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Introducción 

En 2007 se conmemoró a nivel mundial el tricentenario del naci­
miento de un suizo universal: el matemático, físico e ingeniero 
Leonhard Euler. Organismos y particulares procedentes de casi 
todos los rincones del mundo científico impulsaron actos conme­
morativos -congresos, simposios, publicaciones- destinados a 
poner de relieve la importancia de la aportación intelectual de 
Euler. Sus impulsores no dudaron en situarlo a la altura de la de 
auténticos gigantes de la ciencia como Newton o Einstein en am­
plitud y consecuencias. 

Aunque este tipo de comparaciones son siempre odiosas, no 
es exagerado afirmar que la obra de Euler es, en su conjunto, de 
un valor solo superado por un pequeñísimo número de científicos 
en toda la historia. Aunque su nombre está por siempre asociado 
al análisis -la rama de las matemáticas que estudia los «flujos», 
es decir, los fenómenos continuos, y que abarca las series, los lí­
mites y el cálculo diferencial-, realizó aportaciones fundamenta­
les en geometría y teoría de números; creó de la nada una nueva 
área de investigación, la teoría de grafos; pµblicó infinidad de es­
tudios fundamentales sobre temas tan diversos como la hidro­
dinámica, la mecánica, la astrononúa, la óptica, la ingeniería naval 
o la tecnología de los ejes y los engranajes; escribió obras de divul­
gación científica y dedicó atención a juegos y pasatiempos mate­
máticos. En el curso de todo ello encontró tiempo para renovar 
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buena parte de la notación matemática de la época y aproximarla 
a la forma con que hoy día la emplea la comunidad científica. 

Si de esta enumeración se desprende una sensación de acu­
mulación un tanto caótica el culpable no es otro que el propio 
Euler. Aunque publicó no menos de una docena de libros, entre 
los cuales algunos de los más importantes de la historia de las 
matemáticas -sobre todo, su inigualada trilogía de textos sobre 
análisis Introductio in analysin infinitorum (Introducción al 
análisis del infinito), Institutiones calculi differentialis (Fun­
damentos de cálculo diferencial) e lnstitutiones calculi inte­
gralis (Fundamentos de cálculo integral)-, buena parte de su 
obra apareció de forma aislada, en artículos, sin que sea posible 
hallar en ella continuidad alguna de intereses a través de las di­
ferentes épocas de su vida. Tan pronto abordaba un problema 
candente en teoría de números -el problema de Basilea, cuya 
resolución en 1735 le otorgó la fama- como se «descolgaba» 
con una fórmula que relaciona de forma inesperada las caras, los 
vértices y las aristas de un poliedro, uno de los resultados en 
geometría más profundos de todos los tiempos. Euler creó de 
forma compulsiva, acorde con las exigencias particulares de una 
mente excepcional y única. 

A la extraordinaria multiplicidad de intereses de Euler hay 
que sumar un segundo factor que dificulta aún más la labor de 
hacerse una idea cabal de la obra del matemático suizo: su no 
menos extraordinaria abundancia productiva. En efecto, Euler fue 
uno de los matemáticos más prolíficos, sino el que más, de toda la 
historia. Sus escritos están parcialmente clasificados por Gustaf 
Enestrom, y se identifican, como si fueran de un músico famoso, 
por su número de opus. Mozart tiene su número K. (de Kochel) y 
Euler, su número E. (de Enestrom); los números E. se detienen en 
el 866. Esta labor dista de estar completada; todo y con eso, la 
edición de sus obras completas (Opera omnia), en curso de pu­
blicación desde 1911, se prevé que ocupe unos 90 volúmenes de 
aproximadamente 450 páginas. Euler mismo decía que su lápiz se 
le desbocaba y escribía más rápido que él. Solo la corresponden­
cia de Euler encontrada hasta el momento asciende a casi 3 000 
cartas. Sus artículos y libros representan, más o menos, un tercio 
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del total de las matemáticas, física e ingeniería mecánica escritas 
entre 1726 y 1800. Esta fecundidad resulta tanto más sorprendente 
si se tiene en cuenta que Euler fue tuerto durante más de 35 años 
( como atestigua su retrato más célebre, de 1753), y ciego de 
ambos ojos durante los siguientes 22. 

Si hay que juzgar por las circunstancias que rodearon su en­
torno, Euler vivió en la época apropiada. El siglo xvrn ha sido de­
nominado «de las luces», pues en dicho período buena parte del 
mundo occidental evolucionó hacia las formas propias del mundo 
moderno y se liberó de las «tinieblas» del pasado. Este proceso se 
ha atribuido en gran parte al avance progresivo e imparable de la 
razón ilustrada. En el ámbito específico de la ciencia, este avance 
se benefició de dos innovaciones destacadas: las academias nacio­
nales de ciencias y las revistas científicas. La trayectoria profesio­
nal de Euler estuvo siempre al amparo de las primeras, instituciones 
nacidas en su mayor parte durante el siglo xvrr, pero que alcanzaron 
la mayoría de edad en el siguiente gracias al apoyo de monarcas 
ilustrados, ansiosos por prestigiar sus países mediante el mece­
nazgo de la ciencia y el conocimiento en general. 

La otra circunstancia que modeló irreversiblemente el modo 
de hacer ciencia fue la aparición de las publicaciones científicas 
periódicas. Con la excepción de los libros, muchos de los cuales 
tenían que ser financiados por sus propios autores, los descubri­
mientos científicos se habían venido difundiendo hasta entonces 
por procedimientos lentos e inseguros como las cartas o los via­
jes. La aparición sucesiva de revistas como Philosophical Tran­
sactions, Comptes rendus, Mémoires de l'Académie o Journal de 
Crelle fueron poniendo al alcance de todos lo que antes solo era 
accesible a unos pocos. Euler, en particular, hizo uso amplísimo 
de este medio. 

En la vida de Euler pueden distinguirse cuatro grandes perío­
dos: el primero o de formación, hasta 1727; los catorce años trans­
curridos en San Petersburgo en el seno de la Academia de Ciencias 
fundada por Pedro el Grande; su época en la Academia de Cien­
cias en Berlín, hasta 1766; y el retomo a Rusia, donde falleció. La 
primera etapa, marcada por su encuentro con los hermanos Ber­
noulli, quienes despertaron su interés por el análisis, concluye con 
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uno de los hallazgos más importantes de Euler, la fórmula que 
lleva su nombre, y que relaciona, apoyándose en la constante ma­
temática e, los números complejos (i) y las funciones trigonomé­
tricas seno y coseno: 

exi =COSX +isen X. 

El número e, base de los denominados logaritmos naturales, 
iba a ten:er numerosas apariciones en la obra de Euler, hasta el 
punto de que en ocasiones se denomina «número de Euler». Sobre 
la base de esta fórmula Euler desarrollará, décadas más tarde, 
buena parte de su trabajo en análisis. 

La primera etapa en Rusia tal vez sea la más fecunda de la tra­
yectoria científica de Euler. Como es de esperar en el marco de una 
obra tan prolífica, la cantidad de hallazgos que se condensan en este 
período son tan numerosos como extraordinarios. Solo en el campo 
del análisis incluyen el cálculo preciso del número e, así como la 
determinación de muchas de sus propiedades; el descubrimiento de 
la función gamma (r), que permite interpolar valores de un deter­
minado tipo de funciones y que se encuentra presente tanto en 
combinatoria, probabilidad y teoría de números como en física; la 
fórmula de Euler-Maclaurin para el cálculo de sumas e integrales; y 
la solución (y posterior generalización de los resultados) del pro­
blema de Basilea, que se interroga por la suma de la serie: 

1 1 1 
l+-+-+-+ ... , 

2 3 4 

Corresponden también a esta época importantes trabajos en 
teoría de números tales como el establecimiento de la constante 
de Euler-Mascheroni o el estudio de los llamados números de Fer­
mat, así como la solución, en 1736, del problema de los puentes 
de Konigsberg, el hallazgo que daría pie a la creación de una rama 
totalmente nueva de las matemáticas, la teoría de grafos. 

En 17 41 Euler aceptó el ofrecimiento de Federico II el Grande, 
rey de Prusia, y se instaló en Berlín. El ritmo de sus aportaciones 
continuó imparable, y entre ellas se cuentan la fórmula de los po-
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liedros, que relaciona las caras ( C), aristas (A) y vértices (V) de un 
poliedro de una forma tan sencilla como absolutamente inespe­
rada por los geómetras de la época: 

C- A+ V= 2; 

así como, también en el campo de la geometría, la determinación 
de la recta de Euler. Son, asimismo, de esta época sus trabajos 
acerca de la conjetura de Goldbach, la más célebre de la teoría de 
números tras el teorema de Fermat o sus aportaciones al cálculo 
de variaciones, de fundamental importancia en física. En lo que 
respecta al análisis, fue en Berlín donde redactó los tratados que 
se mencionaban al principio de esta introducción, acaso la cum­
bre de su genio. Y todo ello sin contar su producción en ingeniería 
y mecánica. 

La cuarta y última etapa de su vida tuvo como escenario, 
nuevamente, San Petersburgo. A pesar de haber superado la cin­
cuentena y con los graves problemas de visión anteriormente 
mencionados, Euler prosiguió con el flujo constante de artículos 
hasta prácticamente el día de su muerte. Convertido ya en una 
leyenda en vida entre la comunidad matemática, sus trabajos 
de esta época se centraron sobre todo en la teoría de números 
y, en particular, los números primos (y otros conceptos asocia­
dos como los números de Mersenne o los números amigos), las 
ecuaciones diofánticas y las particiones. También tuvo tiempo 
para cuestiones más ligeras, como los cuadrados mágicos y otros 
temas de recreación matemática; para idear un juguete infantil ( el 
disco de Euler) que ha llegado hasta nuestros días y para redac­
tar una deliciosa obra divulgativa sobre cuestiones de mecánica y 
astronomía que dedicó a la princesa de Anhalt-Dessau, un clásico 
en su género. 
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1707 El 15 de abril nace Euler en Basilea, 1741 Atendiendo a la llamada del rey 
Suiza. de Prusia, Federico II, Euler y su 

familia se trasladan a Berlín, donde 
1720 Tutelado por Johann Bemoulli, ingresa desempeñará un cargo en la Academia 

en la universidad de Basilea con solo de la ciudad. 
trece años. 

1742 Euler y Goldbach plantean en su 
1723 Recibe el título de Magíster en filosofía correspondencia la que posteriormente 

con un estudio comparativo entre las se ha denominado conjetura de 
ideas de Descartes y Newton. Goldbach. 

1727 Enúgra a Rusia al no conseguir una 1748 Publica una de sus obras más 
plaza como profesor de física importantes, Introductio in 
en la universidad de Basilea. analysin ir,ji;nitorum, donde trata 

principalmente las funciones 
1731 Es nombrado profesor de física matemáticas. 

en la Academia de ciencias de 
San Petersburgo. Su ascensión en la 1755 Publica otra de sus obras 
jerarquía de la Academia le convierte fundamentales, Institutiones calculi 
en una figura respetable entre los differentialis, que versa sobre 
científicos. cálculo diferencial. 

1734 Se casa con . Katharina Gsell, 1766 Euler abandona Berlín y regresa 
hija de un pintor de la Acadenúa, a Rusia, impulsado por la falta 
con quien tendrá trece hijos, de entendinúento con Federico II. 
aunque solo sobrevivirán cinco. 

1768- Publica la tercera y últinm de sus 
1735 Empieza a perder progresivamente la 1770 grandes obras en el ámbito del análisis, 

visión de un ojo, lo que no le impide, Institutiones calculi integralis. 
sin embargo, hacerse fan10so en el 
mundo científico tras la resolución 1771 Euler se queda ciego definitivamente 
del problema de Basilea. al sufrir cataratas en su ojo sano, lo 

que no hace sino realzar su capacidad 
1736 Publica su prin1er libro, Mechanica, para el cálculo mental. 

sive motus scientia analytica 
exposita, y acrecenta su fan1a con la 1783 El 18 de septiembre muere en San 
resolución del problema de los puentes Petersburgo como consecuencia de 
de Konigsberg. una hemorragia cerebral. 
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CAPÍTULO 1 

Basilea, cuna de un gran 
matemático 

La ciudad suiza era un buen lugar donde 
arrancar una carrera científica, particularmente en 

matemáticas. Centro intelectual de primer orden, con la 
primera universidad del país, en ella vivían varios miembros 

de la familia Bemoulli, la saga de matemáticos más 
eminente de la historia. Los Bemoulli acogieron 
bajo su protección al joven y prometedor Euler 

y le inculcaron un amor al análisis 
que ya no le abandonaría. 





Basilea es una ciudad suiza enclavada de un modo privilegiado 
casi en la frontera alemana y en la francesa, a orillas del alto 
Rin, un poco antes de llegar a las cataratas que lo convierten 
en innavegable. Actualmente, su conurbación abarca casi tres 
cuartos de millón de habitantes, una excelente universidad, la 
más antigua de Suiza, y un buen número de recuerdos históricos, 
pues nacieron o vivieron en ella personalidades del renombre 
de Vesalio, Jung, Erasmo, Nietzsche y Paracelso, amén de varios 
miembros de la extraordinaria familia Bemoulli. En la actuali­
dad, el más conocido de los hijos de Basilea es el tenista Roger 
Federer, gracias al cual la ciudad goza de fama universal. Los 
ciudadanos más ilustrados prefieren a Erasmo de Rotterdam, 
quien, aunque no nació en Basilea, sí que residió y murió allí. Sin 
embargo, los científicos, y en especial los matemáticos, no dudan 
considerar como hijo predilecto de Basilea a otro personaje dis­
tinto, nacido hace más de tres siglos, que responde al nombre de 
Leonhard Euler. 

Euler, quien era matemático -e ingeniero, físico, astrónomo, 
filósofo, arquitecto, músico y, ocasionalmente, teólogo- fue uno 
de los científicos más importantes del siglo XVIII y uno de los más 
prolíficos de la historia. Numerosos conceptos matemáticos llevan 
su nombre y, aunque sería un ejercicio muy pesado de erudición 
dar una lista completa de todos, sirvan, a modo de ejemplo, los 
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siguientes: fórmula de Euler, ángulos de Euler, característica de 
Euler-Poincaré, recta de Euler, sumación de Euler-Maclaurin, teo­
rema de Euler-Lagrange, teorema de Euler para las rotaciones de 
un sistema de coordenadas, teorema de Euler para el triángulo, cir­
cuito y camino euleriano, círculo de Euler, ladrillo de Euler ... Y así 
hasta contar más de 140, dependiendo de las fuentes consultadas. 

EULER Y LOS BERNOULLI 

La de Euler era una familia corriente. Su padre, Paulus Euler, era 
un pastor calvinista, y su madre, Margaretha Brucker, un ama de 
casa convencional, hija de otro pastor. Euler fue el mayor de cua­
tro hermanos, de los cuales dos eran mujeres, Anna Maria y Maria 
Magdalena. El tercero, Johann Heinrich, adquiriría un cierto re­
nombre como pintor. 

Paulus Euler tenía una buena base matemática, pues había 
sido alumno de una figura distinguida, Jakob Bernoulli (1654-
1705), el iniciador intelectual de una después famosa camada de 
científicos distinguidos, los Bernoulli. Asimismo, Paulus Euler 
había sido condiscípulo y amigo de otro Bernoulli, Johann (1667-
1748), hermano de Jakob (pero trece años más joven). El 15 de 
abril de 1707 nació Euler. El deseo confesado de su padre era que 
se convirtiera también en pastor y «apacentara», llegado el mo­
mento, a sus propias ovejas. Pero el destino le tenía reservada otra 
suerte. 

El joven Leonhard ya destacaba en la escuela en lenguas: se 
expresaba en alemán y francés; dominaba el latín, y profundizaba 
con notables resultados en griego y hebreo, como cabía esperar 
de un futuro hombre de Dios, y se adentraba en la filosofía. 

Parece que Euler aprovechó la amistad de su padre con Jo­
hann Bernoulli para conseguir que este le diera clases informales 
de matemáticas los sábados; y la realidad se impuso: el joven 
Euler tenía una disposición natural fenomenal para las matemáti­
cas, algo que resultaba evidente para su profesor, a la sazón una 
de los principales matemáticos del mundo. 
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LA FAMILIA BERNOULLI 

Existe un cierto consenso en considerar a cuatro matemáticos como el Olimpo 
anterior al siglo xx: Arquímedes, Newton, Euler y Gauss; cuando se pretende 
mencionar a un quinto todo se complica. Muchos votarían por un matemático 
multifronte, formado por toda una familia: los Bernoulli. Su impronta se nota 
en más de un siglo, pues padres, hijos y hermanos componen el árbol familiar. 
En la familia eran frecuentes los rifirrafes producidos sobre todo por cuestio­
nes matemáticas, algunos de los cuales habían tenido serias consecuencias, 
como cuando Jakob, el primero de la saga, hizo un testamento donde pro­
hibía expresamente que se mostraran sus papeles científicos a su hermano 
Johann, o cuando este acusó a su propio hijo Daniel de plagio en cuestiones 
de hidrodinámica. Durante más de un siglo (de hecho, 105 años consecutivos), 
la titularidad de la cátedra de matemáticas de Basilea fue ostentada por un 
Bernoulli, y hasta mediados del siglo xx, es decir, durante más de 250 años, en 
dicha ciudad, siempre hubo un Bernoulli ocupando una cátedra. 

Importancia de los Bernoulli 
Algunas de las aportaciones más destacadas de los Bernoulli son el uso ex­
tensivo de las coordenadas polares, el estudio a fondo de la lemniscata y la 
espiral logarítmica, numerosos problemas de teoría de probabilidades y de 
series, el célebre teorema de la hidrodinámica que lleva su nombre y la regla 
de l'Hópital. El análisis matemático experimentó un gran avance gracias al 
trabajo de esta familia y, a través de la influencia de Johann, se convirtió en 
la gran especialidad de Euler. 

Grabado de 1874 que muestra a Johann y Jakob Bernoulli trabajando en problemas geométricos. 
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El grado de precocidad de Euler resulta evidente a la vista 
de sus primeros logros: universitario a los trece años, en 1723 
recibía su título de Magíster en filosofía mediante una especu­
lación sobre los universos teóricos resultantes de seguir a 
Newton o a Descartes. Johann Bernoulli, quien seguía supervi­
sando sus progresos y cuyo carácter no era nada propenso a 
elogiar a sus conocidos científicos, consideraba a Euler un 
genio en ciernes. 

JOHANN BERNOULLI, EL ANÁLISIS Y LA BRAQUISTÓCRONA 

Influencia básica en la formación y algunos de los intereses poste­
riores de Euler, la figura de Johann Bemoulli merece un inciso que 
dé justa medida de su talla científica. Matemático extraordinario, 
quizás el más notable de la saga Bernoulli, Johann estaba predesti­
nado por su padre a ser comerciante y, luego, médico. Sin em­
bargo, terminó dedicándose a las matemáticas, como su hermano 
mayor Jakob, en quien siempre encontró apoyo, aunque su rela­
ción fraternal estaba teñida de rivalidad y puntuales desacuerdos. 

Johann era un hombre muy competitivo y bastante fanfarrón, 
y entró en multitud de polémicas y disputas, incluso con sus fami­
liares. Cuando descubría algo pretendía poseer siempre la priori­
dad del descubrimiento, aunque otros lo hubieran descubierto de 
manera independiente y, muchas veces, con anterioridad. Tam­
bién se le ha acusado de hacer suyos, de modo malintencionado, 
hallazgos de terceros. 

En cualquier caso, Johann no solo fue un gran matemático, 
sino una auténtica bendición para los historiadores, a quienes 
ha provisto de un número inagotable de anécdotas, como la que 
protagonizó con el marqués de l'Hópital (1661-1704). Este era 
un noble adinerado y un excelente matemático, quien cerró un 
acuerdo económico-intelectual un tanto peculiar con Johann 
Bemoulli: a cambio de dinero, el marqués obtuvo el derecho de 
acceder y exhibir como propios los descubrimientos de Johann. 
Herramientas del análisis matemático tan fundamentales como la 
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denominada regla de l'H6pital vieron la luz asociadas al nombre 
del marqués, si bien, en realidad, las había desvelado Johann Ber­
noulli. El magnífico libro del marqués de l'Hópital, L 'Analyse des 
Ir¡jiniment Petits pour l'Intelligence des Lignes Courbes (Análi­
sis de los irifinitamente pequeños para el entendimiento de las 
líneas curvas) fue saludado en su día como una obra estupenda, 
pero hoy se sabe que los auténticos derechos de autor habían de 
ser compartidos. Muerto el marqués, Johann Bernoulli no pudo 
resistirse a reivindicar lo que realmente era suyo, pero tuvo que 
esperar bastante a que la posteridad le diera la razón. 

En junio de 1696, antes de que naciera Euler, Johann plan­
teó en las páginas del Acta eruditorum de Leipzig, la primera 
revista científica de la historia, un desafío a sus colegas: dados 
dos puntos A y B, con A situado a distinta altura que B, encon­
trar la trayectoria descrita por un cuerpo sometido a la única 
fuerza de la gravedad que va de un punto a otro en el menor 
tiempo posible. Como es natural, Johann ya contaba con su 
solución (la cual posteriormente se supo que no era del todo 
correcta), y el desafío en cuestión iba encaminado a poner a 
prueba a sus colegas, y, en particular, a su hermano Jakob. En 
mayo de 1697, en el Acta eruditorum, se publicaron los resul­
tados correctos que coincidían en proclamar a la curva cicloide 
de extremo en A y altura máxima en B como la curva buscada 
(véase la figura). 

Entre otras figuras eminentes encontraron la solución Leibniz 
y Jakob Bernoulli. Una solución magistral, pero anónima, fue en-

A 

8 
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La cicloide es la 
curva descrita por 
un punto fijo de 
una circunferencia 
al rodar siguiendo 
una línea recta. 
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viada desde la Royal Society de Londres. Johann la leyó y recono­
ció, acertadamente, que tras ella se escondía la mano genial del 
gran Newton. «Conozco al león por sus garras» parece que fueron 
sus palabras, frase que hizo fortuna y que se ha convertido en un 
elogio paradigmático de Newton. 

La cicloide es, como se ha visto, una curva braquistócrona 
(del griego brachistos, «más corto» y chronos, «tiempo»), y con 
el nombre de problema de la braquistócrona ha pasado a la his­
toria toda esta secuencia de acontecimientos. Muchos años más 
tarde, el propio Euler volvió sobre la cicloide y la braquistócrona 
en el marco del cálculo de variaciones, una poderosa técnica que 
él mismo y Giuseppe Luigi Lagrange (1736-1813) habían puesto 
en marcha, y que se ha revelado como fundamental para el desa­
rrollo de la mecánica. 

LOS INICIOS DE UN GENIO 

Johann Bernoulli intentó convencer a Euler padre de que el fu­
turo de su hijo no estaba en el sacerdocio y la teología; lo suyo 
eran las matemáticas. Como ya se ha visto, Euler hijo apuntaba 
alto, muy alto. 

En 1726, cuando Euler contaba apenas diecinueve años, ya 
ostentaba el título de doctor. Dirigida por Johann, su tesis, para 
darle un nombre actual a su escrito, versaba sobre la propagación 
del sonido, y se llamaba, muy apropiadamente, De sano. Era un 
texto pensado para servirle de base a Euler para opositar a una 
plaza profesora! que había quedado vacante en la universidad de 
Basilea. La juventud de Euler hacía poco probable que accediera 
al puesto, y, como era de esperar, no lo consiguió. 

En 1727, participó en el Grand Prix de la Academia de las 
ciencias de París con el propósito de debatir los mejores puntos 
donde ubicar los mástiles de una embarcación. Es casi imposible 
no ver la ironía del hecho de que se presentara para un premio 
de espíritu inequívocamente náutico un Euler inequívocamente 
«de secano». Como hace notar su biógrafo, Emil A. Felmann, la 
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LA ESPIRAL DE JAKOB BERNOULLI 

Jakob Bernoulli había quedado seducido, como solo puede quedarle un autén­
tico geómetra, por las propiedades y el aspecto de la espiral logarítmica, esa 
curva retorcida cuya ecuación simplificada obedece, en coordenadas polares, 
a la expresión r=a", con el radio r igual a una potencia de exponente igual al 
ángulo a y que se denomina spira mirabilis («espiral maravillosa»). Hasta tal 
punto llegó su obsesión que solicitó formalmente que una tal espiral, adecua­
damente esculpida, adornara su tumba junto a las palabras Eadem mutata 
resurgo («Muto y vuelvo a resurgir como antes»). Y dicho y hecho, solo que 
no contaba con el cantero responsable de esculpir la lápida fúnebre. En lugar 
de una espiral logarítmica, sobre la tumba figura una espiral de Arquímedes, 
pues para el cantero en cuestión, al parecer, todas las espirales eran iguales. 
Conociendo el fuerte carácter del hermano menor de Jakob, a quien este había 
transmitido su afición por la espiral, es de desear que Johann no coincidiera 
en la otra vida con el artesano. 

En la lápida de Jakob Bernoulli no se 
esculpió una espiral logarítmica, sino una 
espiral de Arquímedes (véase la parte 
inferior de la imagen), en la que las 
volutas son equidistantes. 

La espiral logarítmica no posee principio 
ni fin, y se encuentra en la naturaleza en 
forma aproximada, como en la espiral de 
los huracanes o la de algunas galaxias. 
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mayor masa de agua que Euler había visto en su vida era el Rin, 
por lo que la auténtica navegación - como a todo buen suizo­
le quedaba un poco lejos. Sea como fuere, Euler se presentó al 
concurso y, aunque no ganó, conquistó un envidiable accésit com­
partido y una cierta fama en la comunidad científica. El ganador 
del concurso fue el eminente catedrático francés de veintiocho 
años, Pierre Bouguer, especialista indiscutido en hidrodinámica. 
Habiéndose leído con provecho obras de Varignon, Galileo, Des­
cartes, Newton, van Schooten, Hermann, Taylor, Wallis y Jakob 
Bemoulli, el joven y prometedor Euler empezaba a ofrecer deste­
llos de su genio. 

Mientras tanto, varios destacados nombres de la comunidad 
matemática internacional, en su mayoría de origen alemán o en la 
órbita de influencia cultural germánica, estaban tejiendo una sutil 
tela de araña desde Rusia con el objetivo de «fichar» a la joven 
promesa; en particular Christian Goldbach (1690-1764), con quien 
Euler mantenía correspondencia desde hacía unos años y del que 
se hablará en páginas posteriores. 

El zar de Rusia, Pedro I (1672-1725), llamado «el Grande», era 
un hombre de ideas prooccidentales y progresistas. Uno de los 
modos con los que Pedro I pensaba occidentalizar su vasto reino 
y situarlo en el mapa de los dominios civilizados era la creación 
de una Academia de ciencias rusa, al estilo de las Academias de 
París o Berlín o de la Royal Society, joyas del pensamiento ilus­
trado de su tiempo. 

Para levantar su academia, Pedro I encomendó a sus agentes 
la búsqueda de talentos dispuestos a emigrar a Rusia. Tanto Ni­
colaus II como Daniel Bemoulli, dos de los cuatro hijos µe Jo­
hann, con quienes Euler había desarrollado una gran amistad y 
que se encontraban ya en Rusia, en la futura sede de la ácad~mia, 
San Petersburgo, recomendaron vivamente el fichaje del joven 

'. --
Euler con el beneplácito de Goldbach. La súbita muerte de Nico-
laus 11, víctima de un ataque de apendicitis, dejó una inesperada 
vacante, que le fue ofrecida rápidamente a Euler, quien aceptó. 
En realidad lo hizo a regañadientes, pero la falta evidente de pers~ 
pectivas inmediatas en Basilea fue determinante para que deci­
diera instalarse en Rusia. 

BASILEA, CUNA DE UN GRAN MATEMÁTICO 



PIERRE BOUGUER, PADRE DEL-A ARQUITECTURA NAVAL 

El nombre de Pierre Bouguer (1698-1758) 
raramente aparece en los libros de mate­
máticas, a excepción de los dedicados a su 
aplicación en hidrografía, donde Bouguer 
es tenido por toda una autoridad y con ­
ceptuado como uno de los padres indis­
cutidos de la arquitectura naval. Este cien­
tífico bretón, destacó por su precocidad; 
a los quince años dominaba de tal manera 
los conocimientos físicomatemáticos que 
sucedió a su propio padre -uno de los me­
jores especialistas de su época- al frente 
de su cátedra de hidrografía al quedar va­
cante por la muerte de su progenitor. En 
1727, con menos de treinta años, Bouguer 
ganó el Grand Pri x de la Academia de las 
ciencias de París con una memoria sobre 
la óptima disposición de los mástiles de un 
buque, galardón que conseguiría en dos 
ocasiones más. Euler, quien quedó segun­
do en el citado certamen, consiguió doce 
Grand Prix a lo largo de su vida. 

El legado de Bouguer 

Estatua de Pierre Bouguer junto al río 
Loire, erigida en Le Croisic, su lugar 
de nacimiento. 

Recién cumplida la treintena, Bouguer real izó contribuciones importantísimas 
a la fotometría ana li zando la disminución de la luz al atravesar capas de aire. 
En 1747, inventó el hel iómetro, que fue mejorado luego por Joseph Fraunhofer 
(1787-1826) y tantos avances ha permitido a la espectrografía y la física en ge­
neral. A los treinta y siete años se embarcó con Charles-Marie de La Condamine 
y Louis Godin en una expedición científica a Perú destinada a medir un grado 
del meridiano terrestre próximo al ecuador, que cu lminó en la determinación 
del ensanchamiento ecuatorial del g lobo terráqueo. También, dio a conocer una 
anomalía gravitatoria, que lleva su nombre, la anomalía de Bouguer. En 1746, 
publicó su Traité du navire (Tratado del navío), considerado el tratado cumbre 
de la literatura naval de la época, donde se m ide la estabi lidad de un navío 
por la posición de su metacentro o centro de la carena. Elegido miembro de la 
Royal Society, Bouguer ascendió metafóricamente a la g loria celestial en forma 
de cráteres lunares y marcianos, pues dos de estos accidentes geográfico­
astronómicos fueron bautizados con su nombre en su honor. Sin embargo, la 
comunidad matemática le recordará siempre por algo bastante trivial, pero 
extraordinariamente útil: Bouguer introdujo, en 1752, los símbolos " y .e. 
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EL LEGADO DE EULER A LA NOTACIÓN MATEMÁTICA 

La labor fundamental de Euler en el ámbito de la notación mate­
mática arrancó ya en Basilea, antes de emprender su viaje a Rusia, 
y al estar repartida a lo largo y ancho de su vida, es adecuado 
ofrecer un resumen de la misma antes de emprender nuestro pro­
pio viaje por la vasta obra del matemático suizo. 

En un sentido general, el objetivo de la notación es el de crear 
un lenguaje sintético que permita sustituir ventajosamente largas 
secuencias de palabras por símbolos y variables simbólicas. En 
términos no matemáticos, una buena notación establece unas re­
glas comunes de «buenas prácticas», pues permite entendemos 
los unos a los otros. La notación actual no es perfecta, pero sí ha 
evolucionado de muy antiguo. Permite tratar casi todo con una 
admirable economía de medios. 

Por ejemplo, si se intenta leer un texto clásico de matemáti­
cas, anterior a Frarn;ois Viete (1540-1603), inventor de la termino­
logía moderna en álgebra, resulta evidente la complejidad de la 
tarea. Al no emplear símbolos los conceptos deben expresarse en 
lenguaje llano y las repeticiones son constantes y pesadas. Una 
muestra: 

El teorema de Pitágoras podría enunciarse hoy de la siguiente 
manera: 

En el triángulo de lados a, by c, A = 90º = a2 = b 2 +c 2
. 

Mientras que la versión equivalente de Euclides, dividida en 
dos partes (libro I, proposiciones 47 y 48), dice: 

En los triángulos rectángulos el cuadrado del lado opuesto 
al ángulo recto es igual a la suma de los cuadrados de los 
lados que comprenden el ángulo recto. 
Si en un triángulo el cuadrado en uno de sus lados iguala a 
la suma de los restantes dos lados del triángulo, entonces el 
ángulo contenido por los restantes dos lados del triángulo es 
recto. 
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Uno de los 
retratos más 
conocidos de 
Leonhard Euler, 
realizado en 
1753 -Euler vivía 
entonces en 
Berlín- por 
Jakob Emanuel 
Handmann, 
donde ya puede 
apreciarse el 
defecto en la 
vista que le afligía 
desde 1735. Euler 
perdió primero la 
visión de un ojo y 
luego la del otro, 
pero continuó su 
labor matemática 
sin interrumpirla. 
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Se trata de un caso bien elemental, y es patente el progreso 
experimentado gracias al uso de símbolos. 

Entre las notaciones que Euler popularizó o creó y que se si­
guen utilizando en la actualidad destacan las siguientes: 

- n: ningún símbolo aportado por Euler ha tenido tanta 
fortuna como n, el símbolo ideado para designar un nú­
mero: la relación entre la longitud de una circunferencia 
y su diámetro, un número irracional y trascendente de 
valor aproximado n = 3, 1415926535 . .. La letra griega pi fue 
usada por primera vez por el galés William Janes (1675-
1749), quien la utilizó por ser la inicial griega de la palabra 
«periferia», pero fue Euler quien la popularizó a partir de 
la publicación, en 17 48, de su famoso libro Introduction in 
analysin injinitornm. 

- La constante e: la letra e la empleó Euler para bautizar a la 
constante que designa a la vez la base de los logaritmos 
naturales -Euler denominó con la letra e dicha base ya en 
1731, en una carta a Goldbach- , el límite: 

lim 1+-( 1 )" 
n--oo n 

y la suma de la serie infinita: 

1 1 1 1 
e=l+ - +- +- -+---+ ... 

1 1·2 1·2·3 1·2·3·4 

Sin embargo, no será hasta la publicación de la ya 
mencionada Introduction cuando Euler profundizó en las 
ideas alrededor de e, calculando incluso 26 dígitos: 

e = 2,71828182845904523536028747 ... 

No se sabe con exactitud a qué obedece la elección de 
la letra e por parte de Euler. No es cierto, como algunos 
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afirman, que la eligiera por ser la inicial de su nombre o de 
la palabra «exponencial». 

- i: durante la mayor parte de su vida, Euler, quien no con­
taba con el concepto riguroso y correcto de límite, escribía: 

ex = ( l+f r' 
para indicar lo que hoy se escribiría como: 

e'" = lim(l+ x)" 
n.-oo n 

En este ejemplo, la letra i representaba el papel de un 
número infinito. Pero en 1777 había cambiado de idea y 
empleó i para representar la unidad imaginaria de los nú­
meros complejos, i = ~- El artículo de 1777 no se pu­
blicó hasta 1794, pero lo hizo suyo Gauss y con él toda la 
comunidad matemática. Euler eligió la i por ser la inicial 
de la palabra «imaginario». 

- y = f( x): Euler fue el primero en utilizar el concepto mo­
derno de función, ligando el valor de entrada x con el de 
salida y, a través de una correspondencia que se denomi­
naría f El dominio y la imagen de f quedan claramente 
establecidos. Su uso ya aparece en los Commentarii aca­
demiae scientiarum imperialis Petropolitanae -primera 
revista publicada por la Academia de San Petersburgo­
de 1734-1735. Aunque el modo moderno de concebir las 
funciones discrepa ligeramente del euleriano, puede atri­
buirse a Euler un gran paso adelante en lo que concierne a 
claridad conceptual y expositiva. 

~ I ( = sigma): fue escogida por Euler para indicar una sun1a 
de una sucesión de números sujeta a alguna condición, que 
acostumbra a explicitarse escribiéndola debajo y encima 
del símbolo. El caso general de una suma de elementos x. 

t 
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donde i es un «contador» de sumandos que va de m a n, se 
escribe: 

" ¿ X; = x,,, + xm+i + x,,,+2 + ... + x,,_1 + x,. . 
i-m 

Sigma es la letra «s» griega, inicial de «suma», así que 
la utilización de una sigma es bastante lógica. Euler calculó 
a lo largo de su vida centenares de sumatorios, muchos de 
ellos infinitos. Cuando n= ce, se dice que el sumatorio es 
una serie. Quizá el más famoso sumatorio de Euler, en su 
sencillez, sea el del «problema de Basilea», que Euler re­
solvió en 1 735, en plena efervescencia creativa (y que se 
examina en detalle en el capítulo siguiente): 

"" 1 n2 

I-2 =-. 
n-1 n 6 

Nadie esperaba que el número n jugara un rol en la 
solución de este sumatorio, y su «aparición» provocó una 
auténtica conmoción en el mundo científico. 

- Uso de mayúsculas y minúsculas: en un triángulo cualquiera, 
los lados se designan con letras minúsculas, y los ángulos 
opuestos con las mismas letras, pero mayúsculas (figura 1). 
De modo similar, se designan por R y r, respectivamente, 

B 
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los radios de las circunferencias circunscrita (figura 2) e 
inscrita (figura 3). 

- Uso en las fórmulas de las primeras letras del alfabeto a, 
b, e, d ... (normalmente en minúsculas) para designar en las 
ecuaciones a las cantidades conocidas, mientras se reser­
van las últimas, x, y, z, v ... para las cantidades desconoci­
das o incógnitas. 

- Uso de las formas abreviadas del latín sin., eos., tang., 
eot., see., y eosee.: Euler las utilizó por primera vez en 17 48 
en su libro Introduetio in analysin injinitorum, para de­
signar las funciones trigonométricas. Luego cada lengua 
ha procedido a adaptar ligeramente estas denominaciones, 
aunque son ya casi universales en su forma inglesa, y que 
en dicha lengua y en expresión funcional se leen sin x, eos 
x, tan x (o tg x), eot x, see x y eosee x (o ese x). 

- Notación para las diferencias finitas: las diferencias finitas 
son un instrumento de cálculo que guarda un cierto pare­
cido con las derivadas. Eso sí, el concepto de límite y los 
llamados infinitésimos no están presentes. Las diferencias 
finitas aparecieron ya con Newton (1642-1727), James Gre­
gory (1638-1675) y Colin Maclaurin (1698-1746) y permiten 
calcular polinomios desconocidos a partir de sus valores, 
así como interpolar y estudiar sucesiones y series. La apa­
rición de los ordenadores ha representado un incremento 
de su interés. 

Euler dedicó considerables esfuerzos a las diferencias 
finitas, y la notación con la que se presentan hoy en los li­
bros es suya. En el caso más sencillo de todos, una simple 
sucesión {uJ, la diferencia de dos términos sucesivos se 
denomina!),,: 

Las sucesivas diferencias finitas ( de segundo orden, 
/),,

2
, de tercer orden 1),,3, de cuarto orden 1),,4, etc.) se definen 
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a partir de las de primer orden ll de modo recursivo, cada 
una partiendo de la anterior: 

!).Pu = ll(llP-1u ). 
k k 

De esta manera ya se tienen recogidas todas las dife­
rencias finitas, del orden que sea: ll, ll2, !).3 ... y se puede 
operar con ellas. 

UNA PRIMERA APORTACIÓN FUNDAMENTAL: 
NÚMEROS COMPLEJOS Y LOGARITMOS NEGATIVOS 

En una serie de trabajos iniciados en sus días de Basilea, Euler dio 
con una fqrrnula para los números complejos que se haría célebre 
y la empleó para dar con el valor de una entidad matemática des­
conocida hasta ese momento: los logaritmos negativos. 

Corno ya se ha señalado, Euler utilizó la letra i para represen­
tar un número imaginario, el número .¡::¡_ Desde entonces, en 
cualquier fónnula aritmética en la que figure i se ha de entender 
lo siguiente: 

i = .¡::f_, 

En el curso de sus trabajos en Basilea, Euler descubrió esta 
fórmula: 

exi = cosx+ isenx, 

y jugó con ella, corno solo él, el gran malabarista· de los símbo­
los supo hacer. De esta simple expresión simbólica, conocida 
como fórmula de Euler de los números complejos o simple­
mente corno fórmula de Euler, y que relaciona la exponencia­
ción compleja con la trigonometría, nació, corno se verá en el 
capítulo tercero, buena parte del análisis matemático de siglos 
posteriores. 
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En la época de Euler estaban muy de moda los logaritmos, 
una herramienta de cálculo descubierta en el siglo :>..'V1 cuyas po­
tencialidades, sin embargo, no fueron explotadas hasta la llegada 
del matemático suizo. Definámoslos: si a es un número positivo, 
llamado base, y N, un número positivo, si: 

N=a:x:, 

se llama ax el logaritmo de N, y se escribe x = log N. Es decir: 

N = alogN. 

Cuando la base es la constante e, se acostumbra a poner 1n N 
en lugar de log N. 

«Señores: esto es seguramente cierto, es absolutamente 
paradójico, no lo podemos entender y no sabemos lo que 
significa, pero lo hemos demostrado, y por consiguiente 

sabemos que debe ser la verdad.» 
- BENJAMIN PEIRCE (1809-1880), PROFESOR DE IIARVARD, ENFRENTADO 

A LA LLAMADA «FÓ RMULA DE EULER» DE LOS NÚMEROS COMPLEJOS, 

Ahora bien, el número -1 puede escribirse como -1 = - 1 + 0i, 
y estudiarlo así, como un número complejo. Operemos con él en 
el seno de la fórmula de Euler: 

-1 =-1 + 0i = cos:rc +isen:rc = eni_ 

Fijémonos ahora en el principio y final de esa igualdad y cal­
culemos el logaritmo natural: 

1n (-1) = 1n (e:rci) = :rci. 

Euler obtuvo así un valor definido para el logaritmo natural 
de-1, un número negativo. 
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El suizo detuvo aquí su maquinaria mental y partió de viaje a 
San Petersburgo. No fue hasta 1751, casi un cuarto de siglo más 
tarde, que Euler dio a conocer este resultado, junto a muchos 
otros, en su forma correcta, con la publicación de su magistral 
libro Introductio in analysin infinitorum (Introducción al aná­
lisis del infinito). 

Como los guerreros partos de la Antigüedad, que disparaban 
sus dardos en plena retirada, Euler se marchó a Rusia y dejó 
abierta la cuestión de los logaritmos negativos, pero eso sí, mos­
trando ya sus armas futuras. 
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CAPÍTULO 2 

Series, constantes y funciones: 
Euler en Rusia 

Con apenas veinte años, Euler se incorporó a la 
Academia de Ciencias de San Petersburgo. Se abría 

así un período creativo sin parangón en la historia de las 
matemáticas que tendría como fruto la función gamma (r), 

la fijación de la constante e y otros importantes trabajos 
en análisis y teoría de números, así como la resolución 

de dos problemas de gran relevancia futura: el de 
Basilea y el de los puentes de Konigsberg. 





Euler viajó a Rusia en 1727 sin mucho entusiasmo, pues aparte 
del rigor del clima, se dirigía a trabajar a un país atrasado y donde 
se hablaba y escribía en otra lengua e incluso en otro alfabeto. 
Esto último se demostró que carecía de importancia, pues Euler, 
quien tenía una gran facilidad para los idiomas -dominaba latín, 
griego, francés y alemán-, añadió el ruso al repertorio de los que 
hablaba, leía y escribía. En ello se distinguía además, y favorable­
mente, de los otros miembros extranjeros que atrajo la Academia 
de ciencias de San Petersburgo. He aquí a un sabio extranjero 
con el que se podía hablar y entender, a quien era posible escri­
bir, y que se molestaba en entender y saberse expresar en la len­
gua local. Además sabía de todo y todo despertaba su curiosidad: 
Nombrado -uno de sus muchos títulos- miembro de la Acade­
mia de Cartografía, se maravillaba de sus logros y los comparaba 
muy favorablemente con la cartografía occidental, que era la que 
había conocido hasta entonces. 

Cuando Euler llegó a San Petersburgo coincidió allí con ta­
lentos co_mo Christian Goldbach y Daniel Bernoulli, así como 
con otros sabios, muchos de los cuales de procedencia y lengua 
germanas. Euler había sido contratado para enseñar aplicaciones 
matemáticas y mecánicas a la fisiología, pero pasó rápidamente 
de ser un joven empleado del departamento médico (1727) a pro­
fesor de matemáticas (1733), con un intermedio como profesor de 
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física (1731). La transferencia fundamental de fisiología a física 
fue fruto de las peticiones insistentes a la Academia de sus cole­
gas Jakob Hermann (1678-1733) y Daniel Bemoulli. 

La estancia de Euler en Rusia trabajando para la Academia 
fue fructífera; ascendió rápidamente y trabó gran amistad con 
Daniel Bernoulli y con el secretario perpetuo de la Academia, 
Christian Goldbach. Escribía mucho, descubría cosas nuevas 
constantemente y empezaba a labrarse una fama internacional 
considerable. En 1733 su posición y sueldo le permitían mantener 
casa y familia, y se casó con Katharina Gsell, la hija de un pintor 
de la Academia. Del matrimonio nacieron trece hijos, aunque solo 
cinco sobrevivieron. 

En 1735, Euler padeció una fuerte infección ocular. Algunos 
afirman que enfermó a consecuencia del estrés producido por un 
trabajo urgente relacionado con el cálculo de la latitud de San 
Petersburgo. Sea corno fuere, el caso es que se quedó momen­
táneamente ciego del ojo derecho, y aunque en un principio se 
fue recuperando poco a poco, a los tres años recayó y perdió de 

LA ACADEMIA DE SAN PETERSBURGO 

El zar Pedro I puso el punto de mira del progreso de su imperio en la ins­
trucción pública y la difusión del conocimiento. Tras sus viajes a través de 
Europa en los que trabó una buena amistad con Leibniz, decidió en 1724-
1725 la creación de la Academia de ciencias, la Academia Scientiarum lm­
perialis Petropolitanae, afincada en la capital real, San Petersburgo. La 
Academia estaba basada en las normas y estructura de la Academia de 
París, y dependía, como ella , de la protección y el subsidio reales. La his­
toria de la Academia de ciencias fue un tanto azarosa en ese período inicial, 
y a los tumbos obligados por la incierta política rusa de aquel entonces 
-constelada de niños con títulos reales, regentes y zarinas- hay que aña­
dir las intrigas internas y luchas por el poder dentro de la propia institución. 
Los miembros de extracción extranjera -sobre todo germanos- se enfren­
taban por la supremacía a los miembros rusos, quienes se sentían poster­
gados. Todo ello terminó determinando que Euler, un tanto preocupado 
por el cariz que tomaban las cosas, aceptara cambiar San Petersburgo por 
Berlín, y emigrar de una academia a otra . 
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modo definitivo la visión de ese ojo. Su ánimo, no obstante, no 
se resintió por su irremediable disminución de la visibilidad, 
si se considera cierta la afirmación atribuida a Euler: «Mejor, así 
no me distraeré tanto». 

«Calculaba sin esfuerzo aparente, como otros hombres respiran 
o como las águilas se sostienen en el aire ... » 

- FRAN<;:01S JEAN DOMINIQUE ARAGO (1786-1853) 

En 1 738 consiguió el Grand Prix de la Academia de París - al 
que también habían aspirado Voltaire y Émilie de Breteuil, la mar­
quesa de Chatelet- con un ensayo sobre el fuego. Dos años des­
pués, en 1740, volvió a obtener el galardón -frente a Daniel 
Bernoulli y Colin Maclaurin-, esta vez con una memoria sobre el 
flujo y reflujo de las mareas. 

LA FUNCIÓN GAMMA 

Al poco de llegar a San Petersburgo, Euler emprendió el imparable 
camino de descubrimientos sorprendentes que marcaría su exis­
tencia. El primero de sus grandes momentos parece haber sido 
la creación de la función r (r es el símbolo de la letra mayúscula 
griega gamma), una herramienta básica del análisis matemático. 
Alrededor de 1 720 ya aparece la sombra de r en la corresponden­
cia con Daniel Bernoulli y Christian Goldbach, pero no es hasta 
1729 que Euler la define por primera vez; la define pero no la bau­
tiza, pues no es hasta 1814 que Adrien-Marie Legendre (1752-1833) 
la denomina gamma y la escribe de esta forma: I'(x). 

La función gamma está presente muchas veces como compo­
nente de las distribuciones de probabilidades, y son multitud los 
especialistas en física que usan dicha función; de hecho acostum­
bra a estar presente en los fenómenos que implican algún tipo de 
integración de carácter exponencial, tan frecuentes en el mundo 
atómico; también es moneda corriente en astrofísica y en dinámica 
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de fluidos, así como en el estudio de los fenómenos sísmicos. Tam­
bién en matemáticas la función gamma tiene aplicación en múlti­
ples áreas, de modo notable en combinatoria y muy en especial al 
estudiar la función zeta de Riemann, de fundamental importancia 
en el estudio de los números primos. 

El objetivo de Euler fue resolver una cuestión de lo que en­
tonces se llamaba interpolación y que consistía en, conociendo 
los valores extremos de una variable, deducir valores intermedios 
de un modo natural y sin artificios. Veamos un ejemplo. El lla­
mado factorial de un número natural, denominado en aritmética 
n! - y usado por prin1era vez por Christian Kramp (1760-1826)­
es el nuevo número: 

n! =n(n-l)(n - 2)- ... -3-2 -1, 

que consiste en el producto de todos los números naturales meno­
res o iguales a n. Su crecimiento es espectacular, como puede 
ve_rse en la siguiente tabla: 

n n! 7 5040 

o 1 8 40320 

1 1 9 362880 

2 2 10 3628800 

3 6 100 9,3326215444 · 10157 

4 24 1000 4,0238726008 · 102567 

5 120 10000 2,8462596809 · 1035659 

6 720 100000 2,8242294080 · 10456573 

El factorial es discontinuo y solo está definido entre números 
naturales; «interpolar» el factorial era prolongar el factorial hasta 
encontrar una función continuaf(x), de modo que al tomar x el 
valor entero n se obtuvieraf(n). 

Un ejemplo casi trivial se halla en el concepto de cuadrado de 
un número. Dado un número entero n está bien definido su cua­
drado n 2 = n • n. El concepto es «interpolable» a cualquier número 
real x sin más que ponerf(x)=x2. 

SERIES, CONSTANTES Y FUNCIONES: EULER EN RUSIA 



Euler «interpoló» el factorial n! y encontró, en 1729, una fun­
ción continuaf(x) que actuaba como el factorial cuando x =n era 
entero. La llamaremos r(x) que es su denominación actual. 

Euler definió el valor de r(x) en cada punto x por lo que hoy 
llamaríamos límite: 

r(x ) = lim n!nx 
n-00 x (x + l)(x + 2) .. . (x + n)' 

definición sustituida en la actualidad por la fórmula integral: 

que es más sencilla y manejable y es válida, además, en el can1po 
de los números complejos. 

Cuando se estudia a fondo, de la r(x) resultan todo tipo de 
fórmulas muy sugestivas para una mente matemática como: 

Jt 
r(l-z)r(z) = --, 

sen(n z ) 

que relaciona a gamma con pi y con funciones trigonométricas. 

LAS OTRAS GAMMAS 

Hay varios modos de definir r(x ). En el siglo pasado hizo fortuna la fórmula 
de Kar l Weierst rass (1815-1897), que pone de re lieve a la constante de Euler 
(y, llamada también gamma, aunque con minúscu la): 

Esta func ión cump le que: 

e -rz ~ ( z)-1 , 
r(Z)= - TI l+ - é . 

z n-1 n 

r(l) = l 

r(l + X) = XI' (X). 
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Una fórmula que se deduce con el auxilio de la función 
gamma es la célebre fórmula de Stirling (1692-1770), paradigma 
para muchos de la belleza simbólica, pues en su enunciado inter­
vienen de manera armónica las constantes n, e y el número n en 
varias formas: 

n!- ✓2nn(:r 
Por último, pero no menos importante, un vínculo entre la fun­

ción gamma: y la zeta, 1; (z), esta última de fundamental importan­
cia en teoría de números y, en particular, en el fascinante campo 
de los números primos: 

00 
t z-1 

l;(z)r(z) = fo - t - dt. 
e -1 

LA FUNCIÓN BETA 

Euler, al estudiar la función gamma, se vio abocado a estudiar tam­
bién otra función, llamada beta y representada por la letra B. Hay 
varias formas de definir esa nueva función, que es también muy útil 
en análisis; uno de los modos es recurrir al cálculo integral: 

B(x, y) = f~t"x-i (l-t?-1 dt 

si las partes reales de x e y son estrictamente positivas. 
Y otro es recurrir a la función gamma, ya definida previamente: 

B( ) 
= r(x )r(y) x ,y ~~~~-

r( x +y) 

LOS NÚMEROS DE FERMAT 

Tras abordar el estudio de las funciones gamma y beta, Euler des­
plazó su atención a la teoría de números, en uno de esos bruscos 
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LA MADRE DE TODAS LAS FUNCIONES 

En matemáticas la reina de las funciones, la que centra la atención de más 
especialistas y que consume más bytes de literatura electrónica es la función 
zeta. Su denominación procede de la letra griega 1;, (zeta) y fue Euler quien la 
empleó por primera vez generalizando el llamado problema de Basilea, el 
primer resultado matemático que le dio fama. Euler demostró que la suma 
infinita de los inversos de los cuadrados es n2/6: 

y posteriormente consiguió generalizar el resultado considerando la siguiente 
función: 

1 1 1 1;,(x) = 1+-+-+-+ ... , 
2x 3x 4x 

que puede tomar cualquier valor x en el campo lR de los números reales. Euler 
calculó muchos valores de la función zeta, aunque incluso en la actualidad se 
desconoce un método directo para hallar infinitos de esos valores. El propio 
Euler encontró un modo de convertir la suma infinita de 1;, en producto infini­
to, obteniendo, gracias a su habilidad algebraica para la manipulación de 
fórmulas, la expresión: 

00 1 00 

1;,cs) = ~ - = íl_j_• ¿ ns ¡ _ _2__ 
n-1 k - 1 P! 

donde los distintos p k recorren exclusivamente el campo de los números pri­
mos. De este modo puso al descubierto un vínculo inesperado de la función 
zeta con dichos números. Con las herramientas especiali'zadas del análisis 
superior, puede trasladarse la función zeta al campo complejo, tomando los 
va lores des, ya no en IR, entre los números reales, sino en el campo complejo, 
C. La función zeta fue ampliada a este campo y estudiada, en principio, por el 
gran matemático alemán Bernhard Riemann (1826-1866). Esta es la función 
conocida hoy como función zeta de Riemann y en ella se inscribe la llamada 
hipótesis o conjetura de Riemann, un enunciado desconcertante, todavía no 
demostrado, que contituye lo que se considera actualmente como problema 
pendiente número uno de la matemática contemporánea. La hipótesis de 
Riemann forma parte de los siete problemas del milenio cuya resolución pre­
mia la fundación Clay con un millón de dólares cada uno. 

SERIES, CONSTANTES Y FUNCIONES: EULER EN RUSIA 43 



44 

cambios de objetivo tan definitorios de la trayectoria científica del 
suizo. En concreto, se ocupó de una cuestión que había dejado 
abierta un siglo antes el francés Pierre de Fermat (1601-1665). 
Los vínculos de Euler con Fermat son muy estrechos. Si se sigue 
la trayectoria euleriana a través de la teoría de números se apre­
ciará que la tarea fundamental de Euler parece haber sido la de 
solventar, uno tras otro, los problemas dejados sin resolver por 
Fermat, tarea tanto más laboriosa cuanto que Fermat guardaba 
por escrito pocas de las incógnitas que solucionaba, pues escribía 
comentarios en los mismos textos que leía y analizaba, acostum­
brando a plantear a los demás colegas los problemas que resolvía 
como desafíos a la inteligencia de los amigos. 

Uno de los más interesantes temas numéricos heredado de 
Fermat es el de los números que llevan su nombre, los números 
de Fermat, que se denotan con la letra F y se definen por: 

F,, = 22" + l. 

Paran = O, 1, 2, 3, 4, se tiene: 

2° 1 F0 =2 +1=2 +1=3 

F, = 2
21 

+ 1 = 22 + 1 = 4 + 1 = 5 1 

22 4 F2 =2 +1=2 +1=16+1=17 
23 8 F3 =2 +1=2 +1=256+1=257 

F4 =2
21 

+1=216 +1=65536+1=65537, 

que son todos números primos. El siguiente número de Fermat 
es este: 

96 3? F5 =2- +1=2 -+1=4294967296+1=4294967297, 

y no era ilógico conjeturar que también fuera primo, como los an­
teriores. Algo más aventurado, aunque muy poco más para los es­
tándares de su tiempo, era conjeturar, como hizo Goldbach, que 
todos los números de Fermat eran primos, reafirmando lo que había 
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creído el propio Fermat. Goldbach le comunicó a Euler la conjetura 
en 1729 y, en 1732, Euler ya había encontrado la solución: F

5 
no era 

primo, sino compuesto. Más en concreto: 

F5 = 4 294 967 297 = 641·6700417. 

La primera reacción que despierta este resultado es de asom­
bro, pues el esfuerzo que requiere lograr la factorización por el 

PIERRE DE FERMAT 

Hombre de leyes de profesión, muchas 
veces se le ha llamado «el rey de los di ­
letantes», pues cultivó las matemáticas 
solo como pasatiempo. Fermat contribu­
yó de forma fundamental al nacimiento 
de la geometría analítica y al desarrollo 
del cálculo de probabilidades y de la óp­
tica. En este campo estudió la reflexión 
y refracción de la luz, aspectos que con­
sideró inmersos entre los fenómenos de 
máximos y mínimos, sentando así las 
bases del cálculo diferencial, del que 
fue uno de los más notables precurso­
res. Lo que más fama le dio fueron sus 
trabajos en teoría de números, donde 
puso de relieve muchas de sus admira­
bles facultades y métodos de trabajo. No 
acostumbraba a poner por escrito sus ra­
zonamientos, por lo que anotaba -mien­
tras le cabían- sus ideas en el margen 
de los libros que leía. Sin embargo, su ascenso a la fama universal proviene 
de pretender haber demostrado el teorema: «Para n > 2, no existen enteros 
positivos no nulos, x, y, z tales que x" +y" =z"». Conocido por e/ último teorema 
de Fermat, último, porque siempre quedaba pendiente de prueba, Fermat 
había manifestado -y muy probablente se equivocó- que, en el curso de 
sus lecturas, había encontrado una demostración maravillosa pero que no le 
cabía en el margen del libro que estaba leyendo. El teorema fue probado en 
1995 por Andrew Wiles (n. 1953). 
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modo convencional, probando a dividir por 2, 3, 5, 7, 11, 13, etc., 
y recorriendo hacia arriba la escalera infinita de los primos, es 
colosal. Profundizando un poco más en las maniobras de Euler, 
puede rastrearse su método, y de paso, su genialidad. Poco a 
poco, merodeando por el resbaladizo terreno de la divisibilidad, 
llegó a la conclusión -nada fácil- de que cualquier divisor de F

5 
debía ser de la forma 64n + l; de manera que ya no tenía que lidiar, 
uno por uno, con todos los divisores primos, sino solo con los 
números 65 (n= 1), 129 (n=2), 193 (n=3), etc., descartando ade­
más los que no son primos. Paran = 1 O el cálculo da 64 -1 O+ 1 = 641, 
y resulta una división exacta. 

Hasta hoy no se ha encontrado ningún otro número de Fer­
mat primo. Todos los que se conocen -o sea, que han sido estu­
diados- son números compuestos. Se ha comprobado que de F

5 

a F32 --que es un número enorme- no hay ningún primo. Pero 
eso no quiere decir que ya no los habrá; que los haya o no es una 
simple conjetura y, en matemáticas, las conjeturas son verdaderas 
o falsas si y solo si se demuestran o se refutan. 

EL BAUTIZO DE UN NÚMERO 

En paralelo a su trabajo sobre los números de Fermat, y nueva­
mente en el marco de su fértil correspondencia con Goldbach, 
Euler puso nombre a una constante numérica que, como ya se ha 
apuntado en el capítulo anterior, iba a erigirse en pieza clave de 
su trabajo en teoría de números: la constante e. La primera apari­
ción de e con la denominación con que ha llegado a nuestros días 
fue en una carta de 1731. Esta constante es, seguramente, la más 
conocida después de n, y vale en primera aproximación: 

e= 2, 718281828459045 23536 0287 4 71352 66249775724 7093 69995 ... 

En la actualidad se conocen de e más de 1 000 000 000 000 de 
dígitos decimales. No obstante le dio nombre y lo empleó para 
toda clase de desarrollos y aplicaciones, Euler no fue en puridad 
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su «descubridor»: e nació mucho antes, pero con otro nombre y 
un poco «de tapadillo», como se verá. 

El número e proviene del campo de los logaritmos, como Euler 
puso de relieve. El vínculo entre uno y otro -explicado con más 
detalle en el anexo 1- pasó desapercibido a la comunidad mate­
mática durante cerca de un siglo. En descargo de los contemporá­
neos del suizo, hay que decir que el número e iba a revelarse a lo 
largo de los años como una constante especialmente escurridiza. 

Uno de los primeros en acercarse a e fue Grégoire de Saint-Vin­
cent (1584--1667) quien, en 1647, se enfrentó a la hipérbola equilá­
tera, de ecuación y= llx, y cuyo gráfico en coordenadas cartesianas 
puede apreciarse en esta página. Saint-Vincent calculó el área limi­
tada entre 1 y otro punto cualquiera t del eje horizontal X; es lo que 
en lenguaje moderno equivale a integrar la curva entre 1 y t. 

Si se integra entre 1 y t, resulta: 

f
il 
-dx = lnt 

IX 

y cuando se toma el valor t = e, se tiene 1n t = 1n e = l. Así pues, e es 
el valor del eje horizontal X para el que el área señalada en el grá-

2 

1,75 

1,50 

1,25 

0,75 

0,50 

0,25 

0,5 1,5 2 2,5 e 3 
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fico vale 1, definición adoptada más tarde por el propio Euler, 
pero sobre la que Saint-Vincent pasó de largo. 

Tampoco Christiaan Huygens (1629-1695) prestó mucha aten­
ción a e a pesar de que en uno de sus razonamientos se vio obli­
gado a obtener 17 dígitos del logaritmo decimal de e. Pero como 
los necesitaba para otra cosa y no para fijarse específicamente en 
e, pues también pasó de largo. 

Quien no pasó de largo fue Jakob Bernoulli, aunque no tomó el 
sendero de los logaritmos, sino otro distinto, más «terrenal». En 
1683, Bernoulli se interesó por el interés compuesto de un depósito 
de capital. Se puede seguir de modo aproximado sus mismos pasos, 
aunque en lenguaje moderno. Si se deposita un capital Ca un inte­
rés anual i, al cabo de un año el dinero se habrá convertido en: 

C+Ci = C(l + i). 

Si el interés se calculara dos veces al año en lug~ de una 
vez, se debería dividir el interés por 2 y capitalizar el dinero dos 
veces. Por tanto, al cabo del año se tendría un capital más inte­
reses igual a: 

e +cf +( e +cf )½=e( 1+f )+c( 1+½)½ = 

= e( l+½)( l+½) = e( l+½r 

Si se repite la operación n veces, se observa, siguiendo el pa­
trón, que ~l capital se convierte en: 

Repitiendo la operación infinitas veces el interés sería instan­
táneo y en el actual lenguaje de los límites (prescindiendo de la 
magnitud de i, que no es importante en el planteamiento del pro­
blema) se llegaría al final con el límite: 

( 1 )" lim l +-
n--xi n 

SERIES, CONSTANTES Y FUNCIONES: EULER EN RUSIA 



Al verificar el límite se constata que este existe e, incluso, se 
puede uno acercar a su valor con un simple cálculo: 

n (,+~r 
1 2 

2 2,25 

3 2,37037 

4 2,44141 

5 2,48832 

10 2,59374 

100 2,70 481 

1000 2,71692 

10000 2,71815 

100000 2,71827 

1000000 2,71828 

Jakob Bernoulli, sin la ayuda de los modernos instrumentos 
de cálculo, llegó hasta las primeras líneas de la tabla anterior, y su 
actuación ha de calificarse de extraordinaria teniendo en cuenta 
el nivel de las matemáticas de su tiempo. Según sus cálculos, el 
lín1ite estaría entre 2 y 3. Ahora se sabe ya que: 

( 1 )" lim l +- =e. 
n-:o n 

Jakob Bernouilli, de una sola vez, había encontrado a e - aun­
que no le dio nombre- y por primera vez en la historia había 
hecho un hallazgo aplicando el concepto, hasta entonces desco­
nocido, de lín1ite. Por desgracia, también por esta vez la constante 
e se encontraba huérfana de auténtico reconocimiento, pues 
Jakob no vinculó su constante-límite con los logaritmos. 

El número e encontró su primer nombre, la letra b, cuando 
Leibniz en 1690 la identificó así en una carta a Huygens. A partir 
de ahí, e comenzó a existir. Alguien le había otorgado un nom­
bre, aunque este no fuera el definitivo. Relacionarla con los loga-
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EL NÚMERO e Y LOS SOMBREROS 

Jakob Bernoulli no solo se topó con la constante e en el interés compuesto; 
un acertijo, o más bien, un problema de probabilidades y sombreros, le hizo 
moverse en torno a e. Pierre Raymond de Montmort (1678-1719) y Jakob Ber­
noulli se enfrentaron al siguiente enigma: N invitados asisten a una fiesta y 
entregan sus sombreros al criado en el vestíbulo. Todo estaba preparado para 
guardarlos cuidadosamente en cajas etiquetadas de antemano, evitando los 
errores de pertenencia, pero a última hora enferma el criado encargado del 
asunto y tiene que ser sustituido por otro, que desconocedor de la identidad 
de los invitados, va disponiendo los sombreros al azar en las cajas. El proble­
ma acontece cuando los visitantes se van y el criado les entrega un sombrero. 
Unos recibirán el suyo y otros no. ¿cuál es la probabilidad del desastre total, 
es decir, de que ningún sombrero vaya a parar a su dueño? La respuesta es: 

1 1 1 (-l)N 
PN = 1-1! + 21- 31 + ... + N!, 

una magnitud que se parece mucho a la suma cuyo limite es e. De hecho, su 
limite es precisamente 1/e. Si la fiesta es multitudinaria y N muy grande: 

PN _ ..!_ _ 36,79%. 
e 

====-=-=-!l!Zll:!11!:J-----------· 
ritmos era una cuestión de tiempo, y su lento paso concluyó en 
1731, corno ya hemos mencionado, con la carta de Euler a su 
corresponsal Goldbach. A partir de entonces y en especial en 
una serie de artículos escritos de 1736 en adelante, Euler llamó 
oficialmente e a la constante, la identificó, relacionó el límite de 
Jakob Bernoulli con los logaritmos, dio de estos una definición 
moderna, otorgó a e su lugar corno base de los logaritmos natu­
rales y, en una palabra, llevó a e a la inmortalidad, calculando 
incluso sus primeras 18 cifras decimales posiblemente mediante 
la suma directa de los veinte primeros términos de una serie 
descubierta por él mismo: 

1 1 1 
e= 1+-+-+-+ ... 

1! 2! 3! 
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Si fuera así se trataría de una hazaña extraordinaria, casi un 
imposible; pero Euler demostró en tantas ocasiones una capaci­
dad de cálculo tan sobrehumana que muchos se sienten inclina­
dos a creer en tal procedimiento. 

La elección por parte de Euler de la letra e, y no de otra, ha 
generado mucha especulación. A pesar de algunas creencias muy 
extendidas, Euler no eligió la «e» por ser la inicial de la palabra 
«exponencial», y, ni mucho menos, porque fuera la inicial de su 
propio apellido. Al parecer la iba a llamar a, pero esa notación 
estaba ya «ocupada» en sus cálculos por otra magnitud. En cual­
quier caso, lo cierto es que Euler nunca explicó las razones de su 
elección. 

Mucho de lo que Euler desentrañó acerca de e lo publicó en 
17 48, en su obra magna Introductio in analysin infinitorum, es­
crita en su etapa berlinesa. Entre otras notables aportaciones, 
Euler estableció de modo definitivo que el logaritmo y la exponen­
ciación son procedimientos inversos el uno del otro, lo que signi­
fica que: 

y = ax si y solo si X= lo gay, 

fórmula válida para cualquier base a, incluida la base e, a= e. 
Otro hecho que cae en el terreno del análisis se refiere a la 

exponenciación en base e: la funciónf(x) = ex coincide con su pro­
pia derivada: 

de'" x 
--=e. 
dx 

Laconstantee es un número trascendente, es decir, no puede 
obtenerse mediante la resolución de una ecuación algebraica con 
coeficientes racionales. El primer paso para demostrar la trascen­
dencia de un número es probar su irracionalidad (se dice que un 
número es irracional cuando no se puede expresar por la razón de 
dos enteros), cosa nada fácil y que Euler no pudo llevar a cabo. 
Sin embargo, se quedó bastante cerca, pues pudo encontrar la si­
guiente fracción continua: 
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e- 1 1 - - = ---------::-----
2 1 l+----1---

6+ 1 
10+ 1 

14+--
18+ ... 

Al demostrar fehacientemente que no terminaba nunca, pro­
bó que 

e-1 
- 2-, 

era irracional. Finalmente, Charles Hermite (1822-1901) demostró 
en 1873 la trascendencia de e. 

Además de la de Euler, otras expresiones comunes de e en 
forma de fracción continua son: 

1 1 
e=2+-----~

1
----=l+--------.

1
--- --

l+----~1~--- 0+------1-----
2+----¡--- 1+------1----

1+---~1-- l+----~l~---
1+ 1 2+----1---

4+ 1 l+---~1--
1+-- 1+ 

l + ·.. 1 
4+ 1 

l+--
1+ ··. 

En tiempos recientes ha crecido en el ámbito de la teoría de 
números el interés por averiguar si una constante es normal; ¿es 
e normal? Normal significa, en este contexto, que los dígitos de e, 
cuando la constante se la expresa en cualquier base numérica, 
guardan un equilibrio estadístico: tomados de uno en uno, en gru­
pos de dos, de tres o como sea, la probabilidad de aparición en la 
secuencia numérica de e es siempre equitativa. 

Pues bien, hay constantes normales y anormales, pero e pa­
rece ser normal. Pero eso es solo una conjetura, pues nadie lo ha 
podido demostrar hasta hoy. 
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SERI ES, CONSTANTES Y FUNCIONES: EULER EN RUSIA 

Los arcos del 
Colegio de las 
teresianas (arriba 
a la izquierda) 
de Barcelona, 
obra de Antonio 
Gaudi, o el gran 
arco del Gateway 
Arch de SI. Louis 
(arriba a la 
derecha) son 
ejemplos 
invertidos de 
la vulgar curva 
catenaria formada 
por los cables 
colgantes (abajo). 
Dicha curva tiene 
una expresión que 
involucra al 
número e. 
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EJERCICIOS DE MEMORIA CON EL NÚMERO e 

Existe un deporte matemático denominado mnemonics, que consiste en 
rec itar cuantas más cifras dec imales posibles de una constante numéri ­
ca. Como recordar decimales como simp le ejercicio de memoria puede 
ser aburrido, las reglas de mnemonics prescriben recordar frases o versos 
creados a propósito. El número de letras de cada palabra se identifica con 
la secuencia numérica decimal que se quiere recordar. Por ejemplo, en el 
caso del verso «Con diez cañones por banda», del poeta español José de 
Espronceda: 

Con diez cañones por banda 

3 4 7 3 5 

puede identificarse con la secuencia 34735; es mucho más fácil de recordar 
el verso que el número, pues las palabras poseen un sentido. Recordar c ifras 
del número n tiene muchos seguidores; practicar mnemonics con las cifras de 
la constante e es menos conocido, pero no menos atractivo. En Internet exis­
ten frases (en inglés) como esta: 

We presenta mnemonic to memorize a constant so exciting that Euler 
exclaimed: '!' when first it was found, yes, loudly '!'. My students perhaps 
wi/1 compute e, use power or Tay/or series, an easy summation formula, 
obvious, clear, e/egant! 

donde el signo «!» representa por convenio al dígito cero. Si se cuentan las 
diferentes cifras correpondientes a palabras consecutivas, se obtendrá la se­
cuencia: 

271828182845 904 523 536028 747135266 249 775 7, 

que resume las 40 primeras cifras. 

LA CONSTANTE DE EULER-MASCHERONI 

Hay tres constantes matemáticas que destacan por encima de 
todas las demás y que están muy relacionadas con Euler. La más 
famosa es re, y después, e. La tercera es conocida con la letra 
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griega y, y aunque Euler ya la defuúó en 1734, tres años después 
de hacer lo propio con el número e, comparte la paternidad del 
hallazgo con el matemático italiano Lorenzo Mascheroni, por lo 
que y es denominada constante de Euler-Mascheroni. Un poco 
injustamente, como han hecho notar algunos especialistas, pues 
el mérito más relevante de Mascheroni parece haber sido calcu­
larla, en 1790, con 32 decimales ... , y tres errores: en el 19, 20 y 21. 

Se trata de una constante puramente aritmética; si tomamos 
en consideración la antiquísima serie armónica: 

00 1 1 1 1 1 
'¿-=l+-+-+-+ ... +-+ ... , 
n-1 n 2 3 4 n 

se constata que es divergente, es decir, que el límite de su suma 
tiende a oo (la primera prueba rigurosa de ello se atribuye a Jakob 
Bernoulli). 

Euler tuvo la idea de comparar el crecimiento de esta serie 
divergente con el ln(n). Si se hace la resta: 

n 1 
'¿ - -ln (n), 
n-1 k 

término a término, se obtiene: 

1-lnl=l 

l+½-ln2 = 0,8068528 ... 

1 1 
l+-+- -ln3 = O, 734721 ... 

2 3 
1 1 1 

l+ -+- +-- ln4 = 0,6970389 ... 
2 3 4 

Esta diferencia se estabiliza y, en el límite, da una cantidad 
constante: 

[ 
n 1 ] y= lim '¿- -ln n = 0,57721566 ... 

n--«> k-1 k 
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Lo que buscaba Euler era un modo de describir el crecimiento 
de la serie armónica, y concluyó que tenía un crecimiento logarít­
mico. Euler denominó a esa constante con la letra mayúscula C, 
por lo que el uso de la letra griega y se debe posiblemente a Mas­
cheroni (1790). Euler la computó en 1736 hasta la cifra 19 usando 
una fórmula propia, los llamados números de BernouUi, B ; si lo 

" hubiera intentado por la vía convencional de sumar términos de 
la serie armónica y restar el logaritmo hubiera fracasado, con todo 
y ser un calculista fantástico, pues la convergencia de la serie de 
la definición es lentísima. 

El alemán Weierstrass encontró que la definición de r(x) 
dada por Euler era equivalente a la derivada: 

r'(l) == -y, 

lo que permite establecer una inesperada relación entre la función 
gamma y la constante de Euler-Mascheroni. 

De la constante y no se sabe casi nada; ni siquiera si es racional 
o irracional, y, como es lógico, se desconoce si es trascendente. Sí 
se sabe que en el caso de que sea racional -lo que pocos especia­
listas creen- su denominador tendría por lo menos 244 663 dígitos 
en base 10, un número que de reproducirse al mismo tamaño que el 
presente texto ocuparía casi todo este libro. 

La constante y aparece con frecuencia en análisis ( corno en las 
llamadas funciones de Bessel) y tiene aplicaciones en mecánica 
cuántica, en especial en la regularización dimensional de los diagra­
mas de Feynman, claves en electrodinámica. 

Sin embargo, no hace falta ir tan lejos para encontrarse con y. 
Si se coleccionan cromos, de esos que aparecen en los paquetes 
de chicle o que se encontraban en las tabletas de chocolate, el 
coleccionisrno pasa a ser un hábito inequívocamente euleriano. 
Si la colección completa es de n cromos, se necesitan aproxima­
damente N compras del producto que los contiene para tenerlos 
todos: 
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LORENZO MASCHERONI 

La primera vocación de este sacerdote 
y matemático italiano (1750-1800) fue 
la poesía. Su adscripción política era 
más bien liberal y afrancesada, por lo 
que en 1797 fue nombrado diputado en 
Milán; fue enviado entonces a París para 
colaborar con Legendre en la implanta­
ción del Sistema Métrico Decimal, pero 
a causa de la ocupación austríaca de 
Milán ya no pudo regresar a su patria, 
pues murió al año siguiente. En 1797 
publicó su obra magna, Geometría del 
compasso (Geometría del compás), y 
su prólogo, en verso, estaba dedicado 
a su amigo Napoleón, quien era, ade­
más, un matemático aficionado, como 
demuestra el teorema que lleva su 
nombre. En esta obra demuestra que la 
exigencia griega de admitir solo cons­
trucciones geométricas usando en ex-
clusiva la regla y el compás era menos 
estricta de lo que se creía: sobra la re­
gla, pues todo lo construible lo es usan­
do solo el compás. Esta tesis -hoy bas­
tante tri v ial- era sorprendente en su 
época; en enunciarla, sin Mascheroni 
saberlo, le había precedido el matemá-
tico danés Georg Mohr (1640-1697), 

Un conocido problema del libro de 
Mascheroni es el problema de Napoleón 
(pues se dice que fue Napoleón quien se 
lo planteó al matemático) que consiste 
en, dada una circunferencia, determinar 
los cuatro vértices de un cuadrado usando 
solo el compás. 

quien la publicó en Euclides danicus (Euclides danés) en 1672. Su conex ión 
con Euler -y la inmorta lidad matemática- le llegó con su libro Adnotationes 
ad calculum integra/e Euleri (Anotaciones al cálculo integral de Euler), que, 
aunque no aportó avances sign ificativos, contiene la constante y y su cá lculo 
(erróneo) con 32 decimales. Desde entonces a y se la denomina constante de 
Euler-Mascheroni. 

Si se intenta resolver el problema haciendo suma y hay su­
ficientes cromos, se tardará muchísimo y los errores se irán acu­
mulando (incluso usando una calculadora de bolsillo). Es más 
aconsejable recurrir a Euler y sumar solo dos cosas: 
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1 1 1 
1 + - + - + ... + - = y+ 1n n. 

2 3 n 

El logaritmo lo dará la calculadora y en cuanto a y aquí apa­
rece con cincuenta decimales: 

0,57721566490153286060651209008240243104215933593992 ... 

Otro ejemplo algo más abstracto sería el siguiente: si se quiere 
saber cuántos divisores de n hay en promedio entre 1 y n, se 
puede emplear la expresión ln n + 2y- l. Se trata de una aproxima­
ción, tanto más exacta cuanto más grande se hace n y más diviso­
res tiene. 

LA CONSTANTE y Y LOS NÚMEROS PRIMOS 

La constante y es mucho menos frecuente que rt o e. No es difícil hallar una 
fórmula que relacione a las tres: 

e'•½ TI~ -•..!.. ( l)n 
--= e 2n l+- . 
& n-1 n 

El propio Euler encontró conexiones entre y y la función zeta, como: 

y= i (-1/ s(n), 
n-2 n 

y hay fórmulas que conectan directamente a y con los números primos, 
como la fórmula de Franz Mertens (1840-1927): 

·1 1· 1 Iln P; e= 1m-- --, 
n- lnpn ;., P; -1 

donde los p son solo números primos. Ya tenemos a y, la función zeta y los 
números primos involucrados. Cabe poca duda de que la tercera constante 
de Euler es importante, y que lo será aún más. 
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LA FÓRMULA DE EULER-MACLAURIN, EN DETALLE 

La expresión de la fórmula de Euler-Maclaurin puede resultar intimidante. En 
su forma más usual se presenta como: 

~/(x) = J f(x)dx+2[t(n)+ f(ü)]+ 8~ [tPl (n)-t"l (o)]+ .. . 
- - 2 2. 

donde los B k son los números Bernoulli y las f <kJ son las sucesivas derivadas 
de f. Una aplicación de la fórmula consiste en hacer n = oo, con lo que en la iz­
quierda puede colocarse una serie, y, en ocasiones, mejorar su convergencia. 
Euler utilizó este truco en el problema de Basilea, como se verá más adelante. 

UNA SUMA QUE SUMA LO INSUMABLE 

En 1735, la última de las grandes aportaciones de Euler en el 
campo del análisis durante su primera estancia rusa es una fór­
mula de gran utilidad que permite calcular de modo aproximado 
una integral a base de sustituirla por una suma, o calcular aproxi­
madamente una sun1a sustituyéndola por una integral. Descubierta 
también de forma independiente por el escocés Colin McLaurin, la 
denominadafórmula de Euler-Maclaurin funciona como sigue: 
dada una funciónf(x), cuando se habla de sumarla, se suele pensar 
en dos cosas, vagamente relacionadas, pero distintas. Cuando se la 
restringe a valores enteros se obtiene una suma: 

" s(n) = 2 f(k), 
kEO 

y cuando se la suma para todo x se obtiene una integral: 

i(n) = f~' f(x)dx. 

Parece evidente que hay algún vínculo entre s( n) e i( n ), pero 
la primera es una suma discreta, mientras la segunda es continua. 
La fórmula de Euler-Maclaurin es un resultado que permite, en 
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muchos casos, pasar de un lugar al otro. Si se conoce s(n), per­
mite evaluar i(n), y si se conoce i(n) se puede calcular s(n). 

EL PROBLEMA DE BASILEA: EL PRINCIPIO 

A su llegada a San Petersburgo el salario de Euler era de 300 ru­
blos, e incluía alojanüento, leña para el hogar y aceite para las 
lámparas. Tras acceder en 1733 al cargo de profesor de matemáti­
cas que había dejado vacante Daniel Bernoulli, la Academia 
aumentó su estipendio a 600 rublos, una cantidad que se vería 
nuevan1ente incrementada ese mismo año gracias a las clases y 
exámemes que empezó a impartir, a propuesta del barón Von 
Münnich, en la escuela local de cadetes. La seguridad económica 
derivada de sus nuevas responsabilidades permitió a Euler con­
traer matrimonio con Katharina Gsell, hija de Georg Gsell, un pin­
tor de origen suizo empleado en la Academia de arte por expreso 
deseo del zar Pedro I. La ceremonia tuvo lugar el 27 de diciembre 
de 1 733, y la joven pareja se trasladó al poco a una casa de ma­
dera, - «extremadamente bien amueblada», en palabras del pro­
pio Euler- ubicada en la isla de W assiljevski, a poca distancia de 
la sede de la Academia de ciencias. Un año después veía la luz el 
primer hijo del matrimonio, Johann Albrecht, que fue apadrinado 
por Von Korff, a la sazón presidente de la Academia. Este hecho 
atestigua la gran estima en que se tenía a Euler en el seno de la 
institución, lo que no resulta de extrañar vistas las aportaciones 
hechas hasta el momento por el matemático suizo. Sin embargo, 
lo mejor estaba aún por llegar. Apenas un año después, en 1735, 
Euler iba a deslumbrar a toda la comunidad matemática con un 
destello de genio: la solución al problema de Basilea. 

En los países anglosajones hay un gusto bastante extendido 
por lo que allí se llama los Top Ten. Son muchos los libros o progra­
mas de televisión dedicados a glosar los 10 primeros de cualquier 
tema. Inmersos en esta tradición se han elaborado incluso listas 
de realizaciones científicas, clasificadas por su belleza intrínseca, 
su repercusión práctica o su altura intelectual. Una de esas listas 
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se realizó sobre cuál era la mejor de las muchas aportaciones de 
Euler. Con otras figuras no hubiera podido hacerse, pues hubiera 
faltado material para llegar a los 10 temas, pero con Euler no hay 
peligro: presenta resultados suficientes para una lista larguísima. 
Y bien, ¿cuál ocupó la primera posición? Pues la fórmula: 

que expresa, precisamente, la solución al problema de Basilea. 
El origen del problema es desconocido pero obedece a una 

duda razonable. Conocida desde antiguo la serie armónica, que es 
la serie que corresponde a la suma de los inversos de los números: 

1 1 1 
l+-+-+-+ ... , 

2 3 4 

y sabido que es divergente, parece lógico preguntarse a conti­
nuación por la suma de los inversos de los cuadrados, que pa­
rece convergente, pero que no se sabe a qué número exacto 
converge: 

1 1 1 
1+2+2+2+ ..... 1,644934. 

2 3 4 

Y ni siquiera se sospecha. Si se suman experimentalmente 
varios miles de términos de esa serie, se nota que se aproxima a 
un cierto valor, pero también se cae en la evidencia de que la serie 
converge muy lentan1ente, tanto que resulta casi impensable pasar 
de los dos decimales de aproximación. 

Parece ser que fue el sacerdote y matemático italiano Pietro 
Mengoli (1626-1686) el primero en referirse al problema de Ba­
silea, pero fue Johann Bemoulli quien lo dio a conocer a Euler, 
quien ya en 1729 lo mencionaba en una carta a su colega Gold­
bach. En 1730 el problema ya estaba en las mentes de todos los 
matemáticos y ejercía entre ellos un atractivo similar al que ejer­
cería el denominado último teorema de Fermat. 
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Euler abordó el tema tan seriamente que se cuenta con varias 
demostraciones suyas de la solución. Todas son muy ingeniosas 
y algunas muy seductoras para los profesionales del análisis, en 
especial una de ellas, publicada en 1741 y que hace referencia a 
técnicas del cálculo integral. La demostración considerada «canó­
nica» es la que los expertos denominan tercera demostración, y 
es la más elegante desde el punto de vista del lector no especiali­
zado. Se encuentra bosquejada en el anexo 2. 

«He encontrado ahora y contra todo pronóstico una 
expresión elegante para la suma de la serie que depende 
de la cuadratura del círculo ... He encontrado que seis veces 
la suma de esta serie es igual al cuadrado de la longitud 
de la circunferencia cuyo diámetro es l.» 
- LEONHARD EULER. 

62 

La resolución del problema fue algo inesperado por la comu­
nidad científica, y la noticia de la solución al problema de Basilea 
dio la vuelta al mundo; una vuelta extremadamente modesta, ya 
que el mundo era entonces bastante restringido, el mundo culto 
mucho más y los medios de comunicación, salvo el correo, de al­
cance muy limitado. 

Euler preparó el camino a su solución con cálculos y manio­
bras preliminares. Por ejemplo, recurrió a sumaciones previas pro­
pias del método de Euler-Maclaurin para probar, antes de empezar, 
una aproximación mejor que 1,64. A base de ingenio, Euler encon­
tró hasta seis cifras exactas y se situó en el punto de partida con: 

1 1 1 
l+-2 +,+,+ ... = 1,644934. 

2 3- 4-

Por otra parte, a alguien acostumbrado a las potencias de n 
y con una memoria tan fabulosa como la suya, no debió escapár­
sele que 1,644934 se parecía mucho a n2/6. De manera que hay que 
suponer que, al iniciar el espinoso camino, ya sabía de antemano 
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dónde iba a desembocar, una ventaja que no tenía ninguno de 
sus contemporáneos. Se supone que el ingenio de Euler ahorró 
el equivalente de sumar unos 30 000 términos de la serie original. 

EL PROBLEMA DE BASILEA: EL FINAL 

Una vez resuelto el problema de Basilea estrictamente dicho, 
Euler no se detuvo aquí. Regresemos a la función zeta, de la que 
ya se habló en el capítulo anterior: 

1 1 1 1 
(;(x ) = l+-+-+-+ ... +-+ ... zx 3x 4x n x 

Para X = 1, se obtiene la serie armónica, y para X = 2, la serie 
del problema de Basilea. Euler profundizó en la cuestión y, a par­
tir de sus trabajos con el problema de Basilea, obtuvo expresiones 
para las series de potencias pares: 

hasta t;,(26), con fórmulas cada vez más aparatosas en las que el 
número n: aparecía siempre elevado a la potencia n que corres­
ponde a t;(n). En 1739, Euler llegó a una expresión general: 

s(Zn) = ( -l)"+1 (2n: )2" B2,, , 
2·(2n)! 
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que involucraba a los números Bk, los números de Bernoulli, 
sobre los que se tratará en el capítulo 4. 

Los números Bk se van haciendo cada vez mayores e intrata­
bles; para hacerse una idea de ello basta con transcribir el miem­
bro cincuentavo: 

50 
_ 39 604 576 419 286 371856 998 202n50 

C( )- 285 258 771457 546 764 463 363 635 252 374 414183 

EL PRIMER PROGRAMA INFORMÁTICO DE LA HISTORIA 

Ada Byron (1815-1852), conocida 
más tarde por Ada King, conde­
sa de Lovelace al contraer matri­
monio con William King, era hija 
de lord Byron, al que ni siquiera 
llegó a conocer, pues sus padres 
se separaron al mes de su na­
cimiento. No tuvo que superar 
ninguna dificultad para cultivar 
sus dotes matemáticas, pues su 
madre las consideraba un eficaz 
antídoto contra las posibles velei­
dades literarias de su hija; el odio 
por la vida y obra de su exmarido 
era profundo y persistente. La fi­
gura central en la vida científica 
de Ada fue el célebre matemáti-

co Charles Babbage (1791-1871), ~:;;~~¡~~0 :
0~::~cr~o~~ ~~ª~1~;9~:!~ª::,::~~~~lar 

responsable del desarrollo de la 
primera computadora de la his­
toria. Ada creó para la máquina 

los números de Bernoulli. 

un algoritmo recurrente que, una vez implementado con tarjetas perforadas 
permitían el cálculo automático de los números de Bernoulli. El procedimiento 
ideado por Ada es, desde el punto de vista informático, un auténtico progra­
ma, el primero de la historia. En los años 80 del siglo xx el Ministerio de Defensa 
de Estados Unidos denominó ADA a su lenguaje computacional MIL-STD-1815 
(el número coincide con el año de nacimiento de Ada) en homenaje a su 
persona. 
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De hecho, el primer software de la historia, es decir, el pri­
mer programa destinado a efectuar un cálculo automático en un 
computador calculaba los números de Bemoulli por un procedi­
miento recurrente. Lo llevó a cabo Augusta Ada King, condesa de 
Lovelace, en 1843, e iba destinado a funcionar - y era informáti­
camente impecable- con el computador mecánico de Charles 
Babbage. 

Los valores impares de l;( n) son muy difíciles de calcular y en 
la actualidad se sigue luchando con ellos. Como es natural, el pri­
mero coincide con la serie armónica: 

1 1 
~(l) = l+-+-+ ... = oo; 

2 3 

Y el tercero, que es un número irracional, se denomina cons­
tante de Apéry: 

1 1 1 1 
~(3) = 1+3+3+3+ ... +-3 + ... = 1,2020569 ... 

2 3 4 n 

Euler aún dio un paso más, un paso casi de visionario. Se 
adentró progresivamente en los dominios de la función zeta - y, 
por consiguiente, en el terreno de los números primos- , al trans­
formar la suma infinita de su función l;(n) en un producto que 
involucraba a los números primos. Quien lo desee puede seguir 
con profundidad a Euler en su camino en el anexo 3. 

LOS PUENTES DE KÓNIGSBERG 

En los primeros meses de 1735, Euler cayó víctima de una enfer­
medad la naturaleza de la cual es imposible determinar a partir 
de las fuentes biográficas de las que se dispone, pero que se sabe 
cursó con una «fiebre feroz» que llegó a amenazar su vida. Tras 
congratularse de su recuperación, tanto en su nombre como en 
el de «los matemáticos de todo el mundo», Daniel Bemoulli le 
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confesó que «nadie guardaba esperanzas de que se recuperara de 
ella [la enfermedad]». Como consecuencia del episodio, el oj9 de­
recho de Euler quedó seriamente afectado, y tres años más tarde 
perdía su uso definitivamente. Todo y con ello, Euler siguió tra­
bajando a su ritmo acostumbrado, y apenas un año después abor­
daba una cuestión radicalmente distinta a sus trabajos anteriores, 
el conocido como problema de los puentes de Konigsberg. Hay 
matemáticos que sitúan este particular episodio en la cima de los 
descubrimientos de Euler, lo que es una distinción extraordinaria. 
¿Por qué? Es un problema geométrico que no parece geométrico, 
pues no implica figura reconocible ni medida alguna; se razona 
solo sobre la posición de determinadas líneas y puntos y sobre el 
modo de ir de unos a otros. Es una fascinante historia sobre algo 
poco corriente. 

En la época de Euler, Konigsberg era una ciudad de la Prusia 
más oriental, situada en aguas bálticas. Denominada en la actua-

SERIES, CONSTANTES Y FUNCIONES: EULER EN RUSIA 



lidad Kaliningrado, es mucho mayor, pertenece al territorio ruso 
y es un enclave geográfico situado entre Polonia y Lituania, fruto 
de las guerras más que de la historia. Como hoy, la ciudad estaba 
regada por el río Pregel, cuyos brazos, al atravesarla, definían una 
isla y tres masas de tierra, que quedaban separadas por sus aguas, 
pero conectadas por siete puentes; estos permitían a sus habitan­
tes atravesar el río y pisar tierra firme, tal y como se observa en la 
ilustración de la página anterior. 

Tan ich1ico escenario ya determinaba numerosos paseos posi­
bles a través de la ciudad y cruzando los puentes, pero algunos pa­
seantes se preguntaron por la posibilidad de convertirlo en ciclo 
cerrado, a saber, ¿era posible pensar en un paseo que empezara 
y terminara en el mismo lugar, pero que solo pasara una vez por 
cada puente? Eso ya no es un simple paseo, sino un acertijo ma­
temático. 

Pasear de todos los modos posibles no es una tarea imposi­
ble. Al fin y al cabo, tan solo hay siete puentes y resultan unos 
cuantos miles de paseos a seguir. Pero la situación sería algo 
kafkiana porque, cualquier camino elegido, se partiera del punto 
del que se partiera, si pasaba por un puente una sola vez, desem­
bocaría pertinazmente en un punto diferente del de partida. 
Podía sospecharse, con cierta razón, que el paseo buscado era 
tan inaccesible como el castillo del autor checo en su conoc_ida 
narración. 

En tiempos de Euler no era raro el planteamiento de enigmas 
semejantes, los cuales, con suerte, se resolvían y se convertían en 
cabezas de puente de teorías matemáticas. Que llegaran a con­
vertirse en iniciadores de toda una rama, rica y frondosa, de las 
matemáticas ya era menos común, pero eso es lo que ocurrió pre­
cisamente con los puentes de Konigsberg. 

Euler tuvo la idea de, a partir de la representación esquemá­
tica de la ciudad (véase la figura 1, en la página siguiente), pres­
cindir de la forma de todos los componentes y sustituirlos por un 
grafo, de manera que se consideren los puntos de tierra como 
vértices y los puentes como camino (figura 2). Razonando de 
modo exclusivo sobre el grafo resultante, Euler extrajo sus con­
clusiones. 
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GRAFOS 

Un grafo es un dibujo en forma de 
red, que consta de dos partes: los 
puntos llamados nodos o vértices 
y los trayectos entre ellos, deno­
minados aristas o arcos. El grado 
de un nodo es el número de arcos 
que concurren en un nodo. Del 
camino seguido por el paseante 
se dirá que es un camino eule­
riano cuando permita discurrir 
por dicho itinerario pasando una 
sola vez por cada arco. El camino 
será un circuito euleriano (figura 
3) cuando empiece y termine el 
recorrido en el mismo nodo. Esto 
es, precisamente, que sea un cir­
cuito euleriano, lo que define para 
muchos lo que sería un «paseo 
perfecto». 
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Así pues, lo deducido por Euler puede escribirse así: 

Llamemos n al número de nodos de grado impar. 

a) sin= O el grafo contiene al menos un circuito euleriano. 

b) Sin= 2 hay al menos un camino euleriano pero no un circuito. 

c) Si n > 2 no hay ni camino ni circuito. 

Dado que, en el caso que nos ocupa, n = 4, los paseantes de 
Kónigsberg se quedaron sin «paseo perfecto». Si le hubiesen pre­
guntado a Euler, les podría haber dicho que la adición o supresión 
de un simple puente habría hecho su problema resoluble. 

UN PROBLEMA RELACIONADO: EL PASEO DEL CABA LLO 

Otra cuestión también estudiada por Euler y que de algún modo 
se rel~ciona con él tema de los grafos es el problema de ajedrez 
del paseo del caballo, abordado en 
1759 en Solution d'une question 
curieuse que ne paróit soumise FIG. 4 

a aucun analyse (Solución a una 
cuestión curiosa que no parece 
sujeta a ningún análisis). El pro­
blema consistía en, partiendo de 
cualquier punto del tablero de aje­
drez, conseguir un recorrido para 
el caballo de manera que pisara 
todas las casillas. Euler encontró la 
solución, poniendo de paso el fun­
damento a los posteriormente de­
nominados grafos hamiltonianos, 
que presentan cantinas que pasan 
una sola vez por cada vértice y vuel­
ven al punto de partida (figura 4). 
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EL NACIMIENTO DE LA TOPOLOGÍA 

Euler denominó geometriam situs a las cuestiones relacionadas 
intelectualmente con la de los puentes, pero fue Johann Benedict 
Listing (1808-1882) quien acuñó, en 1847, el término de topología 
que permanece en la actualidad. La topología es una robusta rama 
de las matemáticas que agrupa conceptos considerados en gene­
ral poco geométricos, como dentro y fuera, cerca y lejos, orienta­
ble y no-orientable, conexo y no-conexo, fronterizo o no, continuo 
y discontinuo, entre otros. La topología se ocupa de cuestiones en 
apariencia alejadas de lo que tradicionalmente se entiende por 
matemáticas. Así, en su marco han encontrado solución proble-

TEOREMA DE LA BOLA PELUDA 

Representemos intuitivamente una esfera recubierta por pelos lisos y lacios, 
suponiendo que en cada punto de la esfera crece un pelo. A continuación, se 
considerará la proyección sobre el plano tangente a la esfera en el punto en 

Un occipucio con el típico remolino. 

que crece el pelo: el conjunto de estas 
proyecciones es semejante a un cam­
po de vectores tangentes a la esfera, 
lo que se denomina espacio tangente. 
El objetivo es «peinar» estos pelos ali­
sándolos sobre la superficie de la bola 
pero evitando las discontinuidades, es 
decir, el peinado no puede tener raya; 
ningún pelo puede cambiar brusca­
mente de dirección con respecto a los 
otros. El teorema afirma entonces que · 
es imposible peinar todos los pelos sin 
que en el total de la esfera nos veamos 
obligados a hacerlo con raya. Cualquier 
intento causará al menos un rizo o re­
molino. Basta con echar un vistazo a la 
realidad que nos rodea para compro­
bar el teorema: si pretendemos peinar 
a un niño sin raya, siempre aparecerá 
un remolino en algún lugar. 
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mas tan dispares como saber cuál es el número núnimo de colores 
para pintar cualquier mapa convencional: son 4. También se ha 
demostrado rigurosamente que siempre hay dos puntos antípodas 
sobre la superficie terrestre con igual presión y temperatura, o que 
cuando se arruga un folio y se superpone a uno liso, siempre hay 
un punto del primero que cae exactamente sobre el punto equiva­
lente del segundo. También dentro de esta rama se ha desarro­
llado el divertido teorema de la bola peluda, que trata el concepto 
de dirección de un modo típicamente topológico. 

Euler hizo algo más que intentar explicar el universo cono­
cido: abrió las puertas de uno desconocido. 

LOS PRIMEROS LIBROS DE EULER 

Durante su primera estancia en Rusia, Euler redactó sus primeros 
tratados. Los libros son densos, pero de lectura fácil, y en ellos ya 
brillan la excelente organización y el estilo, mostrando la legendaria 
claridad expositiva y amenidad de Euler. De esta época es Mecha­
nica sive motus scientia analytice exposi'ta (Mecánica o ciencia 
analítica del movimiento) donde desarrolla los aspectos físicorne­
cánicos de una masa puntual. Lo novedoso es que lo hace con las 
armas del cálculo diferencial e integral, pues lo corriente era darle 
a la mecánica un tratamiento puramente sintético y geométrico. En 
su obra aparecen ya las ecuaciones diferenciales, las masas pun­
tuales y el movimiento de cuerpos elásticos y el de los fluidos, de 
manera que los tomos constituyen el primer tratado moderno de 
mecánica racional. Lagrange los ponderó corno «la primera gran 
obra donde el análisis ha sido aplicado a la ciencia del movimiento». 

Asimismo, dedicó un tratado a la música, Tentamen novae 
theoriae musicae (Una tentativa para una nueva teoría de la mú­
sica) que, aunque data de 1731, no se publicó hasta 1739. Esta obra, 
que forma equipo con otras similares de la misma época de Mer­
senne, Descartes o d'Alernbert, trata de la naturaleza, generación y 
percepción del sonido, del placer musical y de la teoría matemática 
de los temperamentos. 
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Scientia navalis (Ciencia naval) fue la primera gran obra 
euleriana dedicada a la ciencia naval, que cubre tanto los princi­
pios básicos de la hidrostática, la estabilidad de los buques y los 
conocimientos prácticos de la construcción naval y la navegación. 

Asimismo, . escribió memorias y artículos sobre navíos y na­
vegación donde abordaba procedimientos alternativos de nave­
gación que iban desde las máquinas imposibles de movimiento 
perpetuo a la aprovechable energía del oleaje. Lo más interesante 
era la utilización de un sistema de palas, premonitorio de las rue­
das motrices. En 1773, como se verá, regresó al tema. 

Durante los últimos años de su primera estancia en Rusia, 
Euler se encargaba de gran cantidad de actividades en el seno 
de la academia, se ocupaba de los problemas de jardinería e in­
geniería, y escribía sus propios trabajos al tiempo que leía y su­
pervisaba los ajenos. Era miembro de la comisión de medidas. 
Se encargaba incluso de anotar los manuscritos que llegaban a 
la Academia sobre la cuadratura del círculo, y de comprar papel 
y lápiz. Lo que más trabajo le dio fue la revisión de la cartografía 
rusa, por la que, sin embargo, sentía una gran admiración. 

Tanta y tan variada actividad profesional como la que hemos 
repasado en el capítulo no impedía a Euler ver lo delicado de la 
situación política del país. A la guerra ruso-otomana que en 1739 
acababa de terminar, se sumaba el descontento de la aristocracia 
local con respecto a la nutrida presencia germana en los más altos 
cargos del gobierno y la burocracia. Con el acceso al poder de Isa­
bel, la hija de Pedro, en 1740, el temor de que se emprendieran 
fuertes purgas contra la élite de origen germano - y por extensión, 
con todos los extranjeros- impulsó a Euler a aceptar la oferta de 
empleo de la Academia de Ciencias Prusiana, con sede en Berlín. 
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CAPÍTULO 3 

Berlín, capital del análisis 

Siendo ya una personalidad científica de 
primera fila, Euler atendió la llamada de Federico II, 

el rey ilustrado de Prusia. Su obra de esa época se abrió a 
otras disciplinas, como la geometría, la mecánica de fluidos 

o la ingeniería, pero nunca abandonó su énfasis en el 
análisis, al que dedicó una tema de obras para la 
eternidad y el estudio de un tema fundamental: 

el cálculo de variaciones. 





«Señora, he llegado de un país donde las personas son ahorcadas 
si hablan» fue la respuesta de Euler a Sophia Dorothea, la reina 
madre del rey de Prusia cuando esta, amablemente, le reprochó a 
Euler su escasa participación en una conversación palaciega. 

En 1741, Euler había regresado al calor de la Europa tradicio­
nal, al centro del universo iluminista y uno de los focos de irra­
diación de la cultura occidental, a Berlín, a la capital del reino de 
Prusia, donde imperaba la voluntad del más liberal de los reyes 
de Europa, Federico II el Grande (1712-1786). Allí coincidió con 
luminarias tales como Fran9ois Marie Arouet (1694-1778), más co­
nocido como Voltaire, el músico Johann Joachim Quantz (1697-
1773), el pensador Immanuel Kant (1724-1804) o el polifacético 
Johann Wolfgang von Goethe (1749-1832). 

A la llegada de Euler, Federico II andaba embarcado en unas 
escaramuzas locales por Silesia, por lo que el suizo tuvo que vivir 
de los préstamos de diversos conocidos hasta el regreso real, en 
1746. Mientras tanto, Euler adquirió un terreno y una casa, plantó 
patatas y otros vegetales de subsistencia en su jardín, y se dedicó al 
trabajo científico como empleado de la Societas Regia Scientiarum. 

Esta era una institución fundada en 1 700 por el rey Federico I, 
por iniciativa de Leibniz. Sufrió un pequeño declive durante los 
años en que pasó a depender de Federico Guillermo I, quien no 
compartía el interés de su antecesor por las cuestiones intelec-
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tuales ni, en general, por nada que no le reportase un provecho 
político o militar inmediato. Por fortuna para la pervivencia de 
la institución, Federico II, terminados los combates en Silesia, se 
dedicó a cuidarla y la mantuvo en el lugar que se merecía. 

Cuando Federico regresó, Euler ya había presentado un mon­
tón de artículos y había escrito varios libros. Por entonces, el presi­
dente de la Academia era Pierre Louis Moreau de Maupertuis, y 
Euler dirigía la sección de matemáticas, aunque también se ocu­
paba, entre otras cosas, de las finanzas, la astronomía, la ingeniería 
y la botánica. De acuerdo con el historiador Adolf P. Yushkevich: 

[ .. . ] supervisó el observatorio y los jardines botárúcos; seleccionó el 
personal, supervisó varias cuestiones financieras, y, en particular, 
logró la publicación de varios calendalios y mapas geográficos, cuya 
venta era una fuente de ingreso para la Academia. El rey también 
encargó a Euler problemas prácticos, tales como el proyecto en 
17 49 para corregir el nivel del canal de Finow [ ... ] En tal período 
también supervisó el trabajo de las bombas y tuberías del sistema 
hidráulico de Sanssouci, la residencia real de verano. 

Sin embargo, el monarca no estaba satisfecho con respecto 
a sus méritos, como demuestran estas líneas de una carta suya a 
Voltaire: 

Quería tener una bomba de agua en mi jardín: Euler calculó la fuer­
za necesaria de las ruedas para elevar el agua a una reserva, desde 
la que caería después a través de canalizaciones para finalmente 
manar en el palacio de Sanssouci. Mi molino fue construido de forma 
geométrica y no podía elevar una bocanada de agua hasta más allá 
de cinco pasos hacia la reserva. ¡Vanidad de las vanidades! ¡Vanidad 
de la geometría! 

En 17 4 7, Euler fue nombrado miembro de la Royal Society; en 
17 48, ganó nuevamente el Grand Prix de la Academia de ciencias 
de París con una memoria sobre el problema de los tres cuerpos, 
cuyo contenido orientó a Alexis Claude Clairault (1713-1765) en 
sus propios trabajos en este campo. En 1758, fue nombrado aca-
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démico por la Academia parisina, de manera que en Euler ya con­
vergían todos los nombramientos honoríficos posibles. 

Tal era su fama que cuando el ejército ruso invadió Alemania 
en 1760 y dañó gravemente una propiedad que el sabio suizo tenía 
en Charlottenburg, el general del ejército invasor, Gottlob Curt 
Heinrich von Tottleben, se apresuró a indemnizar a Euler y pedirle 
disculpas por los hechos proclamando «Yo no hago la guerra a la 
ciencia»; también la emperatriz rusa Isabel le envió 4000 coronas 
para resarcirlo de sus perjuicios. 

Alrededor de 1750 alcanzó gran notoriedad la disputa acerca 
de la prioridad del principio de mínima acción, que Konig atribuía 
a Leibniz y Maupertuis, a sí mismo. Parece que Euler también lo 
había descubierto por su cuenta, pero no lo hizo público para no 
disgustar al que nominalmente era su jefe. Voltaire tomó partido 
por Konig y, en 1752, escribió un relato irónico (Diatriba del doc­
tor Akakia) donde ridiculizaba a Maupertuis. Federico zanjó la 
polémica expulsando a Voltaire del reino, y Maupertuis, muy afec­
tado por los hechos, se marchó de Berlín. 

A partir de ese momento, todo quedó en manos de Euler, pero, 
a pesar de ello, no fue nombrado presidente de la Academia. En 
primera instancia, Federico le ofreció el puesto a Jean-Baptiste 
le Rond d'Alembert, una figura de prestigio inmaculado, pero con 
el que Euler no tenía muy buena relación. Euler se veía ya bajo la 
férula de otro francés; incluso mencionó que la Academia de Ber­
lín corría el riesgo de convertirse en una copia de la francesa; y lo 
cierto era que los sucesivos nombramientos reales de miembros 
franceses - sobre todo filósofos- apuntaban en esta dirección. 
Pero en el curso de sus negociaciones para su nombramiento, 
d'Alembert se entrevistó con un resignado Euler y se quedó muy 
impresionado. Aquel científico de aspecto tosco tenía una memoria 
incomparable, dominaba todos los campos y era un prodigio ma­
temático, por lo que resultaba incomprensible no promocionar a 
semejante talento. D'Alembert rechazó muy cortésmente el puesto 
de presidente de la Academia y le sugirió al rey que nombrara a 
Euler, un sabio de prestigio mundial, que, además, ya tenía en su 
casa. Pero, como se ha dicho, las virtudes personales de Euler no 
incluían la conversación ocurrente, la discusión constante de ma-
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terias artísticas, literarias o filosóficas ni las maneras cortesanas, 
que tanto agradaban a Federico II, quien las prefería a los conoci­
mientos científicos de su «Cíclope matemático», mote con que de­
signaba a Euler en su correspondencia con Voltaire. El rey desoyó 
el consejo de D'Alembert y se nombró a sí mismo presidente de la 
Academia, lo que al parecer desagradó a Euler. 

A partir de ese momento, la relación se agrió; Euler, quien 
recibió cantos de sirena desde Rusia, decidió volver a emigrar, 
pero el rey Federico no se lo puso fácil; en aquel tiempo no se 
abandonaba así como así el servicio de un monarca, y el rey le dio 
largas. Finalmente, Euler fue autorizado a irse. 

UNA FÓRMULA DE EULER PARA POLIEDROS 

De entre todos los trabajos de Euler en su etapa berlinesa, hay uno 
que destaca por su difícil clasificación dentro del «mapa» de las 
matemáticas de su época. Al final del capítulo anterior esbozába­
mos los principios de un ran1a novedosa de las matemáticas, la teo­
ría de grafos, inaugurada por el propio Euler con su trabajo sobre 
los puentes de Konigsberg, y del área más general en la que aquella 
se inscribe, la topología. Prin1ero de forma privada, en cartas a di­
versos corresponsales en 1750-1751, y públicamente en un artículo 
de 1758, Euler regresó a esta segunda, con un resultado extraordi­
nario: su fórmula para poliedros convexos de C caras, A aristas y V 
vértices: 

C-A+ V=2. 

A principios de la década de 2000, los lectores de la prestigiosa 
revistaMathematical inteUigencer votaron para establecer las que 
eran, en su opinión, las más bellas fórmulas matemáticas de la his­
toria; esta fórmula sobre poliedros obtuvo el segundo lugar, por 
detrás de otra también estrechan1ente asociada con Euler, erri + l = O. 

La expresión numérica C-A + V es, como se diría hoy, un in­
variante topológico. Un invariante topológico es aquella propie­
dad de una superficie que se conserva sin importar las sucesivas 

BERlÍN, CAPITAL DEL ANÁLISIS 



transformaciones a las que se somete dicha superficie; en con­
creto, las que resultan de deformarla sin romperla. La superficie 
de la que la fórmula de Euler es un invariante topológico es la 
esfera y, por ende, lo es también de cualquier poliedro tridimen­
sional homeomorfo a ella, es decir, de los cuerpos que pueden 
obtenerse de deformar la esfera sin romperla. 

La fórmula C- A+ V= 2 se acostumbra a designar comofór­
mula de Euler-Descartes, ya que, aunque fue Euler quien la dio a 
conocer al mundo oficialmente, René Descartes (1596-1650) ya la 
había descubierto en 1649 -en realidad descubrió otra cosa que 
implicaba el resultado de Euler-, aunque murió antes de poder 
publicarla. 

CARACTERÍSTICAS DE UN POLI EDRO 

Tómese un poliedro convexo cualquiera; en realidad, lo que Euler 
enunció vale para cualquier poliedro, deformable en uno convexo, 

FIG.1 

Tetraedro Hexaedro (cubo) Octaedro 

Dodecaedro Icosaedro 
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con tal que esté formado por una sola 
pieza -no por dos poliedros unidos por 
un punto o por un segmento-- y que no 
tenga agujeros. 

Llamemos V, A y C al número de 
vértices, aristas y caras de un poliedro 
de las características mencionadas más 
arriba. Euler constató, como se ha visto, 
que se verifica: 

C-A+ V=2. 

Esta sorprendente relación es válida 
siempre, hay que insistir, cualquiera que 
sea la forma del poliedro, por intrincado 
que sea su diseño y por estrambóticas 
que sean sus caras ( con una excepción: 
los poliedros «estrellados» cuyas caras 
se interpenetran). La observación de 
Euler no es nada evidente, aunque puede 
ser comprobada fácilmente, tanto en los 
armónicos y simétricos sólidos platóni­
cos (figura 1, página anterior), como en 
cualquier «desgarbado» poliedro como 
el que se ilustra en la figura 2. 

Se trata de una fórmula numérica 
independiente de las características 
puramente geométricas de la figura. No 
depende de la forma del poliedro, pues 
es una propiedad de cualquier poliedro 
convexo sin agujeros. 

Actualmente, se consideran a nivel 
elemental ya no simples poliedros, 
sino superficies, que se denominan S, 
con agujeros y sin ellos, y el número 
x(S) = C-A + V se conoce como ca­
racterística de S. Para las superficies 
homeomorfas a la superficie esférica, 



como los poliedros, la característica vale 2. Para el toro (figura 3), 
o la botella de Klein (figura 4), y demás superficies homeomorfas 
a ellos, la característica vale O. Para superficies tridimensionales 
de género g -el género g viene a ser algo así como el número de 
agujeros que tiene S- se verifica: 

x(S)=C-A+ V=2-2g 

LA HOMEOMORFÍA 

La denominación puede sonar extraña, pero el significado de homeomorfia 
(del griego homoios, «misma» y morphe, «forma») es bien conocido por los 
matemáticos. Se refiere a toda cosa que se pueda derivar de otra (y vicever­
sa) por simple deformación, sin rotura, de modo continuo. Por ejemplo, el 
cubo de la figura es homeomorfo a una esfera. 

F=?l_~_ 
LJ) ~ 

Los matemáticos, en especial los topólogos, llaman a esos cuerpos, que se 
transforman el uno en el otro por simple deformación, sin rotura, cuerpos 
homeomorfos. Un ejemplo clásico de figuras homeomorfas o topológicamen­
te equivalentes son una taza y una rosquilla, pues pueden deformarse conti­
nuamente el uno en el otro. 

+ + 

La taza y la rosquilla son homeomorfos por una razón geométrica tan impen­
sada como la que ambos tengan un solo agujero. Se dice que el número de 
agujeros de una superficie es un invariante topológico, pues no varia cuando 
media una homeomorfia. 
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y a la característica se la llama característica de Euler-Poincaré. 
Es una expresión que ha hecho fortuna en matemáticas y forma 
parte de disciplinas tan abstractas corno el álgebra homológica. 
La fórmula: 

C-A+ V=2-2g 

fue enunciada explícitamente en 1813, por Sirnon Antaine Jean 
L'Huillier (1750-1840). Su origen es, corno hemos visto, inequívo­
camente euleriano. 

REGRESO A LA TEORÍA DE NÚMEROS: 
LA CONJETURA DE GOLDBACH 

La correspondencia de Euler con Goldbach no se resintió del 
traslado del primero a Berlín y así, en una carta, fechada el 7 de 
junio de 1742, al año de la llegada de aquel a la capital prusiana, 
Goldbach le sugería que todo entero par era la suma de dos ente­
ros, p y q, donde o valían 1 o eran primos impares. El intercambio 
de ideas continuó hasta que Euler dio con una formulación de la 
sugerencia que sería definitiva y cuyo enunciado es quizá la con­
jetura más famosa de toda la historia después del teorema de 
Fermat: 

Todo entero par mayor que 2 puede expresarse como suma 
de dos primos. 

Es la conjetura de Goldbach, llamada así en honor de quien 
la planteó, aunque fuera con otras palabras. Se la conoce tam­
bién corno conjetura fuerte de Goldbach en contraposición a la 
conjetura débil de Goldbach, matemáticamente más sencilla, que 
postula: 

Todo número impar mayor que 7 puede escribirse como 
suma de tres primos impares. 
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La coajetura fuerte implica la débil, pero no al revés. La de­
mostración es relativamente sencilla: sin es impar y mayor que 7, 
es que n =p+3> 7, y, portanto,p esparyp> 7-3=4. Si se cumple 
la hipótesis fuerte de Goldbach, p es suma de dos primos, ade­
más, impares, pues, p > 2 y par. Por tanto n = p + 3, con p igual a 
la suma de dos primos impares. Luego, n es suma de tres primos 
impares, corno se quería demostrar. La coajetura fuerte implica 
la débil. 

La conjetura fuerte de Goldbach parece cumplirse para cual­
quier número par, e incluso, de más de una manera: 

4 = 2+2 
6 = 3 + 3 
8=3+5 

10 = 3 + 7= 5+ 5 
12 = 5+7 

14 = 3+11 = 7+7 
16 = 3+13 = 5+11 
18 = 5 + 13 = 7 + 11 
20 = 3 + 1 7 = 7 + 13. 

En diversos sitios de Internet, se hallan sumas de tipo Goldbach 
destinadas a demostrar que la coajetura se cumple siempre, con 
independencia del número par que se elija. Por ejemplo, el 1000: 

1000 = 179 + 821 = 191 +809=431 +569 =- 19+ 1019. 

Asimismo, se puede elegir una suma con primos impares, uno 
negativo, para ver que la coajetura de Goldbach va más allá de los 
simples números naturales. Incluso pueden hallarse en Internet 
programas informáticos para proporcionar sumas de Goldbach 
para cualquier número razonable que se elija, siempre y cuando 
no sean números muy grandes. También se pueden hallar sumas 
de Goldbach que involucran parejas de primos increíblemente 
desiguales en tamaño, como por ejemplo esta: 

389965026819938 = 5569 + 389965026814369. 
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En esta pareja, hallada hace poco por el numerólogo Jorg 
Richstein, uno de los dos sumandos es de 4 dígitos, mientras que 
el otro tiene 15 y ambos son primos. 

CHRISTIAN GOLDBACH 

Matemático originario de Prusia (1690-
1764), residió la mayor parte de su vida 
en Rusia y trabajó como cazatalentos 
para la Academia de San Petersburgo, 
donde también desempeñó el cargo de 
secretario. Amigo de Leibniz, Abraham 
de Moivre, Nicolaus Bernoulli (y otros 
miembros de su distinguida familia) y 
Euler, apoyó fuertemente la candidatu­
ra de este a un puesto en la academ ia 
y fue un elemento determinante en su 
viaje a Rusia . Llegó a ejercer la tutoría 
del zarevich Pedro 11 y desempeñó altos 
puestos en el ministerio ruso de asuntos 
exteriores, donde trabajó como criptó­
grafo. Dedicó sus esfuerzos profesiona-
les a muchos ámbitos y legó algún resu ltado perdurable en el campo de las 
series, sobre todo trabajando en colaboración con Euler. La personalidad de 
este último parece haberlo estimulado de un modo especial; pocos conocen, 
por ejemplo, que Goldbach, seguramente no capacitado para resolverlo, fue 
quien interesó a Euler por el problema de Basilea, cuya soluc ión haría a este 
famoso. La correspondencia entre Euler y Goldbach, extensa y repleta de ma­
temáticas, llega casi a las 200 cartas. El aprecio que Euler sentía por Goldbach 
queda de manifiesto al elegirlo padrino de su hijo primogénito. 

Influencia de la conjetura de Goldbach 
Actualmente, Goldbach es recordado no por sus teoremas, sino por la conjetu­
ra que lleva su nombre. En 1992, apareció la novela El tío Petras y la conjetura 
de Goldbach, de Apostolos Doxiadis; el editor Faber and Faber ofreció un 
premio de un millón de dólares, válido por dos años, a todo el que encontrara 
una solución. Con toda probabilidad sabía que no iba a recibir respuesta. 
La conjetura, hasta ahora, solo se ha probado en la ficción; en una película 
española, La habitación de Fermat, dirigida, en 2007, por Luis Piedrahita y 
Rodrigo Sopeña. 
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Hasta la actualidad nadie ha podido probar ninguna de las dos 
conjeturas. La «débil» puede considerarse casi demostrada, pues 
se sabe que es cierta para todos los números mayores que 101346. 

Para poder presumir de que la conjetura débil de Goldbach está 
probada, hay que proceder a demostrarla en los casos pendientes: 
empezar con 7 y llegar a 101346

, un salto de complejidad que lleva­
ría a cualquier máquina existente que intentara realizar el cálculo 
un tiempo, contado en segundos, superior al número de átomos 
del universo. 

Con la conjetura «fuerte» de Goldbach, la situación está más 
clara: no existe prueba alguna. Ni Euler pudo con ella. Se ha po­
dido comprobar, con supercomputadores Cray, para números 
enormes, hasta 1018

, pero la prneba permanece en el limbo de los 
desafíos intelectuales sin resolver. 

Se ha llegado a resultados admirables, como el del matemá­
tico chino Chen Jingrun (1933-1996), quien probó ya, en 1966, 
que todo número lo bastante grande se podía descomponer en 
suma de otros dos, uno primo y el otro producto de, a lo más, 
dos p1imos. 

EL CÁLCULO DE VARIACIONES: MÁXIMOS Y MÍNIMOS 

El cálculo de variaciones puede considerarse una generalización 
del cálculo, y por tanto, se incluye firmemente en el campo del 
análisis. Se ocupa de encontrar el camino, curva, superficie, etc., 
para la cual una función determinada posee un valor estacionario; 
normalmente, un valor máximo o uno mínimo. Es de fundamental 
importancia en física y, en particular, en ámbitos prácticos como 
la elasticidad o la balística, de gran interés ya en la época de Euler. 
No es de extrañar que Euler llegará a él - en 17 44, a los tres años 
de establecerse en Berlín- desde el estudio de la física; en con­
creto, como se verá, del pr incipio de mínima acción en el ámbito 
de la mecánica. 

Como casi todos los grandes temas de las matemáticas, el tema 
general de los máximos y mínimos viene de muy lejos. Se puede 
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El trayecto de un 
rayo de luz 

reflejado en una 
superficie que va 
de A a B mide lo 

mismo que la 
recta que va de A' 

a B. Por tanto, el 
espacio recorrido 

es mínimo. 

FIG. 7 
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pensar en un problema típico, el problema - o mejor dicho, le­
yenda- de Dido. Dido, reina de Tiro, tras huir acompañada de sus 
últimos fieles, llegó a las costas de la ciudad que sería su reino, 
Cartago. Allí, suplicó a Jarbas, el rey del lugar, un pedazo de tierra 
donde poder asentar a su gente y este se lo concedió, pero con una 
condición: los dominios de Dido serían aquellos que la reina consi­
guiera encerrar dentro de una simple piel de toro. Para hacer la 
explicación más fácil, se puede suponer que la costa es recta, sin 
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B 

golfos, ni bahías, ni cabos, ni 
promontmios. 

La reina empezó por cortar 
en una tira finísima la piel en 
cuestión y la convirtió en una 
cinta de longitud considerable, 
que unió por los extremos (fi­
gura 5); luego, aplicó la condi­
ción básica de los isoperímetros, 
es decir, de las superficies de 
igual longitud de frontera. Una 
parte de la frontera era el mar; 
el resto de frontera debía conte-
ner el área máxima. La solución 
es que la cinta de piel de toro 
adopte la forma de una semicir­
cunferencia con el centro en la 
costa (figura 6). 



FIG.9 

Rayo incidente 

Perpendicular 
1 

.. 

El problema de Dicto es un 
problema de perímetros iguales 
típico, como muchos que se dan 
en el mundo físico. Forma parte 
de una clase más extensa de pro­
blemas, que en el fondo se pare­
cen, pues lo que se está buscando 
es un extremo -máximo o mí­
nimo- dadas unas condiciones 
iniciales inamovibles. Un ejemplo 
muy claro es de origen antiquí­
simo, pues ya se lo planteó Herón 
de Alejandría ( ca. 10-70) con la re­
flexión de la luz. Se apercibió de 
que el camino a seguir por un rayo 
que va de A a B reflejándose en un 
espejo sigue la trayectoria en que 
el trayecto es mínimo (figura 7). Medio de índice n, 

Con el tiempo, Fermat emi­
tió su ley de refracción, (lla­
mada ley de Snell), que dice que 

1_____., 
1 e, 

Medio de indice n2 

n 1 sen 01 = n 2 sen 02. Y aquí ya no Rayo reflejado 

era mínimo el espacio recorrido, 
o no exactamente. Lo que era mí-
nimo era el tiempo empleado por el rayo de luz para ir de A a B, y 
el espacio era en realidad -como se diría hoy- una función del 
tiempo: e= v • t, siendo v la velocidad del rayo de luz en el medio 
que lo refractaba. Y de este modo ya se está haciendo mínima una 
función: f (t) = vt (figuras 8-9). 

FIG. 10 y(x) + Sy(x) 

- --------,._____" 
> (b,y(b)) --------
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PIERRE DE MAUPERTUIS 

Aunque su familia edificó su fortuna en 
la piratería -su padre era un excorsario 
ennoblecido- y se le presentaron oportu­
nidades profesionales en la milicia, Pierre 
Louis Moreau de Maupertuis (1698-1759) 
se decidió por la ciencia , destacando 
como matemático, físico, naturalista y as­
trónomo. Seguidor de las teorías newto­
nianas, Maupertuis-emprendió una expe­
dición a la lejana Laponia para recolectar 
datos sobre la medida del meridiano 
terrestre y concluyó que la Tierra estaba 
achatada por los polos, confirmando así 
la teoría de Newton. Maupertuis también 
fue el primero en enunciar el principio de 
mínima acción. Algunos historiadores han 
puesto en duda la prioridad de Maupertuis pues sostienen que el principio ya 
era conocido y utilizado por Euler. Las relaciones entre Maupertuis, una de las 
figuras más destacadas de la Academia prusiana, y Euler, atravesaron momen-
tos de considerable tensión. Maupertuis escribiría, acerca del suizo, «Euler .. . es 
en su conjunto un personaje extremadamente peculiar ... un hombre incansable-
mente fastidioso, al que le gusta meterse en todos y cada uno de los asuntos, 
aunque la forma de la Academia y las directrices de nuestro rey prohiban esta 
clase de intromisiones». 

La mencionada «variación» no es más que un instrumento 
imaginario de cálculo. Si y(x) es lacUIVaque, pasando por (a,y(a)) 
y (b,y(b)), satisface las condiciones buscadas, la variación es la 
cUIVa ligerísirnarnente alterada, «variada», a la que se designa con 
el símbolo 6 delante (figura 10). 

En 1744-1746, Maupertuis enunció su principio de mínima 
acción, que se podría traducir corno «la naturaleza es ahorrativa 
en sus acciones», pues siempre las «lleva a cabo» siguiendo la 
mínima acción posible. 

La «acción» es una magnitud definible. Un modo de descri­
birla, aunque no el único, es la suma del momento de las fuerzas 
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implicadas multiplicada por el camino recorrido, y es eso lo que 
debe ser mínimo. 

Euler expuso su propia versión del principio en 17 44, en un artí­
culo titulado Método para lwllar líneas curvadas que gozan de pro­
piedades de máximo o mínimo -al que los historiadores suelen 
referirse por el comienzo del título latino original, Metlwdus-, y de 
esta versión será la que partirá el cálculo de variaciones moderno. 

«Dado que la textura del universo es la más perfecta y la obra 
de un Creador sapientísimo, nada sucede en el universo sin 

obedecer alguna regla de máximo o mínimo.» 
- LEONHARD EULER. 

En 1755 un matemático italiano de solo diecinueve años, Giu­
seppe Luigi Lagrange, escribió una extensa carta a Euler en que 
resolvía un problema perfeccionando su sistema del cálculo de 
variaciones. Lagrange publicó su método en 1 772 con la bendición 
de Euler, que reconoció la valía del trabajo. 

Explicado en términos actuales, el cálculo de variaciones con­
siste en poner analíticamente en marcha el principio de mínima 
acción. Se empieza por escribir el llamado lagrangiano del sistema, 
al que llamaremos L y que es igual a L = C- P, diferencia entre las 
energías cinética C y la potencial P. El lagrangiano es un funcio­
nal, una función de funciones. Si nos circunscribimos al caso más 
trivial, en el que solo hay un camino que es una función x( t) del 
tiempo, el lagrangiano es de laformaL(x,x,t), donde se indica con 
la notación newtoniana x a la derivada primera de x. 

La integral de acción adopta la forma: 

S = f1; L(x,x,t)dt, 

y eso es lo que hay que minimizar (y en ciertos casos, maximizar). 
Aunque de formas distintas, tanto Euler como Lagrange llegaron a 
unas ecuaciones diferenciales (habitualmente hay varias) del tipo: 

d aL aL 

dt ax ax' 
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D'ALEMBERT Y SU PRINCIPIO 

D'Alembert (1717-1783) formuló en 1743, en el Traité de dynamique (Tratado de 
dinámica), el principio que lleva su nombre; este es una afirmación de la mecá­
nica analítica que postula que en un sistema dinámico todo movimiento virtual 
permitido por las ligaduras entraña un trabajo nulo. Dicha formulación permite 
orillar el principio de mínima acción o de l mínimo esfuerzo y le vincula con 
Euler, pues conduce matemáticamente a las ecuaciones de Euler-Lagrange: 

una fórmula fundamental de la mecáni.ca clás ica, donde Les el lagrangiano y 
las X" las llamadas coordenadas generalizadas del sistema. 

Un sabio de la época 
D'Alembert era hijo ilegítimo del caballero Destouches, aunque nunca fue re­
conocido. Su nombre proviene a medias del de la iglesia en cuyos escalones 
lo abandonaron (St. Jean-le-Rond) y de un supuesto satélite de Venus (Alem­
bert). Editó, junto con Denis Diderot (1713-1784) la traducción del inglés de la 

que en la actualidad se denominan ecuaciones de Euler-Lagrange 
y que dejan el problema reducido a resolverlas. 

Las ecuaciones de Euler-Lagrange figuran en todos los textos 
avanzados de análisis, y transforman la integral de acción en unas 
simples condiciones - simples relativamente- en derivadas par­
ciales. Constituyen el punto central del cálculo de variaciones y 
puede consultarse el anexo 4 para ver su deducción formal. 

EULER Y LA GEOMETRÍA 

Cuando Euler residía en Berlín, acostumbraba a enviar algu­
nos artículos a la Academia de San Petersburgo, en especial de 
aquellos temas cuyas raíces se hundían en cuestiones anteriores 
publicadas allí, es decir, si alguno de sus artículos elaborados 
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Cyclopaedia de Ephraim Chambers, que 
más tarde se reconvirtió en l'Enciclopédie, 
pues la reredactó y amplió con unos 1700 
artículos nuevos, matemáticos, filosóficos, 
literarios y musicales, incluyendo su céle­
bre y liberal Discours préliminaire (1751). 
Tras ingresar en la Academia de ciencias 
de Berlín, en la Royal Society, en la Acade­
mia de Ciencias de París y en la Academia 
Francesa de la Lengua, fue nombrado se­
cretario de esta en 1772. Como matemá­
tico d'Alembert aportó la primera prueba 
(errónea y posteriormente corregida por 
Gauss) del teorema fundamental del álge­
bra: «todo polinomio real de grado n tiene 
n ceros en el cuerpo complejo». También 
aportó un magnífico criterio de conver­

gencia de series y, en física teórica, el llamado operador de d'Alembert. En teoría 
de la probabilidad se le recuerda por la martingala de d'A lembert. Compitió con 
Euler en la mejora de las lentes astronómicas. 

en Berlín trataba de un tema ya estudiado en Moscú, el artículo 
nuevo se enviaba a Moscú. En 1763, Euler presentó Solutio fa­
cilis problematum quorundam geometricorum di.fficillimorum 
(Una solución fácil para un problema muy difícil de geome­
tría), un escrito puramente geométrico, euclidiano y complicado, 
que se publicó en 1767, cuando Euler ya había regresado a San 
Petersburgo. 

En él, Euler demostró por primera vez que en todo trián­
gulo que no fuera equilátero -en cuyo caso todo degenera en 
un punto- el ortocentro (O; punto del triángulo donde se cortan 
las tres alturas), el circuncentro (C; punto del triángulo donde 
se cortan las tres mediatrices) y el baricentro, también llamado 
centroide (B; punto del triángulo donde se cortan las tres me­
dianas) están sobre la misma línea, la llamada posteriormente 
recta de Euler. El incentro (punto de intersección de las tres 
bisectrices) está en la línea solo si el triángulo es isósceles; si 
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92 

no, no. Del centro del círculo de Euler (CE), se habla unas líneas 
más adelante. 

No solo se verifica que O, By C están alineados, sino que ade­
más se cumple una relación métrica precisa: 

2d (B, C) = d (B, O). 

Es decir, la distancia entre el baricentro y el 01tocentro siem­
pre es el doble de la distancia entre el baricentro y el circuncentro 
( figura 11). 

Aunque, como ya se comentó, el incentro no está en la recta de 
Euler salvo si el triángulo es isósceles, Euler ideó una fórmula que 
da la distanciad entre ambos puntos, el incentro y el circuncentro: 

d2 =R(R-2r), 

donde R y r son los respectivos radios de los círculos circunscrito 
e inscrito. 

Transcurrido un tiempo desde 1767, Karl Wilhelm Feuerbach 
(1800-1834) y Olry Terquem (1762-1862) hallaron el círculo de 
centro CE, que se conoce como círculo de Euler. Se trata de un 
círculo que pasa por los nueve puntos siguientes: los puntos me­
dios de cada lado del triángulo; los tres pies de las tres alturas y, 
por último, el punto medio del segmento que va de cada vértice al 
ortocentro (figura 12). 

' 1 

1 

1 

1 

1 

FIG. 12 

Recta de Euler 
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FOTO SUPERIOR: 

El techo del 
estadio olímpico 
de Múnich es una 
superficie mínima, 
y para diseñarla 
se echó mano 
del cálculo de 
variaciones. 

FOTO INFERIOR 
IZQUIERDA: 

En 1750, Euler 
dio a conocer 
el megascopio, 
un aparato de 
proyección para 
cuerpos opacos. 
Estaba formado 
por dos espejos 
reflectores 
cóncavos y dos 
lámparas que 
iluminaban 
el objeto y 
provocaban 
su proyección. 

FOTO INFERIOR 
DERECHA: 

Un sello italiano 
ilustra una 
de las cimas 
intelectuales de 
Euler, el concepto · 
de característica 
de un poliedro . 
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300 anni dalla nascita di 
Leonhard Euler 
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LOS CENTROS DE UN TRIÁNGULO 

Se llama centro de un triángulo a todo punto P que desde el punto de vista 
geométrico es poseedor de una propiedad privilegiada en referencia a deter­
minadas líneas (alturas, medianas, bisectrices, etc.) y define circunferencias 
u otras figuras sencillas, sujeto de propiedades curiosas relacionadas con el 
triángulo de partida. Esta sería una definición muy vaga si no se añadiera la 
condición de que P fuera invariante respecto de simetrías, rotaciones y dilata­
ciones. Un ejemplo de tales centros de un triángulo son los ya clásicos baricen­
tro, ortocentro, circuncentro e incentro. Pero hay muchos más centros. El artí­
culo de Euler sobre los centros de un triángulo provocó la sorpresa entre los 
geómetras, quienes creían haberlo dicho casi todo de los puntos privilegiados 
de un triángulo; en su época y años posteriores los geómetras descubrieron 
muchos centros más. De hecho, en la actualidad hay webs especializadas en 
la enumeración y estudio de tales centros, como la Clark Kimberling 's Ency­
clopedia of Triangle Centers, que menciona más de 3 500 puntos. 

Además, se da otra relación relativa a las distancias: 

d (CE,O) = d (CE,C). 

«La naturaleza de algunos de sus más sencillos descubrimientos 
es tal que uno bien puede pensar en el fantasma de Euclides 
diciendo "Pero ¿cómo no se me ocurrió?".» 
- H.S.M. COXETER EN RELACIÓN AL TRABAJO DE EULER. 
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Como cabe suponer, los centros de un triángulo no constitu­
yeron el único centro de interés geométrico de Euler. Se podrían 
citar muchos otros temas, pero hay uno que destaca por su gran 
dificultad, sin comparación posible con lo simple del enunciado. 

En 1751, Euler propuso por carta a Goldbach lo siguiente: 
averiguar, dado un polígono convexo cualquiera de n lados, el 
número de modos de dividirlo en n-2 triángulos mediante diago­
nales que no se corten y si diferentes orientaciones se cuentan 
separadamente. 
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En el fondo, lo que Euler se estaba preguntando era por el 
número de cortes de través que había que darle a un «pastel» po­
ligonal, como se ilustra en esta página. Se trata de un complicado 
problema de combinatoria, cuya solución es Cn_

2
, donde: 

EL EULER MENOS CONOCIDO 

Euler se interesaba por todo y escribía artículos sobre casi todo. 
Muchos eran de difícil clasificación en cualquier categoría del 
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conocimiento conocido hasta entonces; porque, ¿dónde incluir 
temas como los posibles paseos cruzando a través de los puen­
tes de Konigsberg? Otros sí encontraban acomodo preciso entre 
los conocimientos de la época, como las pensiones, solo que no 
eran cuestiones de primerísima fila. Un breve itineraiio por esos 
escritos de difícil calificación ofrece una visión más precisa de la 
variedad extraordinaria de la obra de Euler. 

EULER INGENIERO 

Las contribuciones eulerianas a la ingeniería práctica tienden a ser 
menospreciadas, en parte por los prejuicios de Federico II, quien 
suponía que todo lo que emprendían sus subordinados, ya fueran 
generales, jardineros o científicos, tenía que funcionar, pues para 
eso les pagaba. Los ingenieros de Su Majestad-y Euler era el jefe 
de todos ellos-, no eran una excepción, y si, por ejemplo, el agua 
no fluía adecuadamente en los surtidores de uno de sus jardines 
era porque los diseñadores y constructores eran incompetentes. 
Un error en el cómputo de la presión del agua era inconcebible e 
imperdonable. 

No obstante, Euler trabajaba, y mucho, en problemas prácti­
cos de ingeniería y, aproximadamente en 1744 (aunque no se pu­
blicó hasta 1757), hizo una aplicación de su cálculo de variaciones 
a la sobrecarga de peso de objetos sobre los pilares que los sostie­
nen. Es lo que en la jerga técnica se denomina pandeo, una va­
riante sencilla de la deformación. 

Imaginemos una colunma, como la que se ilustra en la página 
siguiente, sometida a una carga axial concéntrica, q, es decir, a 
una carga ejercida sobre el centro de gravedad de su sección 
transversal. Euler dio con una fórmula: 

que gobierna el pandeo, en la que F es la fuerza o carga axial, 
E el módulo de elasticidad, I el momento de inercia del área, L 
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la longitud entre los apoyos de la columna y K 
un factor empírico que está en función de las 
condiciones de soporte de los extremos de la 
barra o columna que se deforma. El producto 
KL determina la longitud efectiva de la misma. 

EULER Y LA MECÁNICA DE FLUIDOS 

En 1757 Euler publicó el artículo Principes gé-
néra_ux du mouvement des jluides (Principios 
generales del movimiento de los.fluidos), donde 
aparecían por primera vez sus ecuaciones, que, 
en dinámica de fluidos, son las que describen el 
movimiento de un fluido que no se puede com-
primir y que está desprovisto de viscosidad. 

El fluido de Euler era lo que hoy se llamaría 
un fluido ideal. En realidad lo que se someterá 
ahora a consideración no son ya fluidos ideales, 
sino las ecuaciones de Euler expuestas en su 
enunciado moderno. 

Laplace (1749-1827) añadió una parte sig­
nificativa a las ecuaciones primigenias de Euler, 

co lumna 

al adjuntar una componente adiabática ( es decir, supuso que la 
cantidad de calor del sistema era constante). En lenguaje tensorial 
actual las ecuaciones se escriben: 

ap +V·(pv)=O 
at 

apv +V·(v ® (pv))+Vp=O 
at 

aE 
-+V·(v(E+p))=ü. 
at 

Ahí p es la densidad del fluido, v su velocidad vectorial, E la 
energía total por unidad de volumen y p la presión. Se supone que 
la viscosidad del flujo es irrelevante, lo que no es cierto en for-
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Las computadoras 
han añadido algo 
insuperable a las 

ecuaciones de 
Euler-Navier­

Stokes; ahora se 
puede simular el 
comportamiento 
mecánico de un 

fluido, aunque 
todavía no se 

pueda ni soñar en 
resolver de modo 

exacto las 
ecuaciones que 

rigen su 
movimiento. 
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mulaciones más avanzadas, como 
las ecuaciones de Navier-Stokes. A 
medida que las ecuaciones se hacen 
más sofisticadas para acercarse a 
la realidad, es lógico que supongan 
menos cosas. Las ecuaciones de 
Navier-Stokes sí son ecuaciones cé­
lebres, pues su solución es uno de 
los problemas del Milenio, según el 
Instituto Clay, y está premiada con 
un millón de dólares. 

El teorema de Bernoulli de la hidrodinámica es deducible de 
las ecuaciones de Euler por simple integración. Así que no se 
puede dudar de que las ecuaciones de Euler son importantes, pues 
de ellas se deduce el principio del vuelo con alas de un cuerpo 
más pesado que el aire. Las ecuaciones de Euler de la mecánica 
de fluidos se aplicaron en su día al estudio de objetos tan dispares 
como la gran mancha roja de Júpiter, la circulación sanguínea o la 
aerodinámica de los automóviles, y en la actualidad siguen siendo 
utilizadas. Euler estudió con detenimiento las turbinas movidas 
por fluidos en una memoria específica de 1756, y su aporte no ha 
sido todavía superado. 

Las ecuaciones de Euler son ecuaciones diferenciales no li­
neales, y, a veces, de muy difícil estudio. El advenimiento de las 
computadoras, con su tremenda capacidad de cálculo, ha abierto a 
los físicos la oportunidad de buscar soluciones numéricas aproxi­
madas. Quizá no se pueda obtener una solución elegante y exacta, 
pero se puede obtener una excelente solución aproximada. 

ECUACIONES DE CAUCHY-RIEMANN 

Desde un punto de vista histórico, estas ecuaciones analíticas fue­
ron ya tratadas por d'Alembert en 1752 y por Euler, quien las de­
sarrolló al trabajar en varios campos, como en la hidrodinámica. 
Ya figuran con claridad en 1777 en medio de otras expresiones 
analíticas, aunque no se publicaron sino tras la muerte de Euler. 
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Las ecuaciones son igualdades entre derivadas parciales y 
funcionan como sigue: supongamos que una funciónf(x+ iy) de 
variable compleja puede dividirse en una parte real y otra ima­
ginaria: 

f(x+yi) =u(x,y) + i v(x,y). 

Y que tanto u como v son diferenciables como funciones de 
dos variables en el campo real IR; entonces, sus derivadas parcia­
les cruzadas cumplen: 

au av 
-=-
ax ay 

au av 

ay ax 

Y viceversa, en el sentido de que si u y v son diferenciables 
como funciones reales (pueden ser dif erenciables en el campo 
complejo <C y no serlo en IR) y se verifica la anterior igualdad de 
derivadas, entoncesf es diferenciable y f =u+ iv. 

Estas ecuaciones aparecen en las primeras páginas de cual­
quier libro actual de análisis complejo y son muy familiares para 
los estudiantes de física o ingeniería. 

JUEGOS, LOTERÍAS Y SEGUROS DE V IDA 

Euler también tuvo tiempo para ocuparse de cuestiones de esta­
dística y probabilidades. Sus investigaciones no fueron tan abun­
dantes como en otros campos, pero merece la pena mencionarlas. 
Muchas de ellas tuvieron lugar durante su estancia en Berlín y 
figuran, en algunos casos, entre su correspondencia con el mo­
narca Federico 11. 

Algunas de ellas entran en el terreno de los juegos de azar 
y de las apuestas, pues este era un ámbito científicamente valo­
rado; de hecho numerosas cuestiones que posteriormente ad­
quirirían gran importancia se dilucidaron en este terreno. Como 
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otros matemáticos de renombre tales como Johann Heinrich 
Lambert (1728-1777) o Pierre-Simon Laplace, Euler se ocupó de 
juegos de cartas como el treize («13»), también conocido como 
rencontré («coincidencias»). 

También se adentró en el campo de las loterías numéricas, 
que aparecieron por aquel tiempo, así como en el de los seguros 
de vida y las estadísticas de vida y muerte. Las pensiones y las 
anualidades que hay que pagar para recibir una pensión se de­
rivan de estas estadísticas, pues el importe de las pensiones y 
anualidades está en función de la mayor o menor probabilidad 
de fallecer. 

Asimismo, se ocupó de la teoría de errores, aunque no fue 
hasta el desarrollo de la técnica de los mínimos cuadrados, em­
prendida por Gauss, cuando se convirtió en una auténtica teoría. 
Hay que tener presente que el error en las medidas se computaba 

LA PRINCESA Y LOS SILOGISMOS 

Euler escribió más de 200 cartas a la princesa Anhalt-Dessau, sobrina de Fe­
derico, que en 1768 serían recopiladas en un volumen titulado Lettres a une 
princesse d 'A llemagne sur divers sujets de physique et de philosophie (Cartas 
a una princesa alemana sobre distintos temas de física y de filosofía). Hasta 
en una obra, aparentemente tan ligera, Euler consigue sorprender al estudio­
so. En ciertos puntos (cartas 102-105) discursea sobre los silogismos, y, para 
explicarse con propiedad, se vale de gráficos como los de las figuras 1 y 2. 

FIG. 1 FIG. 2 

B 
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en la época por la media de los errores; como los había positivos 
y negativos ambos se compensaban, con lo cual no se entraba de 
verdad en la naturaleza del error y en su corrección efectiva. 

LIBROS DE MENOR ENVERGADURA 

Euler escribió durante su etapa prusiana otros libros comparativa­
mente menores en el contexto de su vasta obra .. En 1744, apareció 
uno sobre trayectorias de planetas y cometas, Theoria motuum 
planetarum et cometarum (Teoría de los movimientos de plane­
tas y cometas) y en 17 46, un tratado de óptica, que trata de la luz 
y los colores, Nova theoria lucís et colorum (Una nueva teoría de 
la luz y los colores). Euler, siguiendo a Christiaan Huygens (1629-
1695), se decanta por la hipótesis ondulatoria, que prevalecerá 

Estos gráficos pueden recordar a los diagramas de Venn, aunque de hecho, 
John Venn (1834-1923) y Euler no idearon sus diagramas exactamente con 
el mismo significado. Lo que Venn representaría según la figura 3, Euler lo 
dibujaba como en la figura 4. Venn utilizaba un fragmento de diagrama aun 
cuando estaba vacío, mientras que Euler, que no pensaba en términos de con­
juntos, no contemplaba esa eventualidad. Venn no denominaba a sus diagra­
mas «diagramas de Venn», como en la actualidad, sino «diagramas de Euler». 
No hace falta mencionar, pues, cuál fue su fuente inspiradora. 

FIG. 4 

Cartas rojas 

•• 
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frente a la teoría corpuscular hasta el advenimiento de la mecánica 
cuántica. En 17 45 se publicó la traducción alemana de Euler del 
libro inglés New Principles of Gunnery (Nuevos principios de 
artillería), de Bertjamin Robins (1707-1751), con tal cantidad de 
comentarios, correcciones y complementos que el libro es prácti­
camente nuevo. 

En 1765, cuando Euler ya casi tenía un pie en Rusia, apareció 
Theoria motus corporum solidorum seu rigidorum (Teoría del 
movimiento de cuerpos sólidos y rígidos), su segundo tratado de 
mecánica. Es una mejora lógica de su primer tratado -donde se 
aplicaban por primera vez las técnicas del análisis matemático a la 
mecánica- , pues contiene las posteriormente denominadas ecua­
ciones diferenciales de Euler del movimiento de un sólido rígido 
sometido a fuerzas externas, y los ángulos de Euler, conectados 
al uso de dos sistemas de coordenadas, uno fijo y otro ligado al 
cuerpo en movimiento, con lo que el movimiento se descompone 
ya lógicamente en lineal y rotacional. Todos los expertos desta­
can la originalidad de algunas aportaciones, como el tratamiento 
del eje de rotación de una simple peonza, que introduce de modo 
natural la nutación y precesión de los equinoccios. 

Ya se ha comentado que la cartografía fue otra de las pasiones 
de Euler; tras años de colaboración en la Academia de San Pe­
tersburgo en la elaboración de un Atlas de Rusia, este finalmente 
vio la luz en 17 45, con 20 mapas. Euler estaba muy orgulloso del 
resultado y remarcaba que dicho atlas situaba la cartografía rusa 
por delante de la alemana. 
Sin embargo, a pesar de su extensa productividad, no hay que 
caer en el error de pensar que todo lo que Euler escribió era 
definitivo. Sus escritos padecen de un mal inevitable en su tiempo, 
la falta de auténtico rigor en las operaciones y definiciones, lo 
que, frecuentemente, da la impresión de que todo se sostiene 
porque funciona, no porque quede probado. En realidad, el 
siglo XIX dedicará muchas energías a fundamentar las atrevidas 
intuiciones eulerianas dando lugar a conceptos que como el límite, 
la convergencia o la continuidad vayan cubriendo los agujeros 
argumentales de muchas proposiciones. Las matemáticas se harán 
más aburridas, pero también más fiables. 
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UNA TRILOGÍA MAGISTRAL: LA CUMBRE DEL ANÁLISIS 

Aunque la obra de Euler abarca una enomtidad de campos distintos 
y escribió sobre todo lo que despertaba su interés, muchos le siguen 
distinguiendo como el padre del análisis matemático moderno, con­
cediéndole a esta faceta de su personalidad el carácter de trazo 
dominante. En el apartado anterior se ha explorado el trabajo de 
Euler en cálculo de variaciones; acaso espoleado por ese éxito, en 
los años siguientes el suizo procedió a condensar y estructurar sus 
vastos conocimientos en análisis en forma de diversos tratados. 

En 17 48, publicó Introductio in anal y sin infinitorum (In­
troducción al análisis del infinito), una obra maestra en dos 
volúmenes, que junto con Institutiones calculi differentialis 
(Fundamentos de cálculo diferencial), de 1755, y los tres volúme­
nes de Institutiones calculi integralis (Fundamentos de cálculo 
integral), de 1768-1770, conforman una trilogía sin parangón en el 
mundo científico moderno. La aparición de estos textos marcó un 
antes y un después, especialmente, en el análisis. Franc;ois Arago 
(1786--1853) denominó a Euler «el análisis encamado», y el histo­
riador matemático Carl Benjamín Boyer (1906--1976) ensalzó estos 
libros hasta situarlos a la altura de los de Euclides (Elementos), 
Newton (Principia), Gauss (Disquisitiones) o Descartes (Géome­
trie), e incluso, los antepuso en cuanto a importancia pedagógica. 
Escribió Boyer: 

Puede decirse que Euler hizo por el Cálculo de Newton y Leibniz lo 
que Euclides había hecho con la geometría de Eudoxo o lo que Vie­
te hizo por el álgebra de Cardano y Al-Kwarismi: Euler tomó el cál­
culo diferencial de Leibniz y el método de las fluxiones de Newton 
y los integró en una rama más general de las matemáticas, que desde 
entonces recibe el nombre de Análisis, es decir, el estudio de las 
funciones y los procesos infinitos. 

El cambio no solo contempló los contenidos, sino también 
la notación. Es un ejercicio aleccionador leer ahora estos libros· 
y darse cuenta de que casi se entienden sin tropiezos. Además, 
Euler escribió todos sus escritos de forma muy comprensible. 
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Clifford Truesdell (1919-2000), el eminente físico estadounidense, 
afirmó al respecto: 

Euler fue el primero en el mundo occidental que escribió matemáti­
cas de un modo abierto, fácil de leer. Enseñó a su época que el cál­
culo infinitesimal era algo que cualquier persona inteligente podía, 
con aplicación, aprender y usar. Era justamente famoso por la clari­

dad de su estilo y por su honestidad para con el lector acerca de las 
dificultades cuando se presentaban. 

Algunas de las aportaciones de Euler en el campo del análisis 
son de interés solo para el especialista y nos limitaremos a enu­
merarlas; es el caso de las series hipergeométricas, las series q, las 
funciones hiperbólicas trigonométricas, las ecuaciones diferen­
ciales, las funciones elípticas o las integrales complejas. 

Una base en la que se asienta una de las novedades relevantes 
de entre todos los logros contenidos en Introductio in analysin 
infinitorum es lafórmula de De Moivre, que un analista moderno 
escribiría así: 

( cos x + isenx) n = cos nx + isennx, 

y que De Moivre, en 1730, había escrito de un modo un tanto apa­
ratoso pero acorde con los usos notacionales de la época: 

COS X = _!_ ~ COS nx + .¡::f_ sen nx + _!_ ~ COS nx - .¡::f_ sen nx. 
2 2 

Euler utilizó, sin aportar demostración alguna, la fórmula que 
manejó De Moivre, jugó algebraicamente con ella, la combinó con 
la fórmula de Euler, que había desarrollado ya en sus días en Basi­
lea, como se vio en el capítulo 2, y que recordamos aquí: 

eix=COSX+isenx, 

y dedujo, usando las simples reglas de la exponenciación, la ex­
presión que hoy día escribiríamos: 

e x+iy = e x ( cos y+ isen y) . 
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ABRAHAM DE DE MOIVRE 

Nacido en 1667, en la región francesa 
de Champagne, su carrera se desarro­
lló en Gran Bretaña, donde se exilió 
huyendo de la persecución religiosa de 
los protestantes, que tuvo lugar cuando 
Luis XIV revocó el edicto de Nantes en 
1685. Vivió en Londres, un poco con es­
trecheces, dando clases en los cafés o 
ganándose la vida con su habilidad en 
el ajedrez. Se hizo muy amigo de Ed ­
mund Halley (1656-1742) y de Newton, 
con quien tomaba café dada día, y del 
que se dice que respondía a quienes le 
preguntaban sobre aspectos de cálculo: 
«Pregúnteselo a Mr. De Moivre, que sabe 
de esas cosas más que yo». Tales amis­
tades, junto con las de Leibni z, Euler y 
los Bernoulli, no le sirvieron, no obstante, 
para encontrar un trabajo estable. Fue un excelente matemático, no en vano 
es el responsable de introducir en probabilidad y estadística la independencia 
de sucesos, acercándose mucho al concepto de distribución de los valores 
estadísticos en forma de campana de Gauss. Estudió también las anualidades, 
tema que desarrolló en Annuities in life (Anualidades en vida), aparecido en 
1724, a partir de un trabajo de Halley. En análisis puro, se le debe una primera 
formulación del valor aproximado del factorial de un número. Más tarde esa 
fórmula se conocerá universalmente como aproximación de Stirling: 

Sin embargo, su contribución más notable fue su fórmula de los números 
complejos, que hoy enunciaríamos, en notación moderna, como: 

( cos x + isenx f = cos nx + isennx. 

Soltero y pobre, siempre recordó con el orgullo del exi liado que la Academia 
de ciencias de París lo había elegido en 1754 miembro extranjero asociado. 
Murió en Londres, pero lo curioso es que se dice que predijo el día de su pro­
pia muerte. Se apercibió de que cada día dormía 15 minutos más que el an­
terior, así que hizo la cuenta ... y calculó que fallecería el día en que durmiera 
24 horas: el 27 de noviembre de 1754. Su cálculo fue exacto. 
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Euler llegó a estos resultados, y a otros de suma importancia 
también, partiendo de la simple serie de Taylor: 

o, xn x 2 x3 x4 
ex = ¿-=l+x+-+-+-+ ... 

n-o n! 2! 3! 4! 

En el anexo 5 se muestra con mayor detalle el modo en que Euler 
dedujo su fórmula de esta última expresión. 

Si damos ax el valor del número pi en el marco de la fórmula 
de Euler se tiene que: 

ei" = cos n+ isen n = -1+ i0 = -1, 

y cambiando de lado al-1: 

Esta ecuación, conocida como identidad de Euler, está con­
siderada por muchos matemáticos como la más hermosa de toda 
la disciplina. 

También en Introductio in analysin infinitorum puede en­
contrarse el auténtico concepto de logaritmo, en una forma que 
resuelve el tema de los logaritmos negativos que Euler arrastraba 
desde su juventud en Basilea. Euler lo defuúa correctamente como 
la operación inversa de la exponenciación, o sea: 

a'º&.x = x , 

lo cual lleva a que el logaritmo en el campo complejo tenga infi­
nitos valores que solo difieren en un múltiplo par de n, o sea 2kn. 
En particular: 

ln(-1) =in+ 2kn (k EZ), 

lo que conduce a expresiones como: 

" i i = e1n i; = eiin i = e-2 ... 0,2078795764. 

106 BERLÍN, CAPITAL DEL ANÁLISIS 



Asimismo, en este libro se introduce el número e, la fórmula 
de De Moivre, las series de potencias senx y cosx, la idea de fun­
ción, muchas series de potencias ( entre otros, se resuelve por otra 
vía el problema de Basilea), etc. 

También se explican y sistematizan los primeros pasos de la 
geometría analítica, impecablemente engarzados en los conceptos 
del análisis. Se pueden encontrar entre los temas las coordenadas 
oblicuas y polares, las transformaciones de coordenadas, las asín­
totas, las curvaturas, la intersección de curvas, las tangentes, y un 
largo etcétera. No solo se tratan los conceptos de forma moderna, 
sino que se lleva a cabo una auténtica labor de fusión de los pun­
tos de vista de Newton y Leibniz y queda claro definitivamente 
que diferenciación e integración son acciones inversas la una de 
la otra; caras enfrentadas de la misma moneda. 

En Institutiones calculi differentialis y en Institutiones 
calculi integralis se estudian primordialmente las series, las 
fracciones continuas, las ecuaciones diferenciales, incluidas las 
derivadas parciales, los máximos y mínimos, etc. 

Euler mantuvo durante toda su vida un pugilato intelectual 
con las series numéricas, sumas infinitas de las que se ignoraba si 
eran convergentes o no, y, en caso de que lo fueran, se desconocía 
hacia qué convergían, qué suma representaban. En algunos casos 
la divergencia era clara, como en la llamada serie armónica: 

1 1 1 1 1 1 1 
!+-+-+-+-+-+-+-+ ... 

2 3 4 5 6 7 8 

que el matemático italiano Pietro Mengoli agrupó así: 

demostrando que su suma era infinita. Sin embargo, otras eran 
desconcertantes. Tomemos por ejemplo: 

1 - 1 + 1 - 1 + 1 - 1 + ... , 
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que agrupada así parece dar O: 

(1 - 1) + (1 - 1) + (1 - 1) + ... = o, 

pero agrupada así parece dar 1: 

1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + ... =l. 

Ni lo uno rú lo otro, pues Euler prefería partir, como otros 
matemáticos de la época, de la bien conocida serie: 

-
1
- = 1 + x + x 2 + x 3 + x 4 + x5 + ... 

l- x 

para tomar el valor x = -l y concluir que: 

1 1 2 3 4 5 
-=--=1+(-1)+(-1) +(-1) +(-1) +(-1) + .. . =l-1+1-1+1-1 
2 1-(-1) 

así que rú 1 rú O; Euler sostenía que el total era un medio. 
Al arsenal de series ya sumadas por aquel entonces, como: 

1 1 1 1 
1 +-+-+-+ ... +--¡¡-+ .. . = 2 

3 6 10 ¿ i 
;,. ¡ 

x3 x5 x1 
senx =x --+---+ .. . 

3! 5! 7! ' 

Euler añadiría poco a poco una gran cantidad de resultados 
propios: su contribución al problema de Basilea; su método de 
sumación, denominado de Euler-Maclaurin, que mejoraba la con­
vergencia, en caso de que la hubiera ( ambos vistos en detalle en el 
capítulo anterior); la transformación de series mediante las dife­
rencias finitas y sucesivas; e importantes aportaciones al estudio 
de las series divergentes. De hecho, en 1755, es decir en una época 
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en que no existía todavía el concepto de límite, ya distinguía co­
rrectamente entre series convergentes y divergentes. 

Entre las series sumadas por Euler se encuentran: 

J't 1 
00 n( 1 1 ) --=-+ }:(- 1) ---

sen SJ't S n-1 n + S n - S 

ncotsn=-+}: -----1 "" ( 1 1) 
s n - 1 n+s n-s 

11: 11111 
--= 1--+---+---+ .. . 
3.J3 2 4 5 7 8 

11: 11111 
-- = l+-+-+-+-+-+ ... 
2J2 3 5 7 9 11 
11: 11111 
- =l+-----+-+-+ ... 
3 5 7 11 13 17 

11:
2 1 1 1 1 

--=1----+-+-+ 
8-/2 32 52 72 92 ... 

11:
2 1 1 1 1 

--= 1----+-+-+ 613 52 72 112 132 ... 

1 - l! + 2! -3! + ... = 0,596347362123 ... 

Además, Euler descubrió dos series: una fue la siguiente ex­
presión como serie de potencias: 

zs z5 z1 
arctan z = z - - + - - - + ... 

3 5 7 

y la otra, la primera serie de Fourier de la historia, que Euler 
desveló en 17 44 en una carta a Goldbach, y, por tanto, mucho 
antes de que J oseph Fourier ( 1768-1830) emprendiera sus famo­
sos trabajos. En realidad, antes de que ni siquiera tuviera ocasión 
de nacer: 

1 1 1 
- x = senx --sen2x +-sen3x - .. . 
2 2 3 
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La aportación de Euler al dominio de las series es enorme y 
su exposición en detalle no es el fin de este libro. Baste decir que 
solo Carl Gustav Jakob Jacobi (1804-1851) y Srinivasa Aiyangar 
Ramanujan (1887-1920) están a su altura en cuanto a la relevancia 
de sus aportaciones en esta materia. 

Otro de los campos que cultivó Euler fue el de las ecuaciones 
diferenciales. Quizá su aportación más conocida, aunque una de 
las más elementales, sea el método de Euler, que permite aproxi­
marse a la soluciones de una ecuación diferencial de primer orden. 
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CAPÍTULO 4 

Segunda estancia en Rusia: 
Euler y la teoría de números 

Euler, aquejado de fuertes problemas de 
visión, pudo haber hecho de su segunda estancia 

en Rusia un retiro dorado, pero nada más lejos de la 
realidad. Decidido a que la muerte le sorprendiera 

trabajando se centró en la teoría de números, y engarzó una 
serie de resultados notables relativos a los números primos, 

de Mersenne y de Bemoulli, así como a las ecuaciones 
diofánticas y las particiones. También halló tiempo para 

estudiar las matemáticas lúdicas e incluso 
escribir libros de divulgación. 





El regreso de Euler a Rusia, en 1766, estuvo presidido por el 
deseo de la zarina, Catalina 11, de prestigiar de nuevo la Acade­
mia. De hecho, Euler no había roto los vínculos con Rusia du­
rante el período en que residió en Berlín. Es sabido que envió 
numerosos artículos a la Academia de San Petersburgo cuando 
las cuestiones tratadas en los mismos eran continuación lógica 
de artículos publicados en Rusia la primera vez. Por otra parte, 
siguió recibiendo estipendios de origen ruso en pago a temas 
puntuales, como cuestiones de carácter militar, y ponía bajo su 
protección y tutela a alumnos rusos que habían sido enviados a 
estudiar a Occidente. A cambio de sus contribuciones científicas 
a la academia de San Petersburgo, Euler recibió de Rusia en 17 42 
- residiendo en Berlín- el compromiso de una pensión. Una sin­
gular anécdota permite no solo conocer un detalle concreto del 
segundo viaje de Euler a Rusia, sino también lo emponzoñadas 
que estaban las relaciones con su patrón anterior. Así, en una 
eruta escrita por Federico este se regocijaba de la pérdida de una 
serie de notas personales del matemático a causa del naufragio 
del barco que las conducía a San Petersburgo con las palabras 
siguientes: «Es un hecho lamentable, porque de ellas podrían 
haber salido seis tomos de tratados llenos de números de princi­
pio a fin, y ahora, con toda probabilidad, Europa se va a ver pri­
vada de una lectura tan placentera». 
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El sueldo que se le asignó a su llegada a Rusia (3 000 rublos) era 
magnífico, e incluso la zarina le ofreció un cocinero de su propia 
casa real. La directora de la Academia, nombrada por Catalina II, 
era la princesa Dashkova, y su aprecio por Euler se manifestó en 
otra celebrada -y documentada- anécdota. En el curso de cierta 
sesión de la Academia, la princesa acompañó al sabio hasta la sala 
de sesiones. Entonces, un profesor que se daba mucha importancia 
solicitó sentarse en el sillón de honor, cerca de la presidencia. La 
princesa, con exquisita educación, se dirigió entonces a Euler: 
«Siéntese donde usted quiera, señor, pues el lugar que elija ya sabe­
mos que será el más distinguido, el primero de todos». 

Sin embargo, no todo fueron buenos momentos. La primera 
de sus tragedias de este período fue la ceguera. Euler se sometió 
a una operación quirúrgica para tratar una catarata en su ojo sano; 
aunque al principio todo fue bien, se le declaró posteriormente 
un absceso del que no se trató a tiempo y que acabó provocán­
dole la pérdida de visión. En 1 771 ya estaba virtualmente ciego 
de ambos ojos. No obstante, su ritmo de trabajo no disminuyó e, 
incluso, puede afirmarse que su productividad en este segundo 
período ruso es la más alta de su vida. Pero dicha productividad 
no pudo conseguirla solo; la historia ha conservado el nombre 
de alguno de los auxiliares de Euler de la última época, muchos 
de ellos excelentes matemáticos, como Georg W olfgang Krafft, 
Mikhail Evseyevich Golovin, Stepan Run1ovsky, S.K. Kotelnikov y 
Petr Inokhodtsev. Algunos de sus auxiliares fueron especialmente 
relevantes: su hijo mayor Johann Albrecht, su nieto político Nico­
laus Fuss y el matemático y astrónomo germano Anders Lexell. 

El primogénito de Euler, Johann Albrecht (1734-1800), fue ma­
temático y miembro de la Academia de Berlín desde 1754 y cate­
drático de física de la Academia de San Petersburgo desde 1765. 
Fue un excelente científico a juzgar por los siete galardones que 
recibió de academias diferentes en el curso de su vida profesional. 

La mano derecha de Euler fue Nicolaus Fuss (1755-1826), un 
matemático que ascendió de asistente y secretario personal a pro­
fesor en la escuela de infantería y secretario permanente de la 
Academia de San Petersburgo. En 1784 se casó con una nieta de 
Euler y estuvo presente en su casa el mismo día en que falleció. 
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UNA ANÉCDOTA FAMOSA 

A un personaje de la talla de Euler es nor­
mal que se le atribuyan un buen número 
de anécdotas. Lo malo de las anécdotas 
en general es que su atribución acostum­
bra a ser directamente proporcional a lo 
extravagante del personaje y su verifi­
cabilidad inversamente proporcional a la 
distancia en el tiempo en que vivió. La 
que viene a continuación se incluye por 
la buena fama del narrador -D. Thiébault 
(1733-1807), un cronista por lo general 
creíble y veraz que aunque no estaba 
presente en la ocasión dice habérsela 
oído explicar a varios testigos- y porque 
goza de gran popularidad. El protagonis­
ta de la historia es el escritor y filósofo 
francés Den is Diderot (1713-1784 ), padre 
y supervisor de la Enciclopedia. Diderot, 

Retrato de Denis Diderot, considerado 
el padre y supervisor de la Enciclopedia. 

quien estaba de visita en Rusia, fue invitado a debatir en la corte sobre la 
existencia de Dios. Al parecer el muy creyente Euler disponía de una prueba 
irrefutable. Diderot acudió a la reunión y contempló como Euler avanzaba 
hasta él para enunciar su argumento: 

(a+bn) 
«Señor, --- = x, luego Dios existe: iresponded!». 

n 

Diderot, que no entendía gran cosa de matemáticas, no respondió y permane­
ció callado. Los cortesanos presentes interpretaron el silencio como imposibi­
lidad de responder a la contundencia del argumento, y se mofaron de Diderot, 
quien, avergonzado, regresó a Francia. Hasta aquí el relato. 

La otra cara del relato 
La historia ha encontrado con cierta rapidez resquicios por donde introducir 
un deje de verdad. La «ecuación» de la frase no tiene valor matemático al­
guno. Además, Diderot no era un ignorante en matemáticas pues poseía una 
excelente formación como matemático aficionado. Por tanto, la pretendida 
frase de Euler le habría sonado como lo que era en realidad, un galimatías 
sin sentido, y así lo habría dicho. Además, uno no se imagina al muy serio y 
respetuoso Euler prestándose ante un sabio como Diderot a una maniobra 
tan burda. En lo único en que la historia es cierta es en lo tocante al regreso 
de Diderot a Francia. 
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Suyo es un magnífico elogio fúnebre, un texto extenso y conmo­
vedor sobre la vida y obra de quien fue el abuelo de su esposa. 

Por último, Anders Lexell (1740-1784) fue colaborador de 
Euler en sus últimos tiempos y estuvo también presente en el mo­
mento de su muerte. Lexell se ocupaba entonces, junto con Euler 
y Fuss, del recién descubierto planeta Urano, y llegó a prever con 
sus cálculos la existencia de Neptuno. 

Otra de las desgracias que le aconteció en este periodo fue el 
incendio de su casa en 1771, que a punto estuvo de costarle la vida; 
la intervención de su sirviente Peter Grimm ( otras fuentes hablan 
de un simple compatriota de Basilea), que lo sacó a hombros, fue 
decisiva. La casa fue levantada de nuevo en piedra con fondos que 
provinieron parcialmente de la emperatriz. 

CURVAS Y ENGRANAJES 

En 1754, Euler pub licó en la Academia 
de Berlín unas memorias sobre los en­
granajes, tema que retomó en 1765, a 
caba llo entre Berlín y su segunda etapa 
rusa, en Supplementum de figura den­
tium rotarum, que versaba sobre los 
dientes de un engranaje giratorio. En la 
figura 1 puede observarse un engranaje 

FIG. 1 

con dientes triangulares, pero los sim- F1G. 2 

ples triángulos no son sufic ientes; el 
perfil de los dientes es fundamental, y 
en la figura 2, inspirada en los trabajos 
de Euler, se aprecia el perfil óptimo. 
Cuando el perfil de los dientes está for­
mado por curvas involutas de una cir­
cunferencia -aquellas que resultan de 
trazar el camino que recorre al desenro­
llarse el extremo de una cuerda previa­
mente enrollada a la circunferencia-, la 
relación entre sus respectivas velocida­
des de rotación se mantiene constante 
a medida que se produce el desliza-
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El tercer y más importante suceso que marcó su vida fue el 
fallecimiento, en 1773, de su esposa Katharina tras casi 40 años de 
matrimonio. Euler volvió a casarse, esta vez con su cuñada Abigail. 

A pesar de estos sobresaltos, Euler siguió con su ritmo de pu­
blicaciones. Aunque ya había realizado importantes aportaciones 
en teoría de números con anterioridad, corno por ejemplo en su 
trabajo sobre constantes numéricas, o el llevado a cabo alrededor 
de la constante de Goldbach y los números de Fem1at, los historia­
dores coinciden en señalar que la mayor parte de esa contribución 
se produjo en los últimos años de su vida. Es justo señalar que todas 
estas aportaciones a esta rama de las matemáticas -no especial­
mente apreciada en su tiempo- serían más que suficientes para 
consagrar a un matemático. 

miento. Los dientes tienen una tangente 
común y el engranaje no vibra; no se 
pierde energía en ruidos y el desgaste 
se minimiza. Euler no solo fue el primero 
en explorar el campo de las curvas in­
volutas, sino que sus ideas llevaron a 
desarrollar posteriormente las ecuacio­
nes de Euler-Savary, utilizadas hoy en 
día para trabajar en cuestiones de cur­
vatura. 

Dientes de las sierras 
Junto a los engranajes, Euler también se 
interesó por los dientes de la sierras (fi­
gura 3), tema al que le dedicó, en 1756, 
un artículo de 25 páginas. En él apare­
cen fórmulas que tienen presentes el 
número de dientes, su ángulo de incl ina­
ción, la penetración del diente en la ma­
dera, etc. Sin embargo, algunas de las 
conclusiones del estud io resultan ahora 
sorprendentes, pues Euler recomendaba 
usar sierras de 1,20 m y recurrir a equi­
pos reducidos de aserradores. 

FIG. 3 

Dibujo basado en 
el estudio de los 
dientes de sierra 
llevado a cabo 
por Euler. 
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EULER Y LAS ECUACIONES DIOFÁNTICAS 

Euler hizo importantes contribuciones al estudio de las ecuacio­
nes diofánticas ya en el año 1735. Estas constituyen un punto cen­
tral en la teoría de números. Una ecuación diofántica es una 
ecuación con coeficientes enteros y en la que solo se consideran 
posibles soluciones también enteras. Su nombre proviene del ma­
temático griego Diofanto de Alejandría, quien fue el primero en 
estudiarlas. 

Euler no fue impermeable a su encanto, ya que buena parte 
de su empeño numérico era la resolución de problemas heredados 
de Fermat, y Fermat sentía un atractivo irresistible por Diofanto y 
su campo de actividades. Pero el fruto no estaba todavía maduro 
para que Euler lo recogiera, y faltaban muchas armas poderosas 
para abordar sistemáticamente las ecuaciones diofánticas, como 
la geometría algebraica o las integrales elípticas, que estaban to­
davía en sus albores. Aunque Euler tanteó las fronteras del impe­
rio de Diofanto, no lo conquistó. Quizá lo más recordado en este 
terreno sea la demostración del caso n = 3 que dio Euler del último 
teorema de Fermat. Este establecía la imposibilidad de resolver la 
ecuación diofántica x" + y"= z" para n ~ 3, pero Euler demostró la 
imposibilidad para n = 3. Parece que la demostración, que ya en­
contró en 1735, contenía un error, pero el propio Euler la corrigió. 
Además, mientras estudiaba otra categoría de números confirmó 
la solución para n = 4, que ya había establecido el propio Fermat. 
La solución universal para cualquier n tuvo que esperar a Andrew 
Wiles, a finales del siglo xx. 

Euler también se interesó por la denominada ecuación de 
Pell, la ecuación diofántica de la forma: 

y 2 = Ax2 +1, 

donde A es un número entero concreto, no una incógnita. Esta 
ecuación fue solucionada por Lagrange, quien desarrolló amplia­
mente el procedimiento de las fracciones continuas investigadas 
por Euler. Su denominación actual procede de un error de Euler, 
quien, al parecer, confundió a John Pell (1610-1685) con el mate­
mático William Brouncker (1620-1684), padre universalmente 
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DIOFANTO Y SUS ECUACIONES 

Diofanto de Alejandría (ca. 200/ 214-ca. 284/298) es conocido por ser el padre 
de las ecuaciones diofánticas. Aunque en la actualidad se denominan así a las 
ecuaciones algebraicas, de una o más incógnitas, donde todos los coeficientes 
son enteros y donde solo se admiten so luciones también enteras, Diofanto 
admitía también números racionales. Se supone que vivió ochenta y cuatro 
años, pues entre las pocas cosas que se han conservado de Diofanto figura 
su epitafio, que hace referencia a su edad. Dice así: 

Yace aquí Diofanto, la roca mirad; 

mediante arte algebraico, te dice su edad: 
un sexto de su vida fue niñez y alegría, 

y un doceavo adolescente, mientras su barba crecía, 
y después de un séptimo Diofanto casaría. 

Pasaron cinco años y un hijo nació. 

Pero fue desgraciado pues ese hijo murió, 

cuando tenía la mitad de los años que su padre vivió. 
Durante cuatro años más su consuelo halló, 

en la ciencia del número y entonces murió. 

Deshaciendo la madeja y escribiendo la ecuación diofántica escondida en 
estas palabras, se llega a: 

.'.'.'._+~+.'.'.'._+5+.'.'.'._+4=X 
6 12 7 2 ' 

y a la solución buscada, x=84. 

Diofanto y Fermat 
Otra circunstancia determinante en la popularidad de Diofanto es el plantea­
miento del último teorema de Fermat. La larga historia se puede resumir de 
modo abreviado como sigue: en tiempos de Fermat se editó casi todo lo poco 
que ha llegado de Diofanto en forma de traducción latina realizada por Claude 
Joseph Bachet de Méziriac. Fermat tenía por costumbre leer los libros y comen­
tarlos al margen de los mismos. En un lugar determinado del texto encontró 
una proposición de Diofanto que le dio pie a enunciar lo que luego sería el úl­
timo teorema de Fermat, un enunciado de aspecto inocente, de planteamiento 
sencillo y del que Fermat escribió que poseía una demostración maravillosa, 
que no transcribía por no d isponer el libro de margen suficiente. Aireada esa 
pretensión por el hijo de Fermat, nadie fue capaz de encontrar prueba alguna 
hasta finales del siglo xx (Andrew Wiles, 1995). Diofanto escribió once libros de 
aritmética, de los que solo han llegado seis (otros cuatro de atribución dudosa). 
Contiene más de 100 problemas de carácter «diofántica», pero no es posible 
encontrar tras ellos método alguno, sino una formidable exhibición de ingenio. 
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aceptado de la famosa ecuación. Julia Robinson (1919-1985) resol­
vió, gracias a él, el décimo problema de Hilbert, uno de los más 
preciados de la matemática contemporánea, que se interrogaba 
sobre la existencia de un algoritmo capaz de determinar si una 
ecuación diofántica cualquiera tenía soluciones en los enteros, 
resultando que no. 

UNA CONJETURA DE EULER SOBRE ECUACIONES DIOFÁNTICAS 

Una famosa conjetura euleriana, de su segunda etapa rusa, fe­
chada en 1769, hace referencia a la ecuación diofántica: 

x4+y4+z4 =U4, 

UNA CONJETURA SOBRE SUMAS DE POTENCIAS 

El matemático francés Augustin-Louis Cauchy (1789-1857) es recordado como 
un gran talento, pues a él se deben multitud de descubrimientos, teoremas y 
conceptos; pero hay otros puntos de su personalidad -su piedad acaso ex­
cesiva, su descuido a la hora de reconocer el trabajo de otros colegas- que 
son algo así como el «lado oscuro» de una personalidad controvertida. Una 
de las anécdotas que cuentan de él muestran su rostro más simpático, más 
burlón, el in imitable ésprit francés. Según la historia -o, con mayor probabi­
lidad, la leyenda- Cauchy, quien recibía muchos manuscritos para evaluarlos, 
dio con uno que pretendía probar, en el mejor estilo de Fermat, que no existían 
enteros x, y, z, u, que satisfacieran la ecuación diofántica: 

x3 + y3 + z 3 = u3. 

Cauchy estaba aquel día de buen humor, porque antes de leer el artículo ya 
tenía escrita la respuesta, que ocupaba una sola línea. Lo que respondió con­
cisamente Cauchy fue: 

33 + 43 + 53 = 63. 

pues, en efecto, 27 + 64 + 125 = 216, como cualquier alumno de primaria pue­
de comprobar. 
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y, simplificando, diremos que postula láinexistencia de enteros x, y, 
z y u que cumplan la igualdad. Durante mucho tiempo se creyó que 
la cortjetura era cierta, hasta que el matemático americano Noam 
Elkies (n. 1966) la refutó al publicar en 1988 un contraejemplo: 

26824404 + 153656394 + 187967604 = 206156734
• 

Y no solo eso, sino que Elkies también probó que había infini­
tas soluciones esencialmente distintas, aunque la más pequeña de 
ellas involucraba unas setenta cifras. Ello demuestra que ningún 
resultado conjeturado puede darse por bueno, por evidente que 
parezca y por mucho que se avance en su comprobación. En la 
actualidad hay incluso una web rusa que recopila los contraejem­
plos a la fallida cortjetura de Euler. 

PARTICIONES 

A lo largo de toda su trayectoria científica, Euler dedicó conside­
rables esfuerzos a las particiones. Aunque el concepto básico de 
«partición» es elemental, las matemáticas necesarias para su es­
tudio a fondo son de gran complejidad. Su exposición excede los 
objetivos de este libro, por lo que el tema se trata someramente. 

Tomemos un número entero positivo cualquiera, pequeño 
para que sea manejable, como por ejemplo, 7; ¿de cuántas mane­
ras se puede descomponer en partes que restituyan el número 
original? Como es natural, se meten en el mismo paquete aquellas 
particiones que solo difieren en el orden pero no en las cantida­
des, es decir, que particiones como 7 = 5 + 1 + 1 y 7 = 1 + 5 + 1 se con­
sideran equivalentes y se cuentan solamente una vez. Así, pues, 
tenemos para el número 7: 

7=7 
7=6+1 
7=5+2 
7=5+1 + 1 
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7 = 4+3 
7 = 4+2+1 
7 = 4+1+1+1 
7 = 3+3+1 
7 = 3+2+2 
7 = 3+2+1+1 
7 = 3+1+1+1+1 
7=2+2+2+1 
7 = 2+2+1+1+1 
7 = 2+1+1+1+1+1 
7=1+1+1+1+1+1+1. 

Total: 15. Escribamos p(7) = 15. Esta primera aproximación 
ya muestra que partir un número es una tarea laboriosa y que el 
resultado no es evidente. Si se calculan los primeros valores de 
p(x) da: 

p(l) = 1 
p(2) = 2 
p(3) = 3 
p(4) = 5 
p(5) = 7 
p(6) = 11 
p(7) = 15 
p(8) = 22 
p(9) = 30 

p(lO) = 42, 

donde no se atisba regularidad ninguna, salvo que p es creciente. 
Puede comprobarse que: 

p(l00) = 190 569 292. 

Se ha llegado a resultados increíblemente largos y a distincio­
nes tan sutiles como las particiones pares e impares ( que solo 
contienen números pares o impares), o a idear complicados ins­
trumentos aritméticos. 
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SRINIVASA AIYANGAR RAMANUJAN 

Matemático indio (1887-1920), su pro­
cedenc ia lejana, lo novelesco de su his­
toria personal y su extraord inario talen­
to introdujeron una nota exótica en el 
mundo científico de su tiempo. Nació en 
Erode, del estado de Tamil Nadu, y era 
hi jo de su ambiente, muy rel igioso, y 
obses ivo con las cuestiones al imenta­
rias. Genio mat emát ico autodidacta , 
aconsejado por algunos amigos, envió 
por correo cartas a la metrópoli británi­
ca exponiendo sus resultados . Una de 
sus m isivas llegó a la manos de Godfrey 
Harold Hardy (1877-1947) quien, junto 
con su amigo y colaborador John Li ttle­
wood (1885-1977), analizaron su des­
concertante contenido, que comprendía de todo: presuntos descubrimientos 
que ya habían sido «descubiertos» antes - incluso por el propio Hardy- y 
fórmulas nuevas que denotaban una capacidad matemática excepcional. 
Invitado por Hardy, Ramanujan viajó por fin a Inglaterra para trabajar y llegó 
a ser nombrado miembro del Trin ity College de Cambridge y de la Royal 
Society. Muchos de sus resultados figuran todavía en cuadernos de notas 
sin desentrañar por completo, pero en lo que todos han coincidido es en la 
belleza, profundidad, ingenio y novedad de los mismos. Amplió el trabajo 
de Euler en el tema de las particiones, del que se ocupó a fondo; no en vano, 
mucho de lo que se sabe en la actualidad de este campo es fruto de sus · 
investigaciones. Gracias al genio hindú de Ramanujan, se d ispone de una 
estimación «sencilla» del número de particiones para cualquier número: 

ff p(n) ~ 1
¡:;e·' 3 cuandon-+ oo. 

4n,;3 

que puede llevarse a cabo con una simple ca lcu ladora. Si se desearan cifas 
exactas en lugar de est imaciones, tamb ién se pueden consegu ir, pero de 
una forma algo más complicada. 

Mucho del extraordinario trabajo de Euler se apoya en las 
técnicas desarrolladas por Abraham de Moivre, consistentes en 
jugar con las series de potencias. Obtenía así lo que moderna-
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mente se han denominado funciones generadoras, que no son 
otra cosa que ingeniosos trucos algebraicos encaminados a imitar 
la realidad. En 1742, Euler ya concibió la idea de encontrar una 
función generatriz de las particiones, y tras largos años de trabajo 
llegó, a partir de la serie: 

1 2 3 --=l+ x + x + x + ... 
1- x 

alafómmla: 

"' "' ( 1 ) 2 p(n) X" = n -k , 

n - 0 k-1 l- x 

Se puede comprobar, desarrollando el producto infinito de la 
derecha, que aparecen las diferentes particiones del número n en 
la forma, disimulada, de todas las agrupaciones de exponentes 
inferiores a n que suman n . Por ejemplo, si tomamos n = 4, vemos 
cuántos x4 se generan: 

(l+ x + x 2 + x 3 + ... )(l+ x 2 + x 4 + x 6 + ... )(1+ x 3 + x 6 + x 9 + ... ) ... 

Resulta 5x 4 y, naturalmente, p(4) = 5. 
De ahí Euler infirió un modo de calcular p( n ), aunque por 

desgracia es un método recurrente, y solo permite calcular p( n) si 
se conocen los valores anteriores: 

p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) + 
+ p(n - 12) + p(n - 15) - p(n - 22) - ... 

NÚMEROS DE BERNOULLI 

Llamados así en honor a Jakob Bemoulli, pues fue el primero que 
los trató en 1713, enArs conjectandi (Arte de conjeturar). 

Uno se encuentra con estos números al calcular las sumas de 
potencias de los enteros positivos: 
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1+22 +32 +42 + ... +k2 

1 + 23 + 33 + 4 3 + ... + k3 
1+24 +34 +44 + .. . +k4 

1+25 +35 +45 + ... +k5, 

k 

o, expresado al modo euleriano, las sumas·¿ nP. Se tiene que: 

~ p 1 ~ ( p + 1 r p+l- i L., n = -- L., .n 
n • l p + 1 ·i•O i i ' 

donde los B i son los números de Bemoulli. Para clarificar la fór­
mula de más arriba, se propone un ejemplo sencillo, por ejemplo, 
la suma de los primeros cuadrados. Aplicando la fórmula y po­
niendo p = 2 en ella, se obtiene: 

12+22 + ... +n2 =-(B0n
3 +3B1n

2 +3B0n
I )=- n 3 +-n2 +-n. 1 1( 1 1 ) 

3 - 3 2 2 

Euler calculó los treinta primeros números de Bernoulli, 
una tarea de gran magnitud si se tiene en cuenta que el treintavo 
es de este tamaño: 

8 615 841 276 005 

14322 

Los números de Bernoulli terminaron apareciendo en la ex­
presión que Euler dedujo para t(2n), en el curso de sus investiga­
ciones posteriores al problema de Basilea y que era: 

t(2n) = (-1)"+1 (2n)2" B2n. 
2·(2n)! 

Los números de Bernoulli también aparecen en la moderna 
expresión de la fórmula de sumación de Euler-Maclaurin, aunque 
Euler no se apercibió de ello cuando usó la fórmula para tantear 
el valor de: 
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00 1 
}:-2, 
n - 1 n 

y averiguar sus seis primeras cifras decimales. 

EULER Y EL ESTUDIO DE LOS NÚMEROS PRIMOS 

Aunque no llegó a desentrañar sus misterios, Euler investigó bas­
tante sobre los números primos, incluidos otros conceptos íntima­
mente relacionados como la función cp, los números de Mersenne 
o la ley de reciprocidad cuadrática. 

«Los matemáticos han intentado en vano, hasta la actualidad, 
descubrir algún orden en la secuencia de números primos, 
y tenemos razones para creer que se trata de un misterio 
que la mente humana nunca resolverá.» 
- LEONHARD EULER. 

126 

En Variae observationes circa series infinitas (Varias ob­
servaciones sobre series infinitas), publicado en 1744, Euler in­
cluyó una de las fórmulas más aclamadas en el reino de los pri­
mos, lafómula del producto de Euler, cuya deducción figura en el 
anexo 3 de este libro: 

00 1 1 
}: - . = Il -

1 
-s 

11 - l n k pnmo - p 

Cuando se hace s = 1, a la izquierda se tiene la serie armó­
nica, que tiende a infinito. Por consiguiente, el resultado de la 
derecha también debe hacerlo. Pero si es así, no puede ser un 
producto finito, pues daría lugar a un producto también finito. 
Así, es un producto infinito y hay, pues, infinitos factores; y 
como cada factor conlleva un número primo, hay infinitos pri-
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mos. He aquí cómo Euler encontró otra prueba de la infinitud de 
los primos. 

Sin embargo, Euler buscó algo más profundo: la d~nsidad de 
los primos. Ya sabemos que son infinitos, pero ¿cuán infinitos? 
Euler probó que la serie, limitada a denominadores primos: 

1 1 1 1 1 1 ¿ - = 1+-+-+-+-+-+ ... , 
pprimoP 2 3 5 7 11 

que es una subserie de la serie armónica: 

00 1 1 1 1 1 1 ¿- = 1+-+-+-+-+-+ ... , 
n-1 n 2 3 4 5 6 

es tambien divergente. Y aún probó más; si bien la serie armónica 
diverge más o menos como el logaritmo den, la serie de los inver­
sos de los números primos todavía diverge más lentamente. Lo 
hace como el logaritmo del logaritmo de n. 

Las ideas de Euler, quien es considerado como iniciador 
de las técnicas del análisis en teoría de números, fueron desa­
rrolladas primero por Legendre y luego por Gauss, verdaderos 
iniciadores del estudio del teorema de los números primos, 
que dice: 

X 
n(x).,.-, 

lnx 

donde n(x) es el número de primos menores que x . Dicho teo­
rema fue demostrado de manera independiente por los matemá­
ticos Charles-Jean de la Vallée Poussin (1866-1962) y Jacques 
Hadamard (1865-1963) en 1896. Bernhard Riemann extendió las 
ideas de Euler al terreno de los números complejos gracias a la 
ampliación a los números complejos, C, de la euleriana función 
zeta - vista en el capítulo 2-, que Euler solo había definido en 
el conjunto de los números reales, R De ahí se saltó a la denomi­
nada teoría analítica de números y en la era moderna, a la nunca 
probada hipótesis de Riemann. 
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LA FUNCIÓN cp 

En aritmética se aprende no solo el concepto de número primo, 
sino el concepto de primos entre sí ( o primos relativos). Se dice que 
dos números enteros positivos, p y q, son primos entre sí cuando no 
tienen divisores comune~; salvo el número 1, que los divide a todos. 
Por ejemplo, 14 y 15 son primos entre sí, pues aunque ninguno de 
ellos es primo, no poseen divisores comunes, salvo el 1: 

14 = 2- 7 
15 = 3-5. 

Otro modo de decir lo mismo, pero más moderno, es acudir 
al máximo común divisor. Es lo mismo decir que p y q son primos 
entre sí que decir que mcd (p, q) = l. La función que Euler deno­
minó cp(n) se define como el número de elementos del coajunto 
de números menores que n que son primos entre sí con n. 

Practiquemos con los diez primeros números: 

cp(l) = 1 
cp(2) = 1 
cp(3) = 2 
cp(4) =2 
cp(5) = 4 
cp(6)=2 
cp(7) = 6 
cp(8) = 4 
cp(9) = 6 

cp(lO) = 4. 

La función cp ( n) se denominafunción indicatriz; no se trata 
solo de un «juguete aritmético» más o menos interesante, sino de 
un instrumento al que puede sacársele mucho partido; uno de los 
teoremas más importantes de la teoría de números, el llamado 
pequeño teorema de Fermat, involucra a la función cp. 

Contrariamente a lo acostumbrado en sus trabajos, la nota­
ción de la función cp no se debe a Euler. 
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Euler demostró que si p y q son primos entre sí, entonces se 
verifica: 

cp(pq) = cp(p)cp(q). 

Y, también, que si p es primo: cp(p) = p-1. 
Asimismo, es de Euler, aunque bastante anterior, el resultado 

de que si p y q son primos entre sí, se verifica el llamado pequeño 
teorema de Fermat: 

p "'(q) = l mod q, 

donde mod q significa «módulo q» y quiere decir que p "'Cq) y 1 
dejan el mismo resto al dividirse por q. Este teorema fue demos­
trado por Euler en 1736, en Theorematum Quorundam ad Núme­
ros Primos Spectantium Demonstratio (Una prueba de ciertos 
teoremas sobre números primos) , y se presentaba antes en la 
forma restringida que le dio Fermat. Si se supone además que q 
es primo, entonces se verifica cp(q)=q-1 y se tiene el enunciado 
original de Fermat: 

p q-t = 1 mod q, 

con q primo y p y q primos entre sí. Euler ofreció no menos de tres 
demostraciones concretas de este teorema, aunque es casi seguro 
que no sabía que Fermat era uno de los padres del teorema original. 

El moderno sistema de encriptación RSA, el sistema de clave 
pública más utilizado, tiene en este teorema su base más firme, 
como puede comprobarse en el anexo 6. 

LOS NÚMEROS DE MERSENNE 

Euler quiso descubrir números primos de gran tamaño. Muchos 
fueron los matemáticos que hasta entonces habían supuesto, erró­
neamente, que los números MP de la forma MP= 2P- l, siendo P 
un primo, eran todos primos. Pietro Cataldi (1548-1626) probó, 
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MARIN MERSENNE 

Marin Mersenne (1588-1648) fue sacer­
dote, músico, matemático, filósofo y 
teólogo, aunque su gran vocación era 
la música, disciplina a la que dedicó una 
gran parte de sus esfuerzos, no en vano 
se le conoce en muchas fuentes como «el 
padre de la acústica». Estableció las le­
yes fundamentales de la vibración de las 
cuerdas y se ocupó de multitud de pro­
blemas armónicos e instrumentales. Se 
dice que en la segunda suite de Ottorino 
Respighi, Antiche arie e danze per liuto, 
se reproduce un fragmento compositivo 
suyo. Se ocupó también a fondo de los 
telescopios y de sus espejos, llegando a 
ser considerado una autoridad. Actuó, 
sobre todo a través de su abundante correspondencia, como una especie de 
centro neurálgico receptor y emisor de novedades científicas en un tiempo 
en el que escaseaban las publicaciones de este tipo. Interesado por casi todo, 
conoció y cultivó la amistad o el contacto con multitud de intelectuales de su 
tiempo, en particular de Descartes, quien era compañero de estudios suyo. 
Racionalista y reflexivo, combatió con energía las creencias más irraciona­
les como la cabalística o la magia. Se interesó mucho por las matemáticas, 
y además de editar varios textos de autores clásicos, como Arquímedes o 
Euclides, dedicó atención al mundo numérico. Es ahí donde reside su impor­
tancia para los historiadores y por eso los números que estudió, los números 
MP de la forma: 

Se denominan números de Mersenne. Existe un generador de números pseu­
doaleatorios, relacionado con los primos de Mersenne, que lleva su nombre: 
el Mersenne twister. 

en 1588, que M
17 

y M
19 

eran primos por el procedimiento un tanto 
rudimentario, pero estándar, de intentar dividirlos por los primos 
inferiores a su raíz cuadrada. Más tarde, Marin Mersenne, a quien 
se debe la M de tales números, dio una lista de presuntos primos 
que posteriormente se demostró bastante inexacta, pues sobraban 
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M
67 

y M257 y faltaban M
6
1' M

89
, y M 10r En la actualidad, el récord 

está en el M
43112609 

que tiene 12 978189 dígitos y cuya expresión 
ocuparía más de 50 libros como el presente. 

Euler demostró que M
31 

era primo en 1772, aunque es muy 
probable que ya lo hubiera averiguado antes. Lo cmioso es que 
hubo que esperar más de un siglo para que Édouard Lucas (1842-
1891) encontrara, en 1876, el siguiente en el tiempo, M 12r (M61 y 
M

89 
también son primos, pero se descubrieron con posterioridad.) 

Así, el récord del primo mayor estuvo en poder de Euler durante 
aproximadamente 104 años. 

LA RECIPROCIDAD CUADRÁTICA 

La reciprocidad cuadrática, todo un cuerpo de doctrina aritmé­
tica plasmado por Gauss de modo brillante en las Disquisitiones 
arithmeticae (Disquisiciones de aritmética), fue iniciada por Le­
gendre y Euler, este último en una carta a Goldbach, en 1742. Para 
empezar, definamos primero el lenguaje, es decir, los símbolos 
de Legendre (;). Supongamos p y q primos impares distintos y: 

{ 

0sipaa0(modq) 

(;) = 1 si x 2 = p (mod q) es una ecuación resoluble 

-1 si x 2 = p (mod q) es una ecuación irresoluble 

Con esta notación Gauss, y no Euler, llegó a demostrar que: 

(p) = {(~) siq•l (mod 4) . 

q (-;)siq•3 (mod4 ) 

Lo cual puede reunirse (no fácilmente) en una sola fórmula. 
Gauss descubrió todo lo anterior a los diecinueve años y lo tenía 
en tal aprecio que lo calificó de aurum theorema, «el teorema 
áureo». 
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ADRIEN-MARIE LEGENDRE 

La vida profesional de Legendre (1752-
1833) empezó bajo los mejores aus­
picios , pues era un hombre muy bien 
dotado intelectualmente y poseía una 
fortuna propia que le permitía dedicarse 
a su trabajo sin coerciones externas. Su 
progreso como matemático fue asentán­
dose a medida que transcurrían los años. 
Al lado de Laplace, realizó importantes 
trabajos astronómicos, inventando lo 
que luego se llamaron polinomios de 
Legendre; se sumerg ió en el poco cono­
cido territorio de las funciones elípticas 
y en la teoría de números, donde creyó 
haber resuelto la entonces magna cues­
tión de la rec iprocidad cuadrática. Pero 
su investigación contenía algunos agujeros, tal y como puso de manifiesto 
años más tarde Carl Friedrich Gauss. Sus trabajos astronómicos determinaron 
su nombramiento como miembro de la Royal Society. Fue designado para 
trabajar en la comisión encargada de poner las bases del Sistema Métrico 
Decimal, uno de los programas de racionalización que se impulsaron tras la 
revolución francesa. Aunque comulgaba con muchas de las ideas revolucio­
narias, tuvo que ocultarse en los tiempos del terror, y por esa época perdió 
su fortuna personal. Reescribió entonces y publicó los Elementos de Euclides 

NÚMEROS AMIGOS Y NÚMEROS PERFECTOS 

Diremos que un divisor d de un número cualquiera n es un di­
visor no trivial de n si 1 ~ d < n . El divisor n, será el divisor tri­
vial den. 

En 17 4 7 apareció documentada una primera intervención 
seria de Euler en el terreno de los números amigos. Dos números 
son amigos si sumados los divisores no triviales del uno dan el 
otro y viceversa. 

Es un concepto de «amistad» muy aritmético que se entiende 
con un ejemplo; tomemos los números 220 y 284: los divisores no 
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bajo un punto de vista y un lenguaje modernos, obteniendo un éxito editorial 
resonante y duradero. El recién llegado Napoleón lo tomó bajo su protección, y 
Legendre, ya académico y consagrado, se dedicó por un tiempo al movimiento 
de los cometas, lo que dio origen al método de los mínimos cuadrados para 

. calcular trayectorias, adelantándose esta vez a Gauss. De esta época datan 
sus estudios sobre la distribución de los números primos, que conjeturó obe­
decían a la ley asintótica: 

1t(X) - X 
log x -1,08366 

Este valor, muy próximo al óptimo actual, conduciría luego al teorema funda­
mental de los números primos. También en este terreno Gauss llegó el primero, 
pero no publicó nunca sus resultados. 

Los últimos años de Legendre 
El último período de su vida lo dedicó a las funciones elípticas, pero en una 
forma ya entonces obsoleta d1?bido a las aportaciones de Niels Abel (1802-
1829) y Carl Gustav Jakob Jacobi (1804-1851). Trató también las geometrías 
no euclídeas, quedándose a las puertas de desentrañar sus secretos. Todavía 
probó el último teorema de Fermat paran= 5. En 1824 se enfrentó al ministro 
del interior de Luis XVIII y fue privado de su pensión. El gobierno posterior 
de Luis Felipe de Orleans volvió a pagarle, pero solo una parte; no obstan­
te, le concedieron la Légion d'Honneur. Legendre no murió en la indigencia, 
pero conoció la pobreza. Un triste final para un científico que posee un cráter 
lunar dedicado a su memoria, una calle en París y una placa recordatoria en 
la torre Eiffel. 

triviales de 220 son 1, 2, 4, 10, 11, 20, 22, 44, 55 y 110; los corres­
pondientes de 284 son 1, 2, 4, 71 y 142. 

Se cumple que: 

220 = 1 + 2 + 4 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284 
284 = 1 + 2 + 4 + 71 + 142 = 220. 

Los números 220 y 284 son amigos. En el reino numérico, la 
amistad es un fenómeno nada común. Si se hubiera realizado la 
prueba con cualquier otra de las 19 880 parejas posibles inferiores 
a 284, no se hubiera encontrado ninguna otra. De hecho, en época 
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de Euler solo se conocían tres parejas amigas: (220, 284), (17296, 
18416) y (9363584, 9437056), encontradas por Thabit ibn Qurra 
(836-901), Fermat y Descartes. 

Euler, en un primer artículo, daba ya 30 parejas nuevas pero 
no demasiadas pistas de por dónde discurrían sus pensamientos. 
Luego elevó su aportación a 90 números amigos. La pareja (1184, 
1210) fue descubierta en el siglo XIX por un modesto cultivador de 
las matemáticas, Niccolo Paganini. 

Se ha comprobado ya que no hay demasiadas parejas amigas: 
el húngaro Paul Erdos (1913-1996) probó en su día que la densidad 
de números amigos en el conjunto N es cero. Con la ayuda de las 
computadoras se ha llegado a las decenas de millón de parejas 
amigas. Más adelante volvió Euler sobre el tema, con su acostum­
brada perspicacia, y legó un criterio suficiciente para construir 
números amigos: 

Los números N = 2npq y M = 2"r son amigos si p ,q y r son pri­
mos, de la forma: 

P=(2(n - mJ+l) X 2"' - 1 
q = (2(n-mJ+ 1) X 2" - 1 

r=(2(n - 1nJ+1)2 X 21n+n - 1 
conn>m > O. 

La condición sugerida por Euler es suficiente pero no nece­
saria. No proporciona todas las parejas amigas, pero es un paso 
importante. 

NÚMEROS PERFECTOS 

Están estrechamente relacionados con los números amigos. Un 
número se dice que es perfecto cuando es amigo de sí mismo. 
Eso quiere decir que un número es perfecto cuando es igual a la 
suma de sus divisores no triviales; es lo que sucede con 6 o 28, por 
ejemplo, que cumplen: 

6=1+2+3=6 
28 = 1 + 2 + 4 + 7 + 14 = 28. 
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El siguiente número perfecto es el 496 que todavía es accesi­
ble con simple lápiz y papel. 

Hasta 2012 se habían encontrado 4 7 números perfectos, y el 
octavo lo descubrió Euler. He aquí los diez primeros: 

Orden p Número Dígitos Descubrimiento 

1 2 6 1 Conocido por los griegos 

2 3 28 2 Conocido por los griegos 

3 5 496 3 Conocido por los griegos 

4 7 8128 4 Conocido por los griegos 

5 13 33550336 8 1456 

6 17 8589869056 10 1588 

7 19 137 438 691328 12 1588 

8 31 2 305 843 008139 952128 19 1772, Euler 

9 61 265 845 599 ... 953 842176 37 1883 

10 89 191561942 ... 548169 216 54 1911 

El número p de la tabla tiene su significado. Todos los nú­
meros perfectos de la relación -y, de hecho, todos los que se 
han descubierto hasta hoy- son de la forma 2P-1x (2P- l) donde 
MP = 2P - 1 es un primo de Mersenne. Euclides ya incluyó en sus 
Elementos que si 2P - 1 es primo, 2P-1x (2 P - 1) es par y perfecto. 
El mérito de demostrar el teorema recíproco es de Euler, aunque 
la demostración apareció póstumamente. 

Lo que no se ha encontrado nunca es un número perfecto 
impar, por más que las computadoras han buscado hasta 10300 . 

Tampoco se sabe si hay infinitos números perfectos, otra de las 
grandes incógnitas de la teoría de números. 

En Internet se puede encontrar hasta el número 24 de los nú­
meros perfectos y tiene 12 003 dígitos. 
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LADRILLO DE EULER 

Llamado también cuboide, el ladrillo de Euler es un prisma rec­
tangular de lados a, b y e, en el que tanto los lados como las dia­
gonales de las caras son números enteros. Eso equivale a que tales 
elementos satistacen un sistema de ecuaciones diofánticas: 

a2 +b2 =d2 
ab 

a2 + c2 = d 2 
ac 

b2 +c2 = d;c. 

Euler no inventó dicho «ladrillo», pero en 1770 y 1772 encon­
tró dos ecuaciones que proporcionaban infinitos ladrillos -pero 
no todos-. Hasta el momento el menor ladrillo encontrado tiene 
por lados 240, 117 y 44. 

Cuando la diagonal espacial del cuboide -no la de las caras, 
sino la espacial- es también entera, al ladrillo se le llama cuboide 
perfecto, aunque de momento -y se llevan buscando más de 250 
años- no se ha encontrado ninguno. 

De todas maneras, se ha llegado bastante cerca del cuboide 
perfecto; se ha encontrado un cuboide con un a de 68162 dí­
gitos, un b de 56 802 y un e de 56 803, que proporciona una dia­
gonal espacial que solo difiere de un número entero en 10--00589 

(=0,000000 ... 00001, con 60589 ceros tras la coma decimal). 

UN PASEO POR EL EULER RECREATIVO 

Ya se ha dicho que las matemáticas llamadas hoy recreativas fue­
ron el detonante de muchas teorías importantes en el pasado y 
que la consideración de mero pasatiempo de que gozan ahora no 
ha sido siempre la misma. Eminentes sabios dedicaron en el pa­
sado muchas energías a temas como los juegos de naipes, dados, 
cuadrados mágicos y todo tipo de acertijos sin experimentar 
rubor alguno por hacerlo y sin sentir que perdían el tiempo. 

SEGUNDA ESTANCIA EN RUSIA: EULER Y LA TEORÍA DE NÚMEROS 



Un desahogo aritmético extendido fueron los cuadrados mági­
cos. Se trata de disposiciones cuadradas de n2 números ( n se dice 
que es el orden del cuadrado), que no se repiten - usualmente-- en 
la misma fila o en la misma columna, y que suman (la suma S se 
denomina constante mágica) la misma cantidad cuando se las 
suma fila a fila, columna a columna y siguiendo las diagonales. 

Los cuadrados mágicos forman parte de una clase más general, 
los llamados cuadrados latinos, denominados así porque Euler los 
denotaba con caracteres latinos. Euler dedicó bastante reflexión a 
los cuadrados latinos en su artículo Investigaciones sobre una 
nueva especie de cuadrados mágicos, de 1782. Un cuadrado latino 
es un cuadrado de lado n (los algebristas prefieren hablar de una 
matriz de orden n) de manera que en cada casilla anida un símbolo 
( que puede ser un número) que aparece una vez sola en cada fila y 
columna. 

a b e d 

b a d e 

e d a b 

d e b a 

El número de cuadrados latinos crece de modo fenomenal a 
medida que aumentan: 

n Número de cuadrados latinos 

1 1 

2 2 

3 12 

4 576 

5 161280 

6 812851200 

7 614 79419904000 

8 108776032459082956800 

9 5524 751496156892842531225600 

10 9982437658~30398n725064756920320000 
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En la actualidad los cuadrados lati­
nos tienen su aplicación científica más 
corriente en la elaboración de códigos co­
rrectores de errores, en agronomía, en el 
diseño de experimentos, en análisis esta­
dístico y en ramas más clásicas de las ma­
temáticas como la teoría de números, la 
de grupos, la informática o la teoría de 
grafos y la combinatoria. 

Solo citar también, porque las mate­
máticas involucradas son ya de carácter 
superior, que completar un cuadrado la­
tino incompleto, cualquiera que sea el cua­
drado, es un problema de planteamiento 
sencillo, pero para el que no parece existir 
algoritmo de solución alguno. Es, por tan­
to, un problema NP-completo en la jerga 
de la teoría de la complejidad. 

Un tipo especial de cuadrados latinos 
son los cuadrados grecolatinos, como el 
de la figura l. Euler los llamaba grecolati­
nos porque para describirlos con claridad 
usaba caracteres de ambos tipos, griegos 
y latinos. Los cuadrados grecolatinos son 
hijos de dos cuadrados latinos más sim­
ples. Mucho antes que Euler, no obstante, 
existían los cuadrados grecolatinos, encar­
nados en simples juegos de naipes; la dis­
posición de cartas que aparece en la figura 
2, de Jacques Ozanam (1640-1718), mues­
tra palos y figuras sin que figuren repetidos 
en riinguna fila o columna. Para este caso, 
simetrías aparte, hay 144 soluciones. 

No fue tan afortunado Euler cuando 
abordó el problema de los 36 húsares, de 
estructura similar (figura 3). El problema 
funciona como sigue: de seis regimientos 
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se seleccionan seis oficiales, cada uno de 
graduación distinta; ¿es posible disponer­
los en una formación cuadrada de manera 
que no coincidan en la misma fila o co­
lumna miembros de igual regimiento o 
graduación? 

-- - -- ---7 

Euler probó a hacerlo y fracasó, por 
lo que conjeturó que el problema carecía 
de solución. De hecho, conjeturó que no 
existía ningún cuadrado grecolatino de 
orden n = 4x + 2, cualquiera que fuera x. 
Su conjetura permaneció como tal du­
rante más de un siglo hasta que la probó 
el matemático francés Gastan Tarry 
(1843-1913); lo curioso es que Tarry cons­
truyó todos los cuadrados posibles para 
el orden n = 6, y comprobó que la res­
puesta era negativa. Posteriormente, en 
1960, una computadora encontró un cua­
drado grecolatino de orden 10 (figura 4). 
Así pues, la conjetura de Euler era cierta 
para n = 6, pero ya no lo era paran= 10 (y 
sucesivos, como se demostró luego). 

EL SUDOKU 

FIG. 4 

FIG. 5 
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Quizás uno de los pasatiempos más conocidos actualmente sea el 
sudoku, un juego que data del año 1979, cuando hizo su aparición 
en la publicación DeU pencil puzzles and word games, de donde 
saltó al Japón con el nombre de sudoku («números sueltos») y 
de ahí a la fama universal. El sudoku no es un juego de origen 
japonés, como generalmente se cree, sino que es norteamericano. 

El sudoku hunde sus raíces en Euler y los cuadrados latinos. 
Un sudoku no es más que un cuadrado latino de orden 9, que con­
tiene 9 subcuadrados. Dentro de estos pueden disponerse los nueve 
dígitos habituales (figura 5). 
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FIG.6 

FIG. 7 

EL DISCO DE EULER 

Entre 1761 y 1781, a Euler debió 
de apetecerle volver por unos 
momentos a su niñez. No solo se 
ocupó de los cuadrados mágicos, 
que constituyen una forma de en­
tretenimiento, sino que también 
data de esta época la invención de 
un juguete: el disco de Euler. 

Tomemos una simple mo­
neda, pongámosla vertical sobre la 
mesa y hagámosla girar de súbito · 

w = veloc idad angular alrededor de su eje vertical como 
se muestra en la figura 6. n = velocidad de precisión 

a= ángu lo de inc linación 
La moneda girará primero al­

rededor de su eje vertical; luego, 
a medida que su energía cinética 
se vaya disipando, irá cediendo 
a la atracción de la gravedad e 
inclinándose hacia el suelo, la 
mesa o la superficie sobre la que 
se sostenga. Pero no caerá súbi­
tamente porque el momento de 
rotación tenderá a conservarla de 

pie. La duración del giro puede ser larga, incluso larguísima si el 
rozamiento es mínimo, pues entonces la energía se disipa más 
lentamente. Por eso cuando se utiliza el disco como juguete, la 
superficie de giro se incluye en el paquete de ventas y ambos ob­
jetos, disco y superficie de giro están muy pulidas (son de acero 
cromado) y casi no producen roce. El disco va colapsando en su 
giro, pero ya no lo hace sobre un eje vertical, sino por un eje que 

· se desplaza perpendicularmente al eje de tangencia ( que a su vez 
va describiendo una curva alrededor del centro inicial), y termina 
por caer con un repiqueteo característico (figura 7). 

Muchos investigadores han examinado el comportamiento 
a fondo del disco de Euler y han llegado a predecir con bastante 
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exactitud el momento en el que el juguete entra en el período 
de repiqueteo anunciador del fin de todo movimento; parece ser 
que ello sucede cuando la moneda gira unas 100 veces por se­
gundo. Entonces sobreviene una singularidad y es el fin de la 
diversión. 

Algunos se habrán apercibido de que se ha imitado, con una 
simple moneda, el lentísimo fenómeno astronómico de la prece­
sión de los equinoccios. Ese era el auténtico interés de Euler. 

LOS ÚLTIMOS LIBROS DE EULER 

Ningún estudio de la obra de Euler puede dejar de citar los libros 
importantes aparecidos en esta última época. Uno de ellos, Let­
tres a une princesse d'Allemagne sur divers sujets de physique et 
de philosophie, publicado en 1768, consta de 234 cartas dirigidas 
a la princesa de Anhalt-Dessau, y explora todo el universo cientí­
fico - con incursiones de carácter pío y filosófico- dando a una 
persona ilustrada, pero sin formación científica, su visión sobre 
el universo y sus entresijos. No todo el mundo entendió que Euler 
dedicara su tiempo a la divulgación. El propio Daniel Bemoulli, 
que siempre fue un amigo muy respetado, le reprendía instándole 
a ocuparse de «más sublimes materias». 

Otro libro de importancia, de 1770, es VoUstdndige anleitung 
zur algebra (Instrucción completa en álgebra), un libro de álgebra 
ideal para los que se estrenan en la disciplina, y que se convirtió en 
un auténtico best seller, traduciéndose a varias lenguas. En él se 
explican, con extraordinaria claridad y método, las operaciones nu­
méricas, los polinomios, las series elementales, las progresiones, los 
desarrollos en números decimales y las ecuaciones. Casi al principio, 
Euler introduce ya los números complejos y opera con ellos siempre 
que puede, considerando a los «números imaginarios» corno creac10-
nes legítin1as del intelecto, objeto de estudio matemático al margen 
de su significado práctico. 

Entre 1769 y 1 771 aparecieron tres sólidos tornos dedicados 
a la óptica, los tres volurnenes de la Dioptricae, que son tratados 
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muy prácticos que pretenden, sobre todo, mejorar el funciona­
miento de los instrumentos ópticos por antonomasia, microsco­
pios y telescopios. El trato que se le da a los sistemas lenticulares 
y a la aberración, tanto esférica como cromática, es muy acertado. 
Las conclusiones son contrarias al criterio de Newton de que no 
se podía combatir con lentes la aberración cromática Un experi­
mentador inglés, John Dollond (1706-1761), demostró la certeza 
de las tesis eulerianas que recomendaban el uso de dos vidrios 
distintos para construir lentes acromáticas. 

Ya se ha comentado ante1iormente el interés que Euler pro­
fesó a las cuestiones astronómicas, en concreto, a la teoría de los 
tres cuerpos, el movimiento cometario y el estudio de la Luna. Su 
gran centro de atención terminó siendo el movimiento de la Luna. 
En 1770 añadió otro Grand Prix a su lista cuando, conjuntamente 
con su hijo Johaim Albrecht, fue galardonado por un ensayo sobre 
el problema de los tres cuerpos aplicado al movimiento lunar ---en 
1748 Euler ya había ganado uno sobre el mismo tema-; pero no 
pareció haberse fatigado por la materia, pues, en 1772, lo volvió 
a ganar sobre la misma cuestión y esta vez lo compartió con La­
grange. 

Sin embargo, quedaron sueltos unos flecos importantes y 
Euler analizó nuevamente, en 1772, las muchas irregularidades 
del moviminto de la Luna dedicándole un libro de 791 páginas, 
Theoria motuum lunae (Teoría del movimiento de la Luna). 
Escrito en dos partes, la segunda presenta casi solo tablas de 
situación -una de ellas ocupa 144 páginas-, obtenidas a tra­
vés de métodos innovadores y cálculos muy laboriosos, en las 
que se tienen en cuenta las elongaciones del Sol y la Luna, la 
excentricidad, el paralaje o la inclinación del plano orbital lunar. 
Aunque para llevar a cabo esta ingente labor se rodeó de sus 
mejores colaboradores, no deja de ser un ejercicio intelectual 
de gran mérito. 

En 1773 regresó de nuevo a los temas navales con Theorie 
complete de la construction et de la manoeuvre des vaisseaux 
(Teoría completa de la construcción y de la maniobra de los 
buques), que sorprende por su casi ausencia de fórmulas mate­
máticas. 
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FOTO SUPERIOR 
IZQUIERDA: 
El cuadrado 
mágico que se 
reproduce en 
Melancolía I de 
Albrecht Dürer, 
es de orden 4 
y su número clave 
es 34. 

FOTO SUPERIOR 
DERECHA: 
Grabado realizado 
por el artista 
J. Chapman, que 
muestra en un 
primer plano a un 
Euler ya anciano 
y una escena, en 
que Euler trabaja 
ayudado por 
uno de sus 
colaboradores. 

FOTO INFERIOR: 
Tumba de Euler, 
situada en 
el Monasterio 
de Alejandro 
Nevski, de San 
Petersburgo. 
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EL DÍA EN QUE EULER DEJÓ DE CALCULAR 

La muerte sobrevino a Euler - rico, respetado, en algunos am­
bientes directamente reverenciado-, mientras trabajaba. Según 
el relato del historiador Yushkevich, la muerte de Euler, a los 78 
años, fue así: 

El 18 de septiembre de 1783, Euler invirtió la mayor parte del día del 
modo usual. Dio su lección de matemáticas a uno de sus nietos, hizo 
algunos cálculos con la tiza sobre dos pizarras sobre el movimiento 
de los globos aeróstáticos; luego discutió con Lexell y Fuss el recien­
te descubrimiento de Urano. Sobre las cinco de la tarde sufrió una 
hemorragia cerebral y dijo solo «Me estoy muriendo» antes de perder 
la consciencia. Murió alrededor de las once de la noche. 

El relato debe de ser bastante fiel, pues entre los artículos 
póstumos, terminados por su hijo, figura el de los globos Montgol­
fier, los globos aerostáticos. Que su muerte fue súbita y que Euler 
se apercibió de ella también ha sido corroborado por más de un 
testigo. 

Tras el fallecimiento del sabio, llegó la hora de los elogios 
fúnebres. Los más notables, auténticas biografías laudatorias de 
regular extensión, son dos. Fueron escritos, el primero, por su 
nieto político Fuss, a quien le correspondía por derecho propio 

. dado su parentesco y el alto cargo que desempeñaba en la Acade­
mia. El otro lo escribió el marqués de Condorcet (1743-1794) para 
la Academia francesa. La línea final del elogio de Condorcet es 
bella y elocuente y podría aplicarse en cierto sentido al presente 
volumen. Termina diciendo: «Dejó de calcular y dejó de vivir». 
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Anexo 

1. LOS LOGARITMOS Y NAPIER 

Puede considerarse a sir John Napier (1550-1617) como el inven­
tor de los logaritmos. Este procedió a dibujar dos rectas planas 
del siguiente modo: primero dibujó un segmento de extremos A y 
B; en paralelo, dibujó una recta sin fin de inicio en A'. Luego su­
puso que un móvil se deslizaba a través de la recta sin fin con ve­
locidad constante. A cada punto X' de la recta le hizo corresponder 
un punto X del segmento AB, pero no de cualquier modo: X se 
movía con una velocidad igual a la distanciaXB. Llamando x = BX 
e y= A'X', Napier creó su logaritmo: 

y= log x. 

A X B 

A ' X' 

Napier tomó AB = 107
, lo que conduce a unas igualdades alge­

braicas un tanto complicadas. Si N es un número y L es el loga­
ritmo, Napier calculó N = 107(1-10-7)L. De todo ello se deduce: 
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Y, como se ve, ya ha aparecido la constante e, pues: 

En muchos tratados antiguos -y no tan antiguos- se habla 
de logaritmos neperianos o naturales, identificación algo con­
fusa, pues los logaritmos naturales son los de base e, mientras que 
los ideados por Napier estaban (casi) en base lle. Son práctica­
mente lo mismo, pues solo difieren en un signo -, no en el valor 
absoluto: 

loge N = - log 1 N. 

En la actualidad, para todo número real positivo N, cuando 
N = aL, decimos que L es el logaritmo de Nen base a. Escribimos 
entonces L = log ª N. 

Si uno se detiene a pensar, se comprobará que el logaritmo de 
la base es siempre 1, lo que resulta una propiedad fundamental. 

Las bases más utilizadas son a = 10, a= 2 y a= e. Los logarit­
mos en base 10 se denominan logaritmos decimales; los de base 
2, binarios; y los de base e, logaritmos naturales. Si se elije e 
como base, la escritura normalmente aceptada es ln N, en lugar 
de log N. 

Lo relevante del concepto de logaritmo es que facilita el cál­
culo puramente aritmético. Ello se deduce de que: 

N 1 · N2 
= aLi · a ¡,., = aL,+L, 

= logª (N1 • N2 ) = L1 +L2 = logª N 1 +logª N2 , 

y, por tanto, el logaritmo de un producto es la suma de los logarit­
mos de los factores. 

Si se tienen tabuladas ambas magnitudes, números y loga­
ritmos decimales, pueden sumarse los logaritmos y acudir a las 
tablas para conocer sin dificultades el producto. Aunque en la ac-
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tualidad son las calculadoras electrónicas las que proporcionan 
directamente los productos sin esfuerzo, en la época en la que 
estas no existían, sustituir una multiplicación ardua, cuando el 
producto original era muy grande, por una suma sencilla, era algo 
de una relevancia extraordinaria. 

2. EL PROBLEMA DE BASILEA 

Sigan1os los vericuetos de su razonamiento, aunque sepamos por 
adelantado que diversos pasos presentan algún problema y nece­
sitan ser pulidos. El propio Euler lo hizo a posteriori. 

Si partimos de la conocida se1ie de Taylor: 

x3 x5 x1 
senx = x - - + - - - + ... 

3! 5! 7! 

sabemos que se anula si se anula x, es decir que sen x = O cuando 
X = 0, ± Jt, ±2Jt, ±3Jt ... 

De modo que, suponiendo que una serie se comportará como 
un polinomio, ya que de hecho es un polinomio larguísimo, la apli­
cación del teorema fundamental del álgebra la convertirá en pro­
ducto de monomios del tipo x - a, donde a es una solución. 
Procedamos: 

x3 x5 x1 
x --+- - - + ... = K(x)(x - n)(x+n)(x - 2n)(x + 2n) ... 

3! 5! 7! 

Ahora K es una constante numérica desconocida. Operando 
a la derecha: 

xª x 5 x7 
2 2 2 2 2 2 x - -+---+ ... =K(x)(x - n )(x -4n )(x -9n ) ... 

3! 5! 7! 

se observa que cada término de la forma x 2 
- A 2 n 2 de la derecha 

es cero. Ahora bien, eso solo sucede si y solo si: 

x2 
1--2- 2 = Ü. 

Án 
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Reescribimos, pues, los términos de la derecha en la forma: 

x --+---+ ... =K(x ) 1-- l--0 1-- ... x
3 

x
5 

x
7 

( x
2 

)( x
2 

)( x
2 

) 

3! 5! 7! n2 4n- 9n2 

Ahora dividimos por x : 

Y como lim senx = 1, concluin10s que K = l. Así que queda: 
x-o X 

que es una serie igual a un producto infinito. Ningún problema, 
según Euler. Efectuamos ordenadamente el producto y separa­
mos los términos (infinitos) en x2 del producto de la derecha. 
Queda la igualdad: 

x2 x2 x2 x2 
3 ! - n2 4n2 9n2 .. · 

Y dividiendo ambos lados por -x2/n2 se obtiene: 

como queríamos averiguar. 

3. LA FUNCIÓN ZETA Y LOS NÚMEROS PRIMOS 

Euler es quien demostró en primer lugar la equivalencia entre ~( s) 
como serie de potencias y ~( s) como producto infinito. Llamemos 
pkal k-ésimo número primo; entonces se verifica: 
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00 1 00 

sCs) = I-s = Il--1i--
,,_¡ n k• I l - pf 

A continuación, se puede ver cómo llegar a esa igualdad: 

00 1 1 1 1 
s(s)= "'-=l+- +-+-+ ... = 

,f:.1 n s 28 3s 4s 

1 1 1 00 1 
- 1· 1· 1 · ----Il 1· 

1- - 1- - 1- - k-1 1- -
Pt p; P; P! 

Para quienes conozcan el análisis complejo por el procedi­
miento estándar, la función zeta puede prolongarse como fun­
ción meromorfa a todo el plano complejo con un solo polo en 
s = 1, donde el residuo es l . Esta es la función zeta (zeta= s) a la 
que se refería Riemann y objeto asimismo de la célebre hipótesis 
de Riemann. 

4. LAS ECUACIONES DE EULER-LAGRANGE 

Para simplificar la exposición en la medida de lo posible, se 
partirá del supuesto de que las funciones involucradas satis­
facen todas las condiciones de continuidad y derivabilidad ne­
cesarias. 
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Llamaremos Sal funcional (función de funciones) al que apli­
camos el cálculo de variaciones y X ¡, x

2 
a los extremos de la fun­

ción incógnita: 

S(f) = F' L(x ,f(x ),f'(x ))clx . . ,, 

Supondremos que f
0 

es la solución y que el funcional posee un 
mínimo en esa ubicación; llamaremos a(x ) a una función (es la 
que haremos «variar») que se anule en los extremos, X ¡, x

2
• Como 

enf
0 

el funcional posee un mínimo: 

S(fo) ,s S(fo + w ), 

en un entorno de f
0

, entorno pequeño, cercano a cero. La «va­
riación»: 

f = fo +w 

debe, pues, cumplir: 

Recordemos ahora que: 

df df' , 
-=a - =a 
dé ' dé ' 

y apliquemos la regla de derivación en cadena y las sustituciones 
oportunas. 

Obtenemos: 

dL aL df aL df' aL aL ' 
-=--+--=-a+ - a 
dé af dé ar dé af ar 

y aplicando la integración por partes y las sustituciones de la fór­
mula anterior: 
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f x, dL I dx f x' (aL aL ') dx f ',.2 (aL d aL) dx - = -a+-a = - a-a-- + 
X ¡ de ,-o X ¡ aj aj' X¡ aj dx ar 

+ aL a ¡x,= fx'a(aL _!!_ aL) dx. 
ar X ¡ X ¡ aj dx aj' 

Como el término inicial es cero, el final también, y conclui­
mos que: 

aL _!!_ aL = O. 
aj dx ar 

Y ya se tienen las ecuaciones de Euler-Lagrange, que, en el 
mundo real, acostumbran a desembocar en ecuaciones diferencia­
les de segundo orden. 

S. LOS NÚMEROS COMPLEJOS 

Euler dedujo su primera fórmula fundamental, de la que fue extra­
yendo otras, de simples series de Taylor. 

Recordemos que las potencias de i se comportan así: 

iº = 1, 
.¡ . 

'I, = i, i 2 = -1, ·3 . 
'I, =-i, 

i 4 = 1, ·5 . 
'I, = i, i 6 = -1, i 7 = -i, etc. 

Y recordemos también que los desarrollos en serie de poten­
cias, o desarrollos en series de Taylor de las potencias de base e, 
y las funciones trigonométricas del seno y del coseno son: 

x xº x 1 x 2 x 3 x 4 

e =-+-+-+-+-+ ... 
O! l! 2! 3! 4! 

xº x2 x 4 x 6 

COSX= - --+---+ ... 
O! 2! 4! 6! 

x 1 x 3 x 5 x 7 

sen x = - - - +-- -+ ... 
l! 3! 5! 7! 
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Operando: 

;z (iz) 0 (iz)1 (iz)2 (iz)3 (iz)4 (iz)° (iz)6 (iz)1 
e=--+--+--+--+--+--+--+--+ 

O! l! 2! 3! 4! 5! 6! 7! 

(iz)8 zº . z 1 z2 .z3 z4 .z5 z6 .z7 z 8 

--+ ... =-+-Z.----i-+-+i----i-+-+ ... 
8! O! l! 2! 3! 4! 5! 6! 7! 8! 

=( ~~ -;: + :~ -:: + ;~ - ... )+i(~;-;~ + ;~ -;: + .. . ) 

6. CRIPTOGRAFÍA Y EL PEQUEÑO TEOREMA 
DE FERMAT 

Sea M un mensaje y E su encriptación. Supondremos que ambos 
son números naturales. Llamemos fa la función que va de M a E: 
f(M) = E. Para codificar M, el codificador y el descifrador del men­
saje seleccionan dos números primos muy grandes, p y q, y definen 
el módulo, al que llamaremos n poniendo n = pq, suponiendo n > M. 
Se elije un e, con 1 <e<cp(n) y e primo entre sí con cp(n). La clave 
pública está formada por n y e, y la conoce todo el mundo. Como n 
es tan grande y no está factorizado, p y q son una incógnita inextri­
cable. Se tiene E=f(M) sMe (mod n). Denominamos clave privada 
al par n,d, donde d se elije de manera que de= I (mod cp(n)). Como 
p y q son primos, y pq=n, se tiene que cp(n)=(p-l)(q-1); si no se 
conocenp y q, y es practicamente imposible conocerlos, no puede 
conocerse tampoco cp(n). Así que no se puede conocer d. Pero el 
descifrador sí que posee d, pues conoce p y q, y, por tanto, puede 
proceder al descifrado: FJd-=(Me)d (mod n) =Med (mod n) aMNcp(nJ+ l 
( mod n) , NEN. Se aplica entonces el pequeño teorema de Fermat. 
Si a=MN (a es, casi seguro, primo entre sí con n), aplicando el 
teorema: Ert s Macp(nl (mod n)sM (modn)=M, yaqueM<n, como 
se ha supuesto al principio. 

De esta explicación se puede extraer que crear una clave es 
relativamente fácil, pues solo se necesitan dos números primos 
grandes, p y q, y romperla, muy difícil. 
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