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LEONHARD EULER es, sin duda, el gran matemdtico del Siglo de las Luces y uno
de los grandes de la historia. Aungue su nombre estd indisolublemente osociado al
andlisis matemdico (series, limifes y cdlculo diferencial), su ingente labor cienfffica no
acaba aquf: realizd aportaciones fundamentales en geometria y teoria de ndmeros, cred
de la nada una nueva drea de investigacin, la teoria de grafos, y publicd infinidad de
estudios de temas fan diversos como la hidrodindmica, la mecdnica, lo astronomia, la
Gpfica o lo ingenieria naval. Y en el curso de todo ello renové y establecid criterios de
notacion matemdtica muy préximos a los que se siguen utilizando hoy. Nada cientifico
le era ajeno y su mente excepcional nos ha legado una obra ingente, escrita en el seno
de las mejores academios cientificas del siglo xvi, la de San Pefersburgo y la de Berlin,
en lo que destacan Infrodluctio in analysin infinitorum, Institutiones calculi diferentialis
e Institutiones calculi integralls.



EL ANALISIS MATEMATICO

EULER

Nomeros al limite

D NATIONAL GEOGRAPHIC



JOAQUIN NAVARRO SANDALINAS es matemético y editor.
Ha publicado numerosos libros de divulgacién sobre temas
centrales de las matematicas tales como la simetria o la
teoria de conjuntos.

© 2012, Joaquin Navarro Sandalinas por el texto
© 2012, RBA Contenidos Editoriales y Audiovisuales, S.A.U.
© 2012, RBA Coleccionables, S.A.

Realizacién: EDITEC

Disefio cubierta: Lloreng Marti

Disefio interior: Luz de la Mora

Infografias: Joan Pejoan

Fotografias: Age Fotostock: 53ai, 53ad; Album: 27, 93a,

93bi, 143ai; Archivo RBA: 45, 66, 84, 88, 93bd, 132, 143b;

Bruno Barral: 64; Corbis: 53b; Getty Images: 143ad; Index: 19;
Konrad Jacobs: 123; Museo del Louvre: 91, 115; Wladyslaw
Sojka: 23; P.Y. Stucki: 25; Universidad Auténoma de Madrid: 98;
Universidad de York: 105, 130.

Reservados todos los derechos. Ninguna parte de

esta publicacién puede ser reproducida, almacenada
o transmitida por ningiin medio sin permiso del editor.

ISBN: 978-84-473-7642-1
Depésito legal: B-9888-2016
Impreso y encuadernado en Rodesa, Villatuerta (Navarra)

Impreso en Espania - Printed in Spain



Sumario

INTRODUGCCION ..ottt
CAPITULO 1 Basilea, cuna de un gran matematico ...
CAPITULO 2 Series, constantes y funciones: Euler en Rusia ...

CAPITULO 3 Berlin, capital del andlisis ...

CAPITULO 4 Segunda estancia en Rusia: Euler y la teoria

L L2l 100 1 T2) 40 =T

AN O i o s s S S

LECTURAS RECOMENDADAS ........oviiimmuinnmianiviiisiimmimmmsimisiiii

TIIEYICIE . s s s .o 54588 T G




=




Introduccion

En 2007 se conmemoré a nivel mundial el tricentenario del naci-
miento de un suizo universal: el matematico, fisico e ingeniero
Leonhard Euler. Organismos y particulares procedentes de casi
todos los rincones del mundo cientifico impulsaron actos conme-
morativos —congresos, simposios, publicaciones— destinados a
poner de relieve la importancia de la aportacién intelectual de
Euler. Sus impulsores no dudaron en situarlo a la altura de la de
auténticos gigantes de la ciencia como Newton o Einstein en am-
plitud y consecuencias.

Aunque este tipo de comparaciones son siempre odiosas, no
es exagerado afirmar que la obra de Euler es, en su conjunto, de
un valor solo superado por un pequeiisimo niimero de cientificos
en toda la historia. Aunque su nombre esta por siempre asociado
al analisis —la rama de las matematicas que estudia los «flujos»,
es decir, los fenémenos continuos, y que abarca las series, los li-
mites y el cilculo diferencial—, realizé aportaciones fundamenta-
les en geometria y teoria de niimeros; cre6 de la nada una nueva
area de investigacion, la teoria de grafos; publicé infinidad de es-
tudios fundamentales sobre temas tan diversos como la hidro-
dindmica, la mecédnica, la astronomia, la éptica, la ingenieria naval
o la tecnologia de los ejes y los engranajes; escribié obras de divul-
gacion cientifica y dedicé atencién a juegos y pasatiempos mate-
maticos. En el curso de todo ello encontré tiempo para renovar



buena parte de la notaci6n matemética de la época y aproximarla
a la forma con que hoy dia la emplea la comunidad cientifica.

Si de esta enumeracion se desprende una sensacién de acu-
mulacién un tanto caética el culpable no es otro que el propio
Euler. Aunque publicé no menos de una docena de libros, entre
los cuales algunos de los més importantes de la historia de las
matematicas —sobre todo, su inigualada trilogia de textos sobre
analisis Introductio in analysin infinitorum (Introduccion al
andlisis del infinito), Institutiones calculi differentialis (Fun-
damentos de cdlculo diferencial) e Institutiones calculi inte-
gralis (Fundamentos de cdlculo integral)—, buena parte de su
obra aparecié de forma aislada, en articulos, sin que sea posible
hallar en ella continuidad alguna de intereses a través de las di-
ferentes épocas de su vida. Tan pronto abordaba un problema
candente en teoria de nimeros —el problema de Basilea, cuya
resolucién en 1735 le otorgd la fama— como se «descolgaba»
con una férmula que relaciona de forma inesperada las caras, los
vértices y las aristas de un poliedro, uno de los resultados en
geometrfa mas profundos de todos los tiempos. Euler cre6 de
forma compulsiva, acorde con las exigencias particulares de una
mente excepcional y tnica.

A la extraordinaria multiplicidad de intereses de Euler hay
que sumar un segundo factor que dificulta aiin mas la labor de
hacerse una idea cabal de la obra del mateméatico suizo: su no
menos extraordinaria abundancia productiva. En efecto, Euler fue
uno de los matemaéticos mas prolificos, sino el que mas, de toda la
historia. Sus escritos estan parcialmente clasificados por Gustaf
Enestrom, y se identifican, como si fueran de un misico famoso,
por su nimero de opus. Mozart tiene su nimero K. (de Kéchel) y
Euler, su nimero E. (de Enestrém); los nimeros E. se detienen en
el 866. Esta labor dista de estar completada; todo y con eso, la
edicién de sus obras completas (Opera omnia), en curso de pu-
blicacién desde 1911, se prevé que ocupe unos 90 voliimenes de
aproximadamente 450 paginas. Euler mismo decia que su lapiz se
le desbocaba y escribia mas rapido que él. Solo la corresponden-
cia de Euler encontrada hasta el momento asciende a casi 3000
cartas. Sus articulos y libros representan, mas o menos, un tercio
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del total de las matematicas, fisica e ingenieria mecénica escritas
entre 1726 y 1800. Esta fecundidad resulta tanto mas sorprendente
si se tiene en cuenta que Euler fue tuerto durante mas de 35 afios
(como atestigua su retrato més célebre, de 1753), y ciego de
ambos ojos durante los siguientes 22.

Si hay que juzgar por las circunstancias que rodearon su en-
torno, Euler vivi6 en la época apropiada. El siglo xvm ha sido de-
nominado «de las luces», pues en dicho periodo buena parte del
mundo occidental evolucioné hacia las formas propias del mundo
moderno y se liberé de las «tinieblas» del pasado. Este proceso se
ha atribuido en gran parte al avance progresivo e imparable de la
razoén ilustrada. En el ambito especifico de la ciencia, este avance
se beneficio de dos innovaciones destacadas: las academias nacio-
nales de ciencias y las revistas cientificas. La trayectoria profesio-
nal de Euler estuvo siempre al amparo de las primeras, instituciones
nacidas en su mayor parte durante el siglo xvn, pero que alcanzaron
la mayoria de edad en el siguiente gracias al apoyo de monarcas
ilustrados, ansiosos por prestigiar sus paises mediante el mece-
nazgo de la ciencia y el conocimiento en general.

La otra circunstancia que modelé irreversiblemente el modo
de hacer ciencia fue la aparicién de las publicaciones cientificas
periddicas. Con la excepcion de los libros, muchos de los cuales
tenian que ser financiados por sus propios autores, los descubri-
mientos cientificos se habian venido difundiendo hasta entonces
por procedimientos lentos e inseguros como las cartas o los via-
jes. La aparicién sucesiva de revistas como Philosophical Tran-
sactions, Comptes rendus, Mémoires de l’Académie o Journal de
Crelle fueron poniendo al alcance de todos lo que antes solo era
accesible a unos pocos. Euler, en particular, hizo uso amplisimo
de este medio.

En la vida de Euler pueden distinguirse cuatro grandes perio-
dos: el primero o de formacién, hasta 1727; los catorce afios trans-
curridos en San Petersburgo en el seno de la Academia de Ciencias
fundada por Pedro el Grande; su época en la Academia de Cien-
cias en Berlin, hasta 1766; y el retorno a Rusia, donde fallecié. La
primera etapa, marcada por su encuentro con los hermanos Ber-
noulli, quienes despertaron su interés por el andlisis, concluye con
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uno de los hallazgos mas importantes de Euler, la férmula que
lleva su nombre, y que relaciona, apoyiandose en la constante ma-
temdtica e, los niimeros complejos (%) y las funciones trigonomé-
tricas seno y coseno:

e =cosx+1isenx.

El ntimero e, base de los denominados logaritmos naturales,
iba a tener numerosas apariciones en la obra de Euler, hasta el
punto de que en ocasiones se denomina «ntimero de Euler». Sobre
la base de esta féormula Euler desarrollard, décadas maés tarde,
buena parte de su trabajo en analisis.

La primera etapa en Rusia tal vez sea la mas fecunda de la tra-
yectoria cientifica de Euler. Como es de esperar en el marco de una
obra tan prolifica, la cantidad de hallazgos que se condensan en este
periodo son tan numerosos como extraordinarios. Solo en el campo
del andlisis incluyen el calculo preciso del niimero e, asi como la
determinacién de muchas de sus propiedades; el descubrimiento de
la funcién gamma (T7), que permite interpolar valores de un deter-
minado tipo de funciones y que se encuentra presente tanto en
combinatoria, probabilidad y teoria de nimeros como en fisica; la
férmula de Euler-Maclaurin para el cdlculo de sumas e integrales; y
la solucién (y posterior generalizacion de los resultados) del pro-
blema de Basilea, que se interroga por la suma de la serie:

Corresponden también a esta época importantes trabajos en
teoria de nimeros tales como el establecimiento de la constante
de Euler-Mascheroni o el estudio de los llamados nimeros de Fer-
mat, asi como la solucién, en 1736, del problema de los puentes
de Konigsberg, el hallazgo que daria pie a la creacién de una rama
totalmente nueva de las matemadticas, la teoria de grafos.

En 1741 Euler acept6 el ofrecimiento de Federico I el Grande,
rey de Prusia, y se instal6 en Berlin. El ritmo de sus aportaciones
continud imparable, y entre ellas se cuentan la férmula de los po-
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liedros, que relaciona las caras (C), aristas (A) y vértices (V) de un
poliedro de una forma tan sencilla como absolutamente inespe-
rada por los geémetras de la época:

C-A+V=2;

asi como, también en el campo de la geometria, 1a determinacién
de la recta de Euler. Son, asimismo, de esta época sus trabajos
acerca de la conjetura de Goldbach, 1a mas célebre de la teoria de
nimeros tras el teorema de Fermat o sus aportaciones al cdlculo
de variaciones, de fundamental importancia en fisica. En lo que
respecta al andlisis, fue en Berlin donde redact6 los tratados que
se mencionaban al principio de esta introduccién, acaso la cum-
bre de su genio. Y todo ello sin contar su produccién en ingenieria
y mecanica.

La cuarta y udltima etapa de su vida tuvo como escenario,
nuevamente, San Petersburgo. A pesar de haber superado la cin-
cuentena y con los graves problemas de visién anteriormente
mencionados, Euler prosiguié con el flujo constante de articulos
hasta practicamente el dia de su muerte. Convertido ya en una
leyenda en vida entre la comunidad matematica, sus trabajos
de esta época se centraron sobre todo en la teoria de nliimeros
y, en particular, los nimeros primos (y otros conceptos asocia-
dos como los niimeros de Mersenne o los nimeros amigos), las
ecuaciones diofanticas y las particiones. También tuvo tiempo
para cuestiones mas ligeras, como los cuadrados magicos y otros
temas de recreacién matematica; para idear un juguete infantil (el
disco de Euler) que ha llegado hasta nuestros dias y para redac-
tar una deliciosa obra divulgativa sobre cuestiones de mecdnica y
astronomia que dedic6 a la princesa de Anhalt-Dessau, un clasico
en su género.
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1707

1720

1723

1727

1731

1734

1735

1736

El 15 de abril nace Euler en Basilea,
Suiza.

Tutelado por Johann Bernoulli, ingresa
en la universidad de Basilea con solo
trece anos.

Recibe el titulo de Magister en filosofia
con un estudio comparativo entre las
ideas de Descartes y Newton.

Emigra a Rusia al no conseguir una
plaza como profesor de fisica
en la universidad de Basilea.

Es nombrado profesor de fisica

en la Academia de ciencias de

San Petersburgo. Su ascension en la
jerarquia de la Academia le convierte
en una figura respetable entre los
cientificos.

Se casa con Katharina Gsell,

hija de un pintor de la Academia,
con quien tendra trece hijos,
aunque solo sobrevivirdn cinco.

Empieza a perder progresivamente la
visién de un ojo, lo que no le impide,
sin embargo, hacerse famoso en el
mundo cientifico tras la resolucién
del problema de Basilea.

Publica su primer libro, Mechanica,
sive motus scientia analytica
exposita, y acrecenta su fama con la
resolucién del problema de los puentes
de Konigsberg.

1741 Atendiendo a la llamada del rey
de Prusia, Federico II, Euler y su
familia se trasladan a Berlin, donde
desempenara un cargo en la Academia
de la ciudad.

1742 Euler y Goldbach plantean en su
correspondencia la que posteriormente
se ha denominado conjetura de
Goldbach.

1748 Publica una de sus obras mas
importantes, Introductio in
analysin infinitorum, donde trata
principalmente las funciones
matematicas.

1755 Publica otra de sus obras
fundamentales, Institutiones calculi
differentialis, que versa sobre
cdleulo diferencial.

1766 Euler abandona Berlin y regresa
a Rusia, impulsado por la falta
de entendimiento con Federico II.

1768- Publica la tercera y iltima de sus
1770 grandes obras en el &mbito del andlisis,
Institutiones calculi integralis.

1771 Euler se queda ciego definitivamente
al sufrir cataratas en su gjo sano, lo
que no hace sino realzar su capacidad
para el cédlculo mental.

1783 El 18 de septiembre muere en San

Petersburgo como consecuencia de
una hemorragia cerebral.
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CAPITULO 1

Basilea, cuna de un gran
matematico

La ciudad suiza era un buen lugar donde
arrancar una carrera cientifica, particularmente en
matematicas. Centro intelectual de primer orden, con la
primera universidad del pais, en ella vivian varios miembros

de la familia Bernoulli, la saga de matematicos mas

eminente de la historia. Los Bernoulli acogieron

bajo su proteccion al joven y prometedor Euler

y le inculcaron un amor al analisis
que ya no le abandonaria.






Basilea es una ciudad suiza enclavada de un modo privilegiado
casi en la frontera alemana y en la francesa, a orillas del alto
Rin, un poco antes de llegar a las cataratas que lo convierten
en innavegable. Actualmente, su conurbacién abarca casi tres
cuartos de millén de habitantes, una excelente universidad, la
mas antigua de Suiza, y un buen niimero de recuerdos histéricos,
pues nacieron o vivieron en ella personalidades del renombre
de Vesalio, Jung, Erasmo, Nietzsche y Paracelso, amén de varios
miembros de la extraordinaria familia Bernoulli. En la actuali-
dad, el mas conocido de los hijos de Basilea es el tenista Roger
Federer, gracias al cual la ciudad goza de fama universal. Los
ciudadanos maés ilustrados prefieren a Erasmo de Rotterdam,
quien, aunque no nacié en Basilea, si que residié y murié alli. Sin
embargo, los cientificos, y en especial los mateméticos, no dudan
considerar como hijo predilecto de Basilea a otro personaje dis-
tinto, nacido hace mas de tres siglos, que responde al nombre de
Leonhard Euler.

Euler, quien era matemético —e ingeniero, fisico, astrénomo,
filésofo, arquitecto, miisico y, ocasionalmente, te6logo— fue uno
de los cientificos mas importantes del siglo xvin y uno de los més
prolificos de la historia. Numerosos conceptos matematicos llevan
su nombre y, aunque seria un ejercicio muy pesado de erudicién
dar una lista completa de todos, sirvan, a modo de ejemplo, los
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siguientes: formula de Euler, dngulos de Euler, caracteristica de
Euler-Poincaré, recta de Euler, sumacién de Euler-Maclaurin, teo-
rema de Euler-Lagrange, teorema de Euler para las rotaciones de
un sistema de coordenadas, teorema de Euler para el tridngulo, cir-
cuito y camino euleriano, circulo de Euler, ladrillo de Euler... Y asi
hasta contar méas de 140, dependiendo de las fuentes consultadas.

EULER Y LOS BERNOULLI

La de Euler era una familia corriente. Su padre, Paulus Euler, era
un pastor calvinista, y su madre, Margaretha Brucker, un ama de
casa convencional, hija de otro pastor. Euler fue el mayor de cua-
tro hermanos, de los cuales dos eran mujeres, Anna Maria y Maria
Magdalena. El tercero, Johann Heinrich, adquiriria un cierto re-
nombre como pintor.

Paulus Euler tenia una buena base matematica, pues habia
sido alumno de una figura distinguida, Jakob Bernoulli (1654-
1706), el iniciador intelectual de una después famosa camada de
cientificos distinguidos, los Bernoulli. Asimismo, Paulus Euler
habia sido condiscipulo y amigo de otro Bernoulli, Johann (1667-
1748), hermano de Jakob (pero trece afios mas joven). El 15 de
abril de 1707 nacié Euler. El deseo confesado de su padre era que
se convirtiera también en pastor y «apacentara», llegado el mo-
mento, a sus propias ovejas. Pero el destino le tenia reservada otra
suerte.

El joven Leonhard ya destacaba en la escuela en lenguas: se
expresaba en aleméan y francés; dominaba el latin, y profundizaba
con notables resultados en griego y hebreo, como cabia esperar
de un futuro hombre de Dios, y se adentraba en la filosofia.

Parece que Euler aprovechd la amistad de su padre con Jo-
hann Bernoulli para conseguir que este le diera clases informales
de matematicas los sabados; y la realidad se impuso: el joven
Euler tenia una disposicién natural fenomenal para las matemati-
cas, algo que resultaba evidente para su profesor, a la sazén una
de los principales matematicos del mundo.

BASILEA, CUNA DE UN GRAN MATEMATICO



LA FAMILIA BERNOULLI

Existe un cierto consenso en considerar a cuatro matematicos como el Olimpo
anterior al siglo xx: Arquimedes, Newton, Euler y Gauss; cuando se pretende
mencionar a un quinto todo se complica. Muchos votarian por un matematico
multifronte, formado por toda una familia: los Bernoulli. Su impronta se nota
en mds de un siglo, pues padres, hijos y hermanos componen el &rbol familiar.
En la familia eran frecuentes los rifirrafes producidos sobre todo por cuestio-
nes matematicas, algunos de los cuales habian tenido serias consecuencias,
como cuando Jakob, el primero de la saga, hizo un testamento donde pro-
hibia expresamente que se mostraran sus papeles cientificos a su hermano
Johann, o cuando este acusoé a su propio hijo Daniel de plagio en cuestiones
de hidrodinamica. Durante mas de un siglo (de hecho, 105 afios consecutivos),
la titularidad de la catedra de matematicas de Basilea fue ostentada por un
Bernoulli, y hasta mediados del siglo xx, es decir, durante mas de 250 afos, en
dicha ciudad, siempre hubo un Bernoulli ocupando una catedra.

Importancia de los Bernoulli

Algunas de las aportaciones mas destacadas de los Bernoulli son el uso ex-
tensivo de las coordenadas polares, el estudio a fondo de la lemniscata y la
espiral logaritmica, numerosos problemas de teoria de probabilidades y de
series, el célebre teorema de la hidrodinamica gue lleva su nombre y la regla
de I'Hopital. El andlisis matematico experimentd un gran avance gracias al
trabajo de esta familia y, a través de la influencia de Johann, se convirtio en
la gran especialidad de Euler.

Grabado de 1874 que muestra a Johann y Jakob Bernoulli trabajando en probl geométricos.

BASILEA, CUNA DE UN GRAN MATEMATICO



20

El grado de precocidad de Euler resulta evidente a la vista
de sus primeros logros: universitario a los trece ainos, en 1723
recibia su titulo de Magister en filosofia mediante una especu-
lacién sobre los universos tedricos resultantes de seguir a
Newton o a Descartes. Johann Bernoulli, quien seguia supervi-
sando sus progresos y cuyo caracter no era nada propenso a
elogiar a sus conocidos cientificos, consideraba a Euler un
genio en ciernes.

JOHANN BERNOULLI, EL ANALISIS Y LA BRAQUISTOCRONA

Influencia basica en la formacién y algunos de los intereses poste-
riores de Euler, la figura de Johann Bernoulli merece un inciso que
dé justa medida de su talla cientifica. Matematico extraordinario,
quizas el mas notable de la saga Bernoulli, Johann estaba predesti-
nado por su padre a ser comerciante y, luego, médico. Sin em-
bargo, terminé dedicandose a las matematicas, como su hermano
mayor Jakob, en quien siempre encontré apoyo, aunque su rela-
cién fraternal estaba tefiida de rivalidad y puntuales desacuerdos.

Johann era un hombre muy competitivo y bastante fanfarrén,
y entré en multitud de polémicas y disputas, incluso con sus fami-
liares. Cuando descubria algo pretendia poseer siempre la priori-
dad del descubrimiento, aunque otros lo hubieran descubierto de
manera independiente y, muchas veces, con anterioridad. Tam-
bién se le ha acusado de hacer suyos, de modo malintencionado,
hallazgos de terceros.

En cualquier caso, Johann no solo fue un gran matematico,
sino una auténtica bendicién para los historiadores, a quienes
ha provisto de un nimero inagotable de anécdotas, como la que
protagonizé con el marqués de I'Hopital (1661-1704). Este era
un noble adinerado y un excelente matematico, quien cerré un
acuerdo econdémico-intelectual un tanto peculiar con Johann
Bernoulli: a cambio de dinero, el marqués obtuvo el derecho de
acceder y exhibir como propios los descubrimientos de Johann.
Herramientas del andlisis matematico tan fundamentales como la
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denominada regla de I’'Hopital vieron la luz asociadas al nombre
del marqués, si bien, en realidad, las habia desvelado Johann Ber-
noulli. E1 magnifico libro del marqués de 'Hopital, L’Analyse des
Infiniment Petits pour U'Intelligence des Lignes Courbes (Andli-
sis de los infinitamente pequerios para el entendimiento de las
lineas curvas) fue saludado en su dia como una obra estupenda,
pero hoy se sabe que los auténticos derechos de autor habian de
ser compartidos. Muerto el marqués, Johann Bernoulli no pudo
resistirse a reivindicar lo que realmente era suyo, pero tuvo que
esperar bastante a que la posteridad le diera la razon.

En junio de 1696, antes de que naciera Euler, Johann plan-
ted en las paginas del Acta eruditorum de Leipzig, la primera
revista cientifica de la historia, un desafio a sus colegas: dados
dos puntos A y B, con A situado a distinta altura que B, encon-
trar la trayectoria descrita por un cuerpo sometido a la tinica
fuerza de la gravedad que va de un punto a otro en el menor
tiempo posible. Como es natural, Johann ya contaba con su
solucién (la cual posteriormente se supo que no era del todo
correcta), y el desafio en cuestién iba encaminado a poner a
prueba a sus colegas, y, en particular, a su hermano Jakob. En
mayo de 1697, en el Acta eruditorum, se publicaron los resul-
tados correctos que coincidian en proclamar a la curva cicloide
de extremo en A y altura maxima en B como la curva buscada
(véase la figura).

Entre otras figuras eminentes encontraron la solucion Leibniz
y Jakob Bernoulli. Una solucién magistral, pero anénima, fue en-

La cicloide es la
curva descrita por
un punto fijo de
una circunferencia
al rodar siguiendo
una linea recta.
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viada desde la Royal Society de Londres. Johann la ley6 y recono-
cid, acertadamente, que tras ella se escondia la mano genial del
gran Newton. «Conozco al leén por sus garras» parece que fueron
sus palabras, frase que hizo fortuna y que se ha convertido en un
elogio paradigmatico de Newton.

La cicloide es, como se ha visto, una curva braquistécrona
(del griego brachistos, «mds corto» y chronos, «tiempo»), y con
el nombre de problema de la bragquistécrona ha pasado a la his-
toria toda esta secuencia de acontecimientos. Muchos afios mas
tarde, el propio Euler volvié sobre la cicloide y la braquistécrona
en el marco del cilculo de variaciones, una poderosa técnica que
é]l mismo y Giuseppe Luigi Lagrange (1736-1813) habian puesto
en marcha, y que se ha revelado como fundamental para el desa-
rrollo de la mecénica.

LOS INICIOS DE UN GENIO

Johann Bernoulli intenté convencer a Euler padre de que el fu-
turo de su hijo no estaba en el sacerdocio y la teologia; lo suyo
eran las matematicas. Como ya se ha visto, Euler hijo apuntaba
alto, muy alto.

En 1726, cuando Euler contaba apenas diecinueve anos, ya
ostentaba el titulo de doctor. Dirigida por Johann, su tesis, para
darle un nombre actual a su escrito, versaba sobre la propagacion
del sonido, y se llamaba, muy apropiadamente, De sono. Era un
texto pensado para servirle de base a Euler para opositar a una
plaza profesoral que habia quedado vacante en la universidad de
Basilea. La juventud de Euler hacia poco probable que accediera
al puesto, y, como era de esperar, no lo consiguio.

En 1727, particip6 en el Grand Prix de la Academia de las
ciencias de Paris con el propdsito de debatir los mejores puntos
donde ubicar los maéstiles de una embarcacion. Es casi imposible
no ver la ironia del hecho de que se presentara para un premio
de espiritu inequivocamente nautico un Euler inequivocamente
«de secano». Como hace notar su biégrafo, Emil A. Felmann, la
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LA ESPIRAL DE JAKOB BERNOULLI

Jakob Bernoulli habia quedado seducido, como solo puede quedario un autén-
tico gedmetra, por las propiedades y el aspecto de la espiral logaritmica, esa
curva retorcida cuya ecuacion simplificada obedece, en coordenadas polares,
a la expresion r=a", con el radio r igual a una potencia de exponente igual al
angulo a y que se denomina spira mirabilis (vespiral maravillosa»). Hasta tal
punto llegd su obsesion que solicité formalmente que una tal espiral, adecua-
damente esculpida, adornara su tumba junto a las palabras Eadem mutata
resurgo («Muto y vuelvo a resurgir como antes»). Y dicho y hecho, solo que
no contaba con el cantero responsable de esculpir la lapida funebre. En lugar
de una espiral logaritmica, sobre la tumba figura una espiral de Arquimedes,
pues para el cantero en cuestion, al parecer, todas las espirales eran iguales.
Conociendo el fuerte caracter del hermano menor de Jakob, a quien este habia
transmitido su aficion por la espiral, es de desear que Johann no coincidiera
en la otra vida con el artesano.

En la lapida de Jakob Bernoulli no se
esculpié una espiral logaritmica, sino una
espiral de Arquimedes (véase la parte
inferior de la imagen), en la que las
volutas son equidistantes.

La espiral logaritmica no posee principio
ni fin, y se enc tra en la natural en
forma aproximada, como en la espiral de
los huracanes o la de algunas galaxias.
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mayor masa de agua que Euler habia visto en su vida era el Rin,
por lo que la auténtica navegacién —como a todo buen suizo—
le quedaba un poco lejos. Sea como fuere, Euler se presenté al
concurso y, aunque no gané, conquisté un envidiable acecésit com-
partido y una cierta fama en la comunidad cientifica. El ganador
del concurso fue el eminente catedritico francés de veintiocho
anos, Pierre Bouguer, especialista indiscutido en hidrodindmica.
Habiéndose leido con provecho obras de Varignon, Galileo, Des-
cartes, Newton, van Schooten, Hermann, Taylor, Wallis y Jakob
Bernoulli, el joven y prometedor Euler empezaba a ofrecer deste-
llos de su genio.

Mientras tanto, varios destacados nombres de la comunidad
matematica internacional, en su mayoria de origen aleman o en la
orbita de influencia cultural germénica, estaban tejiendo una sutil
tela de arana desde Rusia con el objetivo de «fichar» a la joven
promesa; en particular Christian Goldbach (1690-1764), con quien
Euler mantenia correspondencia desde hacia unos ainos y del que
se hablard en paginas posteriores.

El zar de Rusia, Pedro I (1672-1725), llamado «el Grande», era
un hombre de ideas prooccidentales y progresistas. Uno de los
modos con los que Pedro I pensaba occidentalizar su vasto reino
y situarlo en el mapa de los dominios civilizados era la creacién
de una Academia de ciencias rusa, al estilo de las Academias de
Paris o Berlin o de la Royal Society, joyas del pensamiento ilus-
trado de su tiempo.

Para levantar su academia, Pedro I encomend6 a sus agentes
la bisqueda de talentos dispuestos a emigrar a Rusia. Tanto Ni-
colaus II como Daniel Bernoulli, dos de los cuatro hijos de Jo-
hann, con quienes Euler habia desarrollado una gran amistad y
que se encontraban ya en Rusia, en la futura sede de la academia,
San Petersburgo, recomendaron vivamente el fichaje del joven
Euler con el beneplacito de Goldbach. La stibita muerte de Nico-
lausIl, victima de un ataque de apendicitis, dejé una inesperada
vacante, que le fue ofrecida rapidamente a Euler, quien acepto.
En realidad lo hizo a regafiadientes, pero la falta evidente de pers-
pectivas inmediatas en Basilea fue determinante para que deci-
diera instalarse en Rusia.
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PIERRE BOUGUER, PADRE DE LA ARQUITECTURA NAVAL

El nombre de Pierre Bouguer (1698-1758) e, T
raramente aparece en los libros de mate- R et -
maticas, a excepcion de los dedicados a su ol .!' Y
aplicacion en hidrografia, donde Bouguer i
es tenido por toda una autoridad y con-
ceptuado como uno de los padres indis-
cutidos de la arquitectura naval. Este cien-
tifico bretén, destacd por su precocidad;
a los quince afos dominaba de tal manera
los conocimientos fisicomatematicos que
sucedio a su propio padre —uno de los me-
jores especialistas de su época— al frente
de su catedra de hidrografia al quedar va-
cante por la muerte de su progenitor. En
1727, con menos de treinta afios, Bouguer
gano el Grand Prix de la Academia de las
ciencias de Paris con una memoria sobre
la optima disposicion de los mastiles de un
buque, galardén que conseguiria en dos
ocasiones mas. Euler, quien quedo segun-
do en el citado certamen, consiguié doce

: % Estatua de Pierre Bouguer junto al rio
Grand Prix a lo largo de su vida. Loire, erigida en Le Croisic, su lugar

de nacimiento.

El legado de Bouguer

Recién cumplida la treintena, Bouguer realizé contribuciones importantisimas
a la fotometria analizando la disminucién de la luz al atravesar capas de aire.
En 1747, inventd el helidmetro, que fue mejorado luego por Joseph Fraunhofer
(1787-1826) y tantos avances ha permitido a la espectrografia y la fisica en ge-
neral. A los treinta y siete afios se embarco con Charles-Marie de La Condamine
y Louis Godin en una expedicién cientifica a Peru destinada a medir un grado
del meridiano terrestre proximo al ecuador, que culmind en la determinacion
del ensanchamiento ecuatorial del globo terraqueo. También, dio a conocer una
anomalia gravitatoria, que lleva su nombre, la anomalia de Bouguer. En 1746,
publicd su Traité du navire (Tratado del navio), considerado el tratado cumbre
de la literatura naval de la época, donde se mide la estabilidad de un navio
por la posicion de su metacentro o centro de la carena. Elegido miembro de la
Royal Society, Bouguer ascendié metafdricamente a la gloria celestial en forma
de crateres lunares y marcianos, pues dos de estos accidentes geografico-
astronomicos fueron bautizados con su nombre en su honor. Sin embargo, la
comunidad matematica le recordara siempre por algo bastante trivial, pero
extraordinariamente util: Bouguer introdujo, en 1752, los simbolos s v =.
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EL LEGADO DE EULER A LA NOTACION MATEMATICA

La labor fundamental de Euler en el 4mbito de la notacién mate-
mitica arrancé ya en Basilea, antes de emprender su viaje a Rusia,
y al estar repartida a lo largo y ancho de su vida, es adecuado
ofrecer un resumen de la misma antes de emprender nuestro pro-
pio viaje por la vasta obra del matemaético suizo.

En un sentido general, el objetivo de la notacién es el de crear
un lenguaje sintético que permita sustituir ventajosamente largas
secuencias de palabras por simbolos y variables simbdlicas. En
términos no matemadticos, una buena notacién establece unas re-
glas comunes de «buenas pricticas», pues permite entendernos
los unos a los otros. La notacién actual no es perfecta, pero si ha
evolucionado de muy antiguo. Permite tratar casi todo con una
admirable economia de medios.

Por ejemplo, si se intenta leer un texto clasico de matemati-
cas, anterior a Francois Viéete (1540-1603), inventor de la termino-
logia moderna en algebra, resulta evidente la complejidad de la
tarea. Al no emplear simbolos los conceptos deben expresarse en
lenguaje llano y las repeticiones son constantes y pesadas. Una
muestra:

El teorema de Pitdgoras podria enunciarse hoy de la siguiente
manera:

En el tridngulo de lados a, b y ¢, A=90° < a®=Db?+c>

Mientras que la version equivalente de Euclides, dividida en
dos partes (libro I, proposiciones 47 y 48), dice:

En los tridngulos rectangulos el cuadrado del lado opuesto
al dngulo recto es igual a la suma de los cuadrados de los
lados que comprenden el dngulo recto.

Si en un tridngulo el cuadrado en uno de sus lados iguala a
la suma de los restantes dos lados del tridngulo, entonces el
dngulo contenido por los restantes dos lados del tridngulo es
recto.
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Une de los
retratos mas
conocidos de
Leonhard Euler,
realizado en

1753 —Euler vivia
entonces en
Berlin— por
Jakob Emanuel
Handmann,
donde ya puede
apreciarse el
defecto en la
vista que le afligia
desde 1735. Euler
perdié primero la
visién de un ojo ¥
luego la del otro,
pero continué su
labor matemdtica
sin interrumpirla.
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Se trata de un caso bien elemental, y es patente el progreso
experimentado gracias al uso de simbolos.

Entre las notaciones que Euler popularizé o creé y que se si-
guen utilizando en la actualidad destacan las siguientes:

— m: ninglin simbolo aportado por Euler ha tenido tanta
fortuna como =, el simbolo ideado para designar un nu-
mero: la relacién entre la longitud de una circunferencia
y su didmetro, un nimero irracional y trascendente de
valor aproximado nt=3,1415926535... La letra griega pi fue
usada por primera vez por el galés William Jones (1675-
1749), quien la utiliz6 por ser la inicial griega de la palabra
«periferia», pero fue Euler quien la popularizé6 a partir de
la publicacién, en 1748, de su famoso libro Introduction in
analysin infinitorum.

— La constante e: 1a letra e la empleé Euler para bautizar a la
constante que designa a la vez la base de los logaritmos
naturales —Euler denominé con la letra e dicha base ya en
1731, en una carta a Goldbach—, el limite:

lim(l +i)
n— n

y la suma de la serie infinita:

1.1 1 1
e=l+—+—+ - +...
1 1-2 1-2-3 1-2-3-4

Sin embargo, no sera hasta la publicacién de la ya
mencionada Introduction cuando Euler profundizé en las
ideas alrededor de e, calculando incluso 26 digitos:

e = 2,71828182845904523536028747...

No se sabe con exactitud a qué obedece la eleccién de
la letra e por parte de Euler. No es cierto, como algunos
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afirman, que la eligiera por ser la inicial de su nombre o de
la palabra «exponencial».

— 4: durante la mayor parte de su vida, Euler, quien no con-
taba con el concepto riguroso y correcto de limite, escribia:

e’ =(1+£) ;
i

para indicar lo que hoy se escribiria como:

e’ =lim(1+£) ;
n==\ n

En este ejemplo, la letra i representaba el papel de un
nimero infinito. Pero en 1777 habia cambiado de idea y
empled i para representar la unidad imaginaria de los ni-
meros complejos, i = +/-1. El articulo de 1777 no se pu-
blic6 hasta 1794, pero lo hizo suyo Gauss y con él toda la
comunidad matematica. Euler eligi6 la 7 por ser la inicial

de la palabra «imaginario».

— y=f(x): Euler fue el primero en utilizar el concepto mo-
derno de funcién, ligando el valor de entrada x con el de
salida y, a través de una correspondencia que se denomi-
naria f. El dominio y la imagen de f quedan claramente
establecidos. Su uso ya aparece en los Commentarii aca-
demiae scientiarum imperialis Petropolitanae —primera
revista publicada por la Academia de San Petersburgo—
de 1734-1735. Aunque el modo moderno de concebir las
funciones discrepa ligeramente del euleriano, puede atri-
buirse a Euler un gran paso adelante en lo que concierne a
claridad conceptual y expositiva.

— Z (= sigma): fue escogida por Euler para indicar una suma
de una sucesion de niimeros sujeta a alguna condicién, que
acostumbra a explicitarse escribiéndola debajo y encima
del simbolo. El caso general de una suma de elementos z,
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FIG.1

c

donde 7 es un «contador» de sumandos que va de m an, se
escribe:

DX =Xy + Xy + X pp .o Xy + T,
1=
Sigma es la letra «s» griega, inicial de «<suma», asf que

la utilizacién de una sigma es bastante l6gica. Euler calculd
alo largo de su vida centenares de sumatorios, muchos de
ellos infinitos. Cuando n =, se dice que el sumatorio es
una serie. Quiza el mas famoso sumatorio de Euler, en su
sencillez, sea el del «problema de Basilea», que Euler re-
solvié en 1735, en plena efervescencia creativa (y que se
examina en detalle en el capitulo siguiente):

Nadie esperaba que el nimero & jugara un rol en la
solucidén de este sumatorio, y su «aparicién» provoco una
auténtica conmocién en el mundo cientifico.

— Uso de mayiisculas y miniisculas: en un tridngulo cualquiera,
los lados se designan con letras mintsculas, y los dngulos
opuestos con las mismas letras, pero maytsculas (figura 1).
De modo similar, se designan por R y r, respectivamente,
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los radios de las circunferencias circunscrita (figura 2) e
inscrita (figura 3).

— Uso en las férmulas de las primeras letras del alfabeto a,
b, ¢, d... (normalmente en mintsculas) para designar en las
ecuaciones a las cantidades conocidas, mientras se reser-
van las ultimas, x, ¥, 2, v... para las cantidades desconoci-
das o incégnitas.

— Uso de las formas abreviadas del latin sin., cos., tang.,
cot., sec., y cosec.: Euler las utilizé por primera vez en 1748
en su libro Introductio in analysin infinitorum, para de-
signar las funciones trigonométricas. Luego cada lengua
ha procedido a adaptar ligeramente estas denominaciones,
aunque son ya casi universales en su forma inglesa, y que
en dicha lengua y en expresion funcional se leen sin x, cos
x, tan x (o tg x), cot x, sec x y cosec x (0 csc x).

— Notacién para las diferencias finitas: las diferencias finitas
son un instrumento de célculo que guarda un cierto pare-
cido con las derivadas. Eso si, el concepto de limite y los
llamados infinitésimos no estian presentes. Las diferencias
finitas aparecieron ya con Newton (1642-1727), James Gre-
gory (1638-1675) y Colin Maclaurin (1698-1746) y permiten
calcular polinomios desconocidos a partir de sus valores,
asi como interpolar y estudiar sucesiones y series. La apa-
ricién de los ordenadores ha representado un incremento
de su interés.

Euler dedicé considerables esfuerzos a las diferencias
finitas, y la notacién con la que se presentan hoy en los li-
bros es suya. En el caso mas sencillo de todos, una simple
sucesion {u }, la diferencia de dos términos sucesivos se
denomina A:

Au, =u,,, -u,

Las sucesivas diferencias finitas (de segundo orden,
A?, de tercer orden A’ de cuarto orden A%, etc.) se definen
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a partir de las de primer orden A de modo recursivo, cada
una partiendo de la anterior:

APu, = AN,

De esta manera ya se tienen recogidas todas las dife-
rencias finitas, del orden que sea: A, A% A®... y se puede
operar con ellas.

UNA PRIMERA APORTACION FUNDAMENTAL:
NUMEROS COMPLEJOS Y LOGARITMOS NEGATIVOS

En una serie de trabajos iniciados en sus dias de Basilea, Euler dio
con una férmula para los niimeros complejos que se haria célebre
y la empled para dar con el valor de una entidad matematica des-
conocida hasta ese momento: los logaritmos negativos.

Como ya se ha sefialado, Euler utilizé la letra i para represen-
tar un nimero imaginario, el nimero v~1. Desde entonces, en
cualquier férmula aritmética en la que figure i se ha de entender
lo siguiente:

i=+v-1.

En el curso de sus trabajos en Basilea, Euler descubri6 esta
férmula:

e =Ccosx +1isenwy,

y jugé con ella, como solo él, el gran malabarista de los simbo-
los supo hacer. De esta simple expresién simbélica, conocida
como férmula de Euler de los nimeros complejos o simple-
mente como férmula de Euler, y que relaciona la exponencia-
cién compleja con la trigonometria, nacié, como se vera en el
capitulo tercero, buena parte del andlisis matematico de siglos
posteriores.
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En la época de Euler estaban muy de moda los logaritmos,
una herramienta de cédlculo descubierta en el siglo xvi cuyas po-
tencialidades, sin embargo, no fueron explotadas hasta la llegada
del matematico suizo. Defindmoslos: si @ es un niimero positivo,
llamado base, y N, un niimero positivo, si:

N = ax,
se llama a x el logaritmo de N, y se escribe x = log N. Es decir:
N = alog N.

Cuando la base es la constante e, se acostumbra a poner In N
en lugar de log N.

«Senores: esto es seguramente cierto, es absolutamente
paradéjico, no lo podemos entender y no sabemos lo que
significa, pero lo hemos demostrado, y por consiguiente
sabemos que debe ser la verdad.»

— Bensamin Peirce (1809-1880), proFESOR DE HARVARD, ENFRENTADO
A LA LLAMADA «FORMULA DE EULER» DE LOS NUMEROS COMPLEJOS.

Ahora bien, el nimero -1 puede escribirse como -1 =-1+04,
y estudiarlo asi, como un niimero complejo. Operemos con él en
el seno de la férmula de Euler:

—1=-1+0i=cosm+isenm=e".

Fijémonos ahora en el principio y final de esa igualdad y cal-
culemos el logaritmo natural:

In (1) = In (eni) = mi.

Euler obtuvo asi un valor definido para el logaritmo natural
de -1, un nimero negativo.
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El suizo detuvo aqui su maquinaria mental y partié de viaje a
San Petersburgo. No fue hasta 1751, casi un cuarto de siglo mas
tarde, que Euler dio a conocer este resultado, junto a muchos
otros, en su forma correcta, con la publicacién de su magistral
libro Introductio in analysin infinitorum (Introduccion al and-
lisis del infinito).

Como los guerreros partos de la Antigiiedad, que disparaban
sus dardos en plena retirada, Euler se marché a Rusia y dejo
abierta la cuestion de los logaritmos negativos, pero eso si, mos-
trando ya sus armas futuras.
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CAPITULO 2

Series, constantes y funciones:
Euler en Rusia

Con apenas veinte afos, Euler se incorporé a la
Academia de Ciencias de San Petersburgo. Se abria
asi un periodo creativo sin parangén en la historia de las
matematicas que tendria como fruto la funcién gamma (1),
la fijacion de la constante e y otros importantes trabajos
en andlisis y teoria de niimeros, asi como la resolucién
de dos problemas de gran relevancia futura: el de
Basilea y el de los puentes de Konigsberg.






Euler viaj6 a Rusia en 1727 sin mucho entusiasmo, pues aparte
del rigor del clima, se dirigia a trabajar a un pais atrasado y donde
se hablaba y escribia en otra lengua e incluso en otro alfabeto.
Esto dltimo se demostré que carecia de importancia, pues Euler,
quien tenia una gran facilidad para los idiomas —dominaba latin,
griego, francés y aleman—, afiadi6 el ruso al repertorio de los que
hablaba, leia y escribia. En ello se distinguia ademés, y favorable-
mente, de los otros miembros extranjeros que atrajo la Academia
de ciencias de San Petersburgo. He aqui a un sabio extranjero
con el que se podia hablar y entender, a quien era posible escri-
bir, y que se molestaba en entender y saberse expresar en la len-
gua local. Ademas sabia de todo y todo despertaba su curiosidad.
Nombrado —uno de sus muchos titulos— miembro de la Acade-
mia de Cartografia, se maravillaba de sus logros y los comparaba
muy favorablemente con la cartografia occidental, que era la que
habia conocido hasta entonces.

Cuando Euler llegé a San Petersburgo coincidié allf con ta-
lentos como Christian Goldbach y Daniel Bernoulli, asi como
con otros sabios, muchos de los cuales de procedencia y lengua
germanas. Euler habia sido contratado para ensefiar aplicaciones
mateméticas y mecénicas a la fisiologia, pero pasé rapidamente
de ser un joven empleado del departamento médico (1727) a pro-
fesor de matematicas (1733), con un intermedio como profesor de
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fisica (1731). La transferencia fundamental de fisiologia a fisica
fue fruto de las peticiones insistentes a la Academia de sus cole-
gas Jakob Hermann (1678-1733) y Daniel Bernoulli.

La estancia de Euler en Rusia trabajando para la Academia
fue fructifera; ascendié rapidamente y trab6 gran amistad con
Daniel Bernoulli y con el secretario perpetuo de la Academia,
Christian Goldbach. Escribia mucho, descubria cosas nuevas
constantemente y empezaba a labrarse una fama internacional
considerable. En 1733 su posicién y sueldo le permitian mantener
casa y familia, y se casé6 con Katharina Gsell, 1a hija de un pintor
de la Academia. Del matrimonio nacieron trece hijos, aunque solo
cinco sobrevivieron.

En 1735, Euler padeci6 una fuerte infeccién ocular. Algunos
afirman que enfermé a consecuencia del estrés producido por un
trabajo urgente relacionado con el célculo de la latitud de San
Petersburgo. Sea como fuere, el caso es que se quedé momen-
tdneamente ciego del ojo derecho, y aunque en un principio se
fue recuperando poco a poco, a los tres afios recayo y perdio de

LA ACADEMIA DE SAN PETERSBURGO

El zar Pedro | puso el punto de mira del progreso de su imperio en la ins-
truccién publica y la difusién del conocimiento. Tras sus viajes a través de
Europa en los que trabd una buena amistad con Leibniz, decidié en 1724-
1725 la creacion de la Academia de ciencias, la Academia Scientiarum Im-
perialis Petropolitanae, afincada en la capital real, San Petersburgo. La
Academia estaba basada en las normas y estructura de la Academia de
Paris, y dependia, como ella, de la proteccién y el subsidio reales. La his-
toria de la Academia de ciencias fue un tanto azarosa en ese periodo inicial,
y a los tumbos obligados por la incierta politica rusa de aquel entonces
—constelada de niflos con titulos reales, regentes y zarinas— hay que ana-
dir las intrigas internas y luchas por el poder dentro de la propia institucion.
Los miembros de extraccién extranjera —sobre todo germanos— se enfren-
taban por la supremacia a los miembros rusos, quienes se sentian poster-
gados. Todo ello termind determinando que Euler, un tanto preocupado
por el cariz que tomaban las cosas, aceptara cambiar San Petersburgo por
Berlin, y emigrar de una academia a otra.
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modo definitivo la visién de ese 0jo. Su 4nimo, no obstante, no
se resinti6 por su irremediable disminucién de la visibilidad,
si se considera cierta la afirmacién atribuida a Euler: «Mejor, asf
no me distraeré tanto».

«Calculaba sin esfuerzo aparente, como otros hombres respiran
0 como las aguilas se sostienen en el aire...»
— Francois Jean DomiNiQue Araco (1786-1853)

En 1738 consigui6 el Grand Prix de la Academia de Paris —al
que también habian aspirado Voltaire y Emilie de Breteuil, la mar-
quesa de Chatelet— con un ensayo sobre el fuego. Dos afios des-
pués, en 1740, volvié a obtener el galardébn —frente a Daniel
Bernoulli y Colin Maclaurin—, esta vez con una memoria sobre el
flyjo y reflyjo de las mareas.

LA FUNCION GAMMA

Al poco de llegar a San Petersburgo, Euler emprendio el imparable
camino de descubrimientos sorprendentes que marcaria su exis-
tencia. El primero de sus grandes momentos parece haber sido
la creacién de la funcién I' (T es el simbolo de la letra maytscula
griega gamma), una herramienta basica del andlisis matematico.
Alrededor de 1720 ya aparece la sombra de I' en la corresponden-
cia con Daniel Bernoulli y Christian Goldbach, pero no es hasta
1729 que Euler la define por primera vez; la define pero no la bau-
tiza, pues no es hasta 1814 que Adrien-Marie Legendre (1752-1833)
la denomina gamma y la escribe de esta forma: I'(x).

La funcién gamma est4 presente muchas veces como compo-
nente de las distribuciones de probabilidades, y son multitud los
especialistas en fisica que usan dicha funcién; de hecho acostum-
bra a estar presente en los fenémenos que implican algin tipo de
integracién de caracter exponencial, tan frecuentes en el mundo
atémico; también es moneda corriente en astrofisica y en dinamica
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de fluidos, asi como en el estudio de los fenémenos sismicos. Tam-
bién en matematicas la funcién gamma tiene aplicacién en multi-
ples areas, de modo notable en combinatoria y muy en especial al
estudiar la funcion zeta de Riemann, de fundamental importancia
en el estudio de los nimeros primos.

El objetivo de Euler fue resolver una cuestion de lo que en-
tonces se llamaba interpolacién y que consistia en, conociendo
los valores extremos de una variable, deducir valores intermedios
de un modo natural y sin artificios. Veamos un ejemplo. El lla-
mado factorial de un nimero natural, denominado en aritmética
n! —y usado por primera vez por Christian Kramp (1760-1826)—
es el nuevo nimero:

nl=nn-1)(n-2)-...-3-2-1,

que consiste en el producto de todos los niimeros naturales meno-
res o iguales a n. Su crecimiento es espectacular, como puede
verse en la siguiente tabla:

n n! 7 5040

0 1 8 40320

1 1 9 362880

2 10 3628800

3 100 9,3326215444-10'%7
4 24 1000 4,0238726008-10%57
5 120 10000 2,8462596809- 10659
6 720 100000 | 2,8242294080 10458573

El factorial es discontinuo y solo estd definido entre niimeros
naturales; «interpolar» el factorial era prolongar el factorial hasta
encontrar una funcién continua f(x), de modo que al tomar x el
valor entero n se obtuviera f(n).

Un ejemplo casi trivial se halla en el concepto de cuadrado de
un nimero. Dado un niimero entero n estd bien definido su cua-
drado n*=mn-n. El concepto es «interpolable» a cualquier nimero
real x sin mas que poner f(x)=a%

SERIES, CONSTANTES Y FUNCIONES: EULER EN RUSIA



Euler «interpol6» el factorial n! y encontré, en 1729, una fun-
cién continua f(x) que actuaba como el factorial cuando x=n era
entero. La llamaremos I'(x) que es su denominacién actual.

Euler definié el valor de I'(x) en cada punto x por lo que hoy
llamariamos limite:

. n'n®
[(x)= Hﬂx(m+1)(¢r+2)--'(x+nr

definicién sustituida en la actualidad por la férmula integral:
I(2)= [ et dt,

que es mas sencilla y manejable y es vilida, ademas, en el campo
de los nimeros complejos.

Cuando se estudia a fondo, de la I'(x) resultan todo tipo de
férmulas muy sugestivas para una mente matematica como:

F(l-z}r(z}-m,

que relaciona a gamma con pi y con funciones trigonométricas.

LAS OTRAS GAMMAS

Hay varios modos de definir I'(x). En el siglo pasado hizo fortuna la férmula
de Karl Weierstrass (1815-1897), que pone de relieve a la constante de Euler
(y, llamada también gamma, aunque con minuscula):

Esta funciéon cumple que:
rm=1
I'(l + x)=xT(x).
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Una férmula que se deduce con el auxilio de la funcién
gamma es la célebre férmula de Stirling (1692-1770), paradigma
para muchos de la belleza simbdlica, pues en su enunciado inter-
vienen de manera armoénica las constantes m«, e y el niimero n en
varias formas:

nlm B (E) .
e

Por 1ltimo, pero no menos importante, un vinculo entre la fun-
cién gamma: y la zeta, T (2), esta tltima de fundamental importan-
cia en teoria de niimeros y, en particular, en el fascinante campo
de los niimeros primos:

LA FUNCION BETA

Euler, al estudiar la funcién gamma, se vio abocado a estudiar tam-
bién otra funcién, llamada beta y representada por la letra B. Hay
varias formas de definir esa nueva funcién, que es también muy ttil
en analisis; uno de los modos es recurrir al calculo integral:

B(wx,y)= [t (1-t)"" dt
si las partes reales de x e y son estrictamente positivas.
Y otro es recurrir a la funcién gamma, ya definida previamente:

I'(@)I'(y)
P Ty

LOS NUMEROS DE FERMAT

Tras abordar el estudio de las funciones gamma y beta, Euler des-
plazé su atencién a la teoria de niimeros, en uno de esos bruscos
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LA MADRE DE TODAS LAS FUNCIONES

En matematicas la reina de las funciones, la que centra la atencién de mas
especialistas y que consume mads bytes de literatura electronica es la funcién
zeta. Su denominacion procede de la letra griega € (zeta) y fue Euler quien la
empled por primera vez generalizando el llamado problema de Basilea, el
primer resultado matematico que le dio fama. Euler demostré que la suma
infinita de los inversos de los cuadrados es n%/6:

1+—1-+i+—!—+ LZ
il O (R

y posteriormente consiguié generalizar el resultado considerando la siguiente
funcion:

que puede tomar cualguier valor x en el campo E de los numeros reales. Euler
calculé muchos valores de la funcion zeta, aungue incluso en la actualidad se
desconoce un método directo para hallar infinitos de esos valores. El propio
Euler encontrd un modo de convertir la suma infinita de € en producto infini-
to, obteniendo, gracias a su habilidad algebraica para la manipulacién de
formulas, la expresion:

= x
wo=- 3~ =[]
n=1 k=1 p:

donde los distintos p, recorren exclusivamente el campo de los numeros pri-
mos. De este modo puso al descubierto un vinculo inesperado de la funcién
zeta con dichos numeros. Con las herramientas especializadas del analisis
superior, puede trasladarse la funcién zeta al campo complejo, tomando los
valores de s, ya no en R, entre los numeros reales, sino en el campo complejo,
C. La funcién zeta fue ampliada a este campo y estudiada, en principio, por el
gran matematico aleman Bernhard Riemann (1826-1866). Esta es la funcién
conocida hoy como funcicn zeta de Riemann y en ella se inscribe la llamada
hipdtesis o conjetura de Riemann, un enunciado desconcertante, todavia no
demostrado, que contituye lo que se considera actualmente como problema
pendiente numero uno de la matematica contemporanea. La hipotesis de
Riemann forma parte de los siete problemas del milenio cuya resolucion pre-
mia la fundaciéon Clay con un millén de délares cada uno.
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cambios de objetivo tan definitorios de la trayectoria cientifica del
suizo. En concreto, se ocupé de una cuestién que habia dejado
abierta un siglo antes el francés Pierre de Fermat (1601-1665).
Los vinculos de Euler con Fermat son muy estrechos. Si se sigue
la trayectoria euleriana a través de la teoria de niimeros se apre-
ciard que la tarea fundamental de Euler parece haber sido la de
solventar, uno tras otro, los problemas dejados sin resolver por
Fermat, tarea tanto més laboriosa cuanto que Fermat guardaba
por escrito pocas de las incégnitas que solucionaba, pues escribia
comentarios en los mismos textos que leia y analizaba, acostum-
brando a plantear a los demas colegas los problemas que resolvia
como desafios a la inteligencia de los amigos.

Uno de los mas interesantes temas numéricos heredado de
Fermat es el de los niimeros que llevan su nombre, los niimeros
de Fermat, que se denotan con la letra F'y se definen por:

F =2 +1.

Paran =0, 1, 2, 3, 4, se tiene:

F,=2" +1=2'+1=3
F=2%4+1=22+1=4+1=5
F,=2"41=2'4+1=16+1=17

F,=2% +1=2%+1=256+1=257
F,=2%+1=2"4+1=65536+1=65537,

que son todos niimeros primos. El siguiente nimero de Fermat
es este:

F, =27 +1=2%41=4294967 296+ 1 = 4294 967 297,
y no era ilégico conjeturar que también fuera primo, como los an-
teriores. Algo mas aventurado, aunque muy poco més para los es-
tandares de su tiempo, era conjeturar, como hizo Goldbach, que
todos los nimeros de Fermat eran primos, reafirmando lo que habia
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creido el propio Fermat. Goldbach le comunicé a Euler la conjetura
en 1729y, en 1732, Euler ya habfa encontrado la solucién: F, no era
primo, sino compuesto. Mas en concreto:

F, =4294967297 =641-6700417.

La primera reaccién que despierta este resultado es de asom-
bro, pues el esfuerzo que requiere lograr la factorizacién por el

PIERRE DE FERMAT

Hombre de leyes de profesién, muchas
veces se le ha llamado «el rey de los di-
letantes», pues cultivé las matematicas
solo como pasatiempo. Fermat contribu-
y6 de forma fundamental al nacimiento
de la geometria analitica y al desarrollo
del célculo de probabilidades y de la 6p-
tica. En este campo estudioé la reflexion
y refraccion de la luz, aspectos que con-
siderd inmersos entre los fenémenos de
maximos y minimos, sentando asi las
bases del célculo diferencial, del que
fue uno de los mas notables precurso-
res. Lo que mas fama le dio fueron sus
trabajos en teoria de numeros, donde
puso de relieve muchas de sus admira-
bles facultades y métodos de trabajo. No
acostumbraba a poner por escrito sus ra-
zonamientos, por lo que anotaba —mien-
tras le cabian— sus ideas en el margen
de los libros que leia. Sin embargo, su ascenso a la fama universal proviene
de pretender haber demostrado el teorema: «Para n>2, no existen enteros
positivos no nulos, x, y, z tales que x"+y"=z"», Conocido por e/ ultimo teorema
de Fermat, ultimo, porgue siempre quedaba pendiente de prueba, Fermat
habia manifestado —y muy probablente se equivocé— que, en el curso de
sus lecturas, habia encontrado una demostracion maravillosa pero que no le
cabia en el margen del libro que estaba leyendo. El teorema fue probado en
1995 por Andrew Wiles (n. 1953).
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modo convencional, probando a dividir por 2, 3, 5, 7, 11, 13, etc.,
y recorriendo hacia arriba la escalera infinita de los primos, es
colosal. Profundizando un poco mas en las maniobras de Euler,
puede rastrearse su método, y de paso, su genialidad. Poco a
poco, merodeando por el resbaladizo terreno de la divisibilidad,
llegé a la conclusiéon —nada facil— de que cualquier divisor de F.
debia ser de la forma 641 + 1; de manera que ya no tenia que ]idiar?
uno por uno, con todos los divisores primos, sino solo con los
numeros 656 (n=1), 129 (n=2), 193 (n=3), etc., descartando ade-
mas los que no son primos. Paran = 10 el calculo da 64 -10 + 1=641,
y resulta una division exacta.

Hasta hoy no se ha encontrado ningin otro niimero de Fer-
mat primo. Todos los que se conocen —o sea, que han sido estu-
diados— son niimeros compuestos. Se ha comprobado que de F,
a F,, —que es un nimero enorme— no hay ningin primo. Pero
eso no quiere decir que ya no los habra; que los haya o no es una
simple conjetura y, en matematicas, las conjeturas son verdaderas
o falsas si y solo si se demuestran o se refutan.

EL BAUTIZO DE UN NUMERO

En paralelo a su trabajo sobre los ntimeros de Fermat, y nueva-
mente en el marco de su fértil correspondencia con Goldbach,
Euler puso nombre a una constante numérica que, como ya se ha
apuntado en el capitulo anterior, iba a erigirse en pieza clave de
su trabajo en teoria de niimeros: la constante e. La primera apari-
cion de e con la denominacién con que ha llegado a nuestros dias
fue en una carta de 1731. Esta constante es, seguramente, la mas
conocida después de m, y vale en primera aproximacion:

e=2718281828459045 23536 0287471352 662497757247093 69995...
En la actualidad se conocen de e mas de 1000000000000 de

digitos decimales. No obstante le dio nombre y lo empleé para
toda clase de desarrollos y aplicaciones, Euler no fue en puridad
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su «descubridor»: e nacié mucho antes, pero con otro nombre y
un poco «de tapadillo», como se vera.

El niimero e proviene del campo de los logaritmos, como Euler
puso de relieve. El vinculo entre uno y otro —explicado con méis
detalle en el anexo 1— pasé desapercibido a la comunidad mate-
matica durante cerca de un siglo. En descargo de los contempora-
neos del suizo, hay que decir que el nimero e iba a revelarse a lo
largo de los afios como una constante especialmente escurridiza.

Uno de los primeros en acercarse a e fue Grégoire de Saint-Vin-
cent (1584-1667) quien, en 1647, se enfrent6 a la hipérbola equila-
tera, de ecuacién y = 1/, y cuyo grafico en coordenadas cartesianas
puede apreciarse en esta pagina. Saint-Vincent calculé el area limi-
tada entre 1 y otro punto cualquiera ¢ del eje horizontal X; es lo que
en lenguaje moderno equivale a integrar la curva entre 1 y ¢.

Si se integra entre 1 y ¢, resulta:

f]'ldx=lnt
T

y cuando se toma el valor ¢=e, se tiene Int=1Ine = 1. Asi pues, e es
el valor del eje horizontal X para el que el drea sefialada en el gra-

175
1,50

125

0,75
0,50

0,25
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fico vale 1, definicién adoptada mds tarde por el propio Euler,
pero sobre la que Saint-Vincent pasé de largo.

Tampoco Christiaan Huygens (1629-1695) presté mucha aten-
cién a e a pesar de que en uno de sus razonamientos se vio obli-
gado a obtener 17 digitos del logaritmo decimal de e. Pero como
los necesitaba para otra cosa y no para fijarse especificamente en
e, pues también pasé de largo.

Quien no pasé6 de largo fue Jakob Bernoulli, aunque no tomé el
sendero de los logaritmos, sino otro distinto, més «terrenal». En
1683, Bernoulli se interesé por el interés compuesto de un depdsito
de capital. Se puede seguir de modo aproximado sus mismos pasos,
aunque en lenguaje moderno. Si se deposita un capital C a un inte-
rés anual 7, al cabo de un afio el dinero se habra convertido en:

C+Ci=C(1+1).

Si el interés se calculara dos veces al afio en lugar de una
vez, se deberia dividir el interés por 2 y capitalizar el dinero dos
veces. Por tanto, al cabo del afio se tendria un capital mas inte-
reses igual a:

C+Ci+(C+C£)£=C(1+i)+c(l+3)l=
> 2)2 2 2)2

ool

Si se repite la operacidn n veces, se observa, siguiendo el pa-
trén, que el capital se convierte en:

c(1+1) .
n

Repitiendo la operacién infinitas veces el interés seria instan-
tdneo y en el actual lenguaje de los limites (prescindiendo de la

magnitud de 7, que no es importante en el planteamiento del pro-
blema) se llegaria al final con el limite:

lim(1+l) }
n=—=x n
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Al verificar el limite se constata que este existe e, incluso, se
puede uno acercar a su valor con un simple célculo:

n [1"'-1]"

n

1 2

2 2,25
3 2,37037
4 2,44141
5 2,48832
10 2,59374
100 2,70481
1000 2,71692
10000 2,71815
100000 2,71827
1000000 2,71828

Jakob Bernoulli, sin la ayuda de los modernos instrumentos
de célculo, llegé hasta las primeras lineas de la tabla anterior, y su
actuacion ha de calificarse de extraordinaria teniendo en cuenta
el nivel de las matemaéticas de su tiempo. Segiin sus célculos, el
limite estaria entre 2 y 3. Ahora se sabe ya que:

lim(l + l) =e.
n— n

Jakob Bernouilli, de una sola vez, habia encontrado a e —aun-
que no le dio nombre— y por primera vez en la historia habia
hecho un hallazgo aplicando el concepto, hasta entonces desco-
nocido, de limite. Por desgracia, también por esta vez la constante
e se encontraba huérfana de auténtico reconocimiento, pues
Jakob no vincul6 su constante-limite con los logaritmos.

El nimero e encontré su primer nombre, la letra b, cuando
Leibniz en 1690 la identific6 asi en una carta a Huygens. A partir
de ahi, e comenzo a existir. Alguien le habia otorgado un nom-
bre, aunque este no fuera el definitivo. Relacionarla con los loga-
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EL NUMERO e Y LOS SOMBREROS

Jakob Bernoulli no solo se topé con la constante e en el interés compuesto;
un acertijo, o mas bien, un problema de probabilidades y sombreros, le hizo
moverse en torno a e. Pierre Raymond de Montmort (1678-1719) y Jakob Ber-
noulli se enfrentaron al siguiente enigma: N invitados asisten a una fiesta y
entregan sus sombreros al criado en el vestibulo. Todo estaba preparado para
guardarlos cuidadosamente en cajas etiquetadas de antemano, evitando los
errores de pertenencia, pero a ultima hora enferma el criado encargado del
asunto y tiene que ser sustituido por otro, que desconocedor de la identidad
de los invitados, va disponiendo los sombreros al azar en las cajas. El proble-
ma acontece cuando los visitantes se van y el criado les entrega un sombrero.
Unos recibiran el suyo y otros no. é¢Cual es la probabilidad del desastre total,
es decir, de que ningun sombrero vaya a parar a su duefo? La respuesta es:
1 1 1 (&)

pN-‘I—i‘l-E—i'l-..,'l- N

una magnitud que se parece mucho a la suma cuyo limite es e. De hecho, su
limite es precisamente 1/e. Si la fiesta es multitudinaria y N muy grande:

1
Py == 36,79%.

ritmos era una cuestién de tiempo, y su lento paso concluyé en
1731, como ya hemos mencionado, con la carta de Euler a su
corresponsal Goldbach. A partir de entonces y en especial en
una serie de articulos escritos de 1736 en adelante, Euler llamé
oficialmente e a la constante, la identificé, relaciond el limite de
Jakob Bernoulli con los logaritmos, dio de estos una definiciéon
moderna, otorgé a e su lugar como base de los logaritmos natu-
rales y, en una palabra, llevé a e a la inmortalidad, calculando
incluso sus primeras 18 cifras decimales posiblemente mediante
la suma directa de los veinte primeros términos de una serie
descubierta por él mismo:

1 1 1
e=l+—+—+—+...
1! 2! 3!
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Si fuera asi se trataria de una hazana extraordinaria, casi un
imposible; pero Euler demostré en tantas ocasiones una capaci-
dad de célculo tan sobrehumana que muchos se sienten inclina-
dos a creer en tal procedimiento.

La eleccién por parte de Euler de la letra e, y no de otra, ha
generado mucha especulacién. A pesar de algunas creencias muy
extendidas, Euler no eligié la «e» por ser la inicial de la palabra
«exponencial», y, ni mucho menos, porque fuera la inicial de su
propio apellido. Al parecer la iba a llamar a, pero esa notacién
estaba ya «ocupada» en sus cdlculos por otra magnitud. En cual-
quier caso, lo cierto es que Euler nunca explicé las razones de su
eleccion.

Mucho de lo que Euler desentraiié acerca de e lo publicé en
1748, en su obra magna Introductio in analysin infinitorum, es-
crita en su etapa berlinesa. Entre otras notables aportaciones,
Euler establecié de modo definitivo que el logaritmo y la exponen-
ciacién son procedimientos inversos el uno del otro, lo que signi-
fica que:

y=a"siy solo sixr=log y,

férmula vélida para cualquier base a, incluida la base e, a=e.

Otro hecho que cae en el terreno del andlisis se refiere a la
exponenciacién en base e: la funcién f{x) = e* coincide con su pro-
pia derivada:

de,t' "
=e",
dx

La constante e es un nimero trascendente, es decir, no puede
obtenerse mediante la resolucién de una ecuacion algebraica con
coeficientes racionales. El primer paso para demostrar la trascen-
dencia de un niimero es probar su irracionalidad (se dice que un
namero es irracional cuando no se puede expresar por la razén de
dos enteros), cosa nada ficil y que Euler no pudo llevar a cabo.
Sin embargo, se quedé bastante cerca, pues pudo encontrar la si-
guiente fraccién continua:
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1
1

18+...

10+
14 +

Al demostrar fehacientemente que no terminaba nunca, pro-
b6 que
e-1
2 ]

erairracional. Finalmente, Charles Hermite (1822-1901) demostré
en 1873 la trascendencia de e.

Ademas de la de Euler, otras expresiones comunes de e en
forma de fraccién continua son:

e=2+ . -] 1
1 1
1+ I 0+ i
24 1+ I
14— 1+
1 1
g —— = 2+
1 1
s
1 1
1+—— l———
1+ 44—
1

1+——
1+-.

En tiempos recientes ha crecido en el ambito de la teoria de
nimeros el interés por averiguar si una constante es normal; jes
e normal? Normal significa, en este contexto, que los digitos de e,
cuando la constante se la expresa en cualquier base numérica,
guardan un equilibrio estadistico: tomados de uno en uno, en gru-
pos de dos, de tres o como sea, la probabilidad de aparicién en la
secuencia numérica de e es siempre equitativa.

Pues bien, hay constantes normales y anormales, pero e pa-
rece ser normal. Pero eso es solo una conjetura, pues nadie lo ha
podido demostrar hasta hoy.
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Los arcos del
Colegio de las
teresianas (arriba
a la izquierda)

de Barcelona,
obra de Antonio
Gaudi, o el gran
arco del Gateway
Arch de St. Louis
(arriba a la
derecha) son
ejemplos
invertidos de

la vulgar curva
catenaria formada
por los cables
colgantes (abajo).
Dicha curva tiene
una expresién que
involucra al
numero e.
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EJERCICIOS DE MEMORIA CON EL NUMERO e

Existe un deporte matematico denominado mnemonics, que consiste en
recitar cuantas mas cifras decimales posibles de una constante numéri-
ca. Como recordar decimales como simple ejercicio de memoria puede
ser aburrido, las reglas de mnemonics prescriben recordar frases o versos
creados a proposito. El nimero de letras de cada palabra se identifica con
la secuencia numérica decimal que se quiere recordar. Por ejemplo, en el
caso del verso «Con diez cafiones por banda», del poeta espafiol José de
Espronceda:

Con diez canones por banda
3 4 7 3 5

puede identificarse con la secuencia 34735; es mucho mas facil de recordar
el verso que el numero, pues las palabras poseen un sentido. Recordar cifras
del nimero = tiene muchos seguidores; practicar mnemonics con las cifras de
la constante e es menos conocido, pero no menos atractivo. En Internet exis-
ten frases (en inglés) como esta:

We present a mnemonic to memorize a constant so exciting that Euler
exclaimed: I’ when first it was found, yes, loudly ‘I. My students perhaps

will compute e, use power or Taylor series, an easy summation formula,
obvious, clear, elegant!

donde el signo «!» representa por convenio al digito cero. Si se cuentan las
diferentes cifras correpondientes a palabras consecutivas, se obtendra la se-
cuencia:

2718281828459045235360287471352662497757,

que resume las 40 primeras cifras.

LA CONSTANTE DE EULER-MASCHERONI
Hay tres constantes matematicas que destacan por encima de

todas las demas y que estdn muy relacionadas con Euler. La mas
famosa es m, y después, e. La tercera es conocida con la letra
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griega vy, y aunque Euler ya la definié en 1734, tres afios después
de hacer lo propio con el nimero e, comparte la paternidad del
hallazgo con el matemético italiano Lorenzo Mascheroni, por lo
que y es denominada constante de Euler-Mascheroni. Un poco
injustamente, como han hecho notar algunos especialistas, pues
el mérito mas relevante de Mascheroni parece haber sido calcu-
larla, en 1790, con 32 decimales..., y tres errores: en el 19, 20y 21.

Se trata de una constante puramente aritmética; si tomamos
en consideracién la antiquisima serie arménica:

El=l+—1~+—l~+l+...+i+...,
n=11 2 38 4 n

se constata que es divergente, es decir, que el limite de su suma
tiende a e« (la primera prueba rigurosa de ello se atribuye a Jakob
Bernoulli).

Euler tuvo la idea de comparar el crecimiento de esta serie
divergente con el In(n). Si se hace la resta:

i%—m(n),

Timl
término a término, se obtiene:
1-Inl1=1
1+ %- In2 = 0,8068528...

14141 ms-o0734721..
273

1424241 1n4-0,6970389..
2731

Esta diferencia se estabiliza y, en el limite, da una cantidad
constante:

—s
" k=1

?’=lim[i%—mn]=0,57721566...
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Lo que buscaba Euler era un modo de describir el crecimiento
de la serie arménica, y concluyé que tenia un crecimiento logarit-
mico. Euler denominé a esa constante con la letra maytscula C,
por lo que el uso de la letra griega y se debe posiblemente a Mas-
cheroni (1790). Euler la comput6 en 1736 hasta la cifra 19 usando
una férmula propia, los llamados nimeros de Bernoulli, B ; si lo
hubiera intentado por la via convencional de sumar términos de
la serie armoénica y restar el logaritmo hubiera fracasado, con todo
y ser un calculista fantistico, pues la convergencia de la serie de
la definicién es lentisima.

El aleman Weierstrass encontr6 que la definicién de I'(x)
dada por Euler era equivalente a la derivada:

r'()=-y,

lo que permite establecer una inesperada relacién entre la funcién
gamma y la constante de Euler-Mascheroni.

De la constante y no se sabe casi nada; ni siquiera si es racional
o irracional, y, como es légico, se desconoce si es trascendente. Si
se sabe que en el caso de que sea racional —lo que pocos especia-
listas creen— su denominador tendria por lo menos 244 663 digitos
en base 10, un nimero que de reproducirse al mismo tamario que el
presente texto ocuparia casi todo este libro.

La constante y aparece con frecuencia en andlisis (como en las
llamadas funciones de Bessel) y tiene aplicaciones en mecdanica
cudntica, en especial en la regularizacion dimensional de los diagra-
mas de Feynman, claves en electrodinamica.

Sin embargo, no hace falta ir tan lejos para encontrarse con y.
Si se coleccionan cromos, de esos que aparecen en los paquetes
de chicle o que se encontraban en las tabletas de chocolate, el
coleccionismo pasa a ser un habito inequivocamente euleriano.
Si la coleccién completa es de n cromos, se necesitan aproxima-
damente N compras del producto que los contiene para tenerlos
todos:

N=n(1+l+l+...+l).
23 n
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LORENZO MASCHERONI

La primera vocacion de este sacerdote
y matematico italiano (1750-1800) fue
la poesia. Su adscripcion politica era
mas bien liberal y afrancesada, por lo
que en 1797 fue nombrado diputado en
Milan; fue enviado entonces a Paris para
colaborar con Legendre en la implanta-
cion del Sistema Métrico Decimal, pero
a causa de la ocupacion austriaca de
Milan ya no pudo regresar a su patria,
pues muri¢ al afio siguiente. En 1797
publico su obra magna, Geometria del
compasso (Geometria del compds), vy
su prologo, en verso, estaba dedicado
a su amigo Napoledn, quien era, ade-
mas, un matematico aficionado, como
demuestra el teorema que lleva su
nombre. En esta obra demuestra que la
exigencia griega de admitir solo cons-
trucciones geomeétricas usando en ex-
clusiva la regla y el compas era menos
estricta de lo que se creia: sobra la re-
gla, pues todo lo construible lo es usan-
do solo el compas. Esta tesis —hoy bas-
tante trivial— era sorprendente en su
época; en enunciarla, sin Mascheroni
saberlo, le habia precedido el matema-
tico danés Georg Mohr (1640-1697),

Un conocido problema del libro de
Mascheroni es el probli de Napol
(pues se dice que fue Napoledn quien se
lo planted al matematico) que consiste

en, dada una circunferencia, determinar
los cuatro vértices de un cuadrado usando
solo el compas.

quien la publicé en Euclides danicus (Euclides danés) en 1672. Su conexion
con Euler —y la inmortalidad matematica— le llegd con su libro Adnotationes
ad calculum integrale Euleri (Anotaciones al cdlculo integral de Euler), que,
aunque no aporté avances significativos, contiene la constante y y su célculo
(erréneo) con 32 decimales. Desde entonces a y se la denomina constante de

Euler-Mascheroni.

Si se intenta resolver el problema haciendo suma y hay su-

ficientes cromos, se tardara muchisimo y los errores se iran acu-
mulando (incluso usando una calculadora de bolsillo). Es mas
aconsejable recurrir a Euler y sumar solo dos cosas:
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El logaritmo lo dard la calculadora y en cuanto a y aqui apa-
rece con cincuenta decimales:

0,57721566490153286060651209008240243104215933593992. ..

Otro ejemplo algo mas abstracto seria el siguiente: si se quiere
saber cudntos divisores de n hay en promedio entre 1 y n, se
puede emplear la expresién In n+ 2y— 1. Se trata de una aproxima-
cién, tanto mas exacta cuanto mas grande se hace n y mas diviso-
res tiene.

LA CONSTANTE Y Y LOS NUMEROS PRIMOS

La constante y es mucho menos frecuente que x o e. No es dificil hallar una
férmula que relacione a las tres:

e

g
= l;!e 1+n :

El propio Euler encontré conexiones entre y y la funcién zeta, como:

y=Sr ¥,
=2

n

y hay formulas que conectan directamente a y con los numeros primos,
como la férmula de Franz Mertens (1840-1927):

e’ ulimL ~£’—~,
r:--fljnpn =l ﬁ)r“‘|

donde los p son solo numeros primos. Ya tenemos a y, la funcion zeta y los
numeros primos involucrados. Cabe poca duda de que la tercera constante
de Euler es importante, y que lo sera aun mas.
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LA FORMULA DE EULER-MACLAURIN, EN DETALLE

La expresion de la férmula de Euler-MaclLaurin puede resultar intimidante. En
su forma mas usual se presenta como:

gf(x]- J £ s S[F(n) +F(O)]+ [0 (n) " 0] .

x=0

donde los 8, son los numeros Bernoulli y las f* son las sucesivas derivadas
de f. Una aplicacién de la formula consiste en hacer n==, con lo que en la iz-
quierda puede colocarse una serie, y, en ocasiones, mejorar su convergencia.
Euler utilizd este truco en el problema de Basilea, como se vera mas adelante.

UNA SUMA QUE SUMA LO INSUMABLE

En 1735, la dltima de las grandes aportaciones de Euler en el
campo del andlisis durante su primera estancia rusa es una fér-
mula de gran utilidad que permite calcular de modo aproximado
una integral a base de sustituirla por una suma, o calcular aproxi-
madamente una suma sustituyéndola por una integral. Descubierta
también de forma independiente por el escocés Colin McLaurin, la
denominada férmula de Euler-Maclaurin funciona como sigue:
dada una funcién f(x), cuando se habla de sumarla, se suele pensar
en dos cosas, vagamente relacionadas, pero distintas. Cuando se la
restringe a valores enteros se obtiene una suma:

s(n)= 73 f(k),
k=l
y cuando se la suma para todo & se obtiene una integral:
i(n)= [} f(x)de.
Parece evidente que hay algiin vinculo entre s(n) e i(n), pero

la primera es una suma discreta, mientras la segunda es continua.
La férmula de Euler-Maclaurin es un resultado que permite, en
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muchos casos, pasar de un lugar al otro. Si se conoce s(n), per-
mite evaluar i(n), y si se conoce i(n) se puede calcular s(n).

EL PROBLEMA DE BASILEA: EL PRINCIPIO

A su llegada a San Petersburgo el salario de Euler era de 300 ru-
blos, e incluia alojamiento, lefia para el hogar y aceite para las
limparas. Tras acceder en 1733 al cargo de profesor de matemati-
cas que habia dejado vacante Daniel Bernoulli, la Academia
aumento6 su estipendio a 600 rublos, una cantidad que se veria
nuevamente incrementada ese mismo afio gracias a las clases y
examemes que empezé a impartir, a propuesta del barén Von
Miinnich, en la escuela local de cadetes. La seguridad econémica
derivada de sus nuevas responsabilidades permitié a Euler con-
traer matrimonio con Katharina Gsell, hija de Georg Gsell, un pin-
tor de origen suizo empleado en la Academia de arte por expreso
deseo del zar Pedro 1. La ceremonia tuvo lugar el 27 de diciembre
de 1733, y la joven pareja se trasladé al poco a una casa de ma-
dera, —«extremadamente bien amueblada», en palabras del pro-
pio Euler— ubicada en la isla de Wassiljevski, a poca distancia de
la sede de la Academia de ciencias. Un afno después veia la luz el
primer hijo del matrimonio, Johann Albrecht, que fue apadrinado
por Von Korff, a la sazén presidente de la Academia. Este hecho
atestigua la gran estima en que se tenia a Euler en el seno de la
institucion, lo que no resulta de extraiar vistas las aportaciones
hechas hasta el momento por el matematico suizo. Sin embargo,
lo mejor estaba atin por llegar. Apenas un ano después, en 1735,
Euler iba a deslumbrar a toda la comunidad matemética con un
destello de genio: la solucién al problema de Basilea.

En los paises anglosajones hay un gusto bastante extendido
por lo que alli se llama los Top Ten. Son muchos los libros o progra-
mas de television dedicados a glosar los 10 primeros de cualquier
tema. Inmersos en esta tradicién se han elaborado incluso listas
de realizaciones cientificas, clasificadas por su belleza intrinseca,
su repercusién practica o su altura intelectual. Una de esas listas

SERIES, CONSTANTES Y FUNCIONES: EULER EN RUSIA



se realiz6 sobre cudl era la mejor de las muchas aportaciones de
Euler. Con otras figuras no hubiera podido hacerse, pues hubiera
faltado material para llegar a los 10 temas, pero con Euler no hay
peligro: presenta resultados suficientes para una lista larguisima.
Y bien, ;cudl ocupd la primera posicién? Pues la férmula:

n’ 1 1 1
—m l fim =k ..,
6 2° 3 4
que expresa, precisamente, la solucién al problema de Basilea.
El origen del problema es desconocido pero obedece a una
duda razonable. Conocida desde antiguo la serie arménica, que es
la serie que corresponde a la suma de los inversos de los niimeros:

1 1 1
l+—+—+—+..,
2 3 4

y sabido que es divergente, parece légico preguntarse a conti-
nuacién por la suma de los inversos de los cuadrados, que pa-
rece convergente, pero que no se sabe a qué niimero exacto
converge:

l+i2+—12-+~1-2~+...~ 1,644934,
2 3 4

Y ni siquiera se sospecha. Si se suman experimentalmente
varios miles de términos de esa serie, se nota que se aproxima a
un cierto valor, pero también se cae en la evidencia de que la serie
converge muy lentamente, tanto que resulta casi impensable pasar
de los dos decimales de aproximacion.

Parece ser que fue el sacerdote y matematico italiano Pietro
Mengoli (1626-1686) el primero en referirse al problema de Ba-
silea, pero fue Johann Bernoulli quien lo dio a conocer a Euler,
quien ya en 1729 lo mencionaba en una carta a su colega Gold-
bach. En 1730 el problema ya estaba en las mentes de todos los
matematicos y ejercia entre ellos un atractivo similar al que ejer-
ceria el denominado %ltimo teorema de Fermat.
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Euler abordé el tema tan seriamente que se cuenta con varias
demostraciones suyas de la solucion. Todas son muy ingeniosas
y algunas muy seductoras para los profesionales del analisis, en
especial una de ellas, publicada en 1741 y que hace referencia a
técnicas del cédlculo integral. La demostracién considerada «cané-
nica» es la que los expertos denominan tercera demostracion, y
es la més elegante desde el punto de vista del lector no especiali-
zado. Se encuentra bosquejada en el anexo 2.

«He encontrado ahora y contra todo pronéstico una
expresion elegante para la suma de la serie que depende

de la cuadratura del circulo... He encontrado que seis veces
la suma de esta serie es igual al cuadrado de la longitud

de la circunferencia cuyo diametro es 1.»

— LeonHARD EULER.

62

La resolucion del problema fue algo inesperado por la comu-
nidad cientifica, y la noticia de la solucién al problema de Basilea
dio la vuelta al mundo; una vuelta extremadamente modesta, ya
que el mundo era entonces bastante restringido, el mundo culto
mucho més y los medios de comunicacién, salvo el correo, de al-
cance muy limitado.

Euler preparé el camino a su solucién con cdlculos y manio-
bras preliminares. Por ejemplo, recurrié a sumaciones previas pro-
pias del método de Euler-Maclaurin para probar, antes de empezar,
una aproximacion mejor que 1,64. A base de ingenio, Euler encon-
tro hasta seis cifras exactas y se situd en el punto de partida con:

1+i,,+io+io+... =~ 1,644934.
2 3¢ 4°

Por otra parte, a alguien acostumbrado a las potencias de n
y con una memoria tan fabulosa como la suya, no debi6 escapar-
sele que 1,644934 se parecia mucho a 7%/6. De manera que hay que
suponer que, al iniciar el espinoso camino, ya sabia de antemano
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dénde iba a desembocar, una ventaja que no tenia ninguno de
sus contemporaneos. Se supone que el ingenio de Euler ahorrd
el equivalente de sumar unos 30000 términos de la serie original.

EL PROBLEMA DE BASILEA: EL FINAL

Una vez resuelto el problema de Basilea estrictamente dicho,
Euler no se detuvo aqui. Regresemos a la funcion zeta, de la que
ya se hablé en el capitulo anterior:

1 1 1 1
l+ ——+—+— —..
&(x)= +2J+3I+4;+ 'nf+

Para x=1, se obtiene la serie arménica, y para x=2, la serie
del problema de Basilea. Euler profundizé en la cuestién y, a par-
tir de sus trabajos con el problema de Basilea, obtuvo expresiones
para las series de potencias pares:

1 ¥ .1 1 x
C(4)=1+—4+3—4+E+."+?+...'%

1 1 x’
£(6) = 1"'_*35 +F+ +?+ YT
1 1 1 n®
£(8)= l+ 38 48+...+§+...=9450
10
£(10) =14~ 1 1 1 1 T

NPV R S, S S
gu 3“’ 4% n' 93555

hasta £(26), con formulas cada vez mas aparatosas en las que el
nimero & aparecia siempre elevado a la potencia n que corres-
ponde a {(n). En 1739, Euler llegé a una expresion general:

= (-1 (27‘)2” B,
c(an)- (-0 T,
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que involucraba a los nimeros B, los niimeros de Bernoulli,
sobre los que se tratara en el capitulo 4.

Los nimeros B, se van haciendo cada vez mayores e intrata-
bles; para hacerse una idea de ello basta con transcribir el miem-
bro cincuentavo:

39604 576 419 286 371 856 998 2027
285 258 771 457 546 764 463 363 635 252 374 414 183 254 363 234 375

£(50)-

EL PRIMER PROGRAMA INFORMATICO DE LA HISTORIA

Ada Byron (1815-1852), conocida
mas tarde por Ada King, conde-
sa de Lovelace al contraer matri-
monio con William King, era hija
de lord Byron, al que ni siquiera
llegd a conocer, pues sus padres
se separaron al mes de su na-
cimiento. No tuvo que superar
ninguna dificultad para cultivar
sus dotes matematicas, pues su
madre las consideraba un eficaz
antidoto contra las posibles velei-
dades literarias de su hija; el odio
por la vida y obra de su exmarido
era profundo y persistente. La fi-
gura central en la vida cientifica
de Ada fue el célebre matemati-
co Charles Babbage (7791-1371), La maquina analitica de Charles Babbage para la
que Ada King desarrollé un programa para calcular
responsable del desarrollo de la |55 humeros de Bernoulii,
primera computadora de la his-
toria. Ada cred para la maquina
un algoritmo recurrente que, una vez implementado con tarjetas perforadas
permitian el calculo automatico de los niumeros de Bernoulli. El procedimiento
ideado por Ada es, desde el punto de vista informatico, un auténtico progra-
ma, el primero de la historia. En los afios 80 del siglo xx el Ministerio de Defensa
de Estados Unidos denomind ADA a su lenguaje computacional MIL-STD-1815
(el niumero coincide con el afio de nacimiento de Ada) en homenaje a su
persona.
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De hecho, el primer software de la historia, es decir, el pri-
mer programa destinado a efectuar un cilculo automético en un
computador calculaba los niimeros de Bernoulli por un procedi-
miento recurrente. Lo llevé a cabo Augusta Ada King, condesa de
Lovelace, en 1843, e iba destinado a funcionar —y era informati-
camente impecable— con el computador mecéanico de Charles
Babbage.

Los valores impares de £(n) son muy dificiles de calculary en
la actualidad se sigue luchando con ellos. Como es natural, el pri-
mero coincide con la serie arménica:

C(l)=1+%+%+...=x1;

Y el tercero, que es un niimero irracional, se denomina cons-
tante de Apéry:

1 1 1 1
§(3):—1+§+§+4—3+...+E+... =1,2020569...

Euler ain dio un paso mas, un paso casi de visionario. Se
adentré progresivamente en los dominios de la funcién zeta —y,
por consiguiente, en el terreno de los nimeros primos—, al trans-
formar la suma infinita de su funcién T(n) en un producto que
involucraba a los niimeros primos. Quien lo desee puede seguir
con profundidad a Euler en su camino en el anexo 3.

LOS PUENTES DE KONIGSBERG

En los primeros meses de 1735, Euler cayd victima de una enfer-
medad la naturaleza de la cual es imposible determinar a partir
de las fuentes biograficas de las que se dispone, pero que se sabe
cursé con una «fiebre feroz» que llegé a amenazar su vida. Tras
congratularse de su recuperacion, tanto en su nombre como en
el de «los matemadticos de todo el mundo», Daniel Bernoulli le
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Grabado de la
ciudad de
Kénigsberg en la
época de Euler,
con detalle de los
siete puentes.

confesé que «nadie guardaba esperanzas de que se recuperara de
ella [la enfermedad]». Como consecuencia del episodio, el ojo de-
recho de Euler quedé seriamente afectado, y tres afios mas tarde
perdia su uso definitivamente. Todo y con ello, Euler sigui6 tra-
bajando a su ritmo acostumbrado, y apenas un aiio después abor-
daba una cuestién radicalmente distinta a sus trabajos anteriores,
el conocido como problema de los puentes de Konigsberg. Hay
matematicos que sitiian este particular episodio en la cima de los
descubrimientos de Euler, lo que es una distincion extraordinaria.
;Por qué? Es un problema geométrico que no parece geométrico,
pues no implica figura reconocible ni medida alguna; se razona
solo sobre la posicién de determinadas lineas y puntos y sobre el
modo de ir de unos a otros. Es una fascinante historia sobre algo
poco corriente.

En la época de Euler, Kénigsberg era una ciudad de la Prusia
mads oriental, situada en aguas bélticas. Denominada en la actua-
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lidad Kaliningrado, es mucho mayor, pertenece al territorio ruso
y es un enclave geografico situado entre Polonia y Lituania, fruto
de las guerras mas que de la historia. Como hoy, la ciudad estaba
regada por el rio Pregel, cuyos brazos, al atravesarla, definian una
isla y tres masas de tierra, que quedaban separadas por sus aguas,
pero conectadas por siete puentes; estos permitian a sus habitan-
tes atravesar el rio y pisar tierra firme, tal y como se observa en la
ilustracién de la pagina anterior.

Tan idilico escenario ya determinaba numerosos paseos posi-
bles a través de la ciudad y cruzando los puentes, pero algunos pa-
seantes se preguntaron por la posibilidad de convertirlo en ciclo
cerrado, a saber, ;era posible pensar en un paseo que empezara
y terminara en el mismo lugar, pero que solo pasara una vez por
cada puente? Eso ya no es un simple paseo, sino un acertijo ma-
temético.

Pasear de todos los modos posibles no es una tarea imposi-
ble. Al fin y al cabo, tan solo hay siete puentes y resultan unos
cuantos miles de paseos a seguir. Pero la situacion seria algo
kafkiana porque, cualquier camino elegido, se partiera del punto
del que se partiera, si pasaba por un puente una sola vez, desem-
bocaria pertinazmente en un punto diferente del de partida.
Podia sospecharse, con cierta razén, que el paseo buscado era
tan inaccesible como el castillo del autor checo en su conocida
narracion.

En tiempos de Euler no era raro el planteamiento de enigmas
semejantes, los cuales, con suerte, se resolvian y se convertian en
cabezas de puente de teorias matematicas. Que llegaran a con-
vertirse en iniciadores de toda una rama, rica y frondosa, de las
matemadticas ya era menos comun, pero eso es lo que ocurrio pre-
cisamente con los puentes de Konigsberg.

Euler tuvo la idea de, a partir de la representacién esquema-
tica de la ciudad (véase la figura 1, en la pagina siguiente), pres-
cindir de la forma de todos los componentes y sustituirlos por un
grafo, de manera que se consideren los puntos de tierra como
vértices y los puentes como camino (figura 2). Razonando de
modo exclusivo sobre el grafo resultante, Euler extrajo sus con-
clusiones.

SERIES, CONSTANTES Y FUNCIONES: EULER EN RUSIA

67



FIG. 1

FIG. 2

El problema de
los puentes

de Kdnigsberg
pretendia
encontrar un
circuito euleriano.
uUn circuito
euleriano empieza
y termina en el
mismo punto
pasando una sola
vez por todos los
arcos o aristas del
grafo, en este
caso, en forma

de octaedro.
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Un grafo es un dibujo en forma de
red, que consta de dos partes: los
puntos llamados nodos o vértices
y los trayectos entre ellos, deno-
minados aristas o arcos. El grado
de un nodo es el nimero de arcos
que concurren en un nodo. Del
camino seguido por el paseante
se dird que es un camino eule-
riano cuando permita discurrir
por dicho itinerario pasando una
sola vez por cada arco. El camino
sera un circuito euleriano (figura
3) cuando empiece y termine el
recorrido en el mismo nodo. Esto
es, precisamente, que sea un cir-
cuito euleriano, lo que define para
muchos lo que seria un «paseo
perfectos».
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Asi pues, lo deducido por Euler puede escribirse asi:

Llamemos 7 al nimero de nodos de grado impar.

a) si n=0 el grafo contiene al menos un circuito euleriano.

b) Si n=2 hay al menos un camino euleriano pero no un circuito.

¢) Si n>2 no hay ni camino ni circuito.

Dado que, en el caso que nos ocupa, n=4, los paseantes de
Konigsberg se quedaron sin «paseo perfecto». Si le hubiesen pre-
guntado a Euler, les podria haber dicho que la adicién o supresion
de un simple puente habria hecho su problema resoluble.

UN PROBLEMA RELACIONADO: EL PASEOQ DEL CABALLO

Otra cuestion también estudiada por Euler y que de algiin modo
se relaciona con el tema de los grafos es el problema de ajedrez

del paseo del caballo, abordado en
1759 en Solution d'une question
curieuse que me pardit soumise
a aucun analyse (Solucion a una
cuestion curiosa que mo parece
sujeta a ningin andlisis). El pro-
blema consistia en, partiendo de
cualquier punto del tablero de aje-
drez, conseguir un recorrido para
el caballo de manera que pisara
todas las casillas. Euler encontré la
solucién, poniendo de paso el fun-
damento a los posteriormente de-
nominados grafos hamiltonianos,
que presentan caminos que pasan
una sola vez por cada vértice y vuel-
ven al punto de partida (figura 4).

FiG. 4
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EL NACIMIENTO DE LA TOPOLOGIA

Euler denominé geometriam situs a las cuestiones relacionadas
intelectualmente con la de los puentes, pero fue Johann Benedict
Listing (1808-1882) quien acuii6, en 1847, el término de topologia
que permanece en la actualidad. La topologia es una robusta rama
de las matematicas que agrupa conceptos considerados en gene-
ral poco geométricos, como dentro y fuera, cerca y lejos, orienta-
ble y no-orientable, conexo y no-conexo, fronterizo o no, continuo
y discontinuo, entre otros. La topologia se ocupa de cuestiones en
apariencia alejadas de lo que tradicionalmente se entiende por
matemadticas. Asi, en su marco han encontrado solucién proble-

TEOREMA DE LA BOLA PELUDA

Representemos intuitivamente una esfera recubierta por pelos lisos vy lacios,
suponiendo que en cada punto de la esfera crece un pelo. A continuacién, se
considerard la proyeccion sobre el plano tangente a la esfera en el punto en
que crece el pelo: el conjunto de estas
proyecciones es semejante a un cam-
po de vectores tangentes a la esfera,
lo que se denomina espacio tangente.
El objetivo es «peinar» estos pelos ali-
sandolos sobre la superficie de la bola
pero evitando las discontinuidades, es
decir, el peinado no puede tener raya;
ningun pelo puede cambiar brusca-
mente de direccién con respecto a los
otros. El teorema afirma entonces que
es imposible peinar todos los pelos sin
que en el total de la esfera nos veamos
obligados a hacerlo con raya. Cualquier
intento causara al menos un rizo o re-
molino. Basta con echar un vistazo a la
realidad que nos rodea para compro-
bar el teorema: si pretendemos peinar
a un nifio sin raya, siempre aparecerd
Un occipucio con el tipico remolino. un remolino en algun lugar.
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mas tan dispares como saber cudl es el niimero minimo de colores
para pintar cualquier mapa convencional: son 4. También se ha
demostrado rigurosamente que siempre hay dos puntos antipodas
sobre la superficie terrestre con igual presion y temperatura, o que
cuando se arruga un folio y se superpone a uno liso, siempre hay
un punto del primero que cae exactamente sobre el punto equiva-
lente del segundo. También dentro de esta rama se ha desarro-
llado el divertido teorema de la bola peluda, que trata el concepto
de direccién de un modo tipicamente topolégico.

Euler hizo algo més que intentar explicar el universo cono-
cido: abrié las puertas de uno desconocido.

LOS PRIMEROS LIBROS DE EULER

Durante su primera estancia en Rusia, Euler redacté sus primeros
tratados. Los libros son densos, pero de lectura ficil, y en ellos ya
brillan la excelente organizacién y el estilo, mostrando la legendaria
claridad expositiva y amenidad de Euler. De esta época es Mecha-
nica sive motus scientia analytice exposita (Mecdnica o ciencia
analitica del movimiento) donde desarrolla los aspectos fisicome-
canicos de una masa puntual. Lo novedoso es que lo hace con las
armas del cilculo diferencial e integral, pues lo corriente era darle
ala mecanica un tratamiento puramente sintético y geométrico. En
su obra aparecen ya las ecuaciones diferenciales, las masas pun-
tuales y el movimiento de cuerpos eldsticos y el de los fluidos, de
manera que los tomos constituyen el primer tratado moderno de
mecénica racional. Lagrange los ponder6 como «la primera gran
obra donde el anélisis ha sido aplicado a la ciencia del movimiento».

Asimismo, dedic6 un tratado a la musica, Tentamen novae
theoriae musicae (Una tentativa para una nueva teoria de la mai-
sica) que, aunque data de 1731, no se publico hasta 1739. Esta obra,
que forma equipo con otras similares de la misma época de Mer-
senne, Descartes o d’Alembert, trata de la naturaleza, generacién y
percepcién del sonido, del placer musical y de la teoria matematica
de los temperamentos.
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Scientia navalis (Ciencia naval) fue la primera gran obra
euleriana dedicada a la ciencia naval, que cubre tanto los princi-
pios basicos de la hidrostatica, la estabilidad de los buques y los
conocimientos practicos de la construccién naval y la navegacion.

Asimismo, escribié memorias y articulos sobre navios y na-
vegacién donde abordaba procedimientos alternativos de nave-
gacion que iban desde las maquinas imposibles de movimiento
perpetuo a la aprovechable energia del oleaje. Lo més interesante
era la utilizacién de un sistema de palas, premonitorio de las rue-
das motrices. En 1773, como se veri, regresé al tema.

Durante los tltimos afios de su primera estancia en Rusia,
Euler se encargaba de gran cantidad de actividades en el seno
de la academia; se ocupaba de los problemas de jardineria e in-
genieria, y escribia sus propios trabajos al tiempo que leia y su-
pervisaba los ajenos. Era miembro de la comisién de medidas.
Se encargaba incluso de anotar los manuscritos que llegaban a
la Academia sobre la cuadratura del circulo, y de comprar papel
y lapiz. Lo que més trabajo le dio fue la revisién de la cartografia
rusa, por la que, sin embargo, sentia una gran admiracion.

Tanta y tan variada actividad profesional como la que hemos
repasado en el capitulo no impedia a Euler ver lo delicado de la
situacion politica del pais. A la guerra ruso-otomana que en 1739
acababa de terminar, se sumaba el descontento de la aristocracia
local con respecto a la nutrida presencia germana en los més altos
cargos del gobierno y la burocracia. Con el acceso al poder de Isa-
bel, la hija de Pedro, en 1740, el temor de que se emprendieran
fuertes purgas contra la élite de origen germano —y por extension,
con todos los extranjeros— impulsé a Euler a aceptar la oferta de
empleo de la Academia de Ciencias Prusiana, con sede en Berlin.
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CAPITULO 3

Berlin, capital del analisis

Siendo ya una personalidad cientifica de
primera fila, Euler atendié la llamada de Federico II,
el rey ilustrado de Prusia. Su obra de esa época se abri6 a
otras disciplinas, como la geometria, l1a mecanica de fluidos
o la ingenieria, pero nunca abandoné su énfasis en el
analisis, al que dedic6 una terna de obras para la
eternidad y el estudio de un tema fundamental:
el célculo de variaciones.






«Sefiora, he llegado de un pais donde las personas son ahorcadas
si hablan» fue la respuesta de Euler a Sophia Dorothea, la reina
madre del rey de Prusia cuando esta, amablemente, le reproché a
Euler su escasa participacién en una conversacion palaciega.

En 1741, Euler habia regresado al calor de la Europa tradicio-
nal, al centro del universo iluminista y uno de los focos de irra-
diacién de la cultura occidental, a Berlin, a la capital del reino de
Prusia, donde imperaba la voluntad del mads liberal de los reyes
de Europa, Federico II el Grande (1712-1786). Alli coincidié con
luminarias tales como Francois Marie Arouet (1694-1778), mas co-
nocido como Voltaire, el misico Johann Joachim Quantz (1697-
1773), el pensador Immanuel Kant (1724-1804) o el polifacético
Johann Wolfgang von Goethe (1749-1832).

A la llegada de Euler, Federico II andaba embarcado en unas
escaramuzas locales por Silesia, por lo que el suizo tuvo que vivir
de los préstamos de diversos conocidos hasta el regreso real, en
1746. Mientras tanto, Euler adquirié un terreno y una casa, planto
patatas y otros vegetales de subsistencia en su jardin, y se dedic6 al
trabajo cientifico como empleado de la Societas Regia Scientiarum.

Esta era una institucién fundada en 1700 por el rey Federicol,
por iniciativa de Leibniz. Sufrié un pequeiio declive durante los
afios en que paso a depender de Federico Guillermo I, quien no
compartia el interés de su antecesor por las cuestiones intelec-
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tuales ni, en general, por nada que no le reportase un provecho
politico o militar inmediato. Por fortuna para la pervivencia de
la institucion, Federico II, terminados los combates en Silesia, se
dedico a cuidarla y la mantuvo en el lugar que se merecia.
Cuando Federico regresé, Euler ya habia presentado un mon-
t6n de articulos y habia escrito varios libros. Por entonces, el presi-
dente de la Academia era Pierre Louis Moreau de Maupertuis, y
Euler dirigia la seccién de matematicas, aunque también se ocu-
paba, entre otras cosas, de las finanzas, la astronomia, la ingenieria
y la botanica. De acuerdo con el historiador Adolf P. Yushkevich:

[...] supervisoé el observatorio y los jardines botdnicos; seleccioné el
personal, superviso varias cuestiones financieras, y, en particular,
logro la publicacion de varios calendarios y mapas geograficos, cuya
venta era una fuente de ingreso para la Academia. El rey también
encarg6 a Euler problemas pricticos, tales como el proyecto en
1749 para corregir el nivel del canal de Finow [...] En tal periodo
también supervisé el trabajo de las bombas y tuberias del sistema
hidraulico de Sanssouci, la residencia real de verano.

Sin embargo, el monarca no estaba satisfecho con respecto
a sus méritos, como demuestran estas lineas de una carta suya a
Voltaire:

Queria tener una bomba de agua en mi jardin: Euler calcul6 la fuer-
za necesaria de las ruedas para elevar el agua a una reserva, desde
la que caeria después a través de canalizaciones para finalmente
manar en el palacio de Sanssouci. Mi molino fue construido de forma
geométrica y no podia elevar una bocanada de agua hasta mas alla
de cinco pasos hacia la reserva. {Vanidad de las vanidades! jVanidad
de la geometria!

En 1747, Euler fue nombrado miembro de 1a Royal Society; en
1748, gan6 nuevamente el Grand Prix de la Academia de ciencias
de Paris con una memoria sobre el problema de los tres cuerpos,
cuyo contenido orienté a Alexis Claude Clairault (1713-1765) en
sus propios trabajos en este campo. En 1758, fue nombrado aca-
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démico por la Academia parisina, de manera que en Euler ya con-
vergian todos los nombramientos honorificos posibles.

Tal era su fama que cuando el ejército ruso invadié Alemania
en 1760 y dafié gravemente una propiedad que el sabio suizo tenia
en Charlottenburg, el general del ejército invasor, Gottlob Curt
Heinrich von Tottleben, se apresuré a indemnizar a Euler y pedirle
disculpas por los hechos proclamando «Yo no hago la guerra a la
ciencia»; también la emperatriz rusa Isabel le envié 4 000 coronas
para resarcirlo de sus perjuicios.

Alrededor de 1750 alcanzé gran notoriedad la disputa acerca
de la prioridad del principio de minima accién, que Konig atribuia
a Leibniz y Maupertuis, a si mismo. Parece que Euler también lo
habia descubierto por su cuenta, pero no lo hizo piblico para no
disgustar al que nominalmente era su jefe. Voltaire tomo partido
por Konig y, en 1752, escribié un relato irénico (Diatriba del doc-
tor Akakia) donde ridiculizaba a Maupertuis. Federico zanjé la
polémica expulsando a Voltaire del reino, y Maupertuis, muy afec-
tado por los hechos, se marché de Berlin.

A partir de ese momento, todo quedé en manos de Euler, pero,
a pesar de ello, no fue nombrado presidente de la Academia. En
primera instancia, Federico le ofrecié el puesto a Jean-Baptiste
le Rond d’Alembert, una figura de prestigio inmaculado, pero con
el que Euler no tenia muy buena relacién. Euler se veia ya bajo la
férula de otro francés; incluso mencioné que la Academia de Ber-
lin corria el riesgo de convertirse en una copia de la francesa; y lo
cierto era que los sucesivos nombramientos reales de miembros
franceses —sobre todo filésofos— apuntaban en esta direccion.
Pero en el curso de sus negociaciones para su nombramiento,
d’Alembert se entrevisté con un resignado Euler y se quedé muy
impresionado. Aquel cientifico de aspecto tosco tenia una memoria
incomparable, dominaba todos los campos y era un prodigio ma-
tematico, por lo que resultaba incomprensible no promocionar a
semejante talento. D’Alembert rechazé muy cortésmente el puesto
de presidente de la Academia y le sugirié al rey que nombrara a
Euler, un sabio de prestigio mundial, que, ademas, ya tenia en su
casa. Pero, como se ha dicho, las virtudes personales de Euler no
incluian la conversacion ocurrente, la discusion constante de ma-
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terias artisticas, literarias o filoséficas ni las maneras cortesanas,
que tanto agradaban a Federico II, quien las preferia a los conoci-
mientos cientificos de su «Ciclope matematico», mote con que de-
signaba a Euler en su correspondencia con Voltaire. El rey desoy6
el consejo de D’Alembert y se nombré a si mismo presidente de la
Academia, lo que al parecer desagradé a Euler.

A partir de ese momento, la relacién se agri6; Euler, quien
recibio cantos de sirena desde Rusia, decidié volver a emigrar,
pero el rey Federico no se lo puso ficil; en aquel tiempo no se
abandonaba asi como asi el servicio de un monarca, y el rey le dio
largas. Finalmente, Euler fue autorizado a irse.

UNA FORMULA DE EULER PARA POLIEDROS

De entre todos los trabajos de Euler en su etapa berlinesa, hay uno
que destaca por su dificil clasificacién dentro del «mapa» de las
matematicas de su época. Al final del capitulo anterior esbozdba-
mos los principios de un rama novedosa de las matematicas, la teo-
ria de grafos, inaugurada por el propio Euler con su trabajo sobre
los puentes de Konigsberg, y del 4&rea mas general en la que aquella
se inscribe, la topologia. Primero de forma privada, en cartas a di-
versos corresponsales en 1750-1751, y puiblicamente en un articulo
de 1758, Euler regresé a esta segunda, con un resultado extraordi-
nario: su férmula para poliedros convexos de C caras, A aristasy V
vértices:

C-A+V=2.

A principios de la década de 2000, los lectores de la prestigiosa
revista Mathematical intelligencer votaron para establecer las que
eran, en su opinion, las més bellas férmulas matematicas de la his-
toria; esta férmula sobre poliedros obtuvo el segundo lugar, por
detris de otra también estrechamente asociada con Euler, e™ +1=0.

La expresion numérica C-A + V es, como se dirfa hoy, un in-
variante topolégico. Un invariante topolégico es aquella propie-
dad de una superficie que se conserva sin importar las sucesivas
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transformaciones a las que se somete dicha superficie; en con-
creto, las que resultan de deformarla sin romperla. La superficie
de la que la férmula de Euler es un invariante topolégico es la
esfera y, por ende, lo es también de cualquier poliedro tridimen-
sional homeomorfo a ella, es decir, de los cuerpos que pueden
obtenerse de deformar la esfera sin romperla.

La férmula C-A + V=2 se acostumbra a designar como for-
mala de Euler-Descartes, ya que, aunque fue Euler quien la dio a
conocer al mundo oficialmente, René Descartes (1596-1650) ya la
habia descubierto en 1649 —en realidad descubrié otra cosa que
implicaba el resultado de Euler—, aunque murié antes de poder
publicarla.

CARACTERISTICAS DE UN POLIEDRO

Toémese un poliedro convexo cualquiera; en realidad, lo que Euler
enuncio vale para cualquier poliedro, deformable en uno convexo,

FIG. 1

Tetraedro Hexaedro (cubo) Octaedro

Dodecaedro lcosaedro
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FIG. 2

FIG. 3
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con tal que esté formado por una sola
pieza —no por dos poliedros unidos por
un punto o por un segmento— y que no
tenga agujeros.

Llamemos V, A y C al niimero de
vértices, aristas y caras de un poliedro
de las caracteristicas mencionadas mas
arriba. Euler constaté, como se ha visto,
que se verifica:

C-A+V=2.

Esta sorprendente relacién es valida
siempre, hay que insistir, cualquiera que
sea la forma del poliedro, por intrincado
que sea su disefio y por estrambéticas
que sean sus caras (con una excepcion:
los poliedros «estrellados» cuyas caras
se interpenetran). La observacién de
Euler no es nada evidente, aunque puede
ser comprobada facilmente, tanto en los
armoénicos y simétricos sélidos platéni-
cos (figura 1, pagina anterior), como en
cualquier «desgarbado» poliedro como
el que se ilustra en la figura 2.

Se trata de una férmula numérica
independiente de las caracteristicas
puramente geométricas de la figura. No
depende de la forma del poliedro, pues
es una propiedad de cualquier poliedro
convexo sin agujeros.

Actualmente, se consideran a nivel
elemental ya no simples poliedros,
sino superficies, que se denominan S,
con agujeros y sin ellos, y el nimero
%(S)=C-A+V se conoce como ca-
racteristica de S. Para las superficies
homeomorfas a la superficie esférica,



como los poliedros, la caracteristica vale 2. Para el toro (figura 3),
o la botella de Klein (figura 4), y demés superficies homeomorfas
a ellos, la caracteristica vale (. Para superficies tridimensionales
de género g —el género g viene a ser algo asi como el niimero de
agujeros que tiene S— se verifica:

%(S)=C-A+V=2-2¢

LA HOMEOMORFIA

La denominacion puede sonar extrafa, pero el significado de homeomorfia
(del griego homoios, «misma» y morphé, «forma») es bien conocido por los
matematicos. Se refiere a toda cosa que se pueda derivar de otra (y vicever-
sa) por simple deformacidn, sin rotura, de modo continuo. Por ejemplo, el

cubo de la figura es homeomorfo a una esfera.

: (TR
E H.H

\ i

Los matematicos, en especial los topdlogos, llaman a esos cuerpos, que se
transforman el uno en el otro por simple deformacién, sin rotura, cuerpos
homeomorfos. Un ejemplo clasico de figuras homeomorfas o topolégicamen-
te equivalentes son una taza y una rosquilla, pues pueden deformarse conti-
nuamente el uno en el otro.

La taza y la rosquilla son homeomorfos por una razén geomeétrica tan impen-
sada como la que ambos tengan un solo agujero. Se dice que el nimero de
agujeros de una superficie es un invariante topoldgico, pues no varia cuando
media una homeomorfia.
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y a la caracteristica se la llama caracteristica de Euler-Poincaré.
Es una expresion que ha hecho fortuna en matematicas y forma
parte de disciplinas tan abstractas como el dlgebra homologica.
La férmula:

C-A+V=2-2g

fue enunciada explicitamente en 1813, por Simon Antoine Jean
L'Huillier (1750-1840). Su origen es, como hemos visto, inequivo-
camente euleriano.

REGRESO A LA TEORIA DE NUMEROS:
LA CONJETURA DE GOLDBACH

La correspondencia de Euler con Goldbach no se resintié del
traslado del primero a Berlin y asi, en una carta, fechada el 7 de
junio de 1742, al ano de la llegada de aquel a la capital prusiana,
Goldbach le sugeria que todo entero par era la suma de dos ente-
ros, p y q, donde o valian 1 o eran primos impares. El intercambio
de ideas continud hasta que Euler dio con una formulacion de la
sugerencia que seria definitiva y cuyo enunciado es quiza la con-
jetura mas famosa de toda la historia después del teorema de
Fermat:

Todo entero par mayor que 2 puede expresarse como suma
de dos primos.

Es la conjetura de Goldbach, llamada asi en honor de quien
la planted, aunque fuera con otras palabras. Se la conoce tam-
bién como conjetura fuerte de Goldbach en contraposicién a la
conjetura débil de Goldbach, matematicamente mas sencilla, que
postula:

Todo nimero impar mayor que 7 puede escribirse como
suma de tres primos impares.
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La conjetura fuerte implica la débil, pero no al revés. La de-
mostracién es relativamente sencilla: si n es impar y mayor que 7,
esquen=p+3>T,y, por tanto, p es pary p>7-3=4. Si se cumple
la hipétesis fuerte de Goldbach, p es suma de dos primos, ade-
mas, impares, pues, p>2 y par. Por tanto n=p+ 3, con p igual a
la suma de dos primos impares. Luego, n es suma de tres primos
impares, como se queria demostrar. La conjetura fuerte implica
la débil.

La conjetura fuerte de Goldbach parece cumplirse para cual-
quier niimero par, e incluso, de mis de una manera:

4=2+2
6=3+3
8=3+5
10=3+7=5+5
12=5+7
14=3+11=7+7
16=3+13=5+11
18=5+13=7+11
20=3+17=7+13.

En diversos sitios de Internet, se hallan sumas de tipo Goldbach
destinadas a demostrar que la conjetura se cumple siempre, con
independencia del niimero par que se elija. Por ejemplo, el 1000:

1000=179+821=191+809=431+569=-19+1019.

Asimismo, se puede elegir una suma con primos impares, uno
negativo, para ver que la conjetura de Goldbach va més alld de los
simples niimeros naturales. Incluso pueden hallarse en Internet
programas informaticos para proporcionar sumas de Goldbach
para cualquier nimero razonable que se elija, siempre y cuando
no sean nimeros muy grandes. También se pueden hallar sumas
de Goldbach que involucran parejas de primos increiblemente
desiguales en tamaiio, como por ejemplo esta:

389965026 819938 = 5569 + 389965026814 369.
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En esta pareja, hallada hace poco por el numerélogo Jorg
Richstein, uno de los dos sumandos es de 4 digitos, mientras que

el otro tiene 15 y ambos son primos.

CHRISTIAN GOLDBACH

Matematico originario de Prusia (1690-
1764), residio la mayor parte de su vida
en Rusia y trabajo como cazatalentos
para la Academia de San Petersburgo,
donde también desempefo el cargo de
secretario. Amigo de Leibniz, Abraham
de Moivre, Nicolaus Bernoulli (y otros
miembros de su distinguida familia) y
Euler, apoyo fuertemente la candidatu-
ra de este a un puesto en la academia
y fue un elemento determinante en su
viaje a Rusia. Lleg6 a ejercer la tutoria
del zarevich Pedro Il y desemperié altos
puestos en el ministerio ruso de asuntos
exteriores, donde trabajé como cripto-
grafo. Dedicé sus esfuerzos profesiona-
les a muchos ambitos y legé algun resultado perdurable en el campo de las
series, sobre todo trabajando en colaboracién con Euler. La personalidad de
este Ultimo parece haberlo estimulado de un modo especial; pocos conocen,
por ejemplo, que Goldbach, seguramente no capacitado para resolverlo, fue
quien interesd a Euler por el problema de Basilea, cuya solucion haria a este
famoso. La correspondencia entre Euler y Goldbach, extensa y repleta de ma-
tematicas, llega casi a las 200 cartas. El aprecio que Euler sentia por Goldbach
queda de manifiesto al elegirlo padrino de su hijo primogénito.

Influencia de la conjetura de Goldbach

Actualmente, Goldbach es recordado no por sus teoremas, sino por la conjetu-
ra que lleva su nombre. En 1992, aparecio la novela E/ tio Petros y la conjetura
de Goldbach, de Apostolos Doxiadis; el editor Faber and Faber ofrecié un
premio de un milléon de ddlares, valido por dos afios, a todo el que encontrara
una solucién. Con toda probabilidad sabia que no iba a recibir respuesta.
La conjetura, hasta ahora, solo se ha probado en la ficcion; en una pelicula
espafiola, La habitacion de Fermat, dirigida, en 2007, por Luis Piedrahita y
Rodrigo Sopena.
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Hasta la actualidad nadie ha podido probar ninguna de las dos
conjeturas. La «débil» puede considerarse casi demostrada, pues
se sabe que es cierta para todos los niimeros mayores que 10'¢,
Para poder presumir de que la conjetura débil de Goldbach esta
probada, hay que proceder a demostrarla en los casos pendientes:
empezar con 7y llegar a 10" un salto de complejidad que lleva-
ria a cualquier maquina existente que intentara realizar el calculo
un tiempo, contado en segundos, superior al niimero de atomos
del universo.

Con la conjetura «fuerte» de Goldbach, la situacién estd mas
clara: no existe prueba alguna. Ni Euler pudo con ella. Se ha po-
dido comprobar, con supercomputadores Cray, para nimeros
enormes, hasta 10, pero la prueba permanece en el limbo de los
desafios intelectuales sin resolver.

Se ha llegado a resultados admirables, como el del matema-
tico chino Chen Jingrun (1933-1996), quien probé ya, en 1966,
que todo nimero lo bastante grande se podia descomponer en
suma de otros dos, uno primo y el otro producto de, a lo mas,
dos primos.

EL CALCULO DE VARIACIONES: MAXIMOS Y MINIMOS

El célculo de variaciones puede considerarse una generalizacion
del céalculo, y por tanto, se incluye firmemente en el campo del
anadlisis. Se ocupa de encontrar el camino, curva, superficie, etc.,
para la cual una funcién determinada posee un valor estacionario;
normalmente, un valor maximo o uno minimo. Es de fundamental
importancia en fisica y, en particular, en Ambitos practicos como
la elasticidad o la balistica, de gran interés ya en la época de Euler.
No es de extranar que Euler llegard a él —en 1744, a los tres afos
de establecerse en Berlin— desde el estudio de la fisica; en con-
creto, como se veri, del principio de minima accién en el ambito
de la mecanica.

Como casi todos los grandes temas de las matematicas, el tema
general de los maximos y minimos viene de muy lejos. Se puede
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FIG.5

El trayecto de un
rayo de luz
reflejado en una
superficie que va
de A a B mide lo
mismo que la
recta que va de A’
a B. Por tanto, el
espacio recorrido
es minimo.

FIG. 7
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FIG. 6
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pensar en un problema tipico, el problema —o mejor dicho, le-
yenda— de Dido. Dido, reina de Tiro, tras huir acomparfiada de sus
ultimos fieles, llego a las costas de la ciudad que seria su reino,
Cartago. Alli, suplicé a Jarbas, el rey del lugar, un pedazo de tierra
donde poder asentar a su gente y este se lo concedid, pero con una
condicion: los dominios de Dido serian aquellos que la reina consi-
guiera encerrar dentro de una simple piel de toro. Para hacer la
explicacién més ficil, se puede suponer que la costa es recta, sin

Vertical |
I

I
I
I
|
|
I
|
I

! Plano de
2 & reflexion
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golfos, ni bahias, ni cabos, ni
promontorios.

La reina empezé por cortar
en una tira finisima la piel en
cuestién y la convirtié en una
cinta de longitud considerable,
que uni6é por los extremos (fi-
gura 5); luego, aplicé la condi-
cién basica de los isoperimetros,
es decir, de las superficies de
igual longitud de frontera. Una
parte de la frontera era el mar;
el resto de frontera debia conte-
ner el 4rea méxima. La solucién
es que la cinta de piel de toro
adopte la forma de una semicir-
cunferencia con el centro en la

costa (figura 6).



El problema de Dido es un
problema de perimetros iguales
tipico, como muchos que se dan
en el mundo fisico. Forma parte
de una clase mas extensa de pro-
blemas, que en el fondo se pare-
cen, pues lo que se estd buscando
es un extremo —méaximo o mi-
nimo— dadas unas condiciones
iniciales inamovibles. Un ejemplo
muy claro es de origen antiqui-
simo, pues ya se lo plante6 Herén
de Alejandria (ca. 10-70) con la re-
flexion de la luz. Se apercibié de
que el camino a seguir por un rayo
que va de A a B reflejAindose en un
espejo sigue la trayectoria en que
el trayecto es minimo (figura 7).

Con el tiempo, Fermat emi-
ti6 su ley de refraccién, (lla-
mada ley de Snell), que dice que
n senB =n,sen6, Y aqui ya no
era minimo el espacio recorrido,
o no exactamente. Lo que era mi-

FIG 8

FIG. 9

Perpendicular

Rayo incidente

“4, __ Medio de indice n,

i Medio de indice n,
18

1 R
1 Rayo reflejado

nimo era el tiempo empleado por el rayo de luz parairde AaB, y
el espacio era en realidad —como se diria hoy— una funcién del
tiempo: e=v-{, siendo v la velocidad del rayo de luz en el medio
que lo refractaba. Y de este modo ya se estd haciendo minima una

funcién: f(t) = vt (figuras 8-9).

FIG. 10

(ay(a)e

y(x)

Y(x) + dy(x)

e (buybY)
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PIERRE DE MAUPERTUIS

Aungue su familia edifico su fortuna en
la pirateria —su padre era un excorsario
ennoblecido— y se le presentaron oportu-
nidades profesionales en la milicia, Pierre
Louis Moreau de Maupertuis (1698-1759)
se decidio por la ciencia, destacando
como matematico, fisico, naturalista y as-
tronomo. Seguidor de las teorias newto-
nianas, Maupertuis emprendio una expe-
dicién a la lejana Laponia para recolectar
datos sobre la medida del meridiano
terrestre y concluyé que la Tierra estaba
achatada por los polos, confirmando asi
la teoria de Newton, Maupertuis también
fue el primero en enunciar el principio de
minima accioén. Algunos historiadores han
puesto en duda la prioridad de Maupertuis pues sostienen que el principio ya
era conocido y utilizado por Euler. Las relaciones entre Maupertuis, una de las
figuras mas destacadas de la Academia prusiana, y Euler, atravesaron momen-
tos de considerable tension. Maupertuis escribiria, acerca del suizo, «Euler... es
en su conjunto un personaje extremadamente peculiar... un hombre incansable-
mente fastidioso, al que le gusta meterse en todos y cada uno de los asuntos,
aunqgue la forma de la Academia y las directrices de nuestro rey prohiban esta
clase de intromisiones».

La mencionada «variacién» no es mas que un instrumento
imaginario de célculo. Si y(x) es la curva que, pasando por (a,y(a))
y (b,y(b)), satisface las condiciones buscadas, la variacion es la
curva ligerisimamente alterada, «variada», a la que se designa con
el simbolo & delante (figura 10). )

En 1744-1746, Maupertuis enuncié su principio de minima
accién, que se podria traducir como «la naturaleza es ahorrativa
en sus acciones», pues siempre las «lleva a cabo» siguiendo la
minima accién posible.

La «accién» es una magnitud definible. Un modo de descri-
birla, aunque no el tnico, es la suma del momento de las fuerzas
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implicadas multiplicada por el camino recorrido, y es eso lo que
debe ser minimo.

Euler expuso su propia versién del principio en 1744, en un arti-
culo titulado Método para hallar lineas curvadas que gozan de pro-
piedades de mdximo o minimo —al que los historiadores suelen
referirse por el comienzo del titulo latino original, Methodus—, y de
esta version serd la que partira el cdlculo de variaciones moderno.

«Dado que la textura del universo es la mas perfecta y la obra
de un Creador sapientisimo, nada sucede en el universo sin
obedecer alguna regla de maximo o minimo.»

— LeonNHARD EULER.

En 1755 un matemético italiano de solo diecinueve afios, Giu-
seppe Luigi Lagrange, escribié una extensa carta a Euler en que
resolvia un problema perfeccionando su sistema del cédlculo de
variaciones. Lagrange public6 su método en 1772 con la bendicién
de Euler, que reconocié la valia del trabajo.

Explicado en términos actuales, el cdlculo de variaciones con-
siste en poner analiticamente en marcha el principio de minima
accién. Se empieza por escribir el llamado lagrangiano del sistema,
al que llamaremos L y que es igual a L=C-P, diferencia entre las
energias cinética C y la potencial P. El lagrangiano es un funcio-
nal, una funcién de funciones. Si nos circunscribimos al caso més
trivial, en el que solo hay un camino que es una funcién x(t) del
tiempo, el lagrangiano es de la forma L(x,x,t), donde se indica con
la notacién newtoniana « a la derivada primera de x.

La integral de accién adopta la forma:

S = [ L(x,d,t)dt,

y eso es lo que hay que minimizar (y en ciertos casos, maximizar).
Aunque de formas distintas, tanto Euler como Lagrange llegaron a
unas ecuaciones diferenciales (habitualmente hay varias) del tipo:

dt oz ox’
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D’ALEMBERT Y SU PRINCIPIO

D’Alembert (1717-1783) formuld en 1743, en el Traité de dynamique (Tratado de
dinamica), el principio que lleva su nombre; este es una afirmacién de la meca-
nica analitica que postula que en un sistema dindmico todo movimiento virtual
permitido por las ligaduras entrafia un trabajo nulo. Dicha formulacion permite
orillar el principio de minima accién o del minimo esfuerzo y le vincula con
Euler, pues conduce matematicamente a las ecuaciones de Euler-Lagrange:

oL _daL _g
ax? dtax?

una férmula fundamental de la mecanica clasica, donde L es el lagrangiano y
las x* las llamadas coordenadas generalizadas del sistema.

Un sabio de la época

D'Alembert era hijo ilegitimo del caballero Destouches, aunque nunca fue re-
conocido. Su nombre proviene a medias del de la iglesia en cuyos escalones
lo abandonaron (St. Jean-le-Rond) y de un supuesto satélite de Venus (Alem-
bert). Editd, junto con Denis Diderot (1713-1784) la traduccién del inglés de la

que en la actualidad se denominan ecuaciones de Euler-Lagrange
y que dejan el problema reducido a resolverlas.

Las ecuaciones de Euler-Lagrange figuran en todos los textos
avanzados de analisis, y transforman la integral de accién en unas
simples condiciones —simples relativamente— en derivadas par-
ciales. Constituyen el punto central del cdlculo de variaciones y
puede consultarse el anexo 4 para ver su deduccién formal.

EULER Y LA GEOMETRIA

Cuando Euler residia en Berlin, acostumbraba a enviar algu-
nos articulos a la Academia de San Petersburgo, en especial de
aquellos temas cuyas raices se hundian en cuestiones anteriores
publicadas alli, es decir, si alguno de sus articulos elaborados

BERLIN, CAPITAL DEL ANALISIS



Cyclopaedia de Ephraim Chambers, que
mas tarde se reconvirtic en l'Enciclopédie,
pues la reredacté y amplié con unos 1700
articulos nuevos, matematicos, filosoficos,
literarios y musicales, incluyendo su céle-
bre y liberal Discours préliminaire (1751).
Tras ingresar en la Academia de ciencias
de Berlin, en la Royal Society, en la Acade-
mia de Ciencias de Paris y en la Academia
Francesa de la Lengua, fue nombrado se-
cretario de esta en 1772. Como matema-
tico d’Alembert aportd la primera prueba
(errénea y posteriormente corregida por
Gauss) del teorema fundamental del dlge-
bra: «todo polinomio real de grado n tiene
n ceros en el cuerpo complejo». También
aportd un magnifico criterio de conver-
gencia de series v, en fisica tedrica, el llamado operador de d’Alembert. En teoria
de la probabilidad se le recuerda por la martingala de d’Alembert. Compitié con
Euler en la mejora de las lentes astronomicas.

en Berlin trataba de un tema ya estudiado en Mosci, el articulo
nuevo se enviaba a Moscu. En 1763, Euler presenté Solutio fa-
cilis problematum quorundam geometricorum difficillimorum
(Una solucion fdcil para un problema muy dificil de geome-
tria), un escrito puramente geométrico, euclidiano y complicado,
que se publicé en 1767, cuando Euler ya habia regresado a San
Petersburgo.

En él, Euler demostré por primera vez que en todo tridn-
gulo que no fuera equildtero —en cuyo caso todo degenera en
un punto— el ortocentro (O; punto del tridngulo donde se cortan
las tres alturas), el circuncentro (C; punto del tridngulo donde
se cortan las tres mediatrices) y el baricentro, también llamado
centroide (B; punto del tridngulo donde se cortan las tres me-
dianas) estan sobre la misma linea, la llamada posteriormente
recta de Euler. El incentro (punto de intersecciéon de las tres
bisectrices) estd en la linea solo si el tridngulo es isésceles; si
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no, no. Del centro del circulo de Euler (CE), se habla unas lineas
mas adelante.

No solo se verifica que O, By C estan alineados, sino que ade-
mas se cumple una relacién métrica precisa:

2d (B,C)=d (B,0).

Es decir, la distancia entre el baricentro y el ortocentro siem-
pre es el doble de la distancia entre el baricentro y el circuncentro
(figura 11).

Aunque, como ya se coment6, el incentro no esti en la recta de
Euler salvo si el tridngulo es isésceles, Euler ide6 una férmula que
da la distancia d entre ambos puntos, el incentro y el circuncentro:

d? = R(R-27),

donde R y r son los respectivos radios de los circulos circunscrito
e inscrito.

Transcurrido un tiempo desde 1767, Karl Wilhelm Feuerbach
(1800-1834) y Olry Terquem (1762-1862) hallaron el circulo de
centro CE, que se conoce como circulo de Euler. Se trata de un
circulo que pasa por los nueve puntos siguientes: los puntos me-
dios de cada lado del tridngulo; los tres pies de las tres alturas y,
por ltimo, el punto medio del segmento que va de cada vértice al
ortocentro (figura 12).

Fic.m FIG. 12

Recta de Euler

@)
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FOTO SUPERIOR:
El techo del
estadio olimpico
de Munich es una
superficie minima,
y para disefiarla
se eché mano

del célculo de
variaciones.

FOTO INFERIOR
IZGUIERDA:

En 1750, Euler
dio a conocer

el megascopio,
un aparato de
proyeccién para
cuerpos opacos.
Estaba formado
por dos espejos
reflectores
concavos y dos
ldmparas que
iluminaban

el objeto y
provocaban

su proyeccion.

FOTO INFERIOR
DERECHA;

Un sello italiano
ilustra una

de las cimas
intelectuales de
Euler, el concepto
de caracteristica
de un poliedro.

2007
LA R N R RN RN N R ENESN RS RN ]

300 anni dalla nascita di
Leonhard Euler
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LOS CENTROS DE UN TRIANGULO

Se llama centro de un trisngulo a todo punto P que desde el punto de vista
geomeétrico es poseedor de una propiedad privilegiada en referencia a deter-
minadas lineas (alturas, medianas, bisectrices, etc.) y define circunferencias
u otras figuras sencillas, sujeto de propiedades curiosas relacionadas con el
triangulo de partida. Esta seria una definicion muy vaga si no se afadiera la
condicion de que P fuera invariante respecto de simetrias, rotaciones y dilata-
ciones. Un ejemplo de tales centros de un triangulo son los ya clasicos baricen-
tro, ortocentro, circuncentro e incentro. Pero hay muchos mas centros. El arti-
culo de Euler sobre los centros de un triangulo provocoé la sorpresa entre los
gedmetras, quienes creian haberlo dicho casi todo de los puntos privilegiados
de un tridngulo; en su época y afos posteriores los gedmetras descubrieron
muchos centros mas. De hecho, en la actualidad hay webs especializadas en
la enumeracioén y estudio de tales centros, como la Clark Kimberling’s Ency-
clopedia of Triangle Centers, que menciona mas de 3500 puntos.

Ademas, se da otra relacién relativa a las distancias:

d (CE,0) = d (CE,C).

«La naturaleza de algunos de sus mas sencillos descubrimientos
es tal que uno bien puede pensar en el fantasma de Euclides
diciendo “Pero ;cémo no se me ocurri6?”.»

— H.S.M. COXETER EN RELACION AL TRABAJO DE EULER.

94

Como cabe suponer, los centros de un tridngulo no constitu-
yeron el tinico centro de interés geométrico de Euler. Se podrian
citar muchos otros temas, pero hay uno que destaca por su gran
dificultad, sin comparacién posible con lo simple del enunciado.

En 1751, Euler propuso por carta a Goldbach lo siguiente:
averiguar, dado un poligono convexo cualquiera de n lados, el
nimero de modos de dividirlo en n—2 triAngulos mediante diago-
nales que no se corten y si diferentes orientaciones se cuentan
separadamente.
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En el fondo, lo que Euler se estaba preguntando era por el
nimero de cortes de través que habia que darle a un «pastel» po-
ligonal, como se ilustra en esta pagina. Se trata de un complicado
problema de combinatoria, cuya solucién es C, ,, donde:

cﬂ-l[ B ]
n\ n-1

EL EULER MENOS CONOCIDO

Euler se interesaba por todo y escribia articulos sobre casi todo.
Muchos eran de dificil clasificacién en cualquier categoria del
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Poligonos de
4,5y 6 lados
mostrando todos
los casos posibles
de divisién en
tridangulos con
diagonales que no
se cortan.
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conocimiento conocido hasta entonces; porque, ;dénde incluir
temas como los posibles paseos cruzando a través de los puen-
tes de Konigsberg? Otros si encontraban acomodo preciso entre
los conocimientos de la época, como las pensiones, solo que no
eran cuestiones de primerisima fila. Un breve itinerario por esos
escritos de dificil calificaciéon ofrece una visiéon maés precisa de la
variedad extraordinaria de la obra de Euler.

EULER INGENIERO

Las contribuciones eulerianas a la ingenieria practica tienden a ser
menospreciadas, en parte por los prejuicios de Federico II, quien
suponia que todo lo que emprendian sus subordinados, ya fueran
generales, jardineros o cientificos, tenia que funcionar, pues para
eso les pagaba. Los ingenieros de Su Majestad —y Euler era el jefe
de todos ellos—, no eran una excepcién, y si, por ejemplo, el agua
no fluia adecuadamente en los surtidores de uno de sus jardines
era porque los disefiadores y constructores eran incompetentes.
Un error en el computo de la presién del agua era inconcebible e
imperdonable.

No obstante, Euler trabajaba, y mucho, en problemas practi-
cos de ingenieria y, aproximadamente en 1744 (aunque no se pu-
blicé hasta 1757), hizo una aplicacién de su célculo de variaciones
a la sobrecarga de peso de objetos sobre los pilares que los sostie-
nen. Es lo que en la jerga técnica se denomina pandeo, una va-
riante sencilla de la deformacién.

Imaginemos una columna, como la que se ilustra en la pagina
siguiente, sometida a una carga axial concéntrica, ¢, es decir, a
una carga ejercida sobre el centro de gravedad de su seccién
transversal. Euler dio con una férmula:

7’ El
(KL)"’

-

que gobierna el pandeo, en la que F es la fuerza o carga axial,
E el médulo de elasticidad, I el momento de inercia del area, L
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la longitud entre los apoyos de la columna y K
un factor empirico que estd en funcién de las ! l l ¢ 1 l l l | carga
condiciones de soporte de los extremos de la
barra o columna que se deforma. El producto
KL determina la longitud efectiva de la misma.

columna

EULER Y LA MECANICA DE FLUIDOS

En 1757 Euler publicé el articulo Principes gé-
néraux du mouvement des fluides (Principios
generales del movimiento de los fluidos), donde l l l l l ¢ l
aparecian por primera vez sus ecuaciones, que, 1
en dindmica de fluidos, son las que describen el
movimiento de un fluido que no se puede com- \
primir y que esta desprovisto de viscosidad. }
El fluido de Euler era lo que hoy se llamaria J
un fluido ideal. En realidad lo que se sometera
ahora a consideracion no son ya fluidos ideales,
sino las ecuaciones de Euler expuestas en su \
enunciado moderno. mm b
 Laplace (1749-1827) afiadi6 una parte sig-
nificativa a las ecuaciones primigenias de Euler,
al adjuntar una componente adiabatica (es decir, supuso que la  Deformacién o
cantidad de calor del sistema era constante). En lenguaje tensorial ::::::::;;m

actual las ecuaciones se escriben: :;‘::? pado

wmw i

! carga

ap
L4V
at+ “(pv)=0

a,ov+v (v®(pv))+Vp=0
GE' )

§+V (V(E+p))=0

Ahi p es la densidad del fluido, v su velocidad vectorial, E la
energia total por unidad de volumen y p la presién. Se supone que
la viscosidad del flujo es irrelevante, lo que no es cierto en for-
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Las computadoras
han afadido algo
insuperable a las
ecuaciones de

. Euler-Navier-
Stokes; ahora se
puede simular el
comportamiento
mecénico de un
fluido, aunque
todavia no se
pueda ni sofiar en
resolver de modo
exacto las
ecuaciones que
rigen su
movimiento.

98

mulaciones mds avanzadas, como
las ecuaciones de Navier-Stokes. A
medida que las ecuaciones se hacen
mas sofisticadas para acercarse a
la realidad, es l6gico que supongan
menos cosas. Las ecuaciones de
Navier-Stokes si son ecuaciones cé-
lebres, pues su solucién es uno de
los problemas del Milenio, segin el
Instituto Clay, y estd premiada con
un millén de délares.

El teorema de Bernoulli de la hidrodindmica es deducible de
las ecuaciones de Euler por simple integracién. Asi que no se
puede dudar de que las ecuaciones de Euler son importantes, pues
de ellas se deduce el principio del vuelo con alas de un cuerpo
mas pesado que el aire. Las ecuaciones de Euler de la mecanica
de fluidos se aplicaron en su dia al estudio de objetos tan dispares
como la gran mancha roja de Jupiter, la circulacién sanguinea o la
aerodinamica de los automéviles, y en la actualidad siguen siendo
utilizadas. Euler estudié con detenimiento las turbinas movidas
por fluidos en una memoria especifica de 1756, y su aporte no ha
sido todavia superado.

Las ecuaciones de Euler son ecuaciones diferenciales no li-
neales, y, a veces, de muy dificil estudio. El advenimiento de las
computadoras, con su tremenda capacidad de cédlculo, ha abierto a
los fisicos la oportunidad de buscar soluciones numéricas aproxi-
madas. Quiza no se pueda obtener una solucién elegante y exacta,
pero se puede obtener una excelente solucién aproximada.

ECUACIONES DE CAUCHY-RIEMANN

Desde un punto de vista histérico, estas ecuaciones analiticas fue-
ron ya tratadas por d’Alembert en 17562 y por Euler, quien las de-
sarroll6 al trabajar en varios campos, como en la hidrodindmica.
Ya figuran con claridad en 1777 en medio de otras expresiones
analiticas, aunque no se publicaron sino tras la muerte de Euler.
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Las ecuaciones son igualdades entre derivadas parciales y
funcionan como sigue: supongamos que una funcién f(x + iy) de
variable compleja puede dividirse en una parte real y otra ima-
ginaria:

J@+yid)=u(xy) + i v(x,y).
Y que tanto # como v son diferenciables como funciones de

dos variables en el campo real R; entonces, sus derivadas parcia-
les cruzadas cumplen:

Ju dv
ox oy
ou Jv
oy ox

Y viceversa, en el sentido de que si u y v son diferenciables
como funciones reales (pueden ser diferenciables en el campo
complejo C y no serlo en R) y se verifica la anterior igualdad de
derivadas, entonces f es diferenciable y f=wu + iv.

Estas ecuaciones aparecen en las primeras paginas de cual-
quier libro actual de andlisis complejo y son muy familiares para
los estudiantes de fisica o ingenieria.

JUEGOS, LOTERIAS Y SEGUROS DE VIDA

Euler también tuvo tiempo para ocuparse de cuestiones de esta-
distica y probabilidades. Sus investigaciones no fueron tan abun-
dantes como en otros campos, pero merece la pena mencionarlas.
Muchas de ellas tuvieron lugar durante su estancia en Berlin y
figuran, en algunos casos, entre su correspondencia con el mo-
narca Federico II

Algunas de ellas entran en el terreno de los juegos de azar
y de las apuestas, pues este era un ambito cientificamente valo-
rado; de hecho numerosas cuestiones que posteriormente ad-
quiririan gran importancia se dilucidaron en este terreno. Como
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otros matemaéticos de renombre tales como Johann Heinrich
Lambert (1728-1777) o Pierre-Simon Laplace, Euler se ocup6 de
juegos de cartas como el treize («13»), también conocido como
rencontré («coincidencias»).

También se adentré en el campo de las loterias numéricas,
que aparecieron por aquel tiempo, asi como en el de los seguros
de vida y las estadisticas de vida y muerte. Las pensiones y las
anualidades que hay que pagar para recibir una pensién se de-
rivan de estas estadisticas, pues el importe de las pensiones y
anualidades esta en funcién de la mayor o menor probabilidad
de fallecer.

Asimismo, se ocup6 de la teoria de errores, aunque no fue
hasta el desarrollo de la técnica de los minimos cuadrados, em-
prendida por Gauss, cuando se convirtié en una auténtica teoria.
Hay que tener presente que el error en las medidas se computaba

LA PRINCESA Y LOS SILOGISMOS

Euler escribié mas de 200 cartas a la princesa Anhalt-Dessau, sobrina de Fe-
derico, que en 1768 serian recopiladas en un volumen titulado Lettres & une
princesse d'Allemagne sur divers sujets de physique et de philosophie (Cartas
a una princesa alemana sobre distintos temas de fisica y de filosofia). Hasta
en una obra, aparentemente tan ligera, Euler consigue sorprender al estudio-
so. En ciertos puntos (cartas 102-105) discursea sobre los silogismos, y, para
explicarse con propiedad, se vale de graficos como los de las figuras 1y 2.

(

FIG. 1 FIG. 2
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en la época por la media de los errores; como los habia positivos
y negativos ambos se compensaban, con lo cual no se entraba de
verdad en la naturaleza del error y en su correccién efectiva.

LIBROS DE MENOR ENVERGADURA

Euler escribié durante su etapa prusiana otros libros comparativa-
mente menores en el contexto de su vasta obra.. En 1744, apareci6
uno sobre trayectorias de planetas y cometas, Theoria motuum
planetarum et cometarum (Teoria de los movimientos de plane-
tas y cometas) y en 1746, un tratado de 6ptica, que trata de la luz
y los colores, Nova theoria lucis et colorum (Una nueva teoria de
la luz y los colores). Euler, siguiendo a Christiaan Huygens (1629-
1695), se decanta por la hipétesis ondulatoria, que prevalecera

Estos graficos pueden recordar a los diagramas de Venn, aunque de hecho,
John Venn (1834-1923) y Euler no idearon sus diagramas exactamente con
el mismo significado. Lo que Venn representaria segun la figura 3, Euler lo
dibujaba como en la figura 4. Venn utilizaba un fragmento de diagrama aun
cuando estaba vacio, mientras que Euler, que no pensaba en términos de con-
juntos, no contemplaba esa eventualidad. Venn no denominaba a sus diagra-
mas «diagramas de Venn», como en la actualidad, sino «diagramas de Euler».

No hace falta mencionar, pues, cual fue su fuente inspiradora.

FIG. 3

Cartas
negras

Cartas
rojas

vi

FIG. 4

Cartas
negras

Cartas rojas
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frente a la teoria corpuscular hasta el advenimiento de la mecénica
cuéntica. En 1745 se publicé la traduccién alemana de Euler del
libro inglés New Principles of Gunnery (Nuevos principios de
artilleria), de Benjamin Robins (1707-1751), con tal cantidad de
comentarios, correcciones y complementos que el libro es practi-
camente nuevo.

En 1765, cuando Euler ya casi tenia un pie en Rusia, aparecié
Theoria motus corporum solidorum seu rigidorum (Teoria del
movimiento de cuerpos sélidos y rigidos), susegundo tratado de
mecanica. Es una mejora légica de su primer tratado —donde se
aplicaban por primera vez las técnicas del andlisis matematico ala
mecédnica—, pues contiene las posteriormente denominadas ecua-
ciones diferenciales de Euler del movimiento de un sélido rigido
sometido a fuerzas externas, y los dngulos de Euler, conectados
al uso de dos sistemas de coordenadas, uno fijo y otro ligado al
cuerpo en movimiento, con lo que el movimiento se descompone
ya légicamente en lineal y rotacional. Todos los expertos desta-
can la originalidad de algunas aportaciones, como el tratamiento
del eje de rotacién de una simple peonza, que introduce de modo
natural la nutacion y precesién de los equinoccios.

Ya se ha comentado que la cartografia fue otra de las pasiones

de Euler; tras anos de colaboracién en la Academia de San Pe-
tersburgo en la elaboracién de un Atlas de Rusia, este finalmente
vio la luz en 1745, con 20 mapas. Euler estaba muy orgulloso del
resultado y remarcaba que dicho atlas situaba la cartografia rusa
por delante de la alemana.
Sin embargo, a pesar de su extensa productividad, no hay que
caer en el error de pensar que todo lo que Euler escribié era
definitivo. Sus escritos padecen de un mal inevitable en su tiempo,
la falta de auténtico rigor en las operaciones y definiciones, lo
que, frecuentemente, da la impresion de que todo se sostiene
porque funciona, no porque quede probado. En realidad, el
siglo xix dedicara muchas energias a fundamentar las atrevidas
intuiciones eulerianas dando lugar a conceptos que como el limite,
la convergencia o la continuidad vayan cubriendo los agujeros
argumentales de muchas proposiciones. Las matematicas se haran
mas aburridas, pero también mas fiables.
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UNA TRILOGIA MAGISTRAL: LA CUMBRE DEL ANALISIS

Aunque la obra de Euler abarca una enormidad de campos distintos
y escribi6 sobre todo lo que despertaba su interés, muchos le siguen
distinguiendo como el padre del andlisis matemético moderno, con-
cediéndole a esta faceta de su personalidad el caricter de trazo
dominante. En el apartado anterior se ha explorado el trabajo de
Euler en célculo de variaciones; acaso espoleado por ese éxito, en
los afios siguientes el suizo procedié a condensar y estructurar sus
vastos conocimientos en anélisis en forma de diversos tratados.

En 1748, publicé Introductio in analysin infinitorum (In-
troduccion al andlisis del infinito), una obra maestra en dos
volimenes, que junto con Institutiones calculi differentialis
(Fundamentos de cdlculo diferencial), de 1755, y los tres volume-
nes de Institutiones calculi integralis (Fundamentos de cdlculo
integral), de 1768-1770, conforman una trilogia sin parangén en el
mundo cientifico moderno. La aparicién de estos textos marcé un
antes y un después, especialmente, en el andlisis. Frangois Arago
(1786-1853) denominé a Euler «el andlisis encarnado», y el histo-
riador matematico Carl Benjamin Boyer (1906-1976) ensalzé estos
libros hasta situarlos a la altura de los de Euclides (Elementos),
Newton (Principia), Gauss (Disquisitiones) o Descartes (Géome-
trie), e incluso, los antepuso en cuanto a importancia pedagégica.
Escribié Boyer:

Puede decirse que Euler hizo por el Calculo de Newton y Leibniz lo
que Euclides habia hecho con la geometria de Eudoxo o lo que Vie-
te hizo por el dlgebra de Cardano y Al-Kwarismi: Euler tomo el cal-
culo diferencial de Leibniz y el método de las fluxiones de Newton
y los integré en una rama maés general de las matematicas, que desde
entonces recibe el nombre de Andlisis, es decir, el estudio de las
funciones y los procesos infinitos.

El cambio no solo contemplé los contenidos, sino también

la notacién. Es un ejercicio aleccionador leer ahora estos libros’

y darse cuenta de que casi se entienden sin tropiezos. Ademas,
Euler escribié todos sus escritos de forma muy comprensible.
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Clifford Truesdell (1919-2000), el eminente fisico estadounidense,
afirmé al respecto:

Euler fue el primero en el mundo occidental que escribié matemati-
cas de un modo abierto, ficil de leer. Ensefi6 a su época que el cal-
culo infinitesimal era algo que cualquier persona inteligente podia,
con aplicacién, aprender y usar. Era justamente famoso por la clari-
dad de su estilo y por su honestidad para con el lector acerca de las
dificultades cuando se presentaban.

Algunas de las aportaciones de Euler en el campo del analisis
son de interés solo para el especialista y nos limitaremos a enu-
merarlas; es el caso de las series hipergeométricas, las series g, las
funciones hiperbélicas trigonométricas, las ecuaciones diferen-
ciales, las funciones elipticas o las integrales complejas.

Una base en la que se asienta una de las novedades relevantes
de entre todos los logros contenidos en Introductio in analysin
infinitorum es la férmula de De Moivre, que un analista moderno
escribiria asi:

(cosx +isenx)" = cosnx + isenn,

y que De Moivre, en 1730, habia escrito de un modo un tanto apa-
ratoso pero acorde con los usos notacionales de la época:

COS.’I:=%’\1/COSTI‘I+\/: sen nw +%{‘/COS nx—J—_l sen nr.

Euler utilizd, sin aportar demostracion alguna, la férmula que
manejé De Moivre, jugé algebraicamente con ella, la combin6 con
la férmula de Euler, que habia desarrollado ya en sus dias en Basi-
lea, como se vio en el capitulo 2, y que recordamos aqui:

e=cosx +isenx,

y dedujo, usando las simples reglas de la exponenciacién, la ex-
presion que hoy dia escribiriamos:

™" = ¢"(cos y +isen y).
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ABRAHAM DE DE MOIVRE

Nacido en 1667, en la region francesa
de Champagne, su carrera se desarro-
Il6 en Gran Bretafa, donde se exilid
huyendo de la persecucion religiosa de
los protestantes, que tuvo lugar cuando
Luis XIV revoco el edicto de Nantes en
1685. Vivid en Londres, un poco con es-
trecheces, dando clases en los cafés o
ganandose la vida con su habilidad en
el ajedrez. Se hizo muy amigo de Ed-
mund Halley (1656-1742) y de Newton,
con guien tomaba café dada dia, y del
que se dice que respondia a quienes le
preguntaban sobre aspectos de calculo:
«Pregunteselo a Mr. De Moivre, que sabe
de esas cosas mas que yo». Tales amis-
tades, junto con las de Leibniz, Euler y
los Bernoulli, no le sirvieron, no obstante,
para encontrar un trabajo estable. Fue un excelente matematico, no en vano
es el responsable de introducir en probabilidad y estadistica la independencia
de sucesos, acercandose mucho al concepto de distribucion de los valores
estadisticos en forma de campana de Gauss. Estudié también las anualidades,
tema que desarrollé en Annuities in life (Anualidades en vida), aparecido en
1724, a partir de un trabajo de Halley. En analisis puro, se le debe una primera
formulacion del valor aproximado del factorial de un niumero. Mas tarde esa
formula se conocera universalmente como aproximacion de Stirling:

n
nl~+2an [2) ;
=

Sin embargo, su contribucién mas notable fue su férmula de los nimeros
complejos, que hoy enunciariamos, en notacién moderna, como:

(cosx +isenx)” = cosnx +isennx.

Soltero y pobre, siempre recorddé con el orgullo del exiliado que la Academia
de ciencias de Paris lo habia elegido en 1754 miembro extranjero asociado.
Murié en Londres, pero lo curioso es que se dice que predijo el dia de su pro-
pia muerte. Se apercibié de que cada dia dormia 15 minutos mas que el an-
terior, asi que hizo la cuenta... y calculé que falleceria el dia en que durmiera
24 horas: el 27 de noviembre de 1754. Su calculo fue exacto.
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Euler llegé a estos resultados, y a otros de suma importancia
también, partiendo de la simple serie de Taylor:
- il S
d 20 n! 21 3! 4!

En el anexo 5 se muestra con mayor detalle el modo en que Euler
dedujo su férmula de esta tltima expresion.

Si damos a x el valor del niimero pi en el marco de la férmula
de Euler se tiene que:

e" =cosm+isen=-1+i0=-1,
y cambiando de lado al -1:
e" +1=0.

Esta ecuacién, conocida como identidad de Euler, estd con-
siderada por muchos mateméticos como la mas hermosa de toda
la disciplina.

También en Introductio in analysin infinitorum puede en-
contrarse el auténtico concepto de logaritmo, en una forma que
resuelve el tema de los logaritmos negativos que Euler arrastraba
desde su juventud en Basilea. Euler lo definia correctamente como
la operacién inversa de la exponenciacion, o sea:

a'%" =g,

lo cual lleva a que el logaritmo en el campo complejo tenga infi-
nitos valores que solo difieren en un miiltiplo par de x, o sea 2km.
En particular:

In(-1) = in + 2kn (k €EZ),
lo que conduce a expresiones como:

,ii _em" _eilni il

i
2

=~ (,2078795764.
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Asimismo, en este libro se introduce el niimero ¢, la férmula
de De Moivre, las series de potencias senx y cosz, la idea de fun-
cién, muchas series de potencias (entre otros, se resuelve por otra
via el problema de Basilea), etc.

También se explican y sistematizan los primeros pasos de la
geometria analitica, impecablemente engarzados en los conceptos
del andlisis. Se pueden encontrar entre los temas las coordenadas
oblicuas y polares, las transformaciones de coordenadas, las asin-
totas, las curvaturas, la interseccién de curvas, las tangentes, y un
largo etcétera. No solo se tratan los conceptos de forma moderna,
sino que se lleva a cabo una auténtica labor de fusién de los pun-
tos de vista de Newton y Leibniz y queda claro definitivamente
que diferenciacién e integracién son acciones inversas la una de
la otra; caras enfrentadas de la misma moneda.

En Institutiones calculi differentialis y en Institutiones
calculi integralis se estudian primordialmente las series, las
fracciones continuas, las ecuaciones diferenciales, incluidas las
derivadas parciales, los maximos y minimos, etc.

Euler mantuvo durante toda su vida un pugilato intelectual
con las series numéricas, sumas infinitas de las que se ignoraba si
eran convergentes o no, y, en caso de que lo fueran, se desconocia
hacia qué convergian, qué suma representaban. En algunos casos
la divergencia era clara, como en la llamada serie armdnica:

11 1 1 1 l l
l+—4—+—+—+—4—+—

2 3 4 5 6 7 8
que el matematico italiano Pietro Mengoli agrupé ast:

1 (1 1) (1 1 1 1)

1+—+ —t—t—t—

2 \3 4/ \b 6 7 8
1.1.1.10.3_ 1. 40":1 1. 1.4. 1

+(—+—+—+—+—+—+—+—) ezl —+—+—+..
9 10 11 12 13 14 15 16 2 2 2 2

demostrando que su suma era infinita. Sin embargo, otras eran
desconcertantes. Tomemos por ejemplo:

1-1+1-1+1-1+...,

BERLIN, CAPITAL DEL ANALISIS

107



108

que agrupada asi parece dar 0:
1-D+0-D+A-D+...=0,

pero agrupada asi parece dar 1:
1+(-1+D+(C-1+1) +(-1+D+...=1

Ni lo uno ni lo otro, pues Euler preferia partir, como otros
matematicos de la época, de la bien conocida serie:

1
l—-l+x+x2+x3+x" $3%%...
-

para tomar el valor x = -1 y concluir que:

1
1-(-1)

-1+(—1)+(—1]2+(—1)3+(—1]4+(—1)5+...=1—1+1—l+l—l

SRR

asi que ni 1 ni 0; Euler sostenia que el total era un medio.
Al arsenal de series ya sumadas por aquel entonces, como:
1+l+l+i4~...+k—1-+... =2

—=0
2%
:r3 xﬁ xl
senr=r-—+———+...,
3! B! T

Euler anadiria poco a poco una gran cantidad de resultados
propios: su contribucién al problema de Basilea; su método de
sumacion, denominado de Euler-Maclaurin, que mejoraba la con-
vergencia, en caso de que la hubiera (ambos vistos en detalle en el
capitulo anterior); la transformacion de series mediante las dife-
rencias finitas y sucesivas; e importantes aportaciones al estudio
de las series divergentes. De hecho, en 1755, es decir en una época
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en que no existia todavia el concepto de limite, ya distinguia co-
rrectamente entre series convergentes y divergentes.
Entre las series sumadas por Euler se encuentran:

14 _l+i(_1)n( 11 )

SENSK S n+s nN-s

ncotsn=£+i(¢- 1 ]

S n=1 n+s n-s
b4 11111
—_— =]t — e = ——
3v3 2 4 57 8
—E-—=l+1+l+l+l+i+
V2 357911
b4 11 1 1 1
—=l+—me—t—+—+
3 5 7 11 13 17
w1 111
8J/2 32 52 72 9
3'[2 —1___1__l.+L+L+
6+/3 Sl T LT T

1-1'+2!-3!+ ... =0,596347362123...

Ademas, Euler descubri6 dos series: una fue la siguiente ex-
presion como serie de potencias:

y la otra, la primera serie de Fourier de la historia, que Euler
desveld en 1744 en una carta a Goldbach, y, por tanto, mucho
antes de que Joseph Fourier (1768-1830) emprendiera sus famo-
sos trabajos. En realidad, antes de que ni siquiera tuviera ocasién
de nacer:

1 1 1
—x =senr -—sen2x+-—sen3x —...
2 2 3
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La aportacién de Euler al dominio de las series es enorme y
su exposicién en detalle no es el fin de este libro. Baste decir que
solo Carl Gustav Jakob Jacobi (1804-1851) y Srinivasa Aiyangar
Ramanujan (1887-1920) est4n a su altura en cuanto a la relevancia
de sus aportaciones en esta materia.

Otro de los campos que cultivé Euler fue el de las ecuaciones
diferenciales. Quiza su aportacién més conocida, aunque una de
las més elementales, sea el método de Euler, que permite aproxi-
marse a la soluciones de una ecuacién diferencial de primer orden.
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CAPITULO 4

Segunda estancia en Rusia:
Euler y la teoria de numeros

Euler, aquejado de fuertes problemas de
vision, pudo haber hecho de su segunda estancia
en Rusia un retiro dorado, pero nada mas lejos de la

realidad. Decidido a que la muerte le sorprendiera
trabajando se centré en la teoria de nimeros, y engarzé una
serie de resultados notables relativos a los niimeros primos,

de Mersenne y de Bernoulli, asi como a las ecuaciones
diofanticas y las particiones. También hall6 tiempo para
estudiar las matematicas ludicas e incluso
escribir libros de divulgacion.






El regreso de Euler a Rusia, en 1766, estuvo presidido por el
deseo de la zarina, Catalina II, de prestigiar de nuevo la Acade-
mia. De hecho, Euler no habia roto los vinculos con Rusia du-
rante el periodo en que residié en Berlin. Es sabido que envié
numerosos articulos a la Academia de San Petersburgo cuando
las cuestiones tratadas en los mismos eran continuacién légica
de articulos publicados en Rusia la primera vez. Por otra parte,
siguié recibiendo estipendios de origen ruso en pago a temas
puntuales, como cuestiones de caracter militar, y ponia bajo su
proteccién y tutela a alumnos rusos que habian sido enviados a
estudiar a Occidente. A cambio de sus contribuciones cientificas
ala academia de San Petersburgo, Euler recibié de Rusia en 1742
—residiendo en Berlin— el compromiso de una pensién. Una sin-
gular anécdota permite no solo conocer un detalle concreto del
segundo viaje de Euler a Rusia, sino también lo emponzoiiadas
que estaban las relaciones con su patrén anterior. Asi, en una
carta escrita por Federico este se regocijaba de la pérdida de una
serie de notas personales del matematico a causa del naufragio
del barco que las conducia a San Petersburgo con las palabras
siguientes: «Es un hecho lamentable, porque de ellas podrian
haber salido seis tomos de tratados llenos de niimeros de princi-
pio a fin, y ahora, con toda probabilidad, Europa se va a ver pri-
vada de una lectura tan placentera».

SEGUNDA ESTANCIA EN RUSIA: EULER Y LA TEORIA DE NUMEROS
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El sueldo que se le asigné a su llegada a Rusia (3 000 rublos) era
magnifico, e incluso la zarina le ofrecié un cocinero de su propia
casa real. La directora de la Academia, nombrada por Catalina II,
era la princesa Dashkova, y su aprecio por Euler se manifest6 en
otra celebrada —y documentada— anécdota. En el curso de cierta
sesion de la Academia, la princesa acompaii6 al sabio hasta la sala
de sesiones. Entonces, un profesor que se daba mucha importancia
solicité sentarse en el sillén de honor, cerca de la presidencia. La
princesa, con exquisita educacién, se dirigi6 entonces a Euler:
«Siéntese donde usted quiera, sefior, pues el lugar que elija ya sabe-
mos que sera el més distinguido, el primero de todos».

Sin embargo, no todo fueron buenos momentos. La primera
de sus tragedias de este periodo fue la ceguera. Euler se someti6
a una operacién quirirgica para tratar una catarata en su 0jo sano;
aunque al principio todo fue bien, se le declaré posteriormente
un absceso del que no se traté a tiempo y que acabé provocan-
dole la pérdida de visién. En 1771 ya estaba virtualmente ciego
de ambos ojos. No obstante, su ritmo de trabajo no disminuyé e,
incluso, puede afirmarse que su productividad en este segundo
periodo ruso es la mas alta de su vida. Pero dicha productividad
no pudo conseguirla solo; la historia ha conservado el nombre
de alguno de los auxiliares de Euler de la dltima época, muchos
de ellos excelentes matematicos, como Georg Wolfgang Krafft,
Mikhail Evseyevich Golovin, Stepan Rumovsky, S.K. Kotelnikov y
Petr Inokhodtsev. Algunos de sus auxiliares fueron especialmente
relevantes: su hijo mayor Johann Albrecht, su nieto politico Nico-
laus Fuss y el matematico y astrénomo germano Anders Lexell.

El primogénito de Euler, Johann Albrecht (1734-1800), fue ma-
tematico y miembro de la Academia de Berlin desde 1754 y cate-
dratico de fisica de la Academia de San Petersburgo desde 1765.
Fue un excelente cientifico a juzgar por los siete galardones que
recibi6 de academias diferentes en el curso de su vida profesional.

La mano derecha de Euler fue Nicolaus Fuss (1765-1826), un
matematico que ascendié de asistente y secretario personal a pro-
fesor en la escuela de infanteria y secretario permanente de la
Academia de San Petersburgo. En 1784 se cas6 con una nieta de
Euler y estuvo presente en su casa el mismo dia en que falleci6.
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UNA ANECDOTA FAMOSA

A un personaje de la talla de Euler es nor-
mal que se le atribuyan un buen ndmero
de anécdotas. Lo malo de las anécdotas
en general es que su atribucion acostum-
bra a ser directamente proporcional a lo
extravagante del personaje y su verifi-
cabilidad inversamente proporcional a la
distancia en el tiempo en que vivid. La
que viene a continuacion se incluye por
la buena fama del narrador —D. Thiébault
(1733-1807), un cronista por lo general
creible y veraz que aunque no estaba
presente en la ocasion dice habérsela
oido explicar a varios testigos— y porque
goza de gran popularidad. El protagonis-
ta de la historia es el escritor y filésofo  Retrato de Denis Diderot, considerado
francés Denis Diderot (1713-1784), padre ' Padrey supervisor de la Enciclopedia.
y supervisor de la Enciclopedia. Diderot,

quien estaba de visita en Rusia, fue invitado a debatir en la corte sobre la
existencia de Dios. Al parecer el muy creyente Euler disponia de una prueba
irrefutable. Diderot acudié a la reunién y contemplé como Euler avanzaba
hasta él para enunciar su argumento:

(a+ b”)
«Sefior, = x, luego Dios existe: iresponded!».

Diderot, que no entendia gran cosa de matematicas, no respondio y permane-
cio callado. Los cortesanos presentes interpretaron el silencio como imposibi-
lidad de responder a la contundencia del argumento, y se mofaron de Diderot,
quien, avergonzado, regreso a Francia. Hasta aqui el relato.

La otra cara del relato

La historia ha encontrado con cierta rapidez resquicios por donde introducir
un deje de verdad. La «ecuacion» de la frase no tiene valor matematico al-
guno. Ademds, Diderot no era un ignorante en matematicas pues poseia una
excelente formacién como matematico aficionado. Por tanto, la pretendida
frase de Euler le habria sonado como lo gue era en realidad, un galimatias
sin sentido, y asi lo habria dicho. Ademas, uno no se imagina al muy serio y
respetuoso Euler prestdndose ante un sabio como Diderot a una maniocbra
tan burda. En lo Unico en que la historia es cierta es en lo tocante al regreso
de Diderot a Francia.
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Suyo es un magnifico elogio fiinebre, un texto extenso y conmo-
vedor sobre la vida y obra de quien fue el abuelo de su esposa.

Por 1ltimo, Anders Lexell (1740-1784) fue colaborador de
Euler en sus iltimos tiempos y estuvo también presente en el mo-
mento de su muerte. Lexell se ocupaba entonces, junto con Euler
y Fuss, del recién descubierto planeta Urano, y llegé a prever con
sus célculos la existencia de Neptuno.

Otra de las desgracias que le aconteci6 en este periodo fue el
incendio de su casa en 1771, que a punto estuvo de costarle la vida;
la intervencién de su sirviente Peter Grimm (otras fuentes hablan
de un simple compatriota de Basilea), que lo sacé a hombros, fue
decisiva. La casa fue levantada de nuevo en piedra con fondos que

provinieron parcialmente de la emperatriz.

CURVAS Y ENGRANAJES

FiG. 1

phARAL,
En 1754, Euler publicé en la Academia K e, y;‘ﬂ'"“"“'bl
de Berlin unas memorias sobre los en- o >3 z?
granajes, tema que retomé en 1765, a 2 7 & lf’q\J é
caballo entre Berlin y su segunda etapa a £ }; -
rusa, en Supplementum de figura den- ’j £ /o
tium rotarum, que versaba sobre los ‘J’?, §° V}"’J‘wu'v“‘p’

dientes de un engranaje giratorio. En la
figura 1 puede observarse un engranaje
con dientes triangulares, pero los sim-
ples tridngulos no son suficientes; el
perfil de los dientes es fundamental, y
en la figura 2, inspirada en los trabajos
de Euler, se aprecia el perfil éptimo.
Cuando el perfil de los dientes esta for-
mado por curvas involutas de una cir-
cunferencia —aquellas que resultan de
trazar el camino que recorre al desenro-
llarse el extremo de una cuerda previa-
mente enrollada a la circunferencia—, la
relacion entre sus respectivas velocida-
des de rotacién se mantiene constante
a medida gque se produce el desliza-

FIG. 2
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El tercer y mas importante suceso que marcé su vida fue el
fallecimiento, en 1773, de su esposa Katharina tras casi 40 afios de
matrimonio. Euler volvio a casarse, esta vez con su cufiada Abigail.

A pesar de estos sobresaltos, Euler sigui6 con su ritmo de pu-
blicaciones. Aunque ya habia realizado importantes aportaciones
en teoria de nmimeros con anterioridad, como por ejemplo en su
trabajo sobre constantes numéricas, o el llevado a cabo alrededor
de la constante de Goldbach y los miimeros de Fermat, los historia-
dores coinciden en sefialar que la mayor parte de esa contribucién
se produjo en los dltimos ainos de su vida. Es justo sefialar que todas
estas aportaciones a esta rama de las matemdticas —no especial-
mente apreciada en su tiempo— serian mas que suficientes para
consagrar a un matematico.

miento. Los dientes tienen una tangente FIG. 3
comun vy el engranaje no vibra;, no se

pierde energia en ruidos y el desgaste

se minimiza. Euler no solo fue el primero

en explorar el campo de las curvas in-

volutas, sino que sus ideas llevaron a

desarrollar posteriormente las ecuacio-

nes de Euler-Savary, utilizadas hoy en

dia para trabajar en cuestiones de cur-

vatura.

Dientes de las sierras

Junto a los engranajes, Euler también se

intereso por los dientes de la sierras (fi-

gura 3), tema al que le dedicd, en 1756,

un articulo de 25 paginas. En él apare-

cen formulas que tienen presentes el

numero de dientes, su angulo de inclina-

cion, la penetracion del diente en la ma-

dera, etc. Sin embargo, algunas de las

conclusiones del estudio resultan ahora  Pibujo basado en
sorprendentes, pues Euler recomendaba ¢! estudio de los

P A 5 dientes de sierra
usar sierras de 1,20 m y recurrir a equi-  javado a cabo

pos reducidos de aserradores. por Euler. | |
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EULER Y LAS ECUACIONES DIOFANTICAS

Euler hizo importantes contribuciones al estudio de las ecuacio-
nes diofdnticas ya en el aiio 1735. Estas constituyen un punto cen-
tral en la teoria de nimeros. Una ecuacién diofantica es una
ecuacién con coeficientes enteros y en la que solo se consideran
posibles soluciones también enteras. Su nombre proviene del ma-
tematico griego Diofanto de Alejandria, quien fue el primero en
estudiarlas.

Euler no fue impermeable a su encanto, ya que buena parte
de su empeiio numérico era la resolucién de problemas heredados
de Fermat, y Fermat sentia un atractivo irresistible por Diofanto y
su campo de actividades. Pero el fruto no estaba todavia maduro
para que Euler lo recogiera, y faltaban muchas armas poderosas
para abordar sisteméticamente las ecuaciones diofanticas, como
la geometria algebraica o las integrales elipticas, que estaban to-
davia en sus albores. Aunque Euler tanteé las fronteras del impe-
rio de Diofanto, no lo conquisté. Quiza lo més recordado en este
terreno sea la demostracién del caso n=3 que dio Euler del dltimo
teorema de Fermat. Este establecia la imposibilidad de resolver la
ecuacion diofantica x" + y"=2" para n =3, pero Euler demostré la
imposibilidad para n=3. Parece que la demostracién, que ya en-
contré en 1735, contenia un error, pero el propio Euler la corrigi6.
Ademads, mientras estudiaba otra categoria de nimeros confirmé
la solucién para n=4, que ya habia establecido el propio Fermat.
La solucién universal para cualquier n tuvo que esperar a Andrew
Wiles, a finales del siglo xx.

Euler también se interesé por la denominada ecuacidén de
Pell, 1a ecuacion diofantica de la forma:

y'=Ax*+1,

donde A es un nimero entero concreto, no una incégnita. Esta
ecuacion fue solucionada por Lagrange, quien desarrollé amplia-
mente el procedimiento de las fracciones continuas investigadas
por Euler. Su denominacién actual procede de un error de Euler,
quien, al parecer, confundié a John Pell (1610-1685) con el mate-
maético William Brouncker (1620-1684), padre universalmente
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DIOFANTO Y SUS ECUACIONES

Diofanto de Alejandria (ca. 200/214-ca. 284/298) es conocido por ser el padre
de las ecuaciones diofanticas. Aunque en la actualidad se denominan asi a las
ecuaciones algebraicas, de una o mas incégnitas, donde todos los coeficientes
son enteros y donde solo se admiten soluciones también enteras, Diofanto
admitia también numeros racionales. Se supone gue vivido ochenta y cuatro
afios, pues entre las pocas cosas que se han conservado de Diofanto figura
su epitafio, que hace referencia a su edad. Dice asi:

Yace aqui Diofanto, la roca mirad;

mediante arte algebraico, te dice su edad:

un sexto de su vida fue nifez y alegria,

y un doceavo adolescente, mientras su barba crecia,
y después de un séptimo Diofanto casaria.

Pasaron cinco afios y un hijo nacid.

Pero fue desgraciado pues ese hijo murig,

cuando tenia la mitad de los afos que su padre vivio,
Durante cuatro afios mas su consuelo hallg,

en la ciencia del nimero y entonces murio.

Deshaciendo la madeja y escribiendo la ecuacion dioféntica escondida en
estas palabras, se llega a:
XX X

X
oS SO Zid=x,
6+12+7+5+2+ X

y a la solucion buscada, x=84.

Diofanto y Fermat

Otra circunstancia determinante en la popularidad de Diofanto es el plantea-
miento del dltimo teorema de Fermat. La larga historia se puede resumir de
modo abreviado como sigue: en tiempos de Fermat se edité casi todo lo poco
que ha llegado de Diofanto en forma de traduccion latina realizada por Claude
Joseph Bachet de Méziriac. Fermat tenia por costumbre leer los libros y comen-
tarlos al margen de los mismos. En un lugar determinado del texto encontrod
una proposicion de Diofanto que le dio pie a enunciar lo que luego seria el ul-
timo teorema de Fermat, un enunciado de aspecto inocente, de planteamiento
sencillo y del que Fermat escribid que poseia una demostracion maravillosa,
que no transcribia por no disponer el libro de margen suficiente. Aireada esa
pretension por el hijo de Fermat, nadie fue capaz de encontrar prueba alguna
hasta finales del siglo xx (Andrew Wiles, 1995). Diofanto escribié once libros de
aritmética, de los que solo han llegado seis (otros cuatro de atribucion dudosa).
Contiene mas de 100 problemas de caracter «diofantico», pero no es posible
encontrar tras ellos método alguno, sino una formidable exhibicion de ingenio.
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aceptado de la famosa ecuacion. Julia Robinson (1919-1985) resol-
vi6, gracias a él, el décimo problema de Hilbert, uno de los mas
preciados de la matemdtica contemporénea, que se interrogaba
sobre la existencia de un algoritmo capaz de determinar si una
ecuacion diofantica cualquiera tenia soluciones en los enteros,
resultando que no.

UNA CONJETURA DE EULER SOBRE ECUACIONES DIOFANTICAS

Una famosa conjetura euleriana, de su segunda etapa rusa, fe-

chada en 1769, hace referencia a la ecuacién diofantica:

eyt =0,

UNA CONJETURA SOBRE SUMAS DE POTENCIAS

El matematico francés Augustin-Louis Cauchy (1789-1857) es recordado como
un gran talento, pues a él se deben multitud de descubrimientos, teoremas y
conceptos; pero hay otros puntos de su personalidad —su piedad acaso ex-
cesiva, su descuido a la hora de reconocer el trabajo de otros colegas— que
son algo asi como el «lado oscuro» de una personalidad controvertida. Una
de las anécdotas que cuentan de él muestran su rostro mas simpatico, mas
burlén, el inimitable ésprit francés. Segun la historia —o, con mayor probabi-
lidad, la leyenda— Cauchy, quien recibia muchos manuscritos para evaluarlos,
dio con uno que pretendia probar, en el mejor estilo de Fermat, que no existian
enteros x, y, z, u, que satisfacieran la ecuacion diofantica:

X3+y3+233u3_
Cauchy estaba aquel dia de buen humor, porque antes de leer el articulo ya
tenia escrita la respuesta, que ocupaba una sola linea. Lo que respondié con-
cisamente Cauchy fue:

334+ 4%+ 5= 6%

pues, en efecto, 27 + 64 + 125 = 216, como cualquier alumno de primaria pue-
de comprobar.
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y, simplificando, diremos que postula la inexistencia de enteros x, ¥,
2 y u que cumplan la igualdad. Durante mucho tiempo se creyé que
la conjetura era cierta, hasta que el matematico americano Noam
Elkies (n. 1966) la refut6 al publicar en 1988 un contraejemplo:

2682440" +15365639" + 18796760" = 20615673".

Y no solo eso, sino que Elkies también probé que habia infini-
tas soluciones esencialmente distintas, aunque la méas pequeiia de
ellas involucraba unas setenta cifras. Ello demuestra que ningin
resultado conjeturado puede darse por bueno, por evidente que
parezca y por mucho que se avance en su comprobacién. En la
actualidad hay incluso una web rusa que recopila los contraejem-
plos a la fallida conjetura de Euler.

PARTICIONES

A lo largo de toda su trayectoria cientifica, Euler dedicé conside-
rables esfuerzos a las particiones. Aunque el concepto basico de
«particiéon» es elemental, las matematicas necesarias para su es-
tudio a fondo son de gran complejidad. Su exposicion excede los
objetivos de este libro, por lo que el tema se trata someramente.

Tomemos un nimero entero positivo cualquiera, pequeiio
para que sea manejable, como por ejemplo, 7; ;de cudntas mane-
ras se puede descomponer en partes que restituyan el nimero
original? Como es natural, se meten en el mismo paquete aquellas
particiones que solo difieren en el orden pero no en las cantida-
des, es decir, que particionescomo 7=5+1+1y7=1+5+1 se con-
sideran equivalentes y se cuentan solamente una vez. Asi, pues,
tenemos para el niimero 7:

T=7
T7=6+1
7T=5+2
T=6+1+1
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T=4+3

T=4+2+1
T=4+1+1+1
7=3+3+1
7T=83+2+2
7=83+2+1+1
7=83+1+1+1+1
7T=2+2+2+1
7T=2+2+1+1+1
T=2+1+1+1+1+1
T=1+1+1+1+1+1+1.

Total: 15. Escribamos p(7)=15. Esta primera aproximacion
ya muestra que partir un niimero es una tarea laboriosa y que el
resultado no es evidente. Si se calculan los primeros valores de

p(x) da:

p(1)=1
p(2)=2
p@B)=3
p@4)=5
p(B) =17
p(6) =11
p(7) =15
p(8) =22
p(9) =30
p(10) = 42,

donde no se atisba regularidad ninguna, salvo que p es creciente.
Puede comprobarse que:

p(100) = 190569 292.
Se ha llegado a resultados increiblemente largos y a distincio-
nes tan sutiles como las particiones pares e impares (que solo

contienen niimeros pares o impares), o a idear complicados ins-
trumentos aritméticos.
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SRINIVASA AIYANGAR RAMANUJAN

Matematico indio (1887-1920), su pro-
cedencia lejana, lo novelesco de su his-
toria personal y su extraordinario talen-
to introdujeron una nota exdética en el
mundo cientifico de su tiempo. Nacio en
Erode, del estado de Tamil Nadu, y era
hijo de su ambiente, muy religioso, y
obsesivo con las cuestiones alimenta-
rias. Genio matematico autodidacta,
aconsejado por algunos amigos, envio
por correo cartas a la metrépoli britani-
ca exponiendo sus resultados. Una de
sus misivas llegd a la manos de Godfrey
Harold Hardy (1877-1947) quien, junto
con su amigo y colaborador John Little-
wood (1885-1977), analizaron su des-
concertante contenido, gque comprendia de todo: presuntos descubrimientos
que ya habian sido «descubiertos» antes —incluso por el propio Hardy— vy
formulas nuevas que denotaban una capacidad matematica excepcional.
Invitado por Hardy, Ramanujan viajo por fin a Inglaterra para trabajar y llego
a ser nombrado miembro del Trinity College de Cambridge y de la Royal
Society. Muchos de sus resultados figuran todavia en cuadernos de notas
sin desentranar por completo, pero en lo que todos han coincidido es en la
belleza, profundidad, ingenio y novedad de los mismos. Amplié el trabajo
de Euler en el tema de las particiones, del que se ocupd a fondo; no en vano,
mucho de lo que se sabe en la actualidad de este campo es fruto de sus
investigaciones. Gracias al genio hindu de Ramanujan, se dispone de una
estimacion «sencilla» del nimero de particiones para cualquier numero:

3 cuando n —wx,

1 x
i

que puede llevarse a cabo con una simple calculadora. Si se desearan cifas
exactas en lugar de estimaciones, también se pueden conseguir, pero de
una forma algo mas complicada.

Mucho del extraordinario trabajo de Euler se apoya en las
técnicas desarrolladas por Abraham de Moivre, consistentes en
jugar con las series de potencias. Obtenia asi lo que moderna-
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mente se han denominado funciones generadoras, que no son
otra cosa que ingeniosos trucos algebraicos encaminados a imitar
la realidad. En 1742, Euler ya concibi6 la idea de encontrar una
funcién generatriz de las particiones, y tras largos anos de trabajo
llegé, a partir de la serie:

1 .
——=l+z+i+ 2+
1-x

a la féormula:

o " - 1
S -fl()

Se puede comprobar, desarrollando el producto infinito de la
derecha, que aparecen las diferentes particiones del niimero n en
la forma, disimulada, de todas las agrupaciones de exponentes
inferiores a n que suman n. Por ejemplo, si tomamos n = 4, vemos
cuantos x*se generan:

(1+.:1f:+:i;’2 +2°+ ...)(1+::t:2 +2t+ 2%+ )(1+:L" +2+2° + )

Resulta 52' y, naturalmente, p(4) = 5.

De ahi Euler infirié un modo de calcular p(n), aunque por
desgracia es un método recurrente, y solo permite calcular p(n) si
se conocen los valores anteriores:

pm)=pn-1)+pn-2)-pn-5)-pn-17) +
+pm - 12) + p(n - 15) - p(n - 22) - ...

NUMEROS DE BERNOULLI

Llamados asi en honor a Jakob Bernoulli, pues fue el primero que
los trat6 en 1713, en Ars congectandi (Arte de conjeturar).

Uno se encuentra con estos niimeros al calcular las sumas de
potencias de los enteros positivos:
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1422+ 32 +4% +...+k°
1+ 3282+ .k
142+ 34 44 4.+ k'

1+42°+3° +4° +...+ K",

k
o, expresado al modo euleriano, las sumas Y n”. Se tiene que:

n=1

k 1 p+l i
NP -— n
nE-I P"'la‘-io( i ]B

donde los B, son los nimeros de Bernoulli. Para clarificar la for-
mula de mas arriba, se propone un ejemplo sencillo, por ejemplo,
la suma de los primeros cuadrados. Aplicando la férmula y po-
niendo p=2 en ella, se obtiene:

P+ .. on'= i(J‘.’)‘[,:*?,"’ +3Bn’+ 3an1) - l(na +£:a2 + ln)
3 3 2 2

Euler calculé los treinta primeros niimeros de Bernoulli,
una tarea de gran magnitud si se tiene en cuenta que el treintavo
es de este tamano:

8615841 276 005
14 322 '

Los ntiimeros de Bernoulli terminaron apareciendo en la ex-
presion que Euler dedujo para £(2n), en el curso de sus investiga-
ciones posteriores al problema de Basilea y que era:

2I)2n B
2n)= (-1 2B
c(2n) =D

Los niimeros de Bernoulli también aparecen en la moderna
expresion de la férmula de sumacién de Euler-Maclaurin, aunque
Euler no se apercibi6 de ello cuando usé la férmula para tantear
el valor de:
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y averiguar sus seis primeras cifras decimales.

EULER Y EL ESTUDIO DE LOS NUMEROS PRIMOS

Aunque no llegé a desentraniar sus misterios, Euler investigo bas-
tante sobre los niimeros primos, incluidos otros conceptos intima-
mente relacionados como la funcién g, los nimeros de Mersenne
o la ley de reciprocidad cuadratica.

«Los matematicos han intentado en vano, hasta la actualidad,
descubrir algin orden en la secuencia de niimeros primos,

y tenemos razones para creer que se trata de un misterio

que la mente humana nunca resolvera.»

— LeoNuArRD EULER.

126

En Variae observationes circa series infinitas (Varias ob-
servaciones sobre series infinitas), publicado en 1744, Euler in-
cluyé una de las férmulas mas aclamadas en el reino de los pri-
mos, la fomula del producto de Euler, cuya deduccion figura en el
anexo 3 de este libro:

B[] o

n=1 nn k primo 1 2ol p_g

Cuando se hace s=1, a la izquierda se tiene la serie armo-
nica, que tiende a infinito. Por consiguiente, el resultado de la
derecha también debe hacerlo. Pero si es asi, no puede ser un
producto finito, pues daria lugar a un producto también finito.
Asi, es un producto infinito y hay, pues, infinitos factores; y
como cada factor conlleva un nimero primo, hay infinitos pri-
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mos. He aqui cémo Euler encontré otra prueba de la infinitud de
los primos.

Sin embargo, Euler buscé algo mas profundo: la densidad de
los primos. Ya sabemos que son infinitos, pero ;cuan infinitos?
Euler probé que la serie, limitada a denominadores primos:

p primo P 2 3 5 7 11

que es una subserie de la serie arménica:

Sl 1
—=14+—
ﬂznln +2+

ot =+,

1 111
il aaf ua Ui
3 4 5 6
es tambien divergente. Y aiin probé mas; si bien la serie arménica
diverge méas o menos como el logaritmo de n, la serie de los inver-
sos de los nimeros primos todavia diverge mas lentamente. Lo
hace como el logaritmo del logaritmo de 7.

Las ideas de Euler, quien es considerado como iniciador
de las técnicas del andlisis en teoria de nimeros, fueron desa-
rrolladas primero por Legendre y luego por Gauss, verdaderos
iniciadores del estudio del teorema de los niumeros primos,

que dice:

n(@) =,

donde n(x) es el niimero de primos menores que x. Dicho teo-
rema fue demostrado de manera independiente por los matema-
ticos Charles-Jean de la Vallée Poussin (1866-1962) y Jacques
Hadamard (1865-1963) en 1896. Bernhard Riemann extendié las
ideas de Euler al terreno de los niimeros complejos gracias a la
ampliacién a los nimeros complejos, C, de la euleriana funcién
zeta —vista en el capitulo 2—, que Euler solo habia definido en
el conjunto de los nimeros reales, R. De ahi se salt6 a la denomi-
nada teoria analitica de niimeros y en la era moderna, a la nunca
probada hipétesis de Riemann.
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LA FUNCION @

En aritmética se aprende no solo el concepto de nimero primo,
sino el concepto de primos entre si (o primos relativos). Se dice que
dos niimeros enteros positivos, p y ¢, son primos entre si cuando no
tienen divisores comunes; salvo el niimero 1, que los divide a todos.
Por ejemplo, 14 y 15 son primos entre si, pues aunque ninguno de
ellos es primo, no poseen divisores comunes, salvo el 1:

14=2-7
156=3.5.

Otro modo de decir 1o mismo, pero mis moderno, es acudir
al maximo comiin divisor. Es lo mismo decir que p y ¢ son primos
entre si que decir que med (p, q) = 1. La funcién que Euler deno-
miné @(n) se define como el nimero de elementos del conjunto
de nimeros menores que n que son primos entre si con n.

Practiquemos con los diez primeros niimeros:

p(D=1
) =1
P3) =2
p4) =2
p(5) =4
p(6)=2
e(M=6
p@B)=4
®(9) =6
@(10) = 4.

La funcién ¢ (n) se denomina funcion indicatriz; no se trata
solo de un «juguete aritmético» mas o menos interesante, sino de
un instrumento al que puede sacirsele mucho partido; uno de los
teoremas mas importantes de la teoria de nimeros, el llamado
pequerio teorema de Fermat, involucra a la funcién g.

Contrariamente a lo acostumbrado en sus trabajos, la nota-
cién de la funcién @ no se debe a Euler.
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Euler demostré que si p y ¢ son primos entre si, entonces se
verifica:

o(pq) = 9(P)e(q).

Y, también, que si p es primo: @(p) = p-1.

Asimismo, es de Euler, aunque bastante anterior, el resultado
de que si p y g son primos entre si, se verifica el llamado pequerio
teorema de Fermat:

pir'(q) =1 modgq,

donde mod ¢ significa «médulo g» y quiere decir que p*”y 1
dejan el mismo resto al dividirse por gq. Este teorema fue demos-
trado por Euler en 1736, en Theorematum Quorundam ad Nime-
ros Primos Spectantium Demonstratio (Una prueba de ciertos
teoremas sobre niimeros primos), y se presentaba antes en la
forma restringida que le dio Fermat. Si se supone ademaés que g
es primo, entonces se verifica @(g)=g-1 y se tiene el enunciado
original de Fermat:

p"™'=1 mod g,

con g primo y p y g primos entre si. Euler ofrecié no menos de tres
demostraciones concretas de este teorema, aunque es casi seguro
que no sabia que Fermat era uno de los padres del teorema original.

El moderno sistema de encriptacion RSA, el sistema de clave
publica mas utilizado, tiene en este teorema su base més firme,
como puede comprobarse en el anexo 6.

LOS NUMEROS DE MERSENNE
Euler quiso descubrir niimeros primos de gran tamafo. Muchos
fueron los matematicos que hasta entonces habian supuesto, erré-

neamente, que los nimeros M, de la forma M,=2°-1, siendo P
un primo, eran todos primos. Pietro Cataldi (1548-1626) probd,
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MARIN MERSENNE

Marin Mersenne (1588-1648) fue sacer-
dote, musico, matematico, filosofo y
tedlogo, aungue su gran vocacioén era
la musica, disciplina a la que dedicé una
gran parte de sus esfuerzos, no en vano
se le conoce en muchas fuentes como «el
padre de la acustica». Establecio las le-
yes fundamentales de la vibracion de las
cuerdas y se ocupd de multitud de pro-
blemas armodnicos e instrumentales. Se
dice que en la segunda suite de Ottorino
Respighi, Antiche arie e danze per liuto,
se reproduce un fragmento compositivo
suyo. Se ocup6 también a fondo de los
telescopios y de sus espejos, llegando a
ser considerado una autoridad. Actud,
sobre todo a través de su abundante correspondencia, como una especie de
centro neuralgico receptor y emisor de novedades cientificas en un tiempo
en el que escaseaban las publicaciones de este tipo. Interesado por casi todo,
conocid y cultivo la amistad o el contacto con multitud de intelectuales de su
tiempo, en particular de Descartes, quien era compafero de estudios suyo.
Racionalista y reflexivo, combatié con energia las creencias mas irraciona-
les como la cabalistica o la magia. Se interesé mucho por las matematicas,
y ademas de editar varios textos de autores clasicos, como Arquimedes o
Euclides, dedico atencion al mundo numeérico. Es ahi donde reside su impor-
tancia para los historiadores y por eso los numeros que estudio, los numeros
M, de la forma:

M,=2°0-1

Se denominan numeros de Mersenne. Existe un generador de numeros pseu-
doaleatorios, relacionado con los primos de Mersenne, que lleva su nombre:
el Mersenne twister.

en 1588, que M, y M, eran primos por el procedimiento un tanto
rudimentario, pero estindar, de intentar dividirlos por los primos
inferiores a su raiz cuadrada. Mas tarde, Marin Mersenne, a quien
se debe la M de tales niimeros, dio una lista de presuntos primos
que posteriormente se demostro bastante inexacta, pues sobraban
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M, y M, y faltaban M, M, y M, .. En la actualidad, el récord

estd en el M, ... que tiene 12978189 digitos y cuya expresion
ocuparia mas de 50 libros como el presente.

Euler demostr6 que M,, era primo en 1772, aunque es muy
probable que ya lo hubiera averiguado antes. Lo curioso es que
hubo que esperar mas de un siglo para que Edouard Lucas (1842-
1891) encontrara, en 1876, el siguiente en el tiempo, M ,.. (M, y
M, también son primos, pero se descubrieron con posterioridad.)
Asi, el récord del primo mayor estuvo en poder de Euler durante

aproximadamente 104 afios.

LA RECIPROCIDAD CUADRATICA

La reciprocidad cuadratica, todo un cuerpo de doctrina aritmé-

tica plasmado por Gauss de modo brillante en las Disquisitiones

arithmeticae (Disquisiciones de aritmética), fue iniciada por Le-

gendre y Euler, este tiltimo en una carta a Goldbach, en 1742. Para

empezar, definamos primero el lenguaje, es decir, los simbolos

de Legendre | P |. Supongamos p y ¢ primos impares distintos y:
q

0si p=0(mod q)
(-) = 1si 2 = p (mod q) es una ecuacién resoluble

-1si 2% = p (mod q) es una ecuacién irresoluble

Con esta notaciéon Gauss, y no Euler, llegé a demostrar que:

pY. [ ems
{E)_ [_I—:"}siq-ﬂ(mod-l).

Lo cual puede reunirse (no facilmente) en una sola férmula.
Gauss descubri6 todo lo anterior a los diecinueve afios y lo tenia
en tal aprecio que lo calificé de aurum theorema, «el teorema
aureon».
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ADRIEN-MARIE LEGENDRE

La vida profesional de Legendre (1752-
1833) empezo bajo los mejores aus-
picios, pues era un hombre muy bien
dotado intelectualmente y poseia una
fortuna propia que le permitia dedicarse
a su trabajo sin coerciones externas. Su
progreso como matematico fue asentan-
dose a medida que transcurrian los afos.
Al lado de Laplace, realizé importantes
trabajos astronémicos, inventando lo
que luego se llamaron polinomios de
Legendre; se sumergio en el poco cono-
cido territorio de las funciones elipticas
y en la teoria de nimeros, donde creyd
haber resuelto la entonces magna cues-
tion de la reciprocidad cuadratica. Pero
su investigacién contenia algunos agujeros, tal y como puso de manifiesto
afnos mas tarde Carl Friedrich Gauss. Sus trabajos astrondmicos determinaron
su nombramiento como miembro de la Royal Society. Fue designado para
trabajar en la comision encargada de poner las bases del Sistema Métrico
Decimal, une de los programas de racionalizacion que se impulsaron tras la
revolucion francesa. Aungue comulgaba con muchas de las ideas revolucio-
narias, tuvo que ocultarse en los tiempos del terror, y por esa época perdio
su fortuna personal. Reescribio entonces y publico los Elementos de Euclides

NUMEROS AMIGOS Y NUMEROS PERFECTOS

Diremos que un divisor d de un nimero cualquiera n es un di-
visor no trivial de n si 1 <d <n. El divisor n, seri el divisor tri-
vial de n.

En 1747 aparecié documentada una primera intervencién
seria de Euler en el terreno de los niimeros amigos. Dos nimeros
son amigos si sumados los divisores no triviales del uno dan el
otro y viceversa.

Es un concepto de «amistad» muy aritmético que se entiende
con un ejemplo; tomemos los nimeros 220 y 284: los divisores no
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bajo un punto de vista y un lenguaje modernos, obteniendo un éxito editorial
resonante y duradero. El recién llegado Napoledn lo tomé bajo su proteccion, y
Legendre, ya académico y consagrado, se dedicé por un tiempo al movimiento
de los cometas, lo que dio origen al método de los minimos cuadrados para
calcular trayectorias, adelantdndose esta vez a Gauss. De esta época datan
sus estudios sobre la distribucion de los numeros primos, que conjeturo obe-
decian a la ley asintética:

n(x) = . S—
log x -1,08366
Este valor, muy préximo al éptimo actual, conduciria luego al teorema funda-
mental de los nimeros primos. También en este terreno Gauss llegd el primero,
pero no publicd nunca sus resultados.

Los ultimos afios de Legendre

El ultimo periodo de su vida lo dedicd a las funciones elipticas, pero en una
forma ya entonces obsoleta debido a las aportaciones de Niels Abel (1802-
1829) y Carl Gustav Jakob Jacobi (1804-1851). Traté también las geometrias
no euclideas, quedandose a las puertas de desentrafiar sus secretos. Todavia
probo el Ultimo teorema de Fermat para n=5. En 1824 se enfrentd al ministro
del interior de Luis XVIIl y fue privado de su pension. El gobierno posterior
de Luis Felipe de Orleans volvié a pagarle, pero solo una parte; no obstan-
te, le concedieron la Légion d'Honneur. Legendre no murio en la indigencia,
pero conocio la pobreza. Un triste final para un cientifico que posee un crater
lunar dedicado a su memoria, una calle en Paris y una placa recordatoria en
la torre Eiffel.

triviales de 220 son 1, 2, 4, 10, 11, 20, 22, 44, 55 y 110; los corres-
pondientes de 284 son 1, 2,4, 71 y 142.
Se cumple que:

220=14+2+4+10+114+20+22+44 +55+110=284
284 =1+2+4+ 71+ 142 = 220.

Los ntimeros 220 y 284 son amigos. En el reino numérico, la
amistad es un fenémeno nada comun. Si se hubiera realizado la
prueba con cualquier otra de las 19880 parejas posibles inferiores
a 284, no se hubiera encontrado ninguna otra. De hecho, en época
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de Euler solo se conocian tres parejas amigas: (220, 284), (17296,
18416) y (9363584, 9437056), encontradas por Thabit ibn Qurra
(836-901), Fermat y Descartes.

Euler, en un primer articulo, daba ya 30 parejas nuevas pero
no demasiadas pistas de por donde discurrian sus pensamientos.
Luego elevo su aportacion a 90 nimeros amigos. La pareja (1184,
1210) fue descubierta en el siglo xix por un modesto cultivador de
las matematicas, Niccold Paganini.

Se ha comprobado ya que no hay demasiadas parejas amigas:
el hiingaro Paul Erdos (1913-1996) prob6 en su dia que la densidad
de niimeros amigos en el conjunto N es cero. Con la ayuda de las
computadoras se ha llegado a las decenas de millén de parejas
amigas. Mas adelante volvié Euler sobre el tema, con su acostum-
brada perspicacia, y legé un criterio suficiciente para construir
nimeros amigos:

Los nimeros N=2"pq y M=2"r son amigos si p,q y r son pri-
mos, de la forma:

p=2"-"4])x 2™ -1
g=2"-"4)x 2" -1
r=(20-™4+1)2 x 2m+2 -1
conn>m>0.

La condicién sugerida por Euler es suficiente pero no nece-
saria. No proporciona todas las parejas amigas, pero es un paso
importante.

NUMEROS PERFECTOS

Estan estrechamente relacionados con los nimeros amigos. Un
nimero se dice que es perfecto cuando es amigo de si mismo.
Eso quiere decir que un nimero es perfecto cuando es igual a la
suma de sus divisores no triviales; es lo que sucede con 6 o 28, por
ejemplo, que cumplen:

6=1+2+3=6
28=1+2+4+7+14=28.
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El siguiente niimero perfecto es el 496 que todavia es accesi-
ble con simple lapiz y papel.

Hasta 2012 se habian encontrado 47 numeros perfectos, y el
octavo lo descubrié Euler. He aqui los diez primeros:

Orden | p Numero Digitos Descubrimiento

1 2 6 1 Conocido por los griegos
2 3 28 2 Conocido por los griegos
3 5 496 3 Conocido por los griegos
4 T 8128 4 Conocido por los griegos
5 13 33550336 8 1456

6 17 8589869056 10 1588

7 19 137438691328 12 1588

8 31|2305843008139952128| 19 1772, Euler

9 61|265845599..953842176| 37 1883

10 |89 191561942..548169216 54 9m

El nimero p de la tabla tiene su significado. Todos los ni-
meros perfectos de la relacion —y, de hecho, todos los que se
han descubierto hasta hoy— son de la forma 27-!x (2 - 1) donde
M =27-1 es un primo de Mersenne. Euclides ya incluy6 en sus
Elementos que si 27 -1 es primo, 27'x (27 -1) es par y perfecto.
El mérito de demostrar el teorema reciproco es de Euler, aunque
la demostracién aparecié péstumamente.

Lo que no se ha encontrado nunca es un namero perfecto
impar, por mas que las computadoras han buscado hasta 10°%,
Tampoco se sabe si hay infinitos nimeros perfectos, otra de las
grandes incégnitas de la teoria de niimeros.

En Internet se puede encontrar hasta el nimero 24 de los ni-
meros perfectos y tiene 12003 digitos.
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LADRILLO DE EULER

Llamado también cuboide, el ladrillo de Euler es un prisma rec-
tangular de lados a, b y ¢, en el que tanto los lados como las dia-
gonales de las caras son nimeros enteros. Eso equivale a que tales
elementos satistacen un sistema de ecuaciones diofanticas:

2 2 2
a"+b"=d,
2 2 2
a“+c” =d,,
2 2
b +c’=d,..

Euler no inventé dicho «ladrillo», pero en 1770 y 1772 encon-
tré dos ecuaciones que proporcionaban infinitos ladrillos —pero
no todos—. Hasta el momento el menor ladrillo encontrado tiene
por lados 240, 117 y 44.

Cuando la diagonal espacial del cuboide —no la de las caras,
sino la espacial— es también entera, al ladrillo se le llama cuboide
perfecto, aunque de momento —y se llevan buscando mas de 250
afilos— no se ha encontrado ninguno.

De todas maneras, se ha llegado bastante cerca del cuboide
perfecto; se ha encontrado un cuboide con un a de 68162 di-
gitos, un b de 56802 y un ¢ de 56803, que proporciona una dia-
gonal espacial que solo difiere de un niimero entero en 10555
(=0,000000...00001, con 60589 ceros tras la coma decimal).

UN PASEO POR EL EULER RECREATIVO

Ya se ha dicho que las matematicas llamadas hoy recreativas fue-
ron el detonante de muchas teorias importantes en el pasado y
que la consideraciéon de mero pasatiempo de que gozan ahora no
ha sido siempre la misma. Eminentes sabios dedicaron en el pa-
sado muchas energias a temas como los juegos de naipes, dados,
cuadrados maégicos y todo tipo de acertijos sin experimentar
rubor alguno por hacerlo y sin sentir que perdian el tiempo.
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Un desahogo aritmético extendido fueron los cuadrados méagi-
cos. Se trata de disposiciones cuadradas de »* nimeros (n se dice
que es el orden del cuadrado), que no se repiten —usualmente— en
la misma fila o en la misma columna, y que suman (la suma S se
denomina constante mdgica) la misma cantidad cuando se las
suma fila a fila, columna a columna y siguiendo las diagonales.

Los cuadrados magicos forman parte de una clase més general,
los llamados cuadrados latinos, denominados asi porque Euler los
denotaba con caracteres latinos. Euler dedicé bastante reflexion a
los cuadrados latinos en su articulo Investigaciones sobre una
nueva especie de cuadrados mdgicos, de 1782. Un cuadrado latino
es un cuadrado de lado n (los algebristas prefieren hablar de una
matriz de orden 7) de manera que en cada casilla anida un simbolo
(que puede ser un nmiimero) que aparece una vez sola en cada fila y
columna.

T |ow
bl

al|o

6 | &

oo | a0
o

El niimero de cuadrados latinos crece de modo fenomenal a
medida que aumenta n:

Numero de cuadrados latinos

3

-

2
12
576
161280
812851200
61479419904000
108776032459082956800
5524751496156892842531225600
9982437658213039871725064756920320000
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En la actualidad los cuadrados lati-
nos tienen su aplicaciéon cientifica mas
corriente en la elaboracién de c6digos co-
rrectores de errores, en agronomia, en el
disefio de experimentos, en andlisis esta-
distico y en ramas mas clasicas de las ma-
tematicas como la teoria de nimeros, la
de grupos, la informaética o la teoria de
grafos y la combinatoria.

Solo citar también, porque las mate-
maticas involucradas son ya de caracter
superior, que completar un cuadrado la-
tino incompleto, cualquiera que sea el cua-
drado, es un problema de planteamiento
sencillo, pero para el que no parece existir
algoritmo de solucién alguno. Es, por tan-
to, un problema NP-completo en la jerga
de la teoria de la complejidad.

Un tipo especial de cuadrados latinos
son los cuadrados grecolatinos, como el
de la figura 1. Euler los llamaba grecolati-
nos porque para describirlos con claridad
usaba caracteres de ambos tipos, griegos
y latinos. Los cuadrados grecolatinos son
hijos de dos cuadrados latinos mas sim-
ples. Mucho antes que Euler, no obstante,
existian los cuadrados grecolatinos, encar-
nados en simples juegos de naipes; la dis-
posicién de cartas que aparece en la figura
2, de Jacques Ozanam (1640-1718), mues-
tra palos y figuras sin que figuren repetidos
en ninguna fila o columna. Para este caso,
simetrias aparte, hay 144 soluciones.

No fue tan afortunado Euler cuando
abordé el problema de los 36 husares, de
estructura similar (figura 3). El problema
funciona como sigue: de seis regimientos
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se seleccionan seis oficiales, cada uno de
graduacién distinta; jes posible disponer- Feed
los en una formacién cuadrada de manera
que no coincidan en la misma fila o co-
lumna miembros de igual regimiento o
graduacion?

Euler probé a hacerlo y fracasd, por
lo que conjeturé que el problema carecia
de solucién. De hecho, conjeturé que no
existia ningin cuadrado grecolatino de
orden n=4x+ 2, cualquiera que fuera x.
Su conjetura permanecié como tal du-
rante mas de un siglo hasta que la probé
el matematico francés Gaston Tarry

FIG.5

(1843-1913); lo curioso es que Tarry cons- 9 B
truyé todos los cuadrados posibles para 6l 4

el orden n=6, y comprob6 que la res- 5113
puesta era negativa. Posteriormente, en R 7

1960, una computadora encontré un cua- 3 112

drado grecolatino de orden 10 (figura 4).

Asi pues, la conjetura de Euler era cierta 7 S 6 8
para n=6, pero yano lo era paran=10 (y
sucesivos, como se demostré luego). 6 i 5 1

EL SUDOKU

Quizas uno de los pasatiempos mas conocidos actualmente sea el
sudoku, un juego que data del afio 1979, cuando hizo su aparicién
en la publicacién Dell pencil puzzles and word games, de donde
salté al Jap6n con el nombre de sudoku («niimeros sueltos») y
de ahi a la fama universal. El sudoku no es un juego de origen
Jjaponés, como generalmente se cree, sino que es norteamericano.

El sudoku hunde sus raices en Euler y los cuadrados latinos.
Un sudoku no es mas que un cuadrado latino de orden 9, que con-
tiene 9 subcuadrados. Dentro de estos pueden disponerse los nueve
digitos habituales (figura 5).
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FIG. 7

EL DISCO DE EULER

Entre 1761 y 1781, a Euler debié
de apetecerle volver por unos
momentos a su nifiez. No solo se
ocupé de los cuadrados magicos,
que constituyen una forma de en-
tretenimiento, sino que también
data de esta época la invencién de
un juguete: el disco de Euler.
Tomemos una simple mo-
neda, pongamosla vertical sobre la
mesa y hagamosla girar de subito

o= velocidad angular alrededor de su eje vertical como

Q= velocidad de precision ﬁgura
a = angulo de inclinacion se muestra en la 6.

La moneda girara primero al-

rededor de su eje vertical; luego,

a medida que su energia cinética

se vaya disipando, ird cediendo

a la atraccién de la gravedad e

inclindndose hacia el suelo, la

: mesa o la superficie sobre la que

X se sostenga. Pero no caera stibi-

tamente porque el momento de

rotacién tendera a conservarla de

pie. La duracién del giro puede ser larga, incluso larguisima si el

rozamiento es minimo, pues entonces la energia se disipa mas

lentamente. Por eso cuando se utiliza el disco como juguete, la

superficie de giro se incluye en el paquete de ventas y ambos ob-

jetos, disco y superficie de giro estin muy pulidas (son de acero

cromado) y casi no producen roce. El disco va colapsando en su

giro, pero ya no lo hace sobre un eje vertical, sino por un eje que

se desplaza perpendicularmente al eje de tangencia (que a su vez

va describiendo una curva alrededor del centro inicial), y termina
por caer con un repiqueteo caracteristico (figura 7).

Muchos investigadores han examinado el comportamiento

a fondo del disco de Euler y han llegado a predecir con bastante
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exactitud el momento en el que el juguete entra en el periodo
de repiqueteo anunciador del fin de todo movimento; parece ser
que ello sucede cuando la moneda gira unas 100 veces por se-
gundo. Entonces sobreviene una singularidad y es el fin de la
diversion.

Algunos se habran apercibido de que se ha imitado, con una
simple moneda, el lentisimo fenémeno astronémico de la prece-
sion de los equinoccios. Ese era el auténtico interés de Euler.

LOS ULTIMOS LIBROS DE EULER

Ningitin estudio de la obra de Euler puede dejar de citar los libros
importantes aparecidos en esta tltima época. Uno de ellos, Let-
tres a une princesse d’Allemagne sur divers sujets de physique et
de philosophie, publicado en 1768, consta de 234 cartas dirigidas
a la princesa de Anhalt-Dessau, y explora todo el universo cienti-
fico —con incursiones de caricter pio y filos6fico— dando a una
persona ilustrada, pero sin formacién cientifica, su visién sobre
el universo y sus entresijos. No todo el mundo entendié que Euler
dedicara su tiempo a la divulgacién. El propio Daniel Bernoulli,
que siempre fue un amigo muy respetado, le reprendia instandole
a ocuparse de «mds sublimes materias».

Otro libro de importancia, de 1770, es Vollstindige anleitung
2ur algebra (Instruceion completa en dlgebra), un libro de algebra
ideal para los que se estrenan en la disciplina, y que se convirtié en
un auténtico best seller, traduciéndose a varias lenguas. En €l se
explican, con extraordinaria claridad y método, las operaciones nu-
méricas, los polinomios, las series elementales, las progresiones, los
desarrollos en niimeros decimales y las ecuaciones. Casi al principio,
Euler introduce ya los niimeros complejos y opera con ellos siempre
que puede, considerando a los «<ntimeros imaginarios» como creacio-
nes legitimas del intelecto, objeto de estudio matematico al margen
de su significado prictico.

Entre 1769 y 1771 aparecieron tres soélidos tomos dedicados
a la dptica, los tres volumenes de la Dioptricae, que son tratados
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muy practicos que pretenden, sobre todo, mejorar el funciona-
miento de los instrumentos 6pticos por antonomasia, microsco-
pios y telescopios. El trato que se le da a los sistemas lenticulares
y ala aberracidn, tanto esférica como cromatica, es muy acertado.
Las conclusiones son contrarias al criterio de Newton de que no
se podia combatir con lentes la aberracién cromatica. Un experi-
mentador inglés, John Dollond (1706-1761), demostré la certeza
de las tesis eulerianas que recomendaban el uso de dos vidrios
distintos para construir lentes acromaéticas.

Ya se ha comentado anteriormente el interés que Euler pro-
fes6 a las cuestiones astronémicas, en concreto, a la teoria de los
tres cuerpos, el movimiento cometario y el estudio de la Luna. Su
gran centro de atencién terminé siendo el movimiento de la Luna.
En 1770 anadi6 otro Grand Prix a su lista cuando, conjuntamente
con su hijo Johann Albrecht, fue galardonado por un ensayo sobre
el problema de los tres cuerpos aplicado al movimiento lunar —en
1748 Euler ya habia ganado uno sobre el mismo tema—; pero no
pareci6 haberse fatigado por la materia, pues, en 1772, lo volvié
a ganar sobre la misma cuestién y esta vez lo compartié con La-
grange.

Sin embargo, quedaron sueltos unos flecos importantes y
Euler analizé nuevamente, en 1772, las muchas irregularidades
del moviminto de la Luna dedicandole un libro de 791 péginas,
Theoria motuum lunae (Teoria del movimiento de la Luna).
Escrito en dos partes, la segunda presenta casi solo tablas de
situacién —una de ellas ocupa 144 paginas—, obtenidas a tra-
vés de métodos innovadores y calculos muy laboriosos, en las
que se tienen en cuenta las elongaciones del Sol y la Luna, la
excentricidad, el paralaje o la inclinacién del plano orbital lunar.
Aunque para llevar a cabo esta ingente labor se roded de sus
mejores colaboradores, no deja de ser un ejercicio intelectual
de gran mérito.

En 1773 regres6 de nuevo a los temas navales con Theorie
complete de la construction et de la manoeuvre des vaisseaux
(Teoria completa de la construccion y de la maniobra de los
buques), que sorprende por su casi ausencia de férmulas mate-
maticas.
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EL DIA EN QUE EULER DEJO DE CALCULAR

La muerte sobrevino a Euler —rico, respetado, en algunos am-
bientes directamente reverenciado—, mientras trabajaba. Segiin
el relato del historiador Yushkevich, la muerte de Euler, a los 78
anos, fue asi:

El 18 de septiembre de 1783, Euler invirti6 la mayor parte del dia del
modo usual. Dio su leccién de matematicas a uno de sus nietos, hizo
algunos cédlculos con la tiza sobre dos pizarras sobre el movimiento
de los globos aerostaticos; luego discutié con Lexell y Fuss el recien-
te descubrimiento de Urano. Sobre las cinco de la tarde sufrié una
hemorragia cerebral y dijo solo «Me estoy muriendo» antes de perder
la consciencia. Murié alrededor de las once de la noche.

El relato debe de ser bastante fiel, pues entre los articulos
péstumos, terminados por su hijo, figura el de los globos Montgol-
fier, los globos aerostaticos. Que su muerte fue sibita y que Euler
se apercibié de ella también ha sido corroborado por méas de un
testigo.

Tras el fallecimiento del sabio, llegé la hora de los elogios
fuinebres. Los mas notables, auténticas biografias laudatorias de
regular extension, son dos. Fueron escritos, el primero, por su
nieto politico Fuss, a quien le correspondia por derecho propio
dado su parentesco y el alto cargo que desempeiiaba en la Acade-
mia. El otro lo escribié el marqués de Condorcet (1743-1794) para
la Academia francesa. La linea final del elogio de Condorcet es
bella y elocuente y podria aplicarse en cierto sentido al presente
volumen. Termina diciendo: «Dej6 de calcular y dejé de vivir».
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Anexo

1. LOS LOGARITMOS Y NAPIER

Puede considerarse a sir John Napier (15650-1617) como el inven-
tor de los logaritmos. Este procedié a dibujar dos rectas planas
del siguiente modo: primero dibujé un segmento de extremos A y
B; en paralelo, dibujé una recta sin fin de inicio en A'. Luego su-
puso que un moévil se deslizaba a través de la recta sin fin con ve-
locidad constante. A cada punto X’ de la recta le hizo corresponder
un punto X del segmento AB, pero no de cualquier modo: X se
movia con una velocidad igual a la distancia XB. Llamando x = BX
ey = A'X', Napier cre6 su logaritmo:

y = log x.

L]

Napier tomé AB = 107, lo que conduce a unas igualdades alge-
braicas un tanto complicadas. Si N es un nimero y L es el loga-
ritmo, Napier calculé N=107(1-107)% De todo ello se deduce:
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_ N 107108 [N - 107108 (2
L= log(]_m_,) (107) 10 lmgi (107 ) =-10"log, (107 )
Y, como se ve, ya ha aparecido la constante e, pues:

(167"

e

En muchos tratados antiguos —y no tan antiguos— se habla

de logaritmos neperianos o naturales, identificacién algo con-

fusa, pues los logaritmos naturales son los de base e, mientras que

los ideados por Napier estaban (casi) en base 1/e. Son prictica-

mente lo mismo, pues solo difieren en un signo —, no en el valor
absoluto:

log, N =—logl N.

En la actualidad, para todo nimero real positivo N, cuando
N=a*, decimos que L es el logaritmo de N en base a. Escribimos
entonces L=log N.

Si uno se detiene a pensar, se comprobari que el logaritmo de
la base es siempre 1, lo que resulta una propiedad fundamental.

Las bases més utilizadas son a=10, a=2 y a=e. Los logarit-
mos en base 10 se denominan logaritmos decimales; los de base
2, binarios; y los de base e, logaritmos naturales. Si se elije e
como base, la escritura normalmente aceptada es in N, en lugar
de log N.

Lo relevante del concepto de logaritmo es que facilita el cal-
culo puramente aritmético. Ello se deduce de que:

N,-N,=a"-a™ =gk

= log, (N, N,)=L,+L,=log, N, +log, N,,

¥, por tanto, el logaritmo de un producto es la suma de los logarit-
mos de los factores.

Si se tienen tabuladas ambas magnitudes, nimeros y loga-
ritmos decimales, pueden sumarse los logaritmos y acudir a las
tablas para conocer sin dificultades el producto. Aunque en la ac-
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tualidad son las calculadoras electrénicas las que proporcionan
directamente los productos sin esfuerzo, en la época en la que
estas no existian, sustituir una multiplicaciéon ardua, cuando el
producto original era muy grande, por una suma sencilla, era algo
de una relevancia extraordinaria.

2. EL PROBLEMA DE BASILEA

Sigamos los vericuetos de su razonamiento, aunque sepamos por
adelantado que diversos pasos presentan algiin problema y nece-
sitan ser pulidos. El propio Euler lo hizo a posteriori.

Si partimos de la conocida serie de Taylor:

3 5 g
senrmz-L 4L _Z ,
3! 5! 7!
sabemos que se anula si se anula x, es decir que sen x=0 cuando
x=0,xm x2mx, +3m ...

De modo que, suponiendo que una serie se comportara como
un polinomio, ya que de hecho es un polinomio larguisimo, la apli-
cacion del teorema fundamental del dlgebra la convertira en pro-
ducto de monomios del tipo x—a, donde a es una solucién.

Procedamos:
:t?—'—‘+—~——+ w=K(@)(x-m)(x+m)(x-27)(x+21)...

Ahora K es una constante numérica desconocida. Operando
ala derecha:
2 2 2
p—— + —_——
3! B! T!
se observa que cada término de la forma z° - A%z° de la derecha
es cero. Ahora bien, eso solo sucede si y solo si:

- +..=K(@)(2® -2 (2® -47x*) (2’ -977)...

ANEXO
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Reescribimos, pues, los términos de la derecha en la forma:

3 5 7 2 2 2
wrs g wRO| 1= 1= 120
3! B! 7! n” 47° On

2 4 (i} 2 2 2
sl BTN AR PR o LN [ TR [
! )1 4n In

=1, concluimos que K= 1. Asi que queda:

2 4 6 2 2 2
OO N SR (| | T
3! B T b4 4dn In

que es una serie igual a un producto infinito. Ningtn problema,
segin Euler. Efectuamos ordenadamente el producto y separa-
mos los términos (infinitos) en x* del producto de la derecha.
Queda la igualdad:

como queriamos averiguar.

3. LA FUNCION ZETA Y LOS NUMEROS PRIMOS
Euler es quien demostré en primer lugar la equivalencia entre £(s)

como serie de potencias y £(s) como producto infinito. Llamemos
p, al k-ésimo niimero primo; entonces se verifica:
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t(s)= E = I-[-Jr-

n=1M k=11 ;

A continuacién, se puede ver como llegar a esa igualdad:

1 1 1
S _-l —_—t—t—t...=
z;( ) E n 23 38 43

1

S i et

lsi _'P, lsisj pi p‘, lsisj=k p, p_,pk

( 1 1 1 J( 1 1 1 )
=|1+ = ey it l+—;+—2;+‘T;+ ...... =
YN R b, P D

(80 (e 36}
1 1 1 o |

= . . em]] ;

o S i

y2 D, Dy Dy

Para quienes conozcan el andlisis complejo por el procedi-
miento estandar, la funcién zeta puede prolongarse como fun-
ci6on meromorfa a todo el plano complejo con un solo polo en
s=1, donde el residuo es 1. Esta es la funcién zeta (zeta=Ct) a la
que se referia Riemann y objeto asimismo de la célebre hipé6tesis
de Riemann.

4. LAS ECUACIONES DE EULER-LAGRANGE

Para simplificar la exposicién en la medida de lo posible, se
partird del supuesto de que las funciones involucradas satis-
facen todas las condiciones de continuidad y derivabilidad ne-
cesarias.
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Llamaremos S al funcional (funcién de funciones) al que apli-
camos el calculo de variaciones y ,, x, a los extremos de la fun-
cién incégnita:

S(N) = [ Lz, f (), f (x))de.

Supondremos que f, es la solucion y que el funcional posee un
minimo en esa ubicacién; llamaremos o(x) a una funcion (es la
que haremos «variar») que se anule en los extremos, x,, ¥, Como
en f, el funcional posee un minimo:

S(f)sS(f, +¢ea),

en un entorno de f;, entorno pequefio, cercano a cero. La «va-
riacién»:

f=Jf+ea
debe, pues, cumplir:

dS(_ﬁ)+£a) —I 0.
de e ge

Recordemos ahora que:

a _ 4

=a,—=a',
de de

y apliquemos la regla de derivacién en cadena y las sustituciones
oportunas.
Obtenemos:

dL _oLdf oLdf' oL 3L ,

de ofde af de of  af

y aplicando la integracién por partes y las sustituciones de la for-
mula anterior:
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wdL
% dg af  af' af adx&f’
oL . rm [aL daL]
+—alf=[Ca| —-——
aft M Yun\af dxaf

Como el término inicial es cero, el final también, y conclui-
mos que:

Y ya se tienen las ecuaciones de Euler-Lagrange, que, en el
mundo real, acostumbran a desembocar en ecuaciones diferencia-
les de segundo orden.

5. LOS NUMEROS COMPLEJOS

Euler dedujo su primera férmula fundamental, de la que fue extra-
yendo otras, de simples series de Taylor.
Recordemos que las potencias de ¢ se comportan asi:

Pul, Pail, Pe-l Pai

i*=1, i"=14, i®=-1, i’ =-1,etc.

Y recordemos también que los desarrollos en serie de poten-
cias, o desarrollos en series de Taylor de las potencias de base e,
y las funciones trigonométricas del seno y del coseno son:

. 2 2 2 3
o e W Il T N
o 1 2r 3t 4!

COSE = ———4 — ——— +
or 2! 4! 6!
1 x3 :rﬁ x?
SeN & = — = — 4 ———
11 3t 5! 7!
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“= 0! 1! 2! 3! 4! b! 6! 7!
(iz)° g g o W R
$om— e b ————— —+
8! oo 1 2! 3 4 B! 6 7! 8!
? PR D ] : (z‘ 2 2 2
e B e e B 1 B e e S
or 2t 4! 6! 8! 1 3t 5 7

6. CRIPTOGRAFIA Y EL PEQUENO TEOREMA
DE FERMAT

Sea M un mensaje y E su encriptacion. Supondremos que ambos
son nimeros naturales. Llamemos f a la funcién que va de M a E!
JSIM)=E. Para codificar M, el codificador y el descifrador del men-
saje seleccionan dos niimeros primos muy grandes, p y g, y definen
el médulo, al que llamaremos n poniendo 7 = pq, suponiendo n > M.
Se elije un ¢, con 1<e<@(n) y e primo entre si con @(n). La clave
publica esta formada por n y e, y la conoce todo el mundo. Como n
es tan grande y no est4 factorizado, p y ¢ son una incégnita inextri-
cable. Se tiene E = f(M)=M* (mod n). Denominamos clave privada
al par n,d, donde d se elije de manera que de =1 (mod @(n)). Como
Py g son primos, y pg=mn, se tiene que @(n)=(p-1)(g-1); si no se
conocen py g, y es practicamente imposible conocerlos, no puede
conocerse tampoco @(n). Asi que no se puede conocer d. Pero el
descifrador sf que posee d, pues conoce p y q, ¥, por tanto, puede
proceder al descifrado: E%=(M*)? (mod n) = M* (mod n) = MVe(w+1
(mod n) , NEN. Se aplica entonces el pequeiio teorema de Fermat.
Si a=M?" (a es, casi seguro, primo entre si con n), aplicando el
teorema: £ = Ma*™ (mod n)=M (modn)=M, ya que M <n, como
se ha supuesto al principio.

De esta explicacién se puede extraer que crear una clave es
relativamente fécil, pues solo se necesitan dos nimeros primos
grandes, p y g, y romperla, muy dificil.
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