell comenzaba elogiando el trabajo 
de Frege. Se manifestaba completamente a favor de lo que inten­
taba hacer en sus Fundamentos. «Pero -decía Russell en la 
carta- he encontrado una pequeña dificultad.» 

¿Cuál era esa «pequeña dificultad» que Russell encontró? Uno 
de los axiomas en los que Frege basaba la teoría de conjuntos era 
el llamado «axioma de comprensión». Expresado brevemente, 
este axioma dice que a cada propiedad se le asocia un conjunto 
( el conjunto de todos los entes que satisfacen esa propiedad). Por 
ejemplo, a la propiedad «ser un número par» le corresponde el 
conjunto formado por todos los números pares; a la propiedad 
«ser un planeta del sistema solar» le corresponde el conjunto de 
todos los planetas del sistema solar; y así sucesivamente. 

La primera impresión que uno tiene al leer este axioma es que 
se trata de una afirmación perfectamente inocente, incapaz de ge­
nerar problema alguno. Sin embargo, Russell tomó la propiedad 
de «ser un cortjunto que no es nüembro de sí mismo». 

Reflexionemos acerca de esta idea de Russell. Para empezar, 
los conjuntos están formados por miembros ( existe también el 

LA CRISIS DE LOS FUNDAMENTOS 33 



34 

conjunto vacío, que no tiene miembros, pero podemos dejarlo de 
lado en nuestro análisis). Por ejemplo, el conjunto de los planetas 
del sistema solar tiene, hasta donde sabemos, ocho miembros: 
Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Nep­
tuno. El objeto «conjunto de los planetas del sistema solar» es un 
ente abstracto, que vive solamente en nuestro pensamiento y que 
reúne bajo una misma etiqueta a esos ocho planetas. Cada uno de 
los miembros de ese conjunto, en cambio, es un planeta concreto, 
no un ente abstracto. El conjunto de los planetas del sistema solar 
no aparece listado entre sus propios miembros: el conjunto de los 
planetas del sistema solar no es un miembro de sí mismo. Russell 
expresaba esta misma idea de la siguiente manera: «un conjunto 
formado por caballos no es un caballo» (podemos montar a ca­
ballo, pero no sobre un ente abstracto). Algunos conjuntos sí son 
miembros de sí mismos. Pensemos, por ejemplo, en el conjunto de 
todos los entes abstractos. Él mismo es un ente abstracto, y por lo 
tanto, un miembro de sí mismo. 

Regresemos ahora al axioma de comprensión. Asociado a la 
propiedad «ser un conjunto que no es miembro de sí mismo» te­
nemos el conjunto R, que está formado por todos los conjuntos 
que no son miembros de sí mismos. Formulémonos la siguiente 
pregunta: ¿es R elemento de sí mismo? Si R es miembro de sí 
mismo, entonces cumple la propiedad que define aR. Por lo tanto, 
R no es miembro de sí mismo. Esto es una contradicción. Pero si 
R no es miembro de sí mismo, entonces no cumple la propiedad 
que define a R. Por lo tanto, si no cumple la propiedad, R sí es 
miembro de sí mismo. Tenemos otra contradicción. 

Es decir, R no puede ser miembro de sí mismo, pero tampoco 
puede dejar de serlo. Esto es una imposibilidad lógica. El conjunto 
R (cuya existencia es habilitada por el axioma de comprensión) 
no puede existir porque su existencia genera una contradicción 
lógica. Así, el axioma de comprensión, que parecía tan inocente, 
es en realidad autocontradictorio. Este descubrimiento se conoce 
actualmente como la «paradoja de Russell». 

El descubrimiento de que la teoría de conjuntos es contra­
dictoria desencadenó la crisis de los fundamentos. Si un axioma 
en apariencia tan inocente como el de comprensión generaba una 
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EL BARBERO DE RUSSELL 

En 1904, el filósofo y matemático britá­
nico Bertrand Russell (1872-1970) dio una 
versión popularizada de su paradoja. En 
ella, Russell proponía imaginar un pueblo 
en el que hubiera un único barbero que 
afeitara a todos los hombres que no se 
afeitaban a sí mismos. Nos preguntamos 
entonces si el barbero se afeita, o no se 
afeita, a sí mismo. La respuesta es que el 
barbero no puede afeitarse a sí mismo ... , 
pero que tampoco puede evitar hacerlo. 
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contradicción ¿qué podíamos esperar de la teoría de Cantor con 
sus infinitos en acto y sus «infinitos más grandes que otros»? La 
situación era peor aún, porque la teoría de Cantor había pene­
trado en áreas esenciales de las matemáticas, como el cálculo o 
la topología. 

El descubrimiento de Russell hizo que los matemáticos se 
cuestionaran la validez de todos los desarrollos matemáticos de, 

. por lo menos, los treinta años previos. Provocó que pusieran en 
duda la validez de cualquier razonamiento que involucrara el infi­
nito y, de hecho, que llegaran a preguntarse el sentido y el signi­
ficado de las matemáticas. ¿Cuál era, en definitiva, el objeto de 
estudio de las matemáticas? ¿ Qué criterios aseguraban la validez 
de sus razonamientos? 

Frege mismo sintió que el descubrimiento de Russell echaba 
por tierra todo su trabajo. En el segundo volumen de sus Funda­
mentos de la aritmética insertó las siguientes frases: 

Difícilmente puede un científico encontrarse con algo más indesea­
ble que ver ceder los cimientos justamente cuando se termina la 
obra Tal es la situación en la que me ha puesto una carta del señor 
Bertrand Russell, estando la obra a punto de terminar de imprimirse. 
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Inmediatamente después, Frege abandonó la lucha y se retiró 
de manera definitiva. Aunque vivió hasta 1925, nunca volvió a ocu­
parse del tema de los fundamentos. 

EL LOGICISMO Y EL INTUICIONISMO 

¿Qué reacciones provocó el descubrimiento de la paradoja de 
Russell? En primera instancia se propusieron dos soluciones. El 
primer intento se debió al mismo Russell y fue expresado en su 
Principia Mathematica, la monumental obra que escribió junto a 
su maestro Alfred North Whitehead. 

La propuesta de Russell, que se dio en llamar logicismo, consis­
tía en retomar el trabajo de Frege, pero enmendando los errores que 
llevaron a la crisis. Russell decía que toda paradoja nacía de una 
cierta autorreferencia. Por ejemplo, la famosa paradoja del menti­
roso, que se produce cuando uno se pregunta si la frase «esta oración 
es falsa» es verdadera o falsa, nace de analizar una frase que habla 
de sí misma. La propia paradoja de Russell surge al preguntarnos si 
cierto cor\junto cumple la propiedad que define al propio coitjunto. 

Para evitar estas situaciones, el logicismo propuso una modi­
ficación radical del lenguaje lógico mediante la llamada «teoría de 
los tipos». El concepto general consistía en imponer al lenguaje 
matemático una rígida jerarquía en la que cada afirmación solo 
podía referirse a entes o afirmaciones ubicadas en los estratos 
inferiores. De este modo, la misma estructura del lenguaje evitaba 
las autorreferencias y, por ende, las paradojas. 

En el nivel cero de la jerarquía estaban los individuos; en el 
nivel 1, las afirmaciones que hablaban de los individuos; en el nivel 
2, las afirmaciones que hablaban de las afirmaciones de tipo I; y 
así sucesivamente. Por ejemplo: 

1, 2, 3, 4, .... (Individuos, tipo O) 
«2 + 2 = 4» ( afirmación de tipo 1, que habla de individuos) 
«Es verdad que "2 + 2 = 4"» (afirmación de tipo 2, que habla de 
la anterior). 
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Sin embargo, por diversos motivos técnicos, Russell se vio 
obligado a complejizar su estratificación y a introducir reglas ar­
bitrarias y antiintuitivas. Como consecuencia, el sistema perdió 
toda fuerza de convicción y el mismo Russell acabó por abando­
narlo. Aunque algunos de los elementos introducidos por el logi­
cismo han sobrevivido hasta hoy, la verdad es que hacia 1920 la 
influencia global de esta escuela había casi desaparecido. 

La segunda propuesta se conoció como «intuicionismo» o 
«constructivismo», y fue liderada por el matemático neerlandés 
L.E.J. Brouwer (1881-1966). 

«La solución de los problemas que hasta ahora rondaban al 
infinito matemático es probablemente el mayor de los logros 

de los que nuestra época pueda enorgullecerse.» 
- BERTRAND RusSELL, EN 1910. 

Los intuicionistas decían que las paradojas se debían lisa y 
llanamente a la introducción del infinito en acto y que este con­
cepto era, tal como habían dicho Aristóteles y Galileo, contradic­
torio en sí mismo. Toda la teoría de Cantor era un sinsentido que 
debía ser abandonado y las matemáticas, en lo que al infinito to­
caba, debían volver a la situación anterior a 1870. 

La base de las matemáticas debían ser los números natu­
rales, con sus operaciones de suma y producto. Estos números 
no necesitaban ser definidos, sino que estaban dados en nuestra 
mente por una intuición básica a priori. Desde luego, los nú­
meros no debían ser entendidos como formando una totalidad 
infinita acabada, sino como el resultado de un proceso continuo 
de generación (al estilo del pueblo milenario que imaginábamos 
páginas atrás) que empezaba con el número uno y continuaba 
indefinidamente por aplicación de la noción de sucesor ( el 1 es 
el primer elemento, 2 es el sucesor de 1, 3 es el sucesor de 2, y 
así sucesivamente). 

Para poder afirmar que existe un objeto matemático ( diferente 
de los naturales) era necesario que este pudiera ser construido en 
una cantidad finita de pasos a partir de los números naturales me-
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L.E.J. BROUWER 

Luitzen Egbertus Jan Brouwer nació en 
Róterdam, Holanda, el 27 de febrero de 
1881 (apenas dos años antes de que Can­
tor publicara el artículo en el que intro­
dujo por primera vez el infinito en acto 
en las matemáticas). En 1904, siendo un 
estudiante recién graduado, demostró 
algunos resultados originales sobre mo­
vimientos continuos en cuatro dimensio­
nes que fueron publicados por la Real 
Academia de Ciencias de Ámsterdam. Su 
tesis doctoral, publicada en 1907, trató 
sobre el problema de los fundamentos 
de las matemáticas. En ese trabajo in­
trodujo las primeras ideas sobre el intui­
cionismo. También hizo contribuciones 
importantes a la topología, donde de-
mostró el famoso «teorema de punto fijo» que lleva su nombre. Curiosamente, 
la demostración de este teorema no se ajusta a los estándares intuicionistas. 
En 193S comenzó a dedicarse a la política y prácticamente se alejó de la in­
vestigación matemática, aunque siguió ligado a ella como editor de la revista 
Compositio Mathematica, que también había fundado. Brouwer falleció el 2 de 
diciembre de 1966 en Blaricum, Holanda, en un accidente de tráfico. 

<liante un procedimiento mecánico definido con rigurosidad. Un ob­
jeto que no pudiera ser construido de esta manera simplemente no 
existía En cierto modo, los intuicionistas retomaban con este con­
cepto la idea contenida en un adagio atribuido a Leopold Kronecker: 
«Dios creó los números naturales, todo lo demás lo creó el hombre». 

Por otra parte, según los intuicionistas, para que la definición 
de una propiedad fuera válida debía siempre existir un procedi­
miento mecánico ( entiéndase, progran1able en un ordenador, ya 
que un algoritmo no es otra cosa que una receta mecánica) capaz 
de comprobar si la propiedad se verifica, o no. Por ejemplo, una 
propiedad válida para los intuicionistas es la de «ser un número 
primo», ya que siempre es posible verificar en una cantidad finita 
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de pasos si un número es primo o no. Para saber si 17 677 es primo 
basta dividirlo por todos los números menores que él. Si en ningún 
caso la división es exacta, entonces el número es primo. El proce­
dimiento que hemos descrito no es el mejor (hay métodos más 
rápidos para saber si un número es primo), pero siempre nos da 
una respuesta correcta en una cantidad finita de pasos. 

Para ver un ejemplo de una propiedad ri.o admitida por el 
planteamiento intuicionista, definiremos un número, al que llama­
remos p, basándonos en los dígitos de rc = 3,14159265 ... (que, 
como sabemos, es un número irracional, es decir, tiene infinitas 
cifras decimales no periódicas). El número p queda determinado 
de la siguiente manera: si entre los dígitos de re aparece alguna vez 
una secuencia de exactamente quince ceros seguidos, entonces 
p es el dígito ( distinto de cero) que sigue inmediatamente después 
de la primera aparición de esos quince ceros. Si nunca aparecen 
exactamente quince ceros seguidos, entonces p vale O. Conviene 
aclarar que entre los dígitos de re calculados hasta la actualidad 
esa seguidilla de quince ceros no ha aparecido. 

¿Existe el número p? ¿Cuánto vale? En 1900 Hilbert escribió 
que si definimos un objeto matemático y esa definición no es au­
tocontradictoria, entonces podemos afirmar que el objeto existe. 

Casi cualquier matemático de hoy en día contestaría que p 
existe. Es más, todos ellos coincidirían en decir que, aunque toda­
vía no sepamos exactamente cuánto vale p, sí podemos afirmar 
que es un número entre O y 9. En el instante en que conozcamos si 
esa seguidilla de quince ceros aparece o no aparece en re, en ese 
preciso momento sabremos el valor exacto de p. Sin embargo, 
para la filosofía intuicionista p no existe, porque está definido a 
partir de una propiedad que no es verificable en una cantidad fi­
nita de pasos, porque re tiene infinitas cifras decimales y la verifi­
cación requeriría recorrerlas todas. Si entre los dígitos hasta hoy 
calculados de re hubieran ya aparecido quince ceros seguidos, en­
tonces p existiría y sabríamos su valor exacto. Es más, si en el 
futuro se encontraran esos quince ceros, entonces p empezaría a 
existir en ese preciso momento. 

Hoy p no existe, tal vez exista en el futuro. Lo mismo podría­
mos decir de la próxima novela aún no escrita de cualquier escri-
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tor contemporáneo. La comparación no es caprichosa, porque 
para los intuicionistas las matemáticas son un proceso dinámico, 
un proceso creativo similar a la literatura aunque regido por reglas 
más estrictas. Las matemáticas se crean (respetando determina­
das reglas), no se descubren. 

«Las generaciones futuras contemplarán la teoría de conjuntos' 
[infinitos] como una enfermedad de la que nos hemos 
recuperado.» 
- HENRI POINCARÉ, MATEMÁTICO FRANCÉS, EN 1908, 
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Como por ahora p no existe, tampoco tiene valor, y es en-ó­
neo en consecuencia decir que está entre O y 9. Toda afirmación 
referida a p es un sinsentido. Es incon-ecto decir que «p es impar 
o p no es impar», o que «es igual o es distinto de l ». 

También el estatus de los números in-acionales era cuestio­
nado por los intuicionistas. Estos números solo eran considerados 
como el resultado, nunca alcanzable, de aproximaciones sucesi­
vas. Por ejemplo, para los intuicionistas, los dígitos de 1t no exis­
ten como una totalidad acabada ( otro argumento a favor de la 
inexistencia de p ). 

Entre 1905 y 1920, L.E.J. Brouwer fue dando forma a un pro­
grama global para las matemáticas basado en estas ideas. A lo 
largo de esos años escribió diversos artículos y libros en los que 
explicaba cómo llevar a la práctica su filosofía. Y lentamente ese 
programa comenzó a ganar adeptos entre muchos de los matemá­
ticos más prestigiosos de la época, como por ejemplo el francés 
Henri Poincaré (1854-1912). De modo que hacia 1920 la teoría de 
Cantor (quien había fallecido en 1918) comenzó a correr serio 
riesgo de ser abandonada. Pero no todos los matemáticos estaban 
a favor del intuicionismo. Uno de ellos era el alemán David Hilbert. 

Hilbert fue uno de esos jóvenes matemáticos que habían 
aceptado rápidamente la teoría del infinito. En 1890 apoyó la can­
didatura de Cantor a la presidencia de la Unión Matemática Ale­
mana. Ambos, además, se conocieron en persona, fueron amigos 
y mantuvieron una intensa con-espondencia. 
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FOTO SUPERIOR: 
La familia G6del. 
De izquierda a 
derecha: 
Marianne, Kurt, 
Rudolf padre 
y Rudolf hijo. 

FOTO INFERIOR 
IZQUIERDA: 
El matemático 
alemán Georg 
Cantor, a quien 
se le atribuye el 
desarrollo de 
la teoría de 
conjuntos. 

FOTO INFERIOR 
DERECHA: 
G6del en Viena, 
en la segunda 
mitad de la 
década de 1920, 
época en la que 
demostró su 
primer teorema 
de incompletitud. 
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DAVID HILBERT 

Dav id Hil bert nac ió e l 23 de enero de 
1862 en Kónigsberg, A lemania (actua l­
mente Ka lin ingrado, Rusia) y en 1885 se 
doctoró en matemáticas en la universi ­
dad de esa misma c iudad. Diez años más 
tarde fue invitado a ocupar un puesto en 
Gotinga (u no de los dos centros de in­
vest igac ión más importantes de Alema­
nia, junto con Berlín), pos ic ión que ocu­
pa ría por e l resto de su carre ra. Hi zo 
im portantes contribuciones al álgebra, la 
geometría, el anál isis y los fundamentos 
de las matemáticas, entre ot ras ramas de 
esa ciencia . En 1899 reformu ló los Ele­
m entos de Euclides, corr igiendo algunas 
lagunas lóg icas que no habían sido ad­
vert idas por más de dos mil c ien años. El 
trabajo resultante, Fundamentos de geo­
metría, es una obra destacada en la his-
tor ia de la lógica matemática. Desde luego, es muy recordada también su 
conferencia inaug ural del Segundo Congreso Internaciona l de Matemáticas, 
celebrado en París en 1900, en la que inmorta li zó una frase que quedaría para 
siempre asociada a su nombre y en la que expresó la convicción de que no 
ex isten prob lemas matemáticos irresolub les: «Debemos saber, y sabremos» 
(«Wir m üssen wissen, wir werden wissen»). Hilbert fal leció en Gotinga el 14 de 
febrero de 1943. 

En 1900, Hilbert fue elegido para dar la conferencia"inaugural 
del Segundo Congreso Internacional de Matemáticas, celebrado 
en París. Se trataba de un puesto de honor y un reconocimiento a 
la que ya en ese momento era una brillante carrera. Todavía hoy, 
más de cien años después de dictada, esa conferencia es fan1osa 
y su texto completo puede encontrarse en Internet. De hecho, se 
han escrito libros enteran1ente dedicados a su análisis. 

En su disertación, Hilbert planteó 23 problemas matemáticos 
en aquel momento aún no resueltos pertenecientes a diferentes 
ramas de esa ciencia y que, él creía, guiarían la investigación ma-

LA CRISIS DE LOS FUNDAMENTOS 



temática a lo largo del siglo xx. El primero de ellos estaba relacio­
nado con la teoría de Cantor. Este problema es conocido como la 
«hipótesis del continuo» y había sido planteado por primera vez 
por el propio Cantor en la década de 1880, aunque jamás llegó a 
resolverlo. Más adelante volveremos sobre este mismo problema 
porque Godel halló una solución parcial en 1940; la resolución fue 
completada por Paul Cohen. 

La decisión de ubicar la hipótesis del continuo en el primer 
lugar de su lista debe interpretarse como un apoyo explícito de 
Hilbert a la teoría de conjuntos de Cantor. En los primeros años 
de la polémica sobre los fundamentos de las matemáticas, Hilbert 
se mantuvo aparte, tal vez porque confiaba en que el punto de 
vista intuicionista caería derrotado por su propio peso. Pero hacia 
1920, como ya dijimos, el logicismo comenzó a declinar, mientras 
que el intuicionismo cada vez ganaba más adeptos. Es por eso que, 
finalmente, Hilbert decidió intervenir en persona. Bajo el lema 
«Del Paraíso que Cantor creó para nosotros nadie podrá expulsar­
nos» se propuso frenar el intuicionismo. El modo que encontró 
para hacerlo fue proponer una tercera solución para el problema 
planteado por la paradoja de Russell, una solución calculada para 
atraer alos partidarios del intuicionismo y a la vez mantener incó­
lume la teoría de Cantor. 

¿Atraer a los intuicionistas pero a la vez salvar la teoría de 
Cantor? Parecía una tarea imposible, porque los intuicionistas, 
precisamente, rechazaban de plano el infinito en acto como un 
concepto absurdo y sinsentido. Pero Hilbert era Hilbert, y con 
inteligencia, habilidad y astucia, lo logró. 

EL PROGRAMA DE HILBERT 

En 1920, Kurt Godel tenía catorce años de edad y en su Brno natal 
tal vez ya soñaba con seguir una carrera científica. Al mismo 
tiempo, en Gotinga, Alemania, David Hilbert, de cincuenta y ocho 
años, comenzaba la labor, que le demandl;l.ría una década, de her­
manar a los intuicionistas con el infinito en acto. 
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Como ya se ha expuesto, el pensamiento intuicionista estaba 
totalmente dominado por la idea de finitud. Solo existían los obje­
tos matemáticos que podían construirse mecánicamente a partir 
de los números naturales en una cantidad finita de pasos. Núme­
ros irracionales como n o .Jz solo podían ser vistos como el re­
sultado inalcanzable de sucesivos cálculos basados en fórmulas 
específicas. 

La propuesta de Hilbert consistió esencialmente en llevar 
esta exigencia de finitud de los objetos matemáticos a los razo­
namientos matemáticos. Podemos parafrasear su idea de la si­
guiente manera: establezcamos métodos de razonamiento tales 
que la corrección de nuestras argumentaciones sea verificable 
algorítmicamente en una cantidad finita de pasos ( un algoritmo 
es una receta mecánica progran1able en un ordenador). Asegu­
rémonos además, de esa misma manera «finitista», que nuestras 
demostraciones nunca nos llevarán a una paradoja. Una vez lo­
grado este objetivo, nuestras teorías podrán hablar sin temores 
de cualquier objeto, incluso del infinito en acto. 

Más concretamente, el programa de Hilbert, también llamado 
«programa formalista», planteaba que toda teoría matemática 
debía estar basada en axiomas, es decir, en ciertas afirmaciones 
básicas aceptadas como verdaderas. Cualquier otra verdad de la 
teoría debía ser demostrable a partir de esos axiomas mediante 
razonanúentos cuya validez fuese verificable mecánicamente en 
una cantidad finita de pasos. Además, la consistencia de esos axio­
mas ( el hecho de que nunca nos conducirían a una paradoja, como 
sí le había sucedido a Frege) debía ser también verificable de la 
misma fom1a mecánica, o algorítmica. 

En principio, la intención era desarrollar este programa para 
la aritmética, la teoría que se refiere a las propiedades de la sun1a 
y el producto de números naturales ( es decir, la teoría que habla 
de los números más sencillos y de las operaciones más simples). 
Hilbert, al igual que los intuicionistas, sostenía que la base de to­
das las matemáticas debía ser la aritmética, y no la teoría de con­
juntos. Una vez establecida una base sólida para la aritmética, 
sería fácil lograr un fundamento igualmente sólido para todas las 
demás teorías. 
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APROXIMACIONES DE ✓2 

Para los intuicionistas, ✓2 solo existe como el resultado inalcanzable al que se 
van acercando as intót icamen te sucesivas aproximac iones. Estas aproxima­
c iones, a su vez, deben ser ca lcu ladas siguiendo ciertas fórmu las bien espe­
cificadas. Existen muchísimas fórmulas que permiten ca lcu lar aproximaciones 
suces ivas de ✓2. Una de las más antiguas, y al mismo tiempo de las más sen­
ci llas, era ya conocida por Herón de A lejandría en el sig lo 1. Traducida al len­
guaje moderno, la «receta» de Herón para aproximar ✓2 dice así: 

- Paso 1: Tome un número posit ivo cua lquiera. 
- Paso 2: Llame x al número eleg ido y calcu le 

- Paso 3: Aplique la misma fórmula al resultado obtenido. 
- Paso 4: Siga apl icando la misma fórmula tantas veces como desee. 

Por ejemplo, si en el primer paso elegimos el 5, al apl icar la fórmula por pri­
mera vez obtendremos 2,7. Si introducimos el 2,7 en la fórmula obtendremos 
1,72037037 ... ; luego 1,4414553 ... ; luego 1,41447098 ... y así sucesivamente, acer­
cándonos cada vez más a ✓2. 

El problema de hallar un sistema de axiomas para la aritmé­
tica había sido ya formulado por Hilbert en su conferencia de 1900 
( era el segundo problema de la lista), aunque aquella fom1ulación 
no incluía la exigencia de la verificación mecánica de los razona­
mientos. Sin embargo, la cuestión algorítmica sí aparecía en otro 
problema, el décimo, que preguntaba si siempre sería posible de­
terminar mecánicamente si cierto tipo de ecuaciones (llamadas 
diofánticas) tenían, o no, solución. Como vemos, dos de las ideas 
centrales del programa formalista ya aparecían, aunque por sepa­
rado, en aquella conferencia de París. 

Se ha dicho a veces que Hilbert proponía que el trabajo del 
matemático debía reducirse a un proceso mecánico, equivalente 
al de un ordenador, que calcula pero no piensa. Ese no es el caso. 
El proceso creativo de los matemáticos no sufriría ninguna altera-
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LOS AXIOMAS DE PEANO 

En su conferencia de 1900, David Hilbert 
planteó como primer problema el hallar 
un conjunto de axiomas para la aritméti­
ca que permitieran demostrar todas las 
verdades de la teoría (aunque sin hacer 
referencia a la necesidad de una verifica­
ción mecánica de la corrección de los 
razonamientos utilizados). En su diserta­
ción, Hilbert no mencionó la existencia 
de trabajos anteriores en ese sentido. 
Esta omisión despertó el malestar de 
Giuseppe Peano, matemático italiano, 
presente en la conferencia de Hilbert, 
quien había propuesto en 1889 un con­
junto de axiomas para la aritmética con 
la intención de que estos permitieran de-
ducir todos los enunciados aritméticos verdaderos. Los axiomas de Peano, tal 
el nombre con el que se los conoce actualmente, tienen como elementos 
primitivos al número 1, y a los signos de la suma(+), del producto O y de la 
función sucesor (S) : 

- Axioma 1: S(x) nunca es igual a 1, es decir, 1 no es el sucesor de ningún 
número. 

- Axioma 2: Si S(x) = S(y) entonces x = y . 
- Axioma 3: x + 1 = S(x). 
- Axioma 4: x + S(y) = S(x + y). 
- Axioma S: x · 1 = x. 
- Axioma 6: x · S(y) = x · y + X. 

- Axioma 7: Si puede probarse que el 1 cumple una cierta propiedad y que 
siempre que x la cumple, entonces S(x) también, puede dedu­
cirse que la propiedad vale para todos los números naturales. 

El último axioma, llamado «esquema de inducción», expresa el hecho de que 
todos los números naturales se obtienen a partir del 1 por aplicaciones repe­
tidas de la función sucesor. Si una propiedad vale para el 1 y podemos asegu­
rar que se propagará de cada número a su sucesor, entonces la propiedad 
valdrá para todos los números naturales. Una consecuencia del teorema de 
Gódel es que si incluimos la condición de que los razonamientos deban ser 
verificables algorítmicamente, entonces existen verdades aritméticas que son 
indemostrables a partir de estos axiomas, es decir, que la aritmética así plan­
teada es incompleta. 
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ción; el carácter mecánico corresponde solamente a la verifica­
ción posterior de la validez de los argumentos usados por el 
matemático, no al descubrimiento de los argumentos en sí. Para 
destacar esta diferencia, Hilbert hablaba de dos ciencias: la mate­
mática y la metamatemática. La segunda, mecánica y finitista, ten­
dría como objeto la revisión de los métodos de la primera. 

Entre 1920 y 1930, Hilbert publicó una serie de aitículos en 
los que fue exponiendo de manera gradual su programa y mos­
trando cómo podía ser llevado a la práctica. Otros matemáticos se 
comprometieron también con la idea y presentaron aportes signi­
ficativos a favor de ella. El propio Godel, en 1929, en la que fue su 
tesis doctoral, mostró que era posible establecer métodos de ra­
zonamiento cuya corrección fuese verificable algorítmicamente. 
Ese mismo año, el matemático polaco Moisés Presburger exhibió 
una serie de axiomas cuya consistencia era verificable algorítmi­
camente y que permitían demostrar, aunque no todas las verdades 
aritméticas, sí una parte no despreciable de ellas. Se trataba de 
dos triunfos importantes para el programa formalista. 

Al mismo tiempo, el intuicionismo iba perdiendo su ascen­
diente entre los matemáticos. Muchos de quienes habían simpati­
zado con las ideas generales de Brouwer comenzaban a sentir que 
llevarlas a la práctica, con el consecuente abandono de los razona­
mientos conjuntistas, traería más pérdidas que beneficios. El pro­
grama formalista, por su parte, ofrecía una alternativa que era al 
mismo tiempo aceptable filosófican1ente y realizable en la práctica. 

Llegado 1930, estaba claro que Hilbert había vencido. Solo fal­
taba crear el ámbito adecuado para que los intuicionistas presen­
taran dignamente su rendición. Se organizó entonces un congreso 
sobre fundamentos de las matemáticas. La sede elegida fue Konigs­
berg, la ciudad natal de Hilbert (una elección que, por supuesto, no 
fue casual). El congreso se desarrolló entre el viernes 5 y el do­
mingo 7 de septiembre; el lunes 8 estaba previsto que el Parla­
mento de Konigsberg le otorgara a Hilbert el título de ciudadano 
de honor. Todo estaba preparado para el gran triunfo del maestro. 

El viernes expusieron sus trabajos los matemáticos menores, 
los desconocidos. Uno de ellos, Kurt Godel, resumió su tesis doc­
toral. El sábado expusieron los mayores, entre ellos Hans Hahn, 
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quien dirigió la tesis doctoral de Godel. Brouwer, enemistado con 
Hilbert por motivos que iban más allá de la mera discusión acadé­
mica, no estaba presente; el expositor del punto de vista intuicio­
nista fue Arendt Heyting. Hilbert, que padecía problemas de salud, 
tan1poco acudió y su principal representante fue John von Neu­
mann, uno de sus discípulos. También estaba representado el lo­
gicismo, en la persona del filósofo Rudolf Camap. El domingo se 
cerró con una sesión plenaria en la que se resumieron los puntos 
de vista del intuicionismo, el formalismo y el logicismo. Las con­
clusiones estuvieron a cargo de Heyting, quien cerró su exposi­
ción diciendo que la relación entre el intuicionismo y el formalismo 
había sido finalmente aclarada y que ya no era necesario que con­
tinuara la lucha entre ambas escuelas. En sus propias palabras: 
«Si se completa el programa de Hilbert, hasta los intuicionistas 
abrazarán el infinito». Los intuicionistas se habían rendido. Hil­
bert había triunfado. 

«Comparados con la inmensa expansión de las modernas 
matemáticas, qué suponen los lamentables restos, los escasos 
resultados aislados, incompletos e inconexos que los 
intuicionistas han obtenido.» 
- MAN IFESTACIÓN DE DAVID HILBERT SOBRE LA ESCUELA IN'l'UI CIONISTA, 
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Cuentan todos los testigos que, en ese mismo momento, un 
joven matemático levantó tímidamente la mano para pedir la pa­
labra. Era delgado, usaba gafas y probablemente estaba muy ner­
vioso. Ese joven, Kurt Godel, anunció que había demostrado un 
teorema que probaba que si se exige que las demostraciones sean 
verificables mecánicamente, entonces es imposible dar axiomas 
para la aritmética que permitan demostrar todas las verdades de 
la teoría. Siempre habrá afirmaciones verdaderas que sean inde­
mostrables a partir de los axiomas propuestos. (Hoy en día se 
conoce a esta afirmación corno el primer teorema de incornpleti­
tud de Godel.) 

Más aún, si los axiomas propuestos permiten demostrar una 
parte significativamente amplia de las verdades aritméticas, en-
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tonces será imposible probar su consistencia por métodos mecá­
nicos. (Este es el segundo teorema de incompletitud de Godel.) 
En otras palabras, el programa de Hilbert era completa y absolu­
tan1ente irrealizable. 

Podemos representarnos una escena que nunca sucedió, pero 
que tal vez refleje el ánimo de los formalistas aquella tarde de 
domingo. Imaginemos a Hilbert llamando por teléfono a J ohn von 
Neumann para preguntarle cómo había salido todo y a este res­
pondiéndole: «Tengo una buena noticia y una mala noticia. La 
buena es que los intuicionistas se han rendido. La mala es que un 
tal Godel dice que nosotros también hemos perdido». 

¿Cómo logró Godel demostrar su teorema? ¿Cómo es posible 
probar que, no importa los axiomas que se propongan, siempre 
habrá una afirmación verdadera pero indemostrable a partir de 
ellos? La demostración de Godel, una de las mayores proezas in­
telectuales del siglo xx, será el tema central del próximo capítulo. 
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CAPÍTULO 2 

El primer teorema de Gódel 

El primer teorema de incompletitud 
de Godel dice que, dado cualquier conjunto de 

axiomas para la aritmética, siempre habrá un enunciado 
aritmético verdadero que es indemostrable a partir de ellos, 

si es que solo se admiten los métodos de demostración 
avalados por el programa de Hilbert. La demostración 

de este teorema consiste esencialmente en obtener 
un enunciado autorreferente que dice de sí mismo 

«yo no soy demostrable». 





Después de terminada la Primera Guerra Mundial, el Imperio aus­
trohúngaro se fragmentó en diversas regiones. Algunas, entre 
ellas Austria, Hungría, Yugoslavia y Checoslovaquia, se transfor­
maron en países independientes. Otras pasaron a formar parte de 
naciones ya existentes como Italia o Run1ania. En esta partición, 
Bmo, la ciudad donde vivía la fanulia Gbdel, quedó incorporada a 
Checoslovaquia. Años más tarde, Kurt Godel recordaría que desde 
ese momento su padre siempre se sintió como un austriaco en el 
exilio. Es posible que ese sentimiento influyera de algún modo en 
la decisión de enviar a sus dos hijos a estudiar en la Universidad 
de Viena, un modo, aunque sea indirecto, de volver a la patria. 

Gbdel ingresó en la Universidad de Viena en 1923 con la inten­
ción de estudiar física. Podemos suponer que su curiosidad innata 
lo había llevado desde muy pequeño a hacerse preguntas como por 
qué caen las cosas que soltan1os, o por qué algunos objetos flotan y 
otros no, o por qué brilla el Sol; todas ellas preguntas relacionadas 
con la física. Sin embargo, el propósito formal de dedicarse a esta 
ciencia parece haberse cristalizado a los quince años de edad, des­
pués de haber leído acerca de la teoría de Goethe sobre los colores 
y su oposición al enfoque que le daba Newton a la teoría del color. 

Se sabe muy poco sobre la vida privada de Gbdel durante sus 
años de estudiante en Viena. Estuvo a punto de casarse con una 
mujer diez años mayor que él, pero sus padres se opusieron y Kurt 
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desistió de su propósito. No hay referencias a otras relaciones 
personales o amistades íntimas. En apariencia, dedicaba la mayo­
ría de su tiempo al estudio. Una vez en la universidad, el propósito 
de dedicarse a la física no duró mucho tiempo. En esos años en­
señaba en Viena Philipp Furtwangler, un matemático alemán es­
pecializado en aritmética superior. Furtwangler nació en 1869 en 
Elze (en el centro de Alemania) y se había doctorado en Gotinga 
en 1896, bajo la dirección de Félix Klein, uno de los matemáticos 
más importantes de finales del siglo XIX. 

LA TEORÍA DEL COLOR DE GOETHE 

Johann Wolfgang von Goethe (1749-
1832) fue un novelista, dramaturgo y 
poeta alemán, y uno de los principales 
representantes del Romanticismo. Ade­
más de su muy conocida obra literaria, 
Goethe escribió también varios tratados 
científicos sobre física, zoología y botá­
nica. Muchas de sus ideas acerca de es­
tos temas provocaron diversas contro­
versias en su época, aunque algunas de 
ellas fueron reivindicadas en décadas 
posteriores. Por ejemplo, su clasificación 
de las plantas y sus conceptos sobre la 
morfología animal fueron retomados por 
Charles Darwin y otros naturalistas del 
siglo x1x. En su libro Teoría de los colores 
(Zur Farbenlehre, en alemán), escrito en 
1810, Goethe sostuvo que el estudio del Retrato de Goethe por el pintor alemán 

color no debe reducirse a los aspectos Joseph Karl Stieler. 

físicos de la luz, sino que debe incluir la 
reflexión sobre la percepción humana. Para Goethe, la óptica de Newton era 
incompleta y solamente un caso particular dentro de su propia teoría. Las 
ideas de Goethe sobre la luz no fueron recibidas con interés por los físicos de 
su tiempo; incluso no suelen ser incluidas en las obras sobre historia de la 
ciencia. Hoy en día, sin embargo, se acepta que es necesario distinguir, como 
hacía Goethe, entre el espectro óptico tal como lo estudió Newton y el fenó­
meno más amplio de la percepción humana del color. 
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Las clases de Philipp Furtwangler eran famosas por su exce­
lencia y su claridad. El número de estudiantes que se inscribían en 
sus cursos era tan grande (llegaron a ser más de cuatrocientos a 
la vez) que los alumnos tenían que dividirse en dos grupos y cada 
lección debía ser impartida dos veces, una para cada grupo. Como 
curiosidad, Furtwangler estaba parapléjico y desde su silla de rue­
das le dictaba a un ayudante lo que debía escribir en la pizarra. 

El joven Godel quedó tan impactado por las clases de Furtwan­
gler que abandonó su decisión de estudiar física y se volcó en las ma­
temáticas. Sin duda, un notable ejemplo de cómo un profesor puede 
afectar en la vida de sus alumnos. De todos modos, unos veinticinco 
años más tarde, en Princeton, Gódel tuvo la oportunidad de despun­
tar un poco el «vicio» de la física. En 1949 y 1950 publicó sendos 
trabajos sobre la teoría de la relatividad, los únicos dos trabajos cien­
tíficos de Gódel no relacionados con la lógica matemática, y que se­
guran1ente fueron el resultado de sus conversaciones con Einstein. 

Una pequeña coincidencia: Philipp Furtwangler terminó sus 
estudios en Gotinga en 1896 y permaneció allí hasta 1912, año 
en que se incorporó a la Universidad de Viena. Mientras tanto, en 
1895 llegaba a Gotinga quien por entonces era una joven promesa 
de la matemática alemana, David Hilbert. Aunque no hay registros 
al respecto, podemos tener la certeza de que ambos se conocie­
ron, Philipp Furtwangler, quien hizo que Godel se dedicara a las 
matemáticas, y David Hilbert, cuyo trabajo matemático de toda la 
década de 1920 se vería «destruido» por los teoremas de Gódel. 
¿Habrá sabido alguna vez Furtwangler que él fue quien inspiró a 
Godel a dedicarse a las matemáticas? ¿Se lo habrá dicho Gódel 
alguna vez? No lo sabemos, pero puede ser interesante especular 
acerca de qué pudo haber pensado Furtwangler al respecto. 

EL CÍRCULO DE VIENA 

Volvamos a Gódel y a sus años en la universidad. En aquel 
tiempo, a principios de la década de 1920, la vida intelectual de 
Viena estaba organizada, de manera más o menos informal, en 
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círculos (Kreise, en alemán). Estos círculos eran grupos que se 
reunían semanalmente en los cafés de la ciudad para discutir 
sobre los más diversos temas, como por ejemplo, entre otros, fi­
losofía, política o psicoanálisis (Freud vivía y trabajaba en Viena 
en esos años). 

Aunque tal vez hubo decenas de grupos, muchos de ellos con 
miembros en común, el más importante de todos, aquel cuyos de­
bates perduraron en el tiempo, fue el fundado en 1922 por Moritz 
Schlick, quien era además profesor de Godel en el curso de filoso­
fía de la ciencia de la universidad. Al principio, Schlick adoptó 
para el grupo el nombre de Asociación Emst Mach, pero más 
tarde fueron conocidos simplemente como el «Círculo de Viena» 
(Der Wiener Kreis). 

Formaron parte del grupo, entre otros, los filósofos Rudolf 
Camap y Ludwig Wittgenstein y el filósofo y matemático Hans 
Hahn ( quien dirigiría la tesis doctoral de Godel).' También Karl 
Popper participó de varias discusiones. De hecho, una de sus 
obras más importantes, La lógica de la investigación cientifica 
( en alemán, Logik der Forschung) apareció por primera vez en 
una serie de publicaciones del Círculo. 

La incorporación al grupo se producía estrictamente por invi­
tación; Godel recibió la suya de Schlick en 1926 y asistió con re­
gularidad a las reuniones hasta 1928, aunque solamente como 
oyente. En el momento de ser invitado a unirse al Círculo, Godel 
era un mero estudiante; eso habla mucho del prestigio que comen­
zaba a ganarse entre sus profesores. 

Los temas que trataba el Círculo de Viena eran la filosofía de 
la ciencia en general y el lenguaje de la ciencia en particular. En 
esas reuniones se discutía también sobre matemáticas, en espe­
cial sobre las soluciones propuestas por Russell, Brouwer y Hil­
bert al problema de la crisis de los fundamentos. Es seguramente 
allí donde Godel adquirió por primera vez su profundo conoci­
miento sobre el programa formalista. 

Su participación en el Círculo de Viena llevó a Godel en 1928 
a la resolución definitiva de consagrarse a la lógica matemática. 
Al año siguiente completó su tesis doctoral sobre un problema 
relacionado con el programa de Hilbert ( aunque todavía no se tra-
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MORITZ SCHLICK 

Moritz Schlick fue un filósofo alemán, 
nacido en 1882. Inicialmente estudió físi­
ca con Max Planck en la Universidad de 
Berlín; su tesis doctoral, presentada en 
1904, se tituló «Sobre la reflexión de la 
luz en un medio no-homogéneo». Sin 
embargo, no dedicó su vida a la física, 
sino a la filosofía. Su primera obra filosó­
fica, La sabiduría de la vida, se publicó en 
1908 y su ensayo La naturaleza de la ver­
dad según la lógica moderna (Das We­
sen der Wahrheit nach der modernen 
Logik) apareció dos años más tarde . 
Poco después de ello, volcó su atención 
en la epistemología y la filosofía de la 
ciencia, temas de estudio que ya no 
abandonaría. En 1922, Schlick se hizo 
cargo de la cátedra de filosofía de las ciencias inductivas de la Universidad de 
Viena, y ese mismo año fundó el Círculo de Viena como foro para discutir 
nuevos horizontes filosóficos, alejados de la metafísica y centrados en el em­
pirismo. El Círculo dejó de reunirse en 1936, año en que Moritz Schlick fue 
asesinado en Viena por un estudiante de la universidad (algunos historiadores 
dicen que el estudiante estaba alterado mentalmente, otros afirman que era 
pro-nazi; las dos opciones, por supuesto, no son excluyentes). 

taba de su famoso teorema de incompletitud, que sería presentado 
en septiembre de 1930 en el congreso de Konigsberg). 

Godel presentó su tesis a la Universidad de Viena el 6 de fe­
brero de 1930. Ese mismo año le dio la forma de un artículo. Este 
trabajo, su primera publicación científica, apareció en el volumen 
37 (1930) de la revista Monatshefte Jür Mathematik und Physik 
bajo el título «La completitud de los axiomas del cálculo lógico de 
primer orden». El teorema que se demuestra allí, hoy conocido 
como el «teorema de completitud de Godel», fue tomado en su 
momento como una indicación de que el programa de Hilbert 
podía ser cumplido. 
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EL TEOREMA DE COMPLETITUD 

Para entender el teorema de completitud de Godel debemos pro­
fundizar antes en la teoría de la demostración matemática según 
el programa de Hilbert. Este programa, recordemos, pedía hallar 
un conjunto de axiomas que permitieran demostrar todas las ver­
dades de la aritmética mediante razonamientos verificables algo­
rítmicamente. Pero ¿qué es exactamente la aritmética? ¿Cuáles 
son esas verdades que uno quiere demostrar?. 

«El objetivo de mi teoría es el de establecer de una vez 
por todas la certidumbre de los métodos matemáticos.» 
- D AVlD -B ILBERT EN SOBRE EL INFINITO (1925). 
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La aritmética es la rama de las matemáticas que habla de las 
propiedades de la suma y el producto de los números naturales: 1, 
2, 3, 4, 5, 6, 7, .. . e involucra conceptos tales como «número 
primo», «número perfecto», «número triangular» o «número par». 
La teoría en sí está formada por todas las afinnaciones (también 
llamadas proposiciones o enunciados) relativas a esas nociones, 
como por ejemplo: «1 + 1 = 2», «2 es par», «5 es primo», «Todo 
número divisible por 4 es par» o «La suma de dos números impa­
res da como resultado un número par». Los axiomas buscados por 
Hilbert serían un conjunto de verdades básicas de las cuales fuese 
posible deducir, con las condiciones ya expuestas para los razo­
namientos, todas las demás afinnaciones aritméticas verdaderas, 
entre ellas, las mencionadas más arriba. 

Por otra parte, ¿qué significa que la validez de los razonamien­
tos que demuestran esas verdades sea verificable algorítmicamente? 
Esto quiere decir que, al menos en principio, debería ser posible 
programar un ordenador de tal modo que fuera capaz de determinar 
en una cantidad finita de pasos si una demostración matemática es 
válida o no. De acuerdo con esta idea, introduciríamos la demostra­
ción en la máquina, esta la procesaría siguiendo una receta previa­
mente programada, y al cabo de un tiempo (tal vez largo, tal vez 
corto, pero en cualquier caso siempre finito), la máquina nos diría si 
el razonamiento es válido o si contiene algún error. 
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Ahora bien, en general, verificar la corrección de ooa demostra­
ción matemática no es W1 trabajo sencillo, a veces ni siquiera para 
los especialistas. Por ejemplo, cuando en 1995 Andrew Wiles pre­
sentó su demostración del último teorema de Fermat, a la cual le 
había dedicado siete años de trabajo, los especialistas que la revisa­
ron encontraron ooa laguna lógica, W1 paso que ellos entendían que 
no estaba debidamente justificado. A Wiles, por supuesto, ese error 
se le había pasado por alto y necesitó todo oo año para corregirlo. 
Finalmente, en 1996 pudo presentar ooa demostración completa. 

Mostremos un ejemplo menos complejo. Pongamos que a y b 
son dos números que suponemos iguales y además diferentes de 
cero. A partir del hecho de que a= b podemos desarrollar la si­
guiente «demostración» de que 1 = 2 (para mayor claridad nume­
ramos los sucesivos pasos lógicos del razonanüento ): 

l. a=b 
2. a-b=b-b 

3. a-b=b2 

Por hipótesis. 
En el paso 1, multiplicamos 
ambos miembros por b. 
En el paso 2, reemplazamos 
b- b por b2• 

En el paso 3, restamos a2 en 
an1bos miembros. 

5. a-(b-a)=(b+a)-(b-a) Se deduce de 4, por igualdades 
algebraicas conocidas. 

6. a=b+a 

7. a=a+a 

8. a=2-a 
9. 1=2 

En 5, cancelamos (b-a) en 
ambos miembros. 
En 6, reemplazamos b por a, 
ya que ambos son iguales. 
Porque a+a = 2-a. 
En 8, dividimos ambos nüem­
bros por el número a. 

Obviamente, el razonamiento anterior es incorrecto, pero 
¿dónde está la equivocación? El fallo está en el salto que va del 
paso 5 al paso 6. En él, de la igualdad 

a- (b-a) = (b + a)- (b-a) 
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eliminamos el paréntesis (b-a) y concluirnos que a=b +a.Esto 
es erróneo porque (b-a) vale O (dado que a=b) y un O que esté 
multiplicando no puede cancelarse en una igualdad. Traducido a 
números, suponiendo por ejemplo que a y b valgan 2, el salto del 
paso 5 al 6 equivale a haber dicho que corno 2 • O= 4 • O ( que es ver­
dad) entonces 2 = 4. 

Pero ¿cómo podríamos «enseñarle» a un ordenador a detec­
tar esta clase de errores? Un ordenador es solo una máquina; no 
razona, sino que sigue ciegamente la «receta» que hayamos pro­
gramado en su memoria. Para que un ordenador sea capaz de ve­
rificar la corrección de un razonamiento matemático un requisito 
necesario es que este pueda ser traducido a una sucesión de enun­
ciados cada uno de los cuales, o bien es un axioma, o bien se de­
duce de enunciados precedentes por la aplicación de reglas 
lógicas bien precisas y especificadas de antemano. 

Veamos un ejemplo de demostración matemática expresado 
de esta manera. Para poder mostrarlo necesitan1os primero algu­
nos axiomas que nos sirvan de punto de partida. En 1889, mucho 
antes de que fuera descubierta la paradoja de Russell, el matemá­
tico italiano Giuseppe Peano había propuesto un cor\junto de 
axiomas que ( él suponía) permitían demostrar todas las verdades 
aritméticas. Estos axiomas se basaban en las operaciones de 
suma ( +) y producto (-), y en la noción de «sucesor» (indicada con 
la letraS). 

Entendía Peano que la sucesión de los números naturales se 
obtenía a partir del número 1 por aplicaciones repetidas de la fun­
ción sucesor. De este modo, el 2 se define corno el sucesor del 1, 
en símbolos S(l) = 2; el 3 es, por definición, el sucesor del 2, o sea 
S(2) = 3; y así indefinidamente. 

Para nuestro ejemplo de demostración bastará con tornar dos 
de los axiomas de Peano, aquellos que se refieren a la suma: 

Axioma 1: Cualquiera que sea el número x, vale que x + l = 
= S(x). 

Axioma 2: Cualesquiera que sean los números x e y, vale que 
S(x + y) = x + S(y). 
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2 3 

Axioma 

4 

Axioma 

_. Enunciado _. Enunciado 

5 6 }

7 

Enunciado _. 
8 

Teorema --+ Enunciado _. Enunciado 

El primer axioma nos dice que el sucesor de un número x 
siempre se obtiene sumándole l. El segundo axioma puede tradu­
cirse como (x +y)+ 1 = x +(y+ 1). A partir de estos dos axiomas 
vamos a demostrar que 4 = 2 + 2. 

Pero ¿es realmente necesario demostrar que 4 = 2 + 2? ¿No es 
un hecho obvio? Aunque en ·efecto es obvio, según el programa 
de Hilbert toda afirmación verdadera que no sea un axioma debe 
ser demostrada a partir de ellos. Excepto los enunciados que 
hayan sido explícitamente indicados como axiomas, no hay 
otras afirmaciones que se acepten por sí mismas como verda­
deras. 

Probemos entonces que 4 = 2 + 2, pero anotemos el razona­
miento de tal modo que pueda ser procesado por un ordenador. 
Insertaremos además algunos comentarios para que nosotros, 
seres humanos, podamos seguir la idea (véase el esquema): 

l. 8(x + y) = x + 8(y) 
2. 8(2 + 1) = 2 + 8(1) 
3. 8(2 + 1) = 2 + 2 

Axioma 2. 
Tomamos x = 2 e y = 1 en el axioma 2. 
Reemplazamos 8(1) por 2 en el paso 
anterior. 

Comentario: Los tres pasos que siguen forman una pequeña 
«subdemostración» en la que se prueba que 2 + 1 = 3; de este modo, 
en el paso 3 podremos reemplazar 8(2 + 1) por 8(3). 

4. x + 1 = 8(x) 
5. 2 + 1 = 8(2) 
6. 2 + 1 = 3 

Axioma l. 
Tomamos x = 2 en el axioma l. 
En el paso anterior reemplazamos 
8(2) por 3. 
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Comentario: Ahora podemos reemplazar S(2 + 1) por 3, en el 
tercer paso. 

7. S(3) = 2 + 2 
8. 4 = 2 + 2 Reemplazamos S(3) por 4 en el paso previo. 

¿Es necesario tanto preciosismo para demostrar meramente 
que dos más dos es cuatro? Sí, es necesario, si es que queremos que 
el ordenador sea capaz de verificar la corrección del razonamien­
to. El ordenador no piensa; por lo tanto, debemos «llevarlo de la 
mano», paso a paso, indicándole mediante el uso de reglas esta­
blecidas de antemano qué es lo que hemos hecho exactamente en 
cada etapa del razonanliento. 

«El mundo real está sujeto a cambios constantes. [ ... ] Pero tales 
cambios, por profundos que sean, nunca destruirán la verdad 
de una sola ley lógica o aritmética.» 
- RUDOLF CARNAP EN F UNDA /1/ENTACI ÓN LÓGICA DE LA FÍS ICA. 
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¿Qué es lo que haría el ordenador para comprobar que nues­
tra demostración es correcta? Para empezar, registraría el primer 
enunciado y verificaría si se trata de un axioma. Esta comproba­
ción se hace símbolo a símbolo, de la nlisma manera que un pro­
cesador de texto verifica la ortografía de un documento, 
comprobando letra por letra si las palabras escritas en él aparecen 
en el diccionario que el ordenador tiene cargado en su memoria. 

Recordemos que cada enunciado debe ser, o bien un axioma, 
o bien debe deducirse de enunciados precedentes. En nuestro 
ejemplo, la máquina comprobaría que, en efecto, el primer enun­
ciado es uno de los axiomas de la lista ( el primer enunciado debe 
ser un axioma, no puede deducirse de enunciados anteriores sim­
plemente porque no los hay). El ordenador, por supuesto, no «en­
tiende» el significado del axioma, solo comprueba que el primer 
enunciado aparece en el listado que le fue previan1ente cargado. 

Terminada la primera comprobación, la máquina pasaría al 
segundo enunciado, S (2 + 1) = 2 + S (1), y verificaría que no se 
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.---------• Enunciado 

Pasar al 
enunciado 
siguiente. SÍ 

Es una 
demostración. 

No es una 
demostración. 

Fin Fin 

---------

trata de un axioma (ya que no está en la lista). Este segundo 
enunciado debería entonces deducirse del primero por aplica­
ción de alguna regla lógica. Para poder hacer esta comproba­
ción, el ordenador debería tener cargado en su memoria un 
listado con las reglas de la lógica, es decir, las reglas que indican 
qué conclusiones pueden extraerse de determinadas premisas 
(véase el esquema). 

En el caso de nuestra demostración, la regla que permite ir 
del paso 1 al paso 2 es aquella que dice que si un enunciado co-

. mienza con «Cualesquiera sean los números x e y, vale que ... », 

entonces en la expresión que sigue a continuación las letras x e y 
pueden reemplazarse libremente por números cualesquiera. En 
nuestro ejemplo, la letra x es reemplazada por el número 2 y la 
otra, por el número l. 

Estas reglas lógicas van más allá de la aritmética, son reglas 
generales que valen en cualquier rama de las matemáticas. Por ese 
motivo, los enunciados que las expresan son llamados enunciados 
universalmente válidos (también se los llama axiomas lógicos, 
precisamente porque expresan las reglas del razonamiento lógico). 

Ya hemos mencionado una de estas reglas. Otros dos ejem­
plos son: «Si x = y entonces y = x» y «Si dos expresiones numé­
ricas son iguales, entonces cualquiera de ellas puede ser reem-
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EL LENGUAJE FORMAL 

Tanto el programa de Hilbert como la demostración de Gódel suponen que 
todos los enunciados aritméticos están escritos en un lenguaje formal con 
símbolos establecidos de antemano. Hay diferentes elecciones posibles para 
los símbolos, una selección de las cuales es la siguiente: 

tf. Se llama «cuantificador universal» y se lee «Para todo». Indica que 
la propiedad que se enuncia es válida para cualquier número. 

=>: Es el símbolo de implicación; «P = Q» significa «Si P entonces Q». 
~: Es el símbolo de la negación; «~ P» significa «no-P». 
=: Signo igual. 
1: Número uno. 

S: Indica «sucesor». 
+: Símbolo de la suma. 

• (punto): Símbolo del producto. 
( ): Paréntesis. 

x,, x 2, x3, ... : Variables. 

Algunas presentaciones prefieren tomar al O como primer elemento, lo que 
no representa una diferencia esencial. Usando los símbolos que hemos dado 
aquí, el número 2 se escribe como 5(1), es decir, el siguiente del l . El número 
3 se escribe como S[S(l)]. es decir, el siguiente del siguiente del l. Y así su­
cesivamente. 

plazada por la otra». Esta última regla es la que justifica el salto 
del paso 2 al paso 3, en el cual S(l) es reemplazado por 2. 

En realidad, si existe un número potencialmente infinito de 
enunciados universalmente válidos ¿cómo podríamos entonces 
cargarlos a todos en la memoria de un ordenador? Si no pudiéra­
mos hacerlo, este seria incapaz de verificar la validez de cualquier 
razonamiento y, en consecuencia, el programa de Hilbert sería 
inmediatamente irrealizable. Pero al mismo tiempo, ningún orde­
nador concebible tiene la capacidad de contener «infinitos» 
enunciados. 

Por fortuna, en su teorema de completitud Gi:idel demostró 
que, aunque la cantidad de reglas lógicas es potencialmente infi­
nita, todo razonamiento puede realizarse usando solo doce de 
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ellas. Si cargamos en la memoria del ordenador esas doce reglas, 
entonces este será capaz de verificar la corrección de cualquier 
demostración. 

Cuando este teorema se publicó a principios de 1930 quedó 
claro que la base lógica necesaria para el programa de Hilbert 
estaba asegurada: era posible verificar mecánicamente la corree­

. ción de las demostraciones aritméticas. El problema que quedaba 
por resolver era hallar un cor\junto de axiomas que ( en base a esas 
doce reglas) permitiera demostrar todas las verdades aritméticas. 

El teorema de completitud no suscitó una gran emoción en el 
ambiente matemático. Se entendía que Godel tan solo había es­
crito prolijamente la prueba de un hecho que todos daban por 
cierto; tan grande era la confianza en que el programa de Hilbert 
podría completarse con éxito. Únicamente quedaba pendiente el 
problema de hallar los axiomas para la aritmética. 

EL TEOREMA DE INCOMPLETITUD 

Establecida la base lógica que otorgaba la facultad de realizar de­
mostraciones verificables algorítmicamente, solo faltaba hallar 
los axiomas que permitieran demostrar todas las verdades aritmé­
ticas. Lamentablemente para el programa de Hilbert, este objetivo 
es inalcanzable. El teorema que expone esta imposibilidad se co­
noce como el «primer teorema de incompletitud de Godel», o más 
familiarmente, como el teorema de Godel: 

Si elegimos como axiomas cualquier conjunto de enunciados arit­
méticos verdaderos y exigimos que las demostraciones que hagamos 
a partir de ellos sean verificables algorítmicamente, entonces habrá 
al menos un enunciado verdadero que no puede ser demostrado a 
partir de esos axiomas. 

Godel probó este teorema en 1930 y, como ya sabemos, lo 
expuso abiertamente por primera vez en el congreso de Konigs­
berg, el 7 de septiembre de ese año. El artículo con el desarrollo 
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LAS DOCE REGLAS LÓGICAS 

En su tesis doctoral, presentada en 1930, Gódel demostró que todo razona­
miento que sea ver ificable algorítmicamente puede fundamentarse usando 
solo doce reglas lógicas, que listamos a continuación. En lo que sigue, «P=> Q» 
es una abreviatura de «Si P entonces Q» y « lfxP(x)» es una abreviatura de 
«Todo x cumple la propiedad P>,. 

l. Si vale el enunciado Q, entonces, cualquiera que sea P, vale el enunciado 
«P =>Q». 

2. Si vale «P=>(O=>R)» y también vale «P=>Q» entonces va le «P=>R». 
3. Si vale «no-Q=no-P» entonces también vale «P=>Q». 
4. Si vale« lfxP(x)» entonces vale «P(n) », donde n es un número cualquiera. 
5. Si vale« lfx[(P=Q(x)]» entonces vale «P=>[ lfxQ(x)]», siempre que la letra 

x no aparezca en P. 
6. Cualquiera que sea el número x, vale que x=x. -
7. Cualesquiera que sean los números x e y, vale que si x = y entonces y =x. 
8. Cualesquiera que sean los números x, y, z vale que si x = y e y=z entonces 

x =z. 
9. Si x = y entonces puede reemplazarse x por y en cualquier expresión nu-

mérica. 
10. Si x= y entonces puede reemplazarse x por y en cualquier enunciado. 

11 . Si vale P y vale «P=> Q» entonces vale Q. 
12. Si vale P(x) para un x genérico entonces vale « lfxP(x)». 

En general, las diez primeras reglas se presentan como enunciados universa l­
mente válidos, mientras que a las dos últimas se les da una presentación di­
ferenciada como «reg las de inferencia». Esta distinción es puramente técnica 
y no tiene relevancia para nuestros fines. 

de la demostración fue enviado a la revista Monatshefte für Ma­
thematik und Physik en noviembre y apareció en el volwnen 38 
(1931), una publicación cuya relevancia para la lógica es solo 
comparable con la Metafísica de Aristóteles. La exposición de la 
demostración fue tan clara y transparente que no generó ni la más 
mínima controversia. 

Pero, ¿cómo es posible demostrar un hecho de esa enverga­
dura? ¿Cómo puede probarse que cualquiera que sea el conjunto 
de axiomas que se elija (si los razonamientos son verificables al-
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gorítmicamente) entonces siempre habrá alguna verdad que es 
indemostrable a partir de ellos? Nos proponemos ahora explicar 
la demostración de este hecho y para ello iremos, paso a paso, por 
los puntos principales del razonamiento de Godel. 

LA IDEA GENERAL DE LA DEMOSTRACIÓN 

Aquí comienza la explicación de la demostración del teorema de 
Godel. Supongamos que se han elegido como axiomas algunos 
enunciados aritméticos verdaderos. Observemos en primer lugar 
que el hecho de que los axiomas sean afirmaciones verdaderas 
garantiza que todos los enunciados que se demuestren a partir de 
ellos serán también verdaderos, ya que de premisas verdaderas (si 
los métodos de razonamiento son correctos) solo pueden ex­
traerse conclusiones verdaderas. Este hecho nos asegura que nin­
gún enunciado demostrable será falso; sin embargo, no nos 
garantiza de ninguna manera que todas las verdades serán demos­
trables. De hecho, nuestro objetivo es probar que existe necesa­
rian1ente algún enunciado aritmético verdadero que no puede ser 
demostrado a partir de esos axiomas (si nos ajustamos a los mé­
todos de demostración del programa de Hilbert). 

La idea general de la prueba de Godel consiste en obtener un 
enunciado G que diga: «G no es demostrable». En otras palabras, 
G puede escribirse como: «Esta afirmación no es demostrable». 

El enunciado G es autorreferente y dice de sí mismo que no 
es demostrable ( en todo lo que sigue, la palabra «demostrable» 
siempre debe entenderse como «demostrable a partir de los axio­
mas propuestos»). Probemos que este enunciado G es una verdad 
no demostrable. 

Para comenzar, observemos que G es verdadero, o falso. Si G 
fuera falso, debido a lo que G dice de sí mismo, concluiríamos que 
G es demostrable. Luego G sería a la vez falso y demostrable, pero 
esto es imposible (porque dijimos que partiendo de axiomas ver­
daderos solamente podrán demostrarse enunciados verdaderos). 
Por lo tanto, G no puede ser falso. 
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Este enunciado no es demostrable. 

1 
NO SÍ 

1 

Entonces es falso y demostrable. 
Absurdo. 

Entonces es verdadero 
y no demostrable. 

1 

_J 

En consecuencia, G es verdadero y, por lo que dice de sí 
mismo, no es demostrable. Deducimos así que G es un enunciado 
verdadero y no demostrable (véase el esquema). 

NÚMEROS Y AFIRMACIONES 

La idea anterior, aunque esencialmente correcta, tiene un pro­
blema: G debería ser una afirmación aritmética. Ahora bien, en 
principio, los enunciados aritméticos se refieren a propiedades de 
los números naturales, no hablan de otros enunciados, y mucho 
menos de sí mismos. ¿Cómo podemos vencer esta limitación? 
¿ Cómo podemos hacer que, a pesar de todo, un enunciado aritmé­
tico sí se refiera a otro enunciado? Si los enunciados hablan de 
números y necesitamos que se refieran a otras afirmaciones, la 
manera de hacerlo es equiparar números con afirmaciones: 

Números +-+ Afirmaciones 

El asunto es asociar a cada enunciado aritmético un número 
natural, de tal modo que hablar de ese número equivalga a hablar 
del enunciado correspondiente. Por ejemplo, si a una afirmación 
Ple correspondiera el número 457, entonces podemos pensar que 
cualquier enunciado que hable del 457 está hablando al mismo 
tiempo de P. 
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A cada enunciado aritmético se le asocia entonces un nú­
mero, que llamaremos su número de Godel, o su código. La asig­
nación de números de Godel se hace de una manera específica y 
bien establecida que, inclusive, es programable en un ordenador. 
Sin embargo, a efectos de entender a grandes rasgos la idea de la 
demostración del teorema de incompletitud no es necesario dete­
nerse en los detalles técnicos de esta asignación. Los ejemplos 
que mostraremos a continuación son puramente hipotéticos y sir­
ven solo para ilustrar el concepto general. Imaginemos que: 

«4 = 2 + 2» - código 67 
«2 es par» - código 223 

«162 es divisible por 18» - código 103 
«4 es impar» - código 149 
«171 es par» - código 61. 

Insistimos en este punto: los códigos no se asignan al azar ni 
arbitrariamente. Por el contrario, debe existir un algoritmo que, 
dado un enunciado, permita calcular de forma exacta cuál es su 
código. También debe existir un algoritmo inverso que, dado un 
código, recupere a qué enunciado corresponde. Más aún, en la 
realidad, los códigos, cuando son calculados correctamente, pue­
den llegar a tener decenas de cifras. Por ejemplo, en el cálculo 
real, al enunciado «1 = 1» le corresponde el código 2187000000000. 

Notemos que los enunciados de los dos últimos ejemplos son 
falsos. Esto muestra que se le asignan números de Godel a todos 
los enunciados, tanto a los verdaderos como a los falsos. Por una 
conveniencia técnica, también se le asignan números de Godel a 
las expresiones genéricas, tales como «x es par» o «x es múltiplo 
de 18». Expresiones que no se refieren a un número específico, 
sino a un número variable x. A estas expresiones Bertrand Russell 
las llamabafunciones proposicionales. 

En sí mismas, las funciones proposicionales no son enuncia­
dos, ya que un enunciado, por definición, debe ser verdadero o 
falso, mientras que la verdad o falsedad de «x es par» depende de 
cuál sea el valor que se elija para x. Cada vez que reemplazamos x 
por un número específico obtenemos un enunciado concreto que 
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será verdadero o falso dependiendo del x elegido. Por ejemplo, si 
en «x es par» reemplazamos x por el número 8, entonces obtene­
mos el enunciado verdadero «8 es par». En cambio, si reemplaza­
mos x por el número 3, obtenemos el enunciado falso «3 es par». 

Dijimos antes que a cada función proposicional se le asocia 
también un número de Godel (igual que para los enunciados, estos 
códigos se calculan de un modo preciso mediante un algoritmo 
previamente establecido). A modo de ejemplo hipotético pode­
mos imaginar que: 

«x es divisible por 18» ++ código 162 
«x es par» ++ código 171. 

Notemos que a <<X es par» le asignamos el código 171, mientras 
que al enunciado «2 es par» le corresponde el código 223. Es co­
rrecto que los códigos sean diferentes, ya que se trata de objetos 
lingüísticos diferentes. De la misma manera, «1 es par», «3 es par», 
«4 es par» ... tienen todos números de Godel diferentes entre sí. 

Finalmente, se le asigna además un número de Godel a cada 
sucesión finita de enunciados ( que es calculado en base a los có­
digos de los enunciados que forman la sucesión). La idea de esta 
asignación es garantizar que toda demostración esté también 
identificada por un código. Por ejemplo, a la siguiente demostra­
ción de «4 = 2 + 2» a partir de los axiomas «S(x + y) = x + S(y)» y 
«x + l = S(x)»: 

S(x + y) = x + S(y)........... .. . 173 
S(2 + 1) = 2 + S(l) . . . . . . . . . . . ... 199 
S(2 + 1) = 2 + 2 . . . . . . . . . . . . . . 13 
x + l = S(x) . . . . . . . . . . . . .. 37 
2 + 1 = S(2) . . . . . . . . . . . . . . 83 
2+1=3 .............. 7 
8(3) = 2 + 2 . . . .. . . . . . . ... 251 
4 = 2 + 2 ...... . ...... . 67 

le puede corresponder, hipotéticamente, el código 2 414 871965 597, 
que hemos calculado como el producto de los códigos de los 
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LA NUMERACIÓN DE GODEL 

¿cómo se define en realidad la numeración de Godel? Para definirla, cada 
enunciado y cada función proposicional debe expresarse primeramente usan­
do los símbolos del lenguaje formal. Godel asignó a cada símbolo de ese 
lenguaje un número impar: 

V 

= 

1 
5 
+ 

3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 

La cantidad de variables es potencialmente infinita. A las restantes (x
4

, x
5

, ••• ) 

les corresponden los números 27, 29, y así sucesivamente. A continuación, 
Godel asignó los códigos de los enunciados y de las funciones proposiciona­
les. Para mayor claridad, expliquemos el método sobre un ejemplo concreto. 
¿Qué código le corresponde, por ejemplo, al enunciado «l = 1»? Los pasos para 
calcularlo son los siguientes: 

l. Fijémonos primero en los códigos de los símbolos que forman el enuncia­
do: 9, 7, 9. 

2. Como hay tres símbolos, tomamos ahora, en orden, los tres primeros 
números primos: 2, 3, 5. 

3. El código es entonces: 29 • 37 • 59 = 2187 000 000 000. (Obsérvese que 
los primos son las bases de las potencias y los códigos de los símbolos 
son los exponentes.) 

Para calcular el número de Godel de una sucesión finita de enunciados se 
procede de manera similar, solo que en el paso 1 se toman, en orden, los có­
digos de los enunciados que forman la sucesión, y en el último paso se trans­
forman en los exponentes de los primos. 
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enunciados que la forman (y que están indicados junto al enun­
ciado correspondiente). 

Por supuesto, como en los casos anteriores, debe existir una 
«receta» mecánica que indique cómo debe ser calculado el código 
de una sucesión de enunciados y otra receta inversa que, dado un 
código, permita recuperar la sucesión de enunciados que le co­
rresponde. Nuestra receta de calcular el código de la sucesión 
como el producto de los códigos individuales no es válida porque 
ignora el orden de los enunciados en la sucesión (si pemmtamos 
los enunciados, el código de la sucesión resultante sigue siendo el 
mismo, y esto no debería suceder porque al pennutarlos se ob­
tiene en realidad una sucesión diferente). Sin embargo, dado que 
se trata solamente de un ejemplo hipotético, no nos preocupare­
mos por esta cuestión. 

«SER DEMOSTRABLE» ES EXPRESABLE 

Los códigos, o números de Godel, no solamente logran que un 
enunciado aritmético hable de otro enunciado, sino que además 
podemos hacer que se refiera a la demostrabilidad de ese enun­
ciado. Por ejemplo, dada una afirmación P, podremos escribir un 
enunciado aritmético que diga «P no es demostrable». Veamos 
cómo se consigue este objetivo. 

Una vez que se ha elegido un conjunto de axiomas, queda 
perfectan1ente fijado cuáles enunciados son demostrables y cuá­
les no lo son ( aunque puede ser muy difícil determinar en la prác­
tica si un enunciado dado es demostrable o no). A cada enunciado 
demostrable, a su vez, le corresponde un número de Godel. Tene­
mos entonces un conjunto de números bien establecido: el con­
junto formado por los códigos de los enunciados demostrables. 

Godel probó que este conjunto queda caracterizado por una 
propiedad aritmética bien definida. En otras palabras, probó que 
«Ser el código de un enunciado demostrable» es una propiedad 
expresable en el lenguaje de la aritmética ( que usa como elemen­
tos básicos la suma, el producto y las operaciones lógicas). En 
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otras palabras, la propiedad «x es el código de un enunciado de­
mostrable» puede traducirse a una propiedad numérica expresa­
ble en términos de sumas, productos y operaciones lógicas. Corno 
suele decirse, «Ser demostrable» es expresable. 

Destaquemos que esta parte de la argumentación de Godel es 
la que depende fundamentalmente del hecho de que el programa 
de Hilbert solo admite demostraciones verificables algorítrnica­
rnente. Si se permitieran otros métodos de razonamiento (habla­
remos de ellos en el último capítulo), entonces no habría forma de 
garantizar que la propiedad «x es el código de un enunciado de­
mostrable» es expresable en términos aritméticos. 

«Todos los principios de la matemática se reducen 
a principios de la lógica.» 
- \VJLLARD VAN ÜRMAN QUINE EN DESDE UN PUNTO DE VISTA LÓGICO. 
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¿Cómo probó Godel que «Ser demostrable» es expresable? 
En principio, probó que cualquier propiedad numérica que sea 
verificable algorítrnicarnente ( corno por ejemplo «Ser un número 
primo», «Ser par» o «Ser divisible por 9») es siempre expresable 
en términos de sumas, productos y operaciones lógicas. 

Ahora bien, que un enunciado P sea demostrable significa que 
existe una demostración ( corno las que admite el programa de 
Hilbert) de la cual Pes el enunciado final. A modo de ejemplo, ya 
mostrarnos una demostración de «4 = 2 + 2» a partir de los axiomas 
«S(x + y) = x + S(y)» y «x + 1 = S(x)» . Recordemos que a esa de­
mostración, en cuanto sucesión de enunciados, le corresponde el 
número de Godel 2414871965597. Recordemos además que a 
«4 = 2 + 2» le corresponde el 67. Traducido a códigos, que «4 = 2 + 2» 
sea demostrable significa que existe una secuencia finita de enun­
ciados, cuyo código es 2414871965597, que es una demostración, 
y que su enunciado final es aquel que tiene el código 67. 

«Ser el código de una demostración» es una propiedad verifi­
cable algorítrnicarnente porque, dado el código, para hacer la ve­
rificación, el ordenador aplicaría primero el programa que 
recupera la secuencia de enunciados correspondiente a ese có-
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ENCONTRAR O VERIFICAR 

La teoría de la demostración plantea dos 
problemas que, aunque similares, no de­
ben ser confundidos. El primer problema 
pide, dado un enunciado P, hallar una 
demostración de él (o bien probar que 
esa demostración no existe). El segundo 
problema plantea, si se ha propuesto una 
demostración para un enunciado, deter­
minar si la demostración es correcta, o si 
no lo es. El segundo problema puede ser 
difícil, pero el primero lo es mucho más. 
Si los métodos de demostración son los 
adecuados, el segundo problema, el de 
determinar si una demostración propues­
ta es correcta o no, puede resolverse 
algorítmicamente. El problema de hallar 
una demostración, en cambio, no es re­
soluble de esa manera. 

El último teorema de Fermat 

El matemático británico Andrew Wlles. 

Un ejemplo concreto está dado por el último teorema de Fermat. En 1637, 
Pierre de Fermat afirmó que si n>2, entonces la ecuación x n + y n = z n no tiene 
solución en los números naturales. Fermat aseguró tener una demostración 
de este hecho, pero jamás la reveló. El problema de hallar una demostración 
del último teorema de Fermat se volvió famoso y fue resuelto finalmente por 
Andrew Wiles en 1996 (Wiles presentó una primera demostración en 1995, 
pero esta resultó tener un error, que fue subsanado casi un año más tarde). 
Determinar la corrección de la demostración de Wiles fue un trabajo que 
demandó algunos días de esfuerzo; hallar la demostración, en cambio, nece­
sitó más de trescientos cincuenta años. 

digo, y luego aplicaría a esa secuencia de enunciados el algoritmo 
que determina si se trata, o no, de una demostración: 

Código de la sucesión -+ Sucesión de enunciados -+ ¿Es una 
demostración? 

Cada paso puede realizarse algorítmicamente. 
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Por lo tanto, dados x e y, la propiedad «y es el código de una 
demostración que termina en el enunciado de código x» es tam­
bién una propiedad verificable algorítmicamente, ya que al proce­
dimiento anterior solo hay que agregarle la verificación de que la 
secuencia termina con el enunciado que corresponde al número 
de Godel x . Como la propiedad es verificable algorítmicamente, 
entonces la función proposicional «y es el código de una demos­
tración que termina en el enunciado de código x » es expresable 
en términos de sumas, productos y operaciones lógicas. 

Finalmente concluirnos que la expresión «Existe algún y que 
es el código de una demostración que termina en el enunciado de 
código x » también es expresable en términos aritméticos. Pero, si 
la leemos con atención, veremos que esta última expresión dice 
que existe alguna demostración del enunciado de código x; en 
otras palabras, que el enunciado de código x es demostrable. De­
ducimos así que la función proposicional «x es el código de un 
enunciado demostrable» es expresable en términos aritméticos. 

Por lo general, esta traducción aritmética es tan complicada 
que su escritura explícita podría llegar a ocupar decenas de pági­
nas. Sin embargo, a efecto de entender la idea de la demostración 
de Godel, supondremos, a modo de ejemplo hipotético, que la pro­
piedad que caracteriza a los códigos de los enunciados demostra­
bles es la de «Ser un primo que puede escribirse como suma o resta 
de tres primos consecutivos». Asumirnos entonces que <<X es el có­
digo de un enunciado demostrable» equivale a <<X es un primo que 
puede escribirse como suma o resta de tres primos consecutivos». 

Antes de continuar, entendamos bien esta propiedad aritmé­
tica. Los números primos son aquellos que solamente son divisi­
bles por 1 y por sí mismos. Hay infinitos primos y los primeros 
son: 2, 3, 5, 7, 11, 13, 17, 19, 23, ... (como ya dijimos en el capítulo 
anterior, por razones técnicas el 1 no se considera primo). 

El número 23, por ejemplo, es primo, y además puede escri­
birse como suma o resta de tres primos consecutivos, ya que 
23 = 17 + 19-13 (nótese que 13, 17 y 19 son consecutivos en la su­
cesión de los números primos, aunque no los hayamos escrito en 
ese orden al hacer las operaciones) . En nuestro ejemplo, podemos 
asegurar que 23 es el código de un enunciado demostrable. Por el 
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contra1io, el 149 es un número primo que no puede escribirse 
como suma o resta de tres primos consecutivos. Pero 149 es, en 
nuestro ejemplo hipotético, el código del enunciado «4 es impar». 
Por lo tanto, decir que «149 no es un primo que se pueda escribir 
como sun1a o resta de tres primos consecutivos» equivale a decir 
que «El enunciado "4 es impar" no es demostrable» (y, en efecto, 
no es demostrable porque hemos supuesto que los axiomas son 
enunciados verdaderos y en consecuencia ningún enunciado falso 
es demostrable). Repitamos este concepto, porque aquí está el 
corazón de la demostración de Godel. El enunciado: 

«149 no es un primo que se pueda escribir como sun1a 
o resta de tres primos consecutivos» 

es, en principio, la afirmación de una propiedad aritmética relativa 
al número 149. Pero, vía la numeración de Godel, a ese mismo 
enunciado podemos atribuirle también el significado: 

«El enunciado "4 es impar" no es demostrable». 

Hay aquí dos niveles de lectura para «149 no es un primo que 
se pueda escribir como suma o resta de tres primos consecuti­
vos». Por un lado, un nivel meramente aritmético, literal, en el que 
interpretamos el enunciado como expresando una propiedad del 
número 149. Por otro lado, tenemos un nivel de lectura superior, 
o metamatemático, que depende de la numeración de Godel, y en 
el que interpretamos el enunciado como diciendo que la afirma­
ción «4 es impar» no es demostrable. 

EL MÉTODO DE AUTORREFERENCIA 

Hemos visto que, vía la numeración de Godel, hay enunciados arit­
méticos que se refieren a otros enunciados aritméticos. Veremos 
ahora cómo podemos obtener un enunciado que se refiera a sí 
mismo. 
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Supongamos, en otro ejemplo hipotético, que 101 fuera el có­
digo de un cierto enunciado Q. Bajo esta suposición, el enunciado 
« 1 O 1 es impar» se estaria refiriendo a Q y diría que «El código de Q 
es impar». Ahora bien, imaginemos que buscamos a qué enunciado 
corresponde el código 101 ( es decir, nos preguntamos quién es Q) y 
que descubrimos que 101 es el número de Godel de «101 es impar». 
En ese caso, «101 es impar» estaría en realidad refiriéndose a sí 
mismo y podría traducirse como «Mi código es un número impar». 

¿Es verosímil el ejemplo que acabamos de dar? ¿Es realmente 
posible construir un enunciado que se refiera a su propio código? 
La respuesta es sí. En su artículo, Godel expuso un método siste­
mático que permite escribir enunciados aritméticos que se refie­
ran a su propio código. Si Pes una propiedad aritmética cualquiera 
(como «Ser un número par» o «Ser un número primo»), este mé­
todo, al que llamaremos método de autorref erencia, explica cómo 
escribir un enunciado que puede traducirse como «Mi código 
cumple la propiedad P». La herramienta esencial de este método 
es una función, que indicaremos como d(x ), a la que Godel llamó 
«función diagonal». 

¿Qué es una función? Una función es una regla que, mediante 
un procedimiento específico, a cada número x le asigna otro nú­
mero, que puede ser igual o diferente a x, pero que es calculado 
sin ambigüedad ( a un mismo x no le pueden corresponder dos 
números diferentes). Reglas de este estilo son, por ejemplo, «Mul­
tiplicar el número x por sí mismo» o «Sumarle 3 al número x». Al 
número 2, por citar un ejemplo, la primera función le asigna el 4 y 
la segunda, el 5. En particular, nos interesan aquí las funciones 
que, como las que acabamos de mencionar, pueden expresarse en 
términos de sumas, productos y operaciones lógicas. 

Las funciones proposicionales reciben ese nombre porque se 
parecen a funciones, solo que no asignan números, sino proposi­
ciones. Por ejemplo, la función proposicional «x es par», le asigna 
al 2, no otro número, sino la proposición «2 es par». 

Ahora bien, en la escritura de las funciones proposicionales 
podemos insertar funciones numéricas, siempre que estas sean 
expresables en términos de sumas, productos y operaciones lógi­
cas. De este modo, podemos escribir «x + 3 es primo» o también 
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«x2 es múltiplo de 18» y ambas son, con pleno derecho, funciones 
proposicionales. 

Hechas estas aclaraciones, veamos ahora la definición de la 
función d(x), que en realidad se calcula solamente para números 
que son los códigos de funciones proposicionales. Para mayor cla­
ridad, explicaremos la definición sobre un ejemplo. Tomemos el 
código de una función proposicional, por ejemplo 171, que hemos 
supuesto es el número de Godel de la expresión <<X es par». A 
continuación, en esa función proposicional reemplazamos x por 
el número 171. Obtenemos así el enunciado «171 es par». El có­
digo de este enunciado es d(l 71), el número que la función diago­
nal le asigna al 171: 

171 - corresponde a <<X es par» --+ reemplazamos x por 171 --+ 

- «171 es par» - d(l 71) es el código de «171 es par». 

En los ejemplos iniciales dijimos que «171 es par» tiene como 
código el número 61. Por lo tanto, d (171) = 61. La función diago­
nal, al número 171 le asigna el 61. 

A modo de segundo ejemplo, calculemos d(l62), siendo 162 
el código de «x es divisible por 18»: 

162 --+ corresponde a «x es divisible por 18» - reemplazamos 
x por 162 - «162 es divisible por 18» - d(l62) es el código 
de «162 es divisible por 18». 

Como «162 es divisible por 18» tiene código 103, entonces 
d(l62) = 103. 

Todos los pasos que definen a la función diagonal pueden 
calcularse algorítmicamente, por lo tanto, su definición es expre­
sable usando sumas, productos y operaciones lógicas. Esta cir­
cunstancia nos da derecho a insertar la función nun1érica d(x ) en 
la expresión de una función proposicional, del mismo modo que 
en ejemplos anteriores lo hicimos con x 2 o x + 3. De este modo, 
por ejemplo, podemos escribir la expresión «d(x) es par». 

Supongamos ahora que a «d(x ) es par» le corresponde el có­
digo 423 y apliquemos el procedimiento para calcular d ( 423): 
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423 - corresponde a «d(x) es par» - reemplazamos x por 
423 - «d( 423) es par» - d( 423) es el código de «d( 423) es 
par». 

Observemos bien el último paso: d(423) es el código de 
«d(423) es par». Es decir, «d(423) es par» puede leerse como un 
enunciado autorref e rente que está hablando de su propio código 
y que dice «Mi código es un número par». Si «d(423) es par» tu­
viera por código al número 503, entonces el enunciado podría 
reescribirse como «503 es par» y estaría diciendo, falsamente, que 
su propio código es par. 

EL TEOREMA DE GOODSTEIN 

Tomemos un número natural cualquie ­
ra, por ejemplo el 25. A partir_ de él, va­
mos a construir una sucesión de núme­
ros, llamada «sucesión de Goodstein de 
sem ill a 25» (por Reuben Louis Good ­
stein [1912-1985], el matemático inglés 
que definió este mecanismo por prime­
ra vez). Para obt ener el segundo núme­
ro de la sucesión, escribimos el 25 como 
suma de potencias de 2, de manera que 
cada potencia aparezca exactamente 
u'na vez (el 1 es pote ncia de 2 porque 
2º = 1) : 

25 = 24 + 23 + 1. 

Y escribimos también cada exponente 
como suma de potencias de 2: 

25 = 22
' +22

•
1 + 1. 

El segundo número de la sucesión se obtiene reemplazando cada 2 por un 
3 en 22

' + 22
•

1 + 1 y luego restando 1: 

(33' + 33+1 + 1)- 1 = 33' + 33+1 = 7625597485068 
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El método de autorreferencia nos dice que el mismo procedi­
miento puede aplicarse a cualquier propiedad aritmética P. Toma­
mos la función proposicional «x cumple la propiedad P» y la 
transformamos en «d(x) cumple la propiedad P». Si el código de 
esta última expresión es el número n, entonces «d(n) cumple la 
propiedad P» puede leerse, vía la codificación de Godel, como un 
enunciado autorreferente que dice «Mi código cumple la propie­
dad P». Veamos ahora cómo este método nos lleva finalmente al 
enunciado G buscado. 

Ya dijimos que «Ser el código de un enunciado demostrable» 
es una propiedad expresable en términos de sumas, productos y 

El segundo número de la suces1on de Goodstein de semilla 25 es 
7 625 597 485 068. Para obtener el tercer número reemplazamos cada 3 por 
un 4 en 33

' + 33
•
1 y restamos l. Nos queda 4 4' + 4 4•1 -1, operación que da como 

resultado un número de 155 cifras. Previo al siguiente paso hay que escribir 
a 4 4' + 4 4•1 - 1 como suma de potencias de 4, en la que cada potencia apa­
rezca como máximo tres veces y en la que los exponentes sean también 
suma de potencias de 4 . Nótese que 44' + 44•1- 1 no está escrito de esa for­
ma, ya que hay una resta . La escritura correcta es: 

44' +44 +44 +44 +4 1+1+1 +41+1+1 +41+1+1 +41+1 +41+1 +41+1 +4+4+4+ 1+ l+ l. 

Para obtener el cuarto número reemplazamos cada 4 por un 5 y restamos l . 
Es decir: 

El resultado de este último cálculo es un número de más de dos mil cifras. 
Para obtener el siguiente número, reemplazamos cada 5 por un 6 y restamos 
l. Y así sucesivamente. La sucesión parece crecer indefinidamente. Sin em­
bargo, el teorema de Goodstein, demostrado por Goodstein hacia 1950, 
afirma que, no importa cuál sea la semilla inicial , la sucesión siempre llegará 
en una cantidad finita de pasos al número O. La demostración de Goodstein 
usaba conceptos de la teoría de conjuntos y quedaba abierta la posibilidad 
de que no fuera realizable a partir de los axiomas de Peano. Esto fue confir­
mado en 1982 por Laurie Kirby y Jeff Paris, quienes demostraron que el 
teorema de Goodstein es, en efecto, indemostrable a partir de los axiomas 
de Peano mediante razonamientos verificables algorítmicamente. 
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operaciones lógicas. Resulta obvio que lo mismo sucede con su 
negación. Por lo tanto, podemos escribir la función proposicional: 

«x no es el código de un enunciado demostrable» 

que, según dice el método de autorreferencia, transformamos en: 

«d(x) no es el código de un enunciado demostrable». 

Si su código es el número m, entonces: 

G: «d( m) no es el código de un enunciado demostrable» 

tiene como código al nún1ero d(m) y puede leerse como un enun­
ciado autorreferente que habla de su propio código y dice: «Mi 
propio código no corresponde a un enunciado demostrable». En 
otras palabras, G dice: 

«G no es demostrable» . 

Como vimos al principio de la demostración, este enunciado 
G resulta ser verdadero y a la vez no demostrable (recordemos 
que «demostrable» siempre significa «demostrable a partir de los 
axiomas propuestos»). Hemos probado que existe un enunciado 
G que es verdadero y no demostrable, y hemos descrito los pasos 
necesarios para escribirlo. Queda así demostrado el primer teo­
rema de incompletitud de Gódel. 

Una aclaración importante: el desarrollo que hemos hecho 
no es en realidad una demostración formal del primer teorema de 
incompletitud de Godel. Solamente es una introducción, útil para 
entender las ideas principales, pero que no explica los detalles espe­
cíficos de cómo esas ideas son llevadas a la práctica El lector intere­
sado en esos detalles puede profundizar en obras técnicas de lógica 
matemática, algunas de las cuales se mencionan en la bibliografía 

Una pregunta interesante es cómo se vería el enunciado G en 
nuestro ejemplo hipotético. Recordemos que en este ejemplo, la 
propiedad que caracteriza a los códigos de los enunciados demos-
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LA PARADOJA DEL MENTIROSO 

Una de las paradojas más antiguas que se conocen es la llamada «paradoja 
del mentiroso». Una manera de formularla es preguntarse si la afirmación 
«Esta oración es falsa» es verdadera o falsa. Si la afirmación es verdadera, 
entonces, por lo que dice de si misma, resulta ser falsa. Pero si es falsa, tam­
bién por lo que dice de si misma, resulta ser verdadera. Caemos así en un 
sinsentido, un circulo vicioso que nos lleva de la verdad a la falsedad , y de 
la falsedad a la verdad, una y otra vez. En su articulo de 1931, Godel explicó 
que su demostración está inspirada en la paradoja del mentiroso, solo que 
en lugar de escribir un enunciado que hablara de su propia falsedad, Godel 
escribió un enunciado que hablaba de su propia no demostrabilidad. El enun­
ciado «Esta oración es falsa » es un sinsentido paradójico. En cambio, el 
enunciado «Esta oración no es demostrable a partir de los axiomas propues­
tos» es una verdad no demostrable. 

trables es la de «Ser un primo que puede escribirse como suma o 
resta de tres primos consecutivos». Tomaríamos entonces la fun­
ción proposicional «x no es un primo que puede escribirse como 
suma o resta de tres primos consecutivos», que transformamos en 
«d(x ) no es un primo que puede escribirse como suma o resta de 
tres primos consecutivos». Supongamos que a esta última expre­
sión le corresponde el número 909. 

Entonces el enunciado G sería: 

«d(909) no es un primo que puede escribirse como 
suma o resta de tres primos consecutivos». 

Supongamos además que d(909) sea el número 43. En conse­
cuencia, G sería: 

«43 no es un primo que puede escribirse como suma o 
resta de tres primos consecutivos». 

Como ya se ha indicado antes, G tiene dos niveles de lectura. 
En un nivel elemental es la expresión de una propiedad aritmética 
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del número 43. Solamente cuando lo vemos a través del cristal de 
la codificación de Godel se transforma en autorreferente y puede 
leerse como diciendo de sí mismo que no es demostrable. En el 
capítulo siguiente veremos que esta observación sobre los dife­
rentes niveles de lectura permite superar una paradoja aparente 
que surge del análisis del segundo teorema de Godel. 

UNA VERDAD NO DEMOSTRABLE 

Una pregunta que suele surgir en relación al primer teorema de 
incompletitud es la siguiente: si G es una afirmación no demostra~ 
ble, ¿cómo podemos asegurar que es verdadera? 

La respuesta es que «demostrable» es un término relativo. 
Dado un conjunto A de axiomas, existe un enunciado verdadero 
G que no es demostrable a partir de esos axiomas (usando los 
métodos de demostración admitidos por el programa de Hilbert). 
Pero nada impide que G sea demostrable a partir de otros axiomas 
o mediante otros métodos de demostración. 

Aunque todavía no se sabe con certeza, el último teorema de 
Fermat podría ser un ejemplo de verdad no demostrable a partir 
de los axiomas de Peano. Este teorema, conjeturado por primera 
vez por Pierre de Fermat en 1637, afirma que si n>2, entonces 
x" +y" = z" no tiene solución en los números naturales. Después de 
numerosos intentos por parte de muchísimos matemáticos, el teo­
rema fue finalmente demostrado por Andrew Wiles en 1996. 

Sin embargo, la demostración de Wiles excede con mucho los 
métodos o los axiomas usuales de la aritmética El último teorema 
de Fermat es verdadero (Wiles lo demostró), pero ¿es demostrable, 
por ejemplo, a partir de los axiomas de Peano mediante los métodos 
del programa de Hilbert? Hoy por hoy no se sabe la respuesta a esta 
pregunta, pero la suposición más razonable parece ser que no, que el 
último teorema de Fermat no es demostrable a partir de los axiomas 
de Peana mediante razonamientos verificables algorítmicamente. 

Sin embargo, si G no es demostrable a partir de un conjunto 
A de axiomas, es perfectamente posible agregarle al conjunto A 
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un nuevo axioma, de tal modo que G sí sea demostrable a partir 
del sistema ampliado, al que llamaremos A'. Claro está que para A' 
también vale el teorema de Godel y por lo tanto habrá un enun­
ciado aritmético G' que no es demostrable a partir de él. 

Podemos agregarle aA' un nuevo axioma que permita demos­
trar G' , y obtendremos así un conjunto A" donde G' es demostra­
ble. Pero para A" habrá un nuevo enunciado no demostrable G". 
Podemos agregarle un nuevo axioma a A", pero entonces habrá 
un G''' indemostrable ... Y así indefinidamente: 

A - G no demostrable. 
A' = A + otro axioma - G demostrable, pero G' no. 
A" = A' + otro axioma - G y G' demostrables, pero G" no. 
A"' =A"+ otro axioma- G, G' y G" demostrables, pero G"' no. 

Agregando axiomas de uno en uno jamás podrá alcanzarse la 
completitud ( es decir, la posibilidad de demostrar todas las verda­
des). Pero, ¿podría alcanzarse por otros medios? Nos referiremos 
a esta pregunta en el último capítulo. 
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CAPÍTULO 3 

El segundo teorema de Godel 

Hilbert tardó diez años en elaborar su programa, un 
periodo repleto de lucha y debates. Después de todo ese 
esfuerzo, cuando el primer teorema de incompletitud de 

Godel demostró que el programa era irrealizable, ¿se rindió 
Hilbert sin pelear? ¿No buscó grietas en la demostración de 
Godel? ¿Ni siquiera protestó? En este capítulo analizaremos 

cómo Godel logró presentar la demostración de su 
teorema de incompletitud de tal manera que nadie 

pudiera dudar de su validez, ni siquiera Hilbert. 





La publicación de su primer teorema de incornpletitud, en 1931, 
transformó a Gbdel en una celebridad internacional ... dentro del 
mundo de las matemáticas. Su nombre empezó a ser conocido en 
todos los foros y congresos, y su demostración se transformó 
(corno sigue siendo hoy en día) en un clásico del razonamiento 
matemático. Sin embargo, Gbdel no pudo disfrutar en seguida de 
su bien ganada fama, porque después de completar su artículo su­
frió un colapso nervioso de tal magnitud que lo mantuvo alejado de 
la vida pública por varios meses. Casi con total seguridad, fue el 
resultado del estrés provocado por la presentación de su teorema. 

En realidad, en ese artículo de 1931, Gbdel presentaba dos 
teoremas. Uno de ellos es el ya mencionado primer teorema de 
incornpletitud, también conocido corno «el» teorema de Gbdel. 
Este teorema es el que enunciamos y demostrarnos en el capítulo 
anterior, y al que volveremos en este mismo capítulo. Recordemos 
que dice que si elegirnos corno axiomas aritméticos cualquier con­
junto de enunciados verdaderos, y solo admitirnos demostraciones 
verificables algorítrnicarnente, entonces habrá siempre un enun­
ciado verdadero que no es demostrable a partir de esos axiomas. 

El segundo teorema que Gbdel presentaba en ese artículo de 
1931 es hoy conocido corno el «segundo teorema de incornpleti­
tud», o «segundo teorema de Gbdel», y habla de la imposibilidad 
de verificar algorítrnicamente la verdad de un cortjunto de axio-
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mas aritméticos. Volveremos a este teorema más adelante, en este 
mismo capítulo. Hay que decir que el artículo no contenía una 
demostración detallada de este segundo teorema, sino que Godel 
se limitaba a exponer a grandes rasgos la idea general de cómo 
debería probarse y adelantaba que escribiría una segunda parte 
del artículo en la que expondría la demostración completa. Sin 
embargo, el colapso nervioso le impidió escribir esa segunda 
parte en los meses siguientes, y cuando finalmente se recuperó 
tomó conciencia de que las demostraciones de sus dos teoremas 
(incluso la del segundo, que estaba apenas insinuada) habían re­
cibido tal aceptación que consideró innecesaria cualquier aclara­
ción posterior, por lo que esa segunda parte del artículo jamás fue 
escrita. (El título original del artículo, en alemán, termina con el 
numeral romano «I», indicando así que se trata solamente de una 
primera parte. En las traducciones al español, al inglés u otros 
idiomas, el numeral romano suele ser omitido.) 

Superada su crisis nerviosa, Godel ingresó en 1933 en la Uni­
versidad de Viena corno docente ad honórem (Privatdozent, en 
alemán). En aquella época, en las universidades del centro de 
Europa, el cargo ad honórem era el modo usual de ingresar en la 
carrera docente. Pero además, como ya dijimos, Godel se había 
transformado en una celebridad internacional y en consecuencia, 
ese mismo año fue invitado a dar una conferencia en la reunión 
anual de la American Mathematical Society de Estados Unidos. 

En ese primer viaje a Estados Unidos, Godel conoció a Albert 
Einstein, quien había emigrado a ese país en 1932. Entre ambos 
nació inmediatamente una cálida amistad, que duró hasta 1955, 
año del fallecimiento de Einstein. En el próximo capítulo volvere­
mos a hablar de esta relación, muy apreciada por an1bos. 

En los dos años siguientes, 1934 y 1935, Godel volvió a viajar a 
Estados Unidos, aunque en estas dos ocasiones invitado por el Ins­
tituto de Estudios Avanzados de Princeton. En esta institución dio 
varios cursos y conferencias, ya no solamente sobre sus dos teore­
mas de incornpletitud, sino también sobre otros temas que había 
abordado en investigaciones posteriores. Entre ellos, por ejemplo, 
el problema siguiente: ¿existe un algoritmo que, dado un conjunto 
de axiomas y un enunciado P, permita deternlinar si Pes dernostra-
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EL INSTITUTO DE ESTUDIOS AVANZADOS DE PRINCETON 

Fundado en 1930, el Instituto de Estudios Avanzados de Princeton (Nueva 
Jersey, Estados Unidos) tenía el objetivo de reunir a la élite de la investigación 
científica internacional; la realización de este objetivo queda reflejada en los 
nombres de quienes formaron parte de su cuerpo de investigadores, entre 
otros, Kurt Gódel, Albert Einstein, Julius Robert Oppenheimer (físico teórico 
estadounidense, famoso por ser el director científico del proyecto Manhattan), 
John von Neumann, Oskar Morgenstern (estos dos últimos, creadores en con­
junto de la teoría de juegos) y Hermann Weyl (notable físico-matemático 
alemán). 

ble a partir de esos axiomas? Godel obtuvo algunas soluciones par­
ciales, aunque el problema sería resuelto completamente en 1936 
por el lógico norteamericano Alanzo Church, quien demostró que 
no existe un algoritmo con las características planteadas. Este pro­
blema, junto con otros planteados por el mismo Godel o por otros 
lógicos inspirados en las investigaciones de Godel, dieron inicio a 
la teoría de la computabilidad, que es el estudio de bajo qué condi­
ciones un problema matemático es resoluble algorítmican1ente. 

En estos viajes a Estados Unidos, Godel mostró sus métodos, 
sus ideas, los problemas que est.aba pensando y estas exposiciones 
dieron por sí solas impulso al desarrollo de la escuela norteameri-

EL SEGUNDO TEOREMA DE GÓDEL 91 



92 

ALONZO CHURCH 

Alonzo Church fue uno de los principales 
representantes de la escuela norteame­
ricana de lógica matemática, práctica­
mente iniciada por los cursos y conferen­
cias que Géidel dictó en Estados Unidos 
en la década de 1930. Church nació en 
Washington el 14 de junio de 1903 y es­
tudió matemáticas en la Universidad de 
Princeton, donde se doctoró en 1927. Su 
director de tesis doctoral fue Oswald Ve­
bien (que ayudó a organizar el Instituto 
de Estudios Avanzados de Princeton y 
fue además quien invitó a Géidel a dar 
sus primeras conferencias allí). Church 
hizo aportes de primer nivel a la lógica 
matemática, la teoría de la computabili-
dad (que investiga qué problemas matemáticos pueden ser resueltos algorít­
micamente y cuáles no) y la informática teórica. Es el creador del «cálculo­
lambda», todavía hoy una herramienta esencial en el estudio de la teoría de 
algoritmos. Church falleció en Estados Unidos en 1995. 

cana de lógica matemática, en la que brillaron Willard van Orman 
Quine, Stephen Cole Kleene y el ya mencionado Alanzo Church. 
Pero también dieron impulso a la lógica matemática en general; 
comparado con otros matemáticos, Godel publicó muy pocos tra­
bajos científicos, pero cada uno de ellos abrió una rama de la ló­
gica e introdujo métodos e ideas que siguen vigentes hoy en día. 

EL «ANSCHLUSS» 

Mientras Godel gozaba de los frutos de su creciente prestigio aca­
démico, la situación política en Viena se volvía cada vez más com­
plicada y violenta. Tras su ascenso al poder, Adolf Hitler había 
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declarado su intención de que Austria se transformara en parte 
de Alemania. Con ese objetivo en la mira, Hitler inició una serie de 
presiones políticas y militares sobre su vecino país. Estas presio­
nes comenzaron en 1931 con la exigencia de que el partido nazi, 
que hasta ese momento estaba proscrito, fuera reconocido en 
Austria y se le diera participación en el Gobierno. Sin embargo, en 
las elecciones austriacas de abril de 1932 los nazis no obtuvieron 
la victoria que esperaban, por lo que pasaron a la oposición y re­
currieron al terrorismo. Ese fue el inicio de una serie de atenta­
dos, magnicidios e intentos de golpes de estado que hacia 1937 
llevaron a Austria al borde de la guerra civil. 

Hasta donde se sabe, los primeros años de esta turbulencia 
política no afectaron especialmente la vida de Godel, que conti­
nuó sin interrupciones con sus investigaciones y sus viajes a Es­
tados Unidos. Pero el 22 de junio de 1936, Moritz Schlick, uno de 
sus mentores y fundador del Círculo de Viena, fue asesinado por 
un estudiante universitario. Al conocer la noticia, Godel sufrió un 
nuevo colapso nervioso del que tardaría varios meses en recupe­
rarse. Ese año iba a desplazarse nuevamente a Estados Unidos, 
pero debió cancelar el viaje y no pudo reiniciar su trabajo docente 
hasta 1937. 

En febrero de 1938 Hitler lanzó un ultimátum: Austria debía 
adherirse voluntariamente al III Reich o sería incorporada por la 
fuerza. Después de varias idas y vueltas, que incluyeron dos cam­
bios de Gobierno, en marzo se convocó un referéndum para que 
la gente votara a favor o en contra de la anexión a Alemania. El 
voto no era secreto; la papeleta, con el voto a la vista, era recibida 
por un oficial de las SS que la colocaba en la urna. Bajo estas cir­
cunstancias, no es sorprendente que la anexión a Alemania ganara 
con más del 99% de los sufragios y, como consecuencia, el 12 de 
marzo Austria se transformó en una provincia de la Alemania nazi 
( esta acción fue llamada el Anschluss, palabra alemana que signi­
fica «unión» o «anexión»). 

Inmediatamente los nazis reformaron el sistema universitario 
austriaco y dejaron sin trabajo a varios intelectuales, entre ellos 
Godel. Esto no impidió, sin embargo, que contrajera matrimonio, 
en septiembre de 1938, con Adele Porkert, una bailarina <livor-
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ciada, seis años mayor que él, a quien Godel había conocido en 
1927. Tal vez el matrimonio fue un paso previo necesario para 
emigrar juntos, una decisión que Godel ya veía como posible. 
Ambos formaron siempre una pareja muy unida, y aunque no eran 
propensos a las manifestaciones públicas de cariño, todo parece 
indicar que se quisieron mucho. 

«Es importante buscar demostraciones de consistencia, aunque 
toda demostración de consistencia es relativa en el sentido 
de que no podemos prestarle más confianza de la que le 
prestamos al sistema lógico en cuyo seno se desarrolla 
la demostración de consistencia.» 
- W!LLARD VAN ÜRMAN QmNE EN DESDE UN PUNTO DE VISTA LÓGICO. 
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En 1938 y también en 1939, Godel viajó otra vez al Instituto de 
Estudios Avanzados, y en estos viajes, además de dar sus habitua­
les cursos y conferencias, se procuró los contactos institucionales 
necesarios para preparar su futura admisión como profesor, en el 
caso de que tuviera que abandonar Austria. De regreso a Viena 
después del segundo de estos viajes, fue atacado por un grupo de 
estudiantes de ultraderecha que, según cuenta una anécdota muy 
repetida, su esposa espantó a paraguazos. 

Las presiones sobre Godel aumentaban, su presencia como 
intelectual independiente era una molestia para los nazis, y final­
mente en octubre de 1939 fue incluido en una «lista negra». Esto 
oficializaba su carácter de desocupado y bajo el régimen nazi los 
desocupados eran casi automáticamente reclutados en el ejército. 
En efecto, poco después Godel recibió la temida orden de reclu­
tamiento. Como única respuesta, Kurt Godel y Adele Porkert hu­
yeron de Austria hacia Estados Unidos (igual que tantos otros 
científicos europeos de aquella época, entre ellos, Albert Einstein 
y John von Neumann). 

La guerra entre Alemania, Francia e Inglaterra ya había co­
menzado para ese entonces, de modo que Godel y su esposa tuvie­
ron que viajar a Estados Unidos por el camino más largo, a través 
de Rusia, Japón y el océano Pacífico. Godel llegó al Instituto de 
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Estudios Avanzados en 1940, donde, gracias a sus contactos pre­
vios, pudo ingresar inmediatamente con el cargo de profe sor invi­
tado. En 1946 fue incorporado de modo permanente y en 1948 
adoptó la ciudadanía norteamericana. 

Godel nunca regresó a Austria o a Checoslovaquia; y aunque 
años más tarde la Universidad de Viena le ofreció cargos y hono­
res, no los aceptó. En realidad, jamás volvió a pisar suelo europeo. 

SEMÁNTICO O SINTÁCTICO 

Antes de seguir a Godel a Princeton, retrocedamos otra vez en el 
tiempo hasta septiembre de 1930 y recuperemos la imagen de ese 
joven que levantaba tímidamente la mano en el congreso de 
Konigsberg para anunciar su primer teorema de incompletitud. 

Ubicados de nuevo en ese momento histórico, hay una pre­
gunta que surge naturalmente y que todavía no nos hemos formu­
lado: después de diez años de elaborar su programa, de diez años 
de pensar y de escribir, ¿Hilbert se «rindió» sin luchar? ¿No in­
tentó cuestionar el razonamiento de Godel? La verdad es que la 
demostración de Godel escapó a toda discusión y fue aceptada de 
inmediato, de manera unánime, inclusive por Hilbert. La explica­
ción es que Godel no solamente pensó muy bien su demostración, 
sino que también, en especial, tuvo mucho cuidado en el modo de 
presentarla. A continuación desarrollaremos con cuidado esta 
idea, que es fundamental para la comprensión del teorema de 
Godel. 

Como ya dijimos, el programa de Hilbert solo aceptaba como 
válidas aquellas demostraciones que fueran verificables algorítmi­
camente y hacia septiembre de 1930 esa restricción había llegado 
a ser aceptada por todos los matemáticos, contando entre ellos a 
los intuicionistas quienes, según palabras de Arendt Heyting, 
«abrazarían» el infinito siempre que las demostraciones se ajusta­
ran a ese criterio. 

Ahora bien, así como Hilbert en su momento había mostrado 
una propuesta calculada para convencer a los intuicionistas, 
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Godel, con el mismo espíritu, expuso la demostración de su pri­
mer teorema de incompletitud de tal manera que fuera evidente 
que su corrección era verificable algorítmicamente, que fuera 
obvio que cumplía las condiciones del programa de Hilbert. Y tan 
claro resultó este hecho que ni siquiera Hilbert pudo expresar 
dudas al respecto. 

«Como es bien sabido, el progreso de la matemática hacia 
una exactitud cada vez mayor ha llevado a [ ... ] 

que las deducciones pueden llevarse a cabo según 
unas pocas reglas mecánicas.» 

- KURT GüDEL, EN LA INTRODUCCIÓN A SOBRE LAS PROPOSICIONES 

FORMALMENTE INDECIDIBLES ••• (1931) 

¿Cómo logró Godel este objetivo? ¿Cómo consiguió que fuera 
innegable que la demostración de su teorema era verificable por 
un ordenador? La explicación reside en lo que podemos llamar la 
«dualidad semántico-sintáctica». 

En lógica matemática, un concepto relativo a una secuencia 
de símbolos es sintáctico si ese concepto depende solamente de 
los símbolos que forman la secuencia, sin que tenga la menor im­
portancia su significado, si es que ese significado existe. Por ejem­
plo, si afirmamos que la secuencia de letras «Kuna mbwa 
nyekundu» está formada por 18 caracteres (contando espacios), 
estamos refiriéndonos a un concepto sintáctico. En efecto, es po­
sible verificar por simple inspección de los símbolos que lo que 
estamos diciendo es correcto, sin que nos interese saber si esa 
serie de letras posee, o no, algún sentido. Otros conceptos sintác­
ticos serían «La primera letra es una K» o «No aparece la letra h». 

Por el contrario, un concepto es semántico si depende del 
significado que la secuencia transmite. Por ejemplo, si decimos 
que «Kuna rnbwa nyekundu» es verdadera, entonces es claro que 
nos estamos refiriendo a un concepto semántico, porque no pode­
mos decidir si es «verdadera» o «falsa» a menos que sepamos pre­
viamente qué significado nos quiere transmitir esa secuencia de 
letras (si es que acaso hay alguno). 
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Es verdadero 

------ ---·------------' 

La verdad es que sí hay un sentido: «Kuna mbwa nyekundu», 
en suajili, significa «Existen perros rojos» (véase el esquema). 
Hecha esta aclaración podemos ahora preguntarnos si la oración 
es verdadera o falsa, pero aun así la respuesta no es sencilla porque 
¿qué significa que un perro sea rojo? ¿Tiene que haber nacido con 
el pelaje de ese color? ¿Aceptaríamos como de color rojo a un 
perro que haya sido teñido? Por otra parte, no todos los seres hu­
manos percibimos el color de la misma manera. Todas estas dis­
quisiciones tienen el objetivo de exponer el hecho de que los 
aspectos sintácticos del lenguaje son diáfanos y que no se prestan 
a confusiones. Por el contrario, los aspectos semánticos son pro­
pensos a la confusión y la paradoja. En concordancia con esta idea, 
la premisa fundamental del programa de Hilbert consistía en pedir 
que la validez de los aspectos semánticos de las matemáticas fuera 
controlada mediante métodos sintácticos. La sintaxis, clara e indu­
bitable, debía poner coto a la semántica, propensa a paradojas. 

EL PRIMER TEOREMA REVISITADO 

Decimos entonces que Kurt Godel presentó la demostración de 
su primer teorema de incompletitud de tal manera que resultara 
evidente para todos que era verificable por un ordenador. ¿Cómo 
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lo consiguió? Gódel expuso el enunciado y cada paso de la de­
mostración del teorema apelando solamente a conceptos sintác­
ticos. 

En el capítulo anterior formulamos el primer teorema de 
incompletitud de Gódel ( o teorema de Gódel) de la siguiente 
manera: 

Si elegimos como axiomas cualquier conjunto de enunciados 
aritméticos verdaderos y exigimos que las demostraciones que 
hagamos a partir de ellos sean verificables algorítmicamente, 
entonces habrá al menos un enunciado verdadero que no pue­
de ser demostrado a partir de esos axiomas. 

En esta formulación del teorema aparece el concepto semán­
tico de «verdadero». Por lo tanto, no es esta la forma en que Gódel 
lo presentó en su artículo de 1931. La formulación de Gódel es 
equivalente, solo que está escrita usando solamente conceptos 
sintácticos. 

Nuestra intención en lo que sigue es definir los conceptos sin­
tácticos que usó Gódel y reformular en consecuencia su primer 
teorema de incompletitud. 

Digamos para comenzar que «Ser una demostración ( que se 
ajusta a los requisitos del programa de Hilbert)» sí es una propie­
dad sintáctica, ya que es verificable por un ordenador mediante 
inspecciones símbolo a símbolo. En consecuencia, la idea de 
«enunciado demostrable» es también sintáctica, dado que un 
enunciado P es demostrable si existe una demostración que ter­
mina en él. 

Inclusive el concepto de «enunciado» puede traducirse sin­
tácticamente. En principio, la definición aristotélica dice que un 
enunciado es una expresión a la que se le puede atribuir un valor 
de verdad (ya sea verdadero o falso). Por ejemplo: 

«x es primo» 

no es un enunciado porque su valor de verdad depende de quién 
sea x. En cambio: 
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«Existe algún x que es primo», 
«Para todo x vale que x es primo» 

sí son enunciados, verdadero el primero y falso el segundo. 
Ahora bien, este concepto eminentemente semántico puede 

traducirse sintácticamente: un enunciado es una expresión que no 

AUTORREFERENCIA SINTÁCTICA 

En su Principia Mathematica Bertrand Russell afirmó que todas las paradojas 
conocidas nacen siempre de la autorreferencia. Es decir, todas las parado­
jas surgen de enunciados que, directa o indirectamente, se refieren a sí mis­
mos. El modo de evitar toda paradoja, decía Russell , es eliminar en el lengua­
je toda traza de autorreferencia. Ahora bien, el enunciado G de Gódel es 
autorreferente. ¿significa esto que es paradójico? En real idad, Gódel observó 
que tiay dos tipos de autorreferencia, que podemos llamar semántica y sin­
táctica. En la semántica, el enunciado autorreferente habla de una caracterís­
tica semántica de sí mismo. Tal es el caso de «Esta oración es falsa», que es 
la afirmación que provoca la paradoja del mentiroso. En la autorreferencia 
sintáctica, en cambio, el enunciado autorreferente habla de una característica 
sintáctica de sí mismo. Un ejemplo sería: «Esta oración tiene cinco palabras». 
La autorreferencia semántica, como bien decía Russell , es siempre peligrosa 
y nos lleva al borde de la paradoja. La autorreferencia sintáctica, en cambio, 
no conlleva ningún r iesgo. ¿por qué? Porque la autorreferencia sintáctica es 
solo una autorreferencia aparente: la oración parece hablar de sí misma, pero 
en realidad hay un desdoblamiento: el «significado» de la oración habla de los 
«símbolos» que la forman, el significado no habla de sí mismo. Cuando deci­
mos «Esta oración tiene cinco palabras», en realidad decimos: 

«"Esta oración tiene cinco palabras" tiene cinco palabras», 

cuya negación es: 

«"Esta oración tiene cinco palabras" no tiene cinco palabras». 

Hablamos de los símbolos, no del sentido, por lo que no hay riesgo de para­
doja. El enunciado G de Gódel dice de sí mismo que no es demostrable, es 
decir, se está refiriendo a una característica sintáctica de sí mismo. Como la 
autorreferencia es sintáctica, entonces razonar a partir de G jamás nos lleva­
rá a una paradoja. 
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tiene variables (letras como x, y, z) que puedan ser libremente 
reemplazadas por números. Es decir, es una expresión en la que, 
o bien no hay variables, tal como sucede en «4 = 2 + 2», o bien 
todas ellas están precedidas por expresiones del tipo «Para todo 
x vale que ... » o «Existe algún x que ... », tal como sucede en los 
dos ejemplos previos. En otras palabras, que una expresión sea, o 
no, un enunciado es una condición que puede verificarse por ins­
pecciones símbolo a símbolo, sin que sea necesario recurrir al 
significado de estos. Por lo tanto, «enunciado» y «enunciado de­
mostrable» son dos conceptos sintácticos que Godel pudo usar en 
la formulación de su teorema. 

CONSISTENCIA 

Otro concepto esencial para la formulación sintáctica del primer 
teorema de incompletitud es el de consistencia. Un conjunto de 
axiomas es consistente si no existe ningún enunciado P tal que P 
y no-P sean ambos simultáneamente demostrables a partir de esos 
axiomas (sintácticamente, no-P se obtiene simplemente colo­
cando a la izquierda de P un símbolo que indique negación). 

Aunque en lo que sigue vamos a ver qué relación hay entre ser 
«consistente» y ser «verdadero», debe quedar claro que la consis­
tencia es un concepto puramente sintáctico (porque depende de 
la noción sintáctica de demostrabilidad). 

Observemos que si todos los axiomas son enunciados verda­
deros, entonces el conjunto de axiomas es consistente. En efecto, 
como decíamos en el capítulo anterior, de premisas verdaderas 
solo se obtienen conclusiones verdaderas. Ahora bien, de los 
enunciados P y no-P, exactamente uno de ellos es falso; por lo 
tanto, si los axiomas son todos verdaderos, es imposible que P y 
no-P sean sin1ultáneamente demostrables ( el que sea falso no será 
demostrable). 

¿Significa esto que «conjunto consistente de axiomas» es 
equivalente a «conjunto de axiomas verdaderos»? La pregunta 
es delicada y merece ser analizada con cuidado. 
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Comencemos por preguntamos si el enunciado «2 es primo» 
es verdadero, o si es falso. Ante esta pregunta, la primera reacción 
de casi cualquier persona sería decir que es evidentemente verda­
dero. Sin embargo, una respuesta más ajustada a la realidad sería 
decir «depende». Depende del universo del discurso del que este­
mos hablando. Si damos por sobreentendido que hablamos de los 
números naturales, entonces el enunciado es, en efecto, verda­
dero; pero en otros contextos podría ser falso. 

En primer lugar, recordemos que un número (diferente de 1) 
es primo si es divisible solamente por 1 y por sí mismo. Otra fonna 
de exponer el mismo concepto es la siguiente: 2 es primo porque 
la única forma de expresarlo como producto de dos números 
es la trivial: 2 = 2 x 1 (la escritura 2 = 1 x 2 no cuenta como dife­
rente porque intervienen los mismos números). El número 15, por 
ejemplo, no es primo porque puede escribirse, además de la forma 
trivial 15 = 1 x 15, también como 15 = 3 x 5. 

Pero, ¿es cierto que 2 = 2 x 1 es esencialmente la única forma 
de escribir al 2 como producto de dos números? Si pensamos en 
el universo de los números naturales, sí. Pero existen otros uni­
versos posibles. 

Ampliemos nuestro universo numérico e incluyamos a todos 
los números que se obtienen multiplicando J2 por un número natu­
ral ( o por el cero) y luego sumando otro número natural ( o el cero). 
Por ejemplo, este universo contiene a los números 3 + 4 J2 o 7 J2. 
Este universo contiene también al propio J2, que se escribe como 
O + 1 J2, y a todos los naturales, que se pueden escribir corno: 

l=l + 0J2 
2=2+0J2 
3 = 3 + O J2. 

Ahora bien, en este universo, el 2 ya no es primo, porque 
puede escribirse como 2 = J2 x J2. El enunciado «2 es primo» es 
verdadero en los números naturales, pero falso en el otro universo 
que hemos definido (véase el esquema). 

Entonces, ¿cuál es la relación entre la consistencia y la ver­
dad? La respuesta está dada por el llamado «teorema de Lowen-
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Universo: 1, 2, 3, 4, 5, .. . Universo: 2 + V2, V2, 3 + 7V2, ... 
Respuesta: sí Respuesta: no 

heim-Skolem» ( demostrado en 1915 por Leopold Lowenheim para 
un caso particular y en 1919 por Thoralf Skolem para el caso ge­
neral), que dice que un conjunto de axiomas es consistente si 
existe algún universo en el que todos los axiomas son enunciados 
verdaderos. Por lo tanto, el conjunto formado por los dos axiomas 

Para todo x vale que x + O = x, 
2 no es un número primo, 

es consistente, ya que hay un universo en el que los dos son simul­
táneamente verdaderos. Sintácticamente, esto significa que no 
existe un enunciado P tal que P y no-P sean an1bos demostrables 
a partir de esas dos premisas. 

Un momento ... ¿podemos tomar «2 no es primo» como 
axioma? ¿Los axiomas no deberían ser «evidentes por sí mismos»? 
En el mundo puramente sintáctico, en el que verdad y falsedad no 
existen, no tiene sentido hablar de enunciados «evidentes por sí 
mismos». Cualquier enunciado puede ser tomado como un 
axioma. La única condición es que el conjunto total sea consis­
tente. ¿Por qué la consistencia es esencial?¿ Qué sucede si un con­
junto de axiomas es inconsistente? Semántican1ente, esto significa 
que no hay ningún universo posible en el que todos los enunciados 
sean simultáneamente verdaderos. Pero, ¿tiene la inconsistencia 
de un sistema de axiomas alguna consecuencia sintáctica? La res­
puesta es que sí, porque: 

Si un conjunto de axiomas es inconsistente, entonces cual­
quier enunciado es demostrable a partir de él. 
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Demos la idea de cómo puede demostrarse sintácticamente 
esta afirmación. Supongamos que existe algún enunciado P tal que 
el cortjunto de axiomas permite demostrar tanto P como no-P y to­
memos un enunciado Q cualquiera. Queremos probar que Q es de­
mostrable. Para ello, recordemos algunas de las reglas de la lógica: 

a) De «P» se deduce siempre «no-Q=P». 
b) De «no-Q=P» se deduce «no-P=Q». 

c) De <<P» y de <<P = Q» se deduce «Q» ( que es conocida como 
regla del modus ponens ). 

Observemos que todas las reglas están formuladas sintáctica­
mente, apelando a la forma de los enunciados y no a su signifi­
cado. Suponemos, dijimos, que <<P» y «no-P» son demostrables. 
Entonces tenemos: 

l. «P» es demostrable, por lúpótesis. 
2. Se deduce que «no-Q=P» es demostrable, por la regla a). 
3. Luego, «no-P= Q» es demostrable, por la regla b ). 
4. «no-P» es demostrable, por lúpótesis. 
5. De «no-P» (punto 4) y de «no-P= Q» (punto 3), por la regla 

de modus ponens, se deduce Q. 
6. Luego Q es demostrable. 

Como Q era un enunciado cualquiera, deducimos que todo 
enunciado es demostrable a partir de los axiomas. Es decir, cual­
quier enunciado es demostrable a partir de un cortjunto inconsis­
tente de axiomas. 

Observemos que el razonamiento que hemos hecho es pura­
mente sintáctico. No hemos apelado al significado de P ni de Q, ni 
a conceptos semánticos como «verdadero» o «falso». Solo nos 
hemos basado en las reglas sintácticas de la lógica y en la «forma» 
de los enunciados. Este es el tipo de argumento sintáctico que 
Godel usó para exponer la demostración de su teorema. 

Cuando Bertrand Russell descubrió su paradoja, en realidad 
estaba probando que el sistema de axiomas que había propuesto 
Frege era inconsistente. Veamos esta idea con más detalle. Recor-
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UN EJEMPLO DE RUSSELL 

Cierta vez, dando una conferencia para 
el público en general, Bertrand Russell 
comentó que si un conjunto de axiomas 
es inconsistente, entonces cualquier afir­
mación es demostrable a partir de ellos. 
En realidad, Russell enunció este hecho 
en su versión semántica, que afirma que 
partiendo de una premisa falsa puede 
demostrarse cualquier cosa. Inmedia­
tamente Russell fue desafiado por la 
audiencia a demostrar que Smith (uno 
de los espectadores) era el papa partien­
do de la premisa falsa de que 1 = O. Para 
hacer la demostración, Russell razonó 
así: Si 1 = O, entonces, sumando 1 a ambos 
miembros, deducimos que 2 = l. Pense­
mos ahora en el conjunto formado por 
Smith y el papa. Ese conjunto tiene dos 
miembros, pero como 2=1, entonces po­
demos decir que el conjunto tiene sola­
mente un miembro. Es decir, Smith y el 
papa son una y la misma persona. 

demos que Russell definió un conjunto R formado por todos los 
conjuntos que no son miembros de sí mismos. 

Si R es miembro de sí mismo, entonces se deduce que no lo 
es. Esto es una contradicción, que surge de suponer que R es 
miembro de sí mismo, entonces la contradicción demuestra, por 
el absurdo, el enunciado «R no es miembro de sí mismo». Pero, de 
suponer que R no es miembro de sí mismo, llegamos a la conclu­
sión de que sí lo es. Esto demuestra, también por el absurdo, el 
enunciado <<Res miembro de sí mismo». Por lo tanto, la paradoja 
de Russell muestra en realidad que existe un enunciado tal que él 
y su negación son ambos demostrables a partir de los axiomas de 
Frege. En otras palabras, como dijimos antes, muestra que los 
axiomas de Frege son inconsistentes. 

EL SEGUNDO TEOREMA DE GÓDEL 105 



106 

INCONSISTENCIA Y COMPLETITUD 

A partir de un cor\junto inconsistente de axiomas todo es demos­
trable. Asociado a esta idea surge un nuevo concepto sintáctico, 
el de completitud. Un cor\junto de axiomas es completo si para 
todo enunciado se cumple que, o bien él, o bien su negación (al 
menos uno de ambos) es demostrable. 

Podernos afirmar entonces que cualquier cor\junto inconsis­
tente es completo, porque dado cualquier enunciado P, tanto P 
corno no-P, ambos enunciados, son demostrables. Pero se trata de 
una cornplet~tud trivial que no nos da ninguna inf orrnación ya que 
todo, absolutamente todo, es demostrable, inclusive aquellos 
enunciados que son autocontradictorios, corno por ejemplo «Para 
todo x vale que x es diferente de sí mismo». 

Más interesante sería tener un cor\junto de axiomas que fuese 
a la vez completo y consistente. Un cor\junto de axiomas que tu­
viera estas características se acercaría a cumplir el objetivo del 
programa de Hilbert. En efecto, si el sistema es consistente, en­
tonces sus enunciados serían verdaderos en algún universo, y si 
es completo, todas las verdades relativas a ese universo serían 
demostrables (véase el esquema). 

Conjunto consistente 
pero incompleto de 

axiomas. 

1 R J 

O= demostrable : ; = no demostrable 
... _ - .. 
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Pero el programa Hilbert quería axiomatizar la aritmética, no 
un universo cualquiera. ¿Hay alguna manera sintáctica de plan­
tear este objetivo? La respuesta, como veremos a continuación, 
es que sí. 

ENUNCIADOS FINITISTAS 

Hay ciertos enunciados aritméticos cuya verdad o falsedad puede 
ser verificada algorítmicamente en una cantidad finita de pasos, 
enunciados que los intuicionistas aceptarían considerar como ver­
daderos o falsos sin cuestionamientos, principalmente porque no 
involucran la idea de infinito (ni siquiera en el sentido potencial). 

Por ejemplo: 

«2+3=5» 
«3x 7 =21» 

«45 es divisible por 9» 
«2 es primo» 

( en todos los casos referidos al universo de los números natura­
les) son enunciados finitistas verdaderos. El enunciado «2 x 3 = 1 O» 
es finitista y falso. En cambio: 

«Todo número par mayor que 2 es suma de dos números 
primos» 

no es un enunciado finitista, ya que involucra un número infinito 
de casos. En efecto, este enunciado equivale a: «4 es suma de dos 
primos y 6 es suma de dos primos y 8 es suma de dos primos y .. . 
(y así sucesivamente)». 

Observemos que «36 es suma de dos primos» es un enun­
ciado finitista. En efecto, si 36 fuera suma de dos primos, estos 
necesariamente deben ser menores que 36. Hay solo 11 primos 
menores de 36 (que son 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31) y 55 
parejas que pueden formarse con ellos. Para ver si el enunciado 
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LA CONJETURA DE GOLDBACH 

La afirmación de que todo número par 
es suma de dos primos es conocida 
como la «conjetura de Goldbach». Este 
nombre se debe a que fue formulada por 
Christian Goldbach en 1742, en una carta 
escrita al famoso matemático suizo 
Leonhard Euler (1707-1783). Al momento 
de redactar estas líneas no se sabe si la 
conjetura es cierta o no. Se ha verificado 
que es verdadera para una gran cantidad 
de números pares, pero nadie ha hallado 
hasta ahora una demostración general que la pruebe para todos los casos, así 
como tampoco se ha encontrado un ejemplo en el que la conjetura falle. 

es verdadero, basta con probar una por una esas 55 parejas y ver 
si para alguna de ellas la suma es 36. El enunciado es verdadero, 
ya que 36 = 5 + 31. 

En cambio, en el enunciado «43 es suma o resta de tres pri­
mos consecutivos», el hecho de que hablemos de suma o resta 
implica que los primos involucrados puedan llegar a ser tan gran­
des como se quiera. La búsqueda de prin10s posibles es potencial­
mente infinita, por lo que el enunciado no es finitista. 

Ahora bien, si proponemos un conjunto de axiomas para la 
aritmética, lo menos que podemos pedirle es que sea capaz de 
demostrar todos los enunciados finitistas verdaderos. Cabe hacer 
notar que en lo que acabamos de decir la palabra «verdadero» está 
asociada a enunciados finitistas. En ese contexto restringido, 
«verdadero» o «falso» pasan a ser condiciones sintácticas, ya que 
son verificables mecánicamente en una cantidad finita de pasos. 
Planteado desde la sintaxis, el programa de Hilbert pedía hallar un 
conjunto consistente y completo de axiomas para la aritmética 
que fuera capaz de demostrar todos los enunciados finitistas ver­
daderos. El primer teorema de incompletitud prueba, precisa­
mente, que este objetivo es inalcanzable. 
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LA DEMOSTRACIÓN DE GODEL REVISIT ADA 

Llegamos así a la formulación sintáctica del primer teorema de 
incompletitud de Godel: 

Si un conjunto de axiomas aritméticos es consistente y per­
mite demostrar todos los enunciados finitistas verdaderos, 
entonces es incompleto; es decir, existe un enunciado G tal 
que ni G, ni no-G, ninguno de los dos, es demostrable. (Enten­
demos siempre que solo se admiten demostraciones verifica­
bles algorítmicamente.) 

Observemos que, en efecto, en esta versión del teorema sola­
mente aparecen conceptos sintácticos («consistente», «incom­
pleto», «enunciado» y «demostrable»). La noción de «verdad» 
aparece asociada a enunciados finitistas, es decir, en su versión 
más restringida y sintáctica. 

Esta es la formulación sintáctica que presentó Godel en su 
artículo de 1931, e igualmente sintácticos fueron los argumentos 
que usó para demostrarlo. A continuación, hagamos un repaso de 
la demostración que vin10s en el capítulo anterior, con la inten­
ción de ver que puede ser repetida a partir de conceptos exclusi­
vamente sintácticos: 

- Paso l. Supongamos que tenemos un conjunto consistente 
de axiomas aritméticos que permiten demostrar todos los 
enunciados finitistas verdaderos (no indican1os ya que sean 
enunciados verdaderos, porque estamos apelando sola­
mente a conceptos sintácticos). Tenemos que probar que 
existe un enunciado G tal que ni G ni no-G son demostrables. 
Como vimos en el capítulo anterior, Godel le asigna un 
código ( o número de Godel) a cada enunciado y a cada 
función proposicional, solo que ahora debemos destacar 
que la asignación se hace de manera puramente sintác­
tica, basándose en los símbolos que forman cada enun­
ciado o función proposicional, con independencia de cuál 
sea su significado. También, e igualmente de manera sin-
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táctica, se le asigna un código a cada sucesión de enuncia­
dos y, en particular, se le asigna un código a cada demos­
tración. 

- Paso 2: A continuación, Godel demuestra que la función 
proposicional: 

«y es el código de una demostración del enunciado de có­
digo X» 

puede traducirse a una propiedad aritmética que vincula 
a los números x e y. Además, prueba que, cualesquiera 
sean los números n y r, el enunciado: 

«n es el código de una demostración del enunciado de có­
digo r» 

es siempre finitista. 

- Paso 3: Godel plantea la función proposicional: 

«No existe y que sea el código de una demostración del 
enunciado de código x». 

- Paso 4: Godel define la función diagonal. Si n es el código 
de la función proposicional P(x), entonces d(n) es el có­
digo de P(n). Por lo tanto, la definición de la función dia­
gonal, que se basa esencialmente en el mecanismo de 
asignación de códigos, es sintáctica. 

- Paso 5: A partir de los pasos 3 y 4, el método de autorrefe­
rencia le permite a Godel escribir un enunciado G: 

«No existe y que sea el código de una demostración del 
enunciado de código m», 

cuyo código es el propio número m. 
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- Paso 6: V amos a probar ahora, sintácticamente, que G no 
es demostrable. Supongamos, por el absurdo, que G fuera 
demostrable. Existiría entonces una demostración de G, y 
a esa demostración le corresponderla un código, digamos 
que ese código es un número k. Por lo tanto: 

«k es el código de una demostración del enunciado de có­
digo m » 

seria un enunciado verdadero (porque m es el código de G 
y k es el código de una demostración de G) y además es fini­
tista, porque es posible verificar su verdad en una cantidad 
finita de pasos ( es posible verificar algoritmicamente que k 
es en efecto el código de una demostración de G). Como es 
finitista y verdadero, entonces, por hipótesis, el enunciado es 
demostrable. De este hecho, una de las reglas de la lógica nos 
permite deducir que también es demostrable el enunciado: 

«Existe y que es el código de una demostración del enun­
ciado de código m». 

Supongamos que 

G = No existe x que sea el código de una demostración de G • • •, 
es demostrable. 

Existe una demostración de G, con código k. rn 
' 

k es el código de una demostración de G es finitista y verdadero. : 

k es el código de una demostración de G es demostrable. 

' ' 

Existe x que sea el código de una demostración de G es demostrable. 

EL SEGUNDO TEOREMA DE GÓDEL 

Esquema de la 
prueba de que 
G no es 
demostrable. 
Partimos 
suponiendo que G 
sí es demostrable. 
Las flechas 
indican las 
sucesivas 
consecuencias 
que se obtienen 
de esa suposic ión 
inicial hasta llegar 
a la conclusión de 
que la negación 
de G también 
sería demostrable. 
Esto último es 
una contradicción; 
por lo tanto, G 
no puede ser 
demostrable. 
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Si se compara este último enunciado con el que hemos lla­
mado G, resulta claro que este último es no-G. Estamos di­
ciendo entonces que G y no-G serían a la vez demostrables. 
Esto contradice que el coajunto de axiomas es consistente. 
Hemos llegado a una contradicción. Este absurdo proviene 
de suponer que Ges demostrable; por lo tanto, concluimos 
que G no es demostrable (véase el esquema de la página 
anterior). 

OMEGA-CONSISTENCIA 

Cuando en el texto hemos demostrado que el enunciado no-G no es demos­
trable, nos basamos en el hecho de que si una propiedad P cumple que: 

el enunciado «1 no cumple la propiedad P» es demostrable 
el enunciado «2 no cumple la propiedad P» es demostrable 
el enunciado «3 no cumple la propiedad P» es demostrable 

... y así sucesivamente, 

entonces el enunciado «Existe algún x que cumple la propiedad P» no es 
demostrable. Pero, les esto cierto? Veámoslo primero semánticamente. Su­
pongamos que P es una propiedad aritmética que cumple: 

el enunciado «1 no cumple la propiedad P» es verdadero 
el enunciado «2 no cumple la propiedad P» es verdadero 
el enunciado «3 no cumple la propiedad P» es verdadero 

... y así sucesivamente, 

es decir, para cualquier número n es verdad que «n no cumple la propiedad 
P». Está claro entonces que el enunciado «Existe algún x que cumple la pro­
piedad P» es falso (porque hemos dicho que ni 1, ni 2, ni 3, etc., cumplen la 
propiedad). Pero es falso, si el universo del que estamos hablando es el de los 
números naturales. Sin embargo, «Existe algún x que cumple la propiedad P» 
podría ser cierto si hablamos de otros universos. Por ejemplo, si la propiedad 
Pes «x2 = 2» y el universo es el de los números generados a partir de ✓2, en­
tonces 1 no cumple la propiedad, tampoco 2, ni 3, etc. Pero «Existe algún x 
que cumple la propiedad P» es verdadero porque ✓2 sí la cumple. Llegados 
aquí, lqué sucede sintácticamente? Tenemos otra vez la propiedad P, pero 
ahora supongamos que: 
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- Paso 7: Probemos ahora que no-G tampoco es demostra­
ble. Una vez más, hagárnoslo por el absurdo. Supongamos 
que no-G sí es demostrable y lleguemos a una contradic­
ción. Como el conjunto de axiomas es consistente, si no-G 
es demostrable, entonces G no puede serlo. Esto quiere 
decir que no existe una demostración de G; por lo tanto, 
ningún número es el código de una demostración de G: el 
número 1 no es el código de una demostración de G, tam-

«l no cumple la propiedad P» es demostrable 
«2 no cump le la propiedad P» es demostrable 
«3 no cumple la propiedad P» es demostrable 

... y así sucesivamente. 

¿Es cierto que «Existe algún x que cumple la propiedad P>> no es demostrable? 
En realidad, dado que en algunos universos es verdadero, no podemos afirmar 
tajantemente que nunca será demostrable. La demostración de que no-G no 
es demostrable tiene una laguna lógica porque no podemos afirmar que el 
enunciado «Existe algún x que cumple la propiedad P» no será demostrable. 
Para zanjar este problema, Godel introdujo la noción sintáctica de la «omega­
consistencia». Un conjunto de axiomas es omega-consistente si cada vez que 
los enunciados, «l no cumple la propiedad P», «2 no cumple la propiedad P», 
etc., son todos demostrables, entonces «Existe algún x que cumple la propie­
dad P» no es demostrable. (De alguna manera, esto es forzar sintácticamente 
que el universo de referencia sea el de los números naturales.) Por lo tanto, 
en principio, en el enunciado sintáctico del primer teorema de Godel, donde 
dice que el conjunto de axiomas es «consistente», habría que incluir «omega­
consistente». 

La aportación de Rosser 
Afortunadamente, en 1936 el lógico norteamericano John B. Rosser, en un 
artículo de apenas dos páginas, modificó el razonamiento de Godel para que 
también va liera bajo la hipótesis de la cons istencia. De este modo, gracias a 
Rosser, en el enunciado del teorema de Godel se puede omitir la mención 
a la omega-consistencia y puede escribirse, sin faltar a la verdad, tal como lo 
hemos hecho en el texto. La modificación que hizo Rosser al razonamiento 
de Godel consistió en cambiar el enunciado autorreferente «Este enunciado 
no es demostrable» por este otro: «Si este enunciado es demostrable, enton­
ces su negación también lo es». 
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poco el 2, ni el 3, y así sucesivamente. De manera que, en 
consecuencia: 

«1 no es el código de una demostración del enunciado de 
código m» 
«2 no es el código de una demostración del enunciado de 
códigom» 
«k no es el código de una demostración del enunciado de 
código m» 
etc. 

son todos enunciados finitistas verdaderos. Al ser finitistas 
y verdaderos, son demostrables. Luego: 

«Existe y que es el código de una demostración del enun­
ciado de código m» 

Supongamos que 

no-G = Existe x que sea el código de una demostración de G • - -• 

es demostrable. 

G no es demostrable 
(porque los axiomas son consistentes) 

1 no es el código de una demostración de G 
2 no es el código de una demostración de G son finitiStas 
3 no es el código de una demostración de G verdaderos. 

1 no es el código de una demostración de G 
2 no es el código de una demostración de G son demostrables. 
3 no es el código de una demostración de G 

. 

w . . 

Existe x que sea el código de una demostración de G no es demostrable . 

.__ ____ -- --
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no es demostrable. Pero este enunciado es no-G, luego 
no-G no sería demostrable; sin embargo, esto contradice 
la suposición de que no-G sí es demostrable. El absurdo 
prueba que no-G, después de todo, no es demostrable 
(véase el esquema). 

Queda así probado, sintácticamente, que tanto G como no-G, 
ninguno de los dos, es demostrable. En resumen, la demostración 
del primer teorema de incompletitud puede traducirse por com­
pleto a conceptos y argumentos sintácticos, tal como exige el pro­
grama de Hilbert. Este modo de presentar la demostración, basada 
exclusivamente en argumentos sintácticos verificables de manera 
mecánica, la puso a salvo de cualquier cuestionamiento. 

EL SEGUNDO TEOREMA 

El progran1a de Hilbert pedía, según hemos dicho, hallar un con­
junto consistente de axiomas para la aritmética de tal modo que 
para todo enunciado P, o bien él, o bien su negación, fuera de­
mostrable. Pero además pedía que la consistencia de esos axiomas 
fuera verificable algorítmicamente, pues esta verificación algorít­
mica de la consistencia nos daría la certeza de que los axiomas 
nunca nos llevarían a una paradoja. En su artículo de 1931, Godel 
demostró un segundo teorema, el llamado «segundo teorema de in­
completitud», que prueba que este objetivo es también irrealizable. 

En la mayoría de los libros de divulgación este teorema suele 
enunciarse de la siguiente manera: 

«Ningún cor\junto de axiomas consistente que contenga sufi­
ciente aritmética puede probar su propia consistencia». 

Tratemos de aclarar el significado de estos términos. En pri­
mer lugar, la frase «que contenga suficiente aritmética» se refiere 
simplemente a la condición ya mencionada de que el cor\junto de 
axiomas del que estan1os hablando sea capaz de demostrar todos 

EL SEGUNDO TEOREMA DE GÓDEL 115 



los enunciados finitistas verdaderos. Ahora bien, ¿cómo podría un 
conjunto de axiomas probar, o no probar, su propia consistencia? 
En principio, los axiomas aritméticos solo permiten probar enun­
ciados que hablen de números, no enunciados que hablen de la 
consistencia de un conjunto de axiomas. Pero ya nos habíamos 
enfrentado a un problema similar en el capítulo anterior, cuando 
queríamos escribir un enunciado aritmético que hablara de sí 
mismo. ¿Cómo logramos que un enunciado aritmético, que en 
principio habla de números, hable de sí mismo? La manera de lo­
grarlo fue identificar a los enunciados con sus códigos, de modo 
tal que hablar de un enunciado equivaliera a hablar de su código. 

«Es necesario un método directo para la demostración 
de la consistencia de los axiomas de la aritmética.» 
- DAVID ffILBERT, EN LA CONFERENCIA INAUGURAL DEL SEGUNDO CONGRESO I NTERNACIONAL 

DE MATEMÁTI CAS, CELEBRADO EN PARÍS EN 1900. 
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En el caso que ahora nos ocupa, en el que queremos escribir 
un enunciado aritmético que hable de la consistencia de un con­
junto de axiomas, la numeración de Godel vuelve una vez más en 
nuestra ayuda. 

Como decíamos antes, si un conjunto de axiomas es inconsis­
tente, entonces cualquier enunciado es demostrable a partir de él. 
Por el contrario, si el conjunto es consistente, siempre habrá un 
enunciado que no es demostrable (ya que para cualquier P, o bien 
él, o bien su negación, al menos uno de los dos, no lo es). Por lo 
tanto, que un conjunto de axiomas sea consistente es equivalente 
a que haya al menos un enunciado que no es demostrable a partir 
de él. Así, que un sistema sea consistente equivale a decir: 

«Existe algún enunciado que no es demostrable». 

Retomemos el ejemplo hipotético del capítulo anterior. Supo­
níamos allí que a todos los enunciados les correspondían códigos 
que eran nún1eros primos y a los enunciados demostrables, en par­
ticular, les correspondían primos que son suma o resta de tres pri-
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mos consecutivos. En este contexto, el enunciado anterior 
afinnaría que «Existe algún número primo que no es suma o resta 
de tres primos consecutivos», que en otro nivel de lectura diría: 
«Existe el código de up enunciado, que no es el código de un enun­
ciado demostrable», es decir, «Existe un enunciado no demostra­
ble»; en otras palabras, «El conjunto de axiomas es consistente». 

Tenemos dos niveles de lectura para «Existe algún número 
primo que no es suma o resta de tres primos consecutivos»: un 
nivel aritmético, el que aparece a simple vista, en el que solamente 
se enuncia una propiedad aritmética; y también un nivel superior 
de lectura, que depende de la numeración de Godel, en el que se 
enuncia la consistencia del conjunto de axiomas. Tenemos enton­
ces el segundo teorema de incompletitud: 

Si un sistema de axiomas aritméticos es consistente y puede 
demostrar todos los enunciados finitistas verdaderos, enton­
ces el enunciado aritmético que afirma la consistencia del 
conjunto de axiomas no es demostrable a partir de esos mis­
mos axiomas. 

Comentemos la idea de la demostración de este teorema, tal 
como hizo Godel en su artículo de 1931. En su primer teorema de 
incompletitud, Godel demuestra que: 

«Si el conjunto de axiomas es consistente, entonces G no 
es demostrable». 

Observemos que el enunciado que dice «G no es demostra­
ble» es el propio G. Es decir, G = «G no es demostrable». Por lo 
tanto, en la afinnación anterior, donde dice «G no es demostra­
ble», podemos poner simplemente G. O, lo que es lo mismo, en su 
primer teorema, Godel probó que: 

«Si el conjunto de axiomas es consistente, entonces vale G». 

Ahora bien, si fuera posible probar que el sistema de axiomas 
es consistente, entonces tendríamos que el enunciado «Si el con-
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Primer teorema de Godel 

Si el conjunto de axiomas entonces 
es consistente 

Si el conjunto de axiomas entonces 
es consistente 

Demostración del segundo teorema de Godel 

Si el conjunto de axiomas es demostrable, entonces 
es consistente es demostrable. 

junto de axiomas es consistente, entonces vale G» sería demostra­
ble. Es decir: «Si el conjunto de axiomas es consistente, entonces 
vale G» es demostrable, entonces «El conjunto de axiomas es con­
sistente» sería demostrable. 

Por la regla de modus ponens, G sería demostrable. Esto es 
un absurdo, porque ya hemos probado que G no es demostrable. 
Concluimos así que «El conjunto de axiomas es consistente» no 
es demostrable a partir de los axiomas (véase el esquema). 

En el último capítulo veremos algunas consecuencias filosó­
ficas de los dos teoremas de incompletitud de Godel. 
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CAPÍTULO 4 

Godel y Einstein 

Kurt Godel y Albert Einstein fueron muy 
amigos y pasaron muchos horas juntos durante el tiempo 
que compartieron en Princeton. Una consecuencia de esa 
relación fueron los tres artículos que escribió Godel sobre 

la teoría de la relatividad de Einstein, sus únicos 
trabajos publicados totalmente ajenos 

a la lógica matemática. 





A pesar de todos sus problemas políticos y económicos (los pri­
meros, causados por los nazis, los segundos por la crisis de 1929), 
en la década de 1930 Viena era una ciudad bulliciosa y alegre, con 
una vida nocturna rica y diversa que se mezclaba con la no menos 
diversa vida intelectual. En sus cafés, sus cabarés y sus clubes 
nocturnos se escuchaba música y se bailaba, y también se discutía 
sobre arte, ciencia y filosofía. En el mismo bar donde se reunía el 
Círculo de Viena, por la noche sonaban orquestas de jazz. 

En contraste, Princeton era pequeña y provinciana, sin clubes 
nocturnos ni cabarés, una ciudad, en realidad, carente de toda 
vida nocturna. Tal vez sería una exageración decir que Princeton 
estaba al servicio de su universidad y del Instituto de Estudios 
Avanzados, instituciones independientes aunque con muchos 
lazos en común, pero la verdad es que era difícil salir a la calle sin 
encontrarse con profesores, estudiantes o graduados de una u 
otra casa de estudios, personas convencidas de pertenecer a la 
élite intelectual del planeta. 

Godel recibió este cambio de clima casi como una bendición. 
Se adaptó rápidamente a este nuevo estilo de vida, más acorde 
con su forma de ser, reconcentrada y volcada fuertemente a los 
aspectos intelectuales de la existencia. Adele, en cambio, nunca 
logró sentirse cómoda en Princeton. Ella, que había sido bailarina 
en los clubes nocturnos de Viena, extrañaba la música y el bullicio, 
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y la mayor parte del tiempo se sentía triste y sola; como los Godel 
nunca tuvieron hijos, Adele mitigaba en parte su soledad con una 
larga colección de mascotas, entre perros, gatos y pájaros. Sus ca­
renci3:9 en el uso del idioma inglés y la falta de amigos ( con la sola 
excepción de algunos vecinos) aumentaban su aislamiento. 

En Princeton, Godel hizo muy pocos amigos, pero, a diferen­
cia de Adele, se trató de una decisión deliberada y no de un des­
tino impuesto por las circunstancias. La mayoría de sus amigos 
se contaban entre sus colegas del Instituto de Estudios Avanza­
dos; dos de los más cercanos fueron Oskar Morgenstern y, por 
supuesto, Albert Einstein. 

«Hasta ahora no he encontrado mi "fama" agobiante 
para nada. Eso comienza solamente cuando uno se vuelve 
tan famoso que es reconocido en la calle hasta por 
cualquier niño, como es el caso de Einstein.» 
- PALABRAS DE GóDEL A SU MADRE EN REFERENCIA A SUS PRIMEROS TIEMPOS 

EN PRINCETON Y SUS PASEOS CON EINSTEIN. 
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Einstein y Godel se habían conocido en 1933 durante la primera 
visita de Godel a Estados Unidos, cuando ambos fueron presenta­
dos por Paul Oppenheim, químico alemán emigrado también por 
causa de los nazis. Se reencontraron en 1940 con la llegada de Godel 
a Princeton y en breve tiempo se hicieron muy buenos amigos. 

Ambos eran muy reservados sobre sus mutuas relaciones y la 
mayoría de lo que se sabe de la amistad entre Godel y Einstein, muy 
poco tal vez, proviene principalmente de la correspondencia que 
Godel mantenía con su madre, que aún seguía viviendo en Brno. 
Sabemos que todas las mañanas, entre las diez y las once, Einstein 
pasaba a buscar a Godel por su casa y ambos iban caminando hacia 
el Instituto, trayecto que les demandaba más o menos media hora y 
durante el cual conversaban sobre física, política o filosofía A la una 
o dos de la tarde ambos regresaban a casa, también conversando. 

Algunos retazos de esas conversaciones se conservan en las 
cartas de Godel. Einstein, según parece, era bastante optimista 
acerca del destino de la humanidad, aunque con algunas reservas. 
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Godel, por el contrario, era marcadamente pesimista, una actitud 
nada infrecuente en los primeros años de la era nuclear, cuando 
el desastre atómico parecía estar a la vuelta de la esquina. 

La imagen de Godel y Einstein, hablando en alemán mientras 
iban y volvían tranquilamente por Princeton, se volvió familiar para 
todos. En esos años, Einstein comentó que lo más importante que 
había hecho en Princeton fue acompañar a Godel en sus caminatas. 

Cuenta una anécdota que durante uno de esos paseos, un con­
ductor de automóvil reconoció a Einstein y que, de la sorpresa, 
casi se estrella contra un árbol. Godel, en cambio, adusto y casi 
siempre vestido con sombrero, abrigo y guantes ( aun en pleno ve­
rano), no era tan fácilmente reconocible para la gente de la calle. 

Einstein falleció en 1955, un duro golpe para Godel, aunque 
no hizo manifestación pública de su pena. Después de la muerte 
de su buen amigo le escribió a su madre: 

El hecho de que la gente nunca me mencione en conexión con 
Einstein es muy satisfactorio para rrú (y lo sería también para 
él, ya que era de la opinión de que, incluso un hombre famoso, 
merece tener vida privada). Después de su muerte he sido 
invitado un par de veces para decir unas palabras sobre él, 
pero naturalmente no he aceptado. 

UNIVERSOS EN ROTACIÓN 

Una consecuencia tangible de las conversaciones entre Godel y 
Einstein fueron los artículos de Godel sobre la teoría de la relati­
vidad, los únicos de sus trabajos publicados sin conexión directa 
con la lógica matemática. 

El primero de esos artículos, escrito en inglés, se tituló «Un 
ejemplo de un nuevo tipo de soluciones cosmológicas a las ecua­
ciones einstenianas del campo gravitatorio», y se publicó en la 
revista Reviews of Modern, Physics, volumen 21, número 3, pági­
nas 44 7-450, del año 1949. En ese artículo Godel planteó una solu­
ción a las ecuaciones de Einstein que consiste en la descripción 

GÓDEL Y EINSTEIN 123 



de un universo en rotación, homogéneo, cerrado y estable ( es 
decir, no en expansión) con líneas de tiempo cerradas. Estas «lí­
neas de tiempo cerradas» permitirían, en teoría, viajes en el 
tiempo, y de hecho, harían que en ese universo el tiempo no exis­
tiera en el sentido en el que habitualmente lo entendemos, ya que 
pasado y futuro serían indistinguibles. 

Estaba claro, incluso para Godel, que este universo, hoy cono­
cido como «el universo de Godel», no era el nuestro. Es decir, aunque 
la descripción hallada por Godel es consistente con las ecuaciones 
de Einstein, no describe el universo real. No por eso, sin embargo, la 
solución de Godel carece de interés. Como él mismo escribió: 

El mero hecho de la compatibilidad con las leyes de la natu­
raleza de los universos en los que no se puede distinguir un 
tiempo absoluto y, por lo tanto, en los que no puede existir 
un lapso objetivo de tiempo, arroja algo de luz sobre el signi­
ficado del tiempo también en los universos en los que se 
puede definir un tiempo absoluto. 

Las anteriores palabras están tomadas de Una observación 
sobre la relación entre la teoría de la relatividad y la.filosofía idea­
lista, publicado también en 1949 como participación en un volumen 
editado por P.A Schilpp dedicado a la obra de Einstein. El libro era 
parte de una colección titulada La biblioteca de.filósofos vivientes, 
a la que Godel ya había contribuido en 1944 en el volumen dedicado 
a Bertrand Russell. A diferencia de los otros dos, este segundo ar­
tículo sobre la relatividad estaba escrito en un lenguaje carente de 
toda fórmula matemática y accesible al público en general. En él, 
Godel estudia algunas de las consecuencias filosóficas que pueden 
extraerse de la teoría de la relatividad en relación a la naturaleza del 
tiempo, «ese ente misterioso y aparentemente contradictorio que, 
por otra parte, parece constituir la base de la existencia del mundo 
y de nuestra propia existencia» (la cita es del mismo artículo). 

En este trabajo, Godel sostiene que la relatividad provee «una 
prueba inequívoca de la concepción de los filósofos que, como 
Parménides, Kant y los idealistas modernos, niegan la objetividad 
del can1bio y consideran que el cambio es una ilusión o una apa-
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FOTO SUPERIOR: 
G6del (izquierda) 
y Einstein durante 
uno de los muchos 
paseos que ambos 
dieron por 
Princeton entre 
1940 y 1954, 
época en la que 
desarrollaron una 
gran amistad. 

FOTO INFERIOR: 
En 1951 Gódel 
fue reconocido 
(junto al 
físico teórico 
estadounidense 
Julian Schwinger) 
con el primer 
premio Albert 
Einstein. 
En la imagen, 
de izquierda 
a derecha: 
Einstein, 
Lewis Strauss 
(presidente 
del consejo del 
Instituto de 
Estudios 
Avanzados de 
Princeton), G6del 
y Schwinger. 
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riencia debida a nuestro especial modo de percepción». Godel 
explica esta idea basándose en el hecho de que el cambio sola­
mente existe en relación a un lapso objetivo de tiempo, pero que 
esta noción de «lapso de tiempo objetivo» no es válida en un uni­
verso relativista en el que cada observador tiene un «ahora» pro­
pio que es incomparable con el «ahora» de los demás observadores. 
En conclusión, si no hay tiempo objetivo, no hay cambio. 

Godel continúa diciendo que «James Jeans ha sacado la con­
clusión de que no hay razón para abandonar la idea intuitiva de que 
hay un tiempo absoluto que dura objetivamente. No creo que la 
situación justifique esta conclusión», y explica este disentimiento 
basándose en las soluciones por él halladas en su artículo anterior. 
Si hay universos sin tiempo objetivo que son compatibles con las 
ecuaciones de la relatividad y nuestro universo es, por supuesto, 
compatible con esas ecuaciones, entonces no podemos concluir 
necesariamente que en nuestro universo hay un tiempo objetivo. 

En 1952 apareció publicado su tercer y último trabajo sobre la 
relatividad. Se tituló Universos rotatorios en la teoría general de 
la relatividad y fue en realidad su exposición en el Congreso Inter­
nacional de Matemáticas realizado en Cambridge (Massachusetts), 
en 1950. En él Godel expone nuevas soluciones a las ecuaciones de 
Einstein, nuevamente constituidas por universos en rotación, aun­
que en este caso no todas ellas tienen líneas temporales cerradas. 

Las soluciones de Godel, aunque no describen el universo real, 
abrieron la búsqueda de soluciones no ortodoxas para las ecuacio­
nes de Einstein, un campo en el cual, una vez más, Godel fue pionero. 

En realidad, Godel publicó todos sus trabajos científicos sobre 
lógica matemática a lo largo de solamente diez años, entre 1930 y 
1939 (mientras aún vivía en Viena, aunque los dos últimos artículos, 
de 1938 y 1939 respectivamente, fueron publicados, en inglés, en 
revistas norteamericanas). En su etapa de Princeton, Godel ya no 
publicó descubrimientos científicos sobre lógica, y en sus escritos 
de esos años ( con la única excepción de los artículos ya menciona­
dos sobre la teoría de la relatividad) se dedicó sobre todo a comen­
tar las consecuencias filosóficas de sus investigaciones previas. 

El último trabajo científico sobre lógica matemática firmado 
por Godel apareció en la forma de un libro de unas setenta pági-
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JAMES JEANS 

James Hopwood Jeans, a quien Gódel 
cita en el segundo de sus artículos sobre 
la teoría de la relatividad, fue un físico, 
matemático y astrónomo británico naci­
do en 1877 en el condado de Lancashire. 
Estudió en la Universidad de Cambridge 
y enseñó en ese mismo centro hasta que 
se trasladó a la Universidad de Princeton 
en 1904, donde trabajó como profesor 
de Matemática Aplicada. Volvió a Cam­
bridge en 1910. Jeans hizo contribucio­
nes importantes a la mecánica cuántica, 
la teoría de la radiación y la evolución 
estelar. Su análisis de los cuerpos en ro­
tación le llevó a concluir que la teoría de 
Laplace de que el sistema solar se formó 
a partir de una nube de gas era errónea. 
En su lugar, propuso que los planetas se 
condensaron a partir de material expul-
sado del Sol por una hipotética colisión con otra estrella; sin embargo, actual­
mente esta teoría no es aceptada. Escrib ió va rios libros de divulgación sobre 
física y cosmología, que le dieron fama como excelente divulgador de la cien­
cia. En uno de ellos, El universo misterioso, escribió: 

La corriente del conocimiento se dirige hacia una realidad no mecánica: 
el universo empieza a parecerse más a un gran pensamiento que a una 
gran máquina. La mente ya no parece ser un intruso accidental en el 
reino de la materia ... más bien debemos saludarlo como el creador y 
gobernador del reino de la materia. 

James Jeans falleció en el condado de Surrey, Inglaterra, en 1946. 

nas, publicado por la Princeton University Press en 1940, aunque 
no fue escrito directamente por Godel, sino que se trata de la edi­
ción de los apuntes de un curso que dictó en 1938-1939 en el Ins­
tituto de Estudios Avanzados. El libro se titula La consistencia 
del axioma de elección y la hipótesis generalizada del continuo 
con los axiomas de la teoría de conjuntos y expone la resolución 
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parcial del primero de los problemas que David Hilbert planteó en 
su famosa conferencia de 1900, un problema inicialmente formu­
lado por Georg Cantor y que es conocido corno la «hipótesis del 
continuo». 

CARDINALES 

Para entender qué es la hipótesis del continuo debernos volver a 
la teoría de Cantor sobre el infinito, que ya tratarnos en el primer 
capítulo. Recordemos que un cor\junto, según las palabras del pro­
pio Cantor, es la «reunión en un todo de objetos de la realidad 
o de nuestro pensamiento». Tenernos así, por ejemplo, el cor\junto 
de todos los días de la semana, el conjunto de todos los meses del 
año o el conjunto de los números naturales pares. Algunos de 
estos conjuntos son finitos, otros son infinitos. 

Un cor\junto es finito cuando es posible contar sus miembros 
uno por uno, y esta cuenta termina en algún momento. En los 
conjuntos infinitos, en cambio, la cuenta nunca termina. Si tene­
rnos un cor\junto finito podernos perfectamente hablar de cuántos 
miembros tiene; por ejemplo, el conjunto de los días de la semana 
tiene siete miembros, y el de los meses del año, doce. A la canti­
dad de miembros de un cor\junto, los matemáticos lo llaman su 
«cardinal»; de este modo, podernos decir que el cardinal del con­
junto formado por las letras de la palabra «mar» es tres. 

El objetivo de Cantor era darle sentido a la idea de cardinal, 
o de cantidad de miembros, pero en el caso de los conjuntos infi­
nitos. Sin embargo, ¿cómo puede hablarse de la «cantidad de 
miembros» de un conjunto infinito? ¿Puede decirse algo, aparte 
del hecho obvio de que esa cantidad es «infinita»? Para responder 
a estas preguntas Cantor partió de esta simple idea: imaginemos 
que en un gran salón hay una gran cantidad de niños en movi­
miento y al mismo tiempo un gran número de sillas (figura 1), y 
que nos gustaría saber si hay la misma cantidad de unos y otras. 
Una manera de hacerlo es contar los niños uno por uno, hacer lo 
mismo con las sillas, y luego comparar los dos resultados. 
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FIG.1 

FIG. 2 
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Pero hay una manera más directa de hacer esta comparación, 
y es pedirles a los niños que se sienten, uno en cada silla. Si todos 
los niños han logrado sentarse y no ha quedado ninguna silla 
vacía, entonces podemos decir que hay exactamente la misma 
cantidad de sillas que de niños, o en otras palabras, que el cardinal 
del conjunto de las sillas y el cardinal del conjunto de los niños 
son iguales. En terminología matemática, se diría que hemos es­
tablecido una correspondencia biyectiva ( o uno-a-uno) entre un 
conjunto y el otro ( a cada niño le corresponde una silla, y a cada 
silla, un niño) (figura 2, página anterior). 

Podemos decir así que dos conjuntos finitos tienen el mismo 
cardinal si es posible establecer una correspondencia biyectiva 
entre uno y otro. La idea esencial de Cantor fue extender esta 
noción a conjuntos infinitos, no la de contar miembros uno por 
uno, sino la de establecer correspondencias biyectivas entre con­
juntos como forma de comparar sus cardinales. 

Con esta idea en mente, Cantor definió que dos conjuntos 
infinitos tienen el mismo cardinal si es posible establecer entre 
ellos una correspondencia biyectiva, es decir, si se puede empa­
rejar a sus respectivos miembros, de modo que a cada miembro 
del primer conjunto le corresponda exactamente un miembro del 
segundo, y viceversa. 

Por ejemplo, ya vimos en el primer capítulo que el conjunto 
de todos los números naturales (formado por los números 1, 2, 3, 
4, ... ) puede ponerse en correspondencia biyectiva con el de los 
números cuadrados (1, 4, 9, 16, ... ): 
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Naturales Cuadrados 

2 

3 

4 

5 

6 

4 

9 

16 

------ 25 

---- -- 36 



Al conjunto de los nw:n-eros naturales se lo suele indicar con 
la letra N (la letra designa a la totalidad de los números en tanto 
objeto en sí mismo). Ahora bien, si a los números naturales le 
agregamos sus opuestos (es decir, los negativos-1, -2, - 3, -4, ... ) 
y tan1bién agregamos el cero, obtenemos el llamado conjunto de 
los números enteros, que en el lenguaje matemático suele indi­
carse con la letra Z, que es la inicial de la palabra alemana «Zahl», 
que significa «número». 

Cantor observó que el conjunto de los números enteros tiene 
también el mismo cardinal que N. En otras palabras, que hay tan­
tos números naturales corno enteros: 

Naturales 

2 

3 

4 

5 

6 

7 

··· ·•·· ······ 

Enteros 

o 

-1 

2 

-2 

3 

-3 

En la correspondencia entre N y Z, el 1 de N se empareja con 
el O de Z; los demás números impares de N se emparejan con los 
negativos de Z, mientras que los pares de N se emparejan con 
los positivos de Z. Observemos que, tal corno debe suceder, a 
cada miembro de N le corresponde exactamente un miembro de 
Z sin que falte o sobre ninguno. 

Los naturales son solamente una parte de los enteros; sin em­
bargo, los dos conjuntos tienen, en el sentido definido por Cantor, 
la «misma cantidad de elementos» ( en lenguaje matemático, am­
bos conjuntos tienen el mismo cardinal). Corno ya comentamos 
en el primer capítulo, el principio aristotélico de que «el todo es 
mayor que cualquiera de sus partes» no se aplica a conjuntos in­
finitos. 
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EL ARGUMENTO DIAGONAL 

Para ir todavía más allá de los enteros, es necesario hacer una 
referencia breve a una manera muy común de representar los nú­
meros en la llamada «recta numérica». 

-2 -1 o 2 

Fragmento de la recta numérica, con algunos números enteros marcados en ella. 

La recta numérica es, en principio, simplemente una línea recta 
cualquiera, que se transforma en «numérica» cuando asignamos nú­
meros a sus puntos. Para representar a los enteros, el modo más 
sencillo es asignarle a un punto cualquiera el número O y a otro punto 
diferente el l. Una vez asignados estos dos números, los naturales 
se van ubicando más allá del 1, manteniendo siempre la misma dis­
tancia entre un número y su siguiente. Los negativos, finalmente, son 
los simétricos con respecto al O. Es evidente que, una vez que se han 
asignado todos los enteros, quedan todavía muchos puntos caren­
tes de números; en los espacios intermedios entre entero y entero 
aparecen otros números. Por ejemplo, 1/2 = 0,5 está exactamente en 
el punto medio entre O y l; 413= 1,333 ... está a un tercio de camino 
entre 1 y 2; .J2 = 1,4142 ... está entre 1 y 1,5 (mucho más cerca de 1,5 , 
que del); n=3,1415 ... está un poco más allá de 3: 

-2 -1,5 -1 O 0,5 1 1,333... 2 3 'TT 

Se llama cor\junto de los números reales (y suele indicarse 
con la letra IR) al cor\junto formado por los números que comple­
tan toda la recta numérica. A cada punto de la recta numérica le 
corresponde un número real, y viceversa. Entre los números rea­
les, por supuesto, están los enteros, también todos los que hemos 
mencionado más arriba, como .J2 y n, y además otros infinitos 
números como 12,22222 o-2,01001000100001 ... 

Los cor\juntos N y Z, según vimos, tienen el mismo cardinal, 
pero ... ¿sucederá lo mismo con N y IR? La respuesta, uno de los 
descubrimientos fundamentales de Cantor, es que no; N y IR no 
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tienen el mismo cardinal, es imposible establecer una correspon­
dencia biyectiva entre ambos. La demostración de este hecho con­
siste en ver, precisamente, que cualquier intento de poner en 
correspondencia biyectiva a los números naturales con los reales 
fracasará, y esto sucederá porque es inevitable que quede al menos 
un número real sin asignar. Si los números naturales nombraran 
sillas y los reales indicaran niños, vamos a exhibir un procedi­
miento que permite siempre hallar un niño que ha quedado de pie. 

Para entender la idea, haremos la demostración sobre un 
ejemplo específico, aunque quedará claro que el procedimiento 
funciona bien en todos los casos. Mostremos entonces un intento 
concreto de asignar un número real a cada natural y veamos cómo 
es posible encontrar un real que ha quedado fuera de la asignación 
( en la figura siguiente solo se muestran los números del 1 al 6, 
pero la lista en realidad sigue indefinidamente). 

2, 3 3 3 3 3 3 3 ... 

2 11,0000000 ... 

3 o, 1 2 O 1 1 O 1 ... 

4 3, 1415926 ... 

5 1, 1 1 1 1 1 1 1 .. . 

No está claro cuál es la regla por la que se han asignado los 
números, pero ese dato no es relevante porque el método que mos­
traremos funciona cualquiera que sea la regla de asignación. Corno 
primer paso de este método, centremos nuestra atención en las ci­
fras que se encuentran detrás de la coma decimal: 

2, 3 3 3 3 3 3 3 .. . 

2---+ 11, 0000000 .. . 

3 o, 1 2 O 1 1 O 1 .. . 

4 3 , 1 4 1 5 9 2 6 .. . 

5 1, 1 1 1 1 1 1 1 .. . 
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2----

3----

4----

5----

2, 3 3 3 3 3 3 3 .. . 

11,0000000 .. . 

O, 1 2 O 1 1 O 1 .. . 

3, 1 4 1 5 9 2 6 .. . 

1, 1 1 1 1 1 1 1 .. . 

NATURALES Y RACIONALES 

Podría pensarse que el hecho de 
que N y lR tengan distinto cardi­
nal consiste en que N es discreto 
(es decir, su representación grá­
fica está en puntos aislados), 
mientras que lR no lo es (entre 
dos números reales siempre hay 
otros reales, no hay puntos aisla­
dos en IR). Sin embargo, ese no 
es el caso. Para verlo, tomemos 
el conjunto de los números racio-

A su vez, dentro de ese recuadro 
que hemos dibujado, fijémonos en la dia­
gonal que comienza en el extremo supe­
rior izquierdo y que va descendiendo 
hacia la derecha (véase la figura). El 
papel destacado de esta línea de núme­
ros hace que a esta demostración se la 
conozca con el nombre de la «demostra­
ción de la diagonal». 

o 

1 
3 

1 
6 

,_!_ 
/ 3 

9 
24 

1 , 2 

2 ',3 
' 

5 
12 

' 

11 
24 

5 
6 

' ' ' 
J_ 
2 

nales, que suele representarse con la letra Q, y que contiene a todos los nú­
meros racionales, que son aquellos que se pueden representar como una 
fracc ión (es decir, como el cociente de dos números enteros). Por ejemplo, 
1/2 = 0,5 y -4/3 =-1,333 .. . son racionales, mientras que ✓2 =1,4142 .. . y n= 3,1415 ... 
no lo son (aunque cierto, no es obvio que ✓2 y 1t no son racionales y se requie­
re una demostración matemática para justificarlo). Los enteros están incluidos 
en los racionales ya que, por ejemplo, 6 = 6/1 . Aunque no completan toda la 
recta numérica, los racionales no son discretos: entre dos números racionales 
siempre hay otro número racional. Por ejemplo, entre dos números raciona­
les está siempre su promedio. De este modo, entre 1/3 y 1/2 está 

y entre 1/3 y 5/12 está el promedio de ambos, y entre 1/3 y ese promedio está 
el promedio de ambos, y así sucesivamente (esquema superior). 
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El número que buscamos ( el que queda fuera de la asigna­
ción) comenzará con O, ... y sus cifras decimales estarán determi­
nadas por los números que aparecen en la diagonal. Para obtener 
la primera cifra decimal del número tomamos la primera cifra 
de la diagonal y le sumamos 1 (si fuera un 9, tomamos un O). En el 
ejemplo, el primer número de la diagonal es un 3, así que nuestro 
número empezará con 0,4 ... 

Para obtener la segunda cifra decimal del número sumamos 
1 al segundo número de la diagonal (si es un 9, tomamos un O). 

A pesar de que IQl es denso y N es discreto, es posible establecer una corres­
pondencia biyectiva entre ambos. Una manera de hacerlo es la mostrada en 
el esquema inferior, donde aparecen todos los números racionales, y las fle­
chas indican un recorrido que, a la larga, pasará una vez por cada fracción . El 
modo de establecer la correspondencia es el siguiente: al primer número del 
recorrido (que es el O) le corresponde el natural 1, al segundo (que es el 1) le 
corresponde el natural 2, al tercero (que es 1/2) le corresponde el 3, y así 
sucesivamente. Una aclaración: la fracción -2/ 2 ocupa el séptimo lugar en el 
recorrido y, en principio, debería tener asignado el número natural 7. Sin em­
bargo, -2/ 2 es igual a -1 (-1 y -2/ 2 son el mismo número escrito de modo di­
ferente) y al - 1 el recorrido le había asignado previamente el natural S. No 
podemos asignar el 5 al -1 y el 7 al -2/ 2, que es el mismo número. El modo de 
resolver este problema es simplemente omitir al -2/2 y asignarle el 7 a la 
fracción siguiente, que es -2/3. 

_4.,._ _3 -2 ..._ -1 o _. 1 2 _. 3 4 _. 5 

+ t + t + t + t + 
-4/ 2 -3/ 2 -2/ 2 -1/2 1/2 2/ 2 3/ 2 4/ 2 5/ 2 

+ i + t + t + 
-4/ 3 -3/ 3 -2/ 3+-l/ 3 1/3 + 2/ 3 3/ 3 4/ 3 5/3 

+ 
... 

+ t + 1 
1 

-4/4 -3/4+-2/4• -l/4 +--1/4 ..... 2/4 ..... 3/4 4/4 5/4 

+ t + 
-4/ 5+--3/ 5+ -2/ 5+ -l/5 1/5 + 2/5 • 3/5 + 4/5 5/5 
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Para la tercera cifra decimal usamos el tercer número de la diago­
nal, y así sucesivamente. En nuestro ejemplo, el número buscado 
comienza con 0,41162 ... : 

1 

IL 2, 3 3 3 3 3 3 3 ... 
1 

2 11,0·000000 ... 
1 

3 o, 1 2 O 1 1 O 1 ... o, 4 1 1 6 2 ... 

4 3, 1415926 ... 1 1 1 

5 1, 1 1 1 1 

El número que acabamos de calcular no está asignado a nin­
gún natural; se nos ha pasado por alto en la asignación. ¿Cómo 
podemos estar seguros de eso? De esta manera: el número que 
calculamos no puede ser el que está asignado al 1 porque ambos 
difieren en la primera cifra decimal. Tampoco puede ser el que 
está asignado al 2, porque ambos difieren en la segunda cifra de­
cimal. Tampoco puede ser el que está asignado al 3, porque ambos 
difieren en la tercera cifra decimal. Y así sucesivamente. 

Dado que hay un número que escapó a la asignación, enton­
ces nuestro ejemplo no puede constituir una correspondencia bi­
yectiva entre N y lR. Cualquier otro intento fracasará por la misma 
razón; por lo tanto, no existe una correspondencia biyectiva entre 
N y ffi., y en consecuencia podemos afirmar que los dos cortjuntos 
no tienen el mismo cardinal. 

LA HIPÓTESIS DEL CONTINUO 

El cardinal de los números reales es mayor que el de los naturales. 
Cantor demostró este hecho en 1873 y acto seguido se preguntó si 
habría un cardinal intermedio. Es decir, ¿existirá algún cortjunto 
que tenga un cardinal mayor que N, pero menor que ffi.? Durante 
años hizo muchos intentos por encontrar un cortjunto intermedio 
entre N y ffi., pero jamás logró encontrar alguno. Finalmente, en 
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PAUL COHEN 

Paul Joseph Cohen nació en Long 
Branch, Nueva Jersey, Estados Unidos, 
en 1934; sus padres eran inmigrantes 
polacos. Desde muy pequeño Cohen 
demostró habilidades matemáticas ex­
traordinarias, y fue considerado un niño 
prodigio. Esto le permitió, a pesar de los 
escasos recursos económicos de sus pa­
dres, estudiar en las escuelas de mayor 
nivel académico de Nueva York. Cursó 
sus estudios superiores en la Universidad 
de Chicago, donde se doctoró en 1958 
con un trabajo en el que generalizaba el 
problema de la unicidad de la escritura 
de una función periódica en series de 
Fourier (el mismo que Cantor había tra­
tado a principios de la década de 1870 y 
que lo llevó al desarrollo de su teoría de 
los infinitos). Cohen hizo aportes muy significativos a diversas áreas de las 
matemáticas, como la teoría de números, el análisis matemático y la lógica. 
En 1966, durante el Congreso Internacional de Matemáticas de Moscú recibió 
la medalla Fields, el premio matemático más importante que existe, por su 
trabajo sobre la hipótesis del continuo. Paul Cohen falleció en California en 
marzo de 2007. 

1878 formuló la cortjetura de que tal cortjunto intermedio no existe; 
a esa cortjetura se la conoce como la hipótesis del continuo: «No 
existe un cortjunto A tal que card(N) < card(A) < card(]R)». 

Cantor intentó demostrar esta coI\jetura durante muchos 
años, aunque sin éxito. Al llegar el año 1900, el problema de deter­
minar si la coI\jetura era cierta o no seguía aún sin solución y 
precisamente entonces, como ya dijimos, Hilbert lo puso en el 
primer lugar de la lista de problemas en su famosa conferencia del 
congreso de París. 

La solución del problema, al menos la conocida hasta ahora, 
se obtuvo en dos etapas. La primera la completó Godel a fines de 
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la década de 1930. En concreto, en 1938 y 1939 Godel publicó 
sendos artículos en los que exponía en forma resumida distintos 
aspectos de la primera parte de la solución, que expuso con todo 
detalle en un curso dictado en el Instituto de Estudios Avanzados, 
cuyos apuntes se editaron en forma de libro en 1940. 

La segunda parte de la solución la obtuvo en 1963 Paul 
Cohen, matemático norteamericano que también trabajaba en el 
Instituto de Estudios Avanzados. Dicen que la primera persona a 
la que Cohen le mostró su solución fue a Godel, pero que cuando 
fue a verlo este se encontraba en plena crisis maníaco-depresiva 
y no quiso dejarlo entrar a su casa, por lo que Cohen tuvo que 
pasarle los papeles por debajo de la puerta. Pocos días después, 
Godel lo llamó por teléfono invitándolo a tomar el té y Cohen 
tomó esta invitación como una señal de que su solución era co­
rrecta; y, en efecto, tan correcta era que por ese trabajo Paul 
Cohen recibió la medalla Fields, el equivalente matemático del 
premio Nobel. 

LA SOLUCIÓN DE GODEL Y COHEN 

¿Cuál es la respuesta? ¿La hipótesis del continuo es verdadera o 
es falsa? En realidad, podemos decir que todavía no se sabe, por­
que la respuesta que Godel y Cohen encontraron es que ni la hipó­
tesis del continuo ni su negación pueden ser demostradas a partir 
de los axiomas de la teoría de conjuntos. Es decir, estos axiomas 
son insuficientes para determinar la verdad o falsedad de la afir­
mación. Si llamamos HC al enunciado que dice que «No existe un 
conjunto de cardinal intermedio entre N y IR» entonces HC es, 
para la teoría de conjuntos, un ejemplo perfecto del primer teo­
rema de incompletitud de Godel: ni ella ni su negación son demos­
trables. 

¿Cómo demostraron Godel y Cohen este hecho? Para enten­
derlo, imaginemos por un momento que el símbolo « * » designa 
una operación numérica genérica, no especificada, y supongamos 
que esta operación cumple los dos axiomas siguientes: 
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-Axioma 1: La operación es conmutativa, es decir, a* b = b * a. 

- Axioma 2: La operación tiene un elemento neutro, es decir, 
un número tal que operar con él no produce nin­
gún cambio (si a ese elemento neutro lo llama­
mos e, entonces ª*e=a) . 

Se llama «modelo» a cualquier ejemplo concreto, a cualquier 
operación específica, que cumpla esos axiomas. Por ejemplo, la 
suma de números enteros es un modelo, ya que la suma es conmu­
tativa y tiene un elemento neutro ( que es el O). El producto de 
números enteros es también un modelo, ya que esa operación es 
también conmutativa y tiene un elemento neutro (que es el 1). La 
resta de enteros, en cambio, no es un modelo porque no es con­
mutativa (por ejemplo, 2 - 3 no es lo mismo que 3 - 2). 

A partir de estos axiomas es posible demostrar sintáctica­
mente ( según la terminología del capítulo anterior) que no puede 
haber dos elementos neutros diferentes. Es decir, que si e y e' son 
ambos elementos que cumplen el axioma 2, entonces necesaria­
mente e= e'. La demostración es como sigue: Supongamos que e y 
e' cumplen ambos el axioma 2. Entonces, como e es elemento neu­
tro, e* e'= e' ( al operar con e no se produce ningún cambio). Pero 
e' también es neutro, entonces e'* e= e ( al operar con e' no se pro­
duce ningún cambio). Tenemos así que: 

e=e' *e= e*e' = e', y en consecuencia e=e'. 

Toda afirmación que se deduzca de los axiomas será válida 
necesariamente en todos los modelos, porque esa misma demos­
tración es reproducible en cada ejemplo concreto. Por lo tanto, en 
cualquier ejemplo que cumpla los axiomas 1 y 2 ocurrirá que el 
neutro de la operación es único. Esto sucede, por supuesto, en 
el caso de la suma ( donde no hay otro neutro más que el O) y en el 
del producto (donde el único neutro es el 1). 

Llamemos ahora «absorbente» a cualquier número f tal que 
al operar con él el resultado es nuevamentef (es decir, ª*Í =f), y 
consideremos la afirmación P : «La operación tiene un elemento 
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Modelo 

Suma 

Conmutativa: a + b = b + a 
Neutro: a + O = a 

Modelo 

! 
Producto 

Conmutativo: a · b = b · a 
Neutro: a · 1 = a 

¿Existe elemento absorbente? ¿Existe elemento absorbente? 
si 

Arriba, axiomas de 
una operación 

conmutativa con 
neutro. Abajo a la 

izquierda, un 
ejemplo que 
cumple esos 

axiomas, pero que 
no tiene e lemento 
absorbente. Abajo 

a la derecha, un 
ejemplo en el que 

sí hay elemento 
absorbente. Luego 

la existencia o no 
existencia de 

elemento 
absorbente no se 
puede deducir de 
los axiomas de la 
la parte superior 

del esquema. 
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NO 

absorbente». La pregunta es ¿puede deducirse P de los axiomas 
1 y 2? ¿Puede deducirse la negación de P? Es decir, del hecho 
de que una operación sea conmutativa y tenga neutro, ¿podemos 
deducir que tiene un elemento absorbente? ¿O podemos deducir 
que no lo tiene? 

Si la existencia de un elemento absorbente fuera demostrable 
a partir de los axiomas, entonces toda operación conmutativa y 
con neutro tendría un elemento absorbente. Sin embargo, esto no 
es así, porque la sun1a de enteros, que es conmutativa y con neu­
tro, no tiene elementos absorbentes. Por lo tanto, la afirmación P 
no es demostrable a partir de los axiomas 1 y 2. 

Ahora bien, si la inexistenda de un elemento neutro fuera 
demostrable, entonces ninguna operación que cumpliera los axio­
mas 1 y 2 tendría elementos absorbentes. No obstante, el producto 
de enteros sí lo tiene, ya que el O es absorbente, de manera que la 
negación de P tampoco es demostrable a partir de los axiomas. La 
existencia o inexistencia de elemento neutro es indecidible a par­
tir de los axiomas 1 y 2: no puede ser demostrada ni refutada a 
partir de esos axiomas (véase el esquema de esta página). 

Godel hace un razonamiento similar en su segundo artículo 
sobre la teoría de la relatividad para refutar el hecho, planteado 
por Jan1es Jeans, de que, dentro de la teoría de la relatividad es 
posible definir la noción de «tiempo absoluto». Godel le responde 
que, puesto que él ha hallado modelos de la teoría en los que esa 

GÓDEL Y EINSTEIN 



noción no existe, entonces no es posible deducir de las ecuacio­
nes de Einstein la existencia necesaria de un tiempo absoluto. 

Volviendo al problema de Cantor, la manera en que Gódel y 
Cohen demostraron que la hipótesis del continuo es indecidible a 
partir de los axiomas de la teoría de coajuntos es similar a la que 
hemos usado anteriormente para mostrar que Pes indecidible con 
respecto a los axiomas 1 y 2. En sus artículos de 1938 y 1939, y con 
más detalle en el libro de 1940, Gódel muestra un modelo que 
cumple los axiomas de la teoría de conjuntos para el cual la hipó­
tesis del continuo es verdadera, es decir, un modelo en el que no 
hay conjuntos con cardinales intermedios entre N y lR ( de manera 
similar a cómo nosotros encontramos un modelo en el que no hay 
elementos absorbentes). Esto demuestra que HC no puede ser re­
futada (si fuera refutable a partir de los axiomas sería falsa en 
todos los modelos). 

«El cambio es una ilusión a una apariencia debido a nuestro 
especial modo de percepción.» 

- KURT GóOEL, EN UN ARTICULO DE 1949. 

En 1963 Cohen encontró un modelo de los axiomas de la teo­
ría de conjuntos en el cual sí existe un coajunto con un cardinal 
intermedio entre N y JR, es decir donde HC es falsa y demostró así 
que HC no puede ser probada a partir de los axiomas de la teoría 
de conjuntos. 

Pero, en el modelo estándar, el que uno tiene en mente cuando 
formula los axiomas de la teoría de conjuntos, ¿la hipótesis del 
continuo es verdadera o falsa? Esa pregunta todavía está sin res­
puesta. Muchos especialistas en el tema opinan que falta encon­
trar un axioma, una afirmación que todos los interesados estén de 
acuerdo en aceptar como verdadera, y que permita finalmente re­
solver la cuestión. Es decir, un axioma que finalmente permita 
demostrar o refutar HC en el modelo estándar. La intuición gene­
ral, basada en argumentos filosóficos, intuición que también com­
partían Gódel y Cohen, es que la hipótesis del continuo es, en 
realidad, falsa. 
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CAPÍTULOS 

Las consecuencias del trabajo 
de Godel 

Los teoremas de incompletitud 
de Godel marcaron un punto de inflexión en todas 

las investigaciones relacionadas con la filosofía de las 
matemáticas. Hoy en día no existe texto de filosofía de 

las matemáticas que no se refiera a los teoremas de Godel, 
los enuncie, los analice y saque conclusiones de ellos que 

muchas veces son motivo de debate. A decir verdad, 
el estudio de las consecuencias de los teoremas 

de incompletitud apenas se ha iniciado y tal 
vez dure décadas, o siglos. 





En Princeton, Godel encontró un clima social tranquilo y anodino, 
perfectamente adecuado a su forma de ser, en el que se sentía 
muy cómodo. Sin embargo, este entorno favorable no atenuó su 
hipocondría ni sus excentricidades sino que, muy por el contrario, 
con el correr de los años sus «rarezas» se fueron acentuando 
hasta tal punto que en 1941 el entonces director del Instituto de 
Estudios Avanzados, Frank Aydelotte, se sintió obligado a pregun­
tarle al médico personal de Godel si existía algún peligro de que 
su mal (su incipiente paranoia) adquiriera una forma violenta 
que fuera peligrosa para él mismo o para los demás. Aunque el 
médico respondió que ese peligro no existía, no deja de ser signi­
ficativo que la pregunta fuera formulada. 

Godel estaba dominado por el temor a las enfermedades, tanto 
reales corno imaginarias. Vivía convencido, por ejemplo, de que de la 
calefacción y del aire acondicionado emanaba un aire «malo», per­
judicial para la salud. También tenía un temor obsesivo al frío y no 
era extraño verlo en pleno verano usando abrigo, bufanda y guantes. 
Paradójicamente, este miedo a la enfermedad venía acompañado 
por una desconfianza total hacia los médicos, que se transformó 
lentamente en un recelo hacia la gente en general. Su tendencia a 
la soledad era cada vez mayor y a veces pasaba largos períodos en 
los que evitaba todo contacto físico con otras personas, con la sola 
excepción de su esposa Ad ele y dos o tres amigos muy cercanos. 
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Desde su llegada a Estados Unidos, Adele tuvo una vi.da triste 
y solitaria, centrada principalmente en cuidar a su frágil marido, 
una necesidad que, con el pasar del tiempo, se fue haciendo cada 
vez más apremiante. En los comienzos de este período, recibió la 
ayuda de Oswald Veblen, el primer amigo de Godel en Princeton 

FRANK A YDELOTTE 

Franklin Ridgeway Aydelotte nació en un pueblo del condado de Gibson, 
en el estado de Indiana, Estados Unidos, en 1880, y estudió literatura ingle­
sa en la Universidad de Indiana, donde se graduó en 1911. Entre 1921 y 1940 
fue director del colegio Swarthmore, una institución educativa en la que 
introdujo reformas muy innovadoras. Entre 1939 y 1947 fue director del 
Instituto de Estudios Avanzados de Princeton, en Nueva Jersey. Durante el 
período de Aydelotte como director del Instituto de Estudios Avanzados, 
el centro tenía muchos profesores notables, entre los que se encontraban 
Albert Einstein, el propio Gódel o John von Neumann. Aydelotte falleció en 
1956 en Princeton. 
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Fotografía 
tomada el 14 de 
marzo de 1951, 
el día en que 
Einstein 
cumplía setenta 
y dos a~os. En 
la Imagen, Junto 
a Einstein 
aparecen Frank 
Aydelotte y su 
esposa. 



y quien había hecho los contactos para que fuese incorporado al 
Instituto de Estudios Avanzados; poco después, la responsabili­
dad de compartir el cuidado de Godel pasó a manos de Albert 
Einstein. La amistad entre ambos (que se profundizó especial­
mente a partir de 1942) fue una etapa de relativa calma para Godel; 
los paseos que hacían juntos eran, podría decirse, terapéuticos 
para él y aunque las excentricidades no desaparecieron del todo, 
se atenuaron de manera notable. Es de comprender, entonces, que 
la muerte de Einstein en 1955 fuera un duro golpe para Godel y 
que marcara un recrudecimiento de su hipocondría y su paranoia. 
Fue en realidad el inicio de un camino descendente que ya nunca 
se detuvo, a pesar de que Oskar Morgenstem, otro de los amigos 
de Gódel en Princeton, tomara el lugar de Einstein en el intento de 
ayudar a Adele a cuidarlo. 

«Parece claro que la fecundidad de sus ideas seguirá 
estimulando nuevos trabajos. A pocos matemáticos se les 

concede este tipo de inmortalidad.» 
- ÜBITUARIO QUE LE DEDICÓ A GODEL EL DIARIO THE TIMES DE LONDRES. 

Su enfermedad mental fue empeorando y hacia mediados de 
la década de 1970 derivó en un delirio persecutorio; Godel vivía 
obsesionado con la idea de que querían envenenarlo. Las únicas 
personas en las que confiaba eran Adele y Morgenstem, y la ver­
dad es que se negaba absolutamente a comer a menos que Adele 
probara antes los alimentos. 

Oskar Morgenstem falleció el 26 de julio de 1977, poco des­
pués Adele tuvo que ser hospitalizada durante seis meses por di­
versos problemas de salud y Godel, que se quedó solo con sus 
miedos y sus obsesiones, prácticamente dejó de comer. Su 
cuerpo, de por sí no muy fuerte, se debilitó rápido por la inani­
ción. Como consecuencia de todo esto, Gódel tuvo que ser inter­
nado en el hospital de Princeton, donde falleció la tarde del 14 de 
enero de 1978. El certificado de defunción indicó como causa 
de muerte «malnutrición e inanición provocados por problemas 
personales». 
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OSKAR MORGENSTERN 

Oskar Morgenstern fue un economista y 
matemático nacido en Silesia (actual­
mente parte de Polonia) en 1902. Estudió 
en las universidades de Viena, Harvard y 
Nueva York. En Viena asistió a unos fa­
mosos seminarios organizados por Karl 
Menger (profesor de la Universidad de 
Viena) y de los que también participó 
Gódel. Durante la Segunda Guerra Mun­
dial emigró a Princeton y ya en Estados 
Unidos, en 1944 publicó conjuntamente 
con John von Neumann el libro Theory 
of Games and Economic Behavior (Teo­
ría de juegos y comportamiento econó­
mico) que supuso el inicio de la moderna 
teoría de juegos. Morgenstern falleció en 
1977 en Princeton, Nueva Jersey, Esta­
dos Unidos. 

Pero, en cierto modo, Godel nunca murió; su obra, sus ideas, 
su pensamiento, sus teoremas todavía viven; sus métodos de de­
mostración siguen siendo estudiados y utilizados hoy en día, y no 
es exagerado decir que seguirán siendo analizados durante siglos. 

Como dice el matemático norteamericano John Allen Paulos 
en su libro Más allá de los números: 

El lógico matemático Kurt Godel fue uno de los gigantes 
intelectuales del siglo xx y, en el supuesto de que la especie 
se conserve, probablemente será una de las pocas figuras 
contemporáneas recordadas dentro de mil años. [ ... ]No se 
trata de un caso de autocomplacencia por parte de los ma­
temáticos, a pesar de que en todas las disciplinas sea co­
rriente alentar una cierta miopía profesional. Sencillamente 
es verdad. 
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LA CONFERENCIA GIBBS 

Aunque después de 1950 publicó muy poco, no por eso Godel dejó 
de pensar y escribir, y al momento de su muerte había dejado un 
número impresionante de manuscritos inéditos, dedicados princi­
palmente a la filosofía y a la teología, con investigaciones, entre 
otros temas, sobre la existencia de Dios, la transmigración de las 
almas o el análisis de los trabajos filosóficos de Gottfried Leibniz. 
Todos estos manuscritos, dado que Godel no había dejado instruc­
ciones acerca de qué hacer con ellos, fueron heredados por su 
esposa Ad ele quien, a su vez, antes de su fallecimiento en 1981, los 
donó a la biblioteca del Instituto de Estudios Avanzados, donde 
todavía se conservan. 

Entre estos papeles inéditos se destaca el texto de la «confe­
rencia Gibbs», que Godel fue invitado a dictar en la reunión anual 
de la American Mathematical Society celebrada en Providence, 
Estados Unidos, el 26 de diciembre de 1951. Según los testigos, 
Godel se limitó a leer rápidamente el manuscrito que llevaba pre­
parado, sin admitir preguntas ni comentarios al finalizar, aunque 
sí hubo un entusiasta aplauso, comprensible dado lo infrecuente 
de poder ver y oír en persona a un genio del nivel de Godel. 

En los años siguientes, Godel se dedicó a corregir y retocar el 
manuscrito con la intención de publicarlo; sin embargo, nunca 
logró darle una forma que fuera para él satisfactoria. Finalmente, 
fue publicada en 1994 como parte de un volumen titulado Kurt 
Godel, ensayos inéditos. 

¿Por qué es tan interesante la conferencia Gibbs? Porque en ella 
Godel analizó profundamente (más que en cualquier otro de sus es­
critos) las que él entendía que eran las consecuencias filosóficas de 
sus teoremas de incompletitud. En concreto, Godel sostuvo en esa 
conferencia que sus teoremas demostraban que el platonismo ma­
temático era la postura correcta en la filosofía de las matemáticas. 

¿Qué es el platonismo? La pregunta en realidad es: ¿la mate­
mática, se crea o se descubre? ¿Es una creación humana, de la 
misma forma que lo es la música y la literatura? ¿O, por el contra­
rio, los matemáticos descubren hechos que existen en una reali­
dad externa preexistente a ellos? 
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El platonismo sostiene que los objetos matemáticos tienen 
una existencia objetiva, y que el trabajo de los matemáticos con­
siste en descubrir las características de esos objetos. El nombre, 
desde luego, proviene de Platón, quien a.firmaba que nuestras per­
cepciones son solamente el reflejo deformado de una realidad su­
perior que existe en el «mundo de las ideas». En ese mismo mundo 
de las ideas habitarían los objetos que los matemáticos investigan; 
aunque dentro del platonismo matemático hay diferentes matices, 
esa es la idea esencial. 

«El famoso teorema de incompletitud de Godel muestra que no 
hay ningún método de prueba formal [sintáctico] con el que 
poder demostrar todas las verdades de la matemática.» 
- W!LLARD VAN ÜRMAN QUINE, SOBRE EL TEOREMA DE GODEL. 

La postura opuesta, que hoy en día suele recibir el nombre de 
«formalismo», y que recoge parte de las ideas del intuicionismo y 
del programa de Hilbert, sostiene que la matemática es simple­
mente una creación humana, similar en ciertos aspectos a la mú­
sica. La matemática, según este punto de vista, es esencialmente 
un juego lingüístico ( un juego sintáctico) en el que hay ciertos pun­
tos de partida, que son los axiomas, y ciertas reglas lógicas que 
permiten operar a partir de ellos. El trabajo del matemático consis­
tiría en descubrir hacia dónde nos llevan las reglas de juego (no 
muy diferente en el fondo al trabajo de un ajedrecista que busca la 
jugada óptima en una cierta posición). En definitiva, el platonismo 
mantiene que los objetos matemáticos existen por sí mismos, y los 
matemáticos descubren sus propiedades, mientras que el forma­
lismo a.firma que los objetos matemáticos no existen por sí mis­
mos, y tienen propiedades que los matemáticos les atribuyen. 

Las dos posturas tienen sus matices, las dos tienen sus puntos 
fuertes y sus puntos débiles, y las dos conviven hoy en día en el 
pensamiento de los matemáticos. John D. Barrow, un filósofo de 
las matemáticas contemporáneo, ha escrito: «Los matemáticos 
son formalistas de lunes a viernes y platonistas los fines de se­
mana». Es decir, para el trabajo diario, a la hora de demostrar 
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teoremas y escribir artículos, la postura formalista es la más con­
veniente, porque en última instancia toda la «verdad» descansa en 
axiomas cuya elección no necesita de ulteriores justificaciones 
( en el formalismo solo se requiere que los axiomas sean consis­
tentes, no que reflejen una verdad externa). Sin embargo, los fines 
de semana, cuando se relajan, los matemáticos sienten en su fuero 
interno que trabajan con «objetos de verdad», cuya existencia es 
independiente y real (signifique esto lo que signifique). 

Ambas posturas aparecen claramente diferenciadas en rela­
ción a la cuestión de la hipótesis del continuo. Vimos en el capí­
tulo anterior que la hipótesis del continuo (HC) es indecidible con 
respecto a los axiomas de la teoría de coajuntos. Ahora bien, ¿es 
verdadera o es falsa? Para el formalista puro (aunque hoy en día 
casi nadie es formalista puro), la pregunta no tiene sentido. Los 
axiomas son reglas de juego elegidas arbitrariamente que no refie­
ren a ninguna «verdad» exterior, solo existen los conceptos sin­
tácticos de «demostrable» o «no demostrable», no los de «verdad» 
o «falsedad». Según este punto de vista, es tan lícito agregar a la 
teoría de coajuntos un nuevo axioma en el que HC sea demostra­
ble, como agregar otro en el que sea refutable. De este modo po­
drían convivir dos teorías de coajuntos diferentes, de la misma 
forma que conviven diferentes juegos de ajedrez (hay un ajedrez 
chino y uno japonés, por ejemplo), con algunas variantes entre las 
reglas de uno u otro, sin que sea necesario creer que hay un «aje­
drez verdadero». 

Para el platonismo, en cambio, los axiomas de la teoría de 
coajuntos reflejan una verdad que existe objetivamente y en la 
cual HC es, o bien verdadera, o bien falsa, y lo que falta es un 
axioma «evidente por sí mismo» que permita decidir la cuestión. 

Godel era decididamente platonista y en un artículo publicado 
en 194 7 bajo el título ¿ Qué es el problema del continuo de Can­
tor? escribió: «Debe observarse [ ... ] que, desde el punto de vista 
aquí adoptado, una prueba de la indecidibilidad de la coajetura de 
Cantor a partir de los axiomas aceptados de la teoría de coajuntos 
[ ... ] de ningún modo resolvería el problema. Pues si se acepta 
que el significado de los símbolos primitivos de la teoría de con­
juntos [ ... ] es correcto, entonces los conceptos y teoremas de la 
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,CUÁL ES EL AJEDREZ VERDADERO? 

El ajedrez chino es un juego de 
estrategia, de la misma familia 
que el ajedrez occidental y el 
shogi (o ajedrez japonés). Se 
cree que todos ellos provienen 
del juego llamado chaturanga, 
que se practicaba en la India en 
el siglo VI. Para los formalistas 
(que enfatizan los aspectos sin­
tácticos de las matemáticas), la 
acción de elegir axiomas para 
una teoría matemática no es 
muy diferente a determinar las 
reglas de un juego de tablero. El 
ajedrez occidental, el chino o el 
japonés son todos juegos de ta­
blero emparentados, pero no 
hay uno que sea «verdadero» y 
los otros «falsos». De manera si-
milar, dado que la hipótesis del Tablero de ajedrez chino con la posición inicial 

continuo (o HC) es indecidible de las fichas. 

con respecto a los axiomas de la 
teoría de conjuntos, entonces es tan legítimo agregar a HC, o bien a su nega­
ción, como nuevo axioma. En ambos casos se obtienen diferentes teorías de 
conjuntos (diferentes reglas de juego), sin que pueda decirse que una sea 
«verdadera» o la otra «falsa». Para los platonistas, en cambio, la teoría de 
conjuntos se refiere a una realidad objetiva en la que la hipótesis del continuo 
es realmente verdadera o falsa. 

teoría de cor\juntos describirían alguna realidad bien determinada 
en la cual la cor\jetura de Cantor debería ser cierta o falsa» . Más 
tarde, en 1963, al completar la demostración de la indecidibilidad 
de HC, Paul Cohen acordó con este punto de vista y arriesgó su 
sospecha de que la cortjetura de Cantor es en realidad falsa. 

Ahora bien, como ya dijimos, en la conferencia Gibbs de 1951, 
Godel sostuvo que sus teoremas de incompletitud demostraban la 
validez del punto de vista platonista. Veamos, en un apretado resu-
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men, cuál era el argumento de Godel. 
Todos tenemos en nuestra mente una 
intuición de qué son los números natu­
rales, entendemos cómo se definen 
sus operaciones fundamentales y cuá­
les son sus propiedades básicas. Perci­
bimos, por ejemplo, que multiplicar 8 
por 5 se equipara a la operación «fí­
sica» de formar ocho columnas con 
cinco objetos cada una (figura 1 ). 

Tenemos, en consecuencia, un 
«modelo mental» de los números natu-

FIG.1 

5 

8 

8 · 5 

rales, de esos entes, o esa estructura que los matemáticos estudian. 
Por otra parte, el primer teorema de incompletitud demuestra que 
ese modelo no puede ser completamente caracterizado por méto­
dos sintácticos, es decir, si nos limitamos a los métodos sintácticos 
de razonamiento, siempre habrá verdades inalcanzables. Los méto­
dos sintácticos de demostración son insuficientes para abarcar 
todas las propiedades de ese modelo que, semánticamente, somos 
capaces de comprender. Esto implica, según Godel, que ese modelo 
mental, esos entes que llamamos «números naturales», con todas 
sus propiedades o relaciones mutuas, existe en una realidad plató­
nica que se encuentra más allá de la mera lingüística (figura 2). 

Estas conclusiones de Godel han sido cuestionadas por lógi­
cos contemporáneos, como por ejemplo, Solomon Feferman o 

FIG. 2 

Semántica Sintáctico 

I \ 
Pero ¿no ser6 que algunos aspectos «sem6nticos» 

son solamente aspectos slnt6cticos m6s sofisticados 
(en los que se trabaja con grupos de símbolos, 

en lugar de con símbolos Individuales)? 

Antítesis y síntesis 
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LOS AXIOMAS DE LA TEORÍA DE CONJUNTOS 

La paradoja de Russell se resolvió finalmente gracias a una reformulación de 
los axiomas de la teoría de conjuntos propuesta, en primer lugar, por el ma­
temático alemán Ernst Zermelo en 1908 y perfeccionada pocos años después 
por el también alemán Abraham Fraenkel. Aunque existieron otras propuestas 
equivalentes (una de ellas presentada por el propio Gódel), la teoría axiomá­
tica de Zermelo-Fraenkel (o Z-F, como se la suele llamar) es hoy en día la 
teoría de conjuntos por excelencia: 

l. Dos conjuntos son iguales si tienen exactamente los mismos miembros. 

2. Ex iste el conjunto vacío. 

3. Dados x e y existe el par ordenado (x,y). 

4 . La unión de conjuntos también es un conjunto. 

5. Existe al menos un conjunto infinito. 

6. Toda propiedad que pueda ser expresada en el lenguaje formal de la 
teoría de conjuntos puede ser usada para definir un conjunto. 

7. Dado un conjunto, existe siempre el conjunto formado por todos sus 
subconjuntos. 

8. Dada una familia finita o infinita de conjuntos no vacíos existe siempre un 
conjunto que contiene exactamente un miembro de cada conjunto de la 
familia. 

9. Ningún conjunto es miembro de sí mismo. 

El axioma clave para evitar la paradoja de Russell es el sexto, que especifica 
en qué propiedades pueden basarse las definiciones de los conjuntos. Este 
axioma, en combinación con el noveno, permite demostrar que el conjunto 
paradójico de Russell simplemente no existe. 

Panu Raa.tikainen, quienes han sostenido que los argumentos de 
Godel se basan en supuestos cuya validez es cuestionable ( como 
el hecho de que en todas las mentes humanas existe un mismo 
modelo de los números naturales). El hecho es que, al momento 
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actual, no existe todavía un consenso unánime acerca de qué rela­
ción existe entre los teoremas de Godel y la naturaleza de los ob­
jetos matemáticos. Después de todo, solamente han pasado poco 
más de ochenta años desde la publicación de los teoremas de 
Godel, un tiempo demasiado breve como para pretender que haya 
alguna conclusión filosófica definitiva. 

LA VERDAD MATEMÁTICA 

Se ha dicho en muchos libros de divulgación que el primer teorema 
de incompletitud de Godel prueba que es imposible hallar un con­
junto de axiomas para la aritmética que permita demostrar todas 
las verdades de esta teoría; pero esa afirmación, en realidad, no es 
correcta. Como ya hemos dicho muchas veces, esto es verdad so­
lamente si nos limitamos a los métodos de demostración admitidos 
por el programa de Hilbert. Sin embargo, existen otros métodos de 
demostración. 

¿Es posible dar un ejemplo de una demostración que escape a 
los cánones admitidos por el programa de Hilbert? La respuesta es sí. 
Para mostrar un ejemplo, recordemos los axiomas de Peano, que son 
axiomas que se refieren a los números naturales y que toman como 
elementos primitivos a la suma, el producto y la función sucesor: 

Axioma 1: Ningún número tiene como sucesor al l. 
Axioma 2: Si dos números tienen el mismo sucesor, entonces 

son iguales. 
Axioma 3: El sucesor de x es x + l. 
Axioma 4: (x +y)+ l = x +(y+ 1). 
Axioma 5: El producto de x por 1 es x. 
Axioma 6: x · (y + l) = x · y + x . 
Axioma 7: Si el 1 cumple una cierta propiedad y se puede ase­

gurar que siempre que x cumple la propiedad, en­
tonces su sucesor también la cumple, entonces, 
bajo esas condiciones, se puede asegurar que todo 
número cumple la propiedad. 
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Vamos a demostrar a continuación que los axiomas de Peano 
son consistentes. Comencemos por observar que los siete axio­
mas son enunciados verdaderos ( en el universo de los números 
naturales). Ya hemos dicho que de premisas verdaderas solamente 
pueden deducirse afirmaciones verdaderas; por lo tanto, ningún 
enunciado falso podrá deducirse de los axiomas de Peano. Pero 
también hemos dicho que si un coitjunto de axiomas es inconsis­
tente, entonces todo enunciado es demostrable a partir de él. 
Dado que hay enunciados que no son demostrables a partir de los 
axiomas de Peana (los enunciados falsos no son demostrables), 
concluimos que los axiomas de Peano son consistentes. 

Ahora bien, el segundo teorema de incompletitud dice que no 
se puede demostrar la consistencia de los axiomas de Pean o .. . , 
pero acabarnos de demostrarla. ¿Cómo es posible? La respuesta, 
por supuesto, es que el segundo teorema de incompletitud dice, 
en realidad, que no es posible demostrar la consistencia de los 
axiomas de Peana usando los métodos del programa de Hilbert. 
La demostración de consistencia que acabarnos de hacer, en con­
secuencia, es un razonamiento correcto, pero que escapa a las 
restricciones de ese programa: la corrección de la demostración 
no es verificable algorítmicamente. 

Esto nos lleva directamente a una consecuencia de los teore­
mas de Godel: no existe un algoritmo que pueda verificar en todos 
los casos la verdad o falsedad de un enunciado aritmético (si así 
fuera, la computadora podría verificar la corrección de la demos­
tración de consistencia que hemos hecho más arriba, lo cual, por 
el segundo teorema de Godel, es imposible). En otras palabras, 
jamás se podrá programar una computadora de modo que pueda 
demostrar todas las coitjeturas de la aritmética (se trata de una li­
mitación esencial que los avances tecnológicos no podrán supe­
rar), las computadoras jamás superarán a los matemáticos ( aunque, 
como veremos más adelante, tampoco queda claro que los mate­
máticos sean siempre capaces de superar a las computadoras). 

Vemos así que el segundo teorema de incompletitud pasa a 
ser falso si admitimos métodos semánticos de demostración. 
Pero, ¿qué ocurre con el primer teorema de Godel? Pues bien, 
puede probarse que si admitimos métodos semánticos, entonces 
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De P se deduce Q 

Universos donde Pes verdadero Universos donde Q es verdadero 
(una cantidad potencialmente infinita) (una cant idad potencialmente infini ta) 

En todo universo donde Pes verdadero.. . . .. Q también lo es. 

toda verdad aritmética es demostrable a partir de los axiomas de 
Peano, donde, como vimos en la demostración anterior, por mé­
todos semánticos entendemos métodos basados fuertemente en 
la noción de «verdad». Concretamente, la regla lógica que se usa 
en estos razonamientos es esencialmente la siguiente: de P se de­
duce Q si en todo universo ( o modelo) donde P sea verdadera 
sucede siempre que Q también es verdadera (véase la figura). Re­
tomemos el ejemplo de demostración que vimos en el capítulo 2 y 
preguntémonos si es válida la siguiente deducción: 

De la igualdad (a-b) • a= (a-b) · e deducimos que a=c. 

Donde Pes un enunciado «(a-b) • a= (a-b)-b» y Q es «a=c». 
La deducción no es válida porque existe un modelo (un ejemplo) 
en el que P es verdadera, pero Q falsa. En efecto, si tomamos 
a= b = 2 y e= 3 ocurre que Pes verdadera y Q, falsa. 

Ahora bien, dado un enunciado existe un número potencial­
mente infinito de universos donde puede llegar a ser verdadero. 
Esto quiere decir que si en un paso de una demostración semán­
tica decimos que de P se deduce Q, para verificar que esto es 
correcto tendríamos que verificar los potencialmente infinitos uni-
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versos donde P es verdadero y comprobar que en todos ellos Q 
también es verdadero. Esta comprobación ( que involucra un nú­
mero infinito de verificaciones) no puede ser realizada por una 
computadora, pero tampoco queda claro que pueda ser realizada 
por una mente humana. 

De alguna manera, esto equipara a las matemáticas con las 
ciencia fácticas. En física, pongamos por caso, toda teoría es pro­
visional. Que la atracción gravitatoria entre dos cuerpos dismi­
nuye con el cuadrado de la distancia es una afirmación provisional 
porque nunca podremos verificar la intensidad de la atracción gra­
vitacional de todos los pares de cuerpos que existan en el universo 

LAS GEOMETRÍAS NO EUCLÍDEAS 

La geometría de Euclides, expuesta en 
su obra Elementos de geometría (siglo 
111 a.C.), es una teoría basada en cinco pos­
tulados, o axiomas, que traducidos al len­
guaje moderno pueden formularse como 
sigue: 

l. Por dos puntos puede trazarse una 
única recta . 

2. Un segmento puede prolongarse por 
cualquiera de sus extremos. 

3. Con cualquier centro y cualquier radio 
puede trazarse una circunferencia. 

4. Todos los ángulos rectos son iguales 
entre sí. 

El matemático italiano Eugenio Beltrami. 

5. Por un punto exterior a una recta puede trazarse una única paralela a ella. 

Los cuatro primeros postulados son palmariamente evidentes; en cambio, el 
quinto tiene una complejidad conceptual mayor y puede no resultar tan obvio 
como los otros. De hecho, la formulación original de Euclides para el quinto 
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a todas las distancias posibles. La afinnación es verdadera ... , 
mientras no se encuentre una situación en la que falle. 

Ocurre algo similar con las demostraciones semánticas; po­
demos asegurar que de P se deduce Q ... mientras no se encuentre 
un universo en el que P sea verdadero, pero Q falle. El programa 
de Hilbert quería deshacerse de esta incertidumbre al proponer 
métodos de demostración cuya corrección fuera verificable de 
una vez para siempre. 

Repitamos lo dicho más arriba: todo enunciado aritmético 
verdadero puede demostrarse a partir de los axiomas de Peano, si 
admitimos métodos semánticos. Pero jamás podremos tener la 

postulado era aún mucho más compleja (la que se muestra más arriba, que 
es la formulación más conocida, fue propuesta por el matemático inglés John 
Playfair a finales del siglo x1x). Es interesante agregar, además, que en sus 
demostraciones Euclides utiliza lo menos posible el quinto postulado (como 
si él mismo desconfiara un poco de su validez). 

La demostración de Eugenio Beltrami 
Durante muchos siglos se creyó que el quinto postulado era en realidad un 
teorema que podía demostrarse a partir de los otros cuatro. A lo largo del 
tiempo se hicieron muchos intentos de lograr una demostración, pero todos 
fracasaron. Finalmente, en 1868, Eugenio Beltrami demostró que el quinto 
postulado es indecidible con respecto a los otros cuatro, es decir, que ni el 
postulado ni su negación pueden ser demostrados a partir de ellos. Este fue, 
históricamente, el primer ejemplo conocido de indecidibilidad con respecto a 
un conjunto de axiomas, décadas antes de que Gódel demostrara su teoréma. 
En realidad, el quinto postulado tiene dos negaciones: una de ellas dice que 
por un punto exterior a una recta no pasa ninguna paralela a ella, la otra ne­
gación dice que pasa más de una paralela. Tanto el quinto postulado como 
sus negaciones pueden ser agregados a los otros cuatro y en todos los casos 
se obtiene un conjunto consistente de axiomas. Cuando se agrega el quinto 
postulado se obtiene, por supuesto, la geometría de Euclides; en los otros dos 
casos se obtienen las llamadas geometrías no euclídeas. Hoy en día se acepta 
que las tres son igualmente vá lidas; las geometrías no euclídeas son las más 
adecuadas para describir un espacio einsteniano curvado por la presencia de 
masas, mientras que la geometría euclídea es la que más se adapta a nuestra 
percepción de los fenómenos cotid ianos. 
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certeza absoluta de que esos métodos semánticos son correctos. 
Podemos tener métodos de razonamiento seguros y confiables, 
como quería Hilbert, pero de ese modo no podremos probar todas 
las verdades. O podemos tener la capacidad de conocer potencial­
mente todas las verdades aritméticas, pero sin la certeza de que 
nuestros métodos sean correctos. Seguridad y confiabilidad, o la 
capacidad de conocer todas las verdades, podemos tener una u 
otra, pero no las dos al mismo tiempo. 

HUMANOS VERSUS ORDENADORES 

En esencia, ¿es la mente humana superior a un ordenador? ¿No­
sotros «pensamos», mientras que el ordenador solamente «cal­
cula»? O, por el contrario, no hay una diferencia esencial y algún 
día el avance tecnológico nos permitirá crear inteligencias artifi­
ciales, androides, como los que nos muestra la ciencia ficción, 
cuyo pensamiento es indistinguible del humano. 

La controversia en torno a este tema comenzó a mediados del 
siglo xx, con el desarrollo de los primeros ordenadores electróni­
cos, y desde entonces se han escrito decenas, quizá hasta cente­
nares de libros y artículos con argumentos, refutaciones, debates 
y coajeturas sobre esta cuestión sin que haya hasta ahora a la vista 
alguna respuesta que satisfaga a todos los involucrados. 

Por todo lo dicho, es evidente que sería imposible en unas 
pocas líneas hacer ni siquiera un breve resumen de todos los ar­
gumentos a favor o en contra de una u otra postura. Solamente 
nos interesa mencionar aquí que los teoremas de incompletitud de 
Godel han sido usados más de una vez en las discusiones sobre 
este tema, sobre todo como argumento a favor de que la mente 
humana es esencialmente superior a un ordenador. 

La explicación, en pocas palabras, sería la siguiente: hemos 
mostrado más arriba una demostración de la consistencia de los 
axiomas de Peano y nuestra capacidad humana de captar la no­
ción semántica de «verdad» nos convence de que es correcta; sin 
embargo, el segundo teorema de Godel prueba que la corrección 
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de esa demostración no puede ser verificada por un ordenador. 
Hemos encontrado así una tarea (la verificación de la corrección 
de la demostración de que los axiomas de Peana son consistentes) 
que la mente humana puede hacer, pero un ordenador no (y esta 
imposibilidad es esencial, jamás podrá ser superada por los avan­
ces tecnológicos futuros). Por lo tanto, la mente humana es supe­
rior al ordenador. 

«En la medida en que se refieren a la realidad, las proposiciones 
de la matemática no son seguras y, viceversa, en la medida en 

que son seguras, no se refieren a la realidad.» 
- ALBERT EINSTEIN, EN UNA CONFERENCIA PRONUNCIADA EL 27 DE ENERO DE 1921. 

El argumento parece convincente, pero no es decisivo. La de­
mostración de la consistencia de los axiomas de Peana se basa en 
nuestra intuición de que esos axiomas son enunciados verdade­
ros; pero, ¿es infalible esa intuición? En realidad no lo es, ya ha 
fallado antes. Le falló a Frege, por ejemplo, quien durante años 
estuvo convencido de la consistencia de sus axiomas, hasta que 
Bertrand Russell descubrió que uno de ellos era autocontradic­
torio. ¿Podría surgir, en algún día futuro, un nuevo Russell que 
nos muestre una paradoja de los axiomas de Peana, alguien que nos 
diga que, después de todo, son inconsistentes? Aunque sería muy 
sorprendente ( como lo fue para Frege), no se puede descartar esa 
posibilidad. 

No podemos, por lo tanto, vanagloriarnos de superar a los 
ordenadores, porque jamás podremos tener la certeza de que 
nuestros razonamientos semánticos son correctos. Debemos 
aprender a vivir con la incertidumbre de que quizá en el futuro se 
descubra que todos (o casi todos) nuestros razonamientos son 
incorrectos. 

¿Podría ocurrir tal descubrimiento? ¿Es verosímil esa posibi­
lidad? La verdad es que sí; en realidad, la discusión iniciada con 
el descubrimiento de la paradoja de Russell nunca llegó a ser 
terminada. Las tres propuestas que se hicieron a principios del 
siglo xx, intuicionismo, logicismo y formalismo ( o el programa de 

LAS CONSECUENCIAS DEL TRABAJO DE G• DEL 161 



162 

Hilbert), fallaron por diferentes motivos y no han sido reempla­
zadas por otro programa de alcance equivalente. ¿Cuál es exacta­
mente la naturaleza de los objetos matemáticos? ¿Existe un nivel 
intermedio entre los razonamientos puramente sintácticos y los 
razonamientos libremente semánticos que permita superar la in­
completitud de los teoremas de Godel asegurando a la vez la con­
sistencia? ¿Existe realmente una diferencia tan tajante entre 
«sintáctico» y «semántico» o los que llamamos conceptos semán­
ticos no son más que conceptos sintácticos más sofisticados ( en 
los que se trabaja con grupos de símbolos en lugar de con sím­
bolos individuales)? Todavía hay muchas preguntas sin respues­
tas . .. afortunadamente. 
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