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EUCLIDES DE ALEJANDRIA es uno de los autores de no ficdion mds vendidos
de la historia. Su obra mds importante, los Hlementos de geometria, ha conocido mds
de un millar de ediciones y fue el libro formativo de incontables generaciones de cien-
fificos a lo largo de los siglos. Sus frece volimenes compendian lo mds granado de la
geometria y la aritméfica griegas. No menos influyente que los resultados fue el modo
en que Fuclides decidi6 exponerlos. Parfiendo de unos pocos axiomas y definiciones el
alejandrino procedid o deducir hasta 465 teoremas, construyendo asf un edificio l6gico
inafacable hasta el descubrimiento, ya enfrado el siglo xix —jmds de dos milenios
después!—, de los geometrias no euclidianas.
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Introduccion

Cuando hablamos de Euclides, hablamos de geometria y también
—aungue de forma muy diferente, como se verd— de aritmética
griegas; en concreto, del fruto de la sintesis de tres siglos de racio-
nalidad griega aplicada al pensamiento matematico.

El término matemata (nonpota en su grafia original), de
origen pitagérico, significa «lo que se puede aprender». La escuela
pitagérica, activa desde el siglo v a.C., establecié como base del
conocimiento cientifico cuatro «matemas» que les permitian ex-
plicar «el orden y la armonia del universo»: aritmética, geometria,
miusica y astronomia. Seguin el destacado pitagérico Arquitas de
Tarento, la «matematica seria la suma de esos cuatro matemas».
(En la Edad Media constituyeron la base del cuadrivio que, junto
con las tres artes del trivio —gramatica, 16gica y retérica—, for-
maban las «siete artes liberales», la parte central del curriculum
de las universidades.) En la Grecia clasica —siglos v al m a.C.—
la palabra matemata no se puede disociar de la palabra filosofia
(¢prhocodia), «el amor por la sabiduria», cuyo uso se introduce
para designar una cierta actitud ante el conocimiento.

Este libro se sirve de la figura de Euclides y muy particular-
mente de su gran obra maestra, los Elementos de geometria, como
referente ideolégico y metodolégico para llevar a cabo un anélisis
de las aportaciones mas relevantes del pensamiento matematico
griego. Segun el filésofo neoplaténico Proclo, una de las fuentes



més importantes de entre las que se dispone acerca de la obra de
Euclides, dicho pensamiento arranca con el insigne filésofo y ma-
temdtico Tales de Mileto, nacido en el afio 624 a.C., uno de los
siete sabios de Grecia y fundador de lo que a veces se designa
como la escuela filoséfica de Mileto. Este arranque coincidiria,
segun el mismo autor, con el del pensamiento filoséfico de la Hé-
lade en su conjunto.

El liderazgo de Tales pasaria a Pitdgoras de Samos, nacido
alrededor del afio 570 a.C. y fundador de la escuela mistico-filosé-
fica que lleva su nombre. Con ella se da una profundizacién de la
geometria y nace la aritmética entendida como arte deductiva. Se
establecia asi la distincién entre la logistica o «arte practico de los
nimeros» (en el que se incluiria la geometria entendida como arte
de medir), y la aritmética o «teoria de los niimeros». Las ideas
filoséficas de la escuela pitagérica trascendieron e influyeron en
la famosa Academia de Platén, activa desde el 387 a.C. En ella
florecié un matematico extraordinario, Eudoxo de Cnido, cuya
vinculacién con la Academia —profesor, alumno, o visitante— es
no obstante dificil de precisar. A él se deben dos conceptos fun-
damentales que luego recogeria Euclides, la teoria de la propor-
cién —necesaria para establecer los teoremas de Tales de lineas
y superficies— y el método de exhaucidon, que constituye la base
tedrica necesaria para calcular dreas de figuras geométricas pla-
nas y voliimenes de sélidos.

A lo largo del siglo v a.C. se consolidaron nuevas herramien-
tas l6gicas como las debidas a los fil6sofos estoicos y a Aristételes,
las cuales constituyen la armazoén del texto euclideo. Aristéte-
les, en particular, impuso limitaciones al concepto de infinito, una
nocién de fundamental importancia tanto en la aritmética de raiz
pitagérica como en la geometria de Euclides y muy especialmente
en el crucial postulado de las paralelas.

Los Elementos de Euclides son herencia y sintesis definitiva
de estos antecedentes. En el desarrollo de la matemaética griega
—fundamentalmente en geometria— hay un antes y un después
de esta magna obra. Otros tratados de caracter fundamental
—esto es, de indole teérica—, sean de geometria, de astronomia
o de aritmética —piénsese en la Sintaxis de Claudio Ptolomeo,
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en la Aritmética de Diofanto, en la Sintaxis matemdtica de Papo
de Alejandria— son herederos de su estilo deductivo. Pero su im-
pacto va mucho mas alld. El historiador Carl B. Boyer califico los
Elementos como el libro de referencia mas influyente de la histo-
ria, y estimé que solo la Biblia lo superaba en niimero de ediciones
(cerca de 1000). Descartes y Newton aprendieron en sus paginas,
y obras como los Principios de filosofia o los Principia mathe-
matica, escritas casi dos milenios después que los Elementos, son
estructuralmente reminiscentes de esta dltima. Es, con toda segu-
ridad, el texto matemaético mas relevante jamés escrito.

Toda aproximacién biogréfica a la figura de Euclides debe
conllevar pues el andlisis de los Elementos, y a través suyo, de los
tres siglos de pensamiento y de epistemologia de la matematica
griegos que en ellos se recogen. La primera y mas importante in-
fluencia de la obra procede de las escuelas platénica y aristotélica,
de cuyo pensamiento matematico los Elementos puede conside-
rarse la sintesis. Aunque hay autores que ven en los Elementos
una mayor influencia del primero, su estructura es, como se vers,
fundamentalmente aristotélica, sin que por ello quepa ignorar la
influencia de la Academia en cuanto a las aportaciones geométri-
cas concretas ya sean de Teeteto, de Teodoro o de Eudoxo, o en
la construccioén de los sélidos platénicos que cierra la obra. Asi,
se analizara el porqué de algunos de los postulados més relevan-
tes —algunos explicitos en el texto, otros implicitos— y de su
necesidad epistemoldgica y metodoldgica para el desarrollo del
texto euclideo. También se verd cémo influye la limitacién —o si
se prefiere la restriccibn— impuesta por Aristételes al concepto
de infinito y cudles son las consecuencias que dicha limitacién
produjo en el desarrollo de las matematicas posteriores a los Ele-
mentos. Otro tema central que se abordara es la cuestién de la
existencia de los objetos geométricos, tanto en su aspecto pura-
mente filoséfico como en el metodolégico. Asimismo, presentare-
mos en detalle la cuestion de la «cuadratura del circulo», uno de
los problemas maés relevantes de entre los heredados de la geome-
tria helena, lo que dar4 pie para hablar del gran Arquimedes y, de
pasada, de otras notables figuras de la ciencia antigua —Apolonio,
Ptolomeo, Diofanto, Papo y Proclo—, sin las cuales no se puede
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tener una idea cabal de la «matematica griega» en su conjunto.
Finalmente, abordaremos las aportaciones aritméticas —de raiz
pitagérica— que Euclides ofrece en los Libros VII, VIII y IX.

El cuadro adjunto contiene los simbolos que se usan en el
texto para referirse a los segmentos rectilineos; a los dngulos; a
los tridngulos; a las figuras rectilineas cerradas de tres, cuatro o
més lados —tridngulos, cuadrados, rectangulos, paralelogra-
mos—; a la circunferencia (la curva formada por los puntos del
plano que equidistan de uno dado O, el centro) y al circulo (la
superficie encerrada por la circunferencia).

Simbolos usados en el texto y su significado
AB Segmento rectilineo de extremos A y B.
<ABC Angulo de lados AB y BC y vértice en el punto B.
AABC Tridngulo de vértices A, By C.
OAcC Cuadrado de vértices opuestos A y C.
DAC Rectangulo de vértices opuestos Ay C.
OAC Paralelogramo de vértices opuestos Ay C.
ABCD---M ilg;racp?)hgo;;al cerrada rectilinea de vértices
OOA Circulo o circunferencia de centro O y radio OA.
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585 a.C.

540 a.C.

450 a.C.

430 a.C.

428 a.C.

427 a.C.

420 a.C.

360 a.C.

350 a.C.

335a.C.

ca. 325 a.C.

320 a.C.

300 a.C.

ca. 265 a.C.

Tales de Mileto: geometria
deductiva.

Pitagoras de Samos: aritmética
pitagérica y geometria.

Parménides y la esfericidad
de la Tierra.

Muerte de Zenén. Obras de
Demdcrito. Astronomia de
Filolao. Elementos de Hipocrates
de Quios.

Nace Arquitas; muere
Anaxagoras.

Nace Platén.

Trisectriz de Hipias. Aparecen
los inconmensurables.

Eudoxo: la teoria de la
proporcién y el método
de exhaucion.

Menecmo y las secciones
cénicas. La cuadratriz de
Dinostrato.

Eudemo: Historia de la
geometria.

Nacimiento de Euclides.
Las conicas de Aristeo.
Elementos de Euclides.

Muerte de Euclides.

260 a.C.

ca. 250 a.C.

230 a.C.

225 a.C.

212a.C.

180 a.C.

140 a.C.

60 a.C.

75

100

125

Astronomia heliocéntrica
de Aristarco de Samos.

Obras de Arquimedes.
La criba de Eratéstenes.
Cdnicas de Apolonio.
Muerte de Arquimedes.

La cisoide de Diocles. La concoide
de Nicomedes. Hipsicles y la
division del circulo en 360°.

La trigonometria de Hiparco.

Gémino y el postulado de las
paralelas.

Obras de Heron de Alejandria.

Aritmética de Nicomaco de
Gerasa. Esférica de Menelao.

Teén de Esmirna y la aritmética.

150 Almagesio de Ptolomeo.

250 Aritmética de Diofanto.

320

415

485

520

Coleccion matemdtica de Papo.

Muerte de Hipatia y cierre de la
Biblioteca-Museo de Alejandria.
Fin del conocimiento pagano
griego.

Muerte de Proclo.

Antemio de Tralles e Isidoro
de Mileto.
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CAPITULO 1

Euclides de Alejandria

De la vida de Euclides se desconocen casi todos los
detalles. Se sabe que escogi6 establecerse en Alejandria,
por aquel entonces uno de los centros intelectuales del
mundo griego, y que fundd alli una importante escuela de
matematicas. Las obras insignes de los grandes eruditos de
la humanidad son la sintesis de sus predecesores y de
su aportacién personal, fruto de la reflexién y de su
genio creador. Asi ocurre con Euclides.






Casi no se tiene noticia alguna de la vida de Euclides, y las dispo-
nibles proceden todas del filésofo neoplaténico griego Proclo, que
las escribié seis siglos después de la muerte de aquel. Proclo
cuenta que Euclides estuvo activo en Alejandria, ciudad fundada
por Alejandro Magno (356-323 a.C.) en el aio 322 a.C. y que bajo
el reinado de Ptolomeo I, «Séter», «el Salvador», rey de Egipto,
fue escogida capital de dicho reino. En ella Ptolomeo fundé la
famosa Biblioteca, ampliada con el Museo por su hijo Ptolomeo II
Filadelfo. El autor afirma que Euclides estudi6 en la Academia de
Platén y que conocia la obra de Aristételes. Tras el traslado a Ale-
jandria, fundé una escuela y una tradicién matematica que se re-
coge, entre otros textos, en los Elementos, sin duda una obra de
madurez.

A Euclides se le atribuyen dos famosas anécdotas. A la pre-
gunta del rey Ptolomeo I «;No hay un camino mds corto que el que
propones en los Elementos para aprender geometria?», Euclides
respondio tajante: «No hay ningiin camino real para la geometria».
La segunda se refiere a la actitud que adopté cuando un alumno le
pregunt6 qué beneficio le reportaba el estudio de la geometria.
Llamé6 a un esclavo y le dijo: «Dale tres 6bolos. Asi obtendra be-
neficio de lo que aprende».

Este gran desconocido consolidd en Elementos una tradicion
griega iniciada tres siglos atras y que perduraria hasta el siglo v,
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PROCLO DE LICIA

El filésofo griego Proclo (410-485) fue
una importante figura del neoplatonis-
mo. Nacido en Bizancio, se |le conoce
como Proclo de Licia porque sus padres,
oriundos de Xhantos, lo llevaron a esta
provincia del sudoeste de Asia Menor a
formarse a muy temprana edad. Pasada
la infancia, marché a Atenas para estu-
diar elocuencia con Leonas de Isauria y
cuando este hubo de emigrar a Bizancio
le llevé consigo. Tras visitar los centros
docentes de Bizancio, Proclo volvié a
Atenas, donde estudié con Plutarco
de Atenas —no confundirlo con el autor
de las Vidas paralelas— y con el filéso-
fo neoplatdnico Siriano de Alejandria, a
quien sucedié en la direccion de la Aca-
demia, mereciendo por ello el nombre de
«Diddocon, esto es, «sucesor de Platén»,
ocupando el puesto de director durante
cuarenta afos. Aungue vivo en la época de decadencia del helenismo, su
obra ha resultado muy importante para un mejor conocimiento de Euclides y
sus Elementos. De su inmenso legado se han conservado varios libros que se
refieren a la «teologia platénica», ya que por aquel entonces la obra de Platon
se consideraba divina, mientras que las doctrinas de Aristételes se estudiaban
como una introduccion a ella.

nueve siglos después de su muerte, acaecida hacia el 265 a.C. Es,
pues, el gran sintetizador de tres siglos de matematica griega que,
por la solidez de la sintesis euclidea, debi6 ser muy notable,
maxime si tenemos en cuenta que los Elementos excluyen mu-
chos temas a pesar de ser objeto de estudio en la Academia.

Los apuntes biogréficos de Proclo se encuentran en sus Co-
mentarios del Libro I de los Elementos de Fuclides, un texto de
gran importancia para el estudioso porque proporciona una valiosa
informacién histérica, epistemolégica y metodolégica de Euclides
y de los geémetras que le precedieron. Sobre Euclides escribe:
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No mucho més joven que (Hermétimo y Filipo) en la composicién
de sus Elementos, Euclides coordiné muchos trabajos de Eudoxo,
perfecciond los de Teeteto y demostré irrefutablemente lo que sus
predecesores habian presentado de una manera difusa.

Vivi6 bajo el reinado de Ptolomeo I porque Arquimedes, poste-
rior a éste, lo menciona. [...] Euclides es, por lo tanto, posterior a
los discipulos de Plat6n y anterior a Arquimedes y Eratéstenes, [...]
—y era partidario de la filosofia de Platén, por lo cual expuso como
resultado de su Enseiianza de los elementos la construccién de los
sélidos platénicos.

Proclo no hace ninguna referencia al lugar de nacimiento de
Euclides, lo que hace suponer que lo desconocia, pero le atribuye
la anécdota del camino real en el aprendizaje de la geometria
expuesto anteriormente.

La mejor sintesis de la biografia de Euclides acaso es la que
ofrece el novelista britanico Edward M. Foster en su guia de
Alejandria:

No sabemos nada de él; a decir verdad, hoy lo consideramos més
como una rama del saber que como un hombre.

OBRAS DE EUCLIDES DISTINTAS
DE LOS «ELEMENTOS»

Ademaés de los Elementos, sabemos que Euclides escribié otras
obras. En el prélogo a la parte segunda de los ya mencionados
Comentarios, Proclo le atribuye las siguientes:

De este hombre hay otras muchas obras matematicas de asombrosa
exactitud y sabia especulacién, tales como su Optica, su Catéptrica
y sus Elementos de misica, ademds de un libro Sobre divisiones;
pero la admirable en el mas alto grado es la Ensefianza de los ele-
mentos de la geometria por el orden y seleccién de los teoremas y
de los problemas considerados como elementos, porque no incluyé
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todos los que podia recoger, sino solo los susceptibles de informar
sobre los primeros principios geométricos, siendo también de admi-
rar sus variados modos de razonar, lo mismo cuando parte de las
causas que de las pruebas siempre incontestables, exactas y adecua-
das a la Ciencia, asi como sus métodos dialécticos, a saber: el que
distingue las especies en los descubrimientos, el que define en los
conceptos esenciales, el demostrativo en el transito de los principios
a las cosas que busca y el analitico de regresion de las cosas busca-
das a los principios.

«Los hombres pasan, pero su obra permanece.»

— GI.‘I'III.A.E PALABRAS DEL MATEMATICO AUGUSTIN Louis Caucny

AL ARZOBISPO DE PARIS ANTES DE MORIR.

Si a esta informacién le afiadimos la que proporciona Papo
de Alejandria (290-350) en el Libro II de la Coleccion matemdtica,
tenemos las obras que figuran en la tabla de la pagina siguiente.
Algunas de ellas, si bien se atribuyen a Euclides y se suelen reco-
ger en su Obra completa, fueron escritas con posterioridad por
otros autores.

En conjunto, todas estas obras ponen de manifiesto un plan
matematico docente bastante preciso con un amplio abanico de
intereses: geométricos (las tres primeras obras son de corte ele-
mental y las tres ultimas son més dificiles) y no geométricos
(obras de astronomia, musica, 6ptica y mecédnica). A continua-
cién se ofrece un resumen de cada una de ellas con un mayor
énfasis en las geométricas y, puesto que, obviamente, se desco-
noce su cronologia, los hemos clasificado alfabéticamente en
cada orden.

Los Datos contienen noventa y cuatro proposiciones que revi-
san qué propiedades de las figuras pueden deducirse cuando «se
dan otras». Euclides observé que los datos pueden ser en magnitud
(cuando se atiende a su medida), en especie (cuando se atiende al
tipo de objeto geométrico) y en posicion (cuando se atiende a su
posicién relativa), o mezcla de ellos. En realidad, se trata de un
manual de aprendizaje que cubre la geometria plana elemental.
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Obras atribuidas a Euclides
Elementos (de geometria): trece libros (1-XIll, de Euclides) y dos libros apdcrifos
(XIV, de Hipsicles, y XV, de Isidoro de Mileto)
Datos
Elementales Divisién de las figuras
5 Falsos razonamientos o Falacias
= | GEOMETRIA =
g Lugares de superficies
u'_{ Superiores Porismas
% Secciones conicas
ASTRONOMIA Fendmenos
Introduccién a la armonia
MUSICA Elementos de musica | (de Clednidas)
Seccidén del canon
Sobre lo ligero y lo pesado
MECANICA bt bl
é Sobre la palanca
2] 5
w Optica
L1 opTiICA e _ -
Catdptrica (de Tedn de Alejandria)

LA PROPOSICION 45 DE LOS «DATOS» DE EUCLIDES

Un ejemplo del tipo de cuestiones tratadas en Iés Datos es el siguiente, en que
los datos se dan en magnitud y se obtiene un dato en especie. La proposicion
45 establece:

Se dan un dngulo < ABC [que en la figura corresponde a o] de un cierto trisngulo

v la razdn que la suma de los lados AB, BC que forman el dngulo dado mantiene con '

el tercer lado AC. Entonces el tridngulo estd dado en especie (queda determinado).
B

o
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En las proposiciones 84 y 85 de este tratado se resuelven las
ecuaciones de segundo grado ax +x%="b? tal como lo hacian los
matematicos mesopotamicos —lo veremos en el capitulo 4—
cuando resolvian el siguiente sistema:

yxr=a,
xy=b2.

El contenido de la recopilacién Division de las figuras se
refiere a la divisién de una figura dada por una o varias rectas
«sometidas a ciertas condiciones» de manera que las superficies
de los trozos se hallen en una razén dada. Asi, por ejemplo, se
piden divisiones como:

Problema 20. Separar un tercio de un tridngulo A ABC por
medio de una recta que pase por un punto dado D de su
interior.

C

Son problemas de geometria mas en la tradicién de los mate-
maticos babilénicos —con una aplicacién mds numérica— que de
los Elementos. Los textos de este optsculo que se conocen son
de una version latina de 1563, y de una versién arabe descubierta
en Paris en 1851. De las treinta y seis proposiciones que contiene
la obra, las tinicas cuatro que se demuestran remiten a proposicio-
nes de los Elementos.

Los Falsos razonamientos —o Falacias— también se han
perdido. Tenemos la referencia de Proclo, que dice:

Enumera separadamente y ordena las diversas clases de errores,
ejercitando sobre cada una de ellas nuestra inteligencia mediante
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variados teoremas, oponiendo lo verdadero a lo falso y refutando el
error con la demostracion de la verdad. La obra tiene por objeto la
purificacién y el ejercicio de la inteligencia, mientras que los Ele-
mentos es una linea segura de explicacion incontestable de las cosas
geométricas.

LAS CONICAS

|

Las conicas se obtienen cuando la superficie de un cono (doble) se corta i
con un plano y el tipo de conica obtenido depende de la inclinacion del pla- I
no. Como muestra la figura 1, si este es paralelo al eje del cono se obtiene la
hipérbola (que tiene dos ramas), si es paralelo a la arista, la pardbola y, si no
cumple ninguna de estas dos condiciones se obtiene la elipse (que incluye la L
circunferencia). En la figura 2 se ilustran las distintas cénicas segun la carac-
terizacion foco-directriz.

it
Circunferencia Elipse Parabola Hipérbola
FIG. 2 I
:
L]
Circunferencia Elipse Parabola Hipérbola
L SR g UE= 1|

L
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Por lo tanto, es un texto propiamente docente del cual debe-
mos lamentar su pérdida, ya que nos habria dado pistas de hasta
qué punto consideraba Euclides que los errores eran de cariz
geométrico o de cariz 16gico. Otro de los textos perdidos de Eucli-
des —citado por Papo— es Lugares de superficies. Se trata de tex-
tos de geometria superior cuyo contenido va més alld del de los
Elementos. Segtin Papo, trata de «lugares —es decir, de la posi-
cién— de una linea o de una superficie cuyos puntos se hallan so-
metidos a una propiedad» y de «como se construyen tales lugares»
que son lineas, como por ejemplo, la cuadratriz, la espiral sobre
un cilindro, etc., o superficies como cilindros, conos, esferas o
como las que se obtienen de la rotacién de una cénica (elipses, hi-
pérbolas o parabolas). El texto ofrece una caracterizacion foco-
directriz de las conicas que evita recurrir al espacio tridimensional:

El lugar de los puntos cuya relacion entre la distancia a un punto
[foco] y a una recta [directriz] dados se mantiene constante es una
conica: una elipse, una parabola o una hipérbola segiin que la razén
dada sea menor, igual o mayor que uno.

De los Porismas —un texto de una enorme complejidad si se
atiende a su contenido: 171 proposiciones, 38 lemas y 29 clases de
porismas— los especialistas han dicho: «Su desaparicion es la-
mentable». El propio término porisma es polisémico y, por con-
siguiente, ambiguo. En este texto se refiere a la obtencién de
objetos geométricos indeterminados; es decir, que no estin bien
definidos porque no se dan «todas» las caracteristicas necesarias.
Un porisma es, pues, un hibrido entre un problema y un teorema:
hay que establecer su existencia pero no es posible mostrarlo ha-
bida cuenta de su indeterminacion. En los Elementos, el término
porisma se usa con la acepcion de corolario, esto es, una conse-
cuencia inmediata de un teorema ya demostrado.

De las Secciones cénicas, Francisco Vera, traductor al caste-
llano de los Elementos, escribe:

[...] sobre su contenido solo podemos hacer conjeturas. La critica
moderna cree que se trata de un arreglo de otra obra de Aristeo sobre
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CUESTION 8 DE LA «OPTICA» DE EUCLIDES

La Optica sigue la misma estructura deductiva que los Elementos. En la octa-
va proposicion del libro, Euclides ofrece una prueba geométrica de que las
medidas aparentes de dos objetos iguales y paralelos no son proporcionales
a su distancia al ojo. Partamos de dos rectas iguales AB, GD, pero colocadas a
distinta distancia del ojo £. Consideremos los rayos AE, EG y, con centro en £
y radio EZ tiramos un arco de circunferencia HZF. Se observa que los trian-
gulos AEZG, AEZD son, respectivamente, mayor y menor que los sectores
circulares EZH, EZF.

A GH

E

La razon
AEZG _ _ AEZD

sector (EZH) ~ sector (EZF)’

Permutando tenemos

AEZG 5 sector (EZH)
AEZD  sector (EZF)

y componiendo obtenemos

AEDG | _MEGZ 4 sector (EHF) _ sector (EZH) i
AEZD  AEZD sector (EZF) sector (EZF)

pero -LEDG _ GD _ AB ya que GD=AB.
AEZD DZ DZ

Puesto que AB _ BE finalmente resulta que
DZ ED
BE _ sector (EHF)
ED ~ sector (EZF)’

Un sector de una circunferencia es al otro sector de la misma circunferencia
como los angulos correspondientes. Es decir:

_BE _ <HEF
ED ~ <ZEF -
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el mismo tema y que sirvio de base al tratado de Apolonio. Arquime-
des habla en varias ocasiones de ciertas propiedades de las secciones
conicas que creia contenidas en el tratado de Euclides.

Es otra de las obras perdidas, y posiblemente consistia en una
«puesta en escena» de todo lo que, en su época, se conocia sobre
las cénicas, con un objetivo pedagégico.

En la introduccion se ha indicado que los «<matemata» pitagé-
ricos eran cuatro. Si Euclides pretendia articular una formacién
completa de la matemadtica, debia atender a los cuatro. No debe
pues sorprender que se le atribuyan los textos que siguen.

«Las leyes de la naturaleza no son mas que
los pensamientos matematicos de Dios.»

Los Fendmenos constituyen un texto de pequeia astronomia,
es decir, describe lo que es visible en la esfera celeste en movi-
miento, excluyendo los movimientos de los planetas. Se refiere,
pues, al orto y al ocaso de las estrellas y presupone un cierto co-
nocimiento de la geometria de la esfera que no se halla en los
Elementos. El breve tratado Elementos de miisica, de autoria
controvertida, contiene la teoria de los intervalos musicales de
acuerdo con la tradicién pitagorica.

La Optica es un texto sobre la perspectiva que, junto con los
Fenomenos, aborda el conocimiento de lo que vemos. Su objetivo
es establecer la medida de lo visible en relacién con la posicién
del observador y con la medida del objeto observado. Euclides
sostiene que la visién va del gjo al objeto, una afirmacién que se
tendria por cierta hasta que el erudito drabe Alhazen (965-1040)
en su Kitab al-Manazir (Libro de Optica) afirmé precisamente lo
contrario: la vision se debe a que el ojo recibe uno o mas rayos de
luz emitidos por el objeto. A pesar de ello, el libro de Euclides se
considera uno de los trabajos sobre Optica mas importantes de
entre los anteriores a Newton, y artistas del Renacimiento como
Filippo Brunelleschi, Leon Battista Alberti y Friedrich Diirer se
sirvieron de él para elaborar sus propios tratados de perspectiva.

EUCLIDES DE ALEJANDRIA
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FIG.1

Qjo

La paternidad de la Catdpirica es muy discutible. No obs-
tante, hay que poner de relieve que en ella se da una demostracion
geométrica muy rigurosa de la ley de la reflexién de la luz. Esta ley
establece que los rayos de luz se reflejan segin angulos iguales
sobre la horizontal (o sobre la vertical). Tomando la figura 1 como
guia, dirfamos que el d&ngulo de incidencia 0 es igual al angulo de
reflexion €. Para ello, Euclides se apoya en una proposicién
geométrica que dice, en la versién incluida en el Libro I de los

Elementos:

1
|
1
: Objeto
1
]
I
I
I

8 ¢

Espejo
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Proposicién 20. Dos lados de un
tridngulo juntos son mayores que
el tercer lado.

La demostracién es como si-
gue: Si el rayo visual incide segin
angulos iguales, tendremos los ra-
yos AC y CB; en cambio, si incide
segln angulos diferentes, tendre-
mos los rayos AD, DB. Por sime-
tria respecto del plano horizontal
trazamos la recta CE, simétrica
del rayo AC, y la recta DE, simé-
trica del rayo AD. Se obtiene asi el
triangulo ABED, cuyo lado BE es
mas corto que los dos lados BD,
DE juntos. Por la proposicién 20
que se ha citado anteriormente, el
recorrido AC, CB es mas corto que
el recorrido AD, DB (figura 2).

Una vez demostrado que un
rayo que obedezca la ley de la re-
fraccion recorre la menor distan-
cia posible entre los puntos A, C'y
B, Euclides recurre a una hipéte-
sis notable: la naturaleza impone
que el camino seguido por el rayo



sea precisamente ese, el minimo. Es el denominado principio del
camino minimo, y con esta elegante demostracién Euclides
inaugurd una idea de extraordinaria importancia: las leyes de la
naturaleza proceden segiin minimos; es decir, algin ente fisico
implicado en el problema —el recorrido, el tiempo empleado, la
energia utilizada, etc.— debe ser lo més pequefio posible. Muchos
siglos mas tarde, Pierre de Fermat (1601-1665) retomaria esa idea
para establecer la ley de la refraccién, que establece qué le su-
cede a un rayo de luz cuando cambia de elemento; por ejemplo,
del aire al agua. En su caso, Fermat impuso que «sea minimo el
tiempo requerido para hacer el recorrido». Esta idea del genial
matematico francés fue avalada por Gottfried Leibniz (1646-
1716), quien la usaria para poner de manifiesto la utilidad del cél-
culo diferencial, una de cuyas aplicaciones es, precisamente, la
determinacion de maximos y minimos. El principio general para
determinar minimos llevaria al suizo Leonhard Euler (1707-1783)
a crear una rama nueva de la matematica: el cdlculo de variacio-
nes. Seria, sin embargo, Pierre-Louis Moreau de Maupertuis
(1698-1759) quien formularia de forma explicita el «postulado»
segun el cual la naturaleza se rige por el principio de minima
accion.

Finalmente, en el ambito de la mecanica se le atribuyen a
Euclides dos textos, de autoria muy discutible, citados ambos por
algunos de los traductores arabes de la obra euclidea. Sobre lo
ligero y lo pesado alberga la exposicién més precisa que nos haya
llegado de la dindmica aristotélica de los cuerpos que se mueven
libremente; Sobre la palanca, por el contrario, contiene una teoria
de la balanza que es independiente de la mecénica aristotélica.

LA GEOGRAFIA DE LA MATEMATICA GRIEGA

Los autores cuyas aportaciones recoge y amplia Euclides, unidas
a los principales comentaristas de la obra, dibujan una constela-
cién de matematicos y filésofos-matematicos repartidos a lo
ancho de Grecia y sus colonias, fundamentalmente las jonicas, asi

EUCLIDES DE ALEJANDRIA
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como de Egipto y otras partes de Africa y de Asia. La cartografia
del pensamiento matemaético griego muestra un mapa que se ex-
tiende desde la isla de Sicilia, al oeste, hasta el Proximo Oriente,
pasando por Italia, Libia o Turquia, y tiene su centro en Grecia
propiamente dicha: el Peloponeso, el Atica, Tesalia, Macedonia y
las islas del mar Egeo. La mayor densidad de autores se da en la
parte mas oriental de la Hélade.

Aquello que une a todos estos pensadores —lo que permite
hablar de matematicos y filésofos griegos— es el hecho de com-
partir, de palabra y escritura, una lengua comin: los dialectos
griegos arcaico-chipriota, dérico, eélico o jénico segiin la zona
geografica de procedencia. A finales del siglo m a.C. emergié una
forma modificada del griego jonico-atico, el «habla comin» o
koiné, ampliamente utilizada en el mundo helenistico que dejé
tras de si la expansién macedénica liderada por Alejandro Magno.
Esta variedad del griego se ha llamado en algunas ocasiones
griego helenistico y constituye la base del griego moderno. No
seria, pues, de extranar que Euclides escribiera los Elementos en
esa lengua.

Lugares de nacimiento de los matematicos y filésofos griegos
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Territorio Ciudad Nombre Siglo
Sicilia 1. Siracusa Arquimedes 287-212 a.C.
Italia 2. Roma Boecio 480-524

3.Elea Parménides 570-475 a.C.

Zendn 490-430 a.C.

4, Crotona Filolao ca. 485-385 a.C.

Arsiteo, el Viejo 370-300 a.C.

5. Tarento Brisén ca. 450-390 a.C.

Arquitas 400-347 a.C.

6. Metaponte Hipaso siglo v a.C.

Libia 7. Cirene Teodoro 427-347 a.C.
Eratéstenes 276-194 a.C.

Peloponeso 8. Elis Hipias 465-ca. 396 a.C.
9. Atenas Antifén 480-411 a.C.

Socrates 470-399 a.C.

Platon 427-347 a.C.

Teeteto 417-369 a.C.

Plutarco siglo v

10. Queronea Plutarco ca. 46-120

Macedonia 1. Mende Filipo siglos w-m a.C.
12. Estagira Aristoteles 384-322 a.C.

13. Abdera Demdcrito 460-370 a.C.

Turquia 14. Bizancio Proclo 410-485
15. Cicico Menecmo 380-320 a.C.

16. Cilicia Simplicio 490-560

17. Pitane Autdlico 360-290 a.C.

18. Colofén Hermotimo siglo v a.C.

19. Clazomenes | Anaxagoras 500-428 a.C.

20. Tralles Antemio 474-558

21. Efeso Heraclito 535-484 a.C.

22. Mileto Tales - 23765.?:-.

Anaximandro 610-546 a.C.

23. Perga Apolonio 262-190 a.C.

EUCLIDES DE ALEJANDRIA
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Territorio Ciudad Nombre Siglo

24, |sauria Leonas siglo v

Islas griegas 25. Tasos Leodamas v a.C.
26. Quios Oenopide 500-420 a.C.

Hipdcrates ca. 470-410 a.C.

27. Samos Pitagoras ca. 569-ca. 475 a.C.

Meliso siglo v a.C.

Conon siglo m a.C.

28. Rodas Eudemo 370-300 a.C.

29. Cnido Eudoxo 400-350 a.C.

Egipto 30. Alejandria Hipsicles 240-170 a.C.
Herén ca.10-70

Ptolomeo 100-170

Diofanto ca. 200-ca. 284

Papo ca. 290-ca. 350

Tedn ca. 335-ca. 405

Siriano ca. 380-ca. 438

Proximo Oriente | 31. Gerasa Nicémaco ca. 60-ca. 120

En la época en que florecié Euclides ya habian contribuido al
desarrollo de la matemaética un enjambre importante de grandes fi-
guras. El terreno estaba abonado para que la geometria griega alcan-
zase su esplendor y asf lo pone de manifiesto el que, en esa misma
época, aportaran su inestimable obra Arquimedes y Apolonio.

ANTES DE EUCLIDES

En sus Comentarios, Proclo cita las aportaciones geométricas
que anteceden a los Elementos. Es, sin duda, una lista sesgada
(véase la tabla de las paginas 32-33), con un énfasis indiscutible
en la aportacién de la Academia, de la que era director, en menos-
cabo de las provenientes del Liceo aristotélico. El texto contiene
ochenta lineas de texto y su cita literal seria excesiva. A continua-
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TEXTOS GRIEGOS LLEGADOS A NUESTROS DIAS

El analisis del nimero de textos griegos de matematicas conservados por
especialidades y épocas arroja el panorama que se refleja en la siguiente tabla.
La mayoria de textos —aproximadamente la mitad— son de geometria; siguen
los de astronomia y los de mecanica. Se constata, pues, un importante interés
por la aplicacion de la matematica. Los textos se reparten por igual entre las
tres épocas. {Es razonable pensar que la pérdida de textos es tanto mayor
cuanto mas lejana es la época? De ser cierto, el numero de textos de la época
helenistica seria bastante mayor. En cualquier caso, de la época anterior a
Platon vy de Aristoteles solo conocemos las citas posteriores de fragmentos
de la Historia de la matemdtica de Eudemo vy de otras obras de Autdlico de
Pitane. Todo ello hace menos sorprendente que en el Liceo prearistotélico se
preocuparan por la historia de la matematica desde los albores hasta Euclides.
Seria Eudemo quien elaboraria dicha historia, por temas. Por desgracia, se ha
perdido y solo se tiene un conocimiento parcial e indirecto gracias a las citas
de autores algunos siglos posteriores, ya de nuestra era.

Especialidades

Aritmética 3
Geometria 34
Astronomia 15
Optica 2
Armonica (Musica) 8
Mecanica 10
Geografia matematica 1
Geodesia 2
Logistica (problema de los bueyes de Arquimedes) | (1)
Otros A
Total 75 (76)
Reparto por épocas

Epoca helenistica (300 a.C.-30 a.C.) 21
Epoca romana (30 a.C.-300) 24
Epoca tardana (300-550) 20
Epoca inasignable 10 (1)

Fuente: Ramon Masia, «Corpus de la matematica griega con introducciéns.
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cién se ofrecen unas lineas y una sintesis de lo que se atribuye
a cada autor, asi como de los requisitos que una demostracién
correcta —como las que se ofrecen en Elementos— hubiese re-
querido. Escribe Proclo:

Puesto que tenemos que considerar el comienzo de las ciencias y de
las artes en el periodo actual, diremos que muchos autores creen que
la geometria, que nacié de la medida de los campos, la inventaron
los egipcios [...] Del mismo modo que el conocimiento exacto de los
nimeros tuvo su origen en los fenicios a causa de su comercio y de
sus transacciones.

Tales fue el primero que import6 de Egipto a la Hélade esta teo-
ria [...] Después de ellos Pitdgoras transformé la doctrina en ense-
fianza [...] Tras ellos, Hip6crates de Quios descubrié la cuadratura
de las linulas y Teodoro de Cirene [...] Platén [...] dio un gran im-
pulso a la matematica, en general, y a la geometria, en particular.
[...] Muy amigo de los alumnos de Platén fue Eudoxo de Cnido [...].

Matematicos que, segun Proclo, precedieron a Euclides

Enunciados de los diferentes

Nombre Cita de Proclo libros de los Elementos que se
supone que conocian
El primero que importd esta teoria de
Cotas, una parte mportante de Jas cua: | L definicién 17; proposiciones
Tales les dic') a co‘;ocer a .Eus sucesores: algu- 5, 15, 26, y ouiza 1 32,
nas, en general, y otras, de una forma i e ol
mas sensible.
LI, definiciones 1, 3 y 6; nocidn
Transformé la doctrina en una ense- | comun 5; proposiciones 2, 17,
flanza. Examind los principios de la | 32, 36, 37, 45y 47.
geometria desde arriba. Investigd los | LI, proposiciones 14 y 20.
Pitagoras | teoremas de una forma inmaterial e in- | LIll, proposiciones 11y 14,

telectual y descubri¢ la dificultad de los
numeros irracionales y la construccion
de las figuras césmicas.

LIV, proposiciones 11,12 y 15.
LVI, proposiciones 25, 28, 29
y 3.

LVII, definiciones 3, 4, 5, 11 y 13.

32

EUCLIDES DE ALEJANDRIA




Estudié muchas cuestiones de geome-

LI, postulados 1,2y 3;

Oenopide | tria y dio la solucién candnica de algu- A
; z proposiciones 12 y 23.
nas: uso.de la regla y el compas.
LI, proposiciones 9, 10, 11, 12,
18,19, 20, 23, 24, 25, 28, 29, 3],
32,45y 47.
Descubrio la cuadratura de las lunulas. | LIl, proposiciones 6, 12,13 y 14.
Compuso unos Elementos. Usé —por | LI, definicién 11;
Hipécrates | generalizacion— el principio de reduc- | proposiciones 3, 20, 21, 22, 26,
cion en el caso de la duplicacién del | 27, 28, 29,30 y 31.
cubo. LIV, proposiciones 5, 9 y 15.
Ademas, LVI, proposiciones 19
y 20; LVII, proposicién 2; LXIII,
proposicién 12.
; Resultados del LIl o LI,
Teodoro Famoso como gedmetra, -
proposicién 47.
Dio un gran impulso a la matematica, en
general, y a la geometria, en particular.
Platén Sus consideraciones matematicas susci-
taron una gran admiracion en todos los
filosofos del momento.
Leodamas, | Contemporaneos de Platén. Aumentaron
Arquitas y | los teoremas y los presentaron como un | Resultados de los LX y LXIII.
Teeteto conjunto unitario de cariz cientifico.
Elaboré unos elementos, y descubrid los
Ledn diorismos, que permiten saber cudndo
un problema es posible o imposible.
Amplio el nimero de los teoremas ge- | LV, definiciones 4 y 5, y las
Elidois nerales. [...] Y muchas de las cuestiones | proposiciones generales.
sobre la seccién, por medio del analisis, | LX, proposiciones 1y 2.
que habia iniciado Platon. LXIl, proposiciones 5, 6, 7 y 10.
— El primero fue discipulo de Eudoxo;
al segundo se le conoce como «su
Y hermano». Ambos perfeccionaron la
Dinostrato
geometria.
Fili Investigd siguiendo las indicaciones de
ilipo de
Mende Platén. Con él se alcanzd la madurez

de la geometria.
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El texto estd fuertemente influenciado por la Historia de la
geometria de Eudemo de Rodas y por el neoplatonismo del autor.
Faltan, pues, los nombres de los astrénomos que siguieron las
huellas de Eudoxo; asimismo, no hay referencia alguna a los aris-
totélicos, incluida la figura del propio fil6sofo; se hallan en falta
Aristeo, «el viejo» —probablemente el padre del estudio de las
conicas y los lugares—, Hipaso de Metaponte o Filolao; tampoco
hay referencia alguna a los sofistas Antifén, Brisén e Hipias de
Elis; ni a los atomistas como Parménides, Zenén o Demdcrito;
ni de Autélico de Pitane. Y, por fin, ninguna mencién a los estu-
diosos de la aritmética. Con todo, la lista es muy importante y
merece una detenida atencion.

En los casos de Tales y Pitdgoras, las aportaciones son las
que les atribuyen diversos autores; en el caso de Hipdcrates es
la que ofrece el romano Simplicio, remitiendo a la informacién de
Eudemo en la Historia de la geometria.
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CAPITULO 2

La estructura de los «Elementos»

Tan importante como los teoremas que contiene
es la forma en que Euclides estructuré los Elementos:
partiendo de una breve lista de hipétesis, el autor
procede a demostrar deductivamente una larga serie de
proposiciones. Este proceso otorga al edificio euclideo una
solidez en apariencia inexpugnable. Pero esa solidez
esconde una serie de asunciones sobre la naturaleza
misma de la matematica, que se remontan a la
filosofia de Platén y Aristételes.






Los Elementos son, como ya se ha dicho, herederos de las en-
sefianzas de Platéon y de Aristételes. Para Platén, los entes mate-
maticos son ideales, es decir, gozan de una existencia propia en
el plano de las ideas. Para Aristételes, no. Se puede afirmar que el
texto de Euclides es esencialmente aristotélico. Sin embargo, vale
la pena detenerse un instante en la filosofia de la matematica pla-
ténica, una de las cuestiones en que la Academia puso mayor aten-
cién, como atestigua el lema apécrifo del frontispicio de la
institucién: «No entre nadie que no esté instruido en geometria».

En el caso de Platén nos limitaremos a comentar el simil de
la linea de la Repiiblica (véase el esquema de la pagina siguiente).
Se distinguen tres representaciones del objeto «lecho»: el «lecho»
creado por Dios, el «lecho» fabricado por el carpintero, y el
«lecho» que el pintor representa en el lienzo. «Dios —dice Pla-
ton— fabrica el lecho verdadero, el lecho en si mismo o esencial,
el lecho por naturaleza, que es inico.» El carpintero, en cambio,
fabrica simples imitaciones. Y el pintor hace representaciones de
las imitaciones del carpintero, pero no del «lecho verdadero».

Lo que se trata en este ejemplo es la cuestién de la existencia,
uno de los ejes principales de la filosofia platénica en tanto que,
para Platén, no es posible disociar la epistemologia (qué es el co-
nocimiento y cémo se llega a él) de la ontologia (qué es la realidad
objeto de conocimiento). Se plantean las preguntas siguientes:

LA ESTRUCTURA DE LOS «ELEMENTOS»
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Simil de la linea
del Libro VI de
la Republica

de Platén.

38

;Son reales los tres lechos, o alguno de ellos, o ninguno? ;Qué
entendemos por «real», es decir, de qué realidad hablamos
cuando decimos que el conocimiento cientifico consiste en el «co-
nocimiento verdadero de lo real»? Si nos cefiimos a la matemética
se plantean las preguntas: ;Cémo debemos entender —cuestion
relativa a la naturaleza epistemolégica— los objetos matemati-
cos? ;Qué podemos decir —cuestién relativa a la naturaleza on-
tolégica— de su existencia?

Segiin Platén, hay dos realidades: la del mundo ideal, si-
tuado en el nivel de lo «inteligible», y la del que nos circunda, que
se sitiia en el nivel de lo «opinable». Y, en el simil de la linea,
Platén ubica el pensamiento discursivo en el nivel inteligible, es
decir, solo podemos entender el nivel superior, el de lo inmuta-
ble, el de las ideas; el nivel inferior, el de lo mutable, solo es
susceptible de opinién.

Ideas,

: Inteligencia
arquetipos

Conocimiento Mundo inteligible

Entes

cis Pensamiento
matematicos

1
0
-
-

Objetos Facultades

L

P

Seres vivos,

A Creencia, fe
cosas fisicas

D

Opinién — —  Mundo sensible

Sombras,
imagenes

Imaginacioén,
conjetura
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LA ACADEMIA DE PLATON

La Academia de Atenas fue la escuela filosdfica fundada por Platén hacia
388 a.C. Se construyd en los jardines de Academo, el legendario héroe grie-
go de la Antigledad y fue refundada por ultima vez en 485, tras la muerte
de Proclo. En el afio 529 seria clausurada definitivamente por el emperador
Justiniano. Entre sus paredes se desarrollo gran parte del trabajo filosoéfico
y cientifico de la época. En la Academia se investigd en medicina, se perfec-
ciono la retdrica y se profundizé en la astronomia, con énfasis en la teoria
heliocéntrica, artes, todas ellas, sobre las que se mantenia una discusién
abierta y fructifera.

Vista exterior de la moderna Academia de Atenas, con las estatuas de Platén y Sécrates.

De acuerdo con este simil, los entes son o bien mutables
(parte baja de la linea) y, por tanto, objeto de doxa (opinién), o
bien inmutables (parte alta), susceptibles de gnosis (conoci-
miento). Los entes matematicos son inmutables, pero se sitian en
un punto intermedio: no pertenecen a la parte baja, pero tampoco
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a la excelsa. El texto establece una diferencia clara entre la ma-
nera de usar el pensamiento en el discurso dialéctico (propio del
filésofo) y en el cientifico (propio del matematico).

El proceso matemaético usa hipétesis, pero jamds vuelve a
ellas. La validez de la matematica es limitada y es provincia del
pensamiento. La inteligencia —la operacién mas elevada del
alma, propia del filésofo— va mas all4 de las hipétesis. No hace
matematica —que va de las hipotesis a los teoremas—, sino que
filosofa, cuestionando la matematica misma: ;Qué justifican las
hipétesis? ;Por qué son aceptables? ;Podrian ser otras? Al queha-
cer matematico le falta «subir» —en un retorno— de las conclu-
siones a las hipétesis.

En cuanto a las figuras matematicas, dice:

— Sabes igualmente que se sirven de figuras visibles que dan
pie para sus razonamientos, pero que en realidad no pien-
san en ellas, sino en aquellas cosas a las que se parecen,
Y asi discurren por el cuadrado en si y por la diagonal en
si, ¥y no a la que dibujan. Y lo mismo con el resto. De las
cosas que configuran y que dibujan hay sombras en el
agua, y las usan con este cardcter de imagen pues saben
que la realidad de estas cosas solo puede ser percibida
con el pensamiento.

— Asi es.

Asi, cuando un matemaético establece la validez de una pro-
piedad de un tridngulo, en general, como por ejemplo en la propo-
sicién 16 del Libro I, no importa la naturaleza del tridngulo —que
sea acutangulo, rectdngulo, obtusangulo— aun cuando la «figura
concreta», a la que recurre como soporte del razonamiento, sea,
por ejemplo, un tridngulo acutdngulo. Y, cuando es el caso que la
propiedad que pretende establecer depende de la naturaleza del
tridngulo, entonces da un teorema para cada uno de los casos,
como ocurre con el «teorema de Pitdgoras generalizado», que da
lugar a tres teoremas: Libro I, proposicién 47 y Libro II, proposi-
ciones 9 y 10.
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LA ESCUELA DE ATENAS

La escuela de Atenas fue pintada por Rafael en 1509 como encargo del papa
Julio Il. La obra representa a la filosofia, una de las cuatro facultades clasicas
junto con la teologia, el derecho y la medicina. Rafael reine en la obra a los
que en la Edad Media se consideraban los padres del pensamiento, pero to-
mando de modelo a personajes publicos de |la época, como Leonardo da
Vinci encarnando a Platén o Miguel Angel como Heréclito.

Los personajes identificados

1: Zenén de Citio o de Elea. 2: Epicuro. 3: Federico || Gonzaga. 4: Boecio o
Anaximandro o Empédocles. 5: Averroes. 6: Pitagoras. 7: Alcibiades o Alejan-
dro Magno. 8: Antistenes o Jenofonte. 9: Hipatia (como Margherita) o Fran-
cesco Maria della Rovere. 10: Esquines o Jenofonte. 11: Parménides. 12: Sécra-
tes. 13: Heréaclito (Miguel Angel). 14: Platén (con el Timeo, Leonardo da Vinci).
15: Aristoteles (con la Etica). 16: Didgenes de Sinope. 17: Plotino.18; Euclides o
Arguimedes (Bramante). 19: Estrabdn o Zoroastro. 20: Claudio Ptolomeo. 21
Protégenes. R: Apeles (Rafael).

Platon sintetiza brevemente la esencia del conocimiento ma-

tematico en la carta VII:

Es necesario pasar por tres factores para acceder al conocimiento
de cada una de las cosas que son; el cuarto es el propio conocimien-
to, y el quinto ha de ser considerado el ente cognoscible que es ver-
daderamente. El primero es el nombre; el segundo, el discurso; el
tercero, la imagen, y el cuarto, el conocimiento.

LA ESTRUCTURA DE LOS «ELEMENTOS»
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Luego explica con detalle cada item: el definiens —circulo—
el definiendum —la definicibn—, la figura —«se traza y se
borra»—y la opinién verdadera —sus propiedades intrinsecas, en
el caso de la matematica, los teoremas relativos—.

Aristételes, por su parte, escribe en Analiticos segundos
que la ciencia demostrativa combina dos puntos de vista: el rela-
tivo al significado, que concierne a los términos; y el de la exis-
tencia, ontoldgico, que concierne a los objetos. Una segunda
distincién atraviesa la anterior: se deben distinguir los términos
y objetos primeros y los términos y objetos (o propiedades) de-
rivados. Los enunciados que establecen significados o existen-
cias son fesis y distingue, ademads, entre los que establecen los
significados —las definiciones— y los que establecen la existen-
cia —las hipdtesis—.

Las definiciones «no dicen nada de la existencia del objeto
definido»; responden a la pregunta «;qué es?» y no a la pregunta
«;existe?». Las hipdtesis, a su vez, se dividen en nociones comu-
nes —el intelecto no puede dudar de ellas, pues son convincentes
por si mismas— y en postulados, que son menos evidentes y que
«imponen» la existencia de ciertos objetos. Las nociones comunes
a menudo se denominan axiomas, aunque los mateméaticos mo-
dernos no observan una diferencia esencial entre nociones comu-
nes (o axiomas) y postulados.

En cuanto a los objetos matematicos, los hay «primeros»
—por ejemplo, la unidad en aritmética, o la magnitud en geome-
tria—, cuya existencia «se da». Sin embargo, la existencia del
resto de los objetos hay que establecerla. Las proposiciones o teo-
remas refieren a objetos existentes: «si el sujeto no existe el enun-
ciado es falso». La cuestién de la existencia es fundamental. No se
trata, como en Platén, de una existencia ideal, previa a todo, sino
de una existencia que queda fijada una vez se acepta el axioma de
partida o la demostracién que conduce a ella.

En Analiticos segundos Aristételes dice:

Una hipétesis es aquello que, si se supone su verdad, nos permite
establecer una conclusién. Como alguien ha dicho, las hipétesis de
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la geometria no son falsas. Entiendo los que dicen: «No se puede
usar lo que es falso y aunque un geémetra afirma falsamente, de
la recta que ha trazado, que tiene la longitud de un pie cuando no la
tiene, o que es recta cuando, de hecho, no lo es». El geémetra no
basa ninguna conclusién en la linea recta que ha dibujado aun cuan-
do asi lo afirme. En realidad, se refiere a lo que ilustran dichas figu-
ras. Mas anin, el postulado y cada una de las hipétesis son afirmacio-
nes universales o afirmaciones particulares; las definiciones, no.

Aristételes fij6 entonces el procedimiento con el que se cons-
truye el pensamiento en la ciencia. Parece andlogo al de Platén,
pero no lo es: no hay distincién entre la validez de los postulados
y una validez ulterior que est4 més alld del conocimiento sensible.
Hay unas verdades que fijan la existencia, y unas nociones comu-
nes que tienen un dmbito de aplicacién méas amplio. La concatena-
cién —como si se tratase de concatenacién de silogismos— va de
la verdad autoevidente a la verdad del teorema: la verdad de las
nociones comunes y la de los teoremas son de la misma natura-
leza. Sin embargo, Aristételes tiene necesidad de las definiciones,
otro punto en el cual su pensamiento y el de Platén —discipulo y
maestro— difieren: las condiciones necesarias y suficientes estan
intimamente ligadas a los términos aceptados y aceptables en las
definiciones, y hacen que sean correctas.

En sintesis, la filosofia de la ciencia —y, en particular, de la
matemaética— de Aristételes se puede resumir como se muestra
en el siguiente esquema:

Estructura metodoldgica
aristotélica de los Elementos

Tesis Axiomas
(nociones comunes)

Hipétesis  Definiciones 1
(existencia) (significado)

2
(con consenso)  (sin consenso)
4 Postulados
3
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EL CONTENIDO DE LOS «<ELEMENTOS»

De acuerdo con la tradicién, los libros originales de Euclides reu-
nidos bajo el nombre comin de Elementos son trece, escritos en
«habla comiin», con simbolos denotadores de los objetos geomé-
tricos, sobre todo puntos, magnitudes y nimeros. Con posterio-
ridad, se afiadirian otros dos libros: el XIV de Hipsicles y el XV de
autoria desconocida; quiza de Isidoro de Mileto.

De las més de mil ediciones que ha conocido los Elementos,
la primera se debe a Erhard Ratdolt (1442-1528). La imprimi6 en
Venecia en 1482 —apenas treinta afios después de la Biblia de
Gutenberg—, en base a la edicién comentada del erudito ita-
liano Giovanni Campano de Novara (1220-1296), quien a su vez
partié de la traduccién del monje inglés Adelardo de Bath (1080-
1150).

Los cuatro primeros libros, que evitan el recurso de la teoria
de la proporcién y, por tanto, hay que considerar muy orientados
a la didactica, estan dedicados a la geometria plana. Sin em-
bargo, son de naturalezas diferentes:

— El Libro I es fundamental: incluye, ademas de veintitrés
definiciones, los cinco postulados y las cinco nociones
comunes. Fundamentalmente trata de la teoria de los
tridngulos. Instituye las bases para usar la técnica del tan-
gram en las demostraciones y de la regla y el compés en
las construcciones. El libro se cierra caracterizando los
triangulos rectangulos: son los que cumplen el teorema de
Pitagoras. Pone de manifiesto el potencial deductivo del
método de la reduccion al absurdo.

— El Libro II contiene el dlgebra geométrica: es decir, los
cémputos algebraicos béasicos (z+y)*=2%+y*+2xy,
22+ Yy =(x+y) (x-y) y sus derivados, pero no con nime-
ros sino con magnitudes (segmentos) y, por consiguiente,
requieren de una construccion; la resolucién geométrica
de las ecuaciones de segundo grado en linea de los Dalos;
la construccién del segmento dureo, y el teorema del co-
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seno, generalizacién del teorema de Pitdgoras a tridngu-
los no rectangulos (acutdangulos y obtusiangulos). Este
libro, que contiene dos definiciones, se cierra con la pro-
posicién 14, la cual proporciona el dltimo eslabén de la
cuadratura de las figuras rectilineas multilateras.

— El Libro III ofrece la geometria de la circunferencia, y
contiene once definiciones.

— El Libro IV ofrece la construccién, con regla y compas, de
los poligonos regulares: tridangulo equildtero (también en
Libro I, proposicién 1), cuadrado (proposiciones 6 y 7),
pentiagono (proposicién 11), hexagono (proposicién 15)
y pentadecagono (proposicién 16). Contiene siete defini-
ciones.

Los Libros V y VI, cuyo contenido se atribuye a Eudoxo de
Cnido, contienen la teoria de la proporcion y sus aplicaciones a
la geometria. Son técnicos y constituyen la base del teorema de
Tales para rectas y para superficies multildteras rectilineas y del
célculo de dreas y volimenes.

— El Libro V es un libro fundamental para comprender la
profundidad de los logros de la geometria griega en el pe-
riodo de la Academia. En él se dan dieciocho definiciones
de entre las que cabe distinguir la de razén y la de propor-
cion. Establece las propiedades que rigen la teoria de la
proporcién y aparecen las proporciones compuestas.

— El Libro VI contiene los teoremas de Tales, y, por tanto,
los de la altura y del cateto del tridngulo rectangulo, de los
que se deduce, de forma indirecta, el teorema de Pita-
goras. Es un capitulo importante con cuatro definiciones,
una de las cuales probablemente es espuria.

Los Libros VII, VIII y IX —atribuidos, no sin ausencia de po-
lémica, a la escuela pitagérica— contienen los elementos de la
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aritmética en base a una teoria de las partes alicuotas o niimeros
racionales.

— El Libro VII establece que el uno no es un niimero; s un
concepto en virtud del cual «todo lo que es, es uno». De-
fine los conceptos parte y niimero primo, los fundamen-
tos de la divisibilidad; establece el algoritmo y el lema de
Euclides. Contiene veintidés definiciones que cubren los
tres libros aritméticos, la Gltima de las cuales es la de ni-
mero perfecto.

— El Libro VIII se dedica al estudio de las proporciones con-
tinuas de nimeros naturales: son las progresiones geomé-
tricas, fundamentalmente en base dos.

— El Libro IX contiene un teorema notable: la existencia de
una cantidad no finita de niimeros primos, necesario —y
puede ser que suficiente— para establecer el teorema fun-
damental de la aritmética.

— El Libro X —con reminiscencias de Teodoro y de Tee-
teto— contiene el estudio de los inconmensurables y la
clasificacion de las lineas irracionales. De entre todos los
libros de los Elementos, se trata del més largo, el més téc-
nico y el que ha quedado mas obsoleto. Ofrece dieciséis
definiciones, no todas originales de Euclides, y las lineas
que aparecen en las construcciones de los s6lidos platéni-
cos del Libro XIII.

— El Libro XII contiene el método de exhaucién, un término
controvertido pero que se ha mantenido a lo largo de los
siglos. Mediante este método se calcula el 4rea del circulo
y de los voliimenes de la pirdmide, el cono y la esfera. Es
un libro dificil y de una gran técnica superado, sin em-
bargo, por la genialidad de Arquimedes a la hora de abor-
dar problema de este cariz. Su contenido se atribuye
béasicamente a Eudoxo.
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— El Libro XIII contiene la construccién de los cinco sélidos
platénicos: el tetraedro, el hexaedro, el octaedro, el dode-
caedro y el icosaedro. También se demuestra que solo
existen esos cinco. Fue en la Academia donde Teeteto
construyé el octaedro y el icosaedro que, al parecer, no
habian sido construidos por la escuela pitagérica.

«Las matemadticas comenzaron a ser una ciencia cuando alguien,
probablemente un griego, enuncié proposiciones acerca

de cualquier cosa o de alguna cosa sin especificar

ninguna particularidad.»

— ALFRED NorTH WHITEHEAD (1861-1947).

Los trece libros de Euclides contienen 140 asunciones bési-
cas —130 definiciones, 5 postulados y 5 nociones comunes— y
465 proposiciones derivadas de aquellas —93 problemas y 372
teoremas—, asf como unos pocos resultados auxiliares: 19 poris-
mas y 16 lemas.

El Libro XIV es obra de Hipsicles de Alejandria (ca. 190 a.C.-
120 a.C.) y data del siglo i a.C. La introduccién tiene un interés
histérico indudable. Los resultados més notables son las relacio-
nes entre las superficies y los volimenes de los sélidos platéni-
cos. El Libro XV, obra de Isidoro de Mileto, data del siglo vi. Es
muy inferior al anterior y establece la posibilidad de inscribir
ciertos poligonos regulares en otros.

Vale la pena exponer las dependencias de las proposiciones
de un libro de las de los precedentes (véase la tabla de la pagina
siguiente).

Los Libros VII, VIII y IX son independientes del resto, ya que
las dependencias con otras partes de la obra (Libros Il y V) se
pueden subsanar facilmente con la introduccién de definiciones
ad hoc. El resto se estructura alrededor de dos bases conceptua-
les, la del Libro I y la del Libro V. Corresponden, grosso modo, a
las aportaciones previas y posteriores a la Academia. Los Libros
X al XIII dependen fuertemente de ambas fuentes.

LA ESTRUCTURA DE LOS «ELEMENTOS» 47



Dependencias de
las proposiciones
de los diferentes
libros de los
Elementos.

48

Libro | Es independiente.

Libro Il Depende del Libro |.

Libro Il D_epende del Libro | y de las proposiciones 5 y 6 del
Libro 11 (115 y 116).

Libro IV Depende del Libro |, de 111y del Libro Il

Libro V Es independiente.

Libro VI Depende de 11127, 31 y de los Libros | y V.

Libro Vil Independiente.

Libro VI Depende de definiciones de los Libros V y VII.

Libro IX Depende de |13 y 4 y de los Libros VIl y VIII.

Libro X Depende de 144, 47; del Libro II; de 11137; de los Libros V
y VI; de VII4, 11, 26; de X1, 24, 26.

Libro Xl Depende del Libro I; de 11131; de IV1; de los Libros V y VI.

Libro XiI Depende de los Li‘bros lylll; yde V6 y 7; de los Libros V
y VI; de X1y del Libro Xl.

Libro X Eip;i?de de los Libros |, de 114; de los Libros IlI, IV, V, VI,

LOS ELEMENTOS PRIMEROS DE LOS «<ELEMENTOS»

Conviene precisar lo que cabe entender por elemento en el con-
texto de la geometria. En Topicos, Aristételes es tajante sobre su
importancia: «<En geometria es bueno ejercitarse en los elemen-

tos»; y Proclo, en Comentarios, también:

Si la geometria cuenta con unos elementos, se podra entender el
resto de la ciencia, mientras que sin ellos no serd posible comprender

su complejidad y resultaréd inalcanzable.

Es precisamente Proclo quien precisa las diversas acepciones
que se le han atribuido. Para Hipdcrates de Quios, el elemento es
una proposicién que desempeiia un cometido capital en la obten-
cidén y organizaciéon deductiva de otros resultados; para Menecmo
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tiene dos acepciones: la débil, cuando adopta la forma de un lema
previo (como, por ejemplo, Libro I, proposiciéon 1 respecto del
Libro I, proposicién 2), y la fuerte, que incluye solo las definicio-
nes, las nociones comunes y los postulados. Es precisamente por
este sentido fuerte por el que el texto de Euclides adquiere toda la
legitimidad para llamarse Elementos, si bien responde también a
la forma débil, ya que, una vez establecidos los principios, la obra
se estructura deductivamente con un alto nivel didictico.

Por esta razén los Elementos no contienen la totalidad de re-
sultados geométricos conocidos sino solo los que constituyen la
base de desarrollos ulteriores. En este sentido, supera a otros Ele-
mentos que los precedieron. Los geémetras como Arquimedes,
Apolonio, Eratéstenes, Ptolomeo, Papo o Proclo los toman como
referente basico de la tarea matemaética. De este modo el Libro I ha
adquirido, ademads, un contenido epistemolégico muy relevante.

La estructura del libro, como ya se ha dicho, es basicamente
aristotélica. De las nociones comunes (véase la tabla) —recorde-
mos: verdades autoevidentes—, nos fijaremos en cinco y si cabe
en una sexta. Aluden a la relacién de indole cuantitativa de la
igualdad y de la desigualdad. Son validas para las magnitudes
geométricas, los nimeros naturales y las razones. Su rango de
validez es, pues, mas amplio que el estricto de la geometria y,
de hecho, son conceptualmente anteriores si nos atenemos al pro-
ceso metodolégico-discursivo.

Nociones comunes

1. Dos cosas iguales a una tercera son iguales entre si.

2. Si a cosas iguales afadimos cosas iguales, los totales son iguales.

3. Si de cosas iguales quitamos cosas iguales, los restos son iguales.

[3b. Si, en cambio, les afadimos cosas desiguales, los totales son
desiguales.] Esta nocion comun aparece solo en algunas ediciones.

4. Las cosas gque se superponen son iguales.

5. El todo es mayor que la parte.

[6. Dos rectas no contienen espacio.] Esta nocion comun aparece solo
en algunas ediciones.
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Sin embargo, dos nociones comunes, la 4 y la [6], escapan a
esta precisién, puesto que se refieren simplemente a objetos
geométricos y, por tanto, deberian incluirse entre los postulados.
La nocién comin 4 introduce indirectamente el movimiento: si
movemos dos objetos [geométricos] y conseguimos superponer-
los, es que antes de ser movidos eran iguales. Y la [6] —que Eucli-
des usa, por ejemplo, en la proposicién 4 del Libro I— es
geométrica: se refiere a objetos geométricos y a cuestiones de
(no)-existencia.

Por su parte, los postulados (véase la tabla) establecen con-
diciones de existencia y, en ciertos casos, existencia constructiva
de ciertos objetos geométricos.

Postulados

1. Entre dos puntos siempre se puede trazar una recta.

2. Una recta se puede prolongar continuamente de una recta.

3. Se puede trazar un circulo de centro y radio dados.

4, Todos los dngulos rectos son iguales.

5. Si dos rectas son cortadas por una tercera de manera que los angulos
internos de un lado sumen menos de dos dngulos rectos, entonces se
cortan del lado en que los dngulos suman menos de dos dngulos rectos.

Los tres primeros se refieren a lo que se denomina el uso de la
regla y el compds en las construcciones geométricas. Afirman que
son validas —existen— las rectas que tienen como extremos dos
puntos (y, que ademés, se pueden prolongar de una recta finita), y
las circunferencias de centro y radio dados. El comp4s, sin em-
bargo, «no tiene memoria»: si levantamos uno cualquiera de los
pies del compas, este se cierra. En la proposicién 2 del Libro I
Euclides demuestra que un compaés asf considerado, sin embargo,
se comporta igual que otro «con memoria».

Reflexionemos un instante acerca de la existencia de los ob-
jetos definidos. Para Platén, la existencia es algo «real». Lo inico
que hace una definicién es dar un nombre al objeto existente, para
podernos referir a él, y permite atribuirle una imagen. Para Aris-
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tételes, la cuestién es muy diferente. Segiin €l, la definicién no
dice nada de la existencia: para los entes primeros, la existencia
se postula; para los segundos, debe establecerse. Y, claro est4, ello
introduce limitaciones a la existencia. Aristételes escribe:

De lo que no existe, nadie sabe lo que es; por consiguiente, no sabe-
mos a qué se refiere el discurso o el nombre como cuando me refie-
ro al carnero-ciervo del cual nadie puede saber a qué me refiero
cuando lo nombro.

La definicién no implica, pues, la existencia, pero, por cohe-
rencia, debe corresponder a alguna realidad. En general, la exis-
tencia en geometria debera establecerse después de una defini-
cién precisa del objeto. En consecuencia, habra que tener muchi-
simo cuidado en usar las definiciones en las demostraciones antes
de haber establecido que el objeto definido existe.

«Les han de traer ejemplos palpables, ficiles, inteligibles,
demostrativos, indubitables, con demostraciones matematicas que
no se pueden negar, como cuando dicen: Si de dos partes iguales
quitamos partes iguales, las que quedan también son iguales.»

— ORIENTACIONES METODOLOGICAS PARA LA CONVERSION DE LOS INFIELES PUESTAS
EN BOCA DE LoTario, EL QuiJjoTE.

Existe una clara diferencia entre las primeras definiciones,
que precisan de conceptos no definidos como «parte, anchura, lon-
gitud», etc., y las siguientes, que se basan en la aceptacién del co-
nocimiento de los entes geométricos previos, como por ejemplo el
circulo, el centro, el didmetro, las figuras trildteras, etc. Aristételes
afirma que, de algunos objetos o conceptos, la existencia se da por
cierta: son la «linea», la «linea recta» y la «magnitud», en geome-
tria; y la «unidad», en aritmética. Tampoco faltan las incoherencias
internas. En la definicién de didmetro se lee: «Esta recta divide al
circulo en dos partes iguales», pero esta es una propiedad que ha-
bria que demostrar, no una definicién.
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Algunas definiciones del Libro |

1. Punto es lo que carece de partes.

2. Linea es una longitud sin anchura.

3. Los extremos de una linea son puntos.

4, La linea recta es aquella que descansa por igual sobre sus puntos.

8. Un dngulo plano es la inclinacion de dos lineas de un mismo plano que
no reposan sobre una misma recta.

9. Si ambas lineas son rectas el dngulo es rectilineo.

10. Si una recta tirada sobre otra forma con ella angulos contiguos igua-
les, cada uno de los angulos se llama recto, y la recta tirada es una per-
pendicular sobre la otra.

15. Un cireulo es una figura plana limitada por una sola linea —la circun-
ferencia—, respecto de la cual son iguales todas las rectas que inciden
sobre ella, tiradas desde un punto que se halla en su interior.

16. Dicho punto es el centro del circulo.

17. El didmetro de un circulo es una recta cualquiera que pasa por el cen-
tro y tiene los extremos en la circunferencia. Esta recta divide al circulo
en dos partes iguales.

19. Figuras rectilineas son las comprendidas por rectas; trilineas las com-
prendidas por tres; cuadrildteras las contenidas por cuatro; multilateras,
las comprendidas por mas de cuatro.

20. Entre las figuras trilateras el tridngulo equildtero es el que tiene tres
lados iguales, el isdsceles, el que solo tiene dos, y el escaleno, el que no
tiene ninguno.

21. Entre las figuras trilateras, el tridngulo rectdngulo es el que tiene un
angulo recto; obtusangulo el que tiene un angulo obtuso; y acutangulo el
que tiene los tres angulos agudos.

22. De entre las figuras cuadrilateras, el cuadrado es el que es equilatero
y rectangular; el rectangulo es el que es rectangular pero no equilatero;
el rombo es el que es equilatero pero no rectangular; el romboide tiene
los lados y los dngulos opuestos iguales entre si pero no es ni equilatero
ni rectangular; y el trapecio no es de ninguno de los tipos anteriores.

23. Dos rectas paralelas son las que, hallandose en un mismo plano, pro-
longadas indefinidamente no se cortan por ningun lado.

LA ESTRUCTURA DE LOS «ELEMENTOS»



EL METODO DEDUCTIVO DE LOS «<ELEMENTOS»

Hemos visto que las definiciones no determinan la existencia, y
que tal existencia debe «establecerse». Para ello hay que resolver
un problema del estilo «existe un objeto tal como...». Y, en el
tratado euclideo, las herramientas permitidas para la construc-
cién de objetos geométricos son las rectas y las circunferencias,
y solo estas. En consecuencia, los tinicos puntos aceptables —los
tinicos que existen— son aquellos en que tales lineas se cortan.

Una vez construido el objeto —«problema» resuelto— debe-
mos asegurarnos de que es precisamente lo que queriamos; es decir,
que «lo construido» cumple los requisitos de su definicién. Hay que
establecer un «teorema». Los teoremas «dan la existencia por su-
puesta»; se formula «he aqui [el objeto]» y lo que hacen los teore-
mas es ver que existe un ligamen légico entre diversos asertos.

En los problemas se requiere del andlisis, es decir, conocer lo
basico para llegar al objeto. Por ejemplo, a partir del lado dado AB
habra que ver qué recursos se precisan para poder construir el tridn-
gulo equildtero. Para ello es qitil suponer la existencia del objeto
como ya construido y ver qué es lo que liga sus componentes (véase
la construccién del pentagono regular en el capitulo 4). En los teo-
remas, en cambio, lo esencial es la sintesis. De los postulados al
resultado requerido. La proposicién 1 del Libro I, si bien es muy
simple, permite apreciar la distincién entre andlisis y sintesis. De
esta misma proposicion estudiaremos también su estructura interna.

Libro I, proposicion 1.
Sobre una recta dada cons-
truir un tridngulo equildtero
(véase la figura).

En este texto se aprecian, de
forma precisa, todos los extremos
indicados (véase la tabla de la pa-
gina siguiente). Se trata de un pro-
blema. La construcciéon se hace
con los postulados 3 y 1. La de-
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Partes de un teorema

Prétasis (Enunclado) Sobre una recta dada construir un tridngulo

equilatero.
Ekthesis (Exposicién) | Sea AB una recta dada.
Diorismos Debemos construir un triangulo equilatero
(Determinacion) sobre AB.
Kataskeue Con centro en A y radio AB trazamos
(Construccion) la circunferencia OAB (postulado 3).

Con centro en B y radio BA trazamos
la circunferencia OBA (postulado 3).

Desde el punto C, interseccién de ambas
circunferencias, tiramos las rectas CAy C8B
(postulado 1).

Puesto que el punto A es el centro de

la circunferencia OAB, CA es igual a AB
(definicién 15). Analogamente, puesto que B
es el centro de la circunferencia OBA, BC es
igual a BA (definicion 15). Pero cosas iguales
a una misma cosa son iguales entre si (nocién
comun 1). Por lo tanto, CA es también igual

a CB. Por consiguiente, las rectas AB, CB, CA

Apddeixis
(Demostracion)

son iguales.
Syumpérasma Por lo tanto, el tridngulo AABC es equilatero
(Conclusién) y hemos construido lo que queriamos. QED.

mostracién recurre a la definicién 15, a la nocién comin 1, y a los
principios minimos de l6gica. Cabe notar que la suposicién de la
existencia del tridngulo equildtero AABC proporciona muchas
intuiciones tanto para la construccién como para la demostraciéon
y ejemplifica el uso del anélisis; en este caso muy simple. La de-
mostracién, sintética, también se puede intuir de la imagen
«ideal», pues en ella los lados son asimismo iguales y «forman» un
tridngulo. En otros casos, esto serd mucho més complicado como,
por ejemplo, en el caso del pentdgono regular.

La proposicién primera es. «un elemento» —en sentido
débil— de la proposicién siguiente, que permite llevar un «seg-
mento congruente con uno dado a un punto dado» —jel compés
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tiene memoria!—, lo cual per-

mite «afiadir» segmentos para A
formar otro, e incluso de la pro-

posicién tercera, que permite

«quitar» de un segmento otro

menor que €l

Vamos a analizar otras dos
demostraciones para compro-
bar el método l6gico-deductivo 8 G
de los Elementos: S - b
' -7 Y
Libro I, proposiciéon 5. z{" ‘\H

En los tridngulos isdsceles
los dngulos de la base son 7
iguales entre si (véase la

figura). 3

1. Sea AABG un tridngulo
isésceles cuyos lados iguales son AB y AG (definicion 20).

2. Los prolongamos, respectivamente, de segmentos iguales
BZ y GH (noci6n comun 2, proposicién 2).

3. Unimos Z con G y H con B (postulado 1).

4. Los tridngulos AAGZ y AABH son iguales (proposicion 4,
criterio lado-angulo-lado, LAL, de igualdad de tridngulos)
ya que tienen, respectivamente, iguales los lados AZ y AH
(nocién comin 2) y AG y AB (por el punto 1) y el &ngulo
comin que comprenden. Por consiguiente, los angulos
<AZG y <AHB son iguales, y los lados ZG y HB.

5. Los tridngulos AGBZ y A BGH son iguales (proposicién 4),
luego los dngulos <BGZ y <GBH son iguales. Los quitamos,
respectivamente, de los angulos <ABH y <AGZ y los 4ngu-
los que resultan (<ABG y <AGB) son iguales (nocién
comun 3). QED.

Libro I, proposicién 15. Si dos rectas se cortan, los dngulos

verticales son iguales entre st (véase la figura de la pagina
siguiente).
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0

1. Las rectas AB y CD se cortan en
el punto £ (enunciado).

\C\ 2. Queremos ver que los dngulos
A £ B8 <AED y <CEB son iguales. -

\)\ | 3.Los pares de ngulos <CEB y

p <CEA; <CEA y <AED suman,

respectivamente, dos angulos

rectos (Libro I, proposicién 13).

4. Luego los pares de angulos <CEB y <CEA; <CEA y <AED,
juntos, son iguales (postulado 4 y nocién comiin 1).

5. Si quitamos, de ambos pares, el dngulo <CEA, los dngulos

resultantes <CEB y <AED son iguales (nocién comun 3).

QED.

Observemos el recurso a definiciones, proposiciones ya de-
mostradas, nociones comunes y postulados. Con ellos, mediante
un proceso de concatenacién de construcciones y de enunciados
llegamos a lo que se demanda a partir de lo que se propone. Y ob-
servemos la enorme elegancia de dichas demostraciones que pro-
viene de su simplicidad.

Pero Euclides no siempre recurria a la demostracién directa;
a veces precisaba de un método indirecto de demostracién: la re-
duccion al absurdo. En dicho método se postula lo contrario de
lo que se quiere establecer —aqui el maestro Euclides y el alumno
«lector» deben estar de acuerdo— y, razonando, se llega a una
proposicién y su negacién, un resultado inadmisible. En conse-
cuencia, el postulado inicialmente aceptado es falso, y su contra-
rio —que es lo que se quiere demostrar— es cierto. He aquf un
presupuesto «l6gico» que no se explicita nunca: de dos sentencias
opuestas —una es la negacién de la otra— necesariamente una es
cierta, y la otra, falsa. Aunque Euclides no explicitara en ningin
momento el método de la reduccién al absurdo, lo utilizé muchi-
simo. Este método de demostracién, dificilmente justificable por
andlisis, es esencialmente aristotélico y pertenece al &mbito de la
sintesis.

Llegados a este punto, consideremos ahora un nuevo ejemplo
en que se observa cémo Euclides recurria, en las demostraciones
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PROPOSITION L. PROBLEM.

N a gioem fimite
Siraight line (em—)

—— e e . ]

| to defevibe an equila-
teral triangle.
Defcribe and

(poftulate 3.); draw weee and === (poft. 1.).
duwiﬂAthL

For emsss == e (def. 15.); |
And sw— w—(def. 15.),

ofe e Tm e (axiom. 1.); |
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FOTO SUPERIOR:
Fragmento de un
papiro que
contiene el
diagrama que
acompafia a la
proposicién 5 del
Libro Il de los
Elementos de
Euclides, hallado
en el yacimiento
de Oxirrinco, una
antigua ciudad
que se encontraba
a unos 160 km de
El Cairo, en Egipto.

FOTO INFERIOR:
Presentacién
«figural» de la
proposicién 1del
Libro | a cargo
de Oliver Byrne
(1810-1890).
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ARISTOTELES Y LA IRRACIONALIDAD DE /2

El estagirita empled el método de la reduccion al absurdo para demostrar que:
No hay ninguna razon numérica cuyo cuadrado valga 2.

En lenguaje actual, esto significa: «yJ/2 es irracional». Aristételes parte de la
aceptacion del postulado contrario al que quiere demostrar, a saber: V2 es
racional. El ilustre filésofo griego concluyé que dicha aceptacion le obligaba
a admitir que «un numero par es, a su vez, impar» lo cual no es posible. Su
razonamiento, expresado en su forma actual, es el siguiente:

Supongamos (hipotesis afiadida) que

con m y n de distinta paridad. Asi, 2n* = m®. Por consiguiente, m es par —o
sea, m = 2m'— y n impar. Luego, 2n? = 4m?. Es decir, n* = 2m' y n seria par.

por reduccion al absurdo, a imagenes de objetos matematicos ab-
solutamente «ideales». Como ya hemos visto, una demostracion
requiere establecer que los objetos matemadticos construidos son
correctos. Sin embargo, el método de la reduccién al absurdo su-
pone admitir inicialmente, como si fuesen reales, la existencia de
objetos matematicos. Luego se demuestra que este supuesto es
incorrecto, es decir, supone la construccién de objetos inconstrui-
bles. Este problema solo puede superarse aceptando que, de al-
guna manera, el proceso de la construccion se realiza en el ambito
«ideal» de las figuras. Pensemos, por ejemplo, en un circulo y una
recta: o se cortan en dos puntos, o en uno, caso de la tangencia, o
no se cortan. Si se cortan en dos puntos, estos puntos «existen»
en el «ideal geométrico» o, si se prefiere, en «la metodologia
geométrica».
Asi, por ejemplo:

Libro I, proposicién 6. Si un tridngulo tiene dos dngulos
tguales, los lados opuestos también son iguales.
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Euclides recurre a la figura 1
(un tridngulo A ABC con los dngulos = A
<CBA y <ACB iguales, y los lados b
opuestos, AB y AC, distintos; uno,
por ejemplo AB, mas largo y el otro,
AC, mas corto). Pero esta figura no
es posible: realmente, dicho tridn-
gulo no existe. Es una idealizacién
figurativa del postulado afiadido que
resultara ser falso.

En la figura 2 se desglosa el ra-
zonamiento de Euclides y parece

que se clarifica. Sin embargo, pone

de relieve —es la razén que nos

mueve a incluirlo— las dificultades que presenta recurrir a «figu-
ras erroneas». Si bien el motivo de estas figuras es ayudar a la
comprensién de la demostracién, cuando son falsas el objetivo se
complica.

Se ha perdido la simplicidad propia del anélisis pero ha apa-
recido la profundidad del conocimiento geométrico y légico-
deductivo vinculado a la sintesis. Cabe indicar que esta técnica
de demostraciéon —tan alejada del andlisis— no era del agrado de
todos los geémetras griegos. Ello explica que, en los diferentes
comentarios a los Elementos, se intentaran demostraciones alter-

B /-.“ _}.=\a
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nativas que lo evitaran. Un ejemplo paradigmaético de ello es el de
Herén de Alejandria.

Sea como fuere, la estructura de los Elementos fue lo sufi-
ciente potente como para eclipsar cualquier tratado precedente, y
seguramente se trate de su herencia mis importante. Nos quedan
por explorar los contenidos concretos: una resefia del Libro Iy del
método del tAngram, el papel del infinito, el significado y depen-
dencia del postulado de las paralelas, la naturaleza e importancia
de las magnitudes irracionales y del método de exhaucion, la
construccién de los sélidos platénicos y, por fin, la gran contribu-
cién pitagérica: la aritmética.
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CAPITULO 3

El Libro I y la geometria
del universo

El estudio del primer libro de los Elementos
nos enfrenta a cuestiones fundamentales acerca
de la geometria propuesta por Euclides. Algunas son de
tipo técnico y otras, acaso las mas fascinantes, atafien al
modo en que el ge6metra aborda el espinoso problema del
infinito o a la relacién entre las figuras abstractas de la
geometria y la realidad natural. Esta tltima cuestién,
que parte del célebre postulado de las paralelas,
nos conducira, en un viaje de casi dos mil anos,
a la geometria no euclidea que revolucion6
la ciencia en el siglo xix.






El Libro I de los Elementos de Euclides es el tinico que contiene
tanto nociones comunes como postulados. Los tres primeros,
como ya se ha indicado, hacen referencia a las herramientas acep-
tables para «construir» los objetos geométricos; son, pues, muy
importantes en la resolucién de problemas. Los otros dos son
clave a la hora de configurar la naturaleza de la geometria eucli-
dea. Ademas, y sin ser exhaustivos, el Libro I plantea otras cues-
tiones que merecen comentario: el movimiento, la torsién, el
infinito y el método tdngram, que se tratard mas en profundidad
en el capitulo 4. Veamos en primer lugar de qué manera el cuarto
postulado de los Elementos tiene que ver con el movimiento en la
geometria. Dicho postulado establece:

Todos los dngulos rectos son iguales.

Si nos fijamos en la definicién de dngulo recto —Libro I,
definicién 10— leemos:

En cada pareja de angulos adyacentes iguales, cada uno de los an-
gulos es recto.

Es decir, cuando ambos «son iguales», ambos son rectos (fi-
gura 1). Pero entonces se nos plantea la cuestién de saber si los
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FIG.1

De acuerdo con la
definicion 10, las
parejas de dngulos
B 7,8yeLson
iguales. Es decir,
a=p,y=dye=L,
Luego, tanto a
como i, y come §,
£ como [ son
4ngulos rectos.
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de una pareja son iguales a los de

otra pareja. Es decir, si «todos»

los 4ngulos rectos son iguales; no

| solo por parejas. La respuesta,
afirmativa, nos la da el cuarto pos-
tulado.

En el caso particular de los dn-
gulos rectos, Euclides impone una
cierta uniformidad del plano. Se
trata, pues, de un postulado que, de
alguna manera, involucra el movi-
miento de figuras. También la no-
cién comin b5 lo imponia; pero no
podemos acudir a una nocién
comin para justificar por entero
una cuestién puramente geomé-
trica. De hecho, en el seno de la

geometria euclidea, ningin postulado garantiza explicitamente
que dos figuras que se superponen sean iguales. Dicho de otro
modo: la nocién comin 5 debia haber sido un postulado, como ya
se sefial6 en el capitulo anterior.

A pesar de todo ello, Euclides no supo —o mejor: no pudo—
evitar el movimiento, si bien recurrié a él en muy escasas ocasio-
nes; por ejemplo, en la geometria del espacio para generar el cono
y la esfera por rotacién, respectivamente, de un tridngulo rectén-
gulo alrededor de uno de los catetos y de un circulo alrededor de
un didmetro. También lo empleé en dos proposiciones del Libro
primero —la 4 y la 8— para establecer los criterios de igualdad
de tridngulos lado-angulo-lado (LAL) y lado-lado-lado (LLL). Sin
embargo, en el criterio angulo-lado-dngulo (ALA) es ya capaz de
evitarlo. Veamos el primero de estos casos:

Libro I, proposicién 4. Si dos tridngulos tienen dos lados,
respectivamente, iguales [congruos] y los dngulos que deter-
minan también, respectivamente, iguales [congruos], en-
tonces también serdn iguales [congruos] el otro lado y los
dos tridngulos (figura 2).
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Todo el peso de la demostra-
cién reside en la superposicion de s c
ambos tridngulos y de la nocién
comun 5. Reza como sigue: Colo-
quemos los tridngulos AABC y o
AA'B'C', uno encima del otro (mo-
vimiento) de manera que el an-
gulo <ABC coincida con el angulo = %
<A'B'C'. Entonces, naturalmente,
los lados AB y BC se colocan, res-
pectivamente, encima de los lados
A'B' y B'C'. Pero, por los puntos
A[=A"], C[=C"] pasa una sola recta
(nocién comin 7). Luego los tridn- )
gulos se superponen enteramente y,
por la nocién comun 4, antes de
moverse eran iguales. Por consi-
guiente, los tridngulos AABC y AA'B'C' son iguales. Llegados a
este punto, hay que indicar que el uso inconsistente de Euclides
en lo que respecta al movimiento no se debe a una falta de habili-
dad por su parte. El inico modo de ser consistente, en este caso,
es el de incorporar esta proposicién en la forma de un postulado,
como haria el matemético aleméan David Hilbert (1862-1943) siglos
mas tarde en su propia axiomatizacion de la geometria, mucho
mas rigurosa.

LA RECTA QUE NUNCA EXISTIO

Nétese que Euclides, a pesar de las definiciones 2 a 4 del Libro I,
jamés precisé qué es una recta, qué propiedades tiene y a qué ca-
racteristicas se debe someter. Sin embargo, dej6 bien establecido
que son finitas y «tienen extremos que son puntos». En realidad,
Euclides manejaba segmentos rectilineos. Al hablar de la igualdad
en longitud de los didmetros en la definicién de circulo, Euclides
recurri6, ahora si, al concepto de distancia. En cambio, para su
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FIGURAS QUE SE CONTORSIONAN

Una cuestion subyacente en los Elementos es la que se refiere a la torsion.
Antes de usar el postulado de las paralelas, Euclides establece un resultado
harto peculiar. Se trata de:

Libro |, proposicién 17. En todo tridgngulo, dos dngulos juntos suman menos
de dos dngulos rectos.

Para comprender convenientemente el problema debemos observar el razo-
namiento de Euclides. Quiere ver que los angulos <BAG y <AGB juntos son
inferiores a dos dngulos rectos.
Para ello, «lleva» un angulo igual
al dngulo <BAG —el angulo
<EGZ— junto al angulo <AGB y
observa que, juntos, no llenan
<AGB mas <AGD —que serian
dos rectos—. éComo «llevax el
angulo? Construyendo un trian-
gulo que lo tenga como angulo.
£Cémo? De acuerdo con la de-
mostracion siguiente:

1. Divide el lado AG por la mitad:
- obtiene el punto E (Libro |,
proposicion 10).

aplicacién al concepto de recta debemos esperar el axioma 1
—«la distancia mas corta entre dos puntos»— de Sobre la esfera
y el cilindro de Arquimedes.

Como acabamos de comprobar en el caso de la proposicién
4, Euclides usaba «postulados» que no habia establecido. En la
demostracion de la proposicién 1 del Libro I, vista en el capitulo
anterior, hay una afirmacién que ahora vamos a examinar mas en
detalle:

Desde el punto C, interseccién de ambas circunferencias, tiramos
las rectas CA y CB.
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F e = S

2. Une B con E (postulado 1) y lo dobla (postulado 2 y Libro |, proposicion
2). Obtiene el punto Z.

3. Lo une con el punto G (postulado 1). Obtiene dos tridangulos iguales (Libro
|, proposicién 4), puesto que los lados ZE y EG del tridangulo AZEG son
respectivamente iguales a los lados BE y EA del tridngulo ABEA, por
construccién, y los dngulos <GEZ y <AEB son opuestos por el vértice y,
por lo tanto, iguales (Libro |, proposicién 15). Luego, ambos tridngulos
son iguales y el angulo <EGZ (que se afiade al angulo <AGB) es igual al
angulo <BAG, que es lo que queria.

Euclides obtenia este resultado porque el punto Z cae dentro del angulo
<AGD. Pero éno podria haber caido fuera? En la figura se observa que si es
posible. La respuesta a la pre-
gunta anterior, que Euclides no
llega a facilitar por el simple
hecho de que ni siquiera se la
habia planteado, es que «no»,
porque «sus» lineas rectas no
tienen torsién. Lo da por evi-
dente, pero cuando mas ade-
lante se analice el postulado de
las paralelas, se vera que estas
ausencias légicas minan algu-
nas demostraciones de forma
fatal.

bt

RS S HE e A= e R S D - =

;Qué garantiza, segin Euclides, la existencia de este punto C?
Nada, salvo la imagen que acompafia la demostracién. Pero este
recurso no es admisible, porque la imagen solo es correcta si el
punto C existe (recordemos las falsas imigenes de tridngulos im-
posibles en la demostracién por reduccién al absurdo).

Es curioso que Euclides, en el postulado 5, impusiera que «en
ciertas condiciones», dos rectas se cortan: «existe un punto que
pertenece a la vez a ambas», y que, en cambio, en el caso de las
circunferencias, lo diera por tan evidente e irrefutable que ni si-
quiera hubiera que imponerlo. A todos los efectos, se trata, nueva-
mente, de un postulado «oculto».
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El tridngulo equilatero sobre el segmento AB de la proposi-
cién 1 «existe» porque la construccién euclidea es correcta; pero
dicha construccién depende de la existencia del punto C. En un
universo en el que dicho punto no existiera, el triAngulo tampoco
existiria. Muchas de las primeras demostraciones de los Elemen-
tos de Euclides dependen de este elemento en particular. De
hecho, la «constructibilidad» de los Elementos depende de la
constructibilidad de puntos. Euclides impone la condicién nece-
saria y suficiente para que dos rectas se corten y, por tanto, esta-
blece adecuadamente los puntos construidos de este modo. Sin
embargo, Euclides no establece en qué condiciones se producen
los cortes entre una recta y una circunferencia o entre dos circun-
ferencias y, por tanto, los puntos generados de esta forma son
«invalidos».

«Cada vez estoy mas convencido de que no es posible
demostrar la necesidad de nuestra geometria mediante
el intelecto humano ni tampoco para su servicio.»

— CarL Friepricn Gauss.
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Y no habria sido demasiado dificil: en el caso de las circunfe-
rencias, por ejemplo, le bastaria con haber impuesto:

Postulado de interseccion de dos circunferencias. Si la
distancia que hay entre los centros de dos circunferencias
es inferior a la mitad de los didmetros de ambas juntos
[esto es, menor que dos radios, uno de cada circunferencia,
Juntos] ambas circunferencias se cortan en dos puntos.

De forma andloga, es facil imponer una condicién que per-
mita asegurar la existencia de «dos puntos» fruto de la intersec-
cién de una recta y una circunferencia: Una recta y una
circunferencia se cortan [en dos puntos] cuando la perpendicu-
lar que va del centro de la circunferencia a la recta es inferior al
radio. Sin embargo, Euclides calla al respecto.
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EL POSTULADO DE LAS PARALELAS

Todos los estudiosos de la obra euclidea estian de acuerdo con el
hecho de que la estructura de los Elementos y, muy en particular,
el postulado 5 (al que denominaremos P5) se deben al propio
Euclides. Se trata del famoso postulado de las paralelas que, en
la formulacién euclidea dice que «bajo ciertas condiciones, dos
rectas necesariamente se cortan». Euclides no hace uso del pos-
tulado hasta la proposicién 29 del Libro I. La geometria que no
depende de aquel se llama geometria neutral. Por consiguiente,
Euclides nos ofrece una treintena escasa de proposiciones de
geometria neutral. El contenido literal del postulado es como

sigue:

Postulado 5 (P5). Si dos rectas son cortadas por una ter-
cera de manera que los dngulos internos de un lado sumen
menos de dos dngulos rectos, entonces dichas rectas se cor-
tan del lado en que los dngulos suman menos de dos dngulos
rectos.

o+ ﬁ < 2 angulos rectos

Sin embargo, el postulado de las paralelas euclideo no suele
estudiarse en su formulacion original, sino en la ofrecida por el
escocés John Playfair (1748-1819), profesor de Matemaéticas y pos-
teriormente de Filosofia Natural en la Universidad de Edimburgo,
que dice:

Postulado de Playfair (PP). Por un punto exterior a una
recta podemos trazar una paralela y solo una.
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UNA CURVA Y SU ASINTOTA

Con el postulado 5, Euclides
evita que la «torsién» de las
rectas haga que tengan un ca-
racter asintético, como ocurre
con una hipérbola y su asinto-
ta (y esa precaucion es mas
necesaria si tenemos en cuen-
ta gue, como ya hemos visto,
Euclides no da una definicién
cabal de linea recta y, por tan-
to, desconocemos sus propie-
dades basicas). En el caso de
las curvas, por ejemplo, el he-

o

1

cho de que una se acerque mas y mas a otra no garantiza que se corten, I
como se observa en la figura: una hipérbola se acerca mas y mas a una rec-
ta —su asintota— sin llegar a tocarla jamas.

3t eleesei S e

Este enunciado es equivalente al de Euclides, y nos permite
ver que Pb requiere de dos asunciones distintas: por un lado,
que existe tal cosa como «una recta paralela a una recta dada
desde un punto exterior a ella», y por el otro, que dicha recta es

unica.

Precisamente, la existencia la da Euclides en la proposicién

31, que dice:

Libro I, proposicién 31. Por un punto exterior P a una
recta AB, siempre podemos trazarle una paralela.

P

R

&
1 recto

1 recto
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Tiramos por P una recta perpendicular PQ a AB (Q se halla en
la recta AB o en una prolongacion y se puede tirar con regla y
compds segiin la proposicién 12). Andlogamente, tiramos una per-
pendicular PR por P a PQ. Esta claro que las rectas PR y AB son
paralelas porque, si no lo fuesen, se cortarian en un punto, por
ejemplo, en el punto R, y tendriamos un tridngulo AQPR con dos
angulos rectos. Pero ello no es posible (contradeciria la proposi-
cién 16 del Libro I) y, por tanto, la existencia de la recta paralela
queda establecida. Llegados a este punto, queda pendiente demos-
trar que dicha recta es tinica. Pues bien: no es posible hacerlo sin
recurrir a un objeto geométrico «falso» (o «ideal»), es decir, a un
objeto geométrico que presuponga la asuncién que se quiere de-
mostrar, La unicidad de la recta paralela, en definitiva, no se de-
riva de ninguno de los otros postulados. Esta constatacién trajo
consigo una auténtica revolucién, como veremos maés adelante, y
buena parte de ello se debe al hecho de que suponia cuestionar a
una autoridad de la talla de Euclides.

LA DEMOSTRACION DE LA UNICIDAD DE LA PARALELA

| La unicidad de la recta paralela no o
es demostrable si no es asumien- >-LON

do la «verdad» de la geometria 7\:?
euclidea, es decir, desde «dentro» i

] de ella.

|
1
Por un punto exterior P a una i

recta AB, solo podemos trazar- A" g B
le una paralela.

Si hubiese dos rectas paralelas a la recta AB (figura adjunta: una figura ideal
porque depende de una falsedad) serian la primera (que forma dngulo recto
7 con PQ en el punto P) y otra, PR. Entonces el angulo <QPR seria inferior a un
angulo recto (Libro |, proposicién 31). Por lo tanto, los dngulos <BQP y <QPR
sumarian menos de dos dngulos rectos (nocién comun 4). Por el postulado
de las paralelas (P5), las rectas PR y AB se cortan. iContradiccién! Por lo
tanto, hay que abandonar la hipétesis segun la cual PR es paralela.

WA S - D TR SRS TR e P e S e R AL SR A L SR AL T A R S AL - T s e B
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LAS GEOMETRIAS NO EUCLIDEAS

Una pregunta que no se puede obviar al tratar de geometria es:
;cudl es la verdadera geometria de la naturaleza? Porque no cabe
duda de que uno de los objetivos de la axiomatizacién consiste en
«captar la verdad de lo que es». Ahora bien, también podria ser
que en su lugar estuviéramos meramente «captando la verdad de
lo que pensamos», es decir, una creacién de la mente humana, no
necesariamente real.

Las dos geometrias «reales» de la época de Euclides eran
la geometria del cielo —la esférica, necesaria para comprender
los procesos astronémicos tan caros a los griegos y antes a los
egipcios y babilonios— y la geometria del patio de casa —la
que realizaba Arquimedes, segiin la leyenda, cuando el soldado
romano lo atravesé con la espada—. La primera, que hoy dia se
conoce también con el apelativo de eliptica, es equivalente a
la que podemos dibujar en la superficie de un globo terraqueo.
En este tipo de geometria, los puntos se definen normalmente,
pero las rectas, no. Si entendemos la recta en el sentido arqui-
mediano —la linea méds corta que une dos puntos—, veremos
que tienen una particularidad: se cortan necesariamente. Ima-
ginemos un caso real: dos personas echan a caminar sobre la
esfera de la Tierra en linea recta hasta regresar al punto de par-
tida. Ambos dibujaran necesariamente un circulo mdximo (es
decir, aquella seccion de la esfera que la divide en dos hemis-
ferios exactos), y los circulos maximos de una esfera acaban
por cruzarse necesariamente (en la figura 3, los dos circulos
maximos r y r' se cortan en el punto P). En consecuencia, dada
una recta, no es posible trazar ninguna paralela a ella por un
punto dado.

La segunda geometria, la del patio de la casa, es la propia de
un patio cerrado por paredes en el cual solo se puede dibujar lo
que la arena que cubre el suelo permite. En esta geometria, por un
punto P exterior a una recta r podemos trazar una infinidad de
rectas paralelas (figura 4). Asi, por ejemplo, se tira desde el punto
Plasrectas ', r"y r"". Solo larecta »" corta a la recta » dentro del
patio. Sin embargo, hay otras: todas las que hay dentro del angulo
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de vértice formado por P y lados
las rectas que salen de P y se unen
a los extremos de la recta . Estos
puntos se hallan en la pared y no
en el suelo del patio; en el suelo
del patio no existen. Por lo tanto,
ry r"' no se cortan; son paralelas.
Las rectas que no se hallan en el
interior de ese angulo son, como
los lados del angulo, rectas para-
lelas a larecta r.

Una representacién grafica
muy conocida de este tipo de geo-
metria, hoy dia conocida como hi-
perbdlica, es la que se dibuja sobre
una superficie parecida a una «silla
de montar» (figura 5). Sobre una
superficie de este tipo, un trian-
gulo equilatero adopta una forma
curiosa, en la que la suma de sus
angulos es de menos de 180°. Por
su parte, dos rectas paralelas ten-
deran a alejarse infinitamente (en
otros casos, las paralelas hacen
lo contrario, es decir, se acercan
cada vez mas).

Esta segunda geometria la
descubririan, independientemente,
el hingaro Janos Bolyai (1802-
1860) y el ruso Nikolai Ivanovich
Lobachevski (1792-1856), a princi-
pios del siglo xix. Este tltimo guar-
daba muchas reservas con
respecto a la necesidad de la geo-
metria euclidea (es decir, con res-
pecto a si era la tnica posible) ya
en 1823, precisamente a raiz de los

FIG. 3

FIG. 4

FIG.5
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intentos vanos hasta la fecha de demostrar la unicidad de la para-
lela partiendo de los otros postulados del alejandrino.

La publicacién en 1829 de un articulo de este udltimo de ti-
tulo «Sobre los principios de la geometria» marcé el nacimiento
oficial de lo que vino a llamarse la geometria no euclidea. En
él, el matemético ruso hizo publica la primera geometria cons-
truida sobre una hipétesis que contradecia el postulado euclideo
de las paralelas: por un punto C exterior a una recta AB puede
pasarse més de una recta paralela contenida en el plano ABC y
que no corte a la recta AB. A partir del postulado asi reformu-
lado, Lobachevski procedié a deducir una geometria arménica
y consistente.

«No se ha descubierto hasta ahora ninguna demostraciéon
rigurosa de su verdad.»

— NikoLAl LOBACHEVSKI EN REFERENCIA AL POSTULADO DE LAS PARALELAS
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EN UN BOSQUEJO GENERAL DE LA GEOMETRIA REDACTADO EN 1823.

Sin embargo, tal era el estatus de Euclides y su obra en el
mundo matemético que Lobachevski quiso quitar hierro a la nueva
geometria y durante los primeros afios se refiri6 a ella con el ape-
lativo vergonzante de «imaginaria». Entre 1835 y 1855 tuvo ade-
mas el cuidado de redactar no menos de tres exposiciones
completas de su nuevo sistema. El escritor y matemaético escocés
E.T. Bell, en su célebre Los grandes matemdticos (1937), escribio,
con su pompa habitual:

Durante 2200 afios se crey6, en cierto sentido, que Euclides habia
descubierto una verdad absoluta o una forma necesaria de percep-
ci6on humana en su sistema de Geometria. La creacién de Loba-
chevski fue una pragmatica demostracién del error de esta creencia.
La audacia de su oposicién y su triunfo han conducido a los mate-
maticos y a los cientificos en general a contradecir otros axiomas o
verdades aceptadas, por ejemplo la ley de causalidad que durante
siglos pareci6 tan necesaria para el pensamiento como el postulado
de Euclides parecia hasta que fue eliminado por Lobachevski.
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Es probable que todavia no se haya hecho sentir totalmente la
conmocion producida por el método de Lobachevski de negar los
axiomas. No hay exageracién en llamar a Lobachevski el Copérnico
de la geometria, pero la geometria es solo una parte del mas amplio
campo que renové. Por ello seria més justo denominarle el Copérni-
co de todo el pensamiento.

En paralelo (y la expresién es totalmente justa) a Loba-
chevski, el hiingaro Janos Bolyai llegaba a las mismas conclusio-
nes que aquel. Su padre, Farkas, habia pasado la mayor parte de
su vida intentando probar el postulado de las paralelas, sin éxito.

Aunque el hallazgo de Janos tuvo lugar en la misma fecha que
el de Lobachevski (1829), no lo publicé hasta 1832 por miedo a las
consecuencias que tal herejia matemaética podia suponer y, por
ello, la prioridad del descubrimiento de la primera geometria no
euclidea se atribuye a veces al matematico ruso en exclusividad.

Farkas recabé la opinién de su buen amigo Carl Friedrich
Gauss, el més célebre matemadtico vivo de la época, acerca de los
trabajos de su hijo, a lo que Gauss respondié que no podia en con-
ciencia elogiar la obra de Janos porque seria como elogiarse a sf
mismo, dada la coincidencia entre ambos puntos de vista sobre la
cuestién, De esta carta se sigue que Gauss también habia llegado
a la conclusién de que el postulado de las paralelas en la redac-
cion euclidea no se seguia del resto y habia desarrollado, no sabe-
mos hasta qué punto de detalle, otras geometrias consistentes.

Tal vez sea esta renuencia de Gauss a publicar sus propios ha-
llazgos en la materia, siendo como era el més respetado matematico
vivo, la que nos dé la medida maés justa de hasta qué punto era atre-
vido cuestionar la obra del gran Euclides. La prudencia de Gauss
lleg6 hasta a negar tanto a Bolyai como a Lobachevski el apoyo
publico a sus trabajos, aun cuando estos ya habian sido publicados,
por temor a, segun sus propias palabras, «la mofa de los beocios».

En cuanto a la geometria esférica, la otra gran geometria no
euclidea, hubo que esperar a la labor de otro conocido de Gauss,
el gran matemético aleman Bernhard Riemann (1826-1866), que en
una de las tesis més famosas de la historia de la ciencia («Sobre
los fundamentos de la geometria») generaliz6 este y otros casos
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en el marco de una visiéon de la geometria de suprema elegancia
que atendia solamente a la curvatura métrica de los diferentes
espacios y las propiedades que de ello se derivaban. Riemann de-
mostré que el espacio euclideo —y con él, la geometria euclidea
que lo define— era un caso particular de espacio de curvatura
constante y valor cero. En este tipo de espacio los angulos de un
tridngulo suman 180°, pero hay otros. Por ejemplo, esta el espacio
esférico, donde los dngulos de un tridngulo suman méas de 180° y
que posee una curvatura positiva, o el hiperbélico donde, como ya
hemos visto, los dngulos de un triangulo suman menos de 180° y
que posee una curvatura negativa.

«Por amor de Dios te lo ruego, olvidalo. Témelo como a las
pasiones sensuales, porque, lo mismo que ellas, puede llegar
a absorber todo tu tiempo y privarte de tu salud, de la paz
de espiritu y de la felicidad en la vida.»

— FARKAS BOLYAI EN UNA CARTA A SU HIJO JANOS AL ENTERARSE DE QUE ESTE HABIA
EMPRENDIDO SU MISMA TAREA: PROBAR EL POSTULADO EUCLIDEO DE LAS PARALELAS.

76

LA VALIDEZ DE LA GEOMETRIA EUCLIDEA

La aparicién de estas geometrias alternativas provocé un debate
filoséfico que se puede resumir con las palabras del articulo péstu-
mo del 16gico alemén Gottlob Frege, «Sobre geometria euclidea»:

Nadie puede servir a la vez a dos sefiores. No es posible servir a la
verdad y a la falsedad. Si la geometria euclidea es verdadera, enton-
ces la geometria no euclidea es falsa. Y si la geometria no euclidea
es verdadera, entonces la euclidea es falsa. [...] {Dentro o fuera! ;A
cudl hay que arrojar fuera, a la geometria euclidea o a la no euclidea?
Esa es la cuestion.

Y sin embargo, no es tan simple. Porque si trabajamos bajo la
hipétesis de que una geometria es cierta —la euclidea, por ejem-

EL LIBRO | Y LA GEOMETRIA DEL UNIVERSO



LA TRACTRIZ Y LA PSEUDOESFERA

Si se parte de una tractriz —la curva
de los puntos cuya distancia sobre
la tangente desde el punto al eje OY,
es constante, figura de la izquierda—
y se hace girar alrededor de OY (su
asintota), se obtiene la pseudoesfe-
ra, el primer modelo de la geometria
hiperbdlica.

plo—, en su seno podemos «fabricar» superficies —la esfera, por
ejemplo— cuya geometria es eliptica y otras —el patio de casa,
pero bien construido: el primer ejemplo que se dio fue la pseu-
doesfera de Eugenio Beltrami (1835-1900)— cuya geometria es
hiperbdélica. Lo mismo ocurre si se admite la validez de cualquiera
de las otras dos geometrias. Es decir, la validez de una implica la
validez de las otras ya que en el seno de cualquiera existen super-
ficies 0 espacios en los cuales son vilidas las otras.

En 1899, Hilbert escribié los Principios de geometria, en los
que «reescribié» los Elementos de Euclides pero, ahora, bien fun-
damentados y sin recurrir a la intuicién ni a los dibujos. Los obje-
tos basicos —ya sean «puntos, rectas y superficies» o «sillas,
mesas y jarras de cerveza», en palabras de Hilbert— quedaban
definidos por los axiomas que establecen las relaciones que exis-
ten entre ellos y por nada mas.

No obstante lo dicho, es curioso observar que Euclides esco-
gi6 como geometria «verdadera» —en lugar de, por ejemplo, la
esférica— una geometria ideal, es decir, una que se sostiene en
construcciones que solo son validas en tanto que expresiones
puras que trascienden la experiencia. Solo puede aducirse como
razén para ello una cierta vena platonica en Euclides que le em-
pujo a reconocer tacitamente la existencia de esta geometria
ideal, como tal no sujeta a otra realidad que la implicada en la idea
misma de geometria.
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Y LA GEOMETRIA DEL UNIVERSO ES...

Pero en el universo la geometria esté vinculada a la superficie, es
decir, a los objetos geométricos objeto de estudio. Imaginemos
que, cual Arquimedes modernos, mientras nos hallamos en la ba-
fiera queremos hacer geometria dibujando rectas en las paredes
de la misma: unas serfan rectas en el sentido euclideo —en el
fondo de la bafiera—; otras estarian curvadas hacia arriba —las
que van del fondo a las paredes laterales—; otras hacia abajo
—las que van de la pared al borde superior—. Hagdmonos ahora
la pregunta siguiente: ;Por qué unas tienen derecho a ser llamadas
lineas rectas y las otras no? Ademas, en la geometria de la bafiera,
las lineas se deforman al desplazarse y pasan de rectas sin torsién
a rectas con torsion.

En la teoria de la relatividad general, Einstein establece que,
cuando hay grandes masas o energias, el espacio —y consiguien-
temente las rectas— se deforman: piénsese en una pesada bola
de plomo en el centro de la superficie de un gran timbal; la mem-
brana del timbal se deforma —se curva— y una bola mas pequeiia
que estuviese girando alrededor del borde del bombo «caeria» en
espiral hacia el centro. En el espacio ocurre algo similar: las gran-
des masas, como la bola de plomo del ejemplo, curvan el espa-
cio-tiempo afectando asf al resto de masas. El espacio, pues, es
andlogo a la superficie del planeta Tierra, que tampoco es uni-
forme. Y, sin embargo, nadie niega que, globalmente, la superficie
de la Tierra es esférica.

Cabe, pues, preguntarse: ;Cudl es la geometria del universo?
Si bien las grandes masas o energias alteran localmente su geome-
tria, el universo jes globalmente euclideo, hiperbélico o eliptico?
La respuesta hay que buscarla fuera de la matemaética porque a sus
ojos las tres geometrias son véalidas. Las tres se establecen formal-
mente y si una es consistente, las otras también lo son. La res-
puesta pues hay que buscarla en la «realidad»: la bafiera no sirve;
es tan artificial como los resultados matematicos.

Hace maés de un siglo Carl Friedrich Gauss se hizo la misma
pregunta que nos hacemos aqui. ;C6mo es el universo? ;Qué geo-
metria tiene? Gauss concluyé que si pudiera medir los tres angu-
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los internos de un tridngulo formado por tres estrellas lejanas,
obtendria la geometria del universo. Sabemos que:

>180°
Si la suma de los tres dngulos es {=180°},
<180°

eliptica (esférica)
la geometria del universo es 4euclidiana
hiperbdlica

Sin embargo, ni los cédlculos realizados por el astrénomo y
amigo de Gauss, Friedrich Bessel (1784-1846), ni los realizados
por Lobachevski resultaron concluyentes. En 1981 el fisico esta-
dounidense Alan Guth (1947) introdujo el concepto de densidad
del universo: la masa total de materia por unidad de volumen.
Existe un valor critico p,=4-10~*" kg/m® que determina la natura-
leza geométrica del universo, asi como su evolucién futura (véase
la tabla).

Posibilidades para la geometria del universo
Densidad Geometria Futuro

>p, Esférica Colapso

= Euclidea Expansion suave

<p, Hiperbdlica Expansion fuerte

La masa computada hasta hoy da un 10% de p,. Por ahora,
pues, el universo parece que es hiperbélico y se expande fuerte-
mente. Todo ello otorga renovada credibilidad a Galileo cuando
escribi6 estas célebres palabras:

La filosofia esti escrita en este libro que se halla abierto ante nues-
tros ojos —me refiero al universo—, pero nos sera del toda imposi-
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ble entenderla, si antes no somos capaces de captar el lenguaje y
aprehender los signos con los que est4 escrita. Estd escrita en len-
guagje matemdtico. Los simbolos son tridngulos, circulos y otros sin
los cuales es imposible entender palabra alguna. Sin su comprensién
nos hallarfamos errando por un laberinto oscuro [...]

Por lo que parece, hay que recurrir a la geometria para poder
entender el universo, opinién que compartiria Isaac Newton y
cuya mixima expresion serian precisamente sus Principia Ma-
thematica Philosophiae Universalis (1687).

EL INFINITO EN LOS «ELEMENTOS»

No podemos —y no debemos— olvidar la influencia que los fil6-
sofos tuvieron en el pensamiento matematico griego. Una de esas
influencias fue la de Aristételes en relaciéon al concepto de infinito.
Recordemos que en la Fiisica le dedica a este concepto una gran
atencion. Ya al principio dice:

Melisos afirma que el ser es infinito. Pero entonces el ser seria can-
tidad, porque lo que es infinito lo es en cantidad, ya que ninguna
sustancia puede ser infinita, ni tampoco una cualidad ni una afec-
cién, salvo que lo sea de forma accidental [...] Porque, para definir
el infinito, hemos de usar la cantidad, pero no la sustancia ni la
calidad. Por lo tanto, si el ser es sustancia y cantidad, es dos y no
uno. Pero, si solo es sustancia, entonces no serd infinito ni tendré
ninguna magnitud, porque tener una magnitud seria tener una can-
tidad.

Pero su andlisis mas detallado del infinito lo hace en el Libro
III. Se pregunta por la naturaleza y la existencia del infinito y por
los tipos de infinitos. Tras un analisis filos6fico detallado concluye
que hay «un infinito por adicién» para los niimeros (aritmética) y
otro «por divisén» para las magnitudes (geometria). Ambos infi-
nitos «son —existen— en potencia», jamas «son —existen— en
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acto». Es decir, en ciencia el infinito no existe como totalidad;
ningun objeto se puede considerar infinito. El infinito es solo un
proceso generador.

En sintesis, el infinito en acto no es, pues, aceptable ni en el
«mundo ideal» como idea posible y mucho menos ain cuando
se quiere aplicar al mundo de la matematica. Resta, pues, el in-
finito en potencia, que es la «posibilidad» de ir mas y mas lejos,
pero siempre con un nimero finito de pasos. El proceso nunca
se agota; el infinito permanece siempre en el Ambito de la posibi-
lidad. Y, en este sentido, Aristételes es contundente cuando hace
referencia a la necesidad que los matematicos puedan valerse del
infinito en acto:

Mi argumento no les quita nada a los matematicos en su estudio, a
pesar de que niegue la existencia del infinito en su sentido de exis-
tencia actual, entendiéndolo como algo que crece de una manera que
va no sea posible de ir mas alld porque, de hecho, no precisan ir al
infinito ni usarlo; solo precisan que el infinito —por ejemplo, la rec-
ta— pueda ser tan largo como sea preciso. Por lo que a las demostra-
ciones se refiere, entre una cosa y la otra, no hay diferencia alguna.

La cuestién —muy importante desde el punto de vista meto-
dolégico en el &mbito matematico que ocupa la actividad de Eucli-
des— es la siguiente: ;Tiene razén Aristételes cuando dice que su
«filosofia» del infinito no afecta al matematico? ;jHasta qué punto
Euclides respeta al estagirita y hasta dénde se ve obligado a con-
culcar la limitacion aristotélica? Por lo que al respeto se refiere,
Euclides considera que las «rectas» son «segmentos rectilineos»
y sus extremos —que existen— son puntos; es decir, las rectas
son finitas. Define solamente los segmentos rectilineos y estas son
las rectas que maneja. Y, en el postulado b, evita tener que recurrir
al paralelismo que, como veremos en seguida, involucra el infinito.

En el ambito de la aritmética y, en concreto, en la proposicion
20 del Libro IX, dice:

Hay mads niimeros primos que cualquier cantidad finita de
numeros primos.
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El enunciado le permite a Euclides una demostracion directa;
en cambio, si hubiese aceptado el infinito en acto, como por otro
lado se hace hoy en las escuelas, se habria visto obligado a dar una
demostracién indirecta. Este es uno de los problemas que, en mu-
chas ocasiones, plantea el infinito: nos obliga a recurrir a
demostraciones indirectas, por reduccién al absurdo.

A continuacién, comprobaremos las diferencias metodolégi-
cas entre ambos tipos de demostraciéon. Empezaremos por la di-
recta, partiendo del enunciado euclideo.

Supongamos una cantidad finita de nimeros primos: a, b,...,
m. Consideremos el nimero N= (a x b x...x m)+1. En el caso de
que N fuese primo, habria un niimero primo distinto de a, b,..., m.
En cambio, si N fuese un niimero compuesto —no primo—, ten-
dria un divisor primo (Libro VII, proposicién 32) y, por la cons-
truccién de N, deberia ser diferente de cada uno de los primos a,
b,..., m.

Abordaremos ahora la demostracién indirecta. Partiremos
para ello de un enunciado alternativo de la proposicién 20:

Hay infinitos niimeros primos.

En caso contrario, habria una cantidad finita a, b,..., m que
contendria la «totalidad» de los niimeros primos. Si copidramos
ahora la demostracion anterior, obtendriamos un nimero primo
distinto de a, b,..., m; luego, a, b,..., m no serian «todos».

Ahora bien, Euclides no puede evitar completamente el infi-
nito en acto. Asi, por ejemplo:

Libro I, definicién 23. Dos rectas paralelas son las que,
halldndose en un mismo plano, prolongadas indefinidamente
no se cortan por ningun lado.

En la definicién aparece de forma explicita el término «inde-
finidamente», que implica el infinito en acto. Ademads, ya en el
Libro I, hay dos proposiciones en las que lo emplea también de
forma explicita; en el enunciado, en la primera, y en la demostra-
cién, en la segunda. Se trata de dos problemas:
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FIG. &

FIG. 7

Libro I, proposiciéon 12. Por un punto exterior a una recta
indefinida tirarle una perpendicular (figura 6).

Libro I, proposicién 22. Construir un tridngulo dados sus
tres lados (figura 7).

;Cudl es la razén que lleva a Euclides a sortear la limitacién
aristotélica del infinito en acto? La respuesta es simple. Pretende
que lo que establece «sea general»; es decir, no dependa de la
particularidad que el dibujo pudiera sugerir. Conviene que la recta
a la que queremos tirar la perpendicular sea lo suficientemente
larga para poder garantizar que el punto se halla encima de ella,
con independencia del punto «concreto» del dibujo. En el otro
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caso, debe llevar los tres lados dados encima de una recta; hace
falta que la recta los pueda contener con independencia de la
longitud «concreta» de cada caso particular; por ello precisa de
una semirrecta infinita. Por lo tanto, en cierta medida, la limi-
tacién de Aristételes «les quita» algo a los mateméticos en su
quehacer.

Pasarian nueve siglos desde que Aristételes impusiera limi-
taciones al uso del infinito y que Proclo escribiera sus Comenta-
ri0s del Libro I de los Elementos de Euclides y diera su propia
opinién al respecto. Lo hace en el marco de su anélisis de la pro-
posicién 12 del Libro I:

Conviene examinar de qué manera el infinito posee, en general, un
fundamento. Es manifiesto que, si una recta es infinita, el plano que
la contiene también serd infinito, y esto en potencia efectiva [...]
Queda, pues, la posibilidad que el infinito exista en la imaginacién
sin que la imaginacién conciba el infinito, porque la imaginacién
concibe y aplica a la vez una forma y un limite a todo lo que concibe
[...] La imaginacién no concibe el infinito sino que, hallindose con
una incerteza respecto de este objeto, suspende todo pensamiento
ulterior y llama infinito todo lo que repudia como algo que no puede
ser ni medido ni abrazado por la concepcién [...] La imaginacion
crea, pues, el infinito por la potencia indivisible de poder progresar
sin fin y, en lugar de concibir el infinito, lo concibe como supuesto
[...] De manera que si coloca la recta infinita en la imaginacién de la
misma manera que las otras figuras geométricas [...] no nos sorpren-
de que esta recta sea infinita en potencia efectiva y que, tomada de
forma indeterminada, se aplica a los conceptos determinados.

Por otro lado, el conocimiento razonado, del cual provienen
los razonamientos y las demostraciones, no usa el infinito en la cien-
cia [...]. No admite el infinito en relacién con lo infinito; lo admite
en relacién con lo finito [...] De lo cual, si sacamos partido del de-
fecto que supone la certeza de que la imaginacién tiene limitaciones
y que ello constituye el fundamento de la generacién del infinito,
entonces la ciencia supone la existencia del infinito a fin de que,
conservando la linea finita, pueda usar de esta existencia de mane-
ra impecable e incontrovertible.
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Con este texto se avanza muchos siglos en la tarea de «pensar
el infinito». No obstante, hubo que esperar a las aportaciones fun-
damentales de los alemanes Richard Dedekind (1831-1916) y,
sobre todo, de Georg Cantor (1845-1918) —apenas cincuenta aios
después de que Lobachevski y Bolyai se desembarazaran del
quinto postulado— para que la matematica abrazara el infinito en
acto y se acabara asi con una tradicion filoséfico-matemética de
mas de dos mil afios.
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CAPITULO 4

La técnica del tangram
en los «Elementos»

Uno de los logros mas notables de la geometria china
es el uso del tAngram para generar figuras de formas
distintas pero de la misma superficie. Esta técnica,
desarrollada de forma independiente por los geémetras
griegos, adquirid, por generalizacion, una potencia
deductiva enorme. En concreto, permitié a Euclides
demostrar uno de los teoremas paradigmaticos
de la geometria griega —el famoso teorema de
Pitagoras—, asi como resolver cuestiones
milenarias heredadas de los mesopotamicos.






El tdngram chino clésico es un método geométrico elemental que
se sustenta sobre la base conceptual siguiente:

Dos figuras realizadas con exactamente las mismas piezas tienen la
misma superficie.

Su nombre original es gi gido bdn y significa «las siete tablas
de la sabiduria». Conocido en su pais de origen desde tiempo in-
memorial, en el siglo xix fue introducido en Occidente como un
juego lidico de diseccién y como tal se encuentra hoy dia exten-
dido en todo el mundo. En su forma de partida, las siete piezas que
lo integran suelen disponerse en forma de cuadrado (véase la fi-
gura 1, en la pégina siguiente). Por tanto, todas las formas que
puedan construirse con la totalidad de las piezas poseen la misma
superficie que el cuadrado original (figura 2).

Esta propiedad permite, entre otras muchas cosas, dar una
«mostracién» del valor de la diagonal de un cuadrado. Asi, el cua-
drado de partida puede descomponerse en otros dos de la misma
superficie (figura 3). De este modo se constata que con la diagonal
del cuadrado de la derecha de esta iltima figura se puede cons-
truir otro (el de partida) cuya superficie es el doble. Se trata de
una «mostracién» porque se basa en la simple observacién de las
figuras sin ningin recurso a principio 16gico-deductivo alguno.
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FIG.1

FIG. 2

Q

Se trata de un razonamiento
que esté estrechamente vinculado
al texto que Platén ofrece en el
Mendén, un didlogo sobre la remi-
niscencia, en el cual Soécrates
«muestra» que el esclavo sabe lo
que no sabe que sabe, pero lo sabe.
En él, Sécrates hace un razona-
miento andlogo al siguiente: sea
un cuadrado dado (el de trazo mas
grueso, segin se muestra en la fi-
gura 4). Repitdmoslo cuatro veces:
obtenemos el cuadrado de lado
guionado de la misma figura. Se-
guidamente, hagamos la diagonal
del cuadrado dado y, con ella, un
cuadrado: el de lado punteado.
Esta claro que el cuadrado tiene
una superficie igual a la de dos
cuadrados como el inicial.

Es el mismo recurso que el del
tdngram: se manipulan con tridn-
gulos rectangulos isdsceles como
los que determina la diagonal del
cuadrado tangram de partida.
Euclides se sirve a menudo del mé-
todo del tdngram generalizado en

el seno de su geometria (es decir, la que depende del postulado de
las paralelas). Asi, lo emplea en la aplicacién de areas al dividir un
segmento de manera que las partes generen un rectiangulo con una
superficie menor, mayor o igual que la de un cuadrado dado y, en
particular, en la resolucién geométrica de un problema mesopotd-
mico que conduce a la resolucién de las ecuaciones de segundo
grado; en la cuadratura de los poligonos multildteros lineales
— construir un cuadrado que tenga la misma superficie que el po-
ligono multilatero— y, finalmente, en la determinacién del seg-
mento dureo, operacion consistente en dividir un segmento en dos
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partes tales que la parte menor junto con el segmento entero for-
men un rectangulo que tenga la misma superficie que el cuadrado
que genera la parte mayor en que ha quedado dividido el segmento.

Euclides disponia de una herramienta basica —el parale-
lismo— que le permitié demostrar resultados como:

Libro I, proposicién 29. Los dngulos correspondientes son

iguales.

Libro I, proposiciéon 32. Los dngulos de un tridngulo

suman dos rectos.

FiG. 3

FiG. 4
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FIG. &

Libro I, proposicién 34. Segmentos paralelos entre parale-
las son iguales.

El primero y el tercero permiten efectuar una descomposicién
por el método del tingram generalizado, que consiste en aplicar la
metodologia tdngram pero sin limitarnos a las piezas originales.
Para ello se precisan teoremas que establezcan la igualdad de las
superficies de tales figuras. Estos teoremas son los siguientes:

Libro I, proposiciones 35 y 36. Los paralelogramos con
bases iguales [congruas] y contenidos entre las mismas pa-
ralelas son iguales.

Libro I, proposicion 37. Los tridngulos con bases iguales [con-
gruas] y contenidos entre las mismas paralelas son iguales.

La figura 5 es una imagen asociada a las proposiciones 35 y 36
del Libro I.

Euclides afirma que los paralelogramos 7 BC y 7IH tienen la
misma superficie. En el lenguaje aritmético-algebraico de las es-
cuelas actuales, frente a esta afirmacion diriamos que jes evidente!
Tienen la misma base y la misma altura y la superficie se obtiene
multiplicando estas dos cantidades (esta tltima afirmacién, sin
embargo, habria que demostrarla). Ahora bien, la geometria griega
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maneja magnitudes —esto es, segmentos rectilineos— que, a
causa de la inconmensurabilidad, no tienen longitud. La incon-
mensurabilidad hace que pueda suceder que uno —o ambos—
segmentos no sean medibles (una cuestién que se tratard con mas
detalle en el capitulo 5). En consecuencia, hay que recurrir a algin
tipo de estratagema para demostrar que ambas superficies son
iguales. Euclides recurri6 a la nocién comun 1. Si conseguia de-
mostrar que los paralelogramos 7BC y o AJ —que comparten
una misma base— eran iguales y que el segundo era igual al para-
lelogramo 7IH —con el cual comparte una base—, entonces los
paralelogramos 7 BC y 7IH también serian iguales.

«;Un punto marca el final de una linea o su principio?
Quién lo sabe. Nadie.»

— Mo Jineg (Moz1) (479-372 A.C.).

Empecemos con la primera cuestion. Euclides analiza las pie-
zas —método del tAngram chino— y aplica las nociones comunes
2y 3. Los tridngulos ABAI y ADCJ constan de una pieza blanca y
de una pieza comun gris claro. Si, de ambos tridngulos, quitamos
la pieza comiin —«de iguales quitamos iguales»— resulta, respec-
tivamente, que los cuadrilateros BAMD y IMCJ son iguales aun
cuando no tengan idéntica forma. A estos dos cuadrilateros les
anadimos ahora el tridngulo comin AAMC (gris oscuro). Puesto
que, «a iguales hemos afiadido iguales», resulta que los paralelo-
gramos 7BC y 0 AJ —con base comiin AC— son iguales.

. Qué diferencia hay entre el caso que acabamos de demostrar
y el caso general de los enunciados de las proposiciones 35 y 36
del Libro I? La diferencia radica, como ya hemos apuntado, en
que, en este caso, las bases no solo son iguales, sino que son la
misma: comparten una base (en el par ZBC y 7 AJ, el segmento
AC,yenelpar 7AJ y OIH, el segmento I.J).

Para la demostracién anterior Euclides debi6é recurrir a la
proposicién 4 del Libro I (criterio LAL), que establece la igualdad
de los ABAI y ADCJ. Para ello precisé de ciertas propiedades las
cuales dependen del postulado de las paralelas (en particular de
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las proposiciones 34 y 29 del Libro I). Una vez establecido este
resultado, Euclides pudo en adelante usar el método del tAngram
con piezas que No se superponen pero que tienen la misma super-
ficie. Esta es la idea del tdngram generalizado que Euclides usé
con una gran maestria. La proposicién 37 del Libro I es un simple
corolario de las anteriores, ya que todo se reduce a ver que los
tridngulos tienen una superficie que vale exactamente la mitad de
un paralelogramo (figura 6).

«El cerebro no es un vaso que hay que llenar,
sino que es una lampara que hay que encender.»

— PLUTARCO.

94

Euclides, como antes hicieran otros ge6metras griegos, ilu-
miné y acrecentd la geometria por generalizacién de resultados
simples y evidentes. En el caso que nos ocupa, establecié —sin
exponerlo de forma explicita sino usédndolo en las demostracio-
nes— que con piezas de forma distinta —paralelogramos o tridn-
gulos— podemos computar superficies.

Otro elemento geométrico que permitié a Euclides usar el mé-
todo del tdngram generalizado es el gnomon. El romano Herodoto
lo menciona en un sugestivo pasaje del Libro II de su Historia:

Sesostris hizo el reparto de los campos, dando a cada egipcio su
suerte cuadrada y medida igual de terreno; providencia por cuyo

FIG. &
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medio, imponiendo en los campos
cierta contribucién, logré fijar y
arreglar las rentas anuales de la co-
rona. Con este orden de cosas, si
sucedia que el rio destruyese parte
de alguna de dichas suertes, debia
su duefio dar cuenta de lo sucedido
al rey, el cual, informado del caso,
reconocia de nuevo por medio de
sus peritos y media la propiedad,
para que, visto lo que habfia desme-
recido, en adelante, contribuyese
menos al erario a proporcién del terreno que le restaba. Nacida de
tales principios en Egipto la geometria, opino que pasaria después a
Grecia, conjetura que no es extrafia, pues los griegos aprendieron
de los babilonios el reloj, el gnomon y el repartimiento civil de las
doce horas del dia.

Euclides defini6é el gnomon en el Libro II, si bien ya en el
Libro I habia establecido la propiedad que lo hace tan qtil. En
primer lugar, la definicién:

Libro II, definicién 2. En toda superficie de un paralelo-
gramo se llama gnomon uno cualquiera de los paralelogra-
mos situados en torno de la diagonal junto con los dos
complementos.

Y su interesante propiedad:

Libro I, proposicién 43. En toda superficie de un paralelo-
gramo, los complementos de los paralelogramos situados en
torno de la diagonal son iguales entre st.

Segin se muestra en la figura 7, el gnomon —de acuerdo con
la definicién 2 del Libro II— es la figura gris, formada por cuatro
trozos: los dos paralelogramos Z7IH, OGC y los dos tridngulos
AIGD, AJDG, evidentemente iguales. Basta observar que los trian-
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gulos en que la diagonal divide al paralelogramo son iguales y los
triangulos blancos y grises oscuro también lo son en virtud de los
criterios de igualdad de triangulos; se aplica entonces la nocién
comiin 3. Asi pues, piezas diferentes —que no se pueden superpo-
ner— tienen la misma superficie: ya tenemos adecuadamente es-
tablecido el método del tAngram generalizado.

LA DEMOSTRACION DEL TEOREMA DE PITAGORAS

El juego del tAngram, por generalizacién, permitié a Euclides ofre-
cer una demostracién muy elegante —y, a la vez, muy original—
del teorema de Pitdgoras.

Demostracion de Euclides de la proposicién 47 del Libro I:

Teorema de Pitdgoras. El cuadrado sobre la hipotenusa
BC del tridngulo rectdngulo AABC tiene la misma superfi-
cte que los cuadrados sobre los catetos AB, AC juntos.

Como se observa en la figura 8, por el vértice A se traza una
perpendicular a la hipotenusa BC y se prolonga hasta que corta
al lado opuesto HI del cuadrado [IBI. Se obtienen asi los dos
rectangulos @CJ, oBJ. Hay que probar que el rectangulo oCJ
es igual al cuadrado [JAD y el rectangulo 0 BJ, al cuadrado [JAG.
Para ello Euclides construye los triangulos AACI, ADCB. Son
iguales por el criterio LAL, como se constata con facilidad: tienen
dos lados iguales (congruos) y el angulo que comprenden tam-
bién (nocién comin 2). Ahora bien, el tridngulo AACI comparte
el lado CI con el rectangulo iCJ y tiene el vértice A en la misma
paralela, AJ, en que el rectingulo —CJ tiene el lado opuesto KJ
allado CI. Luego, la superficie del rectingulo —CJ tiene la super-
ficie doble que el tridngulo AACI. Andlogamente, el cuadrado
CJAD tiene una superficie que es dos veces la del tridngulo ADCB.
Por consiguiente, el cuadrado [JAD tiene la misma superficie que
el rectangulo [JIK, que es la primera igualdad que buscdbamos.
Por analogia, el cuadrado [JAG tiene la misma superficie que el
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rectangulo mBJ, que es la segunda.
Finalmente, por la nocién comun 2
el teorema queda probado.

FIG. B
!

EL TANGRAM GENERALIZADO W/
EN EL LIBRO II '

El término «algebra geométrica» ha E A B

sido motivo de discusién y de desa-
cuerdo, pero es itil por su brevedad.
Se trata de «establecer» resultados
relativos a superficies de rectangu-
los y cuadrados expresados en el
lenguaje numérico del que fueron FIG. 9
pioneros figuras como Diofanto de b C pr

Alejandria o los matematicos dra-
bes. Por ejemplo, la muy conocida
distibutividad del producto res- a
pecto de la suma; esto es, la expre-
sién algebraica ax(b+c+d+...)=

=(axb)+(axc)+(axd)+... expre-

sada en términos geométricos,

como corresponde a los Elementos,
dice: =|axb axc axd

Libro II, proposicion 1. Si
tenemos dos reclas y una de
ellas se corta en un numero
arbitrario de partes, el rectangulo comprendido por las dos
rectas es igual a los rectdngulos comprendidos por la recta
no cortada y cada uno de los segmentos (figura 9).

De forma analoga, se establecen otras identidades algebrai-

cas como por ejemplo: (a +b)*=a?+b*+2ab, (a+b)x(a-b)=a’-b%,
etc. Nos fijaremos solo en la identidad (a +b)x(a-b)=a*-b% la
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F 2 D -
M A
N
K B -
G
L 5

FiG. 1

cual, de hecho, no se enuncia expli-
citamente de esta manera. Nos val-
dremos para ello de una formulacién
alternativa de la proposicién 5 del
Libro II. Partamos de la figura 10.

Vamos a «trocear» el rectan-
gulo D HJ . En primer lugar, usamos
la propiedad del gnomon para esta-
blecer que los rectingulos OFN y
CNB tienen la misma superficie.
Ademads, por construccioén, el rec-
tangulo CINB tiene la misma super-
ficie que el rectangulo 0 BI ya que
DB=DF=aqa, BJ=FH=b, DJ=a+b,
JI=DH=a-b. Entonces tenemos
que el rectangulo 0 HJ se compone
del cuadrado COKD (que es a?)
puesto que los rectangulos 0OGJ y
OJFN son iguales pero sobra el cua-
drado COMG (que es b?).

Una segunda aplicacién del
tdngram permite comprobar que
las figuras de miiltiples lados rec-
tos se pueden transformar en un
cuadrado de igual superficie. Para
ello, reduciremos paso a paso el
nimero de lados de la figura multi-
lateral (también llamada poligonal)
hasta obtener un tridngulo. Obser-
vemos una figura poligonal rectili-
nea ABCDEFG (figura 11). Unimos
dos vértices cualquiera de entre los

separados por otro vértice como, por ejemplo, los vértices D y
F. Por el vértice E tiramos una paralela. Prolongamos el lado
CD hasta cortar la paralela en I. Unimos I con F. Los tridngu-
los AIFD y AEFD tienen la misma superficie (Libro I, proposi-
cién 35). Resulta, pues, que las figuras poligonales ABCDEFG y
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ABCIFG tienen la misma superficie, pero la segunda tiene un lado
menos que la primera. Si repetimos el proceso llegaremos a un
tridngulo con la misma superficie que la figura rectilinea inicial.
En consecuencia, toda figura poligonal rectilinea es iriangulable.

A continuacién, se comprueba que todo tridngulo se puede
convertir en un rectdngulo de la misma superficie, es decir, que
todo tridngulo es rectangulable. La figura 12 habla por si sola.

Queda el tiltimo paso: Todo rectdngulo es cuadrable (Libro II,
proposicién 14). Supongamos que nos dan un rectangulo D AD y
queremos convertirlo en un cuadrado. Observemos la figura 13.
Llevamos el lado CD a continuacién del lado AC. Dividimos el seg-
mento AB por la mitad mediante el punto G. Con centro en €l y
radio GB tiramos media circunferencia. Levantamos la semicuerda
FC perpendicular a AB en el punto C. El segmento FC produce un
cuadrado de la misma superficie que el rectdngulo inicial.

Hasta aqui la construccién, que puede llevarse a cabo con
regla y compas en todos sus pasos. Cabe demostrar que FC
cumple lo que se busca. Si tomamos
los segmentos r[=GF=AG=GB] y

s [= GC], veremos que el rectangulo AR B LW
tiene una superficie igual a (r +s) (r—s), P 5
cuyo valor es igual a 2~s” Ahora bien, i g 2
FC es un cateto del tridngulo rectdn- f £
gulo AFCG. Y, por el teorema de Pita- i s
goras, su cuadrado vale r?-s% Por A =T

tanto, el rectdngulo DAD es igual al

cuadrado FC, que es la equivalencia E
que buscabamos. Euclides procedié6 de
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FIG. 14
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esta forma usando tiangram; nosotros
hemos recurrido a la expresion alge-
< braica para simplificar la exposicién,

pero sin falsearla.

LA RAZON AUREA

= Se conoce como «razén aurea» la que
: guardan dos segmentos a, b tales que la
Y suma de sus longitudes, a + b, guarda con
N el segmento mas largo a, la misma pro-
% porcién que a guarda con b (figura 14).

8 Debe su poético nombre a su—solo
- supuesta— presencia en numerosas
7] construcciones arquitecténicas y otras

™ obras artisticas, a las que aporta, siem-

pre segun algunos autores, una gran
armonia. También se la conoce con los
apelativos de segmento aureo (en cuyo
caso esta implicito un segmento de
mayor tamano de referencia), razén
dorada, nimero Aureo, proporcion

= aurea, divina proporcién o, en la termi-
nologia propia de Euclides, media y
extrema razon. Se denota con la letra

griega phi (®) y tiene como valor:

P= 1+2J5 =~ 1,618033988749894848204586834365638117720309...

Se trata de un nimero irracional, es decir, que no puede ser
expresado como fraccién de ningiin par de nimeros enteros.
Desde un punto de vista geométrico, construir un segmento aureo
exige dividir un segmento dado AB por un punto F de manera que
el cuadrado sobre la parte mayor AE coincida con el rectiangulo
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LA ESTRELLA PITAGORICA

Euclides se sirvio de la razon
aurea en un paso intermedio de
la construccion del pentagono
regular; en concreto, para ob-
tener un triangulo isdsceles que
tenga angulos en la base dobles
que el angulo en el vértice. Se
trata de una construccion sor-
prendente que solo se expli-
ca en el caso de que Euclides
se enfrentara a un pentagono
ya construido —y por tanto,
«ideal»—, y del analisis de tal
figura concluyera que necesita-
ba del triangulo mencionado; en

consecuencia, estamos frente a un nuevo ejemplo de combinacién de analisis
y sintesis sobre el que llamabamos la atencion en el segundo capitulo. En efec-
to, si se observa la figura del pentagono, se ve que dos diagonales y uno de
sus lados forman un tridngulo isésceles cuyos angulos en la base son dobles.
Asimismo, dos diagonales —EB y AD en la figura— se cortan en un punto F
que divide cada una de dichas diagonales en media y extrema razoén. El pen-
tagono regular pudo tener especial relevancia para la escuela pitagorica, que
se dice tenia como distintivo la estrella pentagonal que se obtiene trazando

las diagonales de la figura (lineas discontinuas).

que se obtiene con el segmento menor EB y el segmento inicial
(Libro II, proposicién 11), segin se observa en la figura 15.

EL RECTANGULO AUREO

El segmento dureo permite construir un rectidngulo cuyos lados
son el segmento inicial AB y la parte mas larga de la divisién durea,
AE, y que recibe en consecuencia el apelativo de rectdngulo dureo.
En la figura 15 se observa que, en efecto, el punto E divide AB en
media y extrema razén. Este rectingulo tiene la particularidad de
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que puede autorreproducirse me-
diante el proceso siguiente (figura

16): 1a parte pequenia BE divide, a su
v vez, a la grande AF en media y ex-
\ trema razoén pasando a ser ahora la
~ parte grande en la nueva divisién

B 4 (véase el punto J que divide el seg-

- mento BH(=AE) en media y extrema

. razén). El rectangulo AH es un rec-

Los cinco sdélidos
platénicos.

De izquierda

a derecha:
tetraedro,
octaedro,
icosaedro, cubo
y dodecaedro.

FIG. 17
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G tangulo aureo, EH otro, LH otro,
etc., ad infinftum.

EL RECTANGULO AUREOQ Y EL DODECAEDRO

Los Elementos concluyen con la «construccién» de los cinco séli-
dos platénicos y con la demostracién de que solo existen estos
cinco. Platén, en su Timeo, establece la clasificacién de los ele-
mentos de la naturaleza en base a cinco sélidos (figura 17): el te-
traedro es el fuego, por su ligereza, el cubo o hexaedro es la tierra,
por su estabilidad; el octaedro es el aire, por su inestabilidad; el
icosaedro es el agua, por su fluidez, y el dodecaedro, el elemento
del cosmos, la quinta esencia, por ser el elemento de los dioses.
Al respecto de estas construcciones, Euclides afirma:

Libro XIII, proposicién 18. Afirmo que ninguna otra fi-
gura sélida, distinta de las anteriores, se puede construir
con figuras equildteras y equiangulares.
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EL RECTANGULO AUREO EN DOS OBRAS MAESTRAS

Se afirma en ocasiones que la proporcion durea asoma en numerosas obras
de arte. A modo ilustrativo se dan aqui dos ejemplos: el Partenén de Atenas
y Las meninas de Velazqguez. Incluso cuando el arte rompe los estandares
de la herencia clasica —en el cubismo de la pintura, por ejemplo—, el rectan-
gulo se mantiene como elemento estructurador del cuadro. El Partendn es
uno de los principales templos ddéricos que se conservan, y fue construido
entre los afos 447 y 432 a.C. Sus dimensiones aproximadas son 69,5 m de
largo por 30,9 m de ancho; las columnas tienen 10,4 m de altura. Esta dedi-
cado a la diosa griega Atenea, a la que los atenienses consideraban su pro-
tectora. En cuanto al lienzo de Veldazquez, sus medidas son 318x 276 cm, y
fue pintado en 1656. Como puede observarse en las imagenes, las propor-
ciones de muchos elementos clave de
ambas obras dibujan varios rectangu-
los dureos. De todos modos, hay que
precisar que, si bien no existe cons-
truccion, lo contrario seria demasiado
casual.

Demostracion. Imaginemos en el papel un punto y circun-
démoslo de 3, 4 o 5 tridngulos equilateros, 3 o 4 cuadrados y
3 pentagonos. El punto del plano no admite mas, si contamos
los grados de los dngulos. Luego no puede haber mas sélidos
regulares que los que provienen de estos casos.

Pero, jexisten los cinco? La construccién de los tres primeros
es relativamente sencilla; 1a del icosaedro y del dodecaedro, en
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cambio, son complejas. Euclides las ofrece y ademés da la arista
en funcién del diametro de la esfera circunscrita. Constituyen las
proposiciones 13 a 17 del Libro XIII. Todo se reduce a ver cémo
se construye el circulo que circunscribe una cara del sélido, una
construccion fruto del andlisis. Como ejemplo, veamos la cons-
truccién de la cara del tetraedro regular (véase la figura).
Dividimos el didmetro AB de la esfera por un punto C de ma-
nera que AC=2 BC. Tiramos una perpendicular a AB por C hasta
que corte la semicircunferencia ABD en el punto D. Con radio CD
trazamos una circunferencia y consideramos el triAngulo equila-
tero inscrito en ella. Se obtienen tres puntos E, F, G. Por el centro
H del tridngulo A EFG levantamos una perpendicular al plano que
lo contiene HK igual a AC. Unimos K con los vértices E, F, G y
obtenemos el tetraedro. Nuevamente se observa que para lograr
esta construccion previamente se tiene que haber realizado un
«andlisis» en el sentido expuesto en el recuadro dedicado a la
construccion del pentdgono regular. Sin dicho anélisis es imposi-
ble la construccién, puesto que no sabriamos qué hay que hacer.
Cuando se trata del icosaedro y del dodecaedro, sin embargo,
no es tan simple. Es por ello que Hipsicles dedicé una parte impor-
tante del Libro XIV a rehacer dichas construcciones. Pero la cons-
truccién realmente extraordinaria es la del icosaedro que ofrece
el italiano Luca Pacioli (1445-1514 o 1517) en La divina propor-
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cion (1494), el texto que dio a la
media y extrema razén uno de sus
nombres mas sonoros, y cuya fama
se debe tanto a sus cualidades cien-
tificas como a unas magnificas ilus-
traciones de poliedros obra del
mismisimo Leonardo da Vinci. Con
su obra maestra, Summa di arith-
metica, geometrica, proportioni et
proportionalita, escrita con el obje-
tivo principal de racionalizar las
practicas contables de la época, Pa-
a . 5 cioli «cerr6» la matematica de los
siglos xm y xiv y dio paso a la era mo-
derna del dlgebra. En 1507, por cierto, edit6 una traduccién latina
de los Elementos. Como se observa en la figura, Pacioli corté per-
pendicularmente dos a dos por su paralela media, tres rectangulos
aureos iguales. Luego le basté con unir los vértices contiguos.
Para construir el dodecaedro, unié los centros de las caras del
icosaedro. Un ejercicio sublime de claridad conceptual.
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CAPITULO 5

La teoria de la proporcion
y el método de exhaucion

Uno de los éxitos matematicos méas notables
de entre los salidos de la Academia platénica es la
teoria de la proporcién, atribuida a uno de los grandes
matematicos de la Antigiiedad, Eudoxo de Cnido.
Gracias a ella, Euclides fue mas alla de las rectas y las
circunferencias y pudo abordar los volimenes. Otra de las
grandes creaciones de la matematica clasica, el método
de la exhaucion, le permiti, entre otros logros,
solucionar un problema heredado del antiguo
Egipto: el volumen de la piramide.






Ya se ha expuesto que el Libro V de los Elementos es indepen-
diente de los cuatro anteriores si bien, una vez establecida la teo-
ria de la proporcién de magnitudes, precisa de ellos para poder
aplicar la teoria general a la geometria del triAngulo y del circulo
e incluso a la aritmética. Esta metodologia se atribuye casi unani-
memente a Eudoxo de Cnido.

EL CONCEPTO DE MAGNITUD

La primera dificultad —andloga pero mas compleja que la que pre-
sentaba el concepto de recta— radica en la nocién misma de mag-
nitud, que Euclides usé pero de la cual jamas establecié una
definicion. Es curioso observar que Arquimedes en cambio lo evi-
taba y solo se referia a «rectas, superficies y sélidos». La carencia
de esta definicién condujo a una discusién filoséfica con importan-
tes implicaciones matematicas. El interrogante alrededor del cual
se produjo dicha discusion es: json infinitamente divisibles las mag-
nitudes? Fue Zenén de Elea quien dejé una huella mas profunda
sobre dicha cuestion al plantear sus famosas aporias o paradojas.

Zen6n dio forma propia a la cuestién relativa a la magnitud,
y se preguntd, con respecto al tiempo y al espacio: ;son infinita-
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mente indivisibles o se componen, respectivamente, de instantes
y de intervalos indivisibles? Ambas situaciones son, para la men-
talidad griega, inaceptables: la primera conlleva la aceptacién del
infinito en acto, algo que, en el siglo v a.C., como ya se ha tra-
tado, seria rechazado de forma totalmente explicita y tajante por
Aristoteles. La segunda conlleva a la paradoja siguiente: ;cémo
es posible que uniendo «instantes» o «intervalos indivisibles»
—carentes, respectivamente, de tiempo o de espacio, es decir,
nulos— se logre, respectivamente, un intervalo temporal o espa-
cial, no nulos? Zenén fue todavia mas lejos y planteé cuatro pa-
radojas, recogidas en la Fisica de Aristételes: dos de ellas surgen
al considerar que el tiempo es atémico, compuesto de instantes
sin tiempo; y las otras dos, por el contrario, en el supuesto de que
la magnitud —ya sea el tiempo o el recorrido— sea infinitamente
divisible. Vamos a reproducir dos de ellas, una de cada tipo.

«Me encuentro constantemente con personas que dudan,
generalmente sin razén alguna, de su capacidad potencial
como matematicos. La primera prueba es si comprendes
algo de geometria. Que no gusten o encuentren dificultades
en otros temas matematicos no importa.»

— Joun E. LiTTLEWOOD.

1o

EL APORISMO DE LA FLECHA

Pensemos en una flecha disparada por el arco que tensara Ulises
para mostrar que efectivamente era el esposo de Penélope, que
habia regresado a su hogar y que se proponia defenderlo del ultra-
je de los pretendientes. En un «instante» de su recorrido la flecha
«no se mueve», pues de moverse un cierto intervalo de espacio,
precisaria de «medio instante» para moverse la mitad de dicho
intervalo espacial. Pero dicha «mitad» no existe, puesto que se
estd suponiendo que el «instante» es el intervalo de tiempo menor
posible. Luego, efectivamente, la flecha no se mueve. Pero, «si no
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ZENON DE ELEA

Zendn nacio en Elea, hoy en la Campania
italiana, el 490 a.C. Es uno de los filéso-
fos llamados presocréticos. Fue discipulo
de Parmeénides (570 a.C.-475 a.C.), con
el cual, a mediados del siglo v a.C., se
trasladé a Atenas donde conocid, segun
el testimonio de Platon, al entonces joven
Socrates. Murid el 430 a.C. al intentar li-
berar su patria del tirano que la goberna-
ba. Segun la leyenda, se corto la lengua
antes de revelar los nombres de los con-
jurados. De Sobre la naturaleza —que
defiende las tesis de Parménides— se
conservan cinco fragmentos que, gracias
al comentario que Simplicio (490-560)
hizo a la Fisica de Aristoteles, se consi-
deran auténticos. Se trata de un texto
compuesto de argumentos (logoi): en
ellos reducia al absurdo las hipétesis de
sus oponentes, con lo que quedaban establecidas sus tesis por rechazo de
aquellas hipoétesis (una suerte de reduccién al absurdo pero aplicado al am-
bito filoséfico). Por sus aporias se le puede considerar el padre del razona-
miento paraddjico: nunca trataba de demostrar directamente las tesis de su
maestro; utilizaba la sutileza de refutar al oponente llegando a conclusiones
inaceptables en si mismas. Su filosofia sostiene que solo existe el «ser» y que
este es Unico e inmaovil. La pluralidad y el movimiento llevan a la inconsisten-
cia conceptual. Gracias a Aristoteles conocemos sus cuatro paradojas: de la
flecha, de la tortuga, de la carrera y del estadio.

se mueve en instante alguno del recorrido», jc6mo podemos de-
cir que se ha movido del arco al pecho de Antinoo, el primero de
los pretendientes alcanzado por Ulises?

Se podria argumentar que, en un instante de tiempo, la flecha
se mueve un espacio indivisible: un espacio sin espacio. Pero ello
nos retrotraeria al hecho ya expresado con anterioridad: ;cémo
se consigue un espacio anadiendo «espacios indivisibles» (nulos,
carentes de espacio)?
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Aporia de Aquiles
y la tortuga.

LA APORIA DE AQUILES Y LA TORTUGA

Es imposible que Aquiles, el de los pies ligeros, lograra alcanzar a
la lenta tortuga si esta le llevaba una cierta ventaja. Aquiles partia
de un punto A con la intencién de alcanzar una tortuga que se
hallaba adelantada al punto B (véase la figura). Por muy rapido
que se desplazara Aquiles —salvo que lo hiciera a velocidad infi-
nita, algo que no es admisible—, cuando llegara al punto B, la
tortuga, por lenta que fuera, se habria desplazado al punto B; en-
tre los puntos B y B, hay un cierto espacio —puesto que supone-
mos que el espacio es infinitamente divisible, lo cual significa que
carece de infinitésimos y, por consiguiente, entre dos puntos,
siempre hay un cierto espacio—. Aquiles precisaba de un cierto
tiempo para recorrer el intervalo BB, y, entre tanto, la tortuga se
habria desplazado al punto B, y asi ad infinitum. En un tiempo fi-
nito, Aquiles jamas alcanzaria a la tortuga.

Habia que superar pues esta dualidad si se queria fundamen-
tar, con un cierto rigor, la geometria. ;Las magnitudes geométri-
cas —lineas, superficies y sélidos— son infinitamente divisibles
o atomicas? Euclides, de forma implicita, en sus Elementos, y
Arquimedes, en forma de postulado, en De la esfera y el cilindro,
imponen: .

Las magnitudes son infinitamente divisibles y, por consiguiente, ca-
recen de atomos.

Asi, eligiendo entre dos situaciones posibles igualmente acep-
tables —o inaceptables— salvaban el escollo que plantea el hecho

nz2
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de carecer de una definicién precisa de magnitud. Es muy posible
que al ge6émetra no le importe tanto «lo que son» las magnitudes
como «cémo debe manejarlas». Ello, sin embargo, no excluye que
una falta de claridad filoséfica —de cualquier tipo— pueda llevar
a situaciones paraddjicas quiza inicialmente imprevistas. ;Dan co-
bijo los postulados de los Elementos a estos entes mateméticos de
nueva creacién? ;Afecta ello al espiritu de orden y rigor que es
uno de sus objetivos?

LAS MAGNITUDES INCOMENSURABLES

Ya en la escuela pitagérica se planteé lo que algunos autores han
considerado la primera crisis de fundamentos de la matemaética.
Hasta ese momento se habia supuesto que «dos segmentos siem-
pre son conmensurables». Es decir, dados dos segmentos AB y
CD siempre es posible hallar un segmento UV «comiin» a ambos
segmentos por lo que a la medida se refiere; o, 1o que es lo mismo,
siempre existe un segmento UV que mide exactamente ambos
segmentos. Asi, pues: AB=mxUVy CD=nxUV. Lo podemos ex-

INDEPENDENCIA DE LA UNIDAD DE MEDIDA

k
Si, por ejemplo, en vez de UV elegimos UV, =k xUV =UV +---+UV, entonces

m
AB=Z"xUV y Clt')-i(!rlxu,vl ]
m
o, lo que es lo mismo, k x AB = mxUV,, kxCD =nxUM, Su relacién es o ya
que, por la proposicion 3 del Libro V,

AB _kxAB mxUV, m
CD kxCD nxUV, n’

Si se recurre a la razon entre magnitudes, no hace falta disponer de una unidad
de medida para cada «tipo» de magnitud.
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FIG.1

presar diciendo que hay «una relacién»
entre AB y CD, su «razén», que expre-

” saremos como -~ 0 m:n.
y El concepto de razon es muy im-
s portante porque permite «eludir» el seg-
< mento de medida concreto UV. Lo
. mismo da usar metros que centimetros
s o kilémetros: la razén —la relaciéon en
% la que se hallan las longitudes— no
varia si cambiamos la unidad de refe-
rencia de la distancia.

8 Pero no siempre podemos estable-
cer una razén numérica entre magnitu-
des; no es posible reducirlo todo a un

computo numérico (con numeros naturales; es decir, los enteros

positivos). Asi, por el teorema de Pitdgoras, se puede computar la

«diagonal AC de un cuadrado de lado arbitrario AB» (figura 1). Ya

que AC=AB:

AC?*=AB*+BC?=AB*+AB*=2xAB"*.

Supongamos que AB y AC fuesen conmensurables. Tendria-
mos: AB=mxUV, AC=nxUV. Por lo tanto, AB*=m?xUV?,
AC*=n?xUV?, Luego, n®*x UV?=2xm?*x UV?y, por consiguiente,
n?=2xm? lo cual no es posible. La diagonal de un cuadrado es
inconmensurable.

Lo expuesto hasta aqui (que no aparece explicitamente en los
Elemenitos de Euclides pero que permite una lectura mas com-
prensible de sus logros y de sus limitaciones) fue una tragedia
para la escuela pitagorica, que sostenia:

El niimero [natural] es la razon de todo.
Es decir, segtin los pitagéricos, todo puede medirse mediante
numeros naturales; o, dicho de otro modo, todas las magnitudes

(de una misma especie) son conmensurables entre si. Pero, de
acuerdo con el ejemplo expuesto, «existen» segmentos que no
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admiten medida comin alguna. Y, mas grave atin, Teodoro de Ci-
rene establecié un método para construir geométricamente una
infinidad de segmentos inconmensurables. Es la conocida como
«espiral de Teodoro», y se construye a partir de un segmento de
valor unidad, que, en un proceso iterativo, se mantiene como ca-
teto corto de sucesivos tridngulos rectdngulos que comparten un
mismo vértice (figura 2).

Los tridngulos rectiangulos que conforman la espiral tienen
una hipotenusa que va adoptando los valores raiz de dos, de tres,
de cuatro, de cinco, de seis, de siete y de ocho (aunque el tercer
valor de la serie si es un niimero natural, el dos). La mayor parte
de estos valores es un niimero irracional, es decir, no expresable
como fraccién (razén) de dos ntimeros naturales. Hoy diriamos,
en un lenguaje mucho més numérico, que cualquier niimero real
—un concepto ajeno a la matematica griega— de la forma /n,
con 7 natural que no sea un cuadrado perfecto (es decir, el cua-
drado sin decimales de otro niimero entero), es un nimero irra-
cional. Euclides dedicé el Libro X al estudio de las lineas
inconmensurables.
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METODO ITERATIVO PARA FABRICAR LADOS Y DIAGONALES
DE CUADRADOS

Es posible ofrecer una de- D c
mostracion de la incomensu- i ~
rabilidad de la diagonal del ~ e
cuadrado —tambiéen por re- - | “
duccién al absurdo— com- o’ Ryt
pletamente geométrica. Se W pr
trata de una prueba de indo- ,

le iterativa: a partir de un d N
caso particular, se generan _ATTA
otros casos mas pequefios
que mantienen la misma ra- T \
z6n. Consideremos un cua- \
drado OABCD de lado a=AB L™
y diagonal d=AC. Llevemos A a B

el lado sobre la diagonal.

Obtenemos una recta AB".

Tiremos la tangente al arco de circunferencia BB’ en el punto B’ corta el lado
BC en A’. Unimos B’y A’y completamos el triangulo rectangulo isésceles
ACB'A' para conseguir el cuadrado OCB' A'D'. Hemos construido un nuevo
cuadrado cuyos lado y diagonal son, respectivamente, A'B'=AC-AB'[a’=d-a]
y A'C=BC-A'B [d'=a-a’], en el cual obviamente AC>A'C y AB>B'C. Esta claro
gue si v mide, a la vez, a a=AB y d=AC, medira su diferencia a’y, luego, la dife-
rencia d’. Podemos iterar e iterar el proceso y obtener las parejas
(a.d)>(a"d")>(a",d"}>(a",d"}> - delados y diagonales de cuadrados con-
mensurables. Llegara un momento en que la diagonal o el lado seran menores
que la medida v que los mide. Imposible.

EL CONCEPTO DE «RAZON»

En esta situacion —la de la inconmensurabilidad— cabe pregun-
tarse si es posible considerar «la razén» de las magnitudes incon-
mensurables. Al afrontar esta cuestion surge la figura del genial
Eudoxo de Cnido, padre de las ideas contenidas en los Libros V
y VL.

Comenzaremos el analisis del Libro V examinando sus cuatro
primeras definiciones:
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Definicion 1. Una magnitud es parte de otra mayor cuando
la mide. !

Definicién 2. Una magnitud es miltiplo de otra menor
cuando esta la mide.

Definiciéon 3. Razdon es una relacion cualquiera entre dos
magnitudes homogéneas respecto de su cantidad.

Definicion 4. Se dice que dos magnitudes tienen razon
cuando un maultiplo de una de ellas logra superar a la otra.

En los conceptos de «parte» y «miiltiplo» se hallan involucra-
dos los conceptos de multiplicidad y de conmensurabilidad o di-
visibilidad. Un muiltiplo es la repeticion de una misma magnitud
un cierto nimero de veces; asi, si la magnitud es A y m es un
nimero natural arbitrario, se tiene el multiplo m x A. Esta mag-
nitud es equivalente a la suma de m copias de la magnitud A. Un
divisor o parte D de una magnitud A es una magnitud de la
«misma especie» que A tal que A es un miiltiplo de D; es decir,
tal que existe un niimero natural bien determinado m tal que
A=mxD. Estos conceptos presuponen que sabemos cuando una
magnitud «es menor, igual o mayor que otra» lo cual, como vere-
mos, es esencial.

«Zenon y Eudoxo son representantes de dos escuelas vigorosas
y opuestas del pensamiento matematico [...]: la critica
destructiva y la critica constructiva. La mente de ambos poseia
un espiritu critico [...] penetrante.»

— E.T. BELL, L0S GRANDES MATEMATICOS.

Existen objetos que cumplen la definicién —lo que a su vez
da sentido a esta ltima puesto que, en caso contrario, no defini-
ria nada y seria, por tanto, initil; se trataria, en realidad, de una
propiedad que habria que establecer por medio de un postulado
0 de una proposicién—, pero también hay otros que no la cum-
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EUDOXO DE CNIDO

Matematico y astrénomo griego, Eudoxo
(ca. 408-ca. 347 a.C.), hijo de Esquines y
discipulo de Platén, nacié y murio en Cni-
do. Su familia estaba compuesta por mé-
dicos y por su influencia realiz¢ los estu-
dios de medicina, profesién que ejercio
durante algunos ainos en Grecia. Cuando
tenia veintitrés afos partié para Atenas
e ingreso en la Academia de Platén, don-
de estudi¢ filosofia. Afios después cono-
cio los estudios astrondmicos que se
estaban llevando a cabo en Egipto y, en-
tusiasmado por el tema, organizé su tras-
lado a la ciudad de Heliépolis bajo el
patrocinio y recomendacion del rey Age-
liseo, por lo que tuvo acceso a las obser-
vaciones y a las teorias de los sacerdotes
de esa ciudad. De regreso a Grecia fundod una escuela de filosofia, matemati-
cas y astronomia. Mas tarde escribié su primera obra, los Fendmenos, en la
que se describe la salida y el ocaso de los astros. Su geometria —con la teoria
de las proporciones y el método de exhaucién— influyd en gran manera a
Euclides. La primera fue la solucién mas antigua a los nimeros irracionales; el
segundo le permitié abordar el problema del cdlculo de areas y volimenes
tales como los de la superficie del circulo —es proporcional al cuadrado de

plen. La cuestién que se plantea es la siguiente: ;Hay en los Ele-
mentos pares de magnitudes que no tengan razén? Porque
«imponer» que «todas las magnitudes, dos a dos, tienen razén» es
algo que una definicién no puede —ni debe— hacer. Arquimedes
no cay6 en la misma trampa, y en el axioma V de De la esfera y el
cilindro se lee:

Dadas dos lineas, dos superficies o dos sélidos desiguales, si el
exceso de una de ellas sobre la otra se afiade a s mismo un cierto
niimero de veces, se logra superar una u otra de las que se compa-
ran entre st.
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los didmetros— y del volumen de la piramide —vale un tercio del prisma de la
misma base y altura—. Las definiciones 3 y 4 son muy interesantes. En la ter-
cera —la de «razén»— la expresion «una relacion cualquiera» carece de senti-
do: équé es «una relacion cualquiera»? Ademas, introduce el concepto «res-
pecto de su cantidad» que, en los casos de inconmensurabilidad, no existe.
La cuarta requiere un analisis mas cuidadoso:

Dos magnitudes tienen razén cuando un multiplo de una de ellas logra superar a
la otra.

La definicién establece en qué condiciones dos magnitudes «tienen razén»;
si no cumplen las especificaciones, «no tendran razén». Comparemos la defi-
nicién anterior con las siguientes:

Objeto Definicién
D6 rectiss son paralelas si prolongadas indefinidamente no
se cortan.
Una recta es perpendicular a otra :;ca:::::rtaria lo hace sagin dngulos

si un multiplo de una de ellas

Dos magnitudes tienen razon
supera a la otra.

Un ndmero es primo si solo admite la unidad como parte.

Dos numeros son primos entre si | sila unica parte comun es la unidad.

EL CONCEPTO DE «PROPORCION»

Pero, en realidad, al matematico no le preocupa tanto lo ontolé6-
gico (¢qué es?) como lo metodolégico (;cémo funciona?). De
modo que lo que le interesa al matematico es saber si dos razones
son iguales o si una supera a la otra, aun cuando no tenga muy
claro qué es una razoén. Y este es precisamente el contenido de las
definiciones 5a T

Definicién 5. Se dice que la razon de una primera magni-
tud sobre una segunda es la misma que la de una tercera
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sobre una cuarta cuando, tomando un mismo mailtiplo de
la primera y de la tercera y un mismo miltiplo de la se-
gunda y de la cuarta, el multiplo de la primera es menor,
tgual o mayor que el de la seqgunda si el de la tercera es
menor, igual o mayor que el de la cuarta.

Definicién 6. Las magnitudes que tienen la misma razon
se llaman proporcionales.

Definicién 7. Si entre las magnitudes igualmente multipli-
cadas el maltiplo de la primera supera al de la seqgunda pero
en cambio el de la tercera no supera al de la cuarta, se dice
que la razon de la primera a la segunda es mayor que la
razon de la tercera a la cuarta.

Sean A, B dos magnitudes de una misma especie y I', A, otras
dos (nunca se define qué se entiende por la expresién «de una
misma especie», pero queda claro que dos superficies, dos niimeros,
dos solidos, etc., lo son; y en cambio una linea, un nimero, un sé-
lido, etc., no lo son). Cada par tiene razén, que escribiremos como:

A T

B N

La cuestién es: ;jcudndo podemos decir que

AT , A T
— =—y cuando que —>—?
B A B A

Consideramos ahora sendos muiltiplos —arbitrario— m de A,
I'y n de B, A; mxA, nxB son magnitudes de la misma especie y,
por consiguiente, se pueden comparar; lo mismo ocurre con m x I,
nxA.

Entonces si, cualesquiera que sean los miiltiplos m y n, cada
vez que se tiene

mxA

]
=
X

=)
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se tiene respectivamente

mxI {=} nxA,

; AT
,decimos que —=—.
B A
En cambio, si hay un par de miiltiplos m y n para los cuales
m xA>nxB pero, en cambio, mxI'<n x A, entonces

A T
n— > —_—
B A
. Por qué precisa Euclides de una definicién tan compleja?
A causa de la inconmensurabilidad. Para entenderlo, demostrare-

mos una misma proposicién en dos casos distintos: uno en el que
los segmentos sean inconmensurables y otro en el que no.

Libro VI, proposicién 1. Los tridngulos y paralelogramos
que tienen la misma altura son entre st como sus bases.

Veamos la demostracién en el caso en que se da la conmen-
surabilidad. Si las bases de ambos tridngulos fuesen conmensura-
bles, podriamos usar la medida comtn para descomponer uno y
otro en triangulos de la misma superficie por el método del tan-

gram (véase la figura).
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FIG. 3
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FIG. 4

Si ABy I'A son las bases de dos tridngulos que se hallan entre
las mismas paralelas y son conmensurables, existe una medida
LM comiin que divide la base AB en m partes, y la T'A, en n. Si
unimos los puntos que estas partes determinan en la base con los
vértices respectivos C y E tendremos, respectivamente, m, n,
tridngulos iguales en superficie al tridngulo ALMN, en donde N es
un punto cualquiera de la paralela CE a la recta A. Luego,
AABC =mx(ALMN), AATE = m x(ALMN). Por consiguiente,

AB_mxLM _mx(aLMN) _AABC
AT nxLM nx(oLMN) bAIE

Pero, como hemos visto, cuando AB y I'A son arbitrarios, no
podemos saber si son conmensurables. De hecho, todo segmento
tiene una infinidad de segmentos que le son inconmensurables
muy superior a la infinidad de los segmentos que le son conmen-
surables. La demostracién anterior no es, pues, general; de hecho,
es muy particular.

Veamos la demostracién en el caso general, esto es, en el
que se da la incomensurabilidad. Se precisa de otra demostra-
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cién, que descansa en la idea de que, si no se puede hacer tin-
gram por dentro, ;por qué no hacerlo por fuera? En vez de buscar
un tridngulo comiin que se pueda colocar «dentro» de cada uno
de los tridngulos dados, hagamos multiplos de cada una de las
bases de los tridngulos y unamos los puntos que se vayan de-
terminando con el vértice segin la figura 3. Se obtienen asi dos
tridngulos que son los miltiplos m y n de los tridngulos iniciales:
AA"CB=mx(AACB), AN"PM =nx(ANPM).

«No se debe dar crédito alguno a las previsiones de la vida
de un ciudadano hechas a partir de los horéscopos basados
en la fecha de su nacimiento, puesto que las influencias

de los astros son tan complicadas de calcular que no existe
nadie en la faz de la tierra capaz de hacerlo.»

— Evupoxo.

Llegados a este punto, todo depende de saber si, de dos trian-
gulos entre paralelas (es decir, de la misma altura), tiene mayor
superficie el que tiene mayor base. La respuesta es evidentemente
afirmativa (figura 4).

La base AB es menor que la base 'A. Podemos, pues, lle-
varla dentro de I'A (un uso intuitivo del concepto «ser menor,
ser mayor» —lo «mayor contiene un ejemplar congruo con lo
menor»— que jamas se explicita en los Elementos pero que se usa
siempre que se requiere) y construir un tridngulo igual al tridngu-
lo AACB dentro del tridngulo AT'F'A. Luego, es mayor el tridngulo
que tiene mayor base. Por consiguiente, si

)
mxAB {=} nxITA,

<

L J

entonces

mx(AACB) {=; nx(AT'EA).
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Ahora la definicién de Eudoxo se aplica perfectamente y se
tiene que
AB AACB
TA ATEA’

como queriamos demostrar.

En el ejemplo anterior se ha establecido la igualdad de razo-
nes entre pares de magnitudes de especies distintas: de rectas, la
primera; de superficies, la segunda. De ahi la necesidad de la pre-
cisién de la definicién 5 del Libro V. A partir de estas definiciones,
Euclides disponia de una herramienta muy 1til para dar resulta-
dos concretos de geometria de las rectas y las figuras poligonales
rectilineas. Estos resultados constituyen el grueso del Libro VI en
el que ofrece, entre otras, las proposiciones mostradas en la tabla.
He ahi la enjundia geométrica de la teoria de la proporcién.

Aplicaciones de la teoria de la proporcién a la geometria
Proposicion Nombre Enunciado
Teorerna de Tales Si se traza una recta paralela a uno
2 ’ de los lados de un tridangulo, cortarad
Para lados :
a los otros dos proporcionalmente.
19 s BisePREEE Dos tridngulos semejantes son entre si
P como las razones duplicadas de los lados.
oo ; El criterio de proporcionalidad de los tres
Criterios de semejanza ;
5,6y7 o lados; y el de dos y de igualdad de un
de triangulos
dngulo.
Tercera y media
n13 proporcional (teorema Se pueden construir dichos segmentos
! de la altura de los a partir de dos dados.
triangulos rectangulos)
. Se puede construir dicho segmento
= Clisita propatciansl a partir de tres dados.
La altura de un tridgngulo rectangulo
. Teoremas del cateto S s 7
8, corolario Gy lo divide en dos tridangulos rectdngulos
y de Pitagoras A T
semejantes al inicial.
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EL METODO DE EXHAUCION

La teoria de la proporcién se convierte en una herramienta mate-
matica de una potencia enorme —e insospechada, de ahi el genio
de Eudoxo—cuando se aplica a la determinaciéon por compara-
cién de dreas y volimenes. En este caso, el «método del tAingram
debe llevarse al infinito», algo imposible por la limitacién de Aris-
tételes. Por ello se debe recurrir a la «doble reduccién al ab-
surdo». Este proceso se conoceria, a partir del siglo xvi, como
método de exhaucién. Euclides lo aplicé para establecer las si-
guientes proposiciones:

Libro XII, proposicién 2. Dos circulos son entre si como
los cuadrados de los didmetros:

Libro XII, proposicion 7. Una pirdmide es una tercera
parte del prisma que la circunscrible:

Libro XII, proposicién 18. Las esferas son como los cubos
de los didmetros:

Sin embargo, quien extrajo todo su potencial a este método
no fue otro que Arquimedes, sin duda alguna el matematico mas
importante de la Antigiiedad.

Euclides da la siguiente definicién del método de exhaucién:
Libro X, proposicion 1. Dadas dos magnitudes [de la
misma especie] desiguales, si de la mayor se quita una

magnitud mayor que su mitad y de lo queda una magnitud
mayor que su mitad y se repite el proceso continuamente,

L& TEORIA DE LA PROPORCION ¥ EL METODO DE EXHAUCION
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LA CUADRATURA DE LA PARABOLA DE ARQUIMEDES

Vamos a examinar como aplicé Arguimedes el método de exhaucion a la
cuadratura de la parabola. En ciertos aspectos, su tratamiento se asemeja a
la cuadratura del circulo del propio Euclides. La idea de fondo es la de «relle-
nar» el area de la parabola con tridngulos inscritos, cuyas areas se conocen,
y sumarlas. Dice Arquimedes:

Cuadratura de la parabola. La superficie de un segmento de parabola es
al triangulo inscrito como cuatro es a tres.

En el segmento de parabola ADCEBA consideramos el tridngulo inscrito AACB,
donde el punto C es el punto de la parabola por el cual la tangente a la parébola
es paralela a la cuerda AB. En estas condiciones Arquimedes afirmaba que la
superficie a(ADCEBA) es igual a cuatro tercios de la superficie del triangulo
T=AACB. Es decir,

a(ADCEBA) = %xa(f_\.ABC) -%x T,

Resta ahora «rellenar» con tridngulos los segmentos parabdlicos sucesivos
T,= AADC, T, = ABEC; luego los tridngulos inscribibles en ADA, DCD; y en CEC,
BEB; y asi indefinidamente, puesto que las magnitudes son infinitamente di-
visibles. Todos estos triangulos —que son infinitos— cubren una superficie

quedard una magnitud menor que la menor de las dos mag-
nitudes dadas.

Esta proposicion es equivalente a la definicién 4 del Libro V: si
una vale, la otra también, y reciprocamente. Arquimedes se percaté
de este hecho y decidi6 darle rango de postulado. Hoy se conoce
con el nombre de postulado de Arquimedes. Brevemente dice:

Principio de arquimedianidad. Dadas dos magnitudes de
la misma especie A, B, siempre existe un nimero natural n

tal quenxA>BonxB>A.

Con la demostracién de la proposicién 7 del Libro XII, Eucli-
des cerré un problema que tiene su origen en la matematica egip-
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que es igual a una tercera parte
del triangulo T = AACB. Sin em-
bargo, recurrir al infinito no es
una opcién, momento en que
el método de exhaucién acude
al rescate. Hay que ver que los
triangulos 7, = AADC, T, = ABEC
«cubren, respectivamente, mas
de la mitad del segmento para-
bélico ADCA, BECB». Y ello se
ve por tangram. Esta claro que
el triangulo T, = AADC vale exac-
tamente la mitad del rectangulo
oAH. Sin embargo, el segmento
parabdlico ADCEBA es menor
que el rectangulo cAH. Por consi-
guiente, T; = AADC, cubre mas de
la mitad del segmento parabolico
ADCEBA. Analogamente, con T, = ABEC, el segmento parabdlico CEBC y el
rectangulo oCF. Este razonamiento es valido, de forma iterada, para cada
segmento de parabola restante. Es importante observar que el razonamiento
anterior —explicitado en el caso de un segmento de pardbola— vale para otras
curvas en general y, en particular, para el circulo.

cia: el volumen de la piramide. La pregunta de si puede resolverse
por medio del método del tdngram finito ocupd la tercera posicién
en la lista de los 23 problemas que David Hilbert seleccioné a
principios del siglo pasado como aquellos de especial interés para
el desarrollo de la disciplina (la respuesta, por cierto, es «no»). La
proposicién 2, por su parte, encierra la respuesta de uno de los
problemas mas destacados de la geometria clasica, y a él le dedi-
camos el capitulo siguiente.
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CAPITULO 6

La cuadratura del circulo

Uno de los mayores logros de la escuela
pitagoérica fue ver que toda figura multilatera lineal era
cuadrable. Pero, ;lo era el circulo y, en general, las figuras
con alguno o todos sus lados curvos? Esta cuestion fasciné
no solo a matematicos sino a pensadores de toda
condicién, y con el tiempo, la expresion
«cuadrar el circulo» pasé a referir a una
empresa imposible.






El método del tdngram permite cuadrar cualquier figura multila-
tera recta. El afan generalizador de los griegos les condujo a pre-
guntarse de forma natural la cuestion de si las figuras con lados
curvos eran cuadrables y, en particular, si lo era la mas perfecta
de todas ellas, el circulo. El primero en enhebrar la aguja fue el
genial Hip6erates de Quios.

Hip6crates hallé tres linulas cuadrables, siendo la linula
una figura cerrada por arcos de circunferencias. Hall6 una sobre
media circunferencia, otra sobre menos de media circunferencia,
y otra sobre mas de media circunferencia. La demostracién de
Hip6crates —basada en el método del tangram— precisa de dos
resultados:

— El teorema de Pitagoras.

— La razoén entre el area de dos circulos es la misma que en-
tre los cuadrados de sus didmetros.

No es probable que Hipécrates dispusiera de demostraciones
generales de estos resultados; mas bien, debia tener una intuicién
clara de ellos y de su validez. A continuacién vamos a analizar en
detalle la demostracién de la cuadratura de la linula sobre media
circunferencia.

LA CUADRATURA DEL CIRCULO
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Sobre un lado AB de un cua-
drado JADEB consideramos el
arco AGB de la circunferencia que
lo circunscribe y una semicircun-
ferencia ACB. Se obtiene la linula
AGBCA, marcada en gris en la fi-
gura 1. Se puede demostrar que la
superficie de esta linula es igual a
la superficie del tridngulo isésce-
les AACB.

La Iinula se compone del
tridngulo AACB en cuestién me-
nos el segmento S més los dos seg-
mentos iguales S, y S,; o sea:

area (AGBCA) = érea (AACB) -
-8+ (5,+8).

Elegante método de tangram,;
todo se reduce, pues, a ver que

S =8, +8,. Por el teorema de Pitdgoras sabemos que:

AB? = AC? + CB-. *)

Basta, pues, ligar las superfices S con dichos cuadrados. Ya se
ha dicho que Hipd6crates suponia que los circulos son como los
cuadrados de sus didmetros, es decir, que se cumple la relacién:

S

S _ 5

AB®. AC® CB*

Luego,
S

S, +8S,

AB® AC*+CB

(por Libro V, proposicién 12). En virtud de (*), resulta que
§=8§,+8,. {Realmente elegante! Se abria asi la puerta a que el cir-

culo pudiese ser cuadrable.
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EL PASO AL INFINITO

FIG. 2

Los sofistas griegos Antifon (480-
411 a.C.) y Brisén (ca. siglova.C.) /

abordaron la cuestién de la cua-
dratura del circulo y llegaron a
una conclusién que es, en apa-
riencia, simple e irrefutable. Para
el primero, el circulo se puede
aproximar por dentro por medio
de poligonos regulares inscritos
obtenidos de forma iterada me-

diante la divisién de cada arco
por la mitad a partir del cuadra-

do; es decir, por medio del cua-
drado, el octégono, el hexadeca-
gono, etc.

Para Brison, el circulo se puede aproximar por dentro y por
fuera por un método anélogo. Se obtiene asi una sucesién de figu-
ras planas rectilineas que encierran el circulo (figura 2). Todos los
poligonos mencionados son cuadrables, luego el circulo también
debe serlo. Inscribiendo y circunscribiendo un cuadrado, un oc-
tégono, un hexadecigono, etc., se obtiene la siguiente sucesion
de figuras planas rectilineas que encierran el circulo, todas ellas
cuadrables:

p4<ps“pm<”'<p2-‘”"s‘
<€ Pycia By< <P

Pero jcuidado! ;Qué nos garantiza que la propiedad «ser cua-
drable» se conserva cuando se lleva a cabo este «paso al infinito»?
Recordemos que Aristételes lo prohibié precisamente para que
tales razonamientos no fueran posibles. Consideremos la proposi-
cién siguiente, evidentemente falsa:

Los dos lados de un tridngulo son, en longitud, igual al ter-
cer lado (figura 3, en la pagina siguiente).
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FIG. 3

Se constata que las sucesivas
lineas quebradas que van de A
hasta B tienen la misma longitud
que los lados AC y CB:AC+CB=
=AC+CA +AC' +C'B.

Si «llevamos al limite» el pro-
ceso, la linea quebrada se «conver-

tirda» en el lado AB, lo que parece
probar la proposicion —falsa—
inicial. Asumir que una verdad
«antes del limite» es cierta una vez que la «llevamos a él» puede
ser falaz.

LA SUPERFICIE DEL CiIRCULO EN LOS «ELEMENTOS»

Euclides abre el Libro XII con dos proposiciones que establecen
el mismo teorema para poligonos regulares inscritos en un circulo
y para el circulo.

Libro XII, proposicion 1. Los poligonos regulares semejon-
tes inscritos en dos circunferencias son. como los cuadrados
de los didmetros respectivos.

Libro XII, proposiciéon 2. Dos circulos son como los cua-
drados de los didmetros respectivos.

La primera es una consecuencia inmediata del teorema de
Tales para superficies ya que solo hay que notar que cada uno de
los tridngulos centrales respectivos en los que descomponen los po-
ligonos regulares cumple el teorema de Tales. La segunda lo podria
establecer directamente «por paso al limite», pero este tipo de razo-
namientos, por implicar el infinito en acto, no son aceptables para
la mentalidad griega (aunque en este caso seria correcto hacerlo).

Euclides podria haber «llevado al limite» la proposicion 2 del
Libro XII mediante el siguiente razonamiento:
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Si, para cada poligono n de la
forma n=2*, se tiene que
P P
y, en el limite P! es S,y P’ es S,y
suponemos que la propiedad ante-
rior se conserva cuando se pasa al
limite —es decir, de los poligonos
regulares al circulo—, entonces
resulta

FIG. 4

5 _5
como queriamos.

Descartado el paso al limite,
hay que proceder por exhaucién. Es decir, hay que ver que el
cuadrado inscrito en un circulo cubre mas de la mitad de su su-
perficie; si ahora afiadimos los triangulos que faltan para pasar
del cuadrado al octégono, entonces nos llevamos més de la
mitad de lo que queda una vez hemos quitado el tridngulo, y asi
sucesivamente. Llegard un momento en que el circulo poligono
regular inscrito P ok llenara S de tal manera que lo que queda, si
lo quitamos, serd menor que una superficie cualquiera dada de
antemano (figura 4).

Fijémonos que, de forma andloga a lo expuesto en el capitulo
anterior en relacién con el segmento de parabola, el tridngulo
isésceles que aftadimos a cada lado del cuadrado para obtener un
octogono regular «cubria» mas de la mitad del segmento circular
—una cuarta parte de lo que queda del circulo cuando quitamos
el cuadrado inscrito—; seguidamente aplicamos el mismo razo-
namiento a los tridngulos isésceles que hay que aifadir a cada
lado del octégono regular para obtener el hexadecdgono regular
y asi sucesivamente. Cada vez se cubre «mas de mitad», que es lo
que se precisa para poder aplicar la exhaucién.

Valiéndose de esta herramienta, Euclides hizo dos supues-
tos: o bien la razén entre superficies es mayor que la del cuadrado
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de sus diametros, o bien es menor (ejemplificados ambos casos
en las siguientes férmulas):

S, " d;

...llegando a contradiccién en ambos casos. Por lo tanto, la rela-
cién entre superficies y cuadrados de los didmetros es de igualdad.

S S, d
(1)§2L<¥,'[)(2)—1~>1‘LL

1 e e e P H o TR s S WA P e — EEEeees s TR e s e I

DEMOSTRACION DE LA PROPOSICION 2 DEL LIBRO XII

En el caso s, d|2

L Bt 4 1
o M

suponemos que existe una superficie S< 5, tal que

S d2
Seguidamente consideramos la superficie £=5,-S. El método de exhaucion
garantiza la existencia de un cierto poligono £, inscrito en S, que lo llena de
manera que S,-P,<E=S,-S. Ello conlleva a la desigualdad S< P,,. Ahora con-
sideramos el poligono p.. inscrito en el circulo S, (es decir, p,,<S)) semejante
a Py. Por Libro XlI, proposicién 1, sabemos que

LA

P a2
con n=2* Por la nocién comun 1, tenemos que

1 2
LAY
P} di S
con S<Pyy py<S, lo cual contradice la definicion de igualdad de razones
(Libro V, definicién 5). Por consiguiente, (1) es falso.

El caso ﬁ, 9,_‘;- -
S, d§
lo traté de forma andloga y concluye que también es falso. Luego necesaria-
mente
St
d? o?
et E S SR AT AT S e T e WY SR AT R S T T e T e S e S e R G| o I
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LA DETERMINACION DE TT

En un papiro egipcio conocido como Rhind (por el britdnico Henry
Rhind, quien lo compré a mediados del siglo xix), fechado alre-
dedor de 1650 a.C., y que es a su vez una copia de un papiro de
1800 a.C., se plantean problemas que consisten en determinar el
volumen de silos cilindricos para poner grano. Para ello, su autor,
el escriba Ahmés, necesitaba saber la superficie del circulo de la

Esta demostracidn suscita dos interrogantes. éComo supo Euclides lo que
tenia que demostrar? Es decir, {por qué se planted la relacién concreta entre
superficies y diametros? éUso informalmente el paso al limite que se ha expli-
cado anteriormente? No se sabe. Por otro lado, para probar (1) Euclides su-
puso gue existe una superficie S<§, con la cual

S _ 9%
S d—f

es decir, dadas las superficies S, d?, 07, supuso que «existe una superficie S
que es la cuarta proporcional». Pero él solamente demostré la existencia de
la cuarta proporcional de tres rectas, pero no de tres superficies.

Sl S

v}
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base del cilindro, lo cual le llevo a tener que determinar el valor de
lo que hoy llamamos el niimero n. En la Antigiiedad, lo normal era
considerar que dicho valor era tres. Sin embargo, Ahmés ofrecié
un valor «mejor» para rt que consiguié aproximando la circunfe-
rencia con un octégono (véase la figura), de la forma siguiente:

Sea un cuadrado de 9 unidades de lado. Dividdmoslo en nueve
cuadrados de 3 unidades de lado cada uno. Quitemos los cuatro
tridngulos rectangulos de los vértices que se obtienen al trazar la
diagonal. La superficie del octégono que resulta vale

3x3

9% -4 x =81-18=63

unidades cuadradas. Hagamos la superficie del circulo de didme-
tro 9 unidades igual a 64 unidades cuadradas [que es un niimero
cuadrado]. El valor de «t que se obtiene con esta aproximacion es

2
e[ .,
2

9
Este valor de m, que es vilido en general (es decir, para cual-
quier valor d del diAmetro), se obtiene comparando las superficies
de dos figuras planas: el circulo y un cierto octégono.
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Mas de mil aiios después, Arquimedes, el sabio de Siracusa,
en su brevisima obra De la medida del circulo, aport6é dos resul-
tados nuevos:

Proposicioén 1. La relacion L/d que hay entre la longitud L
de una circunferencia y su didmetro d se halla entre 223/71
y 22/17.

Proposicion 2. La superficie S de un circulo es igual a la de
un tridngulo rectdngulo T cuyos catetos son el radio r del
circulo y la longitud L de la circunferencia.

En la proposicién 2 usé la exhaucién de la misma manera que
Euclides en la proposicién 2 del Libro XII; supuso que:

(D)S>T,y(2)S<T.

y entonces constatd que tanto (1) como (2) llevaban a contradic-
cién. Por lo tanto, necesariamente, S=1T. Pero, jcomo intuy6 la
existencia de esta relacién? Nunca lo sabremos.

En la proposicién 1, en cambio, Arquimedes usé las longitu-
des by, L, by, Lig, by Ly, Ly, Ly, Ly, Ly, respectivamente, de los
poligonos regulares mscrltos y cucunscntos de 6, 12, 24, 48 y 96
lados. Para determinar tales longitudes dio un algoritmo iterativo
que, a partir de la longitud [ , permitia calcular la longitud [, , y de
la L, ladeL,, en donde n toma como primer valor el 6. Final-
mente dio las desigualdades [, < L <L, que le llevaron al resultado
indicado:

223 L 22

— — ] —

7 d 7

Lo més importante de este resultado es que Arquimedes se
percaté de que la razén que existe entre la superficie S de un cir-
culo y el cuadrado del radio 72 y la razén entre la longitud L de la
circunferencia y su didmetro d =2r es la misma. En la actualidad
el valor numérico de esta razén comiin lo conocemos con el nom-
bre de nimero pi y lo indicamos como .
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Es decir, con estas expresiones, Arquimedes estableci6 que
S L
3 =—=7
r d
Hemos comprobado hasta qué punto los resultados obtenidos
por Eudoxo en el seno de la Academia, y sistematizados por Eucli-
des, permiten lograr resultados muy valiosos en relacién con el
circulo y la circunferencia. Cabe notar que Arquimedes recurrié a
los perimetros, mientras que en el papiro Rhind y en el texto de
Euclides se hacia lo propio con las superficies.

UN SUENO IMPOSIBLE

La cuadratura del circulo «a la griega», es decir, con regla y com-
péas, se resistio a los geémetras durante siglos. Ya en 414 a.C,, el
dramaturgo ateniense Arist6fanes hizo que un personaje se jac-
tara de haber cuadrado el circulo para caracterizarlo como un
charlatan. Las dificultades no impidieron que muchos destacados
matematicos intentaran triunfar alli donde sus antecesores grie-
gos habian fracasado. Asi, Nicolds de Cusa (1401-1464), Oronce
Fine (1494-1555) o Gregorius Saint Vincent (1584-1667) publi-
caron supuestos métodos para cuadrar el circulo que al poco se
demostraron falsos. En paralelo, James Gregory (1638-1675) y
Johann Bernoulli (1667-1748) desarrollaron diversas técnicas para
aproximar la cuadratura del circulo por otras vias. El aleman Jo-
hann Lambert (1728-1777) fue el primero en probar que n era un
numero irracional. En 1880, el también aleman Ferdinand von
Lindemann (1852-1939) probé que & era, ademds, un niimero tras-
cendental, es decir, que no era la raiz de ningiin polinomio con
coeficientes racionales. Este resultado implicaba que era imposi-
ble cuadrar el circulo solo con regla y compés. Se daba asi carpe-
tazo a un problema que venia arrastrandose miles de afos y se
desvanecian las ilusiones de la legién de «cuadradores del cir-
culo» que a lo largo de las épocas habia incluido al filésofo brité-
nico Thomas Hobbes e incluso al mismisimo Napole6n.
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CAPITULO 7

La aritmética en los «Elementos»

Los Elementos son basicamente un tratado
de geometria. Sin embargo, contienen tres libros de
inspiracién pitagérica, independientes del resto de la obra.
En ellos, Euclides ofrece los resultados basicos de la teoria
numérica de la divisibilidad, incluido su célebre
algoritmo para hallar el maximo
comun divisor.






Para entender los resultados basicos de los Libros VII, VIII y IX es
preciso estar familiarizados con algunos conceptos basicos. En el
segundo capitulo del primer libro Euclides ofrece de una vez
todas las definiciones aritméticas que precisa en los libros siguien-
tes; no da, sin embargo, ningin postulado. Las mas importantes
de entre ellas son las siguientes:

1. Unidad es aquello en virtud de lo cual cada cosa que exis-
te se Uama uno.

2. Numero es una pluralidad compuesta de unidades.
3. Un maimero es parte de otro cuando el menor divide al mayor.
4. Un naimero es partes —o fraccidon— de otro cuando no lo mide.

5. Un nimero es maltiplo de otro menor cuando el menor lo
mide.

6. Numero par es el divisible en dos partes iguales.

7. Nuimero impar [...] el que difiere una unidad de un ni-
mero par.
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8. Niimero parmente par es el que dividido por uno par da
Uuno par.

9. Nimero imparmente par es el que dividido por uno par
da uno impar.

10. Nuimero imparmente impar es el que dividido por uno
impar da uno impar.

11. Niimero primo es el que solo es divisible por la unidad.

12. Numeros primos enlre si son los que solo tienen como
divisor comun la unidad.

13. Niimero compuesto es el que es divisible por algin otro
nimero.

20. Se dice que cuatro nimeros son proporcionales cuando
el primero es el mismo maltiplo, parte o partes del se-
gundo que el tercero del cuarto.

23. Un niimero perfecto es el que es igual a la suma de sus
partes [propias].

La primera definicién es puramente filos6fica y niega a la uni-
dad la naturaleza de niimero —concepto que no se acota con pre-
cisién hasta la siguiente definicién— aunque, cuando lo crey6
conveniente, Euclides la usara como tal.

Asimismo, introdujo una distincién entre «parte» (el 2 es
parte del 6 porque lo divide) y «partes» (el 5 es partes del 6 por lo
contrario). Existe una gran analogia con las definiciones del Li-
bro V, si bien alli «partes» se transforma en «razén», un concepto
mucho mas complejo. Sin embargo, la nocién de «partes» es la
base de muchas de las demostraciones aritméticas del texto de
Euclides; de hecho, el Libro VII versa sobre fracciones, y también
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recurre a ellas en los Libros VIII y IX. También establece la
distincién entre «niimero par» (N=n+n = 2n) y «nimero impar»
(N=2n+1) y da una forma (imprecisa) de clasificar los nimeros
segun las formas que, en la actualidad, expresariamos del modo
siguiente: 2™, 2™ (2n+1), 2Zm+ 1)(2n+1). Pero los conceptos
mas importantes del Libro VII son los de niimero «primo», «com-
puesto» y el de nimeros «primos entre si». La definicién 20 hoy
la escribiriamos formalmente

si, y solo si, existe un AEQ tal que, si n= A xm, entonces g= A xp.

Euclides acaba con una definicién muy discutida —la de «ni-
mero perfecto»—, que no parece propia de la escuela pitagérica del
siglo vi. Incluso hay autores que la atribuyen a Hip6crates de Quios.

«La matematica es la reina de las ciencias
y la aritmética la reina de la matematica.»

— CarL FrieopricH GAuss.

EL ALGORITMO DE EUCLIDES

El Libro VII se abre con el famoso algoritmo de Euclides; el
mismo que se enseiia en muchas escuelas. Dice:

Dados dos miimeros m y n, exviste el «<mayor niimero p que es par-
te de m y n»,

La idea es la siguiente: del mayor de ambos, m, por ejemplo, se
quita el menor n tantas veces como se pueda; con el resto r<n,
se forma la pareja n,r; se itera el proceso y se obtiene una suce-
sién de parejas: m,n, n,r; 1,8; S,t; tu,...x,y; y,2. Necesariamente
llega un momento en que la parte 2z menor de la pareja mide exac-
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tamente la mayor y; es decir, «<no hay resto» ulterior. Si realizamos
el proceso inverso, se comprueba que 2 mide exactamente a x.

Al final, z mide a la vez a m y a n, y, por lo tanto, z es un divi-
sor comun de m y n. Ademads, es el mayor divisor posible, puesto
que cualquier divisor d, comin a m y a n, divide también a z.

Se dice asi que 2 es el «mdximo comun divisor» de la pareja
inicial m y n. El conjunto de divisores comunes v de dos nime-
ros m y n suele expresarse como v =(m,n). Si resulta que es la
unidad —esto es, si 1 =(m,n)—, decimos que m y n «son primos
entre si». Este método —o proceso— de sustraccién mutua para
determinar las relaciones entre nimeros se llama antiféresis. Lo
hemos visto anteriormente, en forma geométrica, al analizar, por
ejemplo, la «inconmensurabilidad» del lado y la diagonal de un
cuadrado. Una diferencia muy importante entre ambas aplicacio-
nes es que, en el caso de la aritmética, Euclides supone que el
proceso necesariamente se detiene. En cambio, en los ejemplos
geométricos, sigue de forma interminable.

En el Libro X, Euclides aplica este proceso a las magnitudes
en general, sean nimeros o no, y establece la clasificacion si-
guiente: la «antiféresis» llega al final si, y solo si, ambas magnitudes

EL ALGORITMO DE EUCLIDES EN FUNCIONAMIENTO

De la aplicacion del algoritmo de Euclides se tiene que:

m=q°'ﬂ+r‘ r‘(n
n=qg,;-n+r, rR<hn
n=aqrtr rs<n,
M=y

Por un lado, Fia™ Qe Tt Vi POC OXFQ, 1, =Q, 1 ASI 1 350, QR I =

=(q,, g, r, donde g, ,'g,+1 es un nimero natural. Luego r, mide exactamente
ar,,. Por medio de un razonamiento analogo al anterior, pero hacia delante,
se comprueba que si d divide a m y a n, puesto que, por construccion
m=q,-n+r, entonces r,=m-q,-n, con m=m,-d, n=n,-d. Luego r,=m,-d-(q,n)-d =
=(m,-(q,n))-d. Asi, d divide a r,, como queriamos demostrar.
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son conmensurables y, por consiguiente, se remiten a niimeros. En
otras palabras, si son inconmensurables, la «antiféresis» no tiene
fin: es infinita. Son las proposiciones 2 y 3 del Libro X. A pesar de
estas asunciones, Euclides no extrajo de este método la potencia-
lidad que si encontraron los matematicos indios y chinos.

EL NUCLEO ARITMETICO DE LOS «ELEMENTOS»

En el Ambito de la aritmética, el texto euclideo contiene los si-
guientes resultados importantes:

Libro VII, proposicién 17. Si dos niimeros multiplicados
alternativamente dan ciertos nimeros estos coinciden.
[Propiedad conmutativa del producto.]

Libro VII, proposicién 18. Si cuatro nimeros son propor-
cionales

(2-2) lo son alternados (esto es, —-—)
n o q

Libro VII, proposicién 19.57 % -gsi, y solo si, mxg=nxp.

Libro VII, proposicién 20. De entre todos los niimeros que
tienen la misma razdn los menores son primos entre si.

Libro VII, proposicién 24. Si (p,m)=1 (p,n)=1, entonces
(pmxn)=1.

Libro VII, proposicién 29. Si p es primo y p no es parte de
n, entonces (p,n)=1.

Libro VII, proposicién 30. Si p es primo y divide a (es

parte de) m xn, entonces p es parte de uno de ambos factores
m,n. (Lema de Euclides-Gauss.)
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Libro VII, proposicion 31. Todo niimero compuesto es me-
dido por un niimero primo.

Libro VII, proposicién 32. Todo miimero o es primo o es
medido por un nimero primo.

Libro IX, proposicion 14. El menor niimero que estd medido por
varios mimeros primos no tiene mds divisores primos que eslos.

Libro IX, proposicién 20. Hay mds nimeros primos que
cualquier cantidad finita de niimeros primos.

En la demostracién de la proposicion 31 del Libro VII, Eucli-
des hace uso de un «postulado» no explicito. El sabio de Alejan-
dria razona del modo siguiente: Sea N un niimero compuesto,
tendra un divisor —una parte— N'<N. Supongamos que no es
primo. Entonces es a su vez compuesto y admite un divisor —una
parte— N"<N'<N; y sigamos... No es posible que no se halle
nunca un nimero primo P pues tendriamos la sucesion decre-
ciente infinita ...< NW<...<N"<N'<N. Y esto, dice Euclides, «es
imposible». Asi pues, Euclides impone la imposibilidad de suce-
siones decrecientes ilimitadas de niimeros naturales.

«Dios cred los nimeros los nimeros enteros; el resto
es cosa del hombre.»
— LeoroLp KroNECKER (1823-1891).
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A esta propiedad Pierre de Fermat la llamaria del descenso
infinito, e hizo uso de ella a la hora de alcanzar resultados impor-
tantisimos que se erigirian en un auténtico renacimiento de la
aritmética.

La proposicion 14 del Libro IX es motivo de discusién acerca
de si se trata del teorema fundamental de la aritmética (todo
nimero entero mayor que 1 o es primo o puede ser expresado en
forma de producto de nimeros primos, y dicha forma es tinica),
expresado con las limitaciones del lenguaje matematico de la
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época. Para dilucidar la cuestién habria que saber si los primos que
miden al niimero son «distintos» o pueden ser «iguales»; en este
segundo caso, se trataria, en efecto, del enunciado del teorema.

LA INFINITUD DE LOS NUMEROS PRIMOS

En capitulos anteriores se han tratado las limitaciones que Aristé-
teles imponia al uso del infinito. En la proposicién 20 del Libro IX
(Hay mds niumeros primos que cualquier cantidad finita de
ellos), Euclides respeta esa limitacién y tiene mucho cuidado de
no hablar de «infinitos niimeros primos» (véase la pagina 83).

Sin embargo, jexiste un algoritmo para ir obteniendo mas y
mas numeros primos? Euclides no se pronuncié al respecto. Hay
que esperar la Aritmética de Nicomaco de Gerasa (ca. 60-ca. 120)
para tener conocimiento de la criba de Eratdstenes, el método
empleado por el matematico del mismo nombre:

El método para obtenerlos lo bautizé Eratéstenes con el nombre de
criba, porque si tomamos todos los niimeros impares, el método lo
podemos pensar como un instrumento selectivo —como la criba—
porque permite separar los niimeros primos de los compuestos. La
criba procede asi. Empiezo por el tres y miro cuiles son medidos
por el tres —pasando por encima dos de cada tres— y separando el
tercero. Luego pasamos al primero no cribado, el cinco, y pasamos
cuatro y el quinto lo hacemos caer; luego, lo hacemos con el siete, y
asi sucesivamente, empezando con el primero que queda.

En este texto se exponen claramente dos hechos. Partimos de
la sucesién de los nimeros impares:

3 5 7 9 NIWB|IB 7L |21 1253|2527 |29 | 3 |33 ] 35
37 |39 | 41 |43 |45 (47 | 49| 51 |53 | 55|57 | 59| 61 |63 | 65|67 |69
N |73 |75 (77 |79 |8 (8385|187 (89| 9193|9597 |99 (101|103

LA ARITMETICA EN LOS «ELEMENTOS»

149



150

LOS NUMEROS PERFECTOS

Si bien Euclides ofreci¢ la definicién correcta y un teorema que sirve para
generar los numeros perfectos, no dio ningun ejemplo de ellos. El enunciado
de la proposicion correspondiente puede parecer poco claro, seguramente
porque esta dado de forma descriptiva:

Libro IX, proposicién 36. S/ varios niumeros, empezando por la uni-
dad, estdn en proporcién duplicada y el conjunto de todos es un
ndmero primo, el producto de este conjunto por el ultimo es un nu-
mero perfecto.

Expresados los nimeros, dice lo siguiente:

Si1, 2, 22 23.., 2" es una sucesion en «proporcion duplicada», sumamos
y obtenemos S =1+2+22+2%+,.+27=2"1-1;si §_es un nimero primo,
entonces P, =2"xS§ =2"x(2™-1) es un numero perfecto (par).

Euclides pudo resolver este resultado porque en la proposicion 35 del Libro
IX dio la férmula que servia para sumar los términos de la sucesion 1, 2, 22,
23,...,2". Observé ademas que los Unicos divisores propios —los Unicos que
considera Euclides entre los cuales considera la unidad— de P, son 1, 2, 22, 25,...,
2"y S.,2xS,2?x5_, 2°x§_,...,2""'x5 . Sumo y obtuvo el resultado del teorema:
la suma de los divisores 1, 2, 22, 2%,..,, 2" es § =2™'-1y la suma de los divisores
S, 2x5,, 22x5, 2°xS .., 2™'xS_ es (2"-1)xS . La suma de ambos resultados es P =
=S +(2"-DxS§ =2"x§ =2"x(2"'-1). QED.

Los primeros ejemplos
En su Aritmética, Nicomaco de Gerasa (ca. 60-ca. 120) establece que los nu-
meros perfectos son 6, 28, 496 y 8126. De ahi sacd algunas conclusiones:

1. Los numeros perfectos (pares) acaban en 6 y en 8 (cierto).
2.Se alternan (falso).

3.Hay uno para cada orden decimal —de las unidades, decenas, centenas,
millares, unidades de mil, etc.— (falso).

Ya en el siglo xvii, Euler probo el reciproco del teorema de Euclides: Todo
numero perfecto [par] es de la forma anterior. 2"x(2"*'-1), con 2™'-1 primo.
En la actualidad todavia hay cuestiones abiertas relativas a los nimeros per-
fectos: no se sabe si hay una infinidad de numeros perfectos pares ni tampo-
co si hay niumeros perfectos impares.
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A partir del 3, consideremos los nimeros de tres en tres, y
obtenemos:

il

13

17

19

23

25

29

31

35

37

4

43

47

49

53

55

59

61

65

67

n

73

77 | 79

83

85

89

91

a5 | 97

101

103

A partir del 5, consideremos los niimeros de cinco en cinco, y
obtenemos:

13

17

23

29

31

37

41

43

47

49

53

59

61

67

71

73

77 | 79

83

89

91

97

101

103

Y asi sucesivamente. Por ejemplo, la lista de los niimeros pri-
mos inferiores a mil es la siguiente:

n

17

19

23

29

31

37

41

43

47

53

59

61

67

71

73

79

83

89

97

101

103

107

109

13

127

131

137

139

149

151

157

163

167

173

179

181

191

193

197

199

n

223

227

229

233

239

241

251

257

263

269

2N

277

281

283

293

307

n

313

37

331

337

347

349

353

359

367

373

379

383

389

397

401

409

419

421

431

433

439

443

449

457

461

463

467

479

487

491

499

503

509

521

523

541

547

557

563

569

571

577

587

593

599

601

607

613

617

619

631

641

643

647

653

659

661

673

677

683

691

701

709

719

727

733

739

743

751

757

761

769

773

787

797

809

an

821

823

827

829

839

853

857

859

863

877

881

883

887

907

9n

919

929

937

941

947

953

967

9N

977

983

9N

897
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Los nimeros
cuadrados
sucesivos 1,4, 9,
16,..., (n=1, n*.
Para pasar de
c,=n*ac, =(n+1)?
hay que anadir el
gnomon que vale
precisamente
2n+1. Se pasa,
pues, de uno al
siguiente por
medio de los
numeros impares.
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LAS TERNAS PITAGORICAS ARITMETICAS

Un 1ltimo problema digno de mencién es el del algoritmo para ob-
tener ternas pitagéricas aritméticas; son tres niimeros naturales que
cumplan el teorema de Pitagoras como, por ejemplo, 3, 4, 5; 5, 12,
13; etc. Es decir, tres niimeros naturales a, b, ¢ tales que a®+b*=c?

Se cree que los babilonios conocian algiin método para deter-
minar las ternas pitagéricas, como muestra la tablilla mesopota-
mica conocida por el nimero de catilogo Plimpton 322, que
contiene «ciertas» ternas pitagdricas aritméticas expresadas en
sexagesimal. Por otro lado, se atribuye a Pitdgoras un método
para obtener ternas pitagéricas basado en el gnomon de los niime-
ros cuadrados. Un niimero es un nimero cuadrado cuando se
puede disponer en forma de cuadrado (véase la figura). Tenemos
pues n*+ (2n+ 1) =(n+ 1)°. Para que sea una terna pitagérica —en
la cual un cateto y la hipotenusa son dos niimeros sucesivos— el
gnomon debe ser también un cuadrado; es decir, 2n + 1 =k? para
un cierto nimero k impar. Luego:

k=1
2

7= , k impar.

E+1

kz_l, k, 'n+1=-T,

Asi se obtienen las ternas, que son: n = 5

con k impar, que generan la tabla siguiente:

) it den et il |
I I 1 1
| | I 1
r-—4---9 ‘-——-—*———L—---f
| | I
! ' ! | | I |
! ; ! I | I I
---- - d—-=-=-d 2n+] ——» == -|-
I | I
| I I | | I
| I : 1| : I I I I
[ S—— - = — P (Eg——— -
c;=4 c3=9 cs =16
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a:=k impar 3 8 7 9 n 13 15

b:-n-Kiz:l 4 | 12 | 24| 40| 60| 84| M
c:-n+1-£%-1 5 | 3| 25| 44| &1 | 85 | m3

De esta manera se obtienen una «infinidad» de ternas pitagé-
ricas, pero no todas; falta, por ejemplo, la terna 8, 15, 17, en la que
el cateto y la hipotenusa difiere de dos unidades.

Se atribuye a Platén la generalizaciéon del método pitagérico
para obtener tales ternas. Hay que pasar de (n—1)*>a (n+1)>% Ello
se obtiene sumando dos gnomon: 2n-1, que permite pasar de
(n-1)*an%y 2n+1, que permite pasar de n2 a (n+1)% En total,
hay que afiadir 4n. Es decir, (n-1)*+4n = (n + 1)* Basta pues que
n sea un cuadrado: n=k> Asi se obtienen las ternas k-1, 2k y
k*+ 1. Para k=4, obtenemos la terna 8, 15, 17 antes citada. De
hecho, se obtiene la siguiente tabla:

k 2 3 o 5 6 7 8
a :=k*-1 3 8 15|24 | 35 | 48 | 63
b =2k < 6 8 10 12 14 16
c =k*+1 5 10 17 26 | 37 | 50 | 65

Existe una diferencia entre ambas tablas: en la primera las
ternas son simples; es decir, carecen de divisores comunes; en
cambio, en la segunda, las columnas que corresponden a valores
impares de k se pueden simplificar por dos y entonces se obtienen
los de la primera tabla. De alguna manera, la segunda tabla con-
tiene a la primera. Sin embargo, ;existe un algoritmo que dé
«todas» las ternas pitagdricas aritméticas? La respuesta es afirma-
tiva y la da el propio Euclides en el lema 1 del Libro X:

Encontrar dos nimeros cuadrados que juntos formen otro
cuadrado.
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Sin entrar en detalles se puede decir que Euclides recurre al
algoritmo a=A>—p? b=2ky, c=A*+p’ donde A, u deben ser primos
entre si y de paridad diferente si queremos que no se repita nin-
guna terna y que sean simples, carentes de factores comunes. De
hecho, las ternas simples son las tinicas que importan, ya que esta
claro que, cualquiera que sea el nimero natural k, 3k, 4k, 5k, tam-
bién lo es, puesto que 3, 4, 5 lo es, pero carece de interés. Y esto
vale, en general, para toda terna pitagoricaa, by c.

LA ARITMETICA EN LOS «ELEMENTOS»



CAPITULO 8

La transmision
de los «Elementos»

No hay mayor evidencia de la importancia
histérica de Euclides y su obra que las numerosisimas
copias y ediciones que de ella se han realizado. Ninguna
otra obra clésica de entre las dedicadas al conocimiento
tiene una historia mas variopinta de versiones,
ediciones y comentarios.






Los Elementos recogen y sintetizan de forma admirable tres siglos
de pensamiento matemaético griego. El valor de este legado fue
reconocido ya en la misma época y, posteriormente, por culturas
diversas a lo largo de toda la historia en un proceso que recorre el
mundo romano, el drabe, el europeo medieval y llega hasta nues-
tros dias en forma de ediciones criticas més o menos definitivas y
en los soportes mas variados.

El texto quedé fijado por vez primera en la edicién del afio
370 debida a Tedén de Alejandria; de esta versién parte la que
puede considerarse «tradicién central» de las ediciones posterio-
res de la obra.

La otra gran tradicién es la 4rabe. Los matemaéticos de la Casa
de la Sabiduria de Bagdad de los siglos x y x —una época y un
lugar histéricamente inolvidable por lo que a la ciencia en general,
y la matematica en particular se refiere; pero también en el marco
maés general de la cultura mundial— supieron reconocer su valia
y gracias a sus estudios, traducciones y comentarios (entre los
que destacan los de Al-Nayrizi y Al-Jayyani) la obra de Euclides
—como la de tantos otros pensadores griegos— retornaria a Oc-
cidente a partir del siglo x11. Son de esa época las ediciones latinas
de los Elementos, en las que jugd un papel importante la famosa
escuela de traductores de Toledo y también, en menor medida, la
de Ripoll.
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MANUSCRITOS Y EDICIONES

El manuscrito méis antiguo que se conserva de los Elementos de
Euclides es del siglo 1x (si se omite el fragmento fechado en el
periodo entre los afios 75 y 125). Se descubrié en un vertedero de
basura de la ciudad griega de Oxyrhynchus, actual el-Bahnasa, a
unos 160 kilémetros de El Cairo, durante las exploraciones reali-
zadas por Bernard Payne Grenfell y Arthur Surridge Hunt bajo el
palio de la Universidad de Oxford entre 1896 y 1897. En la tabla
siguiente se recogen, en sintesis, los manuscritos mas notables
de los Elementos, de algunos de los cuales solo se conserva un
ejemplar.

Lugar Biblioteca Siglo
Oxford Bodleian Library 1%
Vaticano Biblioteca Vaticana X
Florencia Biblioteca Laurenziana X
Bolonia Biblioteca Comunale X
Viena Nationalbibliothek xi (?)
Paris Bibliothéque Nationale Xl

El manuscrito conservado en Oxford fue un encargo que
Aretas de Cesarea (860-935), por aquel entonces arzobispo de
dicha ciudad de Capadocia, hizo en 881 a Stephanus, un experto
caligrafo bizantino. El manuscrito es de letras anchas con cierta
forma cuadrada y una pequefia inclinacién a la izquierda. De
idéntico tipo es el famoso manuscrito de los Didlogos de Pla-
tén, encargado asimismo por Aretas y conservado en la misma
biblioteca.

De la importancia de la obra en la Europa medieval es testi-
monio que la primera impresion de la que se tiene noticia se hi-
ciera en fecha tan temprana como 1482; es la debida al editor
aleman Erhard Ratdolt, que escogi6 a tal efecto la edicién comen-
tada de Giovanni Campanus de Novara de la traduccidn latina que
realizara el inglés Adelardo de Bath en el siglo xu (probablemente
de un original en la tradicién arabe).
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Versiones destacadas de los Elementos
Afio Ciudad Autor Idioma Titulo
Preclarissimum opus
; ; elementorum Euclidis
Giovanni ; ;
> Latin megarensis una cum
1482 | Venecia Campanus 2 i A
(del drabe) commentis Campani
de Novara : G e o
perspicacissimi in arte
geometrica.
Euclidis megarensis philosophi
platonici mathematicorum
: Bartolomeo Latin disciplinarum Janitores...
1505 | Vanecis Zamberti (del griego) elementorum libri XIll cum
expositione Theonis insignis
mathematici.
Campanus,
1509 | Venecia revisado por Latin
Luca Pacioli
1533 | Basilea Simon Gr_lego (edicion
Grayneaeus princeps)
Federico ; Euclidis elementorum libri XV,
1572 | Pesaro : Latin A =
Commandino una cum scholiis antiquis.
1574 | Roma Cr'St,Ophore Latin Euclidis Elementorum libri XV.
Clavius
André Latin (Libros Elementa geometriae planae
1654 | Amberes Tacquet I-VI; XI-X11) et solidae.
1703 | Oxford e Griego y latin
Gregory
1804 Paris Francois Griego, latin Euclides quae supersunt.
1808 Peyrard y francés Les Oeuvres d’Euclide.
1883 Johan Ludvig z G -
1888 Copenhague Heiberg Latin Euclidis opera Omnia.

Inspirado por la Aritmética de Jordanus Nemorarius (siglo
xi1), Campanus incluye una axiomatica de los libros aritméticos y,
en particular, decreta que «no existen cadenas descendientes in-
finitas de niimeros naturales». La impresién de Ratdolt contiene
més de cuatrocientos grabados y constituye una obra maestra por
ser una de las primeras impresiones de un texto de naturaleza
matematica. A esta impresion le siguié poco después otra proce-
dente de la tradicién central, debida a Bartolomeo Zamberti y, en
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EUCLIDES, EXPOLIADO

Napoledn Bonaparte gustaba de acaparar toda clase de tesoros y llevarlos a
Paris para enriquecer los museos franceses. Dos ejemplos de ello son la piedra
Rosetta y los cuatro caballos de San Marcos de Venecia, que durante unos
anos remataron el arco de triunfo parisino. Cuando invadio Italia, Napoleén se
llevé a Paris un manuscrito de los Elementos depositado en la Biblioteca del
Vaticano. Poco después, en 1804, el parisino Francois Peyrard publico los
Eléments de géométrie d’Euclide, una edicién del manuscrito anterior. Peyrard
se dio cuenta de que el texto no estaba, como la mayoria, basado en Teén de
Alejandria, sino en una fuente todavia mas antigua, lo que apunta a un mejor
ajuste al original de Euclides. El manuscrito regresé nuevamente a la Biblio-
teca del Vaticano.

1572, la de Federico Commandino, la més rigurosa de las versio-
nes latinas y base de destacadas ediciones posteriores como la de
Gregory. En 15633 se habfa impreso la considerada editio princeps
(es decir, de referencia) en su versién griega, obra de Simon Gray-
neaeus. La ultima edicién que recoge la tabla anterior es la prin-
ceps correspondiente a la versién latina, de Johan Ludvig Heiberg,
realizada entre 1883 y 1888, que contiene la totalidad de la obra de
Euclides en ocho volimenes y un suplemento, tanto la propia del
autor como la que se le atribuye segiin se ha tratado en el primer
capitulo. A partir de esta edicién queda consolidada la obra y las
versiones posteriores se dedican como mucho a completarla.

De la decena de ediciones destacadas de los Elementos hasta
la princeps de Heiberg las hay tan curiosas como las del jesuita y
director del Colegio Romano, Cristopher Clavius, que a las 468
proposiciones euclideas afiadi6 671 de propio cuiio. Esta seria la
version que el también jesuita Matteo Ricci se llevé a la China y
la que fue traducida a este idioma.

Baste lo expuesto como tributo a la importancia de este su-
blime texto cientifico. Con las diferencias 16gicas debidas a la dis-
tinta naturaleza de los contenidos, solo las obras de Homero,
Séfocles, Platén o Aristételes rayan a una altura parecida de entre
las que conforman el legado escrito de la cultura griega.
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Epilogo

El siglo xix termina, por lo que a la geometria se refiere, con el
texto paradigmaético del genial matematico prusiano David Hil-
bert, «<Fundamentos de la geometria» («Grundlagen der Geome-
trie»). Con dicha obra se cierra, aun cuando pueda parecer que se
consolida, una forma de hacer y entender la matemaética. Hilbert
«axiomatiz6» la geometria euclidea, pero lo hizo sin necesidad
de recurrir a la intuicién geométrica. Como gustaba de decir al
autor:

Deberiamos ser capaces de leer mesas, sillas y jarras de cerveza en
lugar de puntos, lineas rectas y planos.

La diferencia entre ambos textos, el euclideo y el «hilber-
tiano», radica en el recurso a la intuicién y a la figura que subyace
al primero y que el segundo quiere erradicar. Para ello, Hilbert se
apoya en un formalismo estricto: los axiomas establecen los liga-
menes entre los objetos geométricos (los cuales no requieren de
definiciones adicionales a los axiomas mismos) y a partir de ellos
y mediante las herramientas que proporciona la l6gica formal, se
establecen los teoremas. La necesaria consistencia de una teoria
desarrollada de esta forma —la imposibilidad de deducir una sen-
tencia y su negacién, requisito en el que basa la reduccién al ab-
surdo— impone, segiin Hilbert, la existencia de los objetos geomé-
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tricos. El de Hilbert fue un intento por fundamentar la matematica
tras el fracaso del enfoque basado en la teoria de tipos de Russell.

Seria esta nueva concepcioén del pensamiento matemaético lo
que llevaria al prestigioso matematico francés Jean Dieudonné a
exclamar «A bas, Euclide» en un seminario en 1969. No se trataba,
en absoluto, de denigrar la figura y la obra del genial matematico
alejandrino, sino en criticar su excesiva presencia en la ensefianza
de la geometria en las escuelas de la época. Nacia asi lo que, a
partir de la década de 1970, se conoceria como «matematica mo-
derna», una nueva forma de explicar las matematicas que tuvo un
éxito fulgurante. El propio Hilbert habia dicho que:

Mi opinién es esta: a pesar del alto valor pedagégico y heuristico del

valor genético, el método axiomatico merece [...] la preferencia en
la presentacion definitiva de nuestro conocimiento y su plena segu-
ridad légica.

Sin embargo, dos décadas después se revel6 como un método
«excesivamente moderno». Mas de dos mil afios después de los
Elementos, se reabria la discusion del valor pedagégico —con un
valor quizd mucho maés genético— del enfoque euclideo.

. EPiLOGO
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