




LA GEOMETRÍA 

EUCLIDES 
Las matemáticas 

presumen de figura 

• NATIONAL GEOGRAPHIC 



A Joan Puig Vilanova 
por su bondad, amistad, 

camaradería y espíritu de familia. 

Inmemoriam 

JOSEP PLA I CARRERA. Profesor emérito de la Universitat de 
Barcelona, ha centrado su investigación en la lógica algebraica y, 
posteriormente, en la historia de la matemática. Ha escrito artículos 
y textos de divulgación de la matemática desde el punto de vista 
histórico y epistemológico. 

© 2012, Josep Pla i Carrera por el texto 
© 2012, RBA Contenidos Editoriales y Audiovisuales, S.A.U. 
© 2012, RBA Coleccionables, S.A. 

Realización: EDITEC 

Diseño cubierta: Lloren¡; Martí 

Diseño interior: Luz de la Mora 

Infografías: Joan Pejoan 

Fotografías: Archivo RBA: 16, 23, 41, 57, 81, 103i, 105bi, 105bd, 111, 118; 
Museo del Prado, Madrid: 103d; Museo e Gallerie di Capodimonte, 
Nápoles: 105a; Sébastien Bertrand, París: 39. 

Reservados todos los derechos. Ninguna parte de 
esta publicación puede ser reproducida, almacenada 
o transmitida por ningún medio sin permiso del editor. 

ISBN: 978-84-4 73-7636-0 
Depósito legal: B-6261-2016 

Impreso y encuadernado en Rodesa, Villatuerta (Navarra) 

Impreso en España - Printed in Spain 



Sumario 

INTRODUCCIÓN .... 7 

CAPÍTULO 1 Euclides de Alejandria •·• ................................... 13 

CAPÍTULO 2 La estructura de los «Elementos» .. 

CAPÍTULO 3 El Libro l y la geometría del universo 

CAPÍTULO 4 La técnica del tángram en los «Elementos» 

CAPÍTULO s La teoría de la proporción y el método 
de exhaución 

35 

61 

87 

... 107 

CAPÍTULO 6 La cuadratura del círculo ·•· ·••·································· 129 

CAPÍTULO 7 La aritmética en los «Elementos» .. ... ... . . ....................... 141 

CAPÍTULO a La transmisión de los «Elementos» .. 155 

EPÍLOGO ......... . . ...... 161 

LECTURAS RECOMENDADAS ..................................... ............. ....................................... 163 

ÍNDICE .. 165 





Introducción 

Cuando hablamos de Euclides, hablamos de geometría y también 
- aunque de forma muy diferente, como se verá- de aritmética 
griegas; en concreto, del fruto de la síntesis de tres siglos de racio­
nalidad griega aplicada al pensamiento matemático. 

El término matemata (µa0~ µm;a en su grafía original), de 
origen pitagórico, significa «lo que se puede aprender» . La escuela 
pitagórica, activa desde el siglo v a.C., estableció como base del 
conocimiento científico cuatro «maternas» que les permitían ex­
plicar «el orden y la armonía del universo»: aritmética, geometría, 
música y astronomía. Según el destacado pitagórico Arquitas de 
Tarento, la «matemática sería la suma de esos cuatro maternas». 
(En la Edad Media constituyeron la base del cuadrivio que, junto 
con las tres artes del trivio - gramática, lógica y retórica- , for­
maban las «siete artes liberales», la parte central del currículum 
de las universidades.) En la Grecia clásica - siglos val m a.e.­
la palabra matemata no se puede disociar de la palabra filosofía 
( cpl11.oaocpta ), «el amor por la sabiduría», cuyo uso se introduce 
para designar una cierta actitud ante el conocimiento. 

Este libro se sirve de la figura de Euclides y muy particular­
mente de su gran obra maestra, los Elementos de geometría, como 
referente ideológico y metodológico para llevar a cabo un análisis 
de las aportaciones más relevantes del pensamiento matemático 
griego. Según el filósofo neoplatónico Proclo, una de las fuentes 
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más importantes de entre las que se dispone acerca de la obra de 
Euclides, dicho pensamiento arranca con el insigne filósofo y ma­
temático Tales de Mileto, nacido en el año 624 a.c., uno de los 
siete sabios de Grecia y fundador de lo que a veces se designa 
como la escuela filosófica de Mileto. Este arranque coincidiría, 
según el mismo autor, con el del pensamiento filosófico de la Hé­
lade en su conjunto. 

El liderazgo de Tales pasaría a Pitágoras de Samos, nacido 
alrededor del año 570 a.c. y fundador de la escuela místico-filosó­
fica que lleva su nombre. Con ella se da una profundización de la 
geometría y nace la aritmética entendida corno arte deductiva. Se 
establecía así la distinción entre la logística o «arte práctico de los 
números» ( en el que se incluiría la geometría entendida como arte 
de medir), y la aritmética o «teoría de los números». Las ideas 
filosóficas de la escuela pitagórica trascendieron e influyeron en 
la famosa Academia de Platón, activa desde el 387 a.c. En ella 
floreció un matemático extraordinario, Eudoxo de Cnido, cuya 
vinculación con la Academia -profesor, alumno, o visitante- es 
no obstante difícil de precisar. A él se deben dos conceptos fun­
damentales que luego recogería Euclides, la teoría de la propor­
ción -necesaria para establecer los teoremas de Tales de líneas 
y superficies- y el método de exhaución, que constituye la base 
teórica necesaria para calcular áreas de figuras geométricas pla­
nas y volúmenes de sólidos. 

A lo largo del siglo rv a.c. se consolidaron nuevas herramien­
tas lógicas como las debidas a los filósofos estoicos y a Aristóteles, 
las cuales constituyen la armazón del texto euclídeo. Aristóte­
les, en particular, impuso limitaciones al concepto de infinito, una 
noción de fundamental importancia tanto en la aritmética de raíz 
pitagórica como en la geometría de Euclides y muy especialmente 
en el crucial postulado de las paralelas. 

Los Elementos de Euclides son herencia y síntesis definitiva 
de estos antecedentes. En el desarrollo de la matemática griega 
-fundamentalmente en geometría- hay un antes y un después 
de esta magna obra. Otros tratados de carácter fundamental 
-esto es, de índole teórica-, sean de geometría, de astronomía 
o de aritmética -piénsese en la Sintaxis de Claudio Ptolomeo, 
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en laAritmética de Diofanto, en la Sintaxis matemática de Papo 
de Alejandría- son herederos de su estilo deductivo. Pero su im­
pacto va mucho más allá. El historiador Carl B. Boyer calificó los 
Elementos como el libro de referencia más influyente de la histo­
ria, y estimó que solo la Biblia lo superaba en número de ediciones 
(cerca de 1000). Descartes y Newton aprendieron en sus páginas, 
y obras como los Principios de filosofía o los Principia mathe­
matica, escritas casi dos milenios después que los Elementos, son 
estructuralmente reminiscentes de esta última. Es, con toda segu­
ridad, el texto matemático más relevante jamás escrito. 

Toda aproximación biográfica a la figura de Euclides debe 
conllevar pues el análisis de los Elementos, y a través suyo, de los 
tres siglos de pensamiento y de epistemología de la matemática 
griegos que en ellos se recogen. La primera y más importante in­
fluencia de la obra procede de las escuelas platónica y aristotélica, 
de cuyo pensamiento matemático los Elementos puede conside­
rarse la síntesis. Aunque hay autores que ven en los Elementos 
una mayor influencia del primero, su estructura es, como se verá, 
fundamentalmente aristotélica, sin que por ello quepa ignorar la 
influencia de la Academia en cuanto a las aportaciones geométri­
cas concretas ya sean de Teeteto, de Teodoro o de Eudoxo, o en 
la construcción de los sólidos platónicos que cierra la obra. Así, 
se analizará el porqué de algunos de los postulados más relevan­
tes -algunos explícitos en el texto, otros implícitos- y de su 
necesidad epistemológica y metodológica para el desarrollo del 
texto euclídeo. También se verá cómo influye la limitación -o si 
se prefiere la restricción- impuesta por Aristóteles al concepto 
de infinito y cuáles son las consecuencias que dicha limitación 
produjo en el desarrollo de las matemáticas posteriores a los Ele­
mentos. Otro tema central que se abordará es la cuestión de la 
existencia de los objetos geométricos, tanto en su aspecto pura­
mente filosófico como en el metodológico. Asimismo, presentare­
mos en detalle la cuestión de la «cuadratura del círculo», uno de 
los problemas más relevantes de entre los heredados de la geome­
tría helena, lo que dará pie para hablar del gran Arquímedes y, de 
pasada, de otras notables figuras de la ciencia antigua - Apolonio, 
Ptolomeo, Diofanto, Papo y Proclo- , sin las cuales no se puede 
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tener una idea cabal de la «matemática griega» en su conjunto. 
Finalmente, abordaremos las aportaciones aritméticas -de raíz 
pitagórica- que Euclides ofrece en los Libros VII, VIII y IX. 

El cuadro adjunto contiene los símbolos que se usan en el 
texto para referirse a los segmentos rectilíneos; a los ángulos; a 
los triángulos; a las.figuras rectilíneas cerradas de tres, cuatro o 
más lados -triángulos, cuadrados, rectángulos, paralelogra­
mos-; a la circunferencia (la cmva formada por los puntos del 
plano que equidistan de uno dado O, el centro) y al círculo (la 
superficie encerrada por la circunferencia). 

Símbolos usados en el texto y su significado 

A8 Segmento rectilíneo de extremos A y 8 . 

<A8C Ángulo de lados A8 y 8C y vértice en el punto 8 . 

t:, A8C Triángulo de vértices A, 8 y C. 

• AC Cuadrado de vértices opuestos A y C. 

• AC Rectángulo de vértices opuestos A y C. 

oAC Paralelogramo de vértices opuestos A y C. 

A8CQ .. ,M Figura poligonal cerrada rectilínea de vértices 
A, 8, C, D, ... ,M. 

OOA Círculo o circunferencia de centro O y radio OA. 
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585 a.c. Tales de Mileto: geometria 
deductiva. 

540 a.c. Pitágoras de Samos: aritmética 
pit:agórica y geometria. 

450 a.c. Pannénides y la esfericidad 
de la Tierra. 

430 a.c. Muerte de Zenón. Obras de 
Demócrito. Astrononúa de 
Filolao. Elementos de Hipócrates 
de Quíos. 

428 a.c. Nace Arquitas; muere 
Anaxágoras. 

427 a.c. Nace Platón. 

420 a.c. Trisectriz de Ripias. Aparecen 
los inconmensurables. 

360 a.c. Eudoxo: la teoría de la 
proporción y el método 
de exhaución. 

350 a.c. Menecmo y las secciones 
cónicas. La cuadratriz de 
Dinostrato. 

335 a.c. Eudemo: Historia de la 
geometría. 

ca. 325 a.c. Nacinliento de Euclides. 

320 a.c. Las cónicas de Aristeo. 

300 a.c. Elementos de Euclides. 

ca. 265 a.c. Muerte de Euclides. 

260 a.c. Astrononúa heliocéntrica 
de Arist:arco de Samos. 

ca. 250 a.c. Obras de Arquímedes. 

230 a.c. La criba de Eratóstenes. 

225 a.c. Cónicas de Apolonio. 

212 a.c. Muerte de Arquímedes. 

180 a.c. La cisoide de Diocles. La concoide 
de Nicomedes. Hipsicles y la 
división del círculo en 360º. 

140 a.c. La trigonometria de Hipa.reo. 

60 a.c. Gémino y el postulado de las 
paralelas. 

75 Obras de Herón de Alejandría. 

100 Aritmética de Nicómaco de 
Ge.rasa. Esférica de Menelao. 

125 Teón de Esnlima y la aritmética. 

150 Almagesto de Ptolorneo. 

250 Aritmética de Diofanto. 

320 Colección matemática de Papo. 

415 Muerte de Hipatia y cierre de la 
Biblioteca-Museo de Alejandría. 
Fin del conocinliento pagano 
griego. 

485 Muerte de Proclo. 

520 Antemio de Tralles e Isidoro 
deMileto. 
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CAPÍTULO 1 

Euclides de Alejandría 

De la vida de Euclides se desconocen casi todos los 
detalles. Se sabe que escogió establecerse en Alejandría, 
por aquel entonces uno de los centros intelectuales del 

mundo griego, y que fundó allí una importante escuela de 
matemáticas. Las obras insignes de los grandes eruditos de 

la humanidad son la síntesis de sus predecesores y de 
su aportación personal, fruto de la reflexión y de su 

genio creador. Así ocurre con Euclides. 





Casi no se tiene noticia alguna de la vida de Euclides, y las dispo­
nibles proceden todas del filósofo neoplatónico griego Proclo, que 
las escribió seis siglos después de la muerte de aquel. Proclo 
cuenta que Euclides estuvo activo en Alejandría, ciudad fundada 
por Alejandro Magno (356-323 a.C.) en el año 322 a.c. y que bajo 
el reinado de Ptolomeo I, «Sóter», «el Salvador», rey de Egipto, 
fue escogida capital de dicho reino. En ella Ptolomeo fundó la 
famosa Biblioteca, ampliada con el Museo por su hijo Ptolomeo II 
Filadelfo. El autor afirma que Euclides estudió en la Academia de 
Platón y que conocía la obra de Aristóteles. Tras el traslado a Ale­
jandría, fundó una escuela y una tradición matemática que se re­
coge, entre otros textos, en los Elementos, sin duda una obra de 
madurez. 

A Euclides se le atribuyen dos famosas anécdotas. A la pre­
gunta del rey Ptolomeo I «¿No hay un camino más corto que el que 
propones en los Elementos para aprender geometría?», Euclides 
respondió tajante: «No hay ningún camino real para la geometría». 
La segunda se refiere a la actitud que adoptó cuando un alumnó le 
preguntó qué beneficio le reportaba el estudio de la geometría. 
Llamó a un esclavo y le dijo: «Dale tres óbolos. Así obtendrá be­
neficio de lo que aprende». 

Este gran desconocido consolidó en Elementos una tradición 
griega iniciada tres siglos atrás y que perduraría hasta el siglo VI, 
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PROCLO DE LICIA 

El filósofo griego Proclo (410-485) fue 
una importante figura del neoplatonis­
mo. Nacido en Bizancio, se le conoce 
como Proclo de Licia porque sus padres, 
oriundos de Xhantos, lo llevaron a esta 
provincia del sudoeste de Asia Menor a 
formarse a muy temprana edad. Pasada 
la infancia, marchó a Atenas para estu­
diar elocuencia con Leonas de lsauria y 
cuando este hubo de emigrar a Bizancio 
le llevó consigo. Tras visitar los centros 
docentes de Bizancio, Proclo volvió a 
Atenas, donde estudió con Plutarco 
de Atenas -no confundirlo con el autor 
de las Vidas paralelas- y con el filóso­
fo neoplatónico Siriano de Alejandría, a 
quien sucedió en la dirección de la Aca­
demia, mereciendo por ello el nombre de 
«Diádoco», esto es, «sucesor de Platón», 
ocupando el puesto de director durante 
cuarenta años. Aunque vivó en la época de decadencia del helenismo, su 
obra ha resultado muy importante para un mejor conocimiento de Euclides y 
sus Elementos. De su inmenso legado se han conservado varios libros que se 
refieren a la «teología platónica», ya que por aquel entonces la obra de Platón 
se consideraba divina, mientras que las doctrinas de Aristóteles se estudiaban 
como una introducción a ella. 

nueve siglos después de su muerte, acaecida hacia el 265 a.c. Es, 
pues, el gran sintetizador de tres siglos de matemática griega que, 
por la solidez de la síntesis euclídea, debió ser muy notable, 
máxime si tenemos en cuenta que los Elementos excluyen mu­
chos temas a pesar de ser objeto de estudio en la Academia. 

Los apuntes biográficos de Proclo se encuentran en sus Co­
mentarios del Libro I de los Elementos de Euclides, un texto de 
gran importancia para el estudioso porque proporciona una valiosa 
información histórica, epistemológica y metodológica de Euclides 
y de los geómetras que le precedieron. Sobre Euclides escribe: 
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No mucho más joven que (Hermótimo y Filipo) en la composición 
de sus Elementos, Euclides coordinó muchos trabajos de Eudoxo, 
perfeccionó los de Teeteto y demostró irrefutablemente lo que sus 
predecesores habían presentado de una manera difusa. 

Vivió bajo el reinado de Ptolomeo I porque Arquímedes, poste­
rior a éste, lo menciona. [ ... ] Euclides es, por lo tanto, posterior a 
los discípulos de Platón y anterior a Arquímedes y Eratóstenes, [ .. . ] 
- y era partidario de la filosofía de Platón, por lo cual expuso como 
resultado de su Enseñanza de los elementos la construcción de los 
sólidos platónicos. 

Proclo no hace ninguna referencia al lugar de nacimiento de 
Euclides, lo que hace suponer que lo desconocía, pero le atribuye 
la anécdota del camino real en el aprendizaje de la geometría 
expuesto anteriormente. 

La mejor síntesis de la biografía de Euclides acaso es la que 
ofrece el novelista británico Edward M. Foster en su guía de 
Alejandría: 

No sabemos nada de él; a decir verdad, hoy lo consideramos más 
como una rama del saber que como un hombre. 

OBRAS DE EUCLIDES DISTINTAS 
DE LOS «ELEMENTOS» 

Además de los Elementos, sabemos que Euclides escribió otras 
obras. En el prólogo a la parte segunda de los ya mencionados 
Comentarios, Proclo le atribuye las siguientes: 

De este hombre hay otras muchas obras matemáticas de asombrosa 
exactitud y sabia especulación, tales como su Óptica, su Catóptrica 

y sus Elementos de música, además de un libro Sobre divisiones; 
pero la admirable en el más alto grado es la Enseñanza de los ele­
mentos de la geometría por el orden y selección de los teoremas y 
de los problemas considerados como elementos, porque no incluyó 
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todos los que podía recoger, sino solo los susceptibles de informar 
sobre los primeros principios geométricos, siendo también de admi­
rar sus variados modos de razonar, lo mismo cuando parte de las 
causas que de las pruebas siempre incontestables, exactas y adecua­
das a la Ciencia, así como sus métodos dialécticos, a saber: el que 
distingue las especies en los descubrimientos, el que define en los 
conceptos esenciales, el demostrativo en el tránsito de los principios 
a las cosas que busca y el analítico de regresión de las cosas busca­
das a los principios. 

«Los hombres pasan, pero su obra permanece.» 
- ÚLTIMAS PALABRAS DEL MATEMÁTICO AUGUSTIN Loms CAUCHY 

AL ARZOBISPO DE PARÍS ANTES DE MORIR. 

18 

Si a esta información le añadimos la que proporciona Papo 
de Alejandría (290-350) en el Libro II de la Colección matemática, 
tenemos las obras que figuran en la tabla de la página siguiente. 
Algunas de ellas, si bien se atribuyen a Euclides y se suelen reco­
ger en su Obra completa, fueron escritas con posterioridad por 
otros autores. 

En conjunto, todas estas obras ponen de manifiesto un plan 
matemático docente bastante preciso con un amplio abanico de 
intereses: geométricos (las tres primeras obras son de corte ele­
mental y las tres últimas son más difíciles) y no geométricos 
(obras de astronomía, música, óptica y mecánica). A continua­
ción se ofrece un resumen de cada una de ellas con un mayor 
énfasis en las geométricas y, puesto que, obviamente, se desco­
noce su cronología, los hemos clasificado alfabéticamente en 
cada orden. 

Los Datos contienen noventa y cuatro proposiciones que revi­
san qué propiedades de las figuras pueden deducirse cuando «se 
dan otras». Euclides observó que los datos pueden ser en magnitud 
(cuando se atiende a su medida), en especie (cuando se atiende al 
tipo de objeto geométrico) y en posición ( cuando se atiende a su 
posición relativa), o mezcla de ellos. En realidad, se trata de un 
manual de aprendizaje que cubre la geometría plana elemental. 
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Obras atribuidas a Euclides 

Elementos (de geometría) : trece libros (1-XIII , de Euclides) y dos libros apócrifos 
(XIV, de Hipsicles, y XV, de Isidoro de Mileto) 

Datos 

Elementales División de las figuras 

GEOMETRÍA 
Falsos razonamientos o Falacias 

Lugares de superficies 

Superiores Porismas 

Secciones cónicas 

ASTRONOMÍA Fenómenos 

Introducción a la armonía 

MÚSICA Elementos de música (de Cleónidas) 

Sección del canon 

MECÁNICA 
Sobre lo ligero y lo pesado 

Sobre la palanca 

ÓPTICA 
Óptica 

Catóptrica (de Teón de Alejandría) 

LA PROPOSICIÓN 45 DE LOS «DATOS>> DE EUCLIDES 

Un ejemplo del tipo de cuestiones tratadas en los Datos es el siguiente, en que 
los datos se dan en magnitud y se obtiene un dato en especie. La proposición 
45 establece: 

Se dan un ángulo < ABC [que en la figura corresponde a aJ de un cierto triángulo 

y la razón que la suma de los lados AB, BC que forman el ángulo dado mantiene con 

el tercer lado AC. Entonces el triángulo está dado en especie (queda determinado). 

B 
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En las proposiciones 84 y 85 de este tratado se resuelven las 
ecuaciones de segundo grado ax ± x 2 = b2 tal como lo hacían los 
matemáticos mesopotámicos - lo veremos en el capítulo 4-
cuando resolvían el siguiente sistema: 

El contenido de la recopilación División de las figuras se 
refiere a la división de una figura dada por una o varias rectas 
«sometidas a ciertas condiciones» de manera que las superficies 
de los trozos se hallen en una razón dada. Así, por ejemplo, se 
piden divisiones como: 

Problema 20. Separar un tercio de un triángulo 6ABC por 
medio de una recta que pase por un punto dado D de su 
interior. 

B 

Son problemas de geometría más en la tradición de los mate­
máticos babilónicos - con una aplicación más numérica- que de 
los Elementos. Los textos de este opúsculo que se conocen son 
de una versión latina de 1563, y de una versión árabe descubierta 
en París en 1851. De las treinta y seis proposiciones que contiene 
la obra, las únicas cuatro que se demuestran remiten a proposicio­
nes de los Elementos. 

Los Falsos razonamientos -o Falacias- también se han 
perdido. Tenemos la referencia de Proclo, que dice: 

Enumera separadamente y ordena las diversas clases de errores, 
ejercitando sobre cada una de ellas nuestra inteligencia mediante . 
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variados teoremas, oponiendo lo verdadero a lo falso y refutando el 
error con la demostración de la verdad. La obra tiene por objeto la 
purificación y el ejercicio de la inteligencia, mientras que los Ele­
mentos es una línea segura de explicación incontestable de las cosas 
geométricas. 

LAS CÓNICAS 

Las cónicas se obtienen cuando la superficie de un cono (doble) se corta 
con un plano y el tipo de cónica obtenido depende de la inclinación del pla­
no. Como muestra la figura 1, si este es paralelo al eje del cono se obtiene la 
hipérbola (que tiene dos ramas), si es paralelo a la arista, la parábola y, si no 
cumple ninguna de estas dos condiciones se obtiene la elipse (que incluye la 
circunferencia). En la figura 2 se ilustran las distintas cónicas según la carac­
terización foco-directriz. 

FIG.1 

Circunferencia Elipse Parábola Hipérbola 

FIG. 2 

Circunferencia Elipse Parábola Hipérbola 
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Por lo tanto, es un texto propiamente docente del cual debe­
mos lamentar su pérdida, ya que nos habría dado pistas de hasta 
qué punto consideraba Euclides que los errores eran de cariz 
geométrico o de cariz lógico. Otro de los textos perdidos de Eucli­
des -citado por Papo- es Lugares de superficies. Se trata de tex­
tos de geometría superior cuyo contenido va más allá del de los 
Elementos. Según Papo, trata de «lugares -es decir, de la posi­
ción- de una línea o de una superficie cuyos puntos se hallan so­
metidos a una propiedad» y de «cómo se construyen tales lugares» 
que son líneas, como por ejemplo, la cuadratriz, la espiral sobre 
un cilindro, etc., o superficies como cilindros, conos, esferas o 
como las que se obtienen de la rotación de una cónica ( elipses, hi­
pérbolas o parábolas). El texto ofrece una caracterizaciónfoco­
directriz de las cónicas que evita recurrir al espacio tridimensional: 

El lugar de los puntos cuya relación entre la distancia a un punto 
[foco] y a una recta [directriz] dados se mantiene constante es una 
cónica: una elipse, una parábola o una hipérbola según que la razón 
dada sea menor, igual o mayor que uno. 

De los Porismas -un texto de una enorme complejidad si se 
atiende a su contenido: 171 proposiciones, 38 lemas y 29 clases de 
porismas- los especialistas han dicho: «Su desaparición es la­
mentable». El propio término porisma es polisémico y, por con­
siguiente, ambiguo. En este texto se refiere a la obtención de 
objetos geométricos indeterminados; es decir, que no están bien 
definidos porque no se dan «todas» las características necesarias. 
Un porisma es, pues, un híbrido entre un problema y un teorema: 
hay que establecer su existencia pero no es posible mostrarlo ha­
bida cuenta de su indeterminación. En los Elementos, el término 
porisma se usa con la acepción de corolario, esto es, una conse­
cuencia inmediata de un teorema ya demostrado. 

De las Secciones cónicas, Francisco Vera, traductor al caste­
llano de los Elementos, escribe: 

[ ... ] sobre su contenido solo podemos hacer conjeturas. La crítica 
moderna cree que se trata de un arreglo de otra obra de Aristeo sobre 
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CUESTIÓN 8 DE LA «ÓPTICA» DE EUCLIDES 

La Óptica sigue la misma estructura deductiva que los Elementos. En la octa­
va proposición del libro, Euclides ofrece una prueba geométrica de que las 
medidas aparentes de dos objetos iguales y paralelos no son proporcionales 
a su distancia al ojo. Partamos de dos rectas iguales AB, GD, pero colocadas a 
distinta distancia del ojo E. Consideremos los rayos AE, EG y, con centro en E 
y radio EZ tiramos un arco de circunferencia HZF. Se observa que los trián­
gu los 6EZG, 6EZD son, respectivamente, mayor y menor que los sectores 
circulares EZH, EZF. 

La razón 
6 EZG 6 EZD 

------"C...C...-"--"-- > --='--"---~-
sector (EZH) sector (EZF) 

Permutando tenemos 

6 EZG sector (EZH) 
- -- > 

6 EZD sector (EZF) 

y componiendo obtenemos 

6EDG = 6 EGZ + l > sector (EHF) = sector (EZH) + l. 
6 EZD 6 EZD sector (EZF) sector (EZF) 

Pero 6 EDG = GD = AB ya que GD=AB. 
6 EZD DZ oz' 

Puesto que AB = BE, finalmente resulta que 
DZ ED 

BE sector (EHF) 
- -> 
ED sector (EZF) 

Un sector de una circunferencia es al otro sector de la misma circunferencia 
como los ángulos correspondientes. Es decir: 

BE <HEF -->---
ED <ZEF · 
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el mismo tema y que sirvió de base al tratado de Apolonio. Arquíme­
des habla en varias ocasiones de ciertas propiedades de las secciones 
cónicas que creía contenidas en el tratado de Euclides. 

Es otra de las obras perdidas, y posiblemente consistía en una 
«puesta en escena» de todo lo que, en su época, se conocía sobre 
las cónicas, con un objetivo pedagógico. 

En la introducción se ha indicado que los «matemata» pitagó­
ricos eran cuatro. Si Euclides pretendía articular una formación 
completa de la matemática, debía atender a los cuatro. No debe 
pues sorprender que se le atribuyan los textos que siguen. 

«Las leyes de la naturaleza no son más que 
los pensamientos matemáticos de Dios.» 

Los Fenómenos constituyen un texto de pequeña astronomía; 
es decir, describe lo que es visible en la esfera celeste en movi­
miento, excluyendo los movimientos de los planetas. Se refiere, 
pues, al orto y al ocaso de las estrellas y presupone un cierto co­
nocimiento de la geometría de la esfera que no se halla en los 
Elementos. El breve tratado Elementos de música, de autoría 
controvertida, contiene la teoría de los intervalos musicales de 
acuerdo con la tradición pitagó1ica. 

La Óptica es un texto sobre la perspectiva que, junto con los 
Fenómenos, aborda el conocimiento de lo que vemos. Su objetivo 
es establecer la medida de lo visible en relación con la posición 
del observador y con la medida del objeto observado. Euclides 
sostiene que la visión va del ojo al objeto, una afirmación que se 
tendría por cierta hasta que el erudito árabe Alhazen (965-1040) 
en su Kitab al-Manazir (Libro de Óptica) afirmó precisamente lo 
contrario: la visión se debe a que el ojo recibe uno o más rayos de 
luz emitidos por el objeto. A pesar de ello, el libro de Euclides se 
considera uno de los trabajos sobre óptica más importantes de 
entre los anteriores a Newton, y artistas del Renacimiento como 
Filippo Brunelleschi, Leon Battista Alberti y Friedrich Dürer se 
sirvieron de él para elaborar sus propios tratados de perspectiva. 
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La paternidad de la Catóptrica es muy discutible. No obs­
tante, hay que poner de relieve que en ella se da una demostración 
geométrica muy rigurosa de la ley de la reflexión de la luz. Esta ley 
establece que los rayos de luz se reflejan según ángulos iguales 
sobre la horizontal ( o sobre la vertical). Tomando la figura 1 como 
guía, diríamos que el ángulo de incidencia 8 es igual al ángulo de 
reflexión t. Para ello, Euclides se apoya en una proposición 
geométrica que dice, en la versión incluida en el Libro I de los 
Elementos: 

------- Proposición 20. Dos lados de un 
triángulo juntos son mayores que 
el tercer lado. 

FIG. 1 

1 

o;~ ¡ /b;,to , 
~ 

FIG. 2 

1 

A1 

Espejo 

,,' e 

1 ,,::>•' 
L•',, 

El 
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La demostración es como si­
gue: Si el rayo visual incide según 
ángulos iguales, tendremos los ra­
yos AC y CE; en cambio, si incide 
según ángulos diferentes, tendre­
mos los rayos AD, DE. Por sime­
tría respecto del plano horizontal 
trazamos la recta CE, simétrica 
del rayo AC, y la recta DE, simé­
trica del rayo AD. Se obtiene así el 
triángulo 6.BED, cuyo lado BE es 
más corto que los dos lados BD, 
DE juntos. Por la proposición 20 
que se ha citado anteriormente, el 
recorrido AC, CE es más corto que 
el recorrido AD, DE (figura 2). 

Una vez demostrado que un 
rayo que obedezca la ley de la re­
fracción recorre la menor distan­
cia posible entre los puntos A, C y 
B, Euclides recurre a una hipóte­
sis notable: la naturaleza impone 
que el camino seguido por el rayo 



sea precisamente ese, el mínimo. Es el denominado principio del 
camino mínimo, y con esta elegante demostración Euclides 
inauguró una idea de extraordinaria importancia: las leyes de la 
naturaleza proceden según mínimos; es decir, algún ente físico 
implicado en el problema -el recorrido, el tiempo empleado, la 
energía utilizada, etc.- debe ser lo más pequeño posible. Muchos 
siglos más tarde, Pierre de Fermat ( 1601-1665) retornaría esa idea 
para establecer la ley de la refracción, que establece qué le su­
cede a un rayo de luz cuando cambia de elemento; por ejemplo, 
del aire al agua. En su caso, Fermat impuso que «sea mínimo el 
tiempo requerido para hacer el recorrido». Esta idea del genial 
matemático francés fue avalada por Gottfried Leibniz (1646-
1716), quien la usaría para poner de manifiesto la utilidad del cál­
culo diferencial, una de cuyas aplicaciones es, precisamente, la 
determinación de máximos y mínimos. El principio general para 
determinar mínimos llevaría al suizo Leonhard Euler (1707-1783) 
a crear una rama nueva de la matemática: el cálculo de variacio­
nes. Sería, sin embargo, Pierre-Louis Moreau de Maupertuis 
(1698-1759) quien formularía de forma explícita el «postulado» 
según el cual la naturaleza se rige por el principio de mínima 
acción. 

Finalmente, en el ámbito de la mecánica se le atribuyen a 
Euclides dos textos, de autoría muy discutible, citados ambos por 
algunos de los traductores árabes de la obra euclídea. Sobre lo 
ligero y lo pesado alberga la exposición más precisa que nos haya 
llegado de la dinámica aristotélica de los cuerpos que se mueven 
libremente; Sobre la palanca, por el contrario, contiene una teoría 
de la balanza que es independiente de la mecánica aristotélica. 

LA GEOGRAFÍA DE LA MATEMÁTICA GRIEGA 

Los autores cuyas aportaciones recoge y amplía Euclides, unidas 
a los principales comentaristas de la obra, dibujan una constela­
ción de matemáticos y filósofos-matemáticos repartidos a lo 
ancho de Grecia y sus colonias, fundamentalmente las jónicas, así 
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como de Egipto y otras partes de África y de Asia. La cartografía 
del pensamiento matemático griego muestra un mapa que se ex­
tiende desde la isla de Sicilia, al oeste, hasta el Próximo Oriente, 
pasando por Italia, Libia o Turquía, y tiene su centro en Grecia 
propiamente dicha: el Peloponeso, el Ática, Tesalia, Macedonia y 
las islas del mar Egeo. La mayor densidad de autores se da en la 
parte más oriental de la Hélade. 

Aquello que une a todos estos pensadores - lo que permite 
hablar de matemáticos y filósofos griegos- es el hecho de com­
partir, de palabra y escritura, una lengua común: los dialectos 
griegos arcaico-chipriota, dórico, eólico o jónico según la zona 
geográfica de procedencia. A finales del siglo m a.c. emergió una 
forma modificada del griego jónico-ático, el «habla común» o 
koiné, ampliamente utilizada en el mundo helenístico que dejó 
tras de sí la expansión macedónica liderada por Alejandro Magno. 
Esta variedad del griego se ha llamado en algunas ocasiones 
griego helenístico y constituye la base del griego moderno. No 
sería, pues, de extrañar que Euclides escribiera los Elementos en 
esa lengua. 

Lugares de nacimiento de los matemáticos y filósofos griegos 
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Territorio Ciudad Nombre Siglo 

Sicilia l. Siracusa Arquímedes 287-212 a.c. 

Italia 2. Roma Boecio 480-524 

3. Elea Parménides 570-475 a.c. 

Zenón 490-430 a.c. 

4. Cretona Filolao ca. 485-385 a.c. 

Arsiteo, el Viejo 370-300 a.c. 

5. Tarento Brisón ca . 450-390 a.c. 

Arquitas 400-347 a.c. 

6. Metaponte Hipaso siglo v a.c. 

Libia 7. Cirene Teodoro 427-347 a.c. 

Eratóstenes 276-194 a.c. 

Peloponeso 8. Elis Hipias 465-ca. 396 a.c. 

9. Atenas Antifón 480-411 a.c. 

Sócrates 470-399 a.c. 

Platón 427-347 a.c. 

Teeteto 417-369 a.c. 

Plutarco siglo v 

10. Queronea Plutarco ca. 46-120 

Macedonia 11. Mende Filipo siglos 1v-111 a.c. 

12. Estagira Aristóteles 384-322 a.c. 

13. Abdera Demócrito 460-370 a.c. 

Turquía 14. Bizancio Proclo 410-485 

15. Cícico Menecmo 380-320 a.c. 

16. Cilicia Simplicio 490-560 

17. Pitane Autólico 360-290 a.c. 

18. Colofón Hermótimo siglo 1v a.c. 

19. Clazomenes Anaxágoras 500-428 a.c. 

20. Tralles Antemio 474-558 

21. Éfeso Heráclito 535-484 a.c. 

22. Mileto Tales ca.624-
ca. 547 a.c. 

Anaximandro 610-546 a:C. 

23. Perga Apolonio 262-190 a.c. 
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Territorio Ciudad Nombre Siglo 

24. lsauria Leonas siglo v 

Islas griegas 25. Tasos Leodamas IV a.C. 

26. Quíos Oenopide 500-420 a.c. 

Hipócrates ca . 470-410 a.c. 

27. Samos Pitágoras ca. 569-ca. 475 a.c. 

Meliso siglo v a.c . 

Conón siglo 111 a.c. 

28.Rodas Eudemo 370-300 a.c. 

29. Cnido Eudoxo 400-350 a.c. 

Egipto 30. Alejandría Hipsicles 240-170 a.c. 

Herón ca. 10-70 

Ptolomeo 100-170 

Diofanto ca . 200-ca. 284 

Papo ca. 290-ca. 350 

Teón ca. 335-ca. 405 

Siriano ca. 380-ca. 438 

Próximo Oriente 31. Gerasa Nicómaco ca. 60-ca. 120 

En la época en que floreció Euclides ya habían contribuido al 
desarrollo de la matemática un ef\iambre importante de grandes fi­
guras. El terreno estaba abonado para que la geometría griega alcan­
zase su esplendor y así lo pone de manifiesto el que, en esa misma 
época, aportaran su inestimable obra Arquímedes y Apolonio. 

ANTES DE EUCLIDES 

En sus Comentarios, Proclo cita las aportaciones geométricas 
que anteceden a los Elementos. Es, sin duda, una lista sesgada 
(véase la tabla de las páginas 32-33), con un énfasis indiscutible 
en la aportación de la Academia, de la que era director, en menos­
cabo de las provenientes del Liceo aristotélico. El texto contiene 
ochenta líneas de texto y su cita literal sería excesiva. A continua-
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TEXTOS GRIEGOS LLEGADOS A NUESTROS DÍAS 

El análisis del número de textos griegos de matemáticas conservados por 
especialidades y épocas arroja el panorama que se refleja en la siguiente tabla. 
La mayoría de textos -aproximadamente la mitad- son de geometría; siguen 
los de astronomía y los de mecánica. Se constata, pues, un importante interés 
por la aplicación de la matemática. Los textos se reparten por igual entre las 
tres épocas. ¿Es razonable pensar que la pérdida de textos es tanto mayor 
cuanto más lejana es la época? De ser cierto, el número de textos de la época 
he lenística sería bastante mayor. En cualquier caso, de la época anterior a 
Platón y de Aristóteles solo conocemos las citas posteriores de fragmentos 
de la Historia de la matemática de Eudemo y de otras obras de Autóli co de 
Pitane. Todo ello hace menos sorprendente que en el Liceo prearistotélico se 
preocuparan por la historia de la matemática desde los albores hasta Euclides. 
Sería Eudemo quien elaboraría dicha historia, por temas. Por desgracia, se ha 
perdido y solo se tiene un conocimiento parcia l e indirecto gracias a las citas 
de autores algunos siglos posteriores, ya de nuestra era. 

Especialidades 

Aritmética 3 

Geometría 34 

Astronomía lS 

Óptica 2 

Armónica (Música) s 
Mecánica 10 

Geografía matemática 1 

Geodesia 2 

Logística (problema de los bueyes de Arquímedes) (1) 

Otros 3 

Total 75 (76) 

Reparto por épocas 

Época helenística (300 a.C.-30 a.C.) 21 

Época romana (30 a.C.-300) 24 

Época tardana (300-550) 20 

Época inasignable 10 (11) 

Fuente: Ramón Masiá, «Corpus de la matemática griega con introducción». 

EUCLIDES DE A LEJANDR ÍA 31 



Nombre 

Tales 

Pitágoras 

32 

ción se ofrecen unas líneas y una síntesis de lo que se atribuye 
a cada autor, así como de los requisitos que una demostración 
correcta -como las que se ofrecen en Elementos- hubiese re­
querido. Escribe Proclo: 

Puesto que tenemos que considerar el comienzo de las ciencias y de 
las artes en el período actual, diremos que muchos autores creen que 
la geometría, que nació de la medida de los campos, la inventaron 
los egipcios [ ... ] Del mismo modo que el conocimiento exacto de los 
números tuvo su origen en los fenicios a causa de su comercio y de 
sus transacciones. 

Tales fue el primero que importó de Egipto a la Hélade esta teo­
ría [ ... ] Después de ellos Pitágoras transformó la doctrina en ense­
ñanza [ ... ] Tras ellos, Hipócrates de Quíos descubrió la cuadratura 
de las lúnulas y Teodoro de Cirene [ .. . ]Platón[ ... ] dio un gran im-

. pulso a la matemática, en general, y a la geometría, en particular. 
[ ... ] Muy amigo de los alumnos de Platón fue Eudoxo de Cnido [ ... ]. 

Matemáticos que, según Proclo, precedieron a Euclides 

Enunciados de los diferentes 
Cita de Proclo libros de los Elementos que se 

supone que conocían 

El primero que importó esta teoría de 
Egipto a la Hélade. Descubrió muchas 

Ll, definición 17; proposiciones 
cosas, una parte importante de las cua-

5, 15, 26, y quizá la 32. 
les dio a conocer a sus sucesores: algu-

Llll , proposición 12. 
nas, en general, y otras, de una forma 
más sensible. 

Ll, definiciones 1, 3 y 6; noción 
Transformó la doctrina en una ense- común 5; proposiciones 2, 17, 
ñanza. Exami nó los principios de la 32, 36, 37, 45 y 47. 
geometría desde arriba . Investigó los Lll , proposiciones 14 y 20. 
teoremas de una forma inmaterial e in- Llll, proposiciones 11 y 14. 
telectual y descubrió la dificultad de los LIV, proposiciones 11, 12 y 15. 
números irracionales y la construcción LVI, proposiciones 25, 28, 29 
de las figuras cósmicas. y 31. 

LVII, definiciones 3, 4, 5, 11 y 13. 
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Estudió muchas cuestiones de geome-
LI, postulados 1, 2 y 3; 

Oenopide tría y dio la solución canónica de algu-
proposiciones 12 y 23. 

nas: uso. de la regla y el compás. 

LI, proposiciones 9, 10, 11, 12, 
18, 19, 20, 23, 24, 25, 28, 29, 31, 
32, 45 y 47. 

Descubrió la cuadratura de las lúnulas. LII, proposiciones 6, 12, 13 y 14. 
Compuso unos Elementos. Usó -por LIII, definición 11; 

Hipócrates generalización- el principio de reduc- proposiciones 3, 20, 21, 22, 26, 
ción en el caso de la duplicación del 27, 28, 29, 30 y 31. 
cubo. LIV, proposiciones 5, 9 y 15. 

Además, LVI , proposiciones 19 
y 20; LVII, proposición 2; LXIII, 
proposición 12. 

Teodoro Famoso como geómetra. 
Resultados del LII o LI, 
proposición 47. 

Dio un gran impulso a la matemática, en 
general, y a la geometría, en particular. 

Platón Sus consideraciones matemáticas susci-
taron una gran admiración en todos los 
filósofos del momento. 

Leodamas, Contemporáneos de Platón. Aumentaron 
Arquitas y los teoremas y los presentaron como un Resultados de los LX y LXIII. 
Teeteto conjunto unitario de cariz científico. 

Elaboró unos elementos, y descubrió los 
León diorismos, que permiten saber cuándo 

un problema es posible o imposible. 

Amplió el número de los teoremas ge- LV, definiciones 4 y 5, y las 

Eudoxo 
nerales. [ .. . ] Y muchas de las cuestiones proposiciones generales. 
sobre la sección, por medio del análisis, LX, proposiciones 1 y 2. 
que había iniciado Platón. LXII, proposiciones 5, 6, 7 y 10. 

Menecmo 
El primero fue discípulo de Eudoxo; 
al segundo se le conoce como «su 

y 
hermano». Ambos perfeccionaron la 

Dinostrato 
geometría. 

Filipo de 
Investigó siguiendo las indicaciones de 
Platón. Con él se alcanzó la madurez 

Mende 
de la geometría. 
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El texto está fuertemente influenciado por la Historia de la 
geometria de Eudemo de Rodas y por el neoplatonismo del autor. 
Faltan, pues, los nombres de los astrónomos que siguieron las 
huellas de Eudoxo; asimismo, no hay referencia alguna a los aris­
totélicos, incluida la figura del propio filósofo; se hallan en falta 
Aristeo, «el viejo» -probablemente el padre del estudio de las 
cónicas y los lugares-, Hipaso de Metaponte o Filolao; tampoco 
hay referencia alguna a los sofistas Antifón, Brisón e Ripias de 
Elis; ni a los atomistas como Parménides, Zenón o Demócrito; 
ni de Autólico de Pitane. Y, por fin, ninguna mención a los estu­
diosos de la aritmética. Con todo, la lista es muy importante y 
merece una detenida atención. 

En los casos de Tales y Pitágoras, las aportaciones son las 
que les atribuyen diversos autores; en el caso de Hipócrates es 
la que ofrece el romano Simplicio, remitiendo a la información de 
Eudemo en la Historia de la geometría. 
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CAPÍTULO 2 

La estructura de los «Elementos» 

Tan importante como los teoremas que contiene 
es la forma en que Euclides estructuró los Elementos: 

partiendo de una breve lista de hipótesis, el autor 
procede a demostrar deductivamente una larga serie de 

proposiciones. Este proceso otorga al edificio euclídeo una 
solidez en apariencia inexpugnable. Pero esa solidez 
esconde una serie de asunciones sobre la naturaleza 

misma de la matemática, que se remontan a la 
filosofía de Platón y Aristóteles. 





Los Elementos son, como ya se ha dicho, herederos de las en­
señanzas de Platón y de Aristóteles. Para Platón, los entes mate­
máticos son ideales, es decir, gozan de una existencia propia en 
el plano de las ideas. Para Aristóteles, no. Se puede afirmar que el 
texto de Euclides es esencialmente aristotélico. Sin embargo, vale 
la pena detenerse un instante en la filosofía de la matemática pla­
tónica, una de las cuestiones en que la Academia puso mayor aten­
ción, como atestigua el lema apócrifo del frontispicio de la 
institución: «No entre nadie que no esté instruido en geometría». 

En el caso de Platón nos limitaremos a comentar el simil de 
la linea de la República (véase el esquema de la página siguiente). 
Se distinguen tres representaciones del objeto «lecho»: el «lecho» 
creado por Dios, el «lecho» fabricado por el carpintero, y el 
«lecho» que el pintor representa en el lienzo. «Dios -dice Pla­
tón- fabrica el lecho verdadero, el lecho en sí mismo o esencial, 
el lecho por naturaleza, que es único.» El carpintero, en cambio, 
fabrica simples imitaciones. Y el pintor hace representaciones de 
las imitaciones del carpintero, pero no del «lecho verdadero». 

Lo que se trata en este ejemplo es la cuestión de la existencia, 
uno de los ejes principales de la filosofía platónica en tanto que, 
para Platón, no es posible disociar la epistemología ( qué es el co­
nocimiento y cómo se llega a él) de la ontología ( qué es la realidad 
objeto de conocimiento). Se plantean las preguntas siguientes: 
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¿Son reales los tres lechos, o alguno de ellos, o ninguno? ¿Qué 
entendemos por «real», es decir, de qué realidad hablamos 
cuando decimos que el conocimiento científico consiste en el «co­
nocimiento verdadero de lo real»? Si nos ceñimos a la matemática 
se plantean las preguntas: ¿Cómo debemos entender - cuestión 
relativa a la naturaleza epistemológica- los objetos matemáti­
cos? ¿ Qué podemos decir -cuestión relativa a la naturaleza on­
tológica- de su existencia? 

Según Platón, hay dos realidades: la del mundo ideal, si­
tuado en el nivel de lo «inteligible», y la del que nos circunda, que 
se sitúa en el nivel de lo «opinable». Y, en el símil de la línea, 
Platón ubica el pensamiento discursivo en el nivel inteligible, es 
decir, solo podemos entender el nivel superior, el de lo inmuta­
ble, el de las ideas; el nivel inferior, el de lo mutable, solo es 
susceptible de opinión. 

Objetos 

B 

i Ideas. 
1 arquetipos '"""'º"'" 1 

Conocimiento 
E Mundo inteligible 

Entes Pensamiento 
matemáticos 

e 

Seres vivos, 
cosas físicas 

Opinión o 

1 
_Sombras, 
1magenes 

A 

Creencia, fe 

Mundo sensible 

lmaginación,l 
conjetura 
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LA ACADEMIA DE PLATÓN 

La Academia de Atenas fue la escuela filosófica fundada por Platón hacia 
388 a.c. Se construyó en los jardines de Academo, el legendario héroe grie­
go de la Antigüedad y fue refundada por última vez en 485, tras la muerte 
de Proclo. En el año 529 sería clausurada definitivamente por el emperador 
Justiniano. Entre sus paredes se desarrolló gran parte del trabajo fi losófico 
y científico de la época. En la Academia se investigó en medicina, se perfec­
cionó la retórica y se profundizó en la astronomía, con énfasis en la teoría 
heliocéntrica, artes, todas ellas, sobre las que se mantenía una d iscus ión 
abierta y fructífera. 

1 
·~ 

Vista exterior de la moderna Academia de Atenas, con las estatuas de Platón y Sócrates. 

De acuerdo con este símil, los entes son o bien mutables 
(parte baja de la línea) y, por tanto, objeto de dox a (opinión), o 
bien inmutables (parte alta), susceptibles de gnosis (conoci­
miento). Los entes matemáticos son inmutables, pero se sitúan en 
un punto intermedio: no pertenecen a la parte baja, pero tampoco 
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a la excelsa. El texto establece una diferencia clara entre lama­
nera de usar el pensamiento en el discurso dialéctico (propio del 
filósofo) y en el cientijico (propio del matemático). 

El proceso matemático usa hipótesis, pero jamás vuelve a 
ellas. La validez de la matemática es limitada y es provincia del 
pensamiento. La inteligencia -la operación más elevada del 
alma, propia del filósofo- va más allá de las hipótesis. No hace 
matemática -que va de las hipótesis a los teoremas-, sino que 
filosofa, cuestionando la matemática misma: ¿Qué justifican las 
hipótesis? ¿Por qué son aceptables? ¿Podrían ser otras? Al queha­
cer matemático le falta «subir» -en un retomo- de las conclu­
siones a las hipótesis. 

En cuanto a las figuras matemáticas, dice: 

- Sabes igualmente que se sirven de figuras visibles que dan 
pie para sus razonamientos, pero que en realidad no pien­
san en ellas, sino en aquellas cosas a las que se parecen. 
Y así discurren por el cuadrado en sí y por la diagonal en 
sí, y no a la que dibajan. Y lo mismo con el resto. De las 
cosas que configuran y que dibujan hay sombras en el 
agua, y las usan con este carácter de imagen pues saben 
que la realidad de estas cosas solo puede ser percibida 
con el pensamiento. 

-Así es. 

Así, cuando un matemático establece la validez de una pro­
piedad de un triángulo, en general, como por ejemplo en la propo­
sición 16 del Libro I, no importa la naturaleza del triángulo -que 
sea acutángulo, rectángulo, obtusángulo- aun cuando la «figura 
concreta», a la que recurre como soporte del razonamiento, sea, 
por ejemplo, un triángulo acutángulo. Y, cuando es el caso que la 
propiedad que pretende establecer depende de la naturaleza del 
triángulo, entonces da un teorema para cada uno de los casos, 
·como ocurre con el «teorema de Pitágoras generalizado», que da 
lugar a tres teoremas: Libro I, proposición 4 7 y Libro II, proposi­
ciones 9 y 10. 
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LA ESCUELA DE ATENAS 

La escuela de Atenas fue pintada por Rafael en 1509 como encargo del papa 
Julio 11. La obra representa a la filosofía, una de las cuatro facultades clásicas 
junto con la teología, el derecho y la medicina. Rafael reúne en la obra a los 
que en la Edad Media se consideraban los padres del pensamiento, pero to­
mando de modelo a personajes públicos de la época, como Leonardo da 
Vinci encarnando a Platón o Miguel Ángel como Heráclito. 

Los personajes identificados 
1: Zenón de Citio o de Elea. 2: Epicuro. 3: Federico 11 Gonzaga. 4: Boecio o 
Anaximandro o Empédocles. 5: Averroes. 6: Pitágoras. 7: Alcibíades o Alejan­
dro Magno. 8: Antístenes o Jenofonte. 9: Hipatia (como Margherita) o Fran­
cesco Maria della Rovere. 10: Esquines o Jenofonte. 11: Parménides. 12: Sócra­
tes. 13: Heráclito (Miguel Ángel). 14: Platón (con el Timeo, Leonardo da Vinci). 
15: Aristóteles (con la ttica). 16: Diógenes de Sinope. 17: Plotino.18: Euclides o 
Arquímedes (Bramante) . 19: Estrabón o Zoroastro. 20: Claudio Ptolomeo. 21: 
Protógenes. R: Apeles (Rafael). 

Platón sintetiza brevemente la esencia del conocimiento ma­
temático en la carta VII: 

Es necesario pasar por tres factores para acceder al conocimiento 
de cada una de las cosas que son; el cuarto es el propio conocimien­
to, y el quinto ha de ser considerado el ente cognoscible que es ver­
daderamente. El primero es el nombre; el segundo, el discurso; el 
tercero, la imagen, y el cuarto, el conocimiento. 
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Luego explica con detalle cada ítem: el definiens - círculo­
el definiendum - la definición- , la figura -«se traza y se 
borra»- y la opinión verdadera -sus propiedades intrínsecas, en 
el caso de la matemática, los teoremas relativos-. 

Aristóteles, por su parte, escribe en Analíticos segundos 
que la ciencia demostrativa combina dos puntos de vista: el rela­
tivo al significado, que concierne a los términos; y el de la exis­
tencia, ontológico, que concierne a los objetos. Una segunda 
distinción atraviesa la anterior: se deben distinguir los términos 
y objetos primeros y los términos y objetos (o propiedades) de­
rivados. Los enunciados que establecen significados o existen­
cias son tesis y distingue, además, entre los que establecen los 
significados -las definiciones- y los que establecen la existen­
cia - las hipótesis- . 

Las definiciones «no dicen nada de la existencia del objeto 
definido»; responden a la pregunta «¿qué es?» y no a la pregunta 
«¿existe?». Las hipótesis, a su vez, se dividen en nociones comu­
nes _:__el intelecto no puede dudar de ellas, pues son convincentes 
por sí mismas- y en postulados, que son menos evidentes y que 
«imponen» la existencia de ciertos objetos. Las nociones comunes 
a menudo se denominan axiomas, aunque los matemáticos mo­
dernos no observan una diferencia esencial entre nociones comu­
nes ( o axiomas) y postulados. 

En cuanto a los objetos matemáticos, los hay «primeros» 
- por ejemplo, la unidad en aritmética, o la magnitud en geome­
tría- , cuya existencia «se da». Sin embargo, la existencia del 
resto de los objetos hay que establecerla. Las proposiciones o teo­
remas refieren a objetos existentes: «si el sujeto no existe el enun­
ciado es falso». La cuestión de la existencia es fundamental. No se 
trata, como en Platón, de una existencia ideal, previa a todo, sino 
de una existencia que queda fijada una vez se acepta el axioma de 
partida o la demostración que conduce a ella. 

En Analíticos segundos Aristóteles dice: 

Una hipótesis es aquello que, si se supone su verdad, nos permite 
establecer una conclusión. Como alguien ha dicho, las hipótesis de 
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la geometría no son falsas. Entiendo los que dicen: «No se puede 
usar lo que es falso y aunque un geómetra afirmafalsamente, de 
la recta que ha trazado, que tiene la longitud de un pie cuando no la 
tiene, o que es recta cuando, de hecho, no lo es». El geómetra no 
basa ninguna conclusión en la línea recta que ha dibltjado aun cuan­
do así lo afirme. En realidad, se refiere a lo que ilustran dichas figu­
ras. Más aún, el postulado y cada una de las hipótesis son afirmacio­
nes universales o afirmaciones particulares; las definiciones, no. 

Aristóteles fijó entonces el procedimiento con el que se cons­
truye el pensamiento en la ciencia. Parece análogo al de Platón, 
pero no lo es: no hay distinción entre la validez de los postulados 
y una validez ulterior que está más allá del conocimiento sensible. 
Hay unas verdades que fijan la existencia, y unas nociones comu­
nes que tienen un ámbito de aplicación más amplio. La concatena­
ción -como si se tratase de concatenación de silogismos- va de 
la verdad autoevidente a la verdad del teorema: la verdad de las 
nociones comunes y la de los teoremas son de la misma natura­
leza. Sin embargo, Aristóteles tiene necesidad de las definiciones, 
otro punto en el cual su pensamiento y el de Platón -discípulo y 
maestro- difieren: las condiciones necesarias y suficientes están 
íntimamente ligadas a los términos aceptados y aceptables en las 
definiciones, y hacen que sean correctas. 

En síntesis, la filosofía de la ciencia -y, en particular, de la 
matemática- de Aristóteles se puede resumir como se muestra 
en el siguiente esquema: 

Estructura metodológica 
aristotélica de los Elementos 

~ 
Tesis Axiomas 
~ (nociones comunes) 

Hipótesis Definiciones 1 
(existencia) (significado) 

~2 
(con consenso) (sin consenso) 

4 Postulados 

3 
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EL CONTENIDO DE LOS «ELEMENTOS» 

De acuerdo con la tradición, los libros originales de Euclides reu­
nidos bajo el nombre común de Elementos son trece, escritos en 
«habla común», con símbolos denotadores de los objetos geomé­
tricos, sobre todo puntos, magnitudes y números. Con posterio­
ridad, se añadirían otros dos libros: el XIV de Hipsicles y el XV de 
autoría desconocida; quizá de Isidoro de Mileto. 

De las más de mil ediciones que ha conocido los Elementos, 
la primera se debe a Erhard Ratdolt (1442-1528). La imprimió en 
Venecia en 1482 - apenas treinta años después de la Biblia de 
Gutenberg- , en base a la edición comentada del erudito ita­
liano Giovanni Campano de Novara (1220-1296), quien a su vez 
partió de la traducción del monje inglés Adelardo de Bath (1080-
1150). 

Los cuatro primeros libros, que evitan el recurso de la teoría 
de la proporción y, por tanto, hay que considerar muy orientados 
a la didáctica, están dedicados a la geometría plana. Sin em­
bargo, son de naturalezas diferentes: 

- El Libro I es fundamental: incluye, además de veintitrés 
definiciones, los cinco postulados y las cinco nociones 
comunes. Fundamentalmente trata de la teoría de los 
triángulos. Instituye las bases para usar la técnica del tán­
gram en las demostraciones y de la regla y el compás en 
las construcciones. El libro se cierra caracterizando los 
triángulos rectángulos: son los que cumplen el teorema de 
Pitágoras. Pone de manifiesto el potencial deductivo del 
método de la reducción al absurdo. 

- El Libro II contiene el álgebra geométrica: es decir, los 
cómputos algebraicos básicos (x ± y)2 = x 2 + y 2 ± 2xy, 
x2 + y 2 = (x + y)(x - y) y sus derivados, pero no con núme­
ros sino con magnitudes (segmentos) y, por consiguiente, 
requieren de una construcción; la resolución geométrica 
de las ecuaciones de segundo grado en línea de los Datos; 
la construcción del segmento áureo, y el teorema del co-
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seno, generalización del teorema de Pitágoras a triángu­
los no rectángulos (acutángulos y obtusángulos). Este 
libro, que contiene dos definiciones, se cierra con la pro­
posición 14, la cual proporciona el último eslabón de la 
cuadratura de las figuras rectilíneas multiláteras. 

- El Libro III ofrece la geometría de la circunferencia, y 
contiene once definiciones. 

- El Libro IV ofrece la construcción, con regla y compás, de 
los polígonos regulares: triángulo equilátero (también en 
Libro I, proposición 1), cuadrado (proposiciones 6 y 7), 
pentágono (proposición 11), hexágono (proposición 15) 
y pentadecágono (proposición 16). Contiene siete defini­
ciones. 

Los Libros V y VI, cuyo contenido se atribuye a Eudoxo de 
Cnido, contienen la teoría de la proporción y sus aplicaciones a 
la geometría. Son técnicos y constituyen la base del teorema de 
Tales para rectas y para superficies multiláteras rectilíneas y del 
cálculo de áreas y volúmenes. 

- El Libro V es un libro fundamental para comprender la 
profundidad de los logros de la geometría griega en el pe­
ríodo de la Academia En él se dan dieciocho definiciones 
de entre las que cabe distinguir la de razón y la de propor­
ción. Establece las propiedades que rigen la teoría de la 
proporción y aparecen las proporciones compuestas. 

- El Libro VI contiene los teoremas de Tales, y, por tanto, 
los de la altura y del cateto del triángulo rectángulo, de los 
que se deduce, de forma indirecta, el teorema de Pitá­
goras. Es un capítulo importante con cuatro definiciones, 
una de las cuales probablemente es espuria. 

Los Libros VII, VIII y IX - atribuidos, no sin ausencia de po­
lémica, a la escuela pitagórica- contienen los elementos de la 
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aritmética en base a una teoría de las partes alícuotas o números 
racionales. 

- El Libro VII establece que el uno no es un número; es un 
concepto en virtud del cual «todo lo que es, es uno». De­
fine los conceptos parte y número primo, los fundamen­
tos de la divisibilidad; establece el algoritmo y el lema de 
Euclides. Contiene veintidós definiciones que cubren los 
tres libros aritméticos, la última de las cuales es la de nú­
mero perfecto. 

- El Libro VIII se dedica al estudio de las proporciones con­
tinuas de números naturales: son las progresiones geomé­
tricas, fundamentalmente en base dos. 

- El Libro IX contiene un teorema notable: la existencia de 
una cantidad no finita de números primos, necesario -y 
puede ser que suficiente- para establecer el teorema fun­
damental de la aritmética. 

- El Libro X -con reminiscencias de Teodoro y de Tee­
teto- contiene el estudio de los inconmensurables y la 
clasificación de las líneas irracionales. De entre todos los 
libros de los Elementos, se trata del más largo, el más téc­
nico y el que ha quedado más obsoleto. Ofrece dieciséis 
definiciones, no todas originales de Euclides, y las líneas 
que aparecen en las construcciones de los sólidos platóni­
cos del Libro XIII. 

- El Libro XII contiene el método de exhaución, un término 
controvertido pero que se ha mantenido a lo largo de los 
siglos. Mediante este método se calcula el área del círculo 
y de los volúmenes de la pirámide, el cono y la esfera. Es 
un libro difícil y de una gran técnica superado, sin em­
bargo, por la genialidad de Arquímedes a la hora de abor­
dar problema de este cariz. Su contenido se atribuye 
básicamente a Eudoxo. 
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- El Libro XIII contiene la construcción de los cinco sólidos 
platónicos: el tetraedro, el hexaedro, el octaedro, el dode­
caedro y el icosaedro. También se demuestra que solo 
existen esos cinco. Fue en la Academia donde Teeteto 
construyó el octaedro y el icosaedro que, al parecer, no 
habían sido construidos por la escuela pitagórica. 

«Las matemáticas comenzaron a ser una ciencia cuando alguien, 
probablemente un griego, enunció proposiciones acerca 

de cualquier cosa o de alguna cosa sin especificar 
ninguna particularidad.» 

- ALFRED NORTH WHITEHEAD (1861-1947). 

Los trece libros de Euclides contienen 140 asunciones bási­
cas -130 definiciones, 5 postulados y 5 nociones comunes- y 
465 proposiciones derivadas de aquellas -93 problemas y 372 
teoremas-, así como unos pocos resultados auxiliares: 19 poris­
mas y 16 lemas. 

El Libro XIV es obra de Hipsicles de Alejandría (ca. 190 a.C.-
120 a.C.) y data del siglo n a.c. La introducción tiene un interés 
histórico indudable. Los resultados más notables son las relacio­
nes entre las superficies y los volúmenes de los sólidos platóni­
cos. El Libro XV, obra de Isidoro de Mileto, data del siglo VI. Es 
muy inferior al anterior y establece la posibilidad de inscribir 
ciertos polígonos regulares en otros. 

Vale la pena exponer las dependencias de las proposiciones 
de un libro de las de los precedentes (véase la tabla de la página 
siguiente). 

Los Libros VII, VIII y IX son independientes del resto, ya que 
las dependencias con otras partes de la obra (Libros II y V) se 
pueden subsanar fácilmente con la introducción de definiciones 
ad hoc. El resto se estructura alrededor de dos bases conceptua­
les, la del Libro I y la del Libro V. Corresponden, grosso modo, a 
las aportaciones previas y posteriores a la Academia Los Libros 
X al XIII dependen fuertemente de ambas fuentes. 
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Libro 1 Es independiente. 

Libro 11 Depende del Libro 1: 

Libro 111 
Depende del Libro I y de las proposiciones 5 y 6 del 
Libro 11 (115 y 116). 

Libro IV Depende del Libro 1, de 1111 y del Libro 111. 

Libro V Es independiente. 

Libro VI Depende de 11127, 31 y de los Libros I y V. 

Libro VII Independiente. 

Libro VIII Depende de definiciones de los Libros V y VII. 

Libro IX Depende de 113 y 4 y de los Libros VII y VIII. 

Libro X 
Depende de 144, 47; del Libro 11; de 11131; de los Libros V 
y VI; de Vll4, 11, 26; de IXl, 24, 26. 

Libro XI Depende del Libro I; de 11131; de IVl; de los Libros V y VI. 

Libro XII 
Depende de los Libros I y 111; y de IV6 y 7; de los Libros V 
y VI; de Xl y del Libro XI. 

Libro XIII 
Depende de los Libros 1, de 114; de los Libros 111, IV, V, VI, 
X y XI. 

LOS ELEMENTOS PRIMEROS DE LOS «ELEMENTOS» 

Conviene precisar lo que cabe entender por elemento en el con­
texto de la geometría. En Tópicos, Aristóteles es tajante sobre su 
importancia: «En geometría es bueno ejercitarse en los elemen­
tos»; y Proclo, en Comentarios, también: 

Si la geometría cuenta con unos elementos, se podrá entender el 
resto de la ciencia, mientras que sin ellos no será posible comprender 
su complejidad y resultará inalcanzable. 

Es precisan1ente Proclo quien precisa las diversas acepciones 
que se le han atribuido. Para Hipócrates de Quíos, el elemento es 
una proposición que desempeña un cometido capital en la obten­
ción y organización deductiva de otros resultados; para Menecmo 
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tiene dos acepciones: la débil, cuando adopta la forma de un lema 
previo ( como, por ejemplo, Libro I, proposición 1 respecto del 
Libro I, proposición 2), y lafuerte, que incluye solo las definicio­
nes, las nociones comunes y los postulados. Es precisamente por 
este sentido fuerte por el que el texto de Euclides adquiere toda la 
legitimidad para llamarse Elementos, si bien responde también a 
la forma débil, ya que, una vez establecidos los principios, la obra 
se estructura deductivamente con un alto nivel didáctico. 

Por esta razón los Elementos no contienen la totalidad de re­
sultados geométricos conocidos sino solo los que constituyen la 
base de desarrollos ulteriores. En este sentido, supera a otros Ele­
mentos que los precedieron. Los geómetras como Arquímedes, 
Apolonio, Eratóstenes, Ptolomeo, Papo o Proclo los toman como 
referente básico de la tarea matemática. De este modo el Libro I ha 
adquirido, además, un contenido epistemológico muy relevante. 

La estructura del libro, como ya se ha dicho, es básicamente 
aristotélica. De las nociones comunes (véase la tabla) - recorde­
mos: verdades autoevidentes- , nos fijaremos en cinco y sí cabe 
en una sexta. Aluden a la relación de índole cuantitativa de la 
igualdad y de la desigualdad. Son válidas para las magnitudes 
geométricas, los números naturales y las razones. Su rango de 
validez es, pues, más amplio que el estricto de la geometría y, 
de hecho, son conceptualmente anteriores si nos atenemos al pro­
ceso metodológico-discursivo. 

Nociones comunes 

l. Dos cosas iguales a una tercera son iguales entre sí. 

2. Si a cosas iguales añad imos cosas iguales, los totales son ig uales. 

3. Si de cosas iguales quitamos cosas iguales, los restos son iguales. 

[3b. Si, en cambio, les añadimos cosas des iguales, los totales son 
desiguales.] Esta noción común aparece solo en algunas ed iciones. 

4. Las cosas que se superponen son iguales. 

5. El todo es mayor que la parte. 

[6. Dos rectas no contienen espacio.] Esta noción común aparece solo 
en algunas ed iciones. 
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Sin embargo, dos nociones comunes, la 4 y la [6], escapan a 
esta precisión, puesto que se refieren simplemente a objetos 
geométricos y, por tanto, deberían incluirse entre los postulados. 
La noción común 4 introduce indirectamente el movimiento: si 
movemos dos objetos (geométricos] y conseguimos superponer­
los, es que antes de ser movidos eran iguales. Y la [6] -que Eucli­
des usa, por ejemplo, en la proposición 4 del Libro 1- es 
geométrica: se refiere a objetos geométricos y a cuestiones de 
( no )-existencia. 

Por su parte, los postulados (véase la tabla) establecen con­
diciones de existencia y, en ciertos casos, existencia ~onstructiva 
de ciertos objetos geométricos. 

Postulados 

l. Entre dos puntos siempre se puede trazar una recta. 

2. Una recta se puede prolongar continuamente de una recta. 

3. Se puede trazar un círculo de centro y radio dados. 

4. Todos los ángulos rectos son iguales. 

S. Si dos rectas son cortadas por una tercera de manera que los ángulos 
internos de un lado sumen menos de dos ángulos rectos, entonces se 
cortan del lado en que los ángulos suman menos de dos ángulos rectos. 

Los tres primeros se refieren a lo que se denomina el uso de la 
regla y el compás en las construcciones geométricas. Afirman que 
son válidas -existen- las rectas que tienen como extremos dos 
puntos (y, que además, se pueden prolongar de una recta finita), y 
las circunferencias de centro y radio dados. El compás, sin em­
bargo, «no tiene memoria»: si levantamos uno cualquiera de los 
pies del compás, este se cierra. En la proposición 2 del Libro I 
Euclides demuestra que un compás así considerado, sin embargo, 
se comporta igual que otro «con memoria». 

Reflexionemos un instante acerca de la existencia de los ob­
jetos definidos. Para Platón, la existencia es algo «real». Lo único 
que hace una definición es dar un nombre al objeto existente, para 
podernos referir a él, y permite atribuirle una imagen. Para Aris-
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tóteles, la cuestión es muy diferente. Según él, la definición no 
dice nada de la existencia: para los entes primeros, la existencia 
se postula; para los segundos, debe establecerse. Y, claro está, ello 
introduce limitaciones a la existencia. Aristóteles escribe: 

De lo que no existe, nadie sabe lo que es; por consiguiente, no sabe­
mos a qué se refiere el discurso o el nombre como cuando me refie­
ro al carnero-ciervo del cual nadie puede saber a qué me refiero 
cuando lo nombro. 

La definición no implica, pues, la existencia, pero, por cohe­
rencia, debe corresponder a alguna realidad. En general, la exis­
tencia en geometría deberá establecerse después de una defini­
ción precisa del objeto. En consecuencia, habrá que tener muchí­
simo cuidado en usar las definiciones en las demostraciones antes 
de haber establecido que el objeto definido existe. 

«Les han de traer ejemplos palpables, fáciles, inteligibles, 
demostrativos, indubitables, con demostraciones matemáticas que 

no se pueden negar, como cuando dicen: Si de dos partes iguales 
quitamos partes iguales, las que quedan también son iguales.» 

- ÜHIENTACJONES METODOLÓGICAS PARA LA CONVERSIÓN DE LOS INFIELES PUESTAS 

EN BOCA DE LOTAHJO, EL QUIJOTE, 

Existe una clara diferencia entre las primeras definiciones, 
que precisan de conceptos no definidos como «parte, anchura, lon­
gitud», etc., y las siguientes, que se basan en la aceptación delco­
nocimiento de los entes geométricos previos, como por ejemplo el 
círculo, el centro, el diámetro, las figuras triláteras, etc. Aristóteles 
afinna que, de algunos objetos o conceptos, la existencia se da por 
cierta: son la «línea», la «línea recta» y la «magnitud», en geome­
tría; y la «unidad», en aritmética. Tampoco faltan las incoherencias 
internas. En la definición de diámetro se lee: «Esta recta divide al 
círculo en dos partes iguales», pero esta es una propiedad que ha­
bría que demostrar, no una definición. 
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Algunas definiciones del Libro 1 

l. Punto es lo que carece de partes. 

2. Línea es una longitud sin anchura. 

3. Los extremos de una línea son puntos. 

4. La línea recta es aquella que descansa por igual sobre sus puntos. 

8. Un ángulo plano es la inclinación de dos líneas de un mismo plano que 
no reposan sobre una misma recta. 

9. Si ambas líneas son rectas el ángulo es rectilíneo. 

10. Si una recta tirada sobre otra forma con ella ángulos contiguos igua-
les, cada uno de los ángulos se llama recto, y la recta tirada es una per-
pendicular sobre la otra. 

15. Un círculo es una figura plana limitada por una sola línea -la circun-
ferencia-, respecto de la cual son iguales todas las rectas que inciden 
sobre ella, tiradas desde un punto que se halla en su interior. 

16. Dicho punto es el centro del círculo. 

17. El diámetro de un círculo es una recta cualquiera que pasa por el cen-
tro y tiene los extremos en la circunferencia. Esta recta divide al círculo 
en dos partes iguales. 

19. Figuras rectilíneas son las comprendidas por rectas; trilíneas las com-
prendidas por tres; cuadriláteras las contenidas por cuatro; multiláteras, 
las comprendidas por más de cuatro. 

20. Entre las figuras triláteras el triángulo equilátero es el que tiene tres 
lados iguales, el isósceles, el que solo tiene dos, y el escaleno, el que no 
tien_e ninguno. 

21. Entre las figuras triláteras, el triángulo rectángulo es el que tiene un 
ángulo recto; obtusángulo el que tiene un ángulo obtuso; y acutángulo el 
que tiene los tres ángulos agudos. 

22. De entre las figuras cuadriláteras, el cuadrado es el que es equilátero 
y rectangular; el rectángulo es el que es rectangular pero no equilátero; 
el rombo es el que es equilátero pero no rectangular; el romboide tiene 
los lados y los ángulos opuestos iguales entre sí pero no es ni equilátero 
ni rectangular; y el trapecio no es de ninguno de los tipos anteriores. 

23. Dos rectas paralelas son las que, hallándose en un mismo plano, pro-
longadas indefinidamente no se cortan por ningún lado. 

52 LA ESTRUCTU RA DE LOS «ELEMENTOS» 



EL MÉTODO DEDUCTIVO DE LOS «ELEMENTOS» 

Hemos visto que las definiciones no determinan la existencia, y 
que tal existencia debe «establecerse». Para ello hay que resolver 
un problema del estilo «existe un objeto tal como ... ». Y, en el 
tratado euclídeo, las herramientas permitidas para la construc­
ción de objetos geométricos son las rectas y las circunferencias, 
y solo estas. En consecuencia, los únicos puntos aceptables - los 
únicos que existen- son aquellos en que tales líneas se cortan. 

Una vez construido el objeto - «problema» resuelto- debe­
mos aseguramos de que es precisamente lo que queríamos; es decir, 
que «lo construido» cumple los requisitos de su definición. Hay que 
establecer un «teorema». Los teoremas «dan la existencia por su­
puesta»; se formula «he aquí [el objeto]» y lo que hacen los teore­
mas es ver que existe un ligamen lógico entre diversos asertos. 

En los problemas se requiere del análisis, es decir, conocer lo 
básico para llegar al objeto. Por ejemplo, a partir del lado dado AB 
habrá que ver qué recursos se precisan para poder construir el trián­
gulo equilátero. Para ello es útil suponer la existencia del objeto 
como ya construido y ver qué es lo que liga sus componentes ( véase 
la construcción del pentágono regular en el capítulo 4). En los teo­
remas, en cambio, lo esencial es la síntesis. De los postulados al 
resultado requerido. La proposición 1 del Libro I, si bien es muy 
simple, permite apreciar la distinción entre análisis y síntesis. De 
esta misma proposición estudiaremos también su estructura interna. 

Libro I, proposición l. 
Sobre una recta dada cons­
truir un triángulo equilátero 
( véase la figura). 

En este texto se aprecian, de 
forma precisa, todos los extremos 
indicados ( véase la tabla de la pá­
gina siguiente). Se trata de un pro­
blema. La construcción se hace 
con los postulados 3 y l. La de-
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Partes de un teorema 

Prótasis (Enunciado) 
Sobre una recta dada construir un triángulo 
equilátero. 

Ékthesis (Exposición) Sea AB una recta dada. 

Diorismós Debemos construir un triángulo equilátero 
(Determinación) sobre AB. 

Kataskeue Con centro en A y radio AB trazamos 
(Construcción) la circunferencia OAB (postulado 3). ,,-ti~,, Con centro en 8 y radio BA trazamos 

/ / \ \ 

I I \ \ la circunferencia OBA (postulado 3). 
1 A B 1 
1 1 1 1 

Desde el punto C, intersección de ambas 1 1 
/ / 

' ' / / circunferencias, tiramos las rectas CA y CB 
' .... - - '>-..., - - ,,,. (postulado 1). 

Puesto que el punto A es el centro de 
la circunferencia OAB, CA es igual a AB 
(definición lS). Análogamente, puesto que B 

Apódeixis 
es el centro de la circunferencia OBA. BC es 
igual a BA (definición 15). Pero cosas iguales 

(Demostración) 
a una misma cosa son iguales entre sí (noción 
común 1). Por lo tanto, CA es también igual 
a CB. Por consiguiente, las rectas AB, CB, CA 
son iguales. 

Syumpérasma Por lo tanto, el triángulo t:,.ABC es equilátero 
(Conclusión) y hemos construido lo que queríamos. QED. 

mostración recurre a la definición 15, a la noción común 1, y a los 
principios mínimos de lógica. Cabe notar que la suposición de la 
existencia del triángulo equilátero t::,,ABC proporciona muchas 
intuiciones tanto para la construcción como para la demostración 
y ejemplifica el uso del análisis; en este caso muy simple. La de­
mostración, sintética, también se puede intuir de la imagen 
«ideal», pues en ella los lados son asimismo iguales y «forman» un 
triángulo. En otros casos, esto será mucho más complicado como, 
por ejemplo, en el caso del pentágono regular. 

La proposición primera es. «un elemento» -en sentido 
débil- de la proposición siguiente, que permite llevar un «seg­
mento congruente con uno dado a un punto dado» -¡el compás 
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tiene memoria!-, lo cual per­
mite «añadir» segmentos para 
formar otro, e incluso de la pro­
posición tercera, que permite 
«quitar» de un segmento otro 
menor que él. 

Vamos a analizar otras dos 
demostraciones para compro­
bar el método lógico-deductivo 
de los Elementos: 

Libro I, proposición 5. 
En los triángulos isósceles 
los ángulos de la base son 
iguales entre sí ( véase la 
figura). 

l. Sea 6. ABG un triángulo 

r---------

z , 

• o 

L 

A 

B ,--------'G 
\ ...... ....... \ 

isósceles cuyos lados iguales son AB y AG ( definición 20). 
2. Los prolongamos, respectivamente, de segmentos iguales 

BZ y GH (noción común 2, proposición 2). 
3. Unimos Z con G y H conB (postulado 1). 
4. Los triángulos 6.AGZ y 6.ABH son iguales (proposición 4, 

criterio lado-ángulo-lado, LAL, de igualdad de triángulos) 
ya que tienen, respectivamente, iguales los lados AZ y AH 
(noción común 2) y AG y AB (por el punto 1) y el ángulo 
común que comprenden. Por consiguiente, los ángulos 
<AZG y <AHB son iguales, y los lados ZG y HB. 

5. Los triángulos 6.GBZ y 6.BGH son iguales (proposición 4), 
luego los ángulos <BGZ y <GBH son iguales. Los quitamos, 
respectivamente, de los ángulos <ABH y <AGZ y los ángu­
los que resultan ( <ABG y <AGB) son iguales (noción 
común 3). QED. 

Libro I, proposición 15. Si dos rectas se cortan, los ángulos 
verticales son iguales entre sí (véase la figura de la página 
siguiente). 

LA ESTRUCTURA DE LOS «ELEMENTOS» 

,H 

. 
E 

55 



56 

l. Las rectas AB y CD se cortan en 
e 

A~ B 

~D 

el punto E (enunciado). 
2. Queremos ver que los ángulos 

<.AED y <CEE son iguales. 
3. Los pares de ángulos <CEE y 

<CEA; <CEA y <.AED suman, 
respectivamente, dos ángulos 
rectos (Libro I, proposición 13). 

4. Luego los pares de ángulos <CEE y <CEA; <CEA y <AED, 
juntos, son iguales (postulado 4 y noción común 1). 

5. Si quitamos, de ambos pares, el ángulo <CEA, los ángulos 
resultantes <CEE y <.AED son iguales (noción común 3). 
QED. 

Observemos el recurso a definiciones, proposiciones ya de­
mostradas, nociones comunes y postulados. Con ellos, mediante 
un proceso de concatenación de construcciones y de enunciados 
llegamos a lo que se demanda a partir de lo que se propone. Y ob­
servemos la enorme eleg'.311cia de dichas demostraciones que pro­
viene de su simplicidad. 

Pero Euclides no siempre recurría a la demostración directa; 
a veces precisaba de un método indirecto de demostración: la re­
ducción al absur do. En dicho método se postula lo contrario de 
lo que se quiere establecer -aquí el maestro Euclides y el alumno 
«lector» deben estar de acuerdo- y, razonando, se llega a una 
proposición y su negación, un resultado inadmisible. En conse­
cuencia, el postulado inicialmente aceptado es falso, y su contra­
rio -que es lo que se quiere demostrar- es cierto. He aquí un 
presupuesto «lógico» que no se explicita nunca: de dos sentencias 
opuestas -una es la negación de la otra- necesariamente una es 
cierta, y la otra, falsa. Aunque Euclides no explicitara en ningún 
momento el método de la reducción al absurdo, lo utilizó muchí­
simo. Este método de demostración, difícilmente justificable por 
análisis, es esencialmente aristotélico y pertenece al ámbito de la 
síntesis. 

Llegados a este punto, consideremos ahora un nuevo ejemplo 
en que se observa cómo Euclides recurría, en las demostraciones 
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proposición 5 del 
Libro II de los 
Elementos de 
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Libro I a cargo 
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ARISTÓTELES Y LA IRRACIONALIDAD DE ✓2 

El estagirita empleó el método de la reducción al absurdo para demostrar que: 

No hay ninguna razón numérica cuyo cuadrado valga 2. 

En lenguaje actual, esto significa: «✓2 es irracional». Aristóteles parte de la 
aceptación del postulado contrario al que quiere demostrar, a saber: ✓2 es 
racional. El ilustre filósofo griego concluyó que dicha aceptación le obligaba 
a admitir que «un número par es, a su vez, impar» lo cual no es posible. Su 
razonamiento, expresado en su forma actual, es el siguiente: 

Supongamos (hipótesis añadida) que 

m2 
2=-2• 

n 

con m y n de distinta paridad. Así, 2n2 = m 2. Por consiguiente, m es par -o 
sea, m = 2m'- y n impar. Luego, 2n2 = 4m2

• Es decir, n2 = 2m'2 y n sería par. 

por reducción al absurdo, a imágenes de objetos matemáticos ab­
solutamente «ideales». Como ya hemos visto, una demostración 
requiere establecer que los objetos matemáticos construidos son 
correctos. Sin embargo, el método de la reducción al absurdo su­
pone admitir inicialmente, como si fuesen reales, la existencia de 
objetos matemáticos. Luego se demuestra que este supuesto es 
incorrecto, es decir, supone la construcción de objetos inconstrui­
bles. Este problema solo puede superarse aceptando que, de al­
guna manera, el proceso de la construcción se realiza en el ámbito 
«ideal» de las figuras. Pensemos, por ejemplo, en un círculo y una 
recta: o se cortan en dos puntos, o en uno, caso de la tangencia, o 
no se cortan. Si se cortan en dos puntos, estos puntos «existen» 
en el «ideal geométrico» o, si se prefiere, en «la metodología 
geométrica». 

Así, por ejemplo: 

Libro I, proposición 6. Si un triángulo tiene dos ángulos 
iguales, los lados opuestos también son iguales. 

LA ESTRUCTURA DE LOS «ELEMENTOS» 



Euclides recurre a la figura 1 
(un triángulo 6.ABC con los ángulos 
<CEA y <ACB iguales, y los lados 
opuestos, AB y AC, distintos; uno, 
por ejemplo AB, más largo y el otro, 
AC, más corto). Pero esta figura no 
es posible: realmente, dicho trián­
gulo no existe. Es una idealización 
figurativa del postulado añadido que 
resultará ser falso. 

En la figura 2 se desglosa el ra­
zonamiento de Euclides y parece 
que se clarifica. Sin embargo, pone 
de relieve - es la razón que nos 

FIG.1 A 

mueve a incluirlo- las dificultades que presenta recurrir a «figu­
ras erróneas». Si bien el motivo de estas figuras es ayudar a la 
comprensión de la demostración, cuando son falsas el objetivo se 
complica. 

Se ha perdido la simplicidad propia del análisis pero ha apa­
recido la profundidad del conocimiento geométrico y lógico­
deductivo vinculado a la síntesis. Cabe indicar que esta técnica 
de demostración - tan alejada del análisis- no era del agrado de 
todos los geómetras griegos. Ello explica que, en los diferentes 
comentarios a los Elementos, se intentaran demostraciones alter-

FIG. 2 A A ' 
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nativas que lo evitaran. Un ejemplo paradigmático de ello es el de 
Herón de Alejandría. 

Sea como fuere, la estructura de los Elementos fue lo sufi­
ciente potente como para eclipsar cualquier tratado precedente, y 
seguramente se trate de su herencia más importante. Nos quedan 
por explorar los contenidos concretos: una reseña del Libro I y del 
método del tángram, el papel del infinito, el significado y depen­
dencia del postulado de las paralelas, la naturaleza e importancia 
de las magnitudes irracionales y del método de exhaución, la 
construcción de los sólidos platónicos y, por fin, la gran contribu­
ción pitagórica: la aritmética. 
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CAPÍTULO 3 

El Libro I y la geometría 
del universo 

El estudio del primer libro de los Elementos 
nos enfrenta a cuestiones fundamentales acerca 

de la geometría propuesta por Euclides. Algunas son de 
tipo técnico y otras, acaso las más fascinantes, atañen al 

modo en que el geómetra aborda el espinoso problema del 
infinito o a la relación entre las figuras abstractas de la 
geometría y la realidad natural. Esta última cuestión, 

que parte del célebre postulado de las paralelas, 
nos conducirá, en un viaje de casi dos mil años, 

a la geometría no euclídea que revolucionó 
la ciencia en el siglo XIX. 





El Libro I de los Elementos de Euclides es el único que contiene 
tanto nociones comunes como postulados. Los tres primeros, 
como ya se ha indicado, hacen referencia a las herramientas acep­
tables para «construir» los objetos geométricos; son, pues, muy 
importantes en la resolución de problemas. Los otros dos son 
clave a la hora de configurar la naturaleza de la geometría euclí­
dea. Además, y sin ser exhaustivos, el Libro I plantea otras cues­
tiones que merecen comentario: el movimiento, la torsión, el 
infinito y el método tángram, que se tratará más en profundidad 
en el capítulo 4. Veamos en primer lugar de qué manera el cuarto 
postulado de los Elementos tiene que ver con el movimiento en la 
geometría Dicho postulado establece: 

Todos los ángulos rectos son iguales. 

Si nos fijamos en la definición de ángulo recto -Libro I, 
definición 10- leemos: 

En cada pareja de ángulos adyacentes iguales, cada uno de los án­
gulos es recto. 

Es decir, cuando ambos «son iguales», ambos son rectos (fi­
gura 1). Pero entonces se nos plantea la cuestión de saber si los 
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6 y=6 

De acuerdo con la 
definición 10, las 

parejas de ángulos 
a, ~. y, 6 y ,, ~ son 
iguales. Es decir, 

a=~. y=6y,=~. 
Luego, tanto a 

como ~. y como 6, 
, como ~ son 

ángulos rectos. 
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de una pareja son iguales a los de 
otra pareja. Es decir, si «todos» 
los ángulos rectos son iguales; no 
solo por parejas. La respuesta, 
afirmativa, nos la da el cuarto pos­
tulado. 

En el caso particular de los án­
gulos rectos, Euclides impone una 
cierta uniformidad del plano. Se 
trata, pues, de un postulado que, de 
alguna manera, involucra el movi­
miento de figuras. También la no­
ción común 5 lo imponía; pero no 
podemos acudir a una noción 
común para justificar por entero 
una cuestión puramente geomé­
trica. De hecho, en el seno de la 

geometría euclídea, ningún postulado garantiza explícitamente 
que dos figuras que se superponen sean iguales. Dicho de otro 
modo: la noción común 5 debía haber sido un postulado, como ya 
se señaló en el capítulo anterior. 

A pesar de todo ello, Euclides no supo -o mejor: no pudo­
evitar el movimiento, si bien recurrió a él en muy escasas ocasio­
nes; por ejemplo, en la geometría del espacio para generar el cono 
y la esfera por rotación, respectivamente, de un triángulo rectán­
gulo alrededor de uno de los catetos y de un círculo alrededor de 
un diámetro. También lo empleó en dos proposiciones del Libro 
primero -la 4 y la 8-- para establecer los criterios de igualdad 
de triángulos lado-ángulo-lado (LAL) y lado-lado-lado (LLL). Sin 
embargo, en el criterio ángulo-lado-ángulo (ALA) es ya capaz de 
evitarlo. Veamos el primero de estos casos: 

Libro I, proposición 4. Si dos triángulos tienen dos lados, 
respectivamente, iguales [congruos] y los ángulos que deter­
minan también, respectivamente, iguales [congruos], en­
tonces también serán iguales [congruos] el otro lado y los 
dos triángulos (figura 2). 
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Todo el peso de la demostra­
ción reside en la superposición de 
ambos triángulos y de la noción 
común 5. Reza como sigue: Colo­
quemos los triángulos t:.ABC y 
t:.A'B'C', uno encima del otro (mo­
vimiento) de manera que el án­
gulo <ABC coincida con el ángulo 
<A 'B'C'. Entonces, naturalmente, 
los lados AB y BC se colocan, res-
pectivamente, encima de los lados 
A'B' y B'C'. Pero, por los puntos 
A[=A'], C[=C'] pasa una sola recta 
(noción común 7). Luego los trián­
gulos se superponen enteramente y, 
por la noción común 4, antes de 
moverse eran iguales. Por consi-

FIG. 2 e 

C' 

A' 

guiente, los triángulos t:.ABC y t:.A'B'C' son iguales. Llegados a 
este punto, hay que indicar que el uso inconsistente de Euclides 
en lo que respecta al movimiento no se debe a una falta de habili­
dad por su parte. El único modo de ser consistente, en este caso, 
es el de incorporar esta proposición en la forma de un postulado, 
como haría el matemático alemán David Hilbert (1862-1943) siglos 
más tarde en su propia axiomatización de la geometría, mucho 
más rigurosa. 

LA RECTA QUE NUNCA EXISTIÓ 

Nótese que Euclides, a pesar de las definiciones 2 a 4 del Libro I, 
jamás precisó qué es una recta, qué propiedades tiene y a qué ca­
racterísticas se debe someter. Sin embargo, dejó bien establecido 
que son finitas y «tienen extremos que son puntos». En realidad, 
Euclides manejaba segmentos rectilíneos. Al hablar de la igualdad 
en longitud de los diámetros en la definición de círculo, Euclides 
recurrió, ahora sí, al concepto de distancia. En cambio, para su 
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FIGURAS QUE SE CONTORSIONAN 

Una cuestión subyacente en los Elementos es la que se refiere a la torsión. 
Antes de usar el postulado de las paralelas, Euclides establece un resultado 
hartQ peculiar. Se trata de: 

Libro 1, proposición 17. En todo triángulo, dos ángulos Juntos suman menos 
de dos ángulos rectos. 

Para comprender convenientemente el problema debemos observar el razo­
namiento de Euclides. Quiere ver que los ángulos <BAG y <AGB juntos son 

inferiores a dos ángulos rectos. 
Para ello, «lleva» un ángulo igual 
al ángulo <BAG -el ángulo 

B 

./ 

G 

./ 

I 
I 

/l 
, I 

/, 

I 
I 

o 

<EGZ- junto al ángulo <AGB y 
observa que, juntos, no llenan 
<AGB más <AGD -que serían 
dos rectos-. ¿cómo «lleva» el 
ángulo? Construyendo un trián­
gulo que lo tenga como ángulo. 
¿cómo? De acuerdo con la de-
mostración siguiente: 

l. Divide el lado AG por la mitad: 
obtiene el punto E (Libro 1, 
proposición 10). 

aplicación al concepto de recta debemos esperar el axioma 1 
-«la distancia más corta entre dos puntos»- de Sobre la esfera 
y el cilindro de Arquímedes. 

Como acabamos de comprobar en el caso de la proposición 
4, Euclides usaba «postulados» que no había establecido. En la 
demostración de la proposición 1 del Libro I, vista en el capítulo 
anterior, hay una afirmación que ahora vamos a examinar más en 
detalle: 

Desde el punto C, intersección de ambas circunferencias, tiramos 
las rectas CA y CB. 
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2. Une B con E (postulado 1) y lo dobla (postulado 2 y Libro 1, proposición 
2). Obtiene el punto Z. 

3. Lo une con el punto G (postulado 1). Obtiene dos triángulos iguales (Libro 
1, proposición 4), puesto que los lados ZE y EG del triángulo t>.ZEG son 
respectivamente iguales a los lados BE y EA del triángulo c:,BEA, por 
construcción, y los ángulos <GEZ y <AEB son opuestos por el vértice y, 
por lo tanto, iguales (Libro 1, proposición 15). Luego, ambos triángulos 
son iguales y el ángulo <EGZ (que se añade al ángulo <AGB) es igual al 
ángulo <BAG, que es lo que quería. 

Euclides obtenía este resultado porque el punto Z cae dentro del ángulo 
<AGD. Pero lno podría haber caído fuera? En la figura se observa que sí es 
posible. La respuesta a la pre-
gunta anterior, que Euclides no 
llega a facilitar por el simple 
hecho de que ni siquiera se la 
había planteado, es que «no», 
porque «sus» líneas rectas no 
tienen torsión. Lo da por evi­
dente, pero cuando más ade­
lante se analice el postulado de 
las paralelas, se verá que estas 
ausencias lógicas minan algu­
nas demostraciones de forma 
fatal. 

B 

A 

' 

G 

' ' ' 

¿Qué garantiza, según Euclides, la existencia de este punto C? 
Nada, salvo la imagen que acompaña la demostración. Pero este 
recurso no es admisible, porque la imagen solo es correcta si el 
punto C existe (recordemos las falsas imágenes de triángulos im­
posibles en la demostración por reducción al absurdo). 

Es curioso que Euclides, en el postulado 5, impusiera que «en 
ciertas condiciones», dos rectas se cortan: «existe un punto que 
pertenece a la vez a ambas», y que, en cambio, en el caso de las 
circunferencias, lo diera por tan evidente e irrefutable que ni si­
quiera hubiera que imponerlo. A todos los efectos, se trata, nueva­
mente, de un postulado «oculto». 
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El triángulo equilátero sobre el segmento AB de la proposi­
ción 1 «existe» porque la construcción euclídea es correcta; pero 
dicha construcción depende de la existencia del punto C. En un 
universo en el que dicho punto no existiera, el triángulo tampoco 
existiría. Muchas de las primeras demostraciones de los Elemen­
tos de Euclides dependen de este elemento en particular. De 
hecho, la «constructibilidad» de los Elementos depende de la 
constructibilidad de puntos. Euclides impone la condición nece­
saria y suficiente para que dos rectas se corten y, por tanto, esta­
blece adecuadamente los puntos construidos de este modo. Sin 
embargo, Euclides no establece en qué condiciones se producen 
los cortes entre una recta y una circunferencia o entre dos circun­
ferencias y, por tanto, los puntos generados de esta forma son 
«inválidos». 

«Cada vez estoy más convencido de que no es posible 
demostrar la necesidad de nuestra geometría mediante 
el intelecto humano ni tampoco para su servicio.» 
- CARL FRJEDRICH GAUSS. 
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Y no habría sido demasiado difícil: en el caso de las circunfe­
rencias, por ejemplo, le bastaría con haber in1puesto: 

Postulado de intersección de dos circunferencias. Si la 
distancia que hay entre los centros de dos circunferencias 
es inferior a la mitad de los diámetros de ambas juntos 
[ esto es, menor que dos radios, uno de cada circunferencia, 
juntos] ambas circunferencias se cortan en dos puntos. 

De forma análoga, es fácil imponer una condición que per­
mita asegurar la existencia de «dos puntos» fruto de la intersec­
ción de una recta y una circunferencia: Una recta y una 
circunferencia se cortan [ en dos puntos J cuando la perpendicu­
lar que va del centro de la circunferencia a la recta es inferior al 
radio. Sin embargo, Euclides calla al respecto. 
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EL POSTULADO DE LAS PARALELAS 

Todos los estudiosos de la obra euclídea están de acuerdo con el 
hecho de que la estructura de los Elementos y, muy en particular, 
el postulado 5 (al que denominaremos P5) se deben al propio 
Euclides. Se trata del famoso postulado de las paralelas que, en 
la formulación euclídea dice que «bajo ciertas condiciones, dos 
rectas necesariamente se cortan». Euclides no hace uso del pos­
tulado hasta la proposición 29 del Libro l. La geometría que no 
depende de aquel se llama geometría neutral. Por consiguiente, 
Euclides nos ofrece una treintena escasa de proposiciones de 
geometría neutral. El contenido literal del postulado es como 
sigue: 

Postulado 5 (P5). Si dos rectas son cortadas por una ter­
cera de manera que los ángulos internos de un lado sumen 
menos de dos ángulos rectos, entonces dichas rectas se cor­
tan del lado en que los ángulos suman menos de dos ángulos 
rectos. 

p 

___ ...._ __ ............... ~ ~ ;,:·_;_;·_·_·?:: 

Sin embargo, el postulado de las paralelas euclídeo no suele 
estudiarse en su formulación original, sino en la ofrecida por el 
escocés John Playfair (1748-1819), profesor de Matemáticas y pos­
teriormente de Filosofía Natural en la Universidad de Edimburgo, 
que dice: 

Postulado de Playfair (PP). Por un punto exterior a una 
recta podemos trazar una paralela y solo una. 
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UNA CURVA Y SU ASÍNTOTA 

Con el postulado 5, Euclides 
evita que la «torsión» de las 
rectas haga que tengan un ca­
rácter asintótico, como ocurre 
con una hipérbola y su asínto­
ta (y esa precaución es más 
necesaria si tenemos en cuen­
ta que, como ya hemos visto, 
Euclides no da una definición 
cabal de línea recta y, por tan- A B 
to, desconocemos sus propie­
dades básicas). En el caso de 
las curvas, por ejemplo, el he-
cho de que una se acerque más y más a otra no garantiza que se corten, 
como se observa en la figura: una hipérbola se acerca más y más a una rec­
ta -su asíntota- sin llegar a tocarla jamás. 

Este enunciado es equivalente al de Euclides, y nos permite 
ver que P5 requiere de dos asunciones distintas: por un lado, 
que existe tal cosa como «una recta paralela a una recta dada 
desde un punto exterior a ella», y por el otro, que dicha recta es 
única. 

Precisamente, la existencia la da Euclides en la proposición 
31, que dice: 

Libro I, proposición 31. Por un punto exterior P a una 
recta AB, siempre podemos trazarle una paralela. 

p R 
...., ___________ _ 

1 recto 

1 recto 

A -----------a 
Q 
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Tiramos por Puna recta perpendicular PQ aAB (Q se halla en 
la recta AB o en una prolongación y se puede tirar con regla y 
compás según la proposición 12). Análogamente, tiramos una per­
pendicular PR por P a PQ. Está claro que las rectas PR y AB son 
paralelas porque, si no lo fuesen, se cortarían en un punto, por 
ejemplo, en el punto R, y tendríamos un triángulo t::,,QPR con dos 
ángulos rectos. Pero ello no es posible ( contradeciría la proposi­
ción 16 del Libro 1) y, por tanto, la existencia de la recta paralela 
queda establecida. Llegados a este punto, queda pendiente demos­
trar que dicha recta es única. Pues bien: no es posible hacerlo sin 
recurrir a un objeto geométrico «falso» (o «ideal»), es decir, a un 
objeto geométrico que presuponga la asunción que se quiere de­
mostrar. La unicidad de la recta paralela, en definitiva, no se de­
riva de ninguno de los otros postulados. Esta constatación trajo 
consigo una auténtica revolución, corno veremos más adelante, y 
buena parte de ello se debe al hecho de que suponía cuestionar a 
una autoridad de la talla de Euclides. 

LA DEMOSTRACIÓN DE LA UNICIDAD DE LA PARALELA 

La unicidad de la recta paralela no 
es demostrable si no es asumien­
do la «verdad» de la geometría 
euclídea, es decir, desde «dentro» 
de ella. 

o p 

-;7~=========-:__R 

Por un punto ex terior P a una 
recta AB, solo podemos trazar­
le una paralela. 

A Q B 

Si hubiese dos rectas paralelas a la recta AB (figura adjunta: una figura ideal 
porque depende de una falsedad) serían la primera (que forma ángulo recto 
con PQ en el punto P) y otra, PR. Entonces el ángulo <QPR sería inferior a un 
ángulo recto (Libro 1, proposición 31). Por lo tanto, los ángulos <BQP y <QPR 
sumarían menos de dos ángulos rectos (noción común 4). Por el postulado 
de las paralelas (PS), las rectas PR y AB se cortan. iContradicción! Por lo 
tanto, hay que abandonar la hipótesis según la cual PR es paralela. 
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LAS GEOMETRÍAS NO EUCLÍDEAS 

Una pregunta que no se puede obviar al tratar de geometría es: 
¿cuál es la verdadera geometría de la naturaleza? Porque no cabe 
duda de que uno de los objetivos de la axiomatización consiste en 
«captar la verdad de lo que es». Ahora bien, también podría ser 
que en su lugar estuviéramos meramente «captando la verdad de 
lo que pensamos», es decir, una creación de la mente humana, no 
necesariamente real. 

Las dos geometrías «reales» de la época de Euclides eran 
la geometría del cielo - la esférica, necesaria para comprender 
los procesos astronómicos tan caros a los griegos y antes a los 
egipcios y babilonios- y la geometría del patio de casa - la 
que realizaba Arquímedes, según la leyenda, cuando el soldado 
romano lo atravesó con la espada- . La primera, que hoy día se 
conoce también con el apelativo de elíptica, es equivalente a 
la que podemos dibujar en la superficie de un globo terráqueo. 
En este tipo de geometría, los puntos se definen normalmente, 
pero las rectas, no. Si entendemos la recta en el sentido arqui­
mediano - la línea más corta que une dos puntos- , veremos 
que tienen una particularidad: se cortan necesariamente. Ima­
ginemos un caso real: dos personas echan a caminar sobre la 
esfera de la Tierra en línea recta hasta regresar al punto de par­
tida. Ambos dibujarán necesariamente un círculo máximo (es 
decir, aquella sección de la esfera que la divide en dos hemis­
ferios exactos), y los círculos máximos de una esfera acaban 
por cruzarse necesariamente ( en la figura 3, los dos círculos 
máximos r y r' se cortan en el punto P). En consecuencia, dada 
una recta, no es posible trazar ninguna paralela a ella por un 
punto dado. 

La segunda geometría, la del patio de la casa, es la propia de 
un patio cerrado por paredes en el cual solo se puede dibujar lo 
que la arena que cubre el suelo permite. En esta geometría, por un 
punto P exterior a una recta r podemos trazar una infinidad de 
rectas paralelas (figura 4). Así, por ejemplo, se tira desde el punto 
P las rectas r', r" y r"'. Solo la rectar" corta a la rectar dentro del 
patio. Sin embargo, hay otras: todas las que hay dentro del ángulo 
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de vértice formado por P y lados 
las rectas que salen de P y se unen 
a los extremos de la recta r. Estos 
puntos se hallan en la pared y no 
en el suelo del patio; en el suelo 
del patio no existen. Por lo tanto, 
r y r"' no se cortan; son paralelas. 
Las rectas que no se hallan en el 
interior de ese ángulo son, como 
los lados del ángulo, rectas para­
lelas a la recta r. 

Una representación gráfica 
muy conocida de este tipo de geo­
metría, hoy día conocida como hi­
perbólica, es la que se dibuja sobre 
una superficie parecida a una «silla 
de montar» (figura 5). Sobre una 
superficie de este tipo, un trián­
gulo equilátero adopta una forma 
curiosa, en la que la suma de sus 
ángulos es de menos de 180º. Por 
su parte, dos rectas paralelas ten­
derán a alejarse infinitamente ( en 
otros casos, las paralelas hacen 
lo contrario, es decir, se acercan 
cada vez más). 

Esta segunda geometría la 
descubririan, independientemente, 
el húngaro János Bolyai (1802-
1860) y el ruso Nikolái Ivánovich 
Lobachevski (1792-1856), a princi­
pios del siglo xrx. Este último guar­
daba muchas reservas con 
respecto a la necesidad de la geo­
metría euclídea ( es decir, con res­
pecto a si era la única posible) ya 
en 1823, precisamente a raíz de los 
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intentos vanos hasta la fecha de demostrar la unicidad de la para­
lela partiendo de los otros postulados del alejandrino. 

La publicación en 1829 de un artículo de este último de tí­
tulo «Sobre los principios de la geometría» marcó el nacimiento 
oficial de lo que vino a llamarse la geometría no euclídea. En 
él, el matemático ruso hizo pública la primera geometría cons­
truida sobre una hipótesis que contradecía el postulado euclídeo 
de las paralelas: por un punto C exterior a una recta AB puede 
pasarse más de una recta paralela contenida en el plano ABC y 
que no corte a la recta AB. A partir del postulado así reformu­
lado, Lobachevski procedió a deducir una geometría armónica 
y consistente. 

«No se ha descubierto hasta ahora ninguna demostración 
rigurosa de su verdad.» 
- NJKOLÁI LOBACHEVSKI EN REFERENCIA AL POSTULADO DE LAS PARALELAS 

EN UN BOSQUEJO GENERAL DE LA GEOMETRÍA REDACTADO EN 1823. 
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Sin embargo, tal era el estatus de Euclides y su obra en el 
mundo matemático que Lobachevski quiso quitar hierro a la nueva 
geometría y durante los primeros años se refirió a ella con el ape­
lativo vergonzante de «imaginaria». Entre 1835 y 1855 tuvo ade­
más el cuidado de redactar no menos de tres exposiciones 
completas de su nuevo sistema. El escritor y matemático escocés 
E. T. Bell, en su célebre Los grandes matemáticos (1937), escribió, 
con su pompa habitual: 

Durante 2 200 años se creyó, en cierto sentido, que Euclides había 
descubierto una verdad absoluta o una forma necesaria de percep­
ción humana en su sistema de Geometría. La creación de Loba­
chevski fue una pragmática demostración del error de esta creencia. 
La audacia de su oposición y su triunfo han conducido a los mate­
máticos y a los científicos en general a contradecir otros axiomas o 
verdades aceptadas, por ejemplo la ley de causalidad que durante 
siglos pareció tan necesaria para el pensamiento como el postulado 
de Euclides parecía hasta que fue eliminado por Lobachevski. 
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Es probable que todavía no se haya hecho sentir totalmente la 
conmoción producida por el método de Lobachevski de negar los 
axiomas. No hay exageración en llamar a Lobachevski el Copémico 
de la geometría, pero la geometría es solo una parte del más amplio 
campo que renovó. Por ello sería más justo denominarle el Copérni­
co de todo el pensamiento. 

En paralelo (y la expresión es totalmente justa) a Loba­
chevski, el húngaro János Bolyai llegaba a las mismas conclusio­
nes que aquel. Su padre, Farkas, había pasado la mayor parte de 
su vida intentando probar el postulado de las paralelas, sin éxito. 

Aunque el hallazgo de János tuvo lugar en la misma fecha que 
el de Lobachevski (1829), no lo publicó hasta 1832 por miedo a las 
consecuencias que tal herejía matemática podía suponer y, por 
ello, la prioridad del descubrimiento de la primera geometría no 
euclídea se atribuye a veces al matemático ruso en exclusividad. 

Farkas recabó la opinión de su buen amigo Carl Friedrich 
Gauss, el más célebre matemático vivo de la época, acerca de los 
trabajos de su hijo, a lo que Gauss respondió que no podía en con­
ciencia elogiar la obra de János porque sería como elogiarse a sí 
mismo, dada la coincidencia entre ambos puntos de vista sobre la 
cuestión. De esta carta se sigue que Gauss también había llegado 
a la conclusión de que el postulado de las paralelas en la redac­
ción euclídea no se seguía del resto y había desarrollado, no sabe­
mos hasta qué punto de detalle, otras geometrías consistentes. 

Tal vez sea esta renuencia de Gauss a publicar sus propios ha­
llazgos en la materia, siendo como era el más respetado matemático 
vivo, la que nos dé la medida más justa de hasta qué punto era atre­
vido cuestionar la obra del gran Euclides. La prudencia de Gauss 
llegó hasta a negar tanto a Bolyai como a Lobachevski el apoyo 
público a sus trabajos, aun cuando estos ya habían sido publicados, 
por temor a, según sus propias palabras, «la mofa de los beocios». 

En cuanto a la geometría esférica, la otra gran geometría no 
euclídea, hubo que esperar a la labor de otro conocido de Gauss, 
el gran matemático alemán Bernhard Riemann (1826-1866), que en 
una de las tesis más famosas de la historia de la ciencia ( «Sobre 
los fundamentos de la geometría») generalizó este y otros casos 
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en el marco de una visión de la geometría de suprema elegancia 
que atendía solamente a la curvatura métrica de los diferentes 
espacios y las propiedades que de ello se derivaban. Riemann de­
mostró que el espacio euclídeo -y con él, la geometría euclídea 
que lo define- era un caso particular de espacio de curvatura 
constante y valor cero. En este tipo de espacio los ángulos de un 
triángulo suman 180º, pero hay otros. Por ejemplo, está el espacio 
esférico, donde los ángulos de un triángulo suman más de 180º y 
que posee una curvatura positiva, o el hiperbólico donde, como ya 
hemos visto, los ángulos de un triángulo suman menos de 180º y 
que posee una curvatura negativa. 

«Por amor de Dios te lo ruego, olvídalo. Témelo como a las 
pasiones sensuales, porque, lo mismo que ellas, puede llegar 
a absorber todo tu tiempo y privarte de tu salud, de la paz 
de espíritu y de la felicidad en la vida.» 
- FARKAS BOLYAI EN UNA CARTA A su HIJO JANos AL ENTERARSE DE QUE ESTE HABÍA 

E~IPRENDIDO SU MISMA TAREA : PROBAR EL POSTULADO EUCÜDEO DE LAS PARALELAS. 
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LA VALIDEZ DE LA GEOMETRÍA EUCLÍDEA 

La aparición de estas geometrías alternativas provocó un debate 
filosófico que se puede resumir con las palabras del artículo póstu­
mo del lógico alemán Gottlob Frege, «Sobre geometría euclídea»: 

Nadie puede servir a la vez a dos señores. No es posible servir a la 
verdad y a la falsedad. Si la geometría euclídea es verdadera, enton­
ces la geometría no euclídea es falsa. Y si la geometría no euclídea 
es verdadera, entonces la euclídea es falsa. [ ... ] ¡Dentro o fuera! ¿A 

cuál hay que arrojar fuera, a la geometría euclídea o a la no euclídea? 
Esa es la cuestión. 

Y sin embargo, no es tan simple. Porque si trabajamos bajo la 
hipótesis de que una geometría es cierta - la euclídea, por ejem-
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LA TRACTRIZ Y LA PSEUDOESFERA 

Si se parte de una tractriz -la curva 
de los puntos cuya distancia sobre 
la tangente desde el punto al eje OY, 
es constante, figura de la izquierda­
Y se hace girar alrededor de OY (su 
asíntota), se obtiene la pseudoesfe­
ra, el primer modelo de la geometría 
hiperbólica. 

y 

X 

plo- , en su seno podemos «fabricar» superficies -la esfera, por 
ejemplo- cuya geometría es elíptica y otras -el patio de casa, 
pero bien construido: el primer ejemplo que se dio fue la pseu­
doesfera de Eugenio Beltrami (1835-1900)- cuya geometría es 
hiperbólica Lo mismo ocurre si se admite la validez de cualquiera 
de las otras dos geometrías. Es decir, la validez de una implica la 
validez de las otras ya que en el seno de cualquiera existen super­
ficies o espacios en los cuales son válidas las otras. 

En 1899, Hilbert escribió los Principios de geometría, en los 
que «reescribió» los Elementos de Euclides pero, ahora, bien fun­
damentados y sin recurrir a la intuición ni a los dibujos. Los obje­
tos básicos - ya sean «puntos, rectas y superficies» o «sillas, 
mesas y jarras de cerveza», en palabras de Hilbert- quedaban 
definidos por los axiomas que establecen las relaciones que exis­
ten entre ellos y por nada más. 

No obstante lo dicho, es curioso observar que Euclides esco­
gió como geometría «verdadera» -en lugar de, por ejemplo, la 
esférica- una geometría ideal, es decir, una que se sostiene en 
construcciones que solo son válidas en tanto que expresiones 
puras que trascienden la experiencia. Solo puede aducirse como 
razón para ello una cierta vena platónica en Euclides que le em­
pujó a reconocer tácitamente la existencia de esta geometría 
ideal, como tal no sujeta a otra realidad que la implicada en la idea 
misma de geometría. 
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Y LA GEOMETRÍA DEL UNIVERSO ES ... 

Pero en el universo la geometría está vinculada a la superficie, es 
decir, a los objetos geométricos objeto de estudio. Imaginemos 
que, cual Arquímedes modernos, mientras nos hallamos en la ba­
ñera queremos hacer geometría dibltjando rectas en las paredes 
de la misma: unas serían rectas en el sentido euclídeo -en el 
fondo de la bañera-; otras estarían curvadas hacia arriba -las 
que van del fondo a las paredes laterales-; otras hacia abajo 
-las que van de la pared al borde superior-. Hagámonos ahora 
la pregunta siguiente: ¿Por qué unas tienen derecho a ser llamadas 
líneas rectas y las otras no? Además, en la geometría de la bañera, 
las líneas se deforman al desplazarse y pasan de rectas sin torsión 
a rectas con torsión. 

En la teoría de la relatividad general, Einstein establece que, 
cuando hay grandes masas o energías, el espacio -y consiguien­
temente las rectas- se deforman: piénsese en una pesada bola 
de plomo en el centro de la superficie de un gran timbal; la mem­
brana del timbal se deforma -se curva- y una bola más pequeña 
que estuviese girando alrededor del borde del bombo «caería» en 
espiral hacia el centro. En el espacio ocurre algo similar: las gran­
des masas, como la bola de plomo del ejemplo, curvan el espa­
cio-tiempo afectando así al resto de masas. El espacio, pues, es 
análogo a la superficie del planeta Tierra, que tampoco es uni­
forme. Y, sin embargo, nadie niega que, globalmente, la superficie 
de la Tierra es esférica. 

Cabe, pues, preguntarse: ¿Cuál es la geometría del universo? 
Si bien las grandes masas o energías alteran localmente su geome­
tría, el universo ¿es globalmente euclídeo, hiperbólico o elíptico? 
La respuesta hay que buscarla fuera de la matemática porque a sus 
ojos las tres geometrías son válidas. Las tres se establecen formal­
mente y si una es consistente, las otras también lo son. La res­
puesta pues hay que buscarla en la «realidad»: la bañera no sirve; 
es tan artificial como los resultados matemáticos. 

Hace más de un siglo Carl Friedrich Gauss se hizo la misma 
pregunta que nos hacemos aquí. ¿Cómo es el universo? ¿Qué geo­
metría tiene? Gauss concluyó que si pudiera medir los tres ángu-
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los internos de un triángulo formado por tres estrellas lejanas, 
obtendría la geometría del universo. Sabemos que: 

Si la suma de los tres ángulos es = 180° , ¡> 180º1 

<180° 

la geometría del universo es euclidiana . 
{

elíptica (esférica)} 

hiperbólica 

Sin embargo, ni los cálculos realizados por el astrónomo y 
amigo de Gauss, Friedrich Bessel (1784-1846), ni los realizados 
por Lobachevski resultaron concluyentes. En 1981 el físico esta­
dounidense Alan Guth (194 7) introdujo el concepto de densidad 
del universo: la masa total de materia por unidad de volumen. 
Existe un valor crítico p

0
= 4. 10-27 kg/m3 que determina la natura­

leza geométrica del universo, así como su evolución futura (véase 
la tabla). 

Posibilidades para la geometría del universo 

Densidad Geometría Futuro 

>po Esférica Colapso 

=po Euclídea Expans ión suave 

<po Hiperbólica Expansión fuerte 

La masa computada hasta hoy da un 10% de p
0

• Por ahora, 
pues, el universo parece que es hiperbólico y se expande fuerte­
mente. Todo ello otorga renovada credibilidad a Galileo cuando 
escribió estas célebres palabras: 

La filosofía está escrita en este libro que se halla abierto ante nues­
tros ojos - me refiero al universo-, pero nos será del todo imposi-
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ble entenderla, si antes no somos capaces de captar el lenguaje y 
aprehender los signos con los que está escrita. Está escrita en len­
guaje matemático. Los símbolos son triángulos, círculos y otros sin 
los cuales es imposible entender palabra alguna Sin su comprensión 
nos hallaríamos errando por un laberinto oscuro [ .. . ] 

Por lo que parece, hay que recurrir a la geometría para poder 
entender el universo, opinión que compartiría Isaac Newton y 
cuya máxima expresión serían precisamente sus Principia Ma­
thematica Philosophiae Universalis (1687). 

EL INFINITO EN LOS «ELEMENTOS» 

No podemos -y no debemos- olvidar la influencia que los filó­
sofos tuvieron en el pensamiento matemático griego. Una de esas 
influencias fue la de Aristóteles en relación al concepto de infinito. 
Recordemos que en la Física le dedica a este concepto una gran 
atención. Ya al principio dice: 

Melisos afirma que el ser es infinito. Pero entonces el ser sería can­
tidad, porque lo que es infinito lo es en cantidad, ya que ninguna 
sustancia puede ser infinita, ni tampoco una cualidad ni una afec­
ción, salvo que lo sea de forma accidental [ ... ] Porque, para definir 
el infinito, hemos de usar la cantidad, pero no la sustancia ni la 
calidad. Por lo tanto, si el ser es sustancia y cantidad, es dos y no 
uno. Pero, si solo es sustancia, entonces no será infinito ni tendrá 
ninguna magnitud, porque tener una magnitud sería tener una can­
tidad. 

Pero su análisis más detallado del infinito lo hace en el Libro 
III. Se pregunta por la naturaleza y la existencia del infinito y por 
los tipos de infinitos. Tras un análisis filosófico detallado concluye 
que hay «un infinito por adición» para los números (aritmética) y 
otro «por divisón» para las magnitudes (geometría). Ambos infi­
nitos «son -existen- en potencia», jamás «son -existen- en 
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acto». Es decir, en ciencia el infinito no existe como totalidad; 
ningún objeto se puede considerar infinito. El infinito es solo un 
proceso generador. 

En síntesis, el infinito en acto no es, pues, aceptable ni en el 
«mundo ideal» como idea posible y mucho menos aún cuando 
se quiere aplicar al mundo de la matemática. Resta, pues, el in­
finito en potencia, que es la «posibilidad» de ir más y más lejos, 
pero siempre con un número finito de pasos. El proceso nunca 
se agota; el infinito permanece siempre en el ámbito de la posibi­
lidad. Y, en este sentido, Aristóteles es contundente cuando hace 
referencia a la necesidad que los matemáticos puedan valerse del 
infinito en acto: 

Mi argumento no les quita nada a los matemáticos en su estudio, a 
pesar de que niegue la existencia del infinito en su sentido de exis­
tencia actual, entendiéndolo como algo que crece de una manera que 
ya no sea posible de ir más allá porque, de hecho, no precisan ir al 
infinito ni usarlo; solo precisan que el infinito - por ejemplo, la rec­
ta- pueda ser tan largo como sea preciso. Por lo que a las demostra­
ciones se refiere, entre una cosa y la otra, no hay diferencia alguna. 

La cuestión -muy importante desde el punto de vista meto­
dológico en el ámbito matemático que ocupa la actividad de Eucli­
des- es la siguiente: ¿ Tiene razón Aristóteles cuando dice que su 
«filosofía» del infinito no afecta al matemático? ¿Hasta qué punto 
Euclides respeta al estagirita y hasta dónde se ve obligado a con­
culcar la limitación aristotélica? Por lo que al respeto se refiere, 
Euclides considera que las «rectas» son «segmentos rectilíneos» 
y sus extremos --que existen- son puntos; es decir, las rectas 
son finitas. Define solamente los segmentos rectilíneos y estas son 
las rectas que maneja. Y, en el postulado 5, evita tener que recurrir 
al paralelismo que, como veremos en seguida, involucra el infinito. 

En el ámbito de la aritmética y, en concreto, en la proposición 
20 del Libro IX, dice: 

Hay más números primos que cualquier cantidad.finita de 
números primos. 
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El enunciado le permite a Euclides una demostración directa; 
en cambio, si hubiese aceptado el infinito en acto, corno por otro 
lado se hace hoy en las escuelas, se habría visto obligado a dar una 
demostración indirecta. Este es uno de los problemas que, en mu­
chas ocasiones, plantea el infinito: nos obliga a recurrir a 
demostraciones indirectas, por reducción al absurdo. 

A continuación, comprobaremos las diferencias metodológi­
cas entre ambos tipos de demostración. Empezaremos por la di­
recta, partiendo del enunciado euclídeo. 

Supongamos una cantidad finita de números primos: a, b, .. . , 
m . Consideremos el número N = ( a x b x ... x m) + l. En el caso de 
que N fuese primo, habría un número primo distinto de a, b, . .. , m. 
En cambio, si N fuese un número compuesto - no primo-, ten­
dría un divisor primo (Libro VII, proposición 32) y, por la cons­
trucción de N, debería ser diferente de cada uno de los primos a, 
b, .. . ,m. 

Abordaremos ahora la demostración indirecta. Partiremos 
para ello de un enunciado alternativo de la proposición 20: 

Hay infinitos números primos. 

En caso contrario, habría una cantidad finita a, b, .. . , m que 
contendría la «totalidad» de los números primos. Si copiáramos 
ahora la demostración anterior, obtendríamos un número primo 
distinto de a, b, . .. , m; luego, a, b, .. . , m no serían «todos». 

Ahora bien, Euclides no puede evitar completamente el infi-
nito en acto. Así, por ejemplo: 

Libro I, definición 23. Dos rectas paralelas son las que, 
hallándose en un mismo plano, prolongadas indefinidamente 
no se cortan por ningún lado. 

En la definición aparece de forma explícita el término «inde­
finidan1ente», que implica el infinito en acto. Además, ya en el 
Libro I, hay dos proposiciones en las que lo emplea también de 
forma explícita; en el enunciado, en la primera, y en la demostra­
ción, en la segunda. Se trata de dos problemas: 
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Libro I, proposición 12. Por un punto exterior a una recta 
indefinida tirarle una perpendicular (figura 6). 

Libro I, proposición 22. Construir un triángulo dados sus 
tres lados (figura 7). 

¿ Cuál es la razón que lleva a Euclides a sortear la limitación 
aristotélica del infinito en acto? La respuesta es simple. Pretende 
que lo que establece «sea general»; es decir, no dependa de la 
particularidad que el dibttjo pudiera sugerir. Conviene que la recta 
a la que queremos tirar la perpendicular sea lo suficientemente 
larga para poder garantizar que el punto se halla encima de ella, 
con independencia del punto «concreto» del dibujo. En el otro 
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caso, debe llevar los tres lados dados encima de una recta; hace 
falta que la recta los pueda contener con independencia de la 
longitud «concreta» de cada caso particular; por ello precisa de 
una semirrecta infinita. Por lo tanto, en cierta medida, la limi­
tación de Aristóteles «les quita» algo a los matemáticos en su 
quehacer. 

Pasarían nueve siglos desde que Aristóteles impusiera limi­
taciones al uso del infinito y que Proclo escribiera sus Comenta­
rios del Libro I de los Elementos de Euclides y diera su propia 
opinión al respecto. Lo hace en el marco de su análisis de la pro­
posición 12 del Libro I: 

Conviene examinar de qué manera el infinito posee, en general, un 
fundamento. Es manifiesto que, si una recta es infinita, el plano que 
la contiene también será infinito, y esto en potencia efectiva [ ... ] 
Queda, pues, la posibilidad que el infinito exista en la imaginación 
sin que la imaginación conciba· el infinito, porque la imaginación 
concibe y aplica a la vez una forma y un límite a todo lo que concibe 
[ ... ] La imaginación no concibe el infinito sino que, hallándose con 
una incerteza respecto de este objeto, suspende todo pensamiento 
ulterior y llama infinito todo lo que repudia como algo que no puede 
ser ni medido ni abrazado por la concepción [ ... ] La imaginación 
crea, pues, el infinito por la potencia indivisible de poder progresar 
sin fin y, en lugar de concibir el infinito, lo concibe como supuesto 
[ .. . ] De manera que si coloca la recta infinita en la imaginación de la 
misma manera que las otras figuras geométricas [ ... ] no nos sorpren­
de que esta recta sea infinita en potencia efectiva y que, tomada de 
forma indeterminada, se aplica a los conceptos determinados. 

Por otro lado, el conocimiento razonado, del cual provienen 
los razonamientos y las demostraciones, no usa el infinito en la cien­
cia[ ... ]. No admite el infinito en relación con lo infinito; lo admite 
en relación con lo finito [ ... ] De lo cual, si sacamos partido del de­
fecto que supone la certeza de que la imaginación tiene limitaciones 
y que ello constituye el fundamento de la generación del infinito, 
entonces la ciencia supone la existencia del infinito a fin de que, 
conservando la línea finita, pueda usar de esta existencia de mane­
ra impecable e incontrovertible. 
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Con este texto se avanza muchos siglos en la tarea de «pensar 
el infinito». No obstante, hubo que esperar a las aportaciones fun­
damentales de los alemanes Richard Dedekind (1831-1916) y, 
sobre todo, de Georg Cantor (1845-1918) - apenas cincuenta años 
después de que Lobachevski y Bolyai se desembarazaran del 
quinto postulado- para que la matemática abrazara el infinito en 
acto y se acabara así con una tradición filosófico-matemática de 
más de dos mil años. 
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CAPÍTULO 4 

La técnica del tángram 
en los «Elementos» 

Uno de los logros más notables de la geometría china 
es el uso del tángram para generar figuras de formas 
distintas pero de la misma superficie. Esta técnica, 

desarrollada de forma independiente por los geómetras 
griegos, adquirió, por generalización, una potencia 

deductiva enorme. En concreto, permitió a Euclides 
demostrar uno de los teoremas paradigmáticos 
de la geometría griega -el famoso teorema de 

Pitágoras-, así como resolver cuestiones 
milenarias heredadas de los mesopotámicos. 





El tángrarn chino clásico es un método geométrico elemental que 
se sustenta sobre la base conceptual siguiente: 

Dos figuras realizadas con exactamente las mismas piezas tienen la 
misma superficie. 

Su nombre original es qi qiao ban y significa «las siete tablas 
de la sabiduria». Conocido en su país de origen desde tiempo in­
memorial, en el siglo XIX fue introducido en Occidente como un 
juego lúdico de disección y como tal se encuentra hoy día exten­
dido en todo el mundo. En su forma de partida, las siete piezas que 
lo integran suelen disponerse en forma de cuadrado (véase la fi­
gura 1, en la página siguiente). Por tanto, todas las formas que 
puedan construirse con la totalidad de las piezas poseen la misma 
superficie que el cuadrado original (figura 2). 

Esta propiedad permite, entre otras muchas cosas, dar una 
«mostración» del valor de la diagonal de un cuadrado. Así, el cua­
drado de partida puede descomponerse en otros dos de la misma 
superficie (figura 3). De este modo se constata que con la diagonal 
del cuadrado de la derecha de esta última figura se puede cons­
truir otro (el de partida) cuya superficie es el doble. Se trata de 
una «mostración» porque se basa en la simple observación de las 
figuras sin ningún recurso a principio lógico-deductivo alguno. 
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Se trata de un razonamiento 
que está estrechamente vinculado 
al texto que Platón ofrece en el 
Menón, un diálogo sobre la remi­
niscencia, en el cual Sócrates 
«muestra» que el esclavo sabe lo 
que no sabe que sabe, pero lo sabe. 
En él, Sócrates hace un razona­
miento análogo al siguiente: sea 
un cuadrado dado ( el de trazo más 
grueso, según se muestra en la fi­
gura 4). Repitámoslo cuatro veces: 
obtenemos el cuadrado de lado 
guionado de la misma figura. Se­
guidamente, hagamos la diagonal 
del cuadrado dado y, con ella, un 
cuadrado: el de lado punteado. 
Está claro que el cuadrado tiene 
una superficie igual a la de dos 
cuadrados como el inicial. 

Es el mismo recurso que el del 
tángram: se manipulan con trián­
gulos rectángulos isósceles como 
los que determina la diagonal del 
cuadrado tángram de partida. 
Euclides se sirve a menudo del mé­
todo del tángram generalizado en 

el seno de su geometría ( es decir, la que depende del postulado de 
las paralelas). Así, lo emplea en la aplicación de áreas al dividir un 
segmento de manera que las partes generen un rectángulo con una 
superficie menor, mayor o igual que la de un cuadrado dado y, en 
particular, en la resolución geométrica de un problema mesopotá­
mico que conduce a la resolución de las ecuaciones de segundo 
grado; en la cuadratura de los polígonos multiláteros lineales 
-construir un cuadrado que tenga la misma superficie que el po­
lígono multilátero- y, finalmente, en la determinación del seg­
mento áureo, operación consistente en dividir un segmento en dos 
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partes tales que la parte menor junto con el segmento entero for­
men un rectángulo que tenga la misma superficie que el cuadrado 
que genera la parte mayor en que ha quedado dividido el segmento. 

Euclides disponía de una herramienta básica -el parale-
lismo- que le permitió demostrar resultados como: 

Libro I, proposición 29. Los dngulos correspondientes son 
iguales. 

Libro I, proposición 32. Los dngulos de un tridngulo 
suman dos rectos. 

FIG. 3 

FIG. 4 ---------------
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Libro I, proposición 34. Segmentos paralelos entre parale­
las son iguales. 

El primero y el tercero permiten efectuar una descomposición 
por el método del tángram generalizado, que consiste en aplicar la 
metodología tángram pero sin limitarnos a las piezas originales. 
Para ello se precisan teoremas que establezcan la igualdad de las 
superficies de tales figuras. Estos teoremas son los siguientes: 

Libro I, proposiciones 35 y 36. Los paralelogramos con 
bases iguales [ congruas J y contenidos entre las mismas pa­
ralelas son iguales. 

Libro I, proposición 37. Los triángulos ccm bases iguales [ ccm­
gruas] y ccmtenidos entre las mismas paralelas son iguales. 

La figura 5 es una imagen asociada a las proposiciones 35 y 36 
del Libro l. 

Euclides afirma que los paralelogramos o BC y o IH tienen la 
misma superficie. En el lenguaje aritmético-algebraico de las es­
cuelas actuales, frente a esta afirmación diríamos que ¡es evidente! 
Tienen la misma base y la misma altura y la superficie se obtiene 
multiplicando estas dos cantidades ( esta última afirmación, sin 
embargo, habría que demostrarla). Ahora bien, la geometría griega 

o J 

A e G H 
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maneja magnitudes -esto es, segmentos rectilíneos- que, a 
causa de la inconmmy;urabilidad, no tienen longitud. La incon­
mensurabilidad hace que pueda suceder que uno - o ambos­
segmentos·no sean medibles ( una cuestión que se tratará con más 
detalle en el capítulo 5). En consecuencia, hay que recurrir a algún 
tipo de estratagema para demostrar que ambas superficies son 
iguales. Euclides recurrió a la noción común l. Si conseguía de­
mostrar que los paralelogramos o BC y o AJ --que comparten 
una misma base- eran iguales y que el segundo era igual al para­
lelogramo o IH --con el cual comparte una base-, entonces los 
paralelogramos o BC y o IH también serían iguales. 

«¿Un punto marca el final de una línea o su principio? 
Quién lo sabe. Nadie.» 

- Mo J1NG (Moz1) ( 479-372 A.C.). 

Empecemos con la primera cuestión. Euclides analiza las pie­
zas - método del tángram chino- y aplica las nociones comunes 
2 y 3. Los triángulos 6.BAI y 6.DCJ constan de una pieza blanca y 
de una pieza común gris claro. Si, de ambos triángulos, quitamos 
la pieza común -«de iguales quitan10s iguales»- resulta, respec­
tivamente, que los cuadriláteros BAMD y IMCJ son iguales aun 
cuando no tengan idéntica forma. A estos dos cuadriláteros les 
añadimos ahora el triángulo común 6.AMC (gris oscuro). Puesto 
que, «a iguales hemos añadido iguales», resulta que los paralelo­
gran1os o BC y o AJ - con base común AC- son iguales. 

¿ Qué düerencia hay entre el caso que acabamos de demostrar 
y el caso general de los enunciados de las proposiciones 35 y 36 
del Libro I? La diferencia radica, como ya hemos apuntado, en 
que, en este caso, las bases no solo son iguales, sino que son la 
misma: comparten una base ( en el par o BC y o AJ, el segmento 
AC, y en el par o AJ y oIH, el segmento IJ). 

Para la demostración anterior Euclides debió recurrir a la 
proposición 4 del Libro I ( criterio LAL), que establece la igualdad 
de los 6.BAI y 6.DCJ . Para ello precisó de ciertas propiedades las 
cuales dependen del postulado de las paralelas ( en particular de 
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las proposiciones 34 y 29 del Libro 1). Una vez establecido este 
resultado, Euclides pudo en adelante usar el método del tángram 
con piezas que no se superponen pero que tienen la misma super­
ficie. Esta es la idea del tángram generalizado que Euclides usó 
con una gran maestría. La proposición 37 del Libro I es un simple 
corolario de las anteriores, ya que todo se reduce a ver que los 
triángulos tienen una superficie que vale exactamente la mitad de 
un paralelogramo (figura 6). 

«El cerebro no es un vaso que hay que llenar, 
sino que es una lámpara que hay que encender.» 
- PLUTARCO. 

94 

Euclides, como antes hicieran otros geómetras griegos, ilu­
minó y acrecentó la geometría por generalización de resultados 
simples y evidentes. En el caso que nos ocupa, estableció -sin 
exponerlo de forma explícita sino usándolo en las demostracio­
nes- que con piezas de forma distinta -paralelogramos o trián­
gulos- podemos computar superficies. 

Otro elemento geométrico que permitió a Euclides usar el mé­
todo del tángram generalizado es el gnomon. El romano Herodoto 
lo menciona en un sugestivo pasaje del Libro II de su Historia: 

Sesostris hizo el reparto de los campos, dando a cada egipcio su 
suerte cuadrada y medida igual de terreno; providencia por cuyo 
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medio, imponiendo en los campos 
cierta contribución, logró fijar y 
arreglar las rentas anuales de la co­
rona. Con este orden de cosas, si 
sucedía que el rio destruyese parte 
de alguna de dichas suertes, debía 
su dueño dar cuenta de lo sucedido 
al rey, el cual, informado del caso, 
reconocía de nuevo por medio de 
sus peritos y medía la propiedad, 
para que, visto lo que había desme­
recido, en adelante, contribuyese 

FIG. 7 

A 

menos al erario a proporción del terreno que le restaba. Nacida de 
tales principios en Egipto la geometria, opino que pasarla después a 
Grecia, conjetura que no es extraña, pues los griegos aprendieron 
de los babilonios el reloj , el gnomon y el repartimiento civil de las 
doce horas del día. 

Euclides definió el gnomon en el Libro II, si bien ya en el 
Libro I había establecido la propiedad que lo hace tan útil. En 
primer lugar, la definición: 

Libro II, definición 2. En toda superficie de un paralelo­
gramo se Uama gnomon uno cualquiera de los paralelogra­
mos situados en torno de la diagonal junto con los dos 
complementos. 

Y su interesante propiedad: 

Libro I, proposición 43. En toda superficie de un paralelo­
gramo, los complementos de los paralelogramos situados en 
torno de la diagonal son iguales entre sí. 

Según se muestra en la figura 7, el gnomon -de acuerdo con 
la definición 2 del Libro 11- es la figura gris, formada por cuatro 
trozos: los dos paralelogramos oIH, oGC y los dos triángulos 
6.IGD, 6.JDG, evidentemente iguales. Basta observar que los trián-
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gulas en que la diagonal divide al paralelogramo son iguales y los 
triángulos blancos y grises oscuro también lo son en virtud de los 
criterios de igualdad de triangulas; se aplica entonces la noción 
común 3. Así pues, piezas diferentes -que no se pueden superpo­
ner- tienen la misma superficie: ya tenemos adecuadamente es­
tablecido el método del tángram generalizado. 

LA DEMOSTRACIÓN DEL TEOREMA DE PIT ÁGORAS 

El juego del tángram, por generalización, permitió a Euclides ofre­
cer una demostración muy elegante -y, a la vez, muy original­
del teorema de Pitágoras. 

Demostración de Euclides de la proposición 4 7 del Libro I: 

Teorema de Pitágoras. El cuadrado sobre la hipoten'usa 
BC del triángulo rectángulo 6.ABC tiene la misma superfi­
cie que los cuadrados sobre los catetos AB, AC juntos. 

Como se observa en la figura 8, por el vértice A se traza una 
perpendicular a la hipotenusa BC y se prolonga hasta que corta 
al lado opuesto HI del cuadrado • BI. Se obtienen así los dos 
rectángulos • CJ, • BJ. Hay que probar que el rectángulo • CJ 
es igual al cuadrado • AD y el rectángulo • BJ, al cuadrado • AG. 
Para ello Euclides construye los triángulos 6.ACI, 6.DCB. Son 
iguales por el criterio LAL, como se constata con facilidad: tienen 
dos lados iguales (congruos) y el ángulo que comprenden tam­
bién (noción común 2). Ahora bien, el triángulo 6.ACI comparte 
el lado CI con el rectángulo • CJ y tiene el vértice A en la misma 
paralela, AJ, en que el rectángulo • CJ tiene el lado opuesto KJ 
al lado CI. Luego, la superficie del rectángulo • CJ tiene la super­
ficie doble que el triángulo 6.ACI. Análogamente, el cuadrado 
• AD tiene una superficie que es dos veces la del triángulo 6.DCB. 
Por consiguiente, el cuadrado • AD tiene la misma superficie que 
el rectángulo • IK, que es la primera igualdad que buscábamos. 
Por analogía, el cuadrado • AG tiene la misma superficie que el 
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rectángulo • BJ, que es la segunda. 
Finalmente, por la noción común 2 
el teorema queda probado. 

EL T ÁNGRAM GENERALIZADO 
EN EL LIBRO 11 

FIG.8 

F G 

FIG.9 

b e d e 

. • • • • --

El ténnino «álgebra geométrica» ha 
sido motivo de discusión y de desa­
cuerdo, pero es útil por su brevedad. 
Se trata de «establecer» resultados 
relativos a superficies de rectángu­
los y cuadrados expresados en el 
lenguaje numérico del que fueron 
pioneros figuras como Diofanto de 
Alejandría o los matemáticos ára­
bes. Por ejemplo, la muy conocida 
distibutividad del producto res­
pecto de la suma; esto es, la expre­
sión algebraica ax (b + e+ d+ .. . ) = 
= (ax b) +(axe)+ (ax d) + ... expre­
sada en términos geométricos, 
como corresponde a los Elementos, 
dice: 

Libro 11, proposición l. Si 
tenemos dos rectas y una de 
ellas se corta en un número 

L_-BG B_ .. d G 
arbitrario de partes, el rectángulo comprendido por las dos 
rectas es igual a los rectángulos comprendidos por la recta 
no cortada y cada uno de los segmentos (figura 9). 

De forma análoga, se establecen otras identidades algebrai­
cas como por ejemplo: (a±b)2=a2+b2 ±2ab, (a + b) x (a-b) =a2-b2, 

etc. Nos fijaremos solo en la identidad (a+b) x (a - b)=a2-b2
, la 
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FIG. 10 

b ,-, 

a 

cual, de hecho, no se enuncia explí­
citamente de esta manera. Nos val­
dremos para ello de una formulación 
alternativa de la proposición 5 del 

F __ ..,H ________ D Libro II. Partamos de la figura 10. 

N 

Vamos a «trocear» el rectán­
gulo • HJ . En primer lugar, usarnos 
la propiedad del gnomon para esta­
blecer que los rectángulos • FN y 

a : • NB tienen la misma superficie. 

K-----------B 

Además, por construcción, el rec­
tángulo • NB tiene la misma super­
ficie que el rectángulo • BI ya que 
DB=DF=a, BJ=FH=b, DJ=a+b, 
JI =DH = a-b. Entonces tenernos G 

L 

FIG. 11 

F 

G 

J 

E 

e 

A B 

b que el rectángulo • HJ se compone 
del cuadrado • KD (que es a 2) 

puesto que los rectángulos • GJ y 
• FN son iguales pero sobra el cua­
drado • MG ( que es b2). 

Una segunda aplicación del 
tángrarn permite comprobar que 
las figuras de múltiples lados rec-
tos se pueden transformar en un 
cuadrado de igual superficie. Para 
ello, reduciremos paso a paso el 
número de lados de la figura multi­
lateral (también llamada poligonal) 
hasta obtener un triángulo. Obser­
vemos una figura poligonal rectílí-
nea ABCDEFG (figura 11). Unirnos 
dos vértices cualquiera de entre los 

separados por otro vértice corno, por ejemplo, los vértices D y 
F. Por el vértice E tirarnos una paralela. Prolongarnos el lado 
CD hasta cortar la paralela en l . Unirnos I con F. Los triángu­
los t::,,JFD y 6.EFD tienen la misma superficie (Libro I, proposi­
ción 35). Resulta, pues, que las figuras poligonales ABCDEFG y 
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ABCIFG tienen la misma superficie, pero la segunda tiene un lado 
menos que la primera. Si repetimos el proceso llegaremos a un 
triángulo con la misma superficie que la figura rectilínea inicial. 
En consecuencia, toda figura poligonal rectilínea es triangulable. 

A continuación, se comprueba que todo triángulo se puede 
convertir en un rectángulo de la misma superficie, es decir, que 
todo triángulo es rectangulable. La figura 12 habla por sí sola. 

Queda el último paso: Todo rectángulo es cuadrable (Libro II, 
proposición 14). Supongamos que nos dan un rectángulo • AD y 
queremos convertirlo en un cuadrado. Observemos la figura 13. 
Llevamos el lado CD a continuación del lado AG. Dividimos el seg­
mento AB por la mitad mediante el punto G. Con centro en él y 
radio GB tiramos media circunferencia. Levantamos la semicuerda 
FC perpendicular a AB en el punto C. El segmento FC produce un 
cuadrado de la misma superficie que el rectángulo inicial. 

Hasta aquí la construcción, que puede llevarse a cabo con 
regla y compás en todos sus pasos. Cabe demostrar que FC 
cumple lo que se busca. Si tomamos 

FIG.13 

/ 

/ 

' F 
I ' 

/ ' 
/ 

I 

/ 
r / I \ 

I 
/ 

/ 

\ 

1 

/ 1 

los segmentos r[ = GF=AG= GB] y 
s [ = GC], veremos que el rectángulo 
tiene una superficie igual a (r + s) (r-s ), 
cuyo valor es igual a r 2-s2. Ahora bien, 
FC es un cateto del triángulo rectán­
gulo 6.FCG. Y, por el teorema de Pitá­
goras, su cuadrado vale r 2-s2• Por 
tanto, el rectángulo • AD es igual al 
cuadrado FC, que es la equivalencia 
que buscábamos. Euclides procedió de 

A ______ G_✓-----.:a 
e s 

E D 
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FIG. 14 

a 

a+b 

FIG. 15 

b 

esta forma usando tángram; nosotros 
hemos recurrido a la expresión alge­
braica para simplificar la exposición, 
pero sin falsearla. 

LA RAZÓN ÁUREA 
G-------. 

A 
E 

/, 

' ' ' \ 

\ 

Se conoce como «razón áurea» la que 
guardan dos segmentos a, b tales que la 
suma de sus longitudes, a+ b, guarda con 
el segmento más largo a, la misma pro­
porción que a guarda con b (figura 14). 

Debe su poético nombre a su - solo 
supuesta- presencia en numerosas 
construcciones arquitectónicas y otras 
obras artísticas, a las que aporta, siem­
pre según algunos autores, una gran 
armonía. También se la conoce con los 
apelativos de segmento áureo ( en cuyo 
caso está implícito un segmento de 
mayor tamaño de referencia), razón 

o-------J----c dorada, número áureo, proporción 
áurea, divina proporción o, en la termi­
nología propia de Euclides, media y 
extrema razón. Se denota con la letra 

griega phi ( <I>) y tiene como valor: 

<1> = l + .J5 = 1, 6180339887 49894848204586834365638117720309 ... 
2 

Se trata de un número irracional, es decir, que no puede ser 
expresado como fracción de ningún par de números enteros. 
Desde un punto de vista geométrico, construir un segmento áureo 
exige dividir un segmento dado AB por un punto E de manera que 
el cuadrado sobre la parte mayor AE coincida con el rectángulo 
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LA ESTRELLA PITAGÓRICA 

Euclides se sirvió de la razón 
áurea en un paso intermedio de 
la construcción del pentágono 
regular; en concreto, para ob­
tener un triángulo isósceles que 
tenga ángulos en la base dobles 
que el ángulo en el vértice. Se 
trata de una construcción sor­
prendente que solo se expli­
ca en el caso de que Euclides 
se enfrentara a un pentágono 
ya construido -y por tanto, 
«ideal»-, y del análisis de t al 
figura concluyera que necesita­
ba del triángulo mencionado; en 

E 

o 

' 1 

1 

1 

''-/f \ / 
' / "\ 

' / 1 ' / ,,, 1 

A ~ 

/ 

B 

consecuencia, estamos frente a un nuevo ejemplo de combinación de análisis 
y síntesis sobre el que llamábamos la atención en el segundo capítulo. En efec­
to, si se observa la figura del pentágono, se ve que dos diagonales y uno de 
sus lados forman un triángulo isósceles cuyos ángulos en la base son dobles. 
Asimismo, dos diagonales -EB y AD en la figura- se cortan en un punto F 
que divide cada una de dichas diagonales en media y extrema razón. El pen­
tágono regular pudo tener especial relevancia para la escuela pitagórica, que 
se dice tenía como distintivo la estrella pentagonal que se obtiene trazando 
las diagonales de la figura (lineas discontinuas). 

que se obtiene con el segmento menor EB y el segmento inicial 
(Libro II, proposición 11 ), según se observa en la figura 15. 

EL RECTÁNGULO ÁUREO 

El segmento áureo permite construir un rectángulo cuyos lados 
son el segmento inicial AB y la parte más larga de la división áurea, 
AE, y que recibe en consecuencia el apelativo de rectángulo áureo. 
En la figura 15 se observa que, en efecto, el punto E divide AB en 
media y extrema razón. Este rectángulo tiene la particularidad de 
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Los cinco sólidos 
platónicos. 

De izquierda 
a derecha: 
tetraedro, 
octaedro, 

icosaedro, cubo 
y dodecaedro. 
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que puede autorreproducirse me­
diante el proceso siguiente (figura 
16): la parte pequeña BE divide, a su 
vez, a la grande AE en media y ex­
trema razón pasando a ser ahora la 
parte grande en la nueva división 
(véase el punto J que divide el seg­
mento BH( =AE) en media y extrema 
razón). El rectángulo AH es un rec­
tángulo áureo, EH otro, LH otro, 
etc., ad infirútum. 

EL RECTÁNGULO ÁUREO Y EL DODECAEDRO 

Los Elementos concluyen con la «construcción» de los cinco sóli­
dos platónicos y con la demostración de que solo existen estos 
cinco. Platón, en su Timeo, establece la clasificación de los ele­
mentos de la naturaleza en base a cinco sólidos (figura 17): el te­
traedro es elfuego, por su ligereza; el cubo o hexaedro es la tierra, 
por su estabilidad; el octaedro es el aire, por su inestabilidad; el 
icosaedro es el agua, por su fluidez, y el dodecaedro, el elemento 
del cosmos, la quinta esencia, por ser el elemento de los dioses. 
Al respecto de estas construcciones, Euclides afirma: 

Libro XIII, proposición 18. Afirmo que ninguna otra fi­
gura sólida, distinta de las anteriores, se puede construir 
configuras equiláteras y equiangulares. 

- -~ ---- - ------------~ 
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EL RECTÁNGULO ÁUREO EN DOS OBRAS MAESTRAS 

Se afirma en ocasiones que la proporción áurea asoma en numerosas obras 
de arte. A modo ilustrativo se dan aquí dos ejemplos: el Partenón de Atenas 
y Las meninas de Velázquez. Incluso cuando el arte rompe los estándares 
de la herencia clásica -en el cubismo de la pintura, por ejemplo-, el rectán­
gulo se mantiene como elemento estructurador del cuadro. El Partenón es 
uno de los principales templos dóricos que se conservan, y fue construido 
entre los años 447 y 432 a.c. Sus dimensiones aproximadas son 69,5 m de 
largo por 30,9 m de ancho; las columnas tienen 10,4 m de altura. Está dedi­
cado a la diosa griega Atenea, a la que los atenienses consideraban su pro­
tectora . En cuanto al lienzo de Velázquez, sus medidas son 318 x 276 cm, y 
fue pintado en 1656. Como puede observarse en las imágenes, las propor­
ciones de muchos elementos clave de 
ambas obras dibujan varios rectángu­
los áureos. De todos modos, hay que 
precisar que, si bien no existe cons­
trucción, lo contrario sería demasiado 
casual. 

Demostración. Imaginemos en el papel un punto y circun­
démoslo de 3, 4 o 5 triángulos equiláteros, 3 o 4 cuadrados y 
3 pentágonos. El punto del plano no admite más, si contamos 
los grados de los ángulos. Luego no puede haber más sólidos 
regulares que los que provienen de estos casos. 

Pero, ¿existen los cinco? La construcción de los tres primeros 
es relativamente sencilla; la del icosaedro y del dodecaedro, en 
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cambio, son complejas. Euclides las ofrece y además da la arista 
en función del diámetro de la esfera circunscrita. Constituyen las 
proposiciones 13 a 17 del Libro XIII. Todo se reduce a ver cómo 
se construye el círculo que circunscribe una cara del sólido, una 
construcción fruto del análisis. Como ejemplo, veamos la cons­
trucción de la cara del tetraedro regular (véase la figura). 

Dividimos el diámetro AB de la esfera por un punto C de ma­
nera que AC=2 BC. Tiramos una perpendicular a AB por C hasta 
que corte la semicircunferencia ABD en el punto D. Con radio CD 
trazamos una circunferencia y consideramos el triángulo equilá­
tero inscrito en ella. Se obtienen tres puntos E, F, G. Por el centro 
H del triángulo t:i.EFG levantamos una perpendicular al plano que 
lo contiene HK igual a AG. Unimos K con los vértices E, F, G y 
obtenemos el tetraedro. Nuevamente se observa que para lograr 
esta construcción previamente se tiene que haber realizado un 
«análisis» en el sentido expuesto en el recuadro dedicado a la 
construcción del pentágono regular. Sin dicho análisis es imposi­
ble la construcción, puesto que no sabríamos qué hay que hacer. 

Cuando se trata del icosaedro y del dodecaedro, sin embargo, 
no es tan simple. Es por ello que Hipsicles dedicó una parte impor­
tante del Libro XIV a rehacer dichas construcciones. Pero la cons­
trucción realmente extraordinaria es la del icosaedro que ofrece 
el italiano Luca Pacioli (1445-1514 o 1517) en La divina propor-
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cion (1494), el texto que dio a la 
media y extrema razón uno de sus 
nombres más sonoros, y cuya fama 
se debe tanto a sus cualidades cien­
tíficas como a unas magníficas ilus­
traciones de poliedros obra del 
mismísimo Leonardo da Vinci. Con 
su obra maestra, Summa di arith­
metica, geometrica, proportioni et 
proportionalita, escrita con el obje­
tivo principal de racionalizar las 
prácticas contables de la época, Pa­
cioli «cerró» la matemática de los 
siglos XIII y xrv y dio paso a la era mo­

derna del álgebra. En 1507, por cierto, editó una traducción latina 
de los Elementos. Como se observa en la figura, Pacioli cortó per­
pendicularmente dos a dos por su paralela media, tres rectángulos 
áureos iguales. Luego le bastó con unir los vértices contiguos. 
Para construir el dodecaedro, unió los centros de las caras del 
icosaedro. Un ejercicio sublime de claridad conceptual. 
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CAPÍTULO 5 

La teoría de la proporción 
y el método de exhaución 

Uno de los éxitos matemáticos más notables 
de entre los salidos de la Academia platónica es la 

teoría de la proporción, atribuida a uno de los grandes 
matemáticos de la Antigüedad, Eudoxo de Cnido. 

Gracias a ella, Euclides fue más allá de las rectas y las 
circunferencias y pudo abordar los volúmenes. Otra de las 

grandes creaciones de la matemática clásica, el método 
de la exhaución, le permitió, entre otros logros, 
solucionar un problema heredado del antiguo 

Egipto: el volumen de la pirámide. 





Ya se ha expuesto que el Libro V de los Elementos es indepen­
diente de los cuatro anteriores si bien, una vez establecida la teo­
ría de la proporción de magnitudes, precisa de ellos para poder 
aplicar la teoría general a la geometría del triángulo y del círculo 
e incluso a la aritmética. Esta metodología se atribuye casi unáni­
memente a Eudoxo de Cnido. 

EL CONCEPTO DE MAGNITUD 

La primera dificultad -análoga pero más compleja que la que pre­
sentaba el concepto de recta- radica en la noción misma de mag­
nitud, que Euclides usó pero de la cual jamás estableció una 
definición. Es curioso observar que Arquímedes en cambio lo evi­
taba y solo se refería a «rectas, superficies y sólidos». La carencia 
de esta definición condujo a una discusión filosófica con importan­
tes implicaciones matemáticas. El interrogante alrededor del cual 
se prodltjo dicha discusión es: ¿son infinitamente divisibles las mag­
nitudes? Fue Zenón de Elea quien dejó una huella más profunda 
sobre dicha cuestión al plantear sus famosas aporías o paradojas. 

Zenón dio forma propia a la cuestión relativa a la magnitud, 
y se preguntó, con respecto al tiempo y al espacio: ¿son infinita-
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mente indivisibles o se componen, respectivamente, de instantes 
y de intervalos indivisibles? Ambas situaciones son, para la men­
talidad griega, inaceptables: la primera conlleva la aceptación del 
infinito en acto, algo que, en el siglo IV a.c., como ya se ha tra­
tado, sería rechazado de forma totalmente explícita y tajante por 
Aristóteles. La segunda conlleva a la paradoja siguiente: ¿cómo 
es posible que uniendo «instantes» o «intervalos indivisibles» 
-carentes, respectivamente, de tiempo o de espacio, es decir, 
nulos- se logre, respectivan1ente, un intervalo temporal o espa­
cial, no nulos? Zenón fue todavía más lejos y planteó cuatro pa­
radojas, recogidas en la Física de Aristóteles: dos de ellas surgen 
al considerar que el tiempo es atómico, compuesto de instantes 
sin tiempo; y las otras dos, por el contrario, en el supuesto de que 
la magnitud -ya sea el tiempo o el recorrido- sea infinitamente 
divisible. Vamos a reproducir dos de ellas, una de cada tipo. 

«Me encuentro constantemente con personas que dudan, 
generalmente sin razón alguna, de su capacidad potencial 
como matemáticos. La primera prueba es si comprendes 
algo de geometría. Que no gusten o encuentren dificultades 
en otros temas matemáticos no importa.» 
- JOHN E. LITILEWOOD. 
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EL APORISMO DE LA FLECHA 

Pensemos en una flecha disparada por el arco que tensara Ulises 
para mostrar que efectivamente era el esposo de Penélope, que 
había regresado a su hogar y que se proponía defenderlo del ultra­
je de los pretendientes. En un «instante» de su recorrido la flecha 
«no se mueve», pues de moverse un cierto intervalo de espacio, 
precisaría de «medio instante» para moverse la mitad de dicho 
intervalo espacial. Pero dicha «mitad» no existe, puesto que se 
está suponiendo que el «instante» es el intervalo de tiempo menor 
posible. Luego, efectivamente, la flecha no se mueve. Pero, «si no 
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ZENÓN DE ELEA 

Zenón nació en Elea, hoy en la Campania 
italiana, el 490 a.c. Es uno de los filóso­
fos llamados presocráticos. Fue discípulo 
de Parménides (570 a.C.-475 a.C.), con 
el cua l, a mediados del siglo v a.c., se 
trasladó a Atenas donde conoció, según 
el testimon io de Platón, al entonces joven 
Sócrates. Murió el 430 a.c. al intentar li­
berar su patria del tirano que la goberna­
ba. Según la leyenda, se cortó la lengua 
antes de revelar los nombres de los con­
jurados. De Sobre la naturaleza -que 
defiende las tesis de Parménides- se 
conservan cinco fragmentos que, gracias 
al comentario que Simplicio (490-560) 
hizo a la Física de Aristóteles, se consi ­
deran auténticos. Se trata de un texto 
compuesto de argumentos (logoi): en 
ellos reducía al absurdo las hipótesis de 
sus oponentes, con lo que quedaban establecidas sus tesis por rechazo de 
aquellas hipótesis (una suerte de reducción al absurdo pero apl icado al ám­
bito fi losófico). Por sus aporías se le puede considerar el padre del razona­
miento paradójico: nunca trataba de demostrar directamente las tesis de su 
maestro; utilizaba la sutileza de refutar al oponente llegando a conclusiones 
inaceptables en sí mismas. Su filosofía sostiene que solo existe el «ser» y que 
este es único e inmóvil. La pluralidad y el movimiento llevan a la inconsisten­
cia conceptual. Gracias a Aristóteles conocemos sus cuatro paradojas: de la 
flecha, de la tortuga, de la carrera y del estadio. 

se mueve en instante alguno del recorrido», ¿cómo podemos de­
cir que se ha movido del arco al pecho de Antínoo, el primero de 
los pretendientes alcanzado por Ulises? 

Se podría argumentar que, en un instante de tiempo, la flecha 
se mueve un espacio indivisible: un espacio sin espacio. Pero ello 
nos retrotraería al hecho ya expresado con anterioridad: ¿cómo 
se consigue un espacio añadiendo «espacios indivisibles» (nulos, 
carentes de espacio)? 
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Aporía de Aquiles 
y la tortuga . 

LA APORÍA DE AQUILES Y LA TORTUGA 

Es imposible que Aquiles, el de los pies ligeros, lograra alcanzar a 
la lenta tortuga si esta le llevaba una cierta ventaja. Aquiles partía 
de un punto A con la intención de alcanzar una tortuga que se 
hallaba adelantada al punto B (véase la figura). Por muy rápido 
que se desplazara Aquiles -salvo que lo hiciera a velocidad infi­
nita, algo que no es admisible-, cuando llegara al punto B, la 
tortuga, por lenta que fuera, se habria desplazado al punto B

1
; en­

tre los puntos By B
1 

hay un cierto espacio -puesto que supone­
mos que el espacio es infinitamente divisible, lo cual significa que 
carece de infinitésimos y, por consiguiente, entre dos puntos, 
siempre hay un cierto espacio- . Aquiles precisaba de un cierto 
tiempo para recorrer el intervalo BB, y, entre tanto, la tortuga se 
habria desplazado al punto B

2 
y así ad infinítum. En un tiempo fi­

nito, Aquiles jamás alcanzaría a la tortuga. 
Había que superar pues esta dualidad si se quena fundamen­

tar, con un cierto rigor, la geometria. ¿Las magnitudes geométri­
cas -líneas, superficies y sólidos- son infinitamente divisibles 
o atómicas? Euclides, de forma implícita, en sus Elementos, y 
Arquímedes, en forma de postulado, en De la esfera y el cilindro, 
imponen: 

Las magnitudes son infinitamente divisibles y, por consiguiente, ca­
recen de átomos. 

Así, eligiendo entre dos situaciones posibles igualmente acep­
tables --0 inaceptables- salvaban el escollo que plantea el hecho 

...-------- - -- -- - -

.._ _____ " ____ - -- -
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de carecer de una definición precisa de magnitud. Es muy posible 
que al geómetra no le importe tanto «lo que son» las magnitudes 
como «cómo debe manejarlas». Ello, sin embargo, no excluye que 
una falta de claridad filosófica -de cualquier tipo- pueda llevar 
a situaciones paradójicas quizá inicialmente imprevistas. ¿Dan co­
bijo los postulados de los Elementos a estos entes matemáticos de 
nueva creación? ¿Afecta ello al espíritu de orden y rigor que es 
uno de sus objetivos? 

LAS MAGNITUDES INCOMENSURABLES 

Ya en la escuela pitagórica se planteó lo que algunos autores han 
considerado la primera crisis de fundamentos de la matemática. 
Hasta ese momento se había supuesto que «dos segmentos siem­
pre son conmensurables». Es decir, dados dos segmentos AB y 
CD siempre es posible hallar un segmento UV «común» a ambos 
segmentos por lo que a la medida se refiere; o, lo que es lo mismo, 
siempre existe un segmento UV que mide exactamente ambos 
segmentos. Así, pues: AB = m x UV y CD= n x UV. Lo podemos ex-

INDEPENDENCIA DE LA UNIDAD DE MEDIDA 

k 

Si, por ejemplo, en vez de UV eleg imos U,V, = k x UV = UV + • • • + UV , entonces 

m 
o, lo que es lo mismo, k x AB = m x U1V, , k x CD= n x U1V1. Su relación es -, ya 
que, por la proposición 3 del Libro V, n 

AB = k x AB = m x U1V, = m 
CD k x CD n x U1V, n 

Si se recurre a la razón entre magnitudes, no hace falta disponer de una unidad 
de medida para cada «tipo» de magnitud. 
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FIG. 1 

o __________ ...,c 

presar diciendo que hay «una relación» 
entre AB y CD, su «razón», que expre­
saremos como 1;: o m: n. 

/ 
/ 

/ 
/ 

/ 

A 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ El concepto de razón es muy im­

portante porque permite «eludir» el seg­
mento de medida concreto UV. Lo 
mismo da usar metros que centímetros 
o kilómetros: la razón -la relación en 
la que se hallan las longitudes- no 
varía si cambiamos la unidad de refe-
rencia de la distancia. 

B Pero no siempre podemos estable­
cer una razón numérica entre magnitu­
des; no es posible reducirlo todo a un 

cómputo numérico ( con números naturales; es decir, los enteros 
positivos). Así, por el teorema de Pitágoras, se puede computar la 
«diagonalAC de un cuadrado de lado arbitrarioAB» (figura 1). Ya 
queAC=AB: 

AC 2 =AB 2 + BC2 =AB 2 + AB 2 =2 xAB 2
. 

Supongamos que AB y AC fuesen conmensurables. Tendría­
mos: AB=mx UV, AC=nx UV. Por lo tanto, AB 2 =m2 x UV 2, 

AC 2 = n 2 X UV2• Luego, n 2 X UV2 = 2 X m 2 X UV2 Y, por consiguiente, 
n 2=2xm2, lo cual no es posible. La diagonal de un cuadrado es 
inconmensurable. 

Lo expuesto hasta aquí ( que no aparece explícitamente en los 
Elementos de Euclides pero que permite una lectura más com­
prensible de sus logros y de sus limitaciones) fue una tragedia 
para la escuela pitagórica, que sostenía: 

El número [natural} es la razón de todo. 

Es decir, según los pitagóricos, todo puede medirse mediante 
números naturales; o, dicho de otro modo, todas las magnitudes 
( de una misma especie) son conmensurables entre sí. Pero, de 
acuerdo con el ejemplo expuesto, «existen» segmentos que no 

LA TEORÍA DE LA PROPORCIÓN Y EL MÉTODO DE EXHAUCIÓN 



FIG. 2 

-----------------------, 

E 

BC=\/2 

C BD=V3 

BE=V4= 2 

BF=\¡s 

BG=V6 

L----------:7~--~A BH=V7 
H BJ = V8 = 2\/2 

BA = AC = CD = DE= EF = FG = GH = HJ = 1 
J 

admiten medida común alguna. Y, más grave aún, Teodoro de Ci­
rene estableció un método para construir geométricamente una 
infinidad de segmentos inconmensurables. Es la conocida corno 
«espiral de Teodoro», y se construye a partir de un segmento de 
valor unidad, que, en un proceso iterativo, se mantiene corno ca­
teto corto de sucesivos triángulos rectángulos que comparten un 
mismo vértice (figura 2). 

Los triángulos rectángulos que conforman la espiral tienen 
una hipotenusa que va adoptando los valores raíz de dos, de tres, 
de cuatro, de cinco, de seis, de siete y de ocho (aunque el tercer 
valor de la serie sí es un número natural, el dos). La mayor parte 
de estos valores es un número irracional, es decir, no expresable 
como fracción (razón) de dos números naturales. Hoy diríamos, 
en un lenguaje mucho más numérico, que cualquier número real 
-un concepto ajeno a la matemática griega- de la forma ✓n, 
con n natural que no sea un cuadrado perfecto ( es decir, el cua­
drado sin decimales de otro número entero), es un número irra­
cional. Euclides dedicó el Libro X al estudio de las líneas 
inconmensurables. 
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MÉTODO ITERATIVO PARA FABRICAR LADOS Y DIAGONALES 
DE CUADRADOS 

Es posible ofrecer una de- o e 
mostración de la incomensu- - - ' --rabilidad de la diagonal del ' ' cuadrado -también por re- ' 'B' 
ducción al absurdo- com- d' 

pletamente geométrica. Se ' 
a' 

trata de una prueba de índo- \ 

\ 
le iterativa: a partir de un d / 

\ 

caso particular, se generan --~- - A' 
--otros casos más pequeños --- 1 ---- 1 

que mantienen la misma ra- ---- 1 ---zón. Consideremos un cua- -- 1 ----drado • A8CD de lado a=A8 ----
y diagonal d=AC. Llevemos A a B 

el lado sobre la diagonal. 
Obtenemos una recta A8'. 

' ' ' ' }D' 
/ 

/ 
/ 

Tiremos la tangente al arco de circunferencia 88' en el punto 8'; corta el lado 
BC en A'. Unimos 8' y A' y completamos el triángulo rectángulo isósceles 
!'iC8' A' para conseguir el cuadrado DC8' A' O'. Hemos construido un nuevo 
cuadrado cuyos lado y diagonal son, respectivamente, A'8'=AC-A8'[a'=d-a] 
y A'C=8C-A'8 [d'=a-a ' ], en el cual obviamente AC>A'C y A8>8'C. Está claro 
que si u mide, a la vez, a a =A8 y d=AC, medirá su diferencia a' y, luego, la dife­
rencia d' . Podemos iterar e iterar el proceso y obtener las parejas 
(a,d) > (a ',d') > (a ",d") > (a"',d"') > •·· de lados y diagonales de cuadrados con­
mensurables. Llegará un momento en que la diagonal o el lado serán menores 
que la medida u que los mide. Imposible. 

EL CONCEPTO DE «RAZÓN» 

En esta situación -la de la inconmensurabilidad- cabe pregun­
tarse si es posible considerar «la razón» de las magnitudes incon­
mensurables. Al afrontar esta cuestión surge la figura del genial 
Eudoxo de Cnido, padre de las ideas contenidas en los Libros V 
y VI. 

Comenzaremos el análisis del Libro V examinando sus cuatro 
primeras definiciones: 
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Definición l. Una magnitud es parte de otra mayor cuando 
la mide. 

Definición 2. Una magnitud es múltiplo de otra menor 
cuando esta la mide. 

Definición 3. Razón es una relación cualquiera entre dos 
magnitudes homogéneas respecto de su cantidad. 

Definición 4. Se dice que dos magnitudes tienen razón 
cuando un múltiplo de una de ellas logra superar a la otra. 

En los conceptos de «parte» y «múltiplo» se hallan involucra­
dos los conceptos de multiplicidad y de conmensurabilidad o di­
visibilidad. Un múltiplo es la repetición de una misma magnitud 
un cierto número de veces; así, si la magnitud es A y m es un 
número natural arbitrario, se tiene el múltiplo m xA. Esta mag­
nitud es equivalente a la suma de m copias de la magnitud A. Un 
divisor o parte D de una magnitud A es una magnitud de la 
«misma especie» que A tal que A es un múltiplo de D; es decir, 
tal que existe un número natural bien determinado m tal que 
A= m x D. Estos conceptos presuponen que sabemos cuándo una 
magnitud «es menor, igual o mayor que otra» lo cual, como vere­
mos, es esencial. 

«Zenón y Eudoxo son representantes de dos escuelas vigorosas 
y opuestas del pensamiento matemático[ ... ]: la crítica 

destructiva y la crítica constructiva. La mente de ambos poseía 
un espíritu crítico [ ... ] penetrante.» 

- E.T. BELL, Los GRANDES MATE.UÁ1º1COS. 

Existen objetos que cumplen la definición - lo que a su vez 
da sentido a esta última puesto que, en caso contrario, no defini­
ría nada y sería, por tanto, inútil; se trataría, en realidad, de una 
propiedad que habría que establecer por medio de un postulado 
o de una proposición- , pero también hay otros que no la cum-
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EUDOXO DE CNIDO 

Matemático y astrónomo griego, Eudoxo 
(ca. 408-ca. 347 a.C.), hijo de Esquines y 
discípulo de Platón, nació y murió en Cni­
do. Su familia estaba compuesta por mé­
dicos y por su influencia realizó los estu­
dios de medicina, profesión que ejerció 
durante algunos años en Grecia. Cuando 
tenía veintitrés años partió para Atenas 
e ingresó en la Academia de Platón, don­
de estudió filosofía. Años después cono­
ció los estudios astronómicos que se 
estaban llevando a cabo en Egipto y, en­
tusiasmado por el tema, organizó su tras­
lado a la ciudad de Heliópolis bajo el 
patrocinio y recomendación del rey Age­
liseo, por lo que tuvo acceso a las obser­
vaciones y a las teorías de los sacerdotes 
de esa ciudad. De regreso a Grecia fundó una escuela de filosofía, matemáti­
cas y astronomía. Más tarde escribió su primera obra, los Fenómenos, en la 
que se describe la salida y el ocaso de los astros. Su geometría -con la teoría 
de las proporciones y el método de exhaución- influyó en gran manera a 
Euclides. La primera fue la solución mas antigua a los números irracionales; el 
segundo le permitió abordar el problema del cálculo de áreas y volúmenes 
tales como los de la superficie del círculo -es proporcional al cuadrado de 

plen. La cuestión que se plantea es la siguiente: ¿Hay en los E'le­
mentos pares de magnitudes que no tengan razón? Porque 
«imponer» que «todas las magnitudes, dos a dos, tienen razón» es 
algo que una definición no puede -ni debe- hacer. Arquímedes 
no ca~ó en la misma trampa, y en el axioma V de De la esfera y el 
cilindro se lee: 

Dadas dos líneas, dos superficies o dos sólidos desiguales, si el 
exceso de una de ellas sobre la otra se añade a sí mismo un cierto 
número de veces, se logra superar una u otra de las que se compa­
ran entre sí. 
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los diámetros- y del volumen de la pirámide -vale un tercio del prisma de la 
misma base y altura-. Las definiciones 3 y 4 son muy interesantes. En la ter­
cera -la de «razón»- la expresión «una relación cualquiera» carece de senti­
do: ¿qué es «una relación cualquiera»? Además, introduce el concepto «res­
pecto de su cantidad» que, en los casos de inconmensurabilidad, no existe. 
La cuarta requiere un análisis más cuidadoso: 

Dos magnitudes tienen razón cuando un múltiplo de una de ellas logra superar a 

la otra. 

La definición establece en qué condiciones dos magnitudes «tienen razón»; 
si no cumplen las especificaciones, «no tendrán razón». Comparemos la defi­
nición anterior con las siguientes: 

Objeto Definición 

Dos rectas son paralelas 
si prolongadas indefinidamente no 
se cortan. 

Una recta es perpendicular a otra 
si al cortarla lo hace según ángulos 
rectos. 

Dos magnitudes tienen razón 
si un múltiplo de una de ellas 
supera a la otra. 

Un número es primo si solo admite la unidad como parte. 

Dos números son primos entre sí si la única parte común es la unidad. 

EL CONCEPTO DE «PROPORCIÓN» 

Pero, en realidad, al matemático no le preocupa tanto lo ontoló­
gico (¿qué es?) como lo metodológico (¿cómo funciona?). De 
modo que lo que le interesa al matemático es saber si dos razones 
son iguales o si una supera a la otra, aun cuando no tenga muy 
claro qué es una razón. Y este es precisamente el contenido de las 
definiciones 5 a 7: 

Definición 5. Se dice que la razón de una primera magni­
tud sobre una segunda es la misma que la de una tercera 
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sobre una cuarta cuando, tomando un mismo múltiplo de 
la primera y de la tercera y un mismo múltiplo de la se­
gunda y de la cuarta, el múltiplo de la ,primera es menor, 
igual o mayor que el de la segunda si el de la tercera es 
menor, igual o mayor que el de la cuarta. 

Definición 6. Las magnitudes que tienen la misma razón 
se llaman proporcionales. 

Definición 7. Si entre las magnitudes igualmente multipli­
cadas el múltiplo de la primera supera al de la segunda pero 
en cambio el de la tercera no supera al de la cuarta, se dice 
que la razón de la primera a la segunda es mayor que la 
razón de la tercera a la cuarta. 

Sean A, B dos magnitudes de una núsma especie y r, !),., otras 
dos (nunca se define qué se entiende por la expresión «de una 
núsma especie», pero queda claro que dos superficies, dos números, 
dos sólidos, etc., lo son; y en cambio una línea, un número, un só­
lido, etc., no lo son). Cada par tiene razón, que escribiremos como: 

A r 
- y-. 
B !),. 

La cuestión es: ¿cuándo podemos decir que 

A r , A r 
- = - y cuando que - > - ? 
B !),. B !),. 

Consideramos ahora sendos múltiplos -arbitrario- m de A, 
r y n de B, !),.; m xA, n xB son magnitudes de la misma especie y, 
por consiguiente, se pueden comparar; lo mismo ocurre con m x r, 
nx/),.. 

Entonces si, cualesquiera que sean los múltiplos m y n, cada 
vez que se tiene 
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C NE 

A B L M 

se tiene respectivamente 

d 
. A I' 

ecrmos que - = -. . B !':l. 

mxI' {}x~, 

r 

En cambio, si hay un par de múltiplos m y n para los cuales 
mxA>nxBpero, en cambio, mxI'<nx!':i., entonces 

¿Por qué precisa Euclides de una definición tan compleja? 
A causa de la inconmensurabilidad. Para entenderlo, demostrare­
mos una misma proposición en dos casos distintos: uno en el que 
los segmentos sean inconmensurables y otro en el que no. 

Libro VI, proposición l. Los triángulos y paralelogramos 
que tienen la misma altura son entre sí como sus bases. 

Veamos la demostración en el caso en que se da la conmen­
surabilidad. Si las bases de ambos triángulos fuesen conmensura­
bles, podríamos usar la medida común para descomponer uno y 
otro en triángulos de la misma superficie por el método del tán­
gram (véase la figura). 
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FIG. 4 
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Si AB y r t'!,,. son las bases de dos triángulos que se hallan entre 
las mismas paralelas y son conmensurables, existe una medida 
LM común que divide la base AB en m partes, y la rt'!,,., en n. Si 
unimos los puntos que estas partes determinan en la base con los 
vértices respectivos C y E tendremos, respectivamente, m , n, 
triángulos iguales en superficie al triángulo 6LMN, en donde N es 
un punto cualquiera de la paralela CE a la recta A. Luego, 
6ABC = m x (6LMN), 6'1.I'E = m x (6LMN). Por consiguiente, 

AB mxLM mx(6LMN) 6.ABC 

t'!,,.I' n x LM n x (6.LMN) 6.ó.I'E 

Pero, como hemos visto, cuando AB y rt'!,,. son arbitrarios, no 
podemos saber si son conmensurables. De hecho, .todo segmento 
tiene una infinidad de segmentos que le son inconmensurables 
muy superior a la infinidad de los segmentos que le son conmen­
surables. La demostración anterior no es, pues, general; de hecho, 
es muy particular. 

Veamos la demostración en el caso general, esto es, en el 
que se da la incomensurabilidad. Se precisa de otra demostra-

e P --------_-_----/j---''.:~~~~ ------------
.,,,.-- .,,, ... ✓ \ ' ', - ..,,. ,,, \ ' ' 

... ::. == - - _.,_,,, - - - - - - - - _._ - '.... - _, .. - _:.,_____;;;:,,-
A" A' A B N"' N" N' N M 

C E - - - - -

A B r 
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ción, que descansa en la idea de que, si no se puede hacer tán­
gram por dentro, ¿por qué no hacerlo por fuera? En vez de buscar 
un triángulo común que se pueda colocar «dentro» de cada uno 
de los triángulos dados, hagamos múltiplos de cada una de las 
bases de los triángulos y unamos los puntos que se vayan de­
terminando con el vértice según la figura 3. Se obtienen así dos 
triángulos que son los múltiplos m y n de los triángulos iniciales: 
6.A"CB-=mx(6.ACB), 6.N'"PM =nx(6.NPM). 

«No se debe dar crédito alguno a las previsiones de la vida 
de un ciudadano hechas a partir de los horóscopos basados 

en la fecha de su nacimiento, puesto que las influencias 
de los astros son tan complicadas de calcular que no existe 

nadie en la faz de la tierra capaz de hacerlo.» 

Llegados a este punto, todo depende de saber si, de dos trián­
gulos entre paralelas (es decir, de la misma altura), tiene mayor 
superficie el que tiene mayor base. La respuesta es evidentemente 
afirmativa (figura 4). 

La base AB es menor que la base r 6.. Podemos, pues, lle­
varla dentro de r6. (un uso intuitivo del concepto «ser menor, 
ser mayor» -lo «mayor contiene un ejemplar congruo con lo 
menor»- que jamás se explicita en los Elementos pero que se usa 
siempre que se requiere) y construir un triángulo igual al triángu­
lo 6.ACB dentro del triángulo 6.rE6.. Luego, es mayor el triángulo 
que tiene mayor base. Por consiguiente, si 

entonces 

mx(6ACB) {:} nx(MR1). 

- Euooxo. 
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Ahora la definición de Eudoxo se aplica perfectamente y se 
tiene que 

AB t::,ACB 
r~ = t::,I'E~' 

como queríamos demostrar. 
En el ejemplo anterior se ha establecido la igualdad de razo­

nes entre pares de magnitudes de especies distintas: de rectas, la 
primera; de superficies, la segunda. De ahí la necesidad de la pre­
cisión de la definición 5 del Libro V. A partir de estas definiciones, 
Euclides disponía de una herramienta muy útil para dar resulta­
dos concretos de geometría de las rectas y las figuras poligonales 
rectilíneas. Estos resultados constituyen el grueso del Libro VI en 
el que ofrece, entre otras, las proposiciones mostradas en la tabla. 
He ahí la enjundia geométrica de la teoría de la proporción. 

Aplicaciones de la teoría de la proporción a la geometría 

Nombre Enunciado 

Teorema de Tales. 
Si se traza una recta paralela a uno 

Para lados 
de los lados de un triángulo, cortárá 
a los otros dos proporcionalmente. 

Para superficies 
Dos triángulos semejantes son entre sí 
como las razones duplicadas de los lados. 

Criterios de semejanza 
El criterio de proporcionalidad de los tres 

de triángulos 
lados; y el de dos y de igualdad de un 
ángulo. 

Tercera y media 
proporcional (teorema Se pueden construir dichos segmentos 
de la altura de los a partir de dos dados. 
triángulos rectángulos) 

Cuarta proporcional 
Se puede construir dicho segmento 
a partir de tres dados. 

Teoremas del cateto 
La altura de un triángulo rectángulo 

y de Pitágoras 
lo divide en dos triángulos rectángulos 
semejantes al inicial. 
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EL MÉTODO DE EXHAUCIÓN 

La teoría de la proporción se convierte en una herramienta mate­
mática de una potencia enorme -e insospechada, de ahí el genio 
de Eudoxo-cuando se aplica a la determinación por compara­
ción de áreas y volúmenes. En este caso, el «método del tángran1 
debe llevarse al infinito», algo imposible por la limitación de Aris­
tóteles. Por ello se debe recurrir a la «doble reducción al ab­
surdo». Este proceso se conocería, a partir del siglo XVII, como 
método de exhaución. Euclides lo aplicó para establecer las si­
guientes proposiciones: 

Libro XII, proposición 2. Dos círculos son entre sí como 
los cuadrados de los diámetros: 

S1 d¡ 
S2 = d;. 

Libro XII, proposición 7. Una pirámide es una tercera 
parte del prisma que la circunscrible: 

P¡ l rr=:3°" 1 

Libro XII, proposición 18. Las esferas son como los cubos 
de los diámetros: 

E 1 d: 
El =dr 

Sin embargo, quien extrajo todo su potencial a este método 
no fue otro que Arquímedes, sin duda alguna el matemático más 
in1portante de la Antigüedad. 

Euclides da la siguiente definición del.método de exhaución: 

Libro X, proposición l . Dadas dos magnitudes [de la 
misma especie] desiguales, si de la mayor se quita una 
magnitud mayor que su mitad y de lo queda una magnitud 
mayor que su mitad y se repite el proceso continuamente, 
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LA CUADRATURA DE LA PARÁBOLA DE ARQUÍMEDES 

Vamos a examinar cómo aplicó Arquímedes el método de exhaución a la 
cuadratura de la parábola. En ciertos aspectos, su tratamiento se asemeja a 
la cuadratura del círculo del propio Euclides. La idea de fondo es la de «relle­
nar» el área de la parábola con triángulos inscritos, cuyas áreas se conocen, 
y sumarlas. Dice Arquímedes: 

Cuadratura de la parábola. La superficie de un segmento de parábola es 
al triángulo inscrito como cuatro es a tres. 

En el segmento de parábola ADCEBA consideramos el triángulo inscrito 1:, ACB, 
donde el punto Ces el punto de la parábola por el cual la tangente a la parábola 
es paralela a la cuerda AB. En estas condiciones Arquímedes afirmaba que la 
superfic ie a(ADCEBA) es igual a cuatro tercios de la superficie del triángulo 
T= 6 ACB. Es decir, 

4 4 
a(ADCEBA) = - x a(1:,ABC) = - x T. 

3 3 

Resta ahora «rellenar» con triángulos los segmentos parabólicos sucesivos 
T¡ = 1:,AOC, T2 ª 1:,BEC; luego los triángulos inscribibles en ADA. DCD; y en CEC, 
BEB; y así indefinidamente, puesto que las magnitudes son infinitamente di­
v isibles. Todos estos triángulos -que son infinitos- cubren una superficie 

quedará una magnitud menor que la menor de las dos mag­
nitudes dadas. 

Esta proposición es equivalente a la definición 4 del Libro V: si 
una vale, la otra también, y recíprocamente. Arquímedes se percató 
de este hecho y decidió darle rango de postulado. Hoy se conoce 
con el nombre de postulado de Arquímedes. Brevemente dice: 

Principio de arquimedianidad. Dadas dos magnitudes de 
la misma especie A, B, siempre ex iste un número natural n 
tal que nxA>B o nxB>A. 

Con la demostración de la proposición 7 del Libro XII, Eucli­
des cerró un problema que tiene su origen en la matemática egip-
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que es igual a una tercera parte 
del triángulo T = 1::, ACB. Sin em­
bargo, recurrir al infinito no es 
una opción , momento en que 
el método de exhaución acude 
al rescate . Hay que ver que los 
triángulos T, = t::, AOC, T2 = 1::,BEC 
«cubren, respectivamente, más 
de la mitad del segmento para- ' 
bólico AOCA, BECB». Y e llo se 
ve por tángram. Está c laro que 
el triángulo r, = t::,AOC vale exac­
tamente la mitad del rectángulo 
• AH. Sin embargo, el segmento 
parabólico ADCEBA es menor 
que el rectángulo • AH. Por consi­
guiente, r, = t::, AOC, cubre más de 
la mitad del segmento parabólico 

B I -.... 
t F 

I '-

ADCEBA. Aná logamente, con T2 = t::,BEC, el segmento parabólico CEBC y el 
rectángulo • CF. Este razonamiento es vál ido, de forma iterada, para cada 
segmento de parábola restante. Es importante observar que el razonamiento 
anterior -explicitado en el caso de un segmento de parábola- vale para otras 
curvas en genera l y, en particular, para el círculo. 

cia: el volumen de la pirámide. La pregunta de si puede resolverse 
por medio del método del tángram finito ocupó la tercera posición 
en la lista de los 23 problemas que David Hilbert seleccionó a 
principios del siglo pasado como aquellos de especial interés para 
el desarrollo de la disciplina (la respuesta, por cierto, es «no»). La 
proposición 2, por su parte, encierra la respuesta de uno de los 
problemas más destacados de la geometría clásica, y a él le dedi­
camos el capítulo siguiente. 
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CAPÍTULO 6 

La cuadratura del círculo 

Uno de los mayores logros de la escuela 
pitagórica fue ver que toda figura multilátera lineal era 

cuadrable. Pero, ¿lo era el círculo y, en general, las figuras 
con alguno o todos sus lados curvos? Esta cuestión fascinó 

no solo a matemáticos sino a pensadores de toda 
condición, y con el tiempo, la expresión 
«cuadrar el círculo» pasó a referir a una 

empresa imposible. 





El método del tángram permite cuadrar cualquier figura multilá­
tera recta. El afán generalizador de los griegos les condujo a pre­
guntarse de forma natural la cuestión de si las figuras con lados 
curvos eran cuadrables y, en particular, si lo era la más perfecta 
de todas ellas, el círculo. El primero en enhebrar la aguja fue el 
genial Hipócrates de Quíos. 

Hipócrates halló tres lúnulas cuadrables, siendo la lúnula 
una figura cerrada por arcos de circunferencias. Halló una sobre 
media circunferencia, otra sobre menos de media circunferencia, 
y otra sobre más de media circunferencia. La demostración de 
Hipócrates - basada en el método del tángram- precisa de dos 
resultados: 

- El teorema de Pitágoras. 

- La razón entre el área de dos círculos es la misma que en­
tre los cuadrados de sus diámetros. 

No es probable que Hipócrates dispusiera de demostraciones 
generales de estos resultados; más bien, debía tener una intuición 
clara de ellos y de su validez. A continuación vamos a analizar en 
detalle la demostración de la cuadratura de la lúnula sobre media 
circunferencia. 
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1 D .... - - - - - - - - - - - - - - - -• E 

Sobre un lado AB de un cua­
drado • ADEB consideramos el 

--------arco AGB de la circunferencia que 
lo circunscribe y una semicircun­
ferencia ACB. Se obtiene la lúnula - . AGBCA, marcada en gns en la fi-
gura l. Se puede demostrar que la 
superficie de esta lúnula es igual a 
la superficie del triángulo isósce­
les t:,ACB. 

La lúnula se compone del 
triángulo t:,ACB en cuestión me­
nos el segmento S más los dos seg­
mentos iguales S

1 
y S

2
; o sea: 

área ( AGBCA) = área (t:,ACB) -
-S + (S1 + S2) . 

Elegante método de tángram; 
todo se reduce, pues, a ver que 

S = S
1 
+ S

2
• Por el teorema de Pitágoras sabemos que: 

AB 2 = AC 2 + CB 2
• (*) 

Basta, pues, ligar las superfices S con dichos cuadrados. Ya se 
ha dicho que Hipócrates suponía que los círculos son como los 
cuadrados de sus diámetros, es decir, que se cumple la relación: 

Luego, 
S S1 +S2 

AB2 = AC2 + CB2 

(por Libro V, proposición 12). En virtud de (*), resulta que 
S=S

1 
+S

2
• ¡Realmente elegante! Se abría así la puerta a que el cír­

culo pudiese ser cuadrable. 
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EL PASO AL INFINITO 

Los sofistas griegos Antifón ( 480-
411 a.C.) y Brisón (ca. siglo v a.C.) 
abordaron la cuestión de la cua­
dratura del círculo y llegaron a 
una conclusión que es, en apa­
riencia, simple e irrefutable. Para 
el primero, el círculo se puede 
aproximar por dentro por medio 
de polígonos regulares inscritos 
obtenidos de forma iterada me­
diante la división de cada arco 
por la mitad a partir del cuadra­
do; es decir, por medio del cua­
drado, el octógono, el hexadecá-
gono, etc. 

FIG. 2 

Para Brisón, el círculo se puede aproximar por dentro y por 
fuera por un método análogo. Se obtiene así una sucesión de figu­
ras planas rectilíneas que encierran el círculo (figura 2). Todos los 
polígonos mencionados son cuadrables, luego el círculo también 
debe serlo. Inscribiendo y circunscribiendo un cuadrado, un oc­
tógono, un hexadecágono, etc., se obtiene la siguiente sucesión 
de figuras planas rectilíneas que encierran el círculo, todas ellas 
cuadrables: 

P4 < Pa < Pl6 < · · · < P2,. < · · · < S < 

< .. . < p2" < · · · < P,6 < Pa < Pi · 

Pero ¡cuidado! ¿Qué nos garantiza que la propiedad «ser cua­
drable» se conserva cuando se lleva a cabo este «paso al infinito»? 
Recordemos que Aristóteles lo prohibió precisamente para que 
tales razonamientos no fueran posibles. Consideremos la proposi­
ción siguiente, evidentemente falsa: 

Los dos lados de un triángulo son, en longitud, igual al ter­
cer lado (figura 3, en la página siguiente). 
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e 

Se constata que las sucesivas 
líneas quebradas que van de A 
hasta B tienen la misma longitud 
que los lados AC y CB:AC+CB= 
=AC1 + C1A 1 +A1C'1 + C'1B. 

Si «llevamos al límite» el pro­
ceso, la línea quebrada se «conver­
tirá» en el lado AB, lo que parece 
probar la proposición - falsa-
inicial. Asumir que una verdad 

«antes del límite» es cierta una vez que la «llevamos a él» puede 
ser falaz. 

LA SUPERFICIE DEL CÍRCULO EN LOS «ELEMENTOS» 

Euclides abre el Libro XII con dos proposiciones que establecen 
el mismo teorema para polígonos regulares inscritos en un círculo 
y para el círculo. 

Libro XII, proposición l. Los polígonos regulares semejan­
tes inscritos en dos circunferencias son como los cuadrados 
de los diámetros respectivos. 

Libro XII, proposición 2. Dos círculos son como los cua­
drados de los diámetros respectivos. 

La primera es una consecuencia inmediata del teorema de 
Tales para superficies ya que solo hay que notar que cada uno de 
los triángulos centrales respectivos en los que descomponen los po­
lígonos regulares cun1ple el teorema de Tales. La segunda lo podría 
establecer directamente «por paso al límite», pero este tipo de razo­
namientos, por implicar el infinito en acto, no son aceptables para 
la mentalidad griega ( aunque en este caso sería correcto hacerlo). 

Euclides podría haber «llevado al límite» la proposición 2 del 
Libro XII mediante el siguiente razonamiento: 
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Si, para cada polígono n de la 
forma n =2\ se tiene que 

pl p2 
n n d!= ,¡2 
1 ""2 

y, en el límite P,: es S1 y P,; es S
2 

y 
suponemos que la propiedad ante­
rior se conserva cuando se pasa al 
límite -es decir, de los polígonos 
regulares al círculo- , entonces 
resulta 

como queríamos. 
Descartado el paso al límite, 

FIG. 4 

hay que proceder por exhaución. Es decir, hay que ver que el 
cuadrado inscrito en un círculo cubre más de la mitad de su su­
perficie; si ahora añadimos los triángulos que faltan para pasar 
del cuadrado al octógono, entonces nos llevamos más de la 
mitad de lo que queda una vez hemos quitado el triángulo, y así 
sucesivamente. Llegará un momento en que el círculo polígono 
regular inscrito P k llenará S de tal manera que lo que queda, si 

2 
lo quitamos, será menor que una superficie cualquiera dada de 
antemano (figura 4). 

Fijémonos que, de forma análoga a lo expuesto en el capítulo 
anterior en relación con el segmento de parábola, el triángulo 
isósceles que añadimos a cada lado del cuadrado para obtener un 
octógono regular «cubría» más de la mitad del segmento circular 
-una cuarta parte de lo que queda del círculo cuando quitamos 
el cuadrado inscrito- ; seguidan1ente aplicamos el mismo razo­
namiento a los triángulos isósceles que hay que añadir a cada 
lado del octógono regular para obtener el hexadecágono regular 
y así sucesivamente. Cada vez se cubre «más de mitad», que es lo 
que se precisa para poder aplicar la exhaución. 

Valiéndose de esta herramienta, Euclides hizo dos supues­
tos: o bien la razón entre superficies es mayor que la del cuadrado 
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Los polígonos 
regu lares inscritos 
de 4, 8, 16 ... lados 
«llenan» más y 
más la superficie 
del circulo. 
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de sus diámetros, o bien es menor ( ejemplificados ambos casos 
en las siguientes fórmulas) : 

... llegando a contradicción en ambos casos. Por lo tanto, la rela­
ción entre superficies y cuadrados de los diámetros es de igualdad. 

DEMOSTRACIÓN DE LA PROPOSICIÓN 2 DEL LIBRO XII 

En el caso S1 d1
2 

-<-
S2 dJ 

suponemos que existe una superficie S < S
2 

tal que 

S1 d1
2 

s= df 

(1) 

Seguidamente consideramos la superficie E=S2 -S. El método de exhaución 
garantiza la existencia de un cierto polígono P

2
k inscrito en S

2 
que lo llena de 

manera que S
2 
-P2" < E =S2 - S. Ello conlleva a_la desigualdad S < P2". Ahora con­

sideramos el polígono p i' inscrito en el círculo S1 (es decir, p
2
,<S1) semejante 

a P
2

k. Por Libro XII, proposición 1, sabemos que 

pl d 2 
____f!_ _ ......l... 
P} dJ ' 

con n = 2k. Por la noción común 1, tenemos que 

P~ d1
2 S1 

p2 - d2 -s· 
n 2 

con S<P2" y p'i'<S
1
, lo cual contradice la definición de igualdad de razones 

(Libro V, definición 5). Por consiguiente, (1) es falso. 
El caso s, d,2 (2) 

S2 > dJ 
lo trató de forma análoga y concluye que también es falso. Luego necesaria­
mente 
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LA DETERMINACIÓN DE Jt 

En un papiro egipcio conocido como Rhind (por el británico Henry 
Rhind, quien lo compró a mediados del siglo XIX), fechado alre­
dedor de 1650 a.c., y que es a su vez una copia de un papiro de 
1800 a.c. , se plantean problemas que consisten en determinar el 
volumen de silos cilíndricos para poner grano. Para ello, su autor, 
el escriba Ahmés, necesitaba saber la superficie del círculo de la 

Esta demostración suscita dos interrogantes. lCómo supo Euclides lo que 
tenía que demostrar? Es decir, lpor qué se planteó la relación concreta entre 
superficies y diámetros? lUsó informalmente el paso al límite que se ha expli­
cado anteriormente? No se sabe. Por otro lado, para probar (1) Euclides su­
puso que existe una superficie 5<5

2 
con la cual 

51 d12 ; 
s= d 2 

2 

es decir, dadas las superficies 51, d1
2

, dJ , supuso que «existe una superficie 5 
que es la cuarta proporcional». Pero él solamente demostró la existencia de 
la cuarta proporcional de tres rectas, pero no de tres superficies. 
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base del cilindro, lo cual le llevó a tener que determinar el valor de 
lo que hoy llamamos el número n. En la Antigüedad, lo normal era 
considerar que dicho valor era tres. Sin embargo, Ahrnés ofreció 
un valor «mejor» para n que consiguió aproximando la circunfe­
rencia con un octógono (véase la figura), de la forma siguiente: 

1 
1 1 

----- 7 ------ í- - ---

Sea un cuadrado de 9 unidades de lado. Dividámoslo en nueve 
cuadrados de 3 unidades de lado cada uno. Quitemos los cuatro 
triángulos rectángulos de los vértices que se obtienen al trazar la 
diagonal. La superficie del octógono que resulta vale 

o 3x3 
g- - 4x - = 81 - 18 = 63 

2 

unidades cuadradas. Hagamos la superficie del círculo de diáme­
tro 9 unidades igual a 64 unidades cuadradas [ que es un número 
cuadrado}. El valor den que se obtiene con esta aproximación es 

Este valor de n, que es válido en general ( es decir, para cual­
quier valor d del diámetro), se obtiene comparando las superficies 
de dos figuras planas: el círculo y un cierto octógono. 

LA CUADRA TURA DEL CÍRCULO 



Más de mil años después, Arquímedes, el sabio de Siracusa, 
en su brevísima obra De la medida del círculo, aportó dos resul­
tados nuevos: 

Proposición l. La relación Vd que hay entre la longitud L 
de una circunferencia y su diámetro d se halla entre 223/71 
y22n. 

Proposición 2. La superficie S de un círculo es igual a la de 
un triángulo rectángulo T cuyos catetos son el radio r del 
círculo y la longitud L de la circunferencia. 

En la proposición 2 usó la exhaución de la misma manera que 
Euclides en la proposición 2 del Libro XII; supuso que: 

(1) S> T, y (2) S<T. 

y entonces constató que tanto (1) corno (2) llevaban a contradic­
ción. Por lo tanto, necesariamente, S = T. Pero, ¿cómo intuyó la 
existencia de esta relación? Nunca lo sabremos. 

En la proposición 1, en cambio, Arquímedes usó las longitu­
des l6, l12, l24' l48, l96; L 6, L 24, L 12, L 48, L 96, respectivamente, de los 
polígonos regulares inscritos y circunscritos de 6, 12, 24, 48 y 96 
lados. Para determinar tales longitudes dio un algoritmo iterativo 
que, a partir de la longitud ln, permitía calcular la longitud l2,., y de 
la Ln, la de L2,., en donde n torna como primer valor el 6. Final­
mente dio las desigualdades l

96 
< L < L

96 
que le llevaron al resultado 

indicado: 

223 L 22 
-<-<-. 
71 d 7 

Lo más importante de este resultado es que Arquímedes se 
percató de que la razón que existe entre la superficie S de un cír­
culo y el cuadrado del radio r 2 y la razón entre la longitud L de la 
circunferencia y su diámetro d = 2r es la misma. En la actualidad 
el valor numérico de esta razón común lo conocernos con el nom­
bre de número pi y lo indicarnos corno n. 
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Es decir, con estas expresiones, Arquímedes estableció que 

S L 
-=-= 1( r 2 d . 

Hemos comprobado hasta qué punto los resultados obtenidos 
por Eudoxo en el seno de la Academia, y sistematizados por Eucli­
des, permiten lograr resultados muy valiosos en relación con el 
círculo y la circunferencia. Cabe notar que Arquímedes recurrió a 
los perímetros, mientras que en el papiro Rhind y en el texto de 
Euclides se hacía lo propio con las superficies. 

UN SUEÑO IMPOSIBLE 

La cuadratura del círculo «a la griega», es decir, con regla y com­
pás, se resistió a los geómetras durante siglos. Ya en 414 a.C., el 
dramaturgo ateniense Aristófanes hizo que un personaje se jac­
tara de haber cuadrado el círculo para caracterizarlo como un 
charlatán. Las dificultades no impidieron que muchos destacados 
matemáticos intentaran triunfar allí donde sus antecesores grie­
gos habían fracasado. Así, Nicolás de Cusa (1401-1464), Oronce 
Fine (1494-1555) o Gregorius Saint Vincent (1584-_1667) publi­
caron supuestos métodos para cuadrar el círculo que al poco se 
demostraron falsos. En paralelo, James Gregory (1638-1675) y 
Johann Bernoulli (1667-1748) desarrollaron diversas técnicas para 
aproximar la cuadratura del círculo por otras vías. El alemán Jo­
hann Lan1bert (1728-1777) fue el primero en probar que rr era un 
número irracional. En 1880, el también alemán Ferdinand von 
Lindemann (1852-1939) probó que rr era, además, un número tras­
cendental, es decir, que no era la raíz de ningún polinomio con 
coeficientes racionales. Este resultado implicaba que era imposi­
ble cuadrar el círculo solo con regla y compás. Se daba así carpe­
tazo a un problema que venía arrastrándose miles de años y se 
desvanecían las ilusiones de la legión de «cuadradores qel cír­
culo» que a lo largo de las épocas había incluido al filósofo britá­
nico Thomas Hobbes e incluso al mismísimo Napoleón. 
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CAPÍTULO 7 

La aritmética en los «Elementos» 

Los Elementos son básicamente un tratado 
de geometría. Sin embargo, contienen tres libros de 

inspiración pitagórica, independientes del resto de la obra. 
En ellos, Euclides ofrece los resultados básicos de la teoría 

numérica de la divisibilidad, incluido su célebre 
algoritmo para hallar el máximo 

común divisor. 





Para entender los resultados básicos de los Libros VII, VIII y IX es 
preciso estar familiarizados con algunos conceptos básicos. En el 
segundo capítulo del primer libro Euclides ofrece de una vez 
todas las definiciones aritméticas que precisa en los libros siguien­
tes; no da, sin embargo, ningún postulado. Las más importantes 
de entre ellas son las siguientes: 

l. Unidad es aquello en virtud de lo cual cada cosa que exis­
te se Uama uno. 

2. Número es una pluralidad compuesta de unidades. 

3. Un número es parte de otro cuando el menor divide al mayor. 

4. Un número es partes -o frac~ de otro cuando no lo mide. 

5. Un número es múltiplo de otro menor cuando el menor lo 
mide. 

6. Número par es el divisible en dos partes iguales. 

7. Número impar[. .. ] el que difiere una unidad de un nú­
mero par. 
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8. Número parmente par es el que dividido por uno par da 
uno par. 

9. Número imparmente par es el que dividido por uno par 
da uno impar. 

10. Número imparmente impar es el que dividido por uno 
impar da uno impar. 

11. Número primo es el que solo es divisible por la unidad. 

12. Números primos entre sí son los que solo tienen como 
divisor común la unidad. 

13. Número compuesto es el que es divisible por algún otro 
número. 

20. Se dice que cuatro números son proporcionales cuando 
el primero es el mismo múltiplo, parte o partes del se­
gundo que el tercero del cuarto. 

23. Un número perfecto es el que es igual a la suma de sus 
partes [propias]. 

La primera definición es puramente filosófica y niega a la uni­
dad la naturaleza de número -concepto que no se acota con pre­
cisión hasta la siguiente definición- aunque, cuando lo creyó 
conveniente, Euclides la usara como tal. 

Asimismo, introdujo una distinción entre «parte» (el 2 es 
parte del 6 porque lo divide) y «partes» ( el 5 es partes del 6 por lo 
contrario). Existe una gran analogía con las definiciones del Li­
bro V, si bien allí «partes» se transforma en «razón», un concepto 
mucho más complejo. Sin embargo, la noción de «partes» es la 
base de muchas de las demostraciones aritméticas del texto de 
Euclides; de hecho, el Libro VII versa sobre fracciones, y también 
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recurre a ellas en los Libros VIII y IX. También establece la 
distinción entre «número par» (N = n + n = 2n) y «número impar» 
(N = 2n + 1) y da una forma (imprecisa) de clasificar los números 
según las formas que, en la actualidad, expresaríamos del modo 
siguiente: 2"', 2 "' (2n + 1), (2m + 1)(2n + 1). Pero los conceptos 
más importantes del Libro VII son los de número «primo», «com­
puesto» y el de números «primos entre sí». La definición 20 hoy 
la escribiríamos formalmente 

m P 

n q 

si, y solo si, existe un A E Q tal que, sin = A x m, entonces q = A x p. 
Euclides acaba con una definición muy discutida - la de «nú­

mero perfecto»- , que no parece propia de la escuela pitagórica del 
siglo VI. Incluso hay autores que la atribuyen a Hipócrates de Quíos. 

«La matemática es la reina de las ciencias 
y la aritmética la reina de la matemática.» 

- CARL FRIEDRICH GAUSS. 

EL ALGORITMO DE EUCLIDES 

El Libro VII se abre con el famoso algoritmo de Euclides; el 
mismo que se enseña en muchas escuelas. Dice: 

Dados dos números m y n, existe el «mayor número p que es par­
te de m y n». 

La idea es la siguiente: del mayor de ambos, m, por ejemplo, se 
quita el menor n tantas veces como se pueda; con el resto r < n, 
se forma la pareja n,r; se itera el proceso y se obtiene una suce­
sión de parejas: m,n; n,r; r,s; s,t; t,u; .. . x,y; y,z. Necesariamente 
llega un momento en que la parte z menor de la pareja mide exac-
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ta.mente la mayor y; es decir, «no hay resto» ulterior. Si realizamos 
el proceso inverso, se comprueba que z mide exactamente ax. 

Al final, z mide a la vez a m y a n, y, por lo tanto, z es un divi­
sor común de m y n. Además, es el mayor divisor posible, puesto 
que cualquier divisor d, común a m y a n, divide también a z. 

Se dice así que z es el «máximo común divisor» de la pareja 
inicial m y n. El conjunto de divisores comunes v de dos núme­
ros m y n suele expresarse como v = ( m , n). Si resulta que es la 
unidad -esto es, si 1 = ( m , n )-, decimos que m y n «son primos 
entre sí». Este método -o proceso- de sustracción mutua para 
determinar las relaciones entre números se llama antiféresis. Lo 
hemos visto anteriormente, en forma geométrica, al analizar, por 
ejemplo, la «inconmensurabilidad» del lado y la diagonal de un 
cuadrado. Una diferencia muy importante entre ambas aplicacio­
nes es que, en el caso de la aritmética, Euclides supone que el 
proceso necesariamente se detiene. En cambio, en los ejemplos 
geométricos, sigue de forma interminable. 

En el Libro X, Euclides aplica este proceso a las magnitudes 
en general, sean números o no, y establece la clasificación si­
guiente: la «antiféresis» llega al final si, y solo si, ambas magnitudes 

EL ALGORITMO DE EUCLIDES EN FUNCIONAMIENTO 

De la apl icación del algoritmo de Euclides se tiene que: 

m=q0 •n+r, r ,<n 
n = q , • r, + r 2 r 2 < r, 
r,=q2• r2+r3 r3< '2 

Por un lado, , ._2 = q._, · , ._, + ' • y , por otro, ,. _, = q• ·r •. Así, , ._2 = q._, · (q.- r. )+ ' • = 
=(q._,• q• +1) · ' • donde q._,• q . +1 es un número natural. Luego'• mide exactamente 
a , ._

2
• Por medio de un razonamiento análogo al anterior, pero hacia delante, 

se comprueba que si d divide a m y a n, puesto que, por construcción 
m=%·n+r,. entonces r,=m-q0 •n, con m=m,·d, n=n,· d. Luego r,=m, ·d-(%·n,) ·d= 
=(m,-(% ·n,)) ·d. Así, d divide ar,, como queríamos demostrar. 
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son conmensurables y, por consiguiente, se remiten a números. En 
otras palabras, si son inconmensurables, la «antif éresis» no tiene 
fin: es infinita. Son las proposiciones 2 y 3 del Libro X. A pesar de 
estas asunciones, Euclides no extrajo de este método la potencia­
lidad que sí encontraron los matemáticos indios y chinos. 

EL NÚCLEO ARITMÉTICO DE LOS «ELEMENTOS» 

En el ámbito de la aritmética, el texto euclídeo contiene los si­
guientes resultados importantes: 

Libro VII, proposición 17. Si dos números multiplicados 
alternativamente dan ciertos números estos coinciden. 
[Propiedad conmutativa del producto.] 

Libro VII, proposición 18. Si cuatro números son propor­
cionales 

(: = : ), lo son alternados ( esto es, 1;' = ~). 

Libro VII, proposición 19. Si m = p si, y solo si, m x q = n x p. 
n q 

Libro VII, proposición 20. De entre todos los números que 
tienen la misma razón los menores son primos entre sí. 

Libro VII, proposición 24. Si (p, m) = 1 (P, n) = 1, entonces 
(p,mxn)=l. 

Libro VII, proposición 29. Si p es primo y p no es parte de 
n, entonces (p,n) = l. 

Libro VII, proposición 30. Si p es primo y divide a (es 
parte de) m x n, entonces p es parte de uno de ambos factores 
m, n. (Lema de Euclides-Gauss.) 
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Libro VII, proposición 31. Todo número compuesto es me­
dido por un número primo. 

Libro VII, proposición 32. Todo número o es primo o es 
medido por un número primo. 

Libro IX, proposición 14. El menor número que está medido por 
varios números primos no tiene má.s divisores primos que estos. 

Libro IX, proposición 20. Hay más números primos que 
cualquier cantidad.finita de números primos. 

En la demostración de la proposición 31 del Libro VII, Eucli­
des hace uso de un «postulado» no explícito. El sabio de Alejan­
dría razona del modo siguiente: Sea N un número compuesto, 
tendrá un divisor - una parte- N' <N Supongamos que no es 
primo. Entonces es a su vez compuesto y admite un divisor - una 
parte- N" <N' <N; y sigamos ... No es posible que no se halle 
nunca un número primo P pues tendríamos la sucesión decre­
ciente infinita ... <N"l < . .. <N" <N' <N Y esto, dice Euclides, «es 
imposible». Así pues, Euclides impone la imposibilidad de suce­
siones decrecientes ilimitadas de números naturales. 

«Dios creó los números los números enteros; el resto 
es cosa del hombre.» 
- LEOPOLD KRONECKER (1823-1891). 

A esta propiedad Pierre de Fermat la llamaría del descenso 
infinito, e hizo uso de ella a la hora de alcanzar resultados impor­
tantísimos que se erigirían en un auténtico renacimiento de la 
aritmética. 

La proposición 14 del Libro IX es motivo de discusión acerca 
de si se trata del teorema fundamental de la aritmética (todo 
número entero mayor que 1 o es primo o puede ser expresado en 
forma de producto de números primos, y dicha forma es única), 
expresado con las limitaciones del lenguaje matemático de la 
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época. Para dilucidar la cuestión habría que saber si los primos que 
miden al número son «distintos» o pueden ser «iguales»; en este 
segundo caso, se trataría, en efecto, del enunciado del teorema. 

LA INFINITUD DE LOS NÚMEROS PRIMOS 

En capítulos anteriores se han tratado las limitaciones que Aristó­
teles imponía al uso del infinito. En la proposición 20 del Libro IX 
(Hay más números primos que cualquier cantidad finita de 
ellos), Euclides respeta esa limitación y tiene mucho cuidado de 
no hablar de «infinitos números primos» (véase la página 83). 

Sin embargo, ¿existe un algoritmo para ir obteniendo más y 
más números primos? Euclides no se pronunció al respecto. Hay 
que esperar la Aritmética de Nicómaco de Gerasa ( ca. 60-ca. 120) 
para tener conocimiento de la criba de Eratóstenes, el método 
empleado por el matemático del mismo nombre: 

El método para obtenerlos lo bautizó Eratóstenes con el nombre de 
criba, porque si tomamos todos los números impares, el método lo 
podemos pensar como un instrumento selectivo -como la criba­
porque permite separar los números primos de los compuestos. La 
criba procede así. Empiezo por el tres y miro cuáles son medidos 
por el tres -pasando por encima dos de cada tres- y separando el 
tercero. Luego pasamos al primero no cribado, el cinco, y pasamos 
cuatro y el quinto lo hacemos caer; luego, lo hacemos con el siete, y 

así sucesivamente, empezando con el primero que queda 

En este texto se exponen claramente dos hechos. Partimos de 
la sucesión de los números impares: 

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 

71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 
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LOS NÚMEROS PERFECTOS 

Si bien Euclides ofreció la definición correcta y un teorema que sirve para 
generar los números perfectos, no dio ningún ejemplo de ellos. El enunciado 
de la proposición correspondiente puede parecer poco claro, seguramente 
porque está dado de forma descriptiva: 

Libro IX, proposición 36. Si varios números, empezando por la uni­
dad, están en proporción duplicada y el conjunto de todos es un 
número primo, el producto de este conjunto por el último es un nú­
mero perfecto. 

Expresados los números, dice lo siguiente: 

Si 1, 2, 22, 23, ... , 2n es una sucesión en «proporción duplicada», sumamos 
y obtenemos Sn = 1 + 2 + 22 + 23 + ... + 2n = 2n+' - l; si Sn es un número primo, 
entonces Pn=2nx sn=2nx c2n+l_l) es un número perfecto (par). 

Euclides pudo resolver este resultado porque en la proposición 35 del Libro 
IX dio la fórmula que servía para sumar los términos de la sucesión 1, 2, 22, 

23
, ... , 2n. Observó además que los únicos divisores propios -los únicos que 

considera Euclides entre los cuales considera la unidad- de Pn son 1, 2, 22, 23, .. . , 

2n y Sn, 2 X Sn, 22 X Sn, 23 X sn , .. . , 2n-l X Sn. _Sumó y obtuvo el resultado del teorema: 
la suma de los divisores 1, 2, 22, 23, ... , 2" es Sn = 2n•1 -1 y la suma de los divisores 
Sn, 2x5n, 22x5n, 23x5n, ... , 2"-'xSn es (2" - l)x5n. La suma de ambos resultados es Pn = 
=Sn + (2" -1) xSn = 2" x5n = 2nx (2n•1- l). QED. 

Los primeros ejemplos 
En su Aritmética, Nicómaco de Gerasa (ca. 60-ca. 120) establece que los nú­
meros perfectos son 6, 28, 496 y 8126. De ahí sacó algunas conclusiones: 

l. Los números perfectos (pares) acaban en 6 y en 8 (cierto). 

2. Se alternan (falso). 

3. Hay uno para cada orden decimal -de las unidades, decenas, centenas, 
millares, unidades de mil, etc.- (falso). 

Ya en el siglo xv11I, Euler probó el recíproco del teorema de Euclides: Todo 
número perfecto [par] es de la forma anterior. 2nx (2"•1-1), con 2n•1-1 primo. 
En la actualidad todavía hay cuestiones abiertas relativas a los números per­
fectos: no se sabe si hay una infinidad de números perfectos pares ni tampo­
co si hay números perfectos impares. 
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A partir del 3, consideremos los números de tres en tres, y 
obtenemos: 

3 5 7 11 13 17 19 23 25 29 31 

37 41 43 47 49 53 55 59 61 65 

71 73 77 79 83 85 89 91 95 97 

A partir del 5, consideremos los números de cinco en cinco, y 
obtenemos: 

3 5 7 11 13 17 19 23 29 31 

37 41 43 47 49 53 59 61 

71 73 77 79 83 89 91 97 

Y así sucesivamente. Por ejemplo, la lista de los números pri­
mos irúeriores a mil es la siguiente: 

2 3 5 7 11 13 17 19 23 29 31 37 41 

53 59 61 67 71 73 79 83 89 97 101 103 107 

127 131 137 139 149 151 157 163 167 173 179 181 191 

199 211 223 227 229 233 239 241 251 257 263 269 271 

283 293 307 311 313 317 331 337 347 349 353 359 367 

383 389 397 401 409 419 421 431 433 439 443 449 457 

467 479 487 491 499 503 509 521 523 541 547 557 563 

577 587 593 599 601 607 613 617 619 631 641 643 647 

661 673 677 683 691 701 709 719 727 733 739 743 751 

769 773 787 797 809 811 821 823 827 829 839 853 857 

877 881 883 887 907 911 919 929 937 941 947 953 967 

983 991 997 
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43 47 

109 113 

193 197 

277 281 

373 379 

461 463 
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653 659 

757 761 
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Los números 
cuadrados 

sucesivos 1, 4, 9, 
16, ... , (n-1)', n'. 
Para pasar de 

cn=n2 a c11•1=(n+1)2 

hay que añadir el 
gnomon que vale 

precisamente 
2n+1. Se pasa, 

pues, de uno al 
siguiente por 
medio de los 

números impares. 

LAS TERNAS PITAGÓRICAS ARITMÉTICAS 

Un último problema digno de mención es el del algoritmo para ob­
tener temas pitagóricas aritméticas; son tres números naturales que 
cumplan el teorema de Pitágoras como, por ejemplo, 3, 4, 5; 5, 12, 
13; etc. Es decir, tres números naturales a, b, e tales que a2 + b2 = c2. 

Se cree que los babilonios conocían algún método para deter­
minar las temas pitagóricas, como muestra la tablilla mesopotá­
mica conocida por el número de catálogo Plimpton 322, que 
contiene «ciertas» temas pitagóricas aritméticas expresadas en 
sexagesimal. Por otro lado, se atribuye a Pitágoras un método 
para obtener temas pitagóricas basado en el gnomon de los núme­
ros cuadrados. Un número es un número cuadrado cuando se 
puede disponer en forma de cuadrado (véase la figura). Tenemos 
pues n 2 + (2n + 1) = ( n + l )2. Para que sea una tema pitagórica -en 
la cual un cateto y la hipotenusa son dos números sucesivos- el 
gnomon debe ser también un cuadrado; es decir, 2n + 1 = k2, para 
un cierto número k impar. Luego: 

k2-l k. n=-2-, impar. 

Así se obtienen las temas, que son: n = k
2 

2
- 1, k, n + l = k

2 

2
+ 1, 

con k impar, que generan la tabla siguiente: 

-------------------------------------, 

C¡ = 1 
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,----, 

1 1 .,_ __ .,. 

,----,---, 
1 
1 1 1 

.,_ - - _. _ - - ~ 2n+l ___..., 
1 1 
1 

1 

----•---• 
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a:-k impar 3 5 7 9 11 13 15 ... 

b:-n.k~-1 4 12 24 40 60 84 112 ... 

e :- n + 1 - k2/ 1 5 13 25 41 61 85 113 ... 

De esta manera se obtienen una «infinidad» de ternas pitagó­
ricas, pero no todas; falta, por ejemplo, la terna 8, 15, 17, en.la que 
el cateto y la hipotenusa difiere de dos unidades. 

Se atribuye a Platón la generalización del método pitagórico 
para obtener tales ternas. Hay que pasar de ( n-1 )2 a ( n + 1 )2• Ello 
se obtiene sumando dos gnomon: 2n- l, que permite pasar de 
(n-1)2 a n 2; y 2n+ 1, que permite pasar de n 2 a (n+ 1)2• En total, 
hay que añadir 4n. Es decir, (n-1)2 +4n::;: (n + 1)2• Basta pues que 
n sea un cuadrado: n=k2• Así se obtienen las ternas k2-l, 2k y 
k2 + l. Para k = 4, obtenemos la terna 8, 15, 17 antes citada. De 
hecho, se obtiene la siguiente tabla: 

k 2 3 4 5 6 7 8 

a :=k2-l 3 8 15 24 35 48 63 ... 

b:=2k 4 6 8 10 12 14 16 ... 

e :=k2+1 5 10 17 26 37 50 65 ... 

Existe una diferencia entre ambas tablas: en la primera las 
ternas son simples; es decir, carecen de divisores comunes; en 
cambio, en la segunda, las columnas que corresponden a valores 
impares de k se pueden simplificar por dos y entonces se obtienen 
los de la primera tabla. De alguna manera, la segunda tabla con­
tiene a la primera. Sin embargo, ¿existe un algoritmo que dé 
«todas» las ternas pitagóricas aritméticas? La respuesta es afirma­
tiva y la da el propio Euclides en el lema 1 del Libro X: 

Encontrar dos números cuadrados que juntos formen otro 
cuadrado. 
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Sin entrar en detalles se puede decir que Euclides recurre al 
algoritmo a="A2-µ2, b =2"Aµ, e= "A2 + µ2 donde "A,µ deben ser primos 
entre sí y de paridad diferente si queremos que no se repita nin­
guna tema y que sean simples, carentes de factores comunes. De 
hecho, las temas simples son las únicas que in1portan, ya que está 
claro que, cualquiera que sea el núnlero natural k, 3k, 4k, 5k, tam­
bién lo es, puesto que 3, 4, 5 lo es, pero carece de interés. Y esto 
vale, en general, para toda tema pitagórica a, b y c. 
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CAPÍTULO 8 

La transmisión 
de los «Elementos» 

No hay mayor evidencia de la importancia 
histórica de Euclides y su obra que las numerosísimas 

copias y ediciones que de ella se han realizado. Ninguna 
otra obra clásica de entre las dedicadas al conocimiento 

tiene una historia más variopinta de versiones, 
ediciones y comentarios. 





Los Elementos recogen y sintetizan de forma admirable tres siglos 
de pensamiento matemático griego. El valor de este legado fue 
reconocido ya en la misma época y, posteriormente, por culturas 
diversas a lo largo de toda la historia en un proceso que recorre el 
mundo romano, el árabe, el europeo medieval y llega hasta nues­
tros días en forma de ediciones críticas más o menos definitivas y 
en los soportes más variados. 

El texto quedó fijado por vez primera en la edición del año 
370 debida a Teón de Alejandría; de esta versión parte la que 
puede considerarse «tradición central» de las ediciones posterio­
res de la obra. 

La otra gran tradición es la árabe. Los matemáticos de la Casa 
de la Sabiduría de Bagdad de los siglos rx y x -una época y un 
lugar históricamente inolvidable por lo que a la ciencia en general, 
y la matemática en particular se refiere; pero también en el marco 
más general de la cultura mundial- supieron reconocer su valía 
y gracias a sus estudios, traducciones y comentarios ( entre los 
que destacan los de Al-NayñzI y Al-JayyanI) la obra de Euclides 
-como la de tantos otros pensadores griegos- retomaría a Oc­
cidente a partir del siglo xrr. Son de esa época las ediciones latinas 
de los Elementos, en las que jugó un papel importante la famosa 
escuela de traductores de Toledo y también, en menor medida, la 
de Ripoll. 
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MANUSCRITOS Y EDICIONES 

El manuscrito más antiguo que se conserva de los Elementos de 
Euclides es del siglo rx (si se omite el fragmento fechado en el 
período entre los años 75 y 125). Se descubrió en un vertedero de 
basura de la ciudad griega de Oxyrhynchus, actual el-Bahnasa, a 
unos 160 kilómetros de El Cairo, durante las exploraciones reali­
zadas por Bemard Payne Grenfell y Arthur Surridge Hunt bajo el 
palio de la Universidad de Oxford entre 1896 y 1897. En la tabla 
siguiente se recogen, en síntesis, los manuscritos más notables 
de los Elementos, de algunos de los cuales solo se conserva un 
ejemplar. 

Lugar Biblioteca Siglo 

Oxford Bodleian Library IX 

Vat icano Bib lioteca Vat icana X 

Flo rencia Bib lioteca Laurenziana X 

Bo lon ia Biblioteca Comu nale XI 

Viena Nationalb ib liothek XII(?) 

París Bib liotheque Nat iona le XII 

El manuscrito conservado en Oxford fue un encargo que 
Aretas de Cesarea (860-935), por aquel entonces arzobispo de 
dicha ciudad de Capadocia, hizo en 881 a Stephanus, un experto 
calígrafo bizantino. El manuscrito es de letras anchas con cierta 
forma cuadrada y una pequeña inclinación a la izquierda. De 
idéntico tipo es el famoso manuscrito de los Diálogos de Pla­
tón, encargado asimismo por Aretas y conservado en la misma 
biblioteca. 

De la importancia de la obra en la Europa medieval es testi­
monio que la primera impresión de la que se tiene noticia se hi­
ciera en fecha tan temprana como 1482; es la debida al editor 
alemán Erhard Ratdolt, que escogió a tal efecto la edición comen­
tada de Giovanni Campanus de Novara de la traducción latina que 
realizara el inglés Adelardo de Bath en el siglo xrr (probablemente 
de un original en la tradición árabe). 
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Versiones destacadas de los Elementos 

Año Ciudad Autor Idioma Título 

Preclarissimum opus 

Giovanni 
elementorum Euc/idis 

1482 Venecia Campanus 
Latín megarensis una cum 

de Novara 
(del árabe) commentis Campani 

perspicacissimi in arte 
geometrica. 

Euclidis megarensis philosophi 
platonici mathematicorum 

1505 Venecia 
Bartolomeo Latín disciplinarum Janitores ... 
Zamberti (del griego) elementorum libri XIII cum 

expositione Theonis insignis 
mathematici. 

Campanus, 
1509 Venecia revisado por Latín 

Luca Pacioli 

1533 Basilea 
Simon Griego (edición 
Grayneaeus prínceps) 

1572 Pesaro 
Federico 

Latín 
Euclidis elementorum libri XV, 

Commandino una cum scholiis antiquis. 

1574 Roma 
Cristophore 

Latín Euclidis Elementorum libri XV. 
Clavius 

1654 Amberes 
André Latín (Libros Elementa geometriae planae 
Tacquet 1-VI; XI-XII) et solidae. 

1703 Oxford 
David 

Griego y latín 
Gregory 

1804 
París 

Fram;:ois Griego, latín Euclides quae supersunt. 
1808 Peyrard y francés Les Oeuvres d'Euclide. 

1883 
Copenhague 

Johan Ludvig 
Latín Euclidis opera Omnia. 

1888 Heiberg 

Inspirado por la Ari tmética de Jordanus Nemorarius (siglo 
xn), Campanus incluye una axiomática de los libros aritméticos y, 
en particular, decreta que «no existen cadenas descendientes in­
finitas de números naturales». La impresión de Ratdolt contiene 
más de cuatrocientos grabados y constituye una obra maestra por 
ser una de las primeras impresiones de un texto de naturaleza 
matemática. A esta impresión le siguió poco después otra proce­
dente de la tradición central, debida a Bartolomeo Zamberti y, en 
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EUCLIDES, EXPOLIADO 

Napoleón Bonaparte gustaba de acaparar toda clase de tesoros y llevar los a 
París para enriquecer los museos franceses. Dos ejemplos de ello son la piedra 
Rosetta y los cuatro caballos de San Marcos de Venecia, que durante unos 
años remataron el arco de triunfo parisino. Cuando invadió Italia, Napoleón se 
llevó a París un manuscrito de los Elementos depositado en la Biblioteca del 
Vaticano. Poco después, en 1804, el parisino Franc;:ois Peyrard publicó los 
Éléments de géométrie d'Euc/ide, una edición del manuscrito anterior. Peyrard 
se dio cuenta de que el texto no estaba, como la mayoría, basado en Teón de 
Alejandría, sino en una fuente todavía más antigua, lo que apunta a un mejor 
ajuste al original de Euclides. El manuscrito regresó nuevamente a la Biblio­
teca del Vaticano. 

1572, la de Federico Commandino, la más rigurosa de las versio­
nes latinas y base de destacadas ediciones posteriores como la de 
Gregory. En 1533 se había impreso la considerada editio princeps 
( es decir, de referencia) en su versión griega, obra de Simon Gray­
neaeus. La última edición que recoge la tabla anterior es la prin­
ceps correspondiente a la versión latina, de Johan Ludvig Heiberg, 
realizada entre 1883 y 1888, que contiene la totalidad de la obra de 
Euclides en ocho volúmenes y un suplemento, tanto la propia del 
autor como la que se le atribuye según se ha tratado en el primer 
capítulo. A partir de esta edición queda consolidada la obra y las 
versiones posteriores se dedican como mucho a completarla. 

De la decena de ediciones destacadas de los Elementos hasta 
la princeps de Heiberg las hay tan curiosas como las del jesuita y 
director del Colegio Romano, Cristopher Clavius, que a las 468 
proposiciones euclídeas añadió 671 de propio cuño. Esta sería la 
versión que el también jesuita Matteo Ricci se llevó a la China y 
la que fue traducida a este idioma. 

Baste lo expuesto como tributo a la importancia de este su­
blime texto científico. Con las diferencias lógicas debidas a la dis­
tinta naturaleza de los contenidos, solo las obras de Homero, 
Sófocles, Platón o Aristóteles rayan a una altura parecida de entre 
las que conforman el legado escrito de la cultura griega. 
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Epílogo 

El siglo XIX termina, por lo que a la geometría se refiere, con el 
texto paradigmático del genial matemático prusiano David Hil­
bert, «Fundamentos de la geometría» ( «Grundlagen der Geome­
trie» ). Con dicha obra se cierra, aun cuando pueda parecer que se 
consolida, una forma de hacer y entender la matemática. Hilbert 
«axiomatizó» la geometría euclídea, pero lo hizo sin necesidad 
de recurrir a la intuición geométrica. Como gustaba de decir al 
autor: 

Deberiamos ser capaces de leer mesas, sillas y jarras de cerveza en 
lugar de puntos, líneas rectas y planos. 

La diferencia entre ambos textos, el euclídeo y el «hilber­
tiano», radica en el recurso a la intuición y a la figura que subyace 
al primero y que el segundo quiere erradicar. Para ello, Hilbert se 
apoya en un formalismo estricto: los axiomas establecen los ligá­
menes entre los objetos geométricos (los cuales no requieren de 
definiciones adicionales a los axiomas mismos) y a partir de ellos 
y mediante las herramientas que proporciona la lógica formal, se 
establecen los teoremas. La necesaria consistencia de una teoría 
desarrollada de esta forma -la imposibilidad de deducir una sen­
tencia y su negación, requisito en el que basa la reducción al ab­
surdo- impone, según Hilbert, la existencia de los objetos geomé-
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tricos. El de Hilbert fue un intento por fundamentar la matemática 
tras el fracaso del enfoque basado en la teoría de tipos de Russell. 

Sería esta nueva concepción del pensamiento matemático lo 
que llevaría al prestigioso matemático francés Jean Dieudonné a 
exclamar «Abas, Euclide» en un seminario en 1969. No se trataba, 
en absoluto, de denigrar la figura y la obra del genial matemático 
alejandrino, sino en criticar su excesiva presencia en la enseñanza 
de la geometría en las escuelas de la época. Nacía así lo que, a 
partir de la década de 1970, se conocería como «matemática mo­
derna», una nueva forma de explicar las matemáticas que tuvo un 
éxito fulgurante. El propio Hilbert había dicho que: 

Mi opinión es esta: a pesar del alto valor pedagógico y heuristico del 
valor genético, el método axiomático merece [ ... ] la preferencia en 
la presentación definitiva de nuestro conocimiento y su plena segu­
ridad lógica. 

Sin embargo, dos décadas después se reveló como un método 
«excesivamente moderno». Más de dos mil años después de los 
Elementos, se reabría la discusión del valor pedagógico -con un 
valor quizá mucho más genético- del enfoque euclídeo. 

EPÍLOGO 
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