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Introducción 

Historiador, ingeniero de minas, poeta, diseñador, geólogo, di­
plomático, músico, alquimista, casamentero político, agricultor, 
bibliotecario .. . ¿Se puede dar mayor diversidad? Pues todas esas 
actividades desarrolló Gottfried Wilhelm Leibniz. Pero fueron sus 
trabajos en filosofía y ciencia, especialmente en matemáticas, los 
que lo encumbraron al Olimpo de la gloria. 

Vivió una época convulsa con grandes cambios políticos, 
militares, culturales, sociales, religiosos y sobre todo científicos. 
Cuando nació estaba agonizando la Guerra de los Treinta Años 
(1618-1648), que cambiaría el panorama político de Europa. Con 
la Paz de Westfalia (1648), el Sacro Imperio Romano Germánico 
comenzó una clara decadencia. En la lucha por la soberanía entre 
el emperador germano y los príncipes locales, vencieron estos 
últimos, lo que desembocó en la creación de muchos estados so­
beranos independientes; de hecho, había estados que luchaban 
contra Francia, mientras otros se aliaban con ella. Esa división 
impidió la creación de un estado nacional. Otro de los motivos 
del conflicto fue el enfrentamiento entre católicos y protestantes; 
al acabar la guerra, algunos de los electorados resultantes eran 
católicos y otros protestantes. 

Uno de los elementos que marcaron esa época fue la irrup­
ción de una poderosa Francia en el escenario europeo, lo que 
rompió por completo el equilibrio establecido. Tras el reinado de 
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Luis XIII, regido por la novelesca figura del cardenal Richelieu, 
apareció en escena Luis XIV, el «Rey Sol». Con la ayuda del car­
denal Mazarino primero, y después como monarca absoluto, no 
escondió sus ansias de expansión. Comenzó con una profunda 
reforma de su propio país: fomentó la economía -favoreciendo 
la industria nacional- y también la política colonial en América, y 
estableció unas excelentes infraestructuras, así como un ejército 
permanente, entre otros cambios. Después dirigió su atención al 
resto de Europa. En primer lugar, se abalanzó sobre los Países 
Bajos, que en la Paz de W estfalia se habían descolgado firmando la 
paz por separado con España. En ese conflicto (1672-1678) contó 
con la ayuda de Inglaterra y algunos principados germánicos 
como aliados. Precisamente ese conflicto significó para Leibniz la 
oportunidad de que se abriera al mundo. La primera de sus princi­
pales misiones diplomáticas le llevó a París y Londres con el fin de 
intentar evitar la guerra con los Países Bajos o, al menos, impedir 
que Alemania se viera envuelta en el conflicto. 

Más tarde, con el fin de combatir la belicosa política fran­
cesa, se creó la Liga de Augsburgo (1688-1697), cuyos integrantes 
eran el Sacro Imperio, Inglaterra, Suecia y España. Finalmente, 
la guerra concluyó con la rúbrica de la Paz de Ryswick (1797). 
En el siglo xvm Francia volvió sus intereses hacia España. En ese 
complicado escenario, dadas sus notables dotes diplomáticas, la 
intervención de Leibniz se requirió en varios de esos conflictos: 
participó en el proceso de consultas diplomáticas e incluso llegó a 
escribir informes sobre cómo aprovechar los recursos materiales 
y humanos en la guerra que se veía imposible de parar. 

En ese mismo siglo, la Rusia del zar Pedro I, que estaba 
siendo radicalmente modernizada, se aproximó a Europa, pro­
porcionando así la posibilidad de un acercamiento a la ciencia y 
la cultura chinas. Leibniz, muy interesado en ellas, abogó siempre 
por intensificar las relaciones entre Alemania y Rusia con la idea 
de crear un corredor que permitiera el flujo de ambas cultmas, la 
europea y la china, en ambos sentidos. Llegó a ser asesor cientí­
fico del zar, con quien se entrevistó en varias ocasiones. 

Durante el Renacimiento se produjo una profunda transfor­
mación en el dominio del pensamiento, la religión y las artes, que 
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supuso una mayor libertad de espíritu, y a la postre posibilitó la 
Reforma protestante y con ello las futuras guerras de religión. La 
segunda mitad del siglo XVI fue realmente una edad de oro para 
las artes. Basta citar algunos de los nombres que encontramos en 
esa época para reconocer el impresionante nivel al que se llegó 
en la cultura: Moliere, Shakespeare, Swift, Cervantes, Quevedo, 
Lope de Vega, Velázquez, Murillo, Rubens, Rembrant, Vivaldi, 
Bach, Han del. .. Y en el terreno del pensamiento nos encontramos 
a Spinoza, Hobbes, Locke, Bacon o Amauld, entre otros. Uno de 
los factores que más influyó en este florecimiento de la cultura 
fue la invención de la imprenta a mediados del siglo xv. Y si cabe 
destacar un libro en esos primeros años por su relevancia, ese es 
De revolutionibus orbium coelestium (Sobre el movimiento de 
las esferas celestes), publicado en 1537 por Nicolás Copémico. 

Sin embargo, la mayor evolución se produjo seguramente en 
el campo científico. En apenas siglo y medio, la ciencia avanzó 
mucho más que en todos los siglos anteriores. Esa revolución 
científica sentó las bases para una futura revolución industrial, 
pues la ciencia ya no era meramente teórica, como en la antigua 
Grecia, sino eminentemente práctica. Para comprobar la impor­
tancia de dicha revolución, basta citar algunos de los hitos conse­
guidos: la ley de la caída libre de los cuerpos de Galileo, las leyes 
del movimiento planetario o las lentes astronómicas de Kepler, 
la de los gases de Boyle, el cálculo de la velocidad de la luz por 
Romer, la teoría ondulatoria de Huygens, el barómetro de Torri­
celli, la descripción de la circulación de la sangre por Harvey o el 
descubrimiento de los microorganismos por Leeuwenhoek. Estos 
logros espectaculares de la ciencia se consiguieron no porque los 
científicos del siglo XVII fueran más capaces que sus predecesores, 
sino porque vieron el mundo con ojos nuevos. Abandonaron la 
estricta rigidez griega y comenzaron a investigar sin dar tanta im­
portancia a la rigurosidad de la demostración. Se impuso el lema 
«primero inventar, después demostrar». 

El filósofo Francis Bacon, firme defensor de la investigación 
empírica, apoyaba al científico de laboratorio. En s~ obra Nueva 
Atlántida (1626) planteaba una sociedad utópica dirigida por cien­
tíficos, que sería ridiculizada en Los viajes de Gulliver (1726), de 
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Jonathan Swift, pero que sirvió de inspiración para las sociedades 
científicas que florecieron en el siglo XVII. En los círculos científi­
cos, precursores de las sociedades científicas, se intercambiaban 
experiencias y resultados. 

Otro de los factores que hicieron posible la gran revolución 
científica fue el gran desarrollo de las matemáticas. Se abandonó 
la rigidez geométrica griega y se dio el gran salto al álgebra y el 
análisis, que revolucionarían el mundo matemático, y el científico 
en general. Se consideró que las leyes matemáticas eran la base 
de la naturaleza. 

Muchas áreas que hoy día son ciencias independientes, en 
el siglo xvn formaban parte de las matemáticas aplicadas, como 
vemos en El curso o el mundo de las matemáticas, publicado 
en 1674 por Claude-Franc;ois Milliet Deschales, en el que se trata­
ban los siguientes temas matemáticos: aritmética, trigonometría, 
logaritmos, geometría práctica, álgebra, teoría de las cónicas y 
de los indivisibles, mecánica, estática, geografía, magnetismo, in­
geniería civil y militar, carpintería, talla de piedras, hidrostática, 
movimiento de fluidos, hidráulica, construcción de barcos, óptica, 
perspectiva, música, astronorrúa -con la construcción de relojes 
de sol- , astrolabios, calendarios y horóscopos. El descubrimiento 
de la geometría analítica por parte de Fermat y Descartes abrió el 
camino a la herramienta más poderosa de que dispuso la matemá­
tica para florecer como ciencia imparable: el cálculo infinitesimal. 

Y es entonces cuando aparecieron las figuras de Newton y 
Leibniz. Hay autores, como Antonio José Durán, que defienden 
que debemos considerar a esa pareja de genios como los funda­
dores del cálculo, más que los descubridores, pues muchos otros 
matemáticos allanaron previamente el camino. 

No podemos encontrar dos científicos más diferentes. Mien­
tras Newton vivió toda su vida en un entorno bastante reducido, 
Leibniz visitó varios países y viajaba a menudo dentro de Alema­
nia. Newton era una persona muy reservada, que apenas se rela­
cionaba fuera de su trabajo y de la Royal Society, mientras que 
Leibniz asistía constantemente a fiestas y alternaba con facilidad 
en diversas cortes alemanas. El científico inglés se resistía a pu­
blicar y no contestaba muchas cartas, pues no le gustaba entrar 
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en polémica, mientras que a Leibniz le encantaba polemizar con 
todo el que se le pusiera a tiro. Al morir Newton, su entierro fue 
seguido con más boato y seguimiento que si hubiese sido el rey, 
mientras que Leibniz murió en la mayor de las soledades y solo 
lo acompañó su secretario. Ambos murieron sin formar familia. 
A Newton nunca se le conoció interés por casarse, y Leibniz pensó 
en el matrimonio cuando tenía ya cincuenta años, pero mientras 
la dan1a se lo pensaba, él recapacitó y cambió de opinión. 

Sin duda, lo que hizo entrar a Leibniz en la historia de la cien­
cia con letras de oro fue el desarrollo del cálculo infinitesin1al, y 
lo hizo de forma independiente y casi simultánea con Newton, lo 
que constituyó una gran polémica en su época. En la actualidad, 
la idea que tenemos del cálculo está más cerca de la concepción 
que tenía el matemático inglés, pero la notación que usamos es la 
creada por Leibniz. Además, fue él quien se preocupó por estudiar 
a fondo las propiedades y buscar ejemplos y aplicaciones para el 
cálculo, apoyado en esta ardua labor por los hermanos Bernoulli. 

El cálculo infinitesimal es una de las herramientas más po­
derosas con las que cuenta la matemática. Con su utilización pu­
dieron resolverse, de una forma fácil y general, algunos de los 
problemas científicos que se habían tratado desde los antiguos 
griegos. Por un lado el estudio de la variación constante de cier­
tos elementos, algo parecido a lo que haría el velocímetro de un 
coche; en particular, fue aplicado en el problema del estudio de 
los cuerpos en movimiento. También vino a simplificar el cálculo 
de la recta tangente a una curva, lo que tuvo inmediata aplicación, 
por ejemplo, en problemas de óptica. Otro grupo de problemas fue 
el de optimización, es decir, hallar en qué condiciones se podía ob­
tener un valor máximo o mínimo, algo muy aplicado actualmente 
en economía. Y el cuarto gran problema que resolvió fue el del 
cálculo de áreas y volúmenes de elementos que no son geométri­
camente regulares. Sus aplicaciones actuales en la vida cotidiana 
son muy amplias: en el diseño de teléfonos móviles o aviones, en 
transporte, meteorología .. . En general, podemos encontrarlo en 
cualquier proceso en el que haya una evolución constante, como 
la energía utilizada, el estudio del proceso de una epidemia o la 
distribución de cualquier tipo de población. 
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Sin embargo, el ingenio de Leibniz era tan vasto y sus intere­
ses intelectuales tan variados, que podemos encontrar su impronta 
en innumerables campos. Lo mismo actuaba como un ingeniero 
inventando sistemas para extraer material de las minas, o para el 
riego de jardines, que investigaba propiedades de los productos 
químicos recién descubiertos, como el fósforo, o relacionaba su 
filosofía con el movimiento de cuerpos. 

Hay autores que consideran a Leibniz como el último genio 
universal, debido a la gran cantidad de campos en los que de­
sarrolló su labor. El filósofo francés del siglo XVIII, Denis Diderot, 
a pesar de tener opiniones contrarias en su discurso filosófico, 
dijo de Leibniz: «Quizá nunca exista un hombre que haya leído 
tanto, estudiado tanto, meditado más y escrito más que Leibniz ... 
Lo que ha elaborado sobre el mundo, sobre Dios, la naturaleza y 
el alma es de la más sublime elocuencia». Para añadir más ade­
lante descorazonado: «Cuando uno compara sus talentos con los 
de Leibniz, tiene la tentación de tirar todos sus libros e ir a morir 
silenciosamente en la oscuridad de algún rincón olvidado». 

Leibniz fue un febril escritor de libros, memorándums y car­
tas. Su producción bibliográfica fue tal que no solo muchas de sus 
obras principales aparecieron después de su muerte, sino que aún 
no ha aparecido una edición completa de sus escritos. 

Podemos imaginar la variedad de intereses que abarcaba el 
intelecto del genio alemán, si vemos las propuestas que preparó 
para su audiencia con el emperador alemán Leopoldo I: Colegio 
Imperial de Historia, reforma de la moneda, la reorganización de 
la economía, la mejora del comercio y la manufactura textil, la 
creación de un fondo para seguros y de impuestos sobre vestidos 
de lujo, creación de un archivo estatal central, la firma de un con­
cordato de estado y la creación de una biblioteca de referencia 
general, así como una propuesta para el alumbrado de las calles 
de Viena con lámparas de aceite de colza. 

Leibniz era un optimista acérrimo que pensaba que vivía en 
el mejor de los mundos posibles, y nunca se desanimaba por los 
múltiples proyectos en que se enfrascaba y no salían adelante. 
Durante toda su vida tuvo una completa dedicación al estudio, 
como servicio a la humanidad. 
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1646 El 1 de julio nace Gottfried Wilhelrn 1684 En la revista Acta Erudilorurn aparece 
Leibniz en Leipzig, Alemania. un artículo de Leibniz donde explica 

el nuevo cálculo infinitesimal. 
1661 Comienza sus estudios superiores en 

la Universidad de Leipzig, donde se 1685 Recibe el encargo de realizar 
especializa en Filosofía. Tras pasar un una historia de la de casa Brnnswick-
semestre en la Universidad de Jena, Luneburgo, lo que le mantendrá 
regresa a Leipzig y se especializa en ocupado hasta el final de sus días, 
Derecho. sin llegar a concluir la obra. 

1666 Publica su primera obra filosófica: 1692 Hanóver pasa a convertirse en 
Dissertatio de arte cornbinatoria, electorado alemán y Leibniz participa 
inspirada posiblemente en el Ars en varias partes del proceso. 
rnagna de Rarnon Llull. 

1698 Tras la muerte del duque Ernesto 
1667 Se gradúa corno doctor en Derecho Augusto, su hijo Jorge Luis le sucede 

en la Universidad de Altdorf. corno elector de Hanóver. Leibniz 
no tiene mucha sintonía con él. 

1668 Comienza a trabajar para el elector de 
Maguncia. 1700 Se crea la Academia Prusiana de las 

Ciencias. Leibniz es su primer presidente. 
1672 Viaja a París para presentar un 

proyecto elaborado con el barón 1710 Se publica Teodicea: Ensayos sobre la 
Johann Christian von Boineburg. bondad de Dios, la libertad del hombre 

y el origen del mal, donde recoge 
1673 Viaja a Londres, donde asiste a muchas de sus conversaciones con la 

reuniones de la Royal Society y presenta reina Sofía Carlota en Charlottenburg. 
su máquina aritmética y sus resultados 
con la sun1a de series infinitas. 1714 Publica la Monadología, resumen 

de sus posiciones filosóficas. 
1676 Es nombrado consejero del duque de 

Hanóver, cargo que mantendrá hasta su 1716 Publica su obra principal sobre China, 
muerte. Discurso sobre la teología natural 

de los chinos. En ella defiende a China 
1679 Comienza el proyecto de explotación como un pueblo civilizado a la altura 

de las minas del Alto Harz, para el que de Europa. Tras sufrir varios 
había diseñado una serie de bombas episodios de gota, muere el 
de extracción y molinos de viento. 14 de noviembre en Hanóver. 
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CAPÍTULO 1 

El diseñador de calculadoras 

Desde el principio de los tiempos, 
el hombre ha usado las matemáticas para 

contar y operar. Conforme los cálculos aumentaban 
en cantidad y calidad, se buscaron medios para agilizar los 

procesos y hacerlos más eficientes. Así surgieron, por 
ejemplo, el ábaco o los logaritmos. En el siglo XVII 

aparecieron una serie de máquinas mecánicas que 
mejoraban la rapidez y precisión en las 

operaciones, como fue la máquina 
aritmética de Leibniz. 





Los padres con hijos pequeños suelen «martirizar» a los invitados 
con anécdotas realizadas por sus retoños para exponer lo listos, 
imaginativos, espabilados y geniales que son. Con el tiempo esas 
anécdotas quedan reducidas a la memoria de los ancestros, y úni­
camente sirven para hacer enrojecer de vergüenza al ya no tan 
retoño en cualquier reunión con familiares, amigos o compañeros 
de trabajo. 

Si la persona destaca en cualquier disciplina, esas anécdotas 
infantiles se incorporan a su biografía para reforzar la impresión 
de hallarse ante un niño prodigio, algo que en no pocos casos llega 
a ser real. El ejemplo más conocido en el mundo de las matemáti­
cas es el alemán Carl Friedrich Gauss, que en 1787, cuando tenía 
tan solo diez años, resolvió un complicado ejercicio propuesto en 
clase. Su profesor pidió que sumaran los 100 primeros números 
naturales. Gauss presentó en su pizarra la solución en cuestión 
de segundos. 

El método seguido fue el siguiente. Gauss se dio cuenta que 
si escribía los números ordenados del 1 al 100 y debajo los volvía 
a escribir del 100 al 1, sumando cada dos elementos superior e 
inferior siempre se obtiene 101: 

1 2 3 
100 99 98 

4 ............... 97 98 99 100 
97 ............... 4 3 2 1 
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Como hay 100 sumandos, la suma de esas dos series de nú­
meros sería 10100, y como hay dos sumas, en definitiva la suma 
de los 100 primeros números valdría: 

100 · 101 = 5 050. 
2 

Se había dado cuenta de que la primera cifra (uno) y la úl­
tima (cien) sumadas daban la misma cantidad (ciento uno) que la 
segunda y la penúltima, y el razonamiento se podía proseguir sin pro­
blema, osea, 1+ 100 =2+99 =3+98 = ... =50+51 = 101, con lo que tenía 
50 parejas de números que sumaban 101 y cuyo producto es 5050. 

Como veremos en el siguiente capítulo, la suma de grandes se­
ries de números tuvo gran interés para los matemáticos del siglo xvrr. 

Aunque las anécdotas en la vida de Leibniz no son tan llama­
tivas, también hay autores que lo consideran un niño prodigio. 
A la edad de dos años, trepó a una mesa alta mientras estaba al 
cuidado de una tía y, de pronto, perdió el equilibrio y cayó desde 
una altura considerable, tenninando sentado en el suelo, sin nin­
gún daño y riéndose del lance. Su padre pensó que estaba prote­
gido por los cielos y envió inmediatamente un emisario a la iglesia 
para que se dieran gracias al terminar el servicio. Seguramente su 
padre pensó que ese detalle era una muestra de que su hijo estaba 
respaldado por la providencia, y por tanto predestinado a hacer 
grandes cosas. No se equivocaba. 

NACE EL GENIO 

El 1 de julio de 1646 vino al mundo Gottfried Wilhelm Leibniz 
en la ciudad alemana de Leipzig, en el estado de Sajonia, uno de 
los principales centros comerciales de Europa desde el siglo XII. 

Esta ciudad era famosa por su gran cantidad de talleres de im­
prenta, hasta el punto de que llegó a competir con Frankfurt en el 
siglo XVIII en el arte de la impresión, de modo que se podían conse­
guir buenos libros con relativa facilidad. 
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Leipzig era un importante centro para la enseñanza y la cien­
cia desde el Renacimiento, y con una destacable vida cultural. 
Su universidad, fundada en 1409, es la segunda más antigua de 
Alemania, solo detrás de la de Heidelberg. En el momento del na­
cimiento de Leibniz, su padre, Friedrich Leibniz, era vicedecano 
de la Facultad de Filosofía, además de profesor de Filosofía Moral 
en la universidad. También ejercía de registrador, abogado y no­
tario. Era natural de Altenburg, una pequeña localidad distante 
unos cuarenta kilómetros de Leipzig. Su madre, Anna Deuerlin, 
pertenecía a la nobleza de Leipzig. 

EL GRAN AUTODIDACTA 

Entre 1653 y 1663 Gottfried Wilhelm cursó sus estudios básicos 
en la Escuela de San Nicolás de Leipzig. Durante aquellos años 
saciaba su sed de saber con el legado bibliotecario de su padre, 
y aprendió latín por sus propios medios gracias a los clásicos 
latinos y a los padres de la Iglesia. Y a con doce años dominaba 
el latín y balbuceaba el griego, que había estudiado durante un 
par de años en la escuela. Se afirma que con solo trece años, al 
caer enfermo un compañero que debía recitar un poema en una 
conmemoración escolar, Leibniz compuso y recitó un poema en 
hexámetros latinos. 

Durante los últimos años escolares, Leibniz descubrió la ló­
gica aristotélica y llegó a dominarla hasta el punto de que sabía 
aplicar las reglas a casos particulares, algo inalcanzable para sus 
compañeros de clase. Este aprendizaje fue el que hizo florecer la 
gran inventiva de Leibniz y, al descubrir las limitaciones de dicha 
lógica silogística, comenzó a plantearse preguntas sobre las ideas 
nuevas que asaltaban su mente. Se enfrascó en el estudio de la 
teología y la metafísica, algo que impregnaría toda su obra. Se cen­
tró especialmente en el estudio de los grandes polemistas, tanto 
católicos como protestantes. 

En la Pascua de 1661, Leibniz comenzó sus estudios en la 
Universidad de Leipzig, centrándose en el estudio de la filosofía, 
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sobre todo en Aristóteles, y se adentró en la obra de Euclides. 
Hasta ese momento no había tomado contacto con lo que hoy 
llamaríamos ciencia. 

Tuvo como profesor de Filosofía a Jacob Thomasius, quien 
fundó en Alemania el estudio científico de la historia de la filo­
sofía, y a quien Leibniz estimó durante toda su vida. Thomasius 
dirigió su trabajo para la obtención del grado de bachiller en Fi­
losofía, que consiguió en 1663. El ensayo, de título «Disputación 
metafísica sobre el principio de individualización», estableció las 
bases para el desarrollo posterior de su filosofía. 

Aunque se inició en el mundo de la filosofía a través de los clá­
sicos, por aquella época comenzó a tomar contacto con la nueva 
filosofía, tal como el mismo Leibniz recordaría, pocos años antes 
de su muerte, en una carta a Nicolas Rémond, primer consejero 
del duque de Orleans: 

Siendo aún niño estudié a Aristóteles y los escolásticos mismos [ ... ]. 
Después, ya liberado de la trivial filosofía escolar, caí en los moder­
nos, y recuerdo que me paseaba solo por un bosquecillo cerca de 
Leipzig, llamado de Rosenthal, a la edad de quince años, para deli­
berar si debía conservar las formas sustanciales. Al fin prevaleció el 
mecanicismo, que me llevó a aplicarme a las matemáticas. 

Su interés por la filosofía mecanicista fue lo que le hizo co­
menzar a tener más en consideración las matemáticas. Pasó un 
semestre de 1663 en Jena, una población del estado de Turingia, 
cuya universidad es una de las de mayor tradición cultural y cien­
tífica de Alemania. En ella se relacionó con Erhard W eigel, profe­
sor de Matemáticas de gran renombre, además de filósofo moral 
y actualizador del derecho natural. W eigel había publicado años 
antes una obra en la que intentaba una reconciliación entre Aris­
tóteles y los filósofos modernos, como Francis Bacon (1561-1626), 
Thomas Hobbes (1588-1679) o Pierre Gassendi (1592-1655), cuya 
filosofía se basaba en el método matemático. 

Leibniz solía asistir en Leipzig a encuentros con otros estu­
diantes para intercambiar ideas y discutir sobre libros, y durante 
el tiempo que pasó en Jena se hizo miembro de la sociedad acadé-
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mica Societas Quarentium, donde tenían lugar reuniones semana­
les dirigidas por W eigel. A lo largo de toda su vida, Leibniz apoyó 
y promovió este tipo de asociaciones, en especial las sociedades 
científicas por toda Europa. 

CAMINO HACIA EL DOCTORADO 

Leibniz volvió a Leipzig para especializarse en Derecho y en fe­
brero de 1664 se convirtió en maestro en Filosofía con el trabajo 
titulado «Muestra de cuestiones filosóficas tomadas del dere­
cho», donde relacionaba la filosofía y el derecho, pues defendía 
que sin la filosofía, la mayoría de las cuestiones planteadas en 
derecho no tendrían solución. Quería, además, ayudar a disipar 
el desprecio que los estudiantes de Derecho solían tener por la 
filosofía. 

Nueve días después de la lectura de su obra, murió su madre. 
Compartió la herencia con su hermana y una tía casada con el 
especialista de derecho Johann Strauch, que supo ver las grandes 
capacidades del muchacho y lo apoyó documentándolo sobre le­
gislación. Esta ayuda le sirvió para preparar su disertación «De 
conditionibus», con la que obtuvo el grado de bachiller en De­
recho. En este trabajo Leibniz desarrolla aspectos jurídicos con 
un marcado sesgo matemático y filosófico. Plantea una ley sujeta 
a una condición y estudia los distintos casos. Si la condición es 
imposible, la ley es nula y le asigna el valor O. Si no está claro si 
puede suceder o no, entonces la considera como condicional y le 
asocia una fracción entre O y 1, supongamos 1/2. Si por el contra­
rio la condición se cumple seguro, lo que él definía como necesa­
ria, la ley es cierta y le asocia el valor l. Los valores de dicha ley 
corresponderían a la siguiente tabla: 

Conditio lmpossibilis Contigens Necesaria 

o ½ 1 

Jus Nu/lum Conditionale Purum 
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Es fácil encontrar relación con el cálculo de probabilidades. 
Esta relación matemática y científica estaría presente constante­
mente en la obra filosófica de Leibniz. 

En 1666 fue rechazado en su intento de conseguir el grado 
de doctor en Derecho por su juventud, ya que el doctorado fa­
vorecía el nombramiento de profesor ayudante, y había muchos 
aspirantes de mayor edad para las doce plazas disponibles. En 
octubre de 1666 se matriculó en la Universidad de Altdorf, perte­
neciente a la república de Núremberg, donde presentó el trabajo, 
finalizado en Leipzig, «Sobre casos difíciles en derecho», y cinco 
meses después ya tenía el grado de doctor. Rechazó la invitación 
para formar parte de la Universidad de Altdorf, pues opinaba que 
la revolución científica que tenía en mente no podía hacerse en el 
seno de la universidad. 

Conviene mencionar ciertos aspectos sobre los estudios uni­
versitarios de la época. Actualmente, cada vez aparecen carreras 
nuevas con mayor grado de especialización, y en las que todos 
pueden encontrar los aspectos en los que quieren formarse, siem­
pre que la nota de selectividad lo permita. Pero en el siglo XVII la 
oferta de titulaciones era muy escueta. En el Renacimiento solo 
existían tres titulaciones supe1iores: Teología, Derecho y Medi­
cina. Por eso muchos científicos de la época realizaron estudios 
de medicina, pues eran los que más se acercaban a sus aspiracio­
nes, y en donde podían conseguir la mejor formación científica 
en ese momento. Como Leibniz se formó en derecho, a pesar de 
su interés por la metafísica y las matemáticas, su formación en el 
campo científico no era todo lo buena que él deseaba, algo que 
comprobaría cuando comenzó a relacionarse con los científicos 
de otros países. 

LAS COMBINACIONES FILOSÓFICAS 

Aunque esta obra pretende desarrollar aspectos científicos, no 
podemos dejar totalmente de lado los filosóficos, pues la relación 
entre ambos es estrecha cuando empiezan a aparecer aspectos 

EL DISEÑADOR DE CALCULADORAS 



RAMON LLULL 

Ramon Llull o Raimundo Lulio (ca. 1232-
1315) fue un filósofo, teólogo, místico y 
misionero mallorquín a quien se consi­
dera inventor de la rosa de los vientos 
y de un aparato para situar las estrellas 
en el cielo nocturno llamado nocturlabio. 
Al nacer, el Reino de Mallorca acababa 
de ser anexionado a la corona de Ara­
gón por el rey Jaime l. En esa época, en 
Mallorca convivían sin problemas las tres 
grandes culturas, cristiana, judía y árabe, 
por lo que Llull creció en un ambiente 
de tolerancia, enriquecido culturalmente. 
Tuvo puestos de confianza en la corte de 
Aragón, llegando a ser mayordomo real y senescal del futuro rey Jaime 11 de 
Mallorca. Con treinta años abandonó sus puestos y a su familia para predicar 
por los caminos mientras estudiaba teología y árabe. Posteriormente, se re­
cluyó en un monasterio para aprender latín, gramática y filosofía . Su mente 
tenía tres ideas fijas: la cruzada en Tierra Santa, la conversión de los infieles y la 
propagación de un método de demostración racional de las verdades de la fe. 

Orden franciscana 
En 1295 ingresó en la orden franciscana para ser tenido más en cuenta que un 
mero laico. Predicó en las puertas de mezquitas y sinagogas, con poco éxito. 
Asistió al Concilio de V ienne, convocado en 1308 por el papa Clemente V. 
Viajó de misionero a África, donde tuvo bastantes problemas, hasta el punto 
de morir en Túnez en 1315, al parecer linchado por una turba de musulmanes. 
Tras su muerte fue nombrado beato. Escribió multitud de libros de temáticas 
muy diversas, como gramática, educación, caballería, ciencia o filosofía. Al­
canzó tal fama que se le conoció como Doctor lluminatus, Doctor lnspiratus 
o Doctor Archangelicus (para diferenciarlo de Tomás de Aquino, que recibió 
el título de Doctor Angelicus) . 

matemáticos y físicos para explicar la filosofía. No olvidemos que 
Leibniz había decidido adoptar una filosofía mecanicista en la 
que las ciencias son inherentes a su desarrollo. 

Uno de los filósofos que influyó a Leibniz en su juventud fue 
Ramon Llull, y sobre su obra vamos a resaltar algunos aspectos 
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que nos pueden dar una idea de por dónde se desarrollará su 
filosofía. Pero antes veamos un aspecto matemático que apare­
cerá en ella. 

Podemos considerar la combinatoria como aquella parte de 
las matemáticas que estudia la forma en que se pueden elegir, agru­
par y ordenar una serie de objetos. Nos proporciona fácilmente la 
cantidad de posibilidades que podemos obtener al escoger unos 
objetos de entre un conjunto de ellos. La combinatoria está pre­
sente en muchas situaciones de nuestra vida cotidiana. Cuando 
entre un grupo de amigos o compañeros de una empresa se plan­
tea en Navidad hacer el «amigo invisible», el orden en que salen 
los nombres para hacer el regalo es una permutación del orden 
de las personas que van eligiendo. Los tres libros que elegimos al 
azar para llevárnoslos de vacaciones son una combinación de los 
muchos posibles entre los que los elegimos. En una carrera de las 
olimpiadas en la que participan 8 corredores, las formas en que 
puede quedar el medallero es una variación de esos elementos, de 
los que seleccionamos tres. 

Como vemos por los ejemplos anteriores, en las permutaciones 
elegimos todos los elementos y los ordenamos de distinta forma. 
Para hallar la cantidad posible de situaciones resultantes basta ha­
llar el factorial de esa cantidad. El factorial de un número natural n, 
que se representa por n!, es el producto de los números naturales 
desde el 1 hasta ese número: 

n! = n(n-l) (n- 2)- ... -3-2-1. 

Por ejemplo, si tenemos cinco libros que vamos a colocar en 
una estantería sin fijar ningún orden concreto, la cantidad de for­
mas en que pueden quedar sería: 

5! = 5 -4 -3 • 2 • 1 = 120 ordenaciones distintas. 

Basta pensar que en el primer lugar puede quedar cualquiera 
de los cinco libros. Por cada una de esas posibilidades, en el 
segundo lugar podemos colocar cualquiera de los cuatro libros 
restantes; en la siguiente, cualquiera de los tres restantes, y así 
hasta el último lugar, en que solo hay una posibilidad, pues ya solo 
queda un libro. 
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El caso de las variaciones es parecido al anterior: importa el 
orden en que se seleccionan los objetos, pero no se seleccionan 
todos. Por eso para hallarlas no tenemos que llegar hasta 1 en el 
producto final. Supongamos que en el estante solo vamos a colo­
car dos libros de los cinco que tenemos. Si realizamos un razona­
miento parecido al anterior, el número de selecciones posibles 
será 5 x 4 = 20. En general, la cantidad de variaciones den elemen­
tos de los que tomamos solo r vendrá dada por la expresión: 

v;; = n (n - l) · .. . • (n - r+ 1), 

en total r factores comenzando en n y disminuyendo una unidad 
cada vez. 

Por último, en las combinaciones no nos importa el orden, 
solo queremos saber cuántas forrnas distintas hay de elegir un 
subconjunto de un conjunto de objetos dados. Por ejemplo, si te­
nemos un conjunto de monedas en las que hay una sola de cada 
tipo, desde 1 céntimo de euro hasta una de 2 euros, si nos dan tres 
monedas no nos importa el orden en que las recibamos; la cantidad 
total que vamos a tener al final será la misma si nos dan primero 
una moneda de euro, otra de 2 céntimos y otra de 50 céntimos, que 
si primero nos dan la de 2 céntimos, después la de 50 céntimos y 
por último la de euro. 

Para hallar las combinaciones den objetos tomados de r en r 
utilizamos la siguiente expresión: 

C,. = v,;· = n( n - l) ... ( n - r + l) 
" r ! r( r - l) ... 2 · 1 · 

La expresión siguiente es equivalente a un cociente entre fac­
toriales llamado número combinatorio: 

( n) n! 
r = r !(n - r)! · 

Así, si quisiéramos calcular cuántos grupos de tres libros po­
demos elegir entre quince posibles, tendríamos que calcular el 
número combinatorio de 15 sobre 3, lo que nos daría: 
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c3 = ( 15 ] = 15-14-13 = 455_ 
15 3 3· 2· l 

Pero la combinatoria no se utiliza solo en matemáticas, como 
podría pensarse, sino que se usa en muchas otras disciplinas casi 
desde el principio de los tiempos. Hay autores que hablan de per­
mutaciones ya en antiguos textos asirios o en las fuentes mágicas 
griegas. En los documentos judaicos se plantea que las letras del 
alfabeto están revestidas de poder nústico, y que combinando ade­
cuadamente símbolos y signos se puede llegar a obtener cualquier 
criatura. En el propio Talmud, la Biblia judía, se afirma que com­
binando letras dotadas de valor numérico es posible construir la 
estructura del mundo. La Cábala, que podemos considerar como 
una línea de pensan1iento mediante la que se pretenden descubrir 
aspectos relacionados con el hombre, como por qué existe, cuál 
es el propósito de su vida, etc., es una ciencia de los números. 
En ella se estudian letras y números, tratándolos mediante tres 
procedimientos: la Gematría ( ciencia del valor numérico de las 
letras), la Notariken (ciencia de las letras primera, media y final 
de las palabras) y la Termurah ( ciencia de la permutación y com­
binación de las letras). Algo sinülar ocurre en la cultura árabe, 
en la que a partir de las 28 letras que forman su alfabeto, simboli­
zando cada una de ellas un número entero, se abren una infinidad 
de combinaciones, dando lugar a la gran riqueza de la civilización 
islámica. 

«ARS MAGNA» 

El objetivo del arte filosófico de Ramon Llull era crear un instru­
mento para la conversión de judíos y árabes; quizá por ello estu­
dió a fondo sus estructuras básicas y, por tanto, tuvo una clara 
influencia de ambas culturas para crear su filosofía. Sin pretender 
un estudio filosófico de su obra, queremos señalar aquellos aspec­
tos relacionados con la ordenación y que influyeron en Leibniz. 
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Ars magna (Gran obra), obra de Llull publicada en 1308, 
tiene como objetivo último conocer a Dios. Está planteada en 
forma de una lógica combinatoria, tanto inventiva como demos­
trativa. Trata de encontrar todos los conocimientos a partir de 
unas cuantas nociones y principios, que por combinación pueden 
llegar a conseguir todas las ciencias. Ars magna está íntimamente 
relacionada con el cálculo lógico, y plantea que la lógica no solo 
sirve para establecer la validez de los razonamientos, sino para 
inventar razonamientos nuevos mediante combinaciones de ellos. 

Distingue una serie de principios, absolutos y relativos. Los 
primeros corresponden a los atributos de Dios, mientras que los 
segundos se refieren a conceptos de relación entre objetos. 

Llull relaciona el alfabeto con los atributos de Dios. Hace 
corresponder la A al propio Dios y las siguientes letras a las dis­
tintas dignidades de Dios, que serian las siguientes: 

Bondad B Poder E V irtud H 

Grandeza c Sabiduría F Verdad 1 

Eternidad D Voluntad G Gloria J 

Si realizamos ahora combinaciones de estos elementos de 
dos en dos, obtendriamos el siguiente total de juicios posibles: 

c2 = ( 9 ] = 9 · s = 36 9 2 2· l ' 

según vemos en la tabla siguiente: 

BC CD DE EF FG GH HI 
1 

IJ 
1 

BD CE DF EG FH GI HJ 
1 

BE CF DG EH FI GJ 

BF CG DH El FJ 

BG CH DI EJ 

BH CI DJ 

BI CJ 

BJ 
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FIG. 2 

Figuras pensadas 
por Ramon Llu ll 

para su máquina 
lógica, incluidas 

en su Ars Magna. 
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Como complemento, Llull creó 
una serie de cuatro figuras axiomáti­
cas, mezclando unos principios con 
otros. La razón es que necesitaba 
realizar de una forma mecánica lo 
que sus escasos conocimientos mate­
máticos no le permitían. Una de ellas 
correspondía a la tabla anterior. Otra 
era un círculo como el de la figura 1, 
dividido en nueve compartimentos en 
los que aparecían los principios abso­
lutos. En ese círculo todas las digni­
dades equidistan por igual del centro, 
donde se sitúa Dios. Debajo de cada 
una de las letras aparecía un sustan­
tivo y un adjetivo, de forma que cada 
división está unida a las otras ocho 
para indicar todas las combinacio­
nes posibles que se podían obtener al 
girar el círculo. De esta forma se pue­
den mezclar, convirtiéndose los sus­
tantivos en adjetivos y obteniendo, 
por ejemplo, bondad grande o gran­
deza buena. 

Otra de las figuras era una espe­
cie de máquina combinatoria en la que 
existían tres círculos concéntricos, de 

los cuales el menor giraba sobre el mediano y este sobre el mayor, 
que era fijo. De esa forma tomaba los conceptos que quedaban ali­
neados en los discos. Podemos ver ese diseño en la figura 2. 

«DISSERTATIO DE ARTE COMBINATORIA» 

Está aceptado que Llull influyó en Leibniz, aunque este era crítico 
con la obra del primero, llegando a indicar que su arte: 
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Es solo sombra del verdadero arte combinatorio [ ... ]. Se halla tan 
alejado de ese arte como lo está el fanfarrón del hombre elocuente, 
y al mismo tiempo, sólido. 

Sin embargo varios autores afirman que a Leibniz le apasionó 
Ars magna, y que le sirvió de base para su idea de arte combinatorio. 

Leibniz publicó en 1666 su obraDissertatio de arte combina­
toria, en la que presentaba nuevos resultados en lógica y matemá­
ticas. Era la primera vez que se utilizaba la palabra combinatoria 
en el sentido que la utilizan10s en la actualidad. Aunque en su 
madurez Leibniz se arrepintió de haber publicado esta obra, al 
no considerarla un trabajo muy elaborado, es claro que en ella 
se presentan sus intereses filosóficos y los caminos por los que 
iban a dirigirse sus descubrimientos, a pesar de que aún no se 
había decidido por dedicarse a ninguna ciencia en concreto. Para 
Leibniz las aplicaciones filosóficas eran aún más in1portantes que 
las matemáticas. No es de extrañar, ya que varios filósofos consi­
deraban que las matemáticas desvirtuaban el sentido de las cosas 
naturales y, por tanto, pervertían la filosofía natural. Entre ellos 
podemos citar a los italianos Pico della Mirandola (1463-1494) y 
Giordano Bruno (1548-1600). 

En esta obra Leibniz desarrolla una idea de sus tiempos de 
escuela: usar la combinatoria para conseguir un alfabeto del pen­
samiento humano, lo que más tarde llamaría Scientia generalis. 
Siguiendo a Llull, Leibniz pensaba que al igual que partiendo del 
alfabeto, mediante combinaciones y permutaciones, se podía ob­
tener cualquier palabra o frase, a partir de conceptos simples y 
fundamentales se podían llegar a conseguir todas las verdades 
surgidas de esas relaciones. El principio fundan1ental de la metafí­
sica de Leibniz fue considerar que todas las proposiciones lógicas 
podían reducirse a la combinación adecuada de un sujeto y un 
predicado. Planteaba una lógica del descubrimiento o invención, 
en oposición a una lógica demostrativa en la línea de otros filóso­
fos clásicos. 

Las combinaciones en general eran nombradas por Leibniz 
con la palabra complexiones, y utilizaba la palabra combinationes 
para las elecciones de dos en dos objetos. Cuando se trataba de 
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tres objetos utilizaba la palabra conternationes o con3nationes, 
y así sucesivamente. 

Aparecen en su obra aplicaciones de la combinatoria al dere­
cho, a la música e incluso a la teoría aristotélica de la generación 
de los elementos, a partir de las cuatro cualidades primarias: frío, 
caliente, húmedo y seco. Al tomar esas cualidades de dos en dos 
obtenía las siguientes combinaciones diferentes: 

( 
4 

]=~=6 
2 2· l ' 

aunque despreciaba aquella en la que aparecían cualidades opues­
tas, como frío y caliente o húmedo y seco. De las cuatro restantes 
obtenía los elementos básicos: agua, aire, fuego y tierra. 

Leibniz buscaba, en definitiva, un método que le permitiera de 
forma general trabajar con las ideas de una forma científica, para 
razonar y demostrar mediante operaciones similares la aritmética 
y el álgebra. 

NUEVOS ENCARGOS 

Tras conseguir el grado de doctor, Leibniz decidió emprender un 
viaje por diversos países europeos, pero no llegó muy lejos. Pasó 
unos meses en Núremberg porque ingresó en una sociedad alquí­
mica. Aunque en la actualidad pensamos en la alquimia como en 
una seudociencia, en el siglo xvrr era una actividad aceptada por 
los científicos. La alquimia fue la precursora de la propia química 
actual, que comenzaría a desarrollarse en ese siglo, a partir de los 
trabajos del irlandés Robert Boyle (1627-1691). Leibniz comenta­
ría años más tarde que fue en Núremberg donde aprendió los co­
nocimientos básicos de química, que utilizaría luego para pruebas 
que le propusieron los príncipes con quienes se relacionó. 

Durante el viaje escribió una obra de título Nuevo método de 
aprendizaje y enseñanza de la jurisprudencia, dedicada al elector 
de Maguncia, Juan Felipe de Schonborg, con la idea de conseguir 
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un puesto en la corte. En ella planteaba el derecho desde un punto 
de vista filosófico. Señalaba dos reglas fundamentales en la juris­
prudencia: no aceptar ningún término sin definición y no aceptar 
ninguna proposición sin demostración. Tras presentar la obra per­
sonalmente al elector, consiguió ser contratado para ayudar al con­
sejero de la corte, Hermann Andreas Lasser, en la redacción de un 
nuevo código civil adaptado a las nuevas necesidades del Estado. 

Una persona fundamental en la vida de Leibniz fue el barón 
Johann Christian von Boineburg (1622-1672), ministro del elector 
de Maguncia. A partir de 1668 Leibniz, que se había instalado en 
dicha ciudad, tuvo una gran relación con el barón, llegando a in­
timar tanto con él como con su familia. Mientras colaboraba con 
Lasser, Leibniz realizó trabajos esporádicos para Boineburg, entre 
otros de secretario, bibliotecario o abogado. Durante esos años, 
redactó escritos a petición del barón sobre diversos temas, espe­
cialmente filosóficos y políticos. Veamos uno de ellos. 

En aquella época la corona de Polonia había quedado libre 
por abdicación del rey Juan Casimiro y el conde palatino, o palst­
grave, de Neuburg pretendía el trono. Solicitó ayuda a Boineburg 
para que fuera a defender su causa en Polonia, y este encargó a 
Leibniz un trabajo que defendiera las aspiraciones del palst­
grave. Leibniz escribió bajo el nombre de un desconocido noble 
polaco una obra en la que partía del concepto de demostración 
matemática en la ciencia, en la línea de Galileo Galilei (1564-1642) 
o René Descartes (1596-1650), entre otros, y aplicaba ese desarro­
llo a la elección del futuro rey. Llegaba, claro está, a la conclusión 
de que la persona más indicada era el palstgrave de N euburg. En 
el desarrollo de la obra usaba los razonamientos éticos y políticos 
manejándolos como elementos de un cálculo de probabilidades. 
Podemos considerar que esa fue la primera vez que Leibniz se 
adentró en el mundo diplomático, algo que sería una constante a 
lo largo de toda su vida. 

Boineburg y Leibniz coincidían en muchos pensamientos. 
Aunque el barón era católico y Leibniz luterano, ambos abogaban 
por la reunificación de las Iglesias católica y protestante. Esta idea 
estuvo en la intención de Leibniz siempre y la planteó en todos los 
lugares en los que podía conseguir algún tipo de apoyo. 
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En 1669 dieron fruto sus contactos con el elector de Ma­
guncia y fue nombrado para el Alto Tribunal de Apelación, del 
que formó parte hasta 1672. Años después volvería a actuar de 
jurista en Hanóver. A pesar de su grado de doctor en Derecho, no 
le atraía especialmente ese mundo, pues si bien admiraba a los 
jueces, menospreciaba la labor de los abogados, razón por la cual 
nunca se dedicó profesionalmente al derecho. 

En 1670, Leibniz fue con Boineburg a Bad Schwalbach, una 
ciudad balneario donde el barón seguía regularmente un trata­
miento de aguas. En esa ocasión comenzó a fraguarse lo que sería 
la primera misión diplomática de importancia que realizaría Leib­
niz en su dilatada carrera. El rey francés Luis XIV (1638-1715), 
con claras tendencias expansionistas, tenía la intención de invadir 
los Países Bajos. Leibniz imaginó una posibilidad de desviar su 
ansia conquistadora de Europa y redirigirla hacia Egipto, lo que se 
llamó el Proyecto egipcio o Consilium aegyptiacum. La idea de 
desviar los conflictos internos europeos a otras partes del mundo 
no era nueva, ya que Leibniz se basó en un proyecto parecido del 
siglo XIV planteado al papa por el veneciano Marino Canuto. 

Se preparó un plan secreto para presentar el proyecto en la 
corte francesa. De sus conversaciones con Boineburg, Leibniz 
elaboró un escrito, pero aunque el objetivo último seguía siendo 
evitar el ataque francés contra los Países Bajos, la redacción final 
planteaba más bien una cruzada general contra los infieles. Que­
daba tan diluida la idea original que casi ni se citaba Egipto. Este 
escrito fue enviado al rey de Francia a principios de 1672, y el 
ministro de Asuntos Exteriores francés, quizá al no tener clara 
cuál era la propuesta, pidió más información e invitó a Boineburg 
a asistir a la corte, en persona o a quien designara para ello. El 
barón nombró a Leibniz como representante en Francia para plan­
tear más claramente su idea. En marzo partió hacia París. 

Además del objetivo de las negociaciones de paz en Europa, 
Leibniz llevaba otros ocultos. Boineburg le había encargado que 
abogara ante el rey el pago de una serie de rentas y pensiones 
que se le adeudaban. Por otro lado, Leibniz deseaba visitar París, 
donde podía entrar en contacto con grandes nombres del pano­
rama filosófico y científico francés. Su reclusión en Maguncia le 
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impedía tomar contacto directo con los importantes personajes 
que estaban revolucionando la cultura científica. Leibniz siempre 
defendió que si hubiese podido asistir antes a París, sus capa­
cidades se habrían ampliado y habría estado más en disposición 
de perfeccionar y renovar la ciencia, que es lo que en realidad 
pretendía con su trabajo. 

Un año antes Leibniz se había carteado con Pierre de Carcavi 
(1600-1684), bibliotecario real, y le había hablado de la máquina 
aritmética en la que estaba trabajando. Supo que Carcavi estaba 
realizando gestiones para invitar a Leibniz a entrar en la Academia 
de las Ciencias de París. El propio Carcavi le escribió invitándolo a 
enviar un ejemplar de su máquina para mostrársela a Jean-Baptiste 
Colbert (1619-1683), ministro de Luis XIV. Esta relación con las so­
ciedades científicas fue la que abrió el mundo al genio de Leibniz. 

LOS INTERCAMBIOS CIENTÍFICOS 

Hoy día hay personas que se dedican profesionalmente a la in­
vestigación y reciben su salario como investigadores. A veces 
trabajan en las universidades, en laboratorios, en grandes hos­
pitales, o en empresas como las dedicadas a la informática o la 
telefonía. Pero lo que suele caracterizar a todos ellos es que viven 
de esa labor. Pero eso no siempre ha sido así. En los siglos XVI 

y XVII, muchos de los grandes personajes que desarrollaron sus 
avances durante la revolución científica tenían otros trabajos 
para subsistir. La mayoría de las personas dedicadas a las cien­
cias eran teólogos, diplomáticos, juristas, sacerdotes, arquitec­
tos, etc. No existían los científicos profesionales, salvo algunos 
pocos afortunados que podían estar a las órdenes de algún rey o 
mandatario importante. Podemos citar a Pierre de Fermat (1601-
1665), que era abogado y empleado en una oficina del Gobierno; 
John Wallis (1616-1703) era criptógrafo; Anton van Leeuwenhoek 
(1632-1723), que fue el prin1ero en descubrir los microorganismos 
en el microscopio, era comerciante textil, y el filósofo Baruch de 
Spinoza (1632-1677) era pulidor de lentes. 
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Además, la mayoría de científicos eran prácticamente autodi­
dactas. En general, las universidades iban mucho más atrasadas 
que la evolución de las ciencias, por lo que, salvo excepciones, la 
formación más avanzada había que conseguirla fuera de la univer­
sidad. John Wallis, en referencia a su formación, decía: 

Las matemáticas en aquel tiempo se consideraban raramente entre 
nosotros como algo académico; más bien se miraban como algo me­
cánico. 

Las matemáticas casi se consideraban patJ.imonio de los co­
merciantes más que de los científicos. Por eso, quien deseaba intro­
ducirse en las ciencias más avanzadas lo que hacía era acercarse a 
algún científico importante y convertirse en su discípulo, para aden­
trarse en los conocimientos que no podía encontrar en otro lado. 

Otro aspecto dificultoso para el desarrollo de la ciencia era 
el aislamiento de los científicos. Hoy, gracias a los nuevos medios 
de comunicación, cualquier suceso ocurrido en un país es inme­
diatamente conocido en el mundo entero. Pero en el siglo XVI no 
era así: un nuevo descubrimiento podía tardar meses o años en 
ser conocido por el resto de los científicos. Esto se agravaba por 
la rivalidad entre las diferentes naciones. 

Al comienzo del siglo XVII no existían cauces que permitieran 
un intercambio rápido y eficiente de ideas entre los intelectuales 
y científicos de la época. Conscientes de esta carencia, grupos de 
científicos comenzaron a reunirse e intercambiar experiencias y 
resultados en reuniones o a través de cartas que se leían en ellas. 
Una de las personas más importantes en esos momentos fue el 
teólogo Marin Mersenne, monje de la orden de los mínimos. Com­
pañero de estudios de Descartes, Mersenne escribió varios libros 
sobre filosofía y música, y es recordado en el mundo de la mate­
mática por los llamados números primos de Mersenne. 

Para Mersenne los científicos debían trabajar en comunidad, 
consultando y comparando sus experimentos y descubrimientos. 
Pensemos que en esa época los conocimientos de los gremios ar­
tesanales solo pasaban, a veces con gran secretismo, a los apren­
dices que entraban en dichos gremios. La idea de Mersenne era 
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LOS NÚMEROS PRIMOS DE MERSENNE 

Se suelen llamar números de Mersenne 
aquellos que son una unidad menos que 
una potencia de base 2, es decir, los nú­
meros de la forma 2n -1 (por ejemplo: 3, 
7, 15, 31, 63, 127 ... ), y de ellos, los que sean 
primos reciben el nombre de primos de 
Mersenne (de los anteriores serían: 3, 7, 
31 y 127). Marin Mersenne (1588-1648) 
presentó estos números, que posterior­
mente fueron llamados así en su honor, 
en la obra Cognitata physico-mathema­
tica, publicada en 1641. En ella incluía va­
rias propiedades de dichos números, que 
no pudieron ser demostradas hasta tres 
siglos después. También incluía una serie 
de números primos de Mersenne hasta el 
exponente n = 257, que tenía varios erro­
res, como se comprobó más tarde. 

Los números primos en la actualidad 
Marin Mersenne. 

La era electrónica permitió que a partir de mediados del siglo xx se pudieran 
encontrar nuevos números primos cada vez más grandes, usados hoy día en 
las comunicaciones para hacer más seguro el acceso a las cuentas bancarias 
o los intercambios de información en Internet. En los últimos sesenta años, 
el mayor número primo conocido casi siempre ha sido de Mersenne. En la 
actualidad se conocen un total de 47 números y el mayor es 243 11260 9 -1, un 
número con casi 13 millones de cifras. No se sabe cuántos números primos de 
Mersenne pueden existir, aunque la conjetura es que son infinitos. 

que los conocimientos debían circular libremente y ser aprove­
chados por todos aquellos interesados en hacer avanzar la ciencia. 

Creó lo que se conoce corno círculo de Mersenne, una especie 
de club matemático que se reunía en la propia celda del monje. 
A él pertenecieron, entre otros, Descartes, Pascal, Roberval, De­
sargues, Ferrnat y Gassendi. Aunque el grupo se creó corno Aca­
demia Mersenne, más adelante se unió a otro grupo similar or­
ganizado por los hermanos Pierre y Jacques Dupuy, bibliotecarios 
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reales. A este segundo grupo asistía gente de muchas disciplinas 
más variadas que las matemáticas, aunque también pertenecieron, 
Huygens, Oldenburg y Gassendi. La unión de los dos grupos pa­
saría a llamarse Academia Parisiensis y sería el germen de lo que 
se convertiría posteriormente en la Academia de Ciencias de 
París. . 

Otro grupo similar, aunque un poco más avanzado el siglo, se 
reunió en torno al filósofo y teólogo Nicolas Malebranche (1638-
1715), quien fue profesor de Matemáticas y miembro de la con­
gregación del Oratorio de San Felipe Neri. En el oratorio organizó 
reuniones, en la línea de Mersenne, para intercambiar descubri­
mientos matemáticos. Pertenecieron a este círculo Pierre V arig­
non, el marqués de l'Hópital o Johann Bernoulli. Malebranche fue 
un gran divulgador de la obra de Descartes y Leibniz y editor del 
libro de l'Hópital, el primero que se publicó sobre el nuevo cálculo 
infinitesimal. 

En Inglaterra, el político inglés Francis Bacon (1561-1626), 
más filósofo que científico, abogó por la importancia de la ciencia 
de laboratorio, que estaba desprestigiada como mera artesanía, y 
también por los intercambios intelectuales. Siguiendo sus conse­
jos se creó un grupo de científicos alrededor del diácono alemán 
afincado en Inglaterra Theodore Haak (1605-1690). Este grupo, co­
nocido como Grupo 1645, se reunía inicialmente en Cambrigde, 
pasando posteriormente a Londres, y sería el germen del que na­
cería la Royal Society. 

Las publicaciones de Malebranche tuvieron mucho interés, 
pues en esa época era complicado editar libros de ciencia y es­
pecialmente de matemáticas, puesto que acostumbraban a tener 
una tirada limitada y no solían ser negocio. El astrónomo alemán 
Johannes Kepler (1571-1630), que consideraba que los libros de 
matemáticas eran bastante complicados de entender y por eso 
tenían poco público, comentaba: 

Muy duro destino es hoy día el de escribir libros matemáticos y, 
sobre todo, astronómicos [ ... ] y por ello hay poquísimos lectores 
buenos. Yo mismo, que soy considerado como un matemático, tengo 
que hacer un esfuerzo para leer mi obra. 
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La cosa se complicaba porque había personajes reacios a pu­
blicar sus resultados, como por ejemplo Pierre de Fermat, que 
jamás escribió un libro con sus avances. Muchas veces los cien­
tíficos no querían publicar para no entrar en polémica con otros 
científicos, que fue lo que le ocurrió inicialmente a Isaac Newton 
tras su enfrentan1iento con Robert Hooke (1635-1703) por sus re­
sultados sobre óptica. Por tanto, era corriente que los resultados 
no se publicaran como libro, sino que se dieran a conocer a través 
de cartas a amigos y conocidos. Muchas veces había descubri­
mientos que se quedaban en los papeles y solo eran revelados tras 
la muerte del autor. Otros científicos eran reticentes a publicar 
algo si no estaba totalmente terminado. Esto le ocurría a Chris­
tiaan Huygens (1629-1695), que además de una gran inventiva, 
tenía un sentido estético de la matemática que hacía que solo pu­
blicara los trabajos que consideraba perfectos, por lo que no era 
raro que otros se adelantaran con resultados parecidos, y después 
surgieran grandes polémicas sobre quién había sido el primero en 
descubrir el resultado, como sucedió con la invención del cálculo 
infinitesimal, que enfrentó a Newton y a Leibniz. 

La costumbre entre científicos que no tenían cierta amistad 
era enviarse sus escritos a través de una tercera persona, que ejer­
cía como testigo de lo que se estaba intercambiando. Esta labor 
de conexión entre científicos, especialmente de distintos países, 
la realizó, por ejemplo, Mersenne. Henry Oldenburg (1619-1677) 
sirvió de nexo de unión entre Newton y Leibniz en el intercam­
bio de resultados. Esta era además una forma de reivindicar los 
propios descubrimientos, ya que en las sociedades solían quedar 
constancia de ellos antes de que pudieran ser publicados y dados 
a conocer al gran público. 

LAS SOCIEDADES CIENTÍFICAS EN EL SIGLO XVII 

Pero los estamentos que realmente favorecieron la extensión de 
la ciencia moderna por toda Europa fueron las sociedades cien­
tíficas y sus medios de difusión: las revistas científicas, que per-
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mitieron la difusión de todos los descubrimientos en cualquier 
rama de la ciencia. La primera academia científica, concebida 
como lugar de reunión de intelectuales para el intercambio de 
experiencias y conocimientos, se fundó en 1603 en Roma por el 
científico y noble Federico Cesi (1585-1630), la Accademia dei 
Lincei (Academia de los Linces), que duró hasta 1630; su miem­
bro más famoso fue Galileo Galilei. En 1657 se creó en Florencia 
la Accademia del Cimento (Academia del Experimento) fundada 
por Femando II, duque de Toscana, y el príncipe Leopoldo, que 
solo duró diez años. Entre sus miembros destacan los alumnos 
de Galileo, el matemático Vincenzo Viviani (1622-1703) y el físico 
Evangelista Torricelli (1608-1647), inventor del barómetro, el ins­
trumento para medir la presión atmosférica. 

Pero la sociedad científica más importante del momento, y 
una de las que ha continuado su labor hasta la actualidad, es la 
Royal Society, fundada en 1660 a partir de los grupos de Londres y 
Oxford. Sus miembros se reunían una vez a la semana para tratar 
temas de filosofía natural y sus materias relacionadas: medicina, 
mecánica, óptica, geometría ... En 1662 se nombró un encargado de 
experimentos con el fin de presentar resultados en cada reunión, 
y la primera persona sobre quien recayó esta labor fue Robert 
Hooke. Para dejar bien claro que el avance de la ciencia proven­
dría de las evidencias experimentales, más que de la opinión de 
personas influyentes, la sociedad tomó el lema Nullius in verba, 
es decir, «En palabras de nadie». Miembros de ella durante esa 
época fueron Robert Boyle, Robe1t Hooke, Gottfried Leibniz, John 
Wallis, Isaac Newton, Christiaan Huygens y Anton van Leeuwen­
hoek. A partir de 1663, el nombre oficial pasaría a ser Royal Society 
of London for Improving Natural Knowledge (Real Sociedad de 
Londres para el Avance de la Ciencia Natural). La sociedad recibió 
el prestigioso premio Príncipe de Asturias en 2001 en la modalidad 
de Comunicación y Humanidades. 

En 1666 fue creada en Francia, por el ministro de Luis XIV, 
Jean-Baptiste Colbert, y con el apoyo expreso de la Corona, la 
Académie des Sciencies, que indicaba en su segundo artículo fun­
dacional cuál era su objetivo prioritario: «Animar y proteger el es­
píritu de la investigación, y contribuir al progreso de las ciencias 

EL DISEÑADOR DE CALCULADORAS 



EL DISEÑADOR DE CALCULADORAS 

FOTO SUPERIOR 
IZQUIERDA: 
Estatua de Leibniz 
en Leipzig, su 
ciudad natal, obra 
de Ernst Julius 
Hahnel (1811-1891). 

FOTO SUPERIOR 
DERECHA: 
Retrato de autor 
desconocido de 
Erhard Weigel, 
matemático y 
filósofo alemán 
que fue un gran 
promotor del 
conocimiento 
científico en 
Alemania. Como 
profesor de 
Leibniz, lo inició 
en la escuela 
pitagórica. 

FOTO INFERIOR: 
Grabado que 
muestra la 
Universidad de 
Jena hacia 1600, 
donde Leibniz 
pasó un semestre 
en 1663 y tuvo la 
oportunidad de 
conocer a Erhard 
W eigel. 

39 



40 

y sus aplicaciones». Durante la Revolución francesa fueron supri­
midas todas las academias, pero años después se creó el Instituto 
Nacional de Ciencias y Artes, que recogía el espíritu de todas las 
antiguas academias literarias, artísticas y científicas. 

Pertenecieron a él las personalidades científicas más impor­
tantes de la época, como Descartes, Pascal o Fermat. Igual que 
en la Royal Society, era costumbre invitar a científicos de otros 
países a pertenecer a la academia. En 1699, la academia francesa 
invitó a los ocho primeros miembros extranjeros: Isaac Newton 
y Gottfried Leibniz, los hermanos Johann y Jakob Bemoulli, Vin­
cenzo Viviani, el astrónomo polaco Johannes Hevelius, el natu­
ralista neerlandés Nicolas Hartsoeker y el matemático, físico, 
médico y filósofo alemán Ehrenfried W alther von Tschimhausen. 

Aparte de las sociedades científicas, merece la pena llamar la 
atención sobre la importancia que alcanzaron algunas colecciones 
particulares, que recibían el nombre de gabinetes de curiosidades 
o cuartos de maravillas, y en los que se podía encontrar cualquier 
cosa. Mersenne tenía un gabinete particular con instrumentos de 
física. Uno de los más famosos fue el deljesuitaAtanasio Kircher 
(1601-1680), que tenía un gabinete en Roma con fósiles, cristales, 
dientes y cuernos de rinoceronte, entre otros elementos. 

LEIBNIZ Y LAS ACADEMIAS CIENTÍFICAS 

Gottfried Wilhelm Leibniz no solo perteneció a las academias 
científicas más importantes del siglo xvn, sino que apoyó y animó 
la creación de muchas otras sociedades. 

En 1700, el príncipe Federico III (1657-1713), elector de Bran­
deburgo, creó la Academia Prusiana de las Ciencias, más cono­
cida como Academia de Berlín, a instancias de Leibniz, que fue 
nombrado presidente. Ya tres años antes, al plantear Sofía Carlota 
de Hanóver, duquesa de Brünswick-Luneburgo, y futura reina de 
Prusia, la creación de un observatorio astronómico en Alemania, 
Leibniz, gran amigo de la duquesa, sugirió ampliar el proyecto y 
crear una academia en la línea de las de París y Londres. 
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Leibniz, al ser invitado a Berlín para presidir la academia, re­
dactó una serie de escritos indicando cómo debía ser el enfoque de 
la nueva sociedad. Debía desarrollar tanto teoría como práctica, 
para que se beneficiaran de sus informaciones no solo las artes 
y ciencias del país, sino tan1bién las industrias y el comercio. La 
sociedad científica debería dedicarse especialmente a las ciencias 
fundamentales, como las matemáticas y la física, aunque en esa 
partición incluía más de lo que puede pensarse hoy en día. Leibniz 
dividía las matemáticas en cuatro partes: la geometría, incluyendo 
el análisis; la astronomía y sus campos relacionados (geografía, 
cronología, óptica); la arquitectura ( civil, militar, naval), que com­
prendía también la pintura y la escultura, y la mecánica, con sus 
aplicaciones tecnológicas. Por su parte, la física incluía la química 
y los reinos animal, vegetal y mineral. 

Preocupado por la financiación de la academia, Leibniz con­
siguió para la sociedad la elaboración y venta, en exclusiva, de 
calendarios astronómicos. Más adelante presentó un proyecto de 
sericultura (cría del gusano de seda) para conseguir fondos y ase­
gurar la pervivencia económica de la academia. En ese sentido, 
planeó la plantación y cuidado de árboles de morera en los jardi­
nes reales de Potsdan1. Aunque el proyecto no terminó de salir ade­
lante, Leibniz llegó a realizar experimentos en sus propios jardines. 

También intentó potenciar otras academias en Dresde o en 
Viena, pero los proyectos no fructificaron. 

REVISTAS CIENTÍFICAS 

Aunque los descubrimientos se daban a conocer en las reuniones 
de las sociedades, se echaba en falta un medio eficaz de comuni­
cación que sirviera para difundir más amplian1ente los grandes 
avances en la ciencia moderna. 

La primera revista científica que puede tener esa considera­
ción fue el Journal des S9avans, aparecida en París en enero de 
1665. Sin embargo, no era propiamente una revista únicamente 
científica, ya que aparecían artículos de legislación o tan1bién obi-
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tuarios de personas famosas. Fue fundada por el asesor del Parla­
mento Denis de Sallo bajo el patrocinio del ministro Colbert. En 
ella se dieron a conocer varios de los descubrimientos de Leibniz, 
pero también información sobre trabajos de Descartes, Hooke, 
Huygens y otros. Durante la Revolución francesa, la revista des­
apareció y, aunque surgió de nuevo a finales del siglo XVIII, se con­
virtió en una revista eminentemente literaria. 

Por tanto, la revista científica por antonomasia, y la más im­
portante durante mucho tiempo, fue Philosophical Transactions, 
que vio su primer número en marzo de 1665. Aun siendo desde 
el primer momento el órgano de difusión de la Royal Society, se 
trataba de un trabajo personal del secretario de la sociedad, Henry 
Oldenburg, quien comprendió claramente la necesidad de encon­
trar un recurso que permitiera hacer llegar los avances de la 
ciencia a todos los interesados. Oldenburg publicó la revista a sus 
expensas con el acuerdo de la Royal Society, pensando que sería 
un negocio rentable, algo que resultó bastante desacertado. Pos­
teriormente en el siglo xvn1, la revista pasó a ser el boletín oficial 
de la sociedad. 

«No hay nada más necesario para promover los avances 
de los asuntos filosóficos que la comunicación de los mismos.» 
- HENRY ÜLDENBURG, CARTA DE PRESENTACIÓN DE PHILOSOPHICAL TRANSACTJONS. 
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Esta revista fue la primera que planteó las normas de control 
que existen actualmente en todo tipo de revista científica. Aparte 
de la prioridad científica del artículo, Oldenburg enviaba los ori­
ginales a diversas personas para que evaluaran el interés o no de 
su publicación. 

A instancias de Leibniz, en 1682 comenzó a publicarse en 
Leipzig la revista Acta Eruditorum, fundada por el científico ale­
mán Otto Mencke (1644-1707), aunque su impresión, con dificulta­
des, solo sobrevivió hasta 1782. Se editaba en latín, idioma común 
que todos los científicos de la época entendían, por eso tuvo una 
amplísima difusión. Leibniz fue un colaborador habitual de esta 
publicación y, revisando los distintos números de la revista, se 
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puede comprobar la gran variedad de temas que le interesaban. Su 
primer artículo trataba sobre la cuadratura aritmética del círculo, 
pero en otros números encontramos artículos sobre óptica, des­
cuento de facturas, mecánica de planos inclinados o resistencia 
de vigas. 

Leibniz creó una revista anual que recogiera artículos, rese­
ñas bibliográficas y resultados interesantes de los miembros de 
la Academia de Berlín. El primer número de dicha publicación, 
con el título de Miscellanea Beronilensia, apareció en 1710. Una 
gran parte de los artículos eran del propio Leibniz, que escribía 
de cosas tan diversas como su máquina aritmética, artículos de 
matemáticas y mecánica, el estudio del origen de las naciones a 
través de la lingüística o los descubrimientos del fósforo o la au­
rora boreal. A pesar de su interés en la publicación, no contó con 
muchas colaboraciones. 

Como hemos visto, Leibniz comenzó a abrirse camino en 
estas sociedades gracias a su máquina mecánica. Es interesante 
que veamos la evolución de las herramientas mecánicas de cálculo 
hasta aquella época. 

CALCULAR MÁS EFICIENTEMENTE 

Desde que el ser humano comenzó a contar fue aplicando esas 
operaciones a todos los niveles de la vida cotidiana. Al avanzar 
la civilización, las operaciones se ampliaron y hubo que realizar 
cuentas cada vez más laboriosas en el comercio, los viajes, el es­
tudio de los astros, etc. Al ampliarse y complicarse el número de 
operaciones, el hombre imaginó medios para realizarlas de una 
forma más rápida y segura. Así, aparecieron las máquinas de cal­
cular con el objetivo de mecanizar unos instrumentos de cálculo, 
que permitieran eliminar o paliar los errores a los que estaba ex­
puesto todo cálculo manual. 

Los primeros intentos de ayudarnos con elementos que nos 
permitieran contar y operar fueron «digitales». Hay países donde 
se utilizan los dedos para hacer operaciones más complicadas que 
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meras sumas y restas. Por ejemplo, para operar rápidamente por 9 
hay una regla que consiste en extender las dos manos y comenzar 
a contar desde un extremo, usualmente el izquierdo, y doblar el 
dedo correspondiente al valor por el que querernos multiplicar 
el 9. Para el resultado basta contar los dedos que hay antes del 
doblado, que será la cifra de las decenas, y los posteriores al do­
blado, lo que nos daría las unidades. En la figura 3 vernos que el 
resultado de multiplicar 9 x 4 es igual a 36. 

«No es digno de hombre notable perder su tiempo 
en un trabajo de esclavos, el cálculo que podría confiarse 
a cualquiera con la ayuda de una máquina.» 
- GOTTFRIED WILHELM LEIBNIZ. 
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Si querernos multiplicar dos números mayores que 5, basta 
doblar en cada una de las manos los dedos correspondientes al 
resultado de restarle 5 a cada número a multiplicar. Se suman 
los números doblados de ambas manos y se multiplica por diez, 
y a eso se le suma el producto del número de dedos que hay 
levantados en ambas manos. En la figura 4 podernos ver el resul­
tado de multiplicar 8 (8- 5 = 3 dedos doblados, en este caso en 
la mano derecha)x9(9-5=4 dedos doblados): corno tenernos 
siete dedos doblados, y dos levantados en una mano y uno en la 
otra, el producto de 8 x 9 = 7 x 10 + 1 x 2 = 72. 

FIG. 4 
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LOS ÁBACOS 

Los sistemas babilónico, maya, egipcio, griego o romano, entre 
otros, permitían el recuento, pero eran complicados a la hora de 
calcular. Basta pensar en el producto de XIII por XXI utilizando 
números romanos. Pero como la ingeniería o el comercio debían 
seguir adelante, hubo que inventarse métodos que permitieran 
realizar los cálculos que la civilización demandaba. Así apareció 
la primera máquina de calcular de la historia: el ábaco. 

Con pequeñas diferencias y alguna que otra variante, el ábaco 
apareció casi a la vez en todos los continentes hace más de 3 000 años. 
Ha sido, además, el artilugio más longevo, ya que se ha utilizado en 
algunos países hasta bien entrado el siglo xx. 

Posiblemente en su origen se linlitaran a una serie de marcas 
en la arena, en la que se colocaban una serie de calculus (piedre­
cillas en latín, de donde procede la palabra cálculo). Después su 
diseño varió, con la apaiición de una serie de varillas en las que 
insertaban unas cuentas con las que se realizaban las operaciones. 

En la figura 5 se observa una reproducción de un ábaco ro­
mano. En él aparecen una serie de líneas verticales, en las que cada 
cuenta tiene el valor de una unidad en la parte inferior y de cinco 
unidades en la superior. Por eso el valor que puede tener cada una 
de las cuentas varía según el lugar y la posición en que se muevan. 

FIG. 5 
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Ilustración de un 
ábaco romano. 
Sus columnas 
representan 
las unidades, 
decenas, centenas 
m ediante los 
símbolos romanos 
1, X y C, segu idos 
de unidades, 
decenas y 
centenas de millar. 
La parte de la 
derecha se usaba 
para representar 
fracciones. 
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Ábaco chino. 
Se lee de derecha 

a izquierda, 
siguiendo el orden 
decimal: unidades, 

decenas, etc. 
Las bolas se 

contabilizan junto 
a la barra central. 

En el ábaco 
ilustrado aparece 

representado 

FIG. 6 

el número 16 336, Tierra 
ya que en las 

decenas, al haber 
dos bolas de cinco 
unidades, equivale 

a una unidad 
superior. 
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Los símbolos que aparecen corresponden a los iniciales en 
el sistema de numeración romano, que evolucionó con los años 
hasta llegar, en el Renacimiento, a las formas que usamos hoy 
día. Algunos ábacos romanos disponían de líneas especiales para 
trabajar las fracciones. El ábaco más conocido en la actualidad es 
el chino, llamado suanpan, localizable en tiendas de regalos. Tal 
como vemos en la figura, consta de un recuadro de madera con 
una serie de varillas separadas en dos partes. La superior, que se 
llama cielo, tiene dos cuentas, cuyo valor es de 5 unidades corres­
pondientes, y en la infe1ior, la tierra, hay cinco bolas, cada una 
con un valor de 1 unidad. La forma de contar es acercar las cuen­
tas correspondientes a la barra de división central. De derecha a 
izquierda aparecen las unidades, decenas, centenas, unidades de 
millar, etc. Cada vez que se completan diez unidades de un nivel 
se eliminan y se añade una al nivel superior. 

El ábaco japonés o soroban es parecido al chino, pero en el 
cielo solo hay una cuenta y en la tierra cuatro, suficientes para 
realizar operaciones en base 10. Por último, el ábaco ruso o tchotu 
consta de varillas en las que hay 10 bolas sin separación. 

El ábaco fue durante siglos la máquina por excelencia para rea­
lizar cálculos; incluso existía la profesión de abaquista, que era el 
que realizaba cálculos utilizando esta herramienta. Cuando en Eu­
ropa comenzó a introducirse las cifras indo-arábigas, hubo una gran 
resistencia por parte de los abaquistas a abandonar el modo clásico 
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de cálculo. Es conocida la ilustración realizada por Gregor Reisch 
para la obra Margarita philosophica, donde se enfrentan un aba­
quista, en este caso Pitágoras, y Boetius, un algorista que utilizaba 
las nuevas cifras indo-arábigas para calcular. A pesar de su utilidad, 
el sistema de nun1eración indo-arábigo no terminó de implantarse 
completan1ente en Europa hasta el siglo xvr. 

NAPIER: TABLILLAS Y LOGARITMOS 

Hasta el siglo xvu no apareció un nuevo invento en el afán humano 
por realizar cálculos más fácilmente. En 1617 el matemático esco­
cés John Napier (también conocido por Neper) publicó una obra, 
que se llegó a conocer como Rabdología, en la que presentaba una 

JOHN NAPIER 

Napier (1550-1617), barón de Merchis­
ton, fue teólogo y matemático. A pesar 
de que su gran pasión era la religión, y 
consideraba las matemáticas como un 
entretenimiento, ha pasado a la historia 
de la ciencia como el creador de los lo­
garitmos, herramienta en la que trabajó 
más de veinte años y que dio a conocer 
en 1614 en su obra Mirifici logarithmorum 
canon is descriptio. Los logaritmos que 
planteó no estaban basados en ninguna 
base determinada, pero el matemático 
inglés Henry Briggs lo convenció para 
modificar la esca la a la base 10. El pro­
pio Napier calcu ló el logaritmo decimal 
de los mi l primeros números. Basándose en la misma idea de encontrar una 
herramienta para simplificar las operaciones aritméticas, publicó en 1617 la obra 
Rabdologiae seu numerationis per vírgulas libri duo, en la que presentaba lo que 
se conoce como las tablillas de Napier. También dejó para la historia varios resul­
tados interesantes en el campo de la trigonometría, tanto plana como esférica. 
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serie de tablillas que permitían convertir 
los productos en sumas y las divisiones en 
restas y que se llamaron huesos de Napier. 

El invento consistía en una serie de ta­
blillas en las que aparecían en columna diez 
cuadrados, divididos en dos partes por un 
trazo diagonal, salvo el primero. En cada 
tablilla aparecía la tabla de multiplicar de 
un número, es decir, aparecía en el cuadro 
inicial una cifra y debajo su doble, su triple, 
su cuádruple y así sucesivamente hasta lle­
gar al valor de multiplicar la cifra por 9. 

Bastaba colocar en una caja las tabli­
llas correspondientes a uno de los valores 
que se quería multiplicar y comprobar los 
valores que quedaban a la altura del otro 
valor que se quería multiplicar. En ese caso 
bastaba sumar las cifras que estaban en 
la misma diagonal y nos salía el valor del 
producto. Así, para multiplicar el número 

625 por 7, la fila correspondiente al número 7 de la multiplicación 
nos daría los valores 4 para las unidades de millar, 3 = 2 + 1 para 
las centenas, 7 = 4 + 3 para las decenas y 5 para las unidades. Es 
decir, el producto sería 625 x 7 = 4 375. Podemos comprobarlo en 
la figura 7. 

Si se quieren multiplicar números mayores, basta seleccionar 
cada fila de las cifras del segundo factor y sumar, escalonada­
mente, los números obtenidos por el método anterior. 

Para multiplicar 2134 por 732 debemos distribuir las tablillas 
tal como aparecen en la figura 8. Sumaríamos los valores corres­
pondientes a cada factor. Debemos tener en cuenta que cuando 
sumamos en diagonal y suma más de nueve, como ocurre en las 
decenas del producto 2 134 x 3, colocamos en su lugar las unidades 
y las decenas de ese resultado se añaden a la unidad siguiente. 

Como podemos apreciar en el proceso anterior, el producto 
se reduce a realizar una serie de sumas, ya que los productos por 
cada cifra ya los tenemos en la. tablilla. Para hacer la división se 
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hace un proceso inverso, restando. Si quisiéramos dividir 4312 
entre 625, colocaríamos las tablillas correspondientes al divisor 
(625) y realizaríamos todas las operaciones correspondientes a la 
multiplicación de cada línea para encontrar la cifra inferior más 
cercana al dividendo (4312), en este caso 3750, y así obtendría­
mos el cociente (6), como podemos observar en la figura 9. Final­
mente, para hallar el resto de la división, deberíamos restar a 4312 
el valor 3 750, lo que nos da un resultado de 562. 

También es posible realizar, de una forma más complicada, 
potencias, raíces cuadradas y cúbicas con las tablillas. 

- - _J 
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Napier hubiese pasado a la historia de las matemáticas aun 
sin haber creado estos artilugios para operar rápidamente. En un 
libro publicado años antes, en 1614, presentaba su obra más im­
portante: los logaritmos. Se trata de una regla de cálculo que per­
mite convertir los productos en sumas, las divisiones en restas y las 
potencias en productos. La sin1plificación de las operaciones fue 
algo de mucha utilidad, sobre todo en los cálculos astronómicos. 
El gran matemático francés Pierre-Sirnon de Laplace (1749-1827) 
dijo al respecto: «Con la reducción del trabajo de varios meses de 
cálculo a unos pocos días, el invento de los logaritmos parece haber 
duplicado la vida de los astrónomos». 

El logaritmo en una base cualquiera a de un número b se de­
fine como aquel valor al que hay que elevar el número a para ob­
tener el b. Expresado en símbolos sería: 

Por ejemplo, el logaritmo en base 3 de 81 vale 4 (log
3 

81 =4), 
ya que 3'1 = 81. 

El logaritmo es una operación inversa de la potencia, igual 
que la resta es una operación inversa de la suma. Si tenernos el 
valor de una suma y conocernos el valor de uno de los sumandos, 
hallar el otro sumando equivale a restarle a la suma el valor del 
sumando conocido; luego son operaciones inversas. Del mismo 
modo, si conocernos el valor de una potencia y conocemos el ex­
ponente de la potencia, hallar la base equivale a la radicación, 
es decir, a hallar la raíz de grado igual al exponente del valor de 
la potencia. Si lo que conocernos es la base, hallar el exponente 
se convierte en el logaritmo de esa base del valor de la potencia. 
Corno la suma de dos números tiene la propiedad conmutativa, 
el orden de los sumandos no altera la suma, esta operación solo 
tiene una operación inversa. Corno la potencia no es conmutativa, 
existen dos operaciones inversas según no se conozca la base o el 
exponente de la potencia. 

Junto con los logaritmos de base 10, que se suelen abreviar 
simplemente corno log, sin indicar la base, los más usados son los 
logaritmos en base e, un número trascendente de la misma fami-
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lia que el más conocido n:. Estos logaritmos reciben, en honor a 
N~pier, el nombre de logaritmos neperianos y suelen represen­
tarse por ln. 

Las propiedades fundamentales en las que se basa el cálculo 
con logaritmos son las siguientes, que se verifican para cualquier 
base: 

- El logaritmo del producto de dos números es igual a la suma 
de los logaritmos de los dos factores: log (a• b) = log a+ 
+log b. 

- El logaritmo del cociente de dos números es igual a la di­
ferencia entre el logaiitmo del numerador menos el loga­
ritmo del denominador: 

log( ~) = log a- log b. 

- El logaritmo de una potencia es igual al producto del expo­
nente por el logaritmo de la base: log ab = b -log a. 

En estas propiedades se observa claramente que las opera­
ciones se sustituyen por otras de un nivel de dificultad inferior. 
Inicialmente, para poder aplicar los logaritmos era necesario tra­
bajar con tablas de logaritmos. 

Los logaritmos se aceptaron enseguida por los matemáticos 
de la época, que supieron reconocer el avance que representaban. 
Se comenzaron a buscar aplicaciones y, unos pocos años después, 
se idearon herramientas mecánicas que aplicaban esos principios. 

Se considera al astrónomo y matemático inglés William 
Oughtred (1574-1660) como el primero que utilizó la letra griega 
n: para representar el cociente entre la longitud de una circunfe­
rencia y su diámetro. También se le atribuye el uso del símbolo 
x para indicar el producto, y las abreviaciones sin y cos para las 
razones trigonométricas seno y coseno. Pero por lo que pasó a la 
historia fue por la invención de la regla de cálculo en 1621. Ideó un 
par de tablillas en las que apai·ecían los valores de los logaritmos 
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y permitían hacer productos y divisiones deslizando una tablilla 
sobre otra y realizando sun1as y restas. Lo curioso fue que la pri­
mera vez que comercializó la regla de cálculo le dio una estructura 
circular, en la que existían una serie de discos concéntricos, en 
donde estaban situados los logaritmos y que giraban alrededor 
del centro. Este artilugio recibe normalmente el nombre de regla 
de cálculo circular. 

Sin embargo, el diseño básico que tuvieron las reglas de cál­
culo fue el de una barra fija con una regleta movible en su interior. 
En las reglas de cálculo más modernas, tanto la barra fija como la 
regleta movible están calibradas con varias líneas divididas en par­
tes proporcionales. Con ellas no solamente se pueden calcular loga­
ritmos, sino también potencias, inversos y razones trigonométricas. 

Las reglas de cálculo han sido las herramientas utilizadas dia­
riamente por arquitectos, ingenieros y otros profesionales hasta el 
último tercio del siglo xx, en que comenzaron a popularizarse las 
calculadoras científicas que incluían ya los cálculos logarítmicos. 

LAS MÁQUINAS MECÁNICAS 

Pocos años después, el alemán WiThelm Schickard (1592-1635) 
crearía la considerada como primera máquina mecánica de la his­
toria. Fue profesor de arameo y hebreo, ministro luterano, teólogo, 
topógrafo, astrónomo y matemático. Entre 1613 y 1619 ejerció de 
diácono en Nürtingen, donde entró en contacto con Kepler. Este 
solicitó ayuda a Schickard, que tenía fama de excelente grabador, 
para que le preparara una serie de grabados y xilografías para su 
obra Harmonice mundi. Tan1bién le pidió ayuda en el cálculo de 
una serie de tablas. De esta relación surgió la idea en Schickard 
de crear una máquina para mecanizar los cálculos astronómicos 
que estaba realizando. El propio Schickard explicaba cómo le 
había surgido la idea en una carta a Kepler en 1623: 

Lo que se ha hecho mediante el cálculo, yo he intentado hacerlo 
usando la mecánica. He ideado una máquina compuesta de once 
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FOTO SUPERIOR 
IZQUIERDA: 
Grabado realizado 
por Gregor Reisch 
para su obra 
Margarita 
philosophica 
(1508). Muestra 
el enfrentamiento 
entre un abaquista 
(Pitágoras) y un 
algorista (Boetius), 
que usa las cifras 
indo-arábigas para 
calcular. 

FOTO SUPERIOR 
DERECHA: 

Regla de cálculo 
circular, artilugio 
ideado por 
William Oughtred 
en 1621. 

FOTO INFERIOR: 
Prototipo de 
la máquina 
aritmética 
inventada por 
Leibniz. Biblioteca 
Nacional de la 
Baja Sajonia, 
en Hanóver. 
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ruedas dentadas completas y seis incompletas; esta calcula instan­
tánea y automáticamente a partir de números dados, mientras los 
suma, resta, multiplica y divide. 

Así diseñó una máquina basada, como la regla de cálculo, en los 
logaritmos. Consistía en una serie de cilindros que rotaban en una 
estructura parecida a una antigua máquina registradora La máquina, 
que bautizó como reloj de cálculo, no llegó a construirse comple­
tamente pues se encargó un ejemplar para Kepler, pero un incen­
dio destruyó el prototipo. En el siglo xx, siguiendo los esquemas de 
Schickard, se construyeron algunos ejemplares de la máquina. 

LA PASCALINA 

La siguiente máquina conocida fue creada por el matemático 
francés Blaise Pascal, que la diseñó en 1642 para ayudar en los 
cálculos que tenía que realizar su padre, jefe de recaudación de 
impuestos para Normandía. Podía realizar sumas y restas. 

Estaba formada por una serie de ruedas conectadas entre sí y 
divididas en 10 partes, del O al 9. Cada vez que una rueda daba una 
vuelta completa, la rueda siguiente avanzaba un lugar. Para restar 
bastaba girar la rueda en dirección contraria y, tras completar una 
vuelta, se restaba una unidad del círculo siguiente. El diseño consis­
tía en una caja en forma de paralelepípedo con una serie de ruedas 
enlazadas entre sí. Cada una de ellas representaba una de las unida­
des correspondientes: unidades, decenas, centenas, etc. Hoy en día 
es posible encontrar en algunos comercios o en Internet máquinas 
aditivas basadas en la misma idea 

El propio Pascal creó una empresa para fabricar ejemplares 
de la pascalina, como se llegó a conocer su invento. Al ser la fabri­
cación totalmente manual, el precio del producto final era tal que 
nunca se convirtió en negocio. Se llegaron a fabricar alrededor 
de medio centenar de máquinas, de las que quedan algunas en la 
actualidad en museos de la ciencia. 

A mediados de la década de 1660 nos encontramos nuevas 
máquinas, en este caso ideadas por el matemático Sanrnel Mor-
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BLAISE PASCAL 

Pascal (1623-1661), físico, matemático y filósofo, comenzó a frecuentar desde 
muy joven los ambientes científicos e intelectuales de la época, entrando a 
formar parte del círculo de Mersenne. Con solo diecisiete años redactó un 
Ensayo sobre las cónicas en el que ya aparece el que se conoce como teorema 
de Pascal, sobre geometría proyectiva. Trabajó sobre el vacío, reproduciendo 
el experimento de Evangelista Torricelli , y la presión atmosférica, campo en 
el que llegó a ser el primero en realizar un estud io completo sobre la hidros­
tática. También desarrolló resultados en dinámica de fluidos, en particular al 
descubrir la ley de los vasos comunicantes, más conocida como ley de Pascal. 
Calculó el área de la curva cicloide, un problema fundamental en el desarrollo 
del cálculo infinitesimal. El Caballero de Meré, un noble aficionado a los juegos 
de azar, planteó a Pascal un problema sobre dados: lqué era más probable, 
sacar al menos un seis en cuatro lanzamientos de un dado, o sacar un doble 
seis en veinticuatro lanzamientos de dos dados? De la correspondencia entre 
Pascal y el matemático francés Pierre de Fermat nacería el cálculo de proba­
bilidades. También desarrolló el que actualmente se conoce como triángulo 
de Pascal, cuyas filas nos dan todos los números combinatorios que tienen el 
mismo numerador. Este triángulo es una herramienta muy útil para el cálculo 
de desarrollo de potencias. Pero indudablemente, el invento más conocido de 
Pascal es su máquina de calcular, la pascalina, con la que se podían realizar 
sumas y restas. 

La pascalina, la máquina de calcular ideada por Pascal. 
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land (1625-1695), que además fue diplomático, espía, académico 
y sobre todo inventor: llegó a diseñar estufas portátiles de vapor 
y bombas de agua. Morland conocía la máquina de Pascal y al pa­
recer tan1bién la diseñada por René Grillet de Roven, relojero de 
Luis XIV, que se considera basada en la de Leibniz. Llegó a diseñar 
tres máquinas de cálculo, una para realizar cálculos trigonomé­
tricos, otra sumadora y otra que permitía productos y divisiones. 
Estas dos últimas máquinas fueron dadas a conocer en su libro 
Descripción y uso de dos instrumentos aritméticos. 

La máquina sumadora tenía una serie de ruedas como la de 
Pascal, pero eran independientes. Cada una de ellas tenía unido 
un pequeño círculo que contabilizaba el número de vueltas com­
pletas que había dado el disco grande, y esas vueltas había que 
añadirlas posteriormente a mano. Estaba diseñada para operar 
en el sistema monetario inglés. Está considerada como la primera 
calculadora de bolsillo. 

La máquina multiplicativa se basaba en las mismas ideas que 
las tablillas de Napier. Estaba compuesta por una placa plana 
provista de varios puntos, donde se podían colocar una serie de 
discos intercambiables, algunos de los cuales permitían calcular 
raíces cuadradas y cúbicas. Los discos eran, básicamente, una ver­
sión circular de las tablillas de N apier. Se cree que su diseño está 
inspirado en otra máquina creada en 1659 por el italiano Tito Livio 
Burattini (1617-1681). 

LA MÁQUINA ARITMÉTICA DE LEIBNIZ 

Todas las máquinas de aquella época seguían la misma estructura 
que la máquina de Pascal; por eso, la máquina aritmética que di­
señó Leibniz significó un avance significativo con respecto a los 
otros artilugios contemporáneos. Aunque inicialmente partió de 
la misma idea que Pascal, pronto comprendió que para poder dar 
el salto de sumas y restas a operaciones más complicadas se ne­
cesitaba un mecanismo más potente y sofisticado. 

Es posible que el diseño de esta máquina ya lo tuviera Leib­
niz a principios de la década de 1670. Durante su primera visita 
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a París consultó los legados de 
Pascal, por lo que seguramente 
estudió su máquina calculadora. 
Aunque inicialmente la denominó 
Staffelwalze (Stepped Reckoner, 
en inglés), algo así como «calcu­
lador escalonado», más adelante 
se refería a ella como máquina 
aritmética. 

Ventanita 
con la solución -~"7'o.. 

Disco con 
las cifras 

' ¡' • 

Se componía de dos partes, 
una superior, fija, y otra inferior, 
que disponía de un carro movible. 
Pero la gran genialidad consistía 
en una serie de cilindros sobre los 
que estaban insertadas un total de 
nueve varillas de diferente longi­
tud ( véase la figurn). El cilindro iba 
montado sobre un eje y estaba en 

Cilindro con varillas 

contacto con una rueda dentada, ----
fijada a un eje paralelo al anterior. 
Al girar el disco correspondiente a las cifras, el cilindro avanzaba 
o retrocedía, de maner.a que una rueda dentada accionada por el 
cilindro se movía en función de las varillas que hubiesen quedado 
a su altura. Esta rueda giraba un último disco en el que aparecía la 
solución, que podía verse en una ventanita de la caja. 

La máquina utilizaba tres tipos de ruedas: de suma, multipli­
cando y multiplicador. Haciendo interactuar unas con otras per­
mitía sumas, restas, productos y divisiones. 

La primera máquina que Leibniz presentó en las sociedades 
científicas era un prototipo realizado en madera con problemas de 
funcionamiento. No pudo conseguir demostrar que realizaba los 
cálculos para los que estaba diseñada, principalmente por defec­
tos de fabricación. Más tarde encontró un relojero mecánico que 
consiguió fabricarle una máquina de metal que funcionaba. 

Aunque ya a mediados de la década de 1670 Leibniz dispo­
nía de una máquina que realizaba las cuatro operaciones, estuvo 
perfeccionándola durante toda su vida. Años más tarde intentó 
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Mecanismos 
de la máquina 
aritmética 
de Leibniz. Era la 
primera máquina 
de este tipo que 
permitía realizar 
las cuatro 
operaciónes 
aritméticas 
básicas. 
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diseñarla de forma que trabajara en sistema binario, pero la gran 
cantidad de cilindros que se necesitaban para operaciones media­
nas le obligó a desechar la idea. 

En aquella época, las máquinas mecánicas solían adolecer del 
mismo problema: eran complicadas y muy costosas, cuando no im­
posibles de fabricar, pues la tecnología de la época no podía dar sa­
lida a los diseños que generaban las mentes de esos genios. Aunque 
las primeras máquinas aparecieron a principios del siglo xvn, se tar­
daría dos siglos en que comenzaran a extenderse y popularizarse, 
tras ser comercializadas eficientemente. En concreto, hasta 1822 
no se comercializó la primera máquina mecánica, la Arithmome­
ter, ideada por el francés Charles Xavier Thomas de Colmar (1785-
1870), que fue nombrado caballero de la Legión de Honor por dicho 
invento. 

Igual que Isáac Newton comenzó a ser conocido en los am­
bientes científicos de la época a través de la creación de su te­
lescopio reflector, la máquina aritmética de Leibniz, junto con 
algunos escritos sobre el movimiento, permitieron que el nombre 
de Gottfried Wilhelm Leibniz comenzara a ser citado en las prin­
cipales academias científicas del momento. 
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CAPÍTULO 2 

Y el cálculo se hizo 

Las ciencias, y en concreto las 
matemáticas, gozaron de un impresionante 

auge en los siglos XVI y XVII. Una gran parte de esta mejora 
sustancial fue debida a la fundamentación del cálculo 

infinitesimal. Se resolvieron todos los problemas clásicos 
y se afrontaron otros nuevos que proporcionaban la 

naturaleza y el mundo físico. Aunque Newton y Leibniz 
son considerados los fundadores de este cálculo, 

se apoyaron en muchos otros importantes 
matemáticos de estos siglos. 





Leibniz llegó por primera vez a París a finales de marzo de 1672 
para abogar por el proyecto egipcio elaborado con el barón Von 
Boineburg. Quería conseguir audiencia en la corte para plantear 
sus propuestas con el fin de desviar las ansias bélicas de Francia 
frente a los Países Bajos. Al llegar a París, Inglaterra ya había en­
trado en guerra con los Países Bajos y Francia lo haría a la semana 
siguiente, por lo que sus intenciones carecían de sentido. Aun así, 
insistió en su labor diplomática para conseguir, al menos, que Ale­
mania no se viera envuelta en el conflicto. 

Tras seis meses esperando ser recibido en la corte con pocas 
posibilidades de éxito, Melchior Friedrich von Schi::inborn, so­
brino del elector de Maguncia y yerno de Boineburg, se trasladó a 
París acompañado de Phillip Wilhelm, hijo del barón. El objetivo 
de Von Schi::inbom era participar en las negociaciones oficiales de 
paz y proponer la realización de un congreso para la paz en Co­
lonia. Tras no conseguir ningún efecto positivo, Von Schi::inbom 
viajaría más tarde a Inglaterra con Leibniz. 

La muerte de Boineburg el mes siguiente significó un duro 
golpe para Leibniz, pues tenía una gran amistad con él y le había 
servido bien en muchas ocasiones. El barón le había apoyado en 
el desarrollo de sus trabajos y sobre todo le había conseguido 
contactos con científicos, políticos y hombres de estado, hasta el 
punto de conseguirle el puesto de consejero del elector de Magun-
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cia. El propio Leibniz hablaba de Boineburg como «uno de los más 
grandes hombres de este siglo, que me honró con una amistad 
muy especial». 

CONVERSACIONES CON CIENTÍFICOS 

Durante la espera para poder entrevistarse con miembros del Go­
bierno francés, Leibniz aprovechó las oportunidades que una urbe 
como París le ofrecía y se entrevistó con importantes científicos e 
intelectuales que estaban en ese momento en la ciudad. 

En el verano de 1672, visitó al gran científico neerlandés 
Christiaan Huygens, cuya obra conocía en parte. En esta primera 
reunión, Leibniz le mostró el primer modelo de máquina aritmé­
tica, aún en madera e imperfecto. Huygens escribió más adelante 
a Oldenburg, comentando que la máquina era un gran adelanto, 
aun a pesar de necesitar ser perfeccionada. 

También le presentó un método para sumar series infinitas, 
uno de los problemas que más desarrollaron los matemáticos de 
esa época. Huygens le aconsejó que consultara las obras de los 
matemáticos ingleses John Wallis, a quien conoció en su poste­
rior viaje a Londres, y Grégoire de Saint-Vincent (1584-1667), cuya 
obra consultaría en la biblioteca real. 

Otra reunión importante fue con el bibliotecario real Pierre 
de Carcavi, que tenía mucho interés en conocer la máquina arit­
mética de la que Leibniz le había hablado. También realizó para él 
algunos encargos, como una evaluación sobre una obra relacio­
nada con el vacío escrita por el físico alemán Otto von Guericke 
(1602-1686). Este científico fue el inventor de la bomba de vacío y 
quien, en 1654, realizó el célebre experimento conocido como las 
esferas de Magdeburgo. Unió dos semiesferas de 50 centímetros 
de dián1etro y dentro de ellas hizo el vacío. En cada lado de la es­
fera resultante colocó ocho caballos tirando para separar las dos 
semiesferas, pero no lo lograron. 

Tras fracasar la misión diplomática en Francia, Leibniz re­
cibió la orden de acompañar a Von Schonborn a Inglaterra y 
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CHRISTIAAN HUYGENS 

. Nacido en La Haya, Huygens (1629-1695) 
fue uno de los principales científicos de 
la época. Destacó en matemáticas, física 
y astronomía. Tuvo gran amistad con el 
filósofo y matemático René Descartes, 
que visitaba a menudo a su padre, y 
que ejerció una influencia palpable en el 
enfoque <:Je sus investigaciones. Como 
embajador de los Países Bajos, v isitó 
ciudades importantes, entre ellas Copen­
hague, Roma y París, donde se instaló en 
1660. Al año siguiente viajó a Londres, y 
allí consiguió ingresar en la Royal Socie­
ty. En 1666 regresó a la capital francesa 
para encargarse de la coordinación de 
la Academia de Ciencias de París. Por 
entonces conoció a uno de sus más bri-
llantes discípulos: Leibniz. En 1689 regresó a su ciudad natal, donde residiría 
hasta su muerte, aunque previamente pasó algunos años de nuevo en Londres, 
donde conoció al otro gran genio, Isaac Newton. 

Logros científicos 
Fue un gran pulidor de lentes y construyó muchos telescopios, algunos de 
gran tamaño. Localizó un anillo alrededor de Saturno, descubierto por Galileo 
sin concretar los resultados, y descubrió el satélite Titán . Cuando la Agencia 
Espacial Europea mandó una sonda para investigar Titán la llamó, en su honor, 

· Sonda Huygens. En matemáticas fue uno de los pioneros del cálculo de proba-
bilidades y estudió longitudes y áreas de diversas curvas, como la cisoide o la 
cicloide, curvas que allanaron el camino hacia el cálculo infinitesimal. También 
trabajó aspectos de mecánica, especialmente la teoría de oscilación a partir 
de péndulos o el principio de conservación de las fuerzas vivas. En óptica 
desarrolló la teoría ondulatoria de la luz. 

después volver a Maguncia pasando por los Países Bajos, con el 
objetivo de conseguir que ambas naciones iniciaran conversacio­
nes de paz. Por tanto viajó a Londres a principios de 1673. 

Una vez en Londres se reunió con el teólogo y diplomático 
alemán Heruy Oldenburg, firme defensor de la filosofía natural, lo 
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que hoy llamaríamos ciencia. Oldenburg convocó una sesión de 
la Royal Society para que Leibniz pudiera presentar su máquina 
aritmética. Durante su estancia en Londres, Leibniz pudo asistir a 
varias de las reuniones de la Royal Society, aunque casualmente 
no estuvo en una en la que Hooke lanzó serios comentarios nega­
tivos sobre la máquina, que como ya hemos comentado, no fun­
cionaba correctamente. 

Robert Hooke fue uno de los científicos experimentales más 
importantes de la historia. Abarcó multitud de campos científicos 
y fue nombrado, entre otros cargos, director de experimentación 
de la Royal Society en 1662, con el cometido de presentar sema­
nalmente resultados científicos de lo más variopinto, y en 1677, 
secretario de la misma institución. Con una gran inventiva, pero 
poca capacidad para desarrollar los temas de una forma rigurosa, 
Hooke afirmaba haber tenido las ideas sobre los grandes descu­
brimientos de la época, pero sin llegar a rematarlos, antes que 
quienes los desarrollaron y los hicieron públicos. Esto hizo que 
constantemente estuviera envuelto en polémicas sobre el descu­
brimiento de muchos resultados. Fue especialmente llamativo el 
enfrentamiento con Isaac Newton por la paternidad de la ley de 
gravitación universal. Hasta tal punto llegó el odio entre ellos, que 
tras su muerte Newton hizo destruir todos los retratos existentes 
de Hooke, por lo que hoy no se tienen imágenes seguras de él. 

De todos modos, la satisfacción de Leibniz por su participa­
ción en las reuniones de la sociedad fue tal que solicitó su admi­
sión antes de abandonar Londres, siendo aceptado como miembro 
a mediados de abril. 

En una reunión con Samuel Morland, se hicieron demostra­
ciones de sus respectivas máquinas de calcular. También visitó a 
Robert Boyle, quien le presentó al matemático John Pell (1611-
1685), con quien discutió sobre los métodos para hallar sumas 
de términos y acerca del método de diferencias inventado por 
Leibniz para el cálculo de series. 

Antes de abandonar Inglaterra le llegó la noticia de la muerte 
del elector de Maguncia, por lo que la misión diplomática que 
tenía entre manos quedó en suspenso. Eso le pemütió no tener 
que viajar a los Países Bajos y poder volver a París. 
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CONSEJERO EN LA CORTE DE HANÓVER 

En 1675 Leibrúz se encontraba en París, pero sin una ocupación clara 
Era evidente que quería quedarse en la capital francesa para estar 
en contacto con la revolución científica que se estaba gestando allí; 
por eso había rechazado el puesto de secretario del primer ministro 
del rey de Dinamarca y el de consejero del duque Juan Federico de 
Hanóver, ofrecinúento que él mismo había favorecido al escribirle al 
duque hablándole de las actividades y contactos realizados tanto en 
París como en Londres. A finales de año intentó conseguir una plaza 
remunerada en la Acadenúa de Ciencias de París, tras quedar una 
plaza vacante por el fallecinúento del matemático Gilles de Roberval 
(1602-1675), pero la acadenúa consideró que con Huygens y Cassini 
ya tenían cubiertos los puestos de extranjeros contratados. 

Le escribió al duque Juan Federico de Hanóver, con el pre­
texto de hablarle de su máquina aritmética, que ya había recibido 
grandes elogios en la academia al presentar un ejemplar que fun­
cionaba correctamente, y aprovechó para aceptar el cargo que 
se le había ofrecido meses atrás. En enero de 1676 se hizo cargo 
del puesto de consejero, mientras que recibía también el nombra­
núento de consejero del nuevo elector de Maguncia. 

Leibniz intentó no dejar París y viajaba de vez en cuando a 
Hanóver y a Maguncia para seguir con sus relaciones políticas y no 
perder el contacto directo con la acadenúa y con los científicos y 
filósofos que visitaban la ciudad; así podría informar de los avances 
más importantes a sus patronos. Durante meses hubo varios reque­
rinúentos por parte de Hanóver para que se trasladara inmediata­
mente a la ciudad, a lo que Leibrúz respondió dando largas. 

Al final le plantearon un ultimátum, ya que Leibniz, además de 
consejero, se iba a hacer cargo del puesto vacante de bibliotecario 
de la biblioteca ducal. Este puesto le hizo visitar muchos luga­
res para comprar bibliotecas particulares en las que podría haber 
libros interesantes para la del duque. También era su intención 
estar en contacto con eruditos de diversos países y recopilar los 
nuevos descubrimientos en la biblioteca. 

Por fin, a principios de octubre de 1676 abandonó París para ya 
no regresar jamás. El viaje lo realizó desde Calais, pasando por Lon-
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dres, donde se entrevistó de nuevo con Oldenburg, a quien le mos­
tró su prototipo perfeccionado de máquina aritmética, y también 
con el bibliotecario de la Royal Society, el matemático John Collins, 
que quedó muy impresionado por los conocimientos de Leibniz. 

LAS SERIES INFINITAS 

Apaite de su máquina, uno de los primeros resultados que Leibniz 
dio a conocer en la Royal Society fue un método para hallar la 
suma de series de infinitos términos. 

LA SUMA DE LOS TÉRMINOS DE LA SERIE GEOMÉTRICA 

La primera suma de infinitos términos de la que se tiene conocimiento corres­
ponde a la llamada serie geométrica. Ya hay resultados para esa serie en el 
Papiro Rhind . La serie consiste en hallar la suma de las infinitas potencias cuya 
base sea un número menor que uno. El ejemplo más común sería la suma de 
la serie geométrica de razón 1/2: 

Visualmente resulta muy esclare­
cedor: consideremos como unidad 
el área de un cuadrado, que dividi­
mos en dos partes, y una de el las 
se vuelve a dividir por la mitad; de 
las dos partes resultantes, una de 
ellas se vuelve a dividir por la mitad 
y continuamos dicho proceso, de 
forma teórica, indefin idamente. El 
resultado de la suma de cada una 
de las divisiones que hemos obteni­
do es el cuadrado orig inal, es decir, 
la unidad. Este tipo de series, que 
en general se representarían por la 
expresión siguiente: 
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Los matemáticos habían buscado siempre fórmulas que per­
mitieran sumar con facilidad un gran número de términos. Ya en 
la antigüedad se conocía la suma de los términos de las series de 
primeras potencias: n, n 2 y n3. 

n(n+l) n 2 n 
1+2+3+4+5+6+7 + ... +n=---=-+-, 

2 2 2 

12+ 22+32+ ... +n2 = n(n+l)(2n+l) = n
3 

+ n
2 

+ n 
6 3 2 6' 

2( 1)2 4 3 2 
13 + 23 + 33 + ... + n 3 = n n + = !!:._ + !!:._ + !!:._. 

4 4 2 4 

¿ ,n = 1 + r + ,2 + r3 + r4 + ... , 
n.o 

es conocida y manejada por los alumnos de secundaria. Para hallar el valor 
de la suma tenemos que sumar n términos de la serie geométrica, y a conti­
nuación multiplicamos la misma suma por la razón r. Luego restamos las dos 
expresiones: 

S - 1 + r + ,2 + r3 + r4 + ... + rn 

r. 5 = r + ,2 + r3 + r4 + ,s + ... + ,n+l 

5-r·S=l 

De esta manera, podemos despejar 5 y así podemos obtener el valor de la 
suma que estábamos buscando: 

1-rn+l 
5=--

1-r 

Si consideramos ahora que res un va lor menor que 1 y que en lugar de sumar 
n términos sumamos infinitos, el valor rn+i se convierte en cero y, por tanto, 
la suma se reduce a: 

5 __ , __ 

1-r 
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Pero desde el principio los matemáticos tenían mucho interés 
en estudiar el caso concreto en que la suma de infinitos términos 
diera un valor finito. Demócrito y Arquímedes, por ejemplo, traba­
jaron en dicho problema. 

A partir de la serie geométrica 

Lrn, 
n.2:l 

en la Edad Media se investigaron las series de potencias que inter­
cambian entre sí la base y el exponente, es decir, las series del tipo 

aunque pronto se vio que si el exponente r era positivo y n era un 
número entero, la suma se convertía en infinito. En el caso de que 
el exponente r fuera negativo, se obtenían potencias de fracciones 
menores que la unidad, es decir, la suma 

~ (_!_)'" 
n;z:l n ' 

con r mayor que la unidad. 
El francés Nicolas de Oresme (1323-1382) proporcionó mu­

chos resultados sobre series y fue el primero en demostrar que 
la serie armónica, es decir, la serie anterior parar= 1, era di­
vergente, por lo tanto la suma de una gran cantidad de términos 
tendía a infinito. En esa época, las demostraciones se hacían de 
forma literal, describiendo los pasos que se seguían en el proceso 
de demostración, pero nosotros vamos a ver ese ingenioso razo­
namiento utilizando símbolos más corrientes. Lo que hizo Oresme 
fue agrupar términos; de esa manera tenía el prin1er término, los 
dos siguientes, los cuatro siguientes, los ocho siguientes y así su­
cesivamente: 

½+½+¼+¼+½+i+½+ ... = ½+(½+¼)+(¼+½+i+½)+ ... = 
1 7 533 =-+-+-+ ... 
2 12 840 
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Así se obtiene una serie de fracciones todas mayores que 1/2; 
por ello, la suma de la serie se puede hacer más grande que cual­
quier número que se indique sin más que tomar suficientes térmi­
nos de la serie. 

El matemático y astrónomo indio Madhava de Sangamagrama 
(1350-1425) descubrió, entre otras series infinitas, las de las fun­
ciones trigonométricas del seno y del coseno. También encontró 
la serie de .la arcotangente: · 

x3 x5 x1 
arctanx = x--+ - - -+ ... 

3 5 7 

Años más tarde el matemático y astrónomo escocés Jan1es Gre­
gory (1638-1675) redescubrió esta serie y, a través de él, la conoció 
Leibniz, quien la utilizó para hallar una aproximación del número n, 
con el inconveniente de que se acerca muy lentan1ente a ese valor. 
Se conocía como serie de Gregory-Leibniz, aunque otros autores la 
conocen en la actualidad como serie de Madhava-Leibniz: 

n l 1 1 (-1)" 
- = 1--+---+ ... +--+ ... 
4 3 5 7 2n+l 

Tanto Newton como Leibniz encontraron el desarrollo en 
serie de potencias del resto de funciones trigonométricas. 

El cálculo de cüras correctas del número n ha sido una bús­
queda constante de los matemáticos de todas las épocas. Este 
número se define como el cociente entre la longitud de una cir­
cunferencia y su diámetro. Muchos han intentado hallar la mayor 
cantidad de cüras y uno de los métodos usados ha sido el de las 
series numéricas, de forma que a medida que se van calculando 
más términos, van apareciendo mayor cantidad de cifras decima­
les exactas. 

Las series no siempre han sido sumas. Por ejemplo, el mate­
mático Franc;ois Viete (1540-1603), uno de los precursores del ál­
gebra actual, presentó el primer producto infinito que se acercaba 
al valor de n mediante la siguiente expresión: 

Jt=2-~- 2 _ 2 . 2 

.J2 -J2+.J2 -h+-J2+.J2 ✓2+ ✓2+-J2+.J2 ---
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Por su parte el propio Gregory, intentando calcular el área del 
círculo de forma analítica, llegó a otra expresión para el cálculo 
de 1t: 

1t 2·2·4·4·6·6·8 ·8 ... 
-= 
2 1·3·3·5 ·5·7·7 ·9 . . . 

En el siglo XVII tuvieron gran auge las sumas de series infinitas 
de potencias, que servían para buscar las cuadraturas de figuras 
linútadas por distintos tipos de curvas, es decir, el área encerrada 
por una curva no limitada por segmentos. 

LEIBNIZ Y LAS SERIES INFINITAS 

Cuando en 1672 Leibniz visitó a Huygens en Paxis, le habló sobre un 
método que había inventado para hallar sun1as de series de núme­
ros, que consistía en considerar diferencias entre los términos de 
la sucesión. Si tenemos una serie de términos a

0
<a

1
<a

2
<a

3
< . .. a,,, 

consideran1os las diferencias b
1
= a

1
- a

0
; b

2
= a

2
- a

1
; b

3
= a

3
- a

2
; . .. 

y entonces de la suma nula a
0
-a0 +a1- a 1 +a2-a2+ .. . +a,,_ 1-a,,_1 + 

+a,,-a,,= a0 +b 1 +b2 + ... +b,, - a,.= O, de donde se sigue que la suma 
de diferencias es igual a: 

Leibniz defendió que su método de diferencias se podía uti­
lizar para hallar la suma de cualquier serie de números que estu­
viesen construidos según una regla, e incluso para series infinitas 
siempre que fueran convergentes. 

En esa misma reunión Huygens le planteó un problema a 
Leibniz, que él ya había solucionado, para que probara su método, 
la suma de los inversos de los nún1eros triangulares, es decir, la 
serie siguiente: 
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Leibniz partió de la suma de los inversos anterior y dividió 
por dos cada término, descomponiendo las fracciones en diferen­
cia de dos: 

por lo que la serie buscada tiene el valor de 2 (1 + 1). 
También se debe a Leibniz lo que se conoce como criterio de 

convergencia de series alternadas, es decir, aquellas en que se 
alternan los términos que van sumando y restando. Básicamente 
será una expresión de la forma: 

o, 

¿ (-1 )" · a,. = a0 - ª1 + ª2 - a3 + a4 - •·· con a,. ~ O. 
n-0 

El criterio apareció por primera vez en una carta dirigida a 
Johann Bernoulli (1667-1748) en 1713. 

Para muchos matemáticos, los criterios de convergencia que 
utilizaban se basaban en hallar sumas parciales de una serie de 
términos, por ejemplo n, intentando hallar una expresión simpli­
ficada que dependiese de n y después estudiar qué ocurriría si el 
número de términos aumentaba hasta el infinito. Pero no todos los 
matemáticos estaban de acuerdo con este proceso, dado que apa­
recían los llamados disparates lógicos, es decir, series que con un 
procedimiento divergían, mientras que si se utilizaban otros pro­
cedimientos, se podían conseguir valores adecuados para la sun1a. 

Uno de los principales disparates de la época era sumar la 
serie alternada en la que a,,= 1 para todo n. Es decir, estamos ha­
blando de la serie: 

o, 

¿(-1)" =1-1+1-1+1-1+1-1+ ... 
n ... 1 

Si tomamos un número par de términos, la suma parcial vale 
O, mientras que si tomamos un número impar, la suma parcial 
vale l. Leibniz llegó a asignar a esa suma el valor de 1/2. 

Un razonamiento simple para llegar a esa solución sería el 
siguiente: 
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S = 1- 1+1 - l+l - l+l- ... = 1-(1-1+1-1+ 1- 1+ ... ) = 1- S, 

de donde si despejamos obtenemos que 2S = 1 y, por tanto, la 
suma buscada sería S = 1/2. 

En su visita a Robert Boyle, Pell le indicó a Leibniz que el 
matemático Franc;ois Regnault ya había publicado un método ge­
neral para interpolar series mediante diferencias. Leibniz consultó 
la obra, comprobando que su método difería del de Regnault, y 
redactó un escrito para ser presentado en la Royal Society. Su tra­
bajo no despertó ningún entusiasmo, ya que no presentaba ningún 
resultado nuevo e incluso fue acusado de plagio. El propio Leibniz 
reconoció después que no había ningún resultado novedoso y que 
lo interesante era el nuevo método presentado. 

El rechazo a su obra le hizo comprender que terúa grandes ca­
rencias en sus conocimientos matemáticos, al desconocer mucho 
de lo que ya se había publicado. Por eso dedicó casi un año a refor­
zar sus conocimientos. Cuando abandonó París, había dejado sus 
intereses en el mundo del derecho y de las polémicas diplomáticas 
en Alemania, y se dedicó al estudio de la matemática más actual. 

UNA NUEVA OCUPACIÓN 

Cuando abandonó París, Leibniz ostentaba ya el cargo que ocuparía 
el resto de su vida: consejero de los distintos duques de Hanóver. 
Desde 1677 fue consejero privado del duque Juan Federico, puesto 
de más confianza y más remunerado. Al encontrarse sin problemas 
financieros, pudo dedicar los esfuerzos que le permitía su ocupa­
ción a investigar los aspectos científicos que le interesaban, que 
eran prácticamente todos. Aunque inicialmente aceptó el puesto a 
regañadientes, más tarde expresó su satisfacción por el cargo que 
desempeñaba. 

En su cargo de bibliotecario del duque planteó ampliar la bi­
blioteca para cubrir todos los campos más importantes del conoci­
miento, abogando más por la calidad que por la cantidad y para ello 
ofrecía su experiencia y sus contactos con estudiosos de todas las 
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disciplinas. Gracias a esta ocupación viajó a otras ciudades para 
comprar bibliotecas en las que había libros interesantes para la 
biblioteca ducal. Por ejemplo, en 1678 visitó Hamburgo para com­
prar la biblioteca de Martín Fogel, discípulo del naturalista alemán 
Joachim Jungius (1587-1657). 

A su vuelta preparó para el duque una serie de escritos con 
temas tan diversos como la forma de mejorar la administración 
pública, la organización de archivos, la práctica de la agricultura 
y el trabajo en granjas. En ellos insistía en que para contribuir al 
bienestar del pueblo se debía tener una idea clara de cuáles eran 
los recursos de que se disporúa, tanto humanos como naturales. 
Además de los escritos, le presentó al duque una idea que había 
comenzado a rondar por su mente: la de crear una academia de 
ciencias en Alemania. Para ello planteaba una serie de inventos a 
fin de mejorar la producción minera, y sacar de ahí financiación 
para crear la institución. 

A pesar de estar instalado en Hanóver, Leibniz no perdió el 
contacto con los intelectuales y científicos de Londres y París; 
continuaba recibiendo información sobre los avances de la cien­
cia y escribiéndose con personajes influyentes de la sociedad. Por 
ejemplo, durante esa época se carteó con Henri Juste! (1620-1693), 
secretario del rey francés, aunque después se mudó a Inglaterra. 
Para Juste! realizó una breve y precipitada investigación sobre la 
historia de los condes de Lowenstein. Ese fue el primer trabajo 
histórico que realizó Leibniz, y en cierta forma presagiaba la que 
sería la gran ocupación de su vida. 

BAJO UN NUEVO PATRÓN 

Al duque Juan Federico lo sustituyó su hermano Ernesto Augusto 
(1629-1698), duque de Brunswick-Luneburgo, que sería el primer 
príncipe elector de Hanóver, es decir, una de las personas que se 
encargaba de elegir, en su momento, al emperador alemán. 

Tras su llegada a Hanóver, Leibniz conoció a Sofía de Wittels­
bach (1630-1714), esposa de Ernesto Augusto. Sofía era hija de 
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Federico V, rey de Bohemia, y de Isabel Estuardo, princesa de Ba­
viera, Escocia e Inglaterra, además de nieta de Jacobo I de Inglate­
rra y V de Escocia. Por lo tanto, por línea directa, fue pretendiente 

" al trono de Gran Bretaña, pues era la descendiente protestante 
más directa de la reina de Inglaterra y solo su muerte, dos meses 
antes que la reina Ana Estuardo, impidió que gobernara. Su hijo 
Jorge Luis llegó a alcanzar el trono de Inglaterra con el título de 
Jorge l. 

La relación de Leibniz con Sofía se fue haciendo más estre­
cha con los años y llegaron a tener una gran amistad. La princesa 
tenía unas grandes inquietudes intelectuales que abarcaban mul­
titud de temas y sobre los que discutía, con un alto nivel, con 
Leibniz, de lo que da fe la amplísin1a correspondencia existente. 
La propia Sofía comentó que le era de gran agrado la correspon­
dencia que mantenía con Leibniz, así como sus encuentros. Tra­
taban principalmente temas de religión, política y filosofía, temas 
que había tratado con el duque Juan Federico, pero por los que su 
sucesor no mostraba ningún interés. 

Leibniz fue ratificado en sus ocupaciones, y realizó un in­
forme para el nuevo duque comentando detalles de su carrera, lo 
que hoy diríamos su currículo, y una serie de proyectos que tenía 
en mente. Propuso ampliar la biblioteca ducal con un laboratorio 
y un museo y la creación de una imprenta ducal. En un escrito 
dirigido al prin1er ministro, Franz Emest von Platen (1631-1709), 
se ofreció para elaborar una historia de la casa de Brunswick­
Luneburgo. Seguramente no era consciente del berenjenal en el 
que se metía, ya que ese proyecto lo martirizó el resto de su vida. 

NUEVOS PROYECTOS 

A pesar de los múltiples encargos que recibía del duque, Leibniz 
tenía fuerzas y capacidad para seguir produciendo avances en 
muchos aspectos de la ciencia. En 1681 Otto Mencke visitó Ha­
nóver y se reunió con Leibniz para hablar sobre la edición de la 
revista Acta Eruditorum, y le solicitó que enviase alguno de sus 
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escritos para publicarlos en la revista. Además de sus propias 
obras, Leibniz también hizo reseñas de algunos textos, como por 
ejemplo uno de John Wallis que versaba sobre álgebra y otro del 
matemático Jacques Ozanam en el que exponía sus tablas trigo­
nométricas. 

Siguió redactando escritos para el duque sobre los aspectos 
más diversos, como métodos para mejorar la organización y el 
ánimo del ejército, proponiendo favorecer la salud física y psí­
quica de los soldados; para ello sugería dotarlos de alimentación, 
ropa y medicinas adecuadas, y emplearlos, en época de paz, en 
trabajos para la comunidad, como la edificación de fortificacio­
nes, el drenaje de pantanos, y en proyectos de canalización, de 
modo que eso haría más llevadera la rutina del entrenamiento mi­
litar. Presentó un proyecto con medidas preventivas de carácter 
político para combatir la epidemia que asolaba en esos momentos 
Europa, dado que los médicos no habían conseguido encontrar 
métodos para erradicarla. Propuso impedir el paso a personas 
contaminadas y aislarlas para que no extendieran la infección. 

Por encargo del consejero ducal, Otto Grote, preparó un 
memorándum sobre la ampliación del número de electorados 
alemanes. Existían ocho electorados, cinco católicos y tres pro­
testantes. En el escrito abogó por la creación de un noveno elec­
torado, en este caso protestante. Después de varios años, en 1692 
se consiguió por fin que el duque Ernesto Augusto fuera declarado 
príncipe elector. Leibniz participó en el proyecto desde el princi­
pio hasta el final, pues una vez concedido el electorado, diseñó 
una medalla conmemorativa, y elaboró también el discurso, que 
contenía un resumen histórico, que Otto Grote leería cuando re­
cogiera el título de manos del emperador. 

Leibniz era requerido para cualquier asunto político en Ha­
nóver. La princesa Sofía aprovechó uno de los viajes de Leibniz 
por Italia para que intercediera por una alianza política mediante 
matrimonio entre Carlota Felicidad, hija mayor del duque Juan 
Federico, con el duque Rinaldo de Módena, y de paso también 
consiguió los esponsales de la hija pequeña del duque, Guiller­
mina, con el rey de Hungría y futuro emperador José I de Habs­
burgo. 
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Aparte de sus estudios científicos, la labor más importante 
que emprendió durante esos años fue, como ya se ha comentado, 
la elaboración de una historia de la casa de Brunswick-Luneburgo 
para el duque. Leibniz opinaba que la historia y la genealogía se 
habían convertido en una ciencia, y que por tanto se necesitaba 
una documentación fiel basada en las fuentes primitivas de infor­
mación y en los autores de la época. De esta manera consiguió del 
duque una pensión vitalicia y liberarlo de otras tareas ordinarias 
para dedicarse casi en exclusiva a ese menester. 

Pero además, en esa época, ya hacía años que había realizado 
el descubrimiento con el que pasaría a la historia de las matemá­
ticas entre los más excelsos: el cálculo infinitesimal. 

LAS MATEMÁTICAS EN LA ANTIGUA GRECIA 

Los griegos crearon las matemáticas como ciencia. Las civiliza­
ciones anteriores las habían utilizado para aplicarlas a problemas 
prácticos de la vida cotidiana. Por ejemplo, los egipcios usaban 
el teorema de Pitágoras para construir un ángulo recto y con 
él poder reconstruir las lindes de los cultivos inundados por el 
Nilo. Los griegos estudiaban las matemáticas como objetivo en 
sí mismas, sin importarles su utilidad. Esto no quiere decir que 
no usaran también sus conocimientos para solucionar situacio­
nes concretas, sino que diferenciaban muy bien lo que podríamos 
decir teoría de la práctica. Por ejemplo, los griegos diferenciaban 
entre la aritmética, que era la teoría abstracta de números, y la 
logística, los propios cálculos en sí mismos, es decir, la aritmética 
aplicada. Consideraban importante el estudio de la matemática 
en sí misma y a ello dedicaron sus escritos y, en cierta forma, 
despreciaban la otra matemática, la aplicada, la que solucionaba 
los problemas diarios. 

En época más moderna, en el apogeo de Alejandría, los cientí­
ficos griegos, sin dejar de lado el cultivo de la ciencia pura, comen­
zaron a desarrollar también la ciencia aplicada. Los alejandrinos 
inventaron bombas para elevar agua desde los pozos, poleas y 
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sistemas de engranajes para mover grandes masas, utilizaron la 
fuerza del agua y del vapor para mover vehículos, el fuego para 
conseguir estatuas móviles o utilizar el aire comprimido para lan­
zar objetos a grandes distancias. 

Mientras que en las civilizaciones anteriores los conocimien­
tos se adquirían a través de la experiencia, la inducción o la ex­
perimentación, los griegos potenciaron sobre todo la deducción. 
A partir de una serie de conceptos se deducían nuevos resulta­
dos aplicando un riguroso razonamiento deductivo. Por ejemplo, 
Apolonio (ca. 262 a.C.-ca. 190 a.C.), en su libro Secciones cónicas, 
presentó 487 proposiciones deducidas a partir de los axiomas 
recogidos en los Elementos de Euclides. 

El principal objetivo de los griegos era el deseo de compren­
der el mundo físico, pues consideraban que las leyes matemáticas 
eran la base de la naturaleza y eran imprescindibles para estudiar 
el universo. Era un modo de abordar la naturaleza de una forma 
crítica y racional. 

Los matemáticos griegos eran muy rigurosos en sus presen­
taciones. Debían demostrar sus razonamientos de forma exhaus­
tiva, sin dejar posibilidad a ningún resquicio. Rigurosidad que no 
se volvió a conseguir en las matemáticas hasta el siglo XIX. Pero 
al ser tan rigurosos, presentaban los trabajos terminados tan per­
fectos que no había forma de entender cómo habían llegado a 
esos resultados. Se llegó a creer que esto era debido a que tenían 
una gran inventiva, una idea feliz que les hacía encontrar resulta­
dos que después eran demostrados de forma exhaustiva. Muchos 
matemáticos a partir del Renacimiento estaban convencidos de 
que los griegos debían de tener algún método, pero que lo man­
tenían oculto. Lo podemos ver claro en el siguiente comentario 
de Descartes: 

Así como muchos artesanos ocultan el secreto de sus inventos, Pap­
pus y Diofanto, temiendo tal vez que la facilidad y la sencillez de su 
método le hicieran perder su valor, prefirieron, para excitar la admi­

ración de todos, presentarnos como productos de su ingenio algunas 

verdades estériles muy sutilmente deducidas, en lugar de mostrar el 
método de que se servían. 
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EL PALIMPSESTO DE ARQUIMEDES 

Un palimpsesto es un texto escrito en pergamino que se ha borrado y sobre 
el que se ha escrito otro texto para aprovechar el material. Gracias a uno de 
ellos conocemos una de las obras más importantes de Arquímedes. Muchas 
de las obras del genio de Siracusa se mantuvieron para la posteridad a través 
de copias árabes y latinas. Sin embargo, los matemáticos de los siglos xvI en 
adelante echaban en falta conocer cuál era el método que utilizaba para llegar 
a sus creaciones. S'us libros estaban llenos de demostraciones esquemáticas 
y completas, pero no se sabía cómo había llegado a esos resultados antes de 
demostrarlos. Se pensaba que no tenía ningún método para llegar a sus ideas 
brillantes, o si lo tenía, no lo había dejado para la posteridad. 

«El método» 
En 1906, el filólogo danés Johan Ludwig Heiberg recibió noticias de un pa­
limpsesto con contenido matemático existente en el convento del Santo Se­
pulcro de Constantinopla. Utilizando técnicas fotográficas consiguió capturar 
y copiar el texto original oculto, y lo que halló fueron varias obras de Arquí­
medes. El texto original era una copia, realizada en el siglo x, de algunas de las 
obras de Arquímedes, que se había reutilizado para unos escritos religiosos. 
La mayoría se conocían, pero incluía la única copia conocida de la obra Sobre 
el método relativo a los teoremas mecánicos, más conocida como El método. 
Esta obra es una carta de Arquímedes a Eratóstenes en la que explicaba su 
método para llegar a dichos resultados, que posteriormente demostraba con 
el máximo rigor. En el libro, Arquímedes utiliza una mezcla de razonamientos 
infinitesimales y mecánicos para hallar áreas y volúmenes. La idea de consi­
derar una superficie compuesta por segmentos o un volumen compuesto por 
superficies no volvería a aparecer en el mundo matemático hasta dos mil años 
más tarde, en pleno siglo xvI1. La creencia general es que si esta obra hubiese 
sido conocida como otros escritos de Arquímedes, el cálculo infinitesimal 
hubiese aparecido mucho antes en la historia. 
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La matemática más desarrollada para la obtención del 
cálculo se dio en la época alejandrina, cuando matemáticos como 
Arquímedes, Eratóstenes, Hiparco o Pappus obtuvieron muchos 
resultados para el cálculo de longitudes de cuivas, áreas y volú­
menes. Aunque durante muchos siglos se hablará de cuadratura 
para referirse al área o cubicación para el volumen. Según Pap­
pus, matemático alejandrino del siglo m-rv, las cuivas se podían 
clasificar en: 

- Planas, que se construían a partir de rectas y círculos. 

- Cónicas, que eran lugares sólidos provenientes del cono. 

- Lineales, que eran todas las demás cuivas que no podían 
resolverse por los métodos anteriores, como espirales, 
concoides, cisoides, etc. Estas cuivas no solían ser tra­
tadas. 

Muchos matemáticos griegos fueron precursores del actual 
cálculo. Por ejemplo, Pappus mencionaba al matemático Zeodoro, 
quien en un libro sobre figuras isoperimétricas planteaba teore­
mas como los siguientes: 

- Entre los polígonos de n lados con el mismo perímetro, el 
polígono regular es el que tiene mayor área. 

- Entre los polígonos regulares con igual perímetro, el que 
tiene más lados tiene mayor área. 

- El círculo tiene mayor área que un polígono regular del 
mismo perímetro. 

- De todos los sólidos con la misma superficie, la esfera 
tiene el mayor volumen. 

Este tipo de situaciones forman parte de los problemas de 
máximos y mínimos. 
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ARQUÍMEDES DE SIRACUSA 

No se puede hablar del cálculo infinitesimal sin comenzar ha­
blando del mayor matemático de la antigüedad y uno de los ma­
yores matemáticos de la historia, comparable a Newton o Gauss. 
Arquímedes (ca. 287 a.C.-ca. 212 a.C.) nació en Siracusa, una co­
lonia griega de Sicilia, y era hijo del astrónomo Fidias. Estudió en 
Alejandría y regresó a Siracusa, donde desarrolló su genio hasta 
su muerte. Tenía una inteligencia fuera de lo normal y una gran 
amplitud de intereses, y gustaba de trabajar tanto los aspectos 
teóricos como los prácticos. Su importancia la demuestra una 
frase del filósofo y escritor Voltaire: «Hay más imaginación en la 
cabeza de Arquímedes que en la de Homero». 

Aparte de las matemáticas, trabajó y desarrolló el estudio de la 
estática y la palanca. Es fan10sa su frase: «Dadme un punto de 
apoyo y moveré el mundo». Fue el creador de la hidrostática, al 
menos la parte que trata sobre los cuerpos que flotan en el agua. 
Uno de los principios más conocidos por todo el mundo es el de 
Arquímedes, que indica que cualquier cuerpo sumergido en un 
líquido experimenta una fuerza de abajo arriba igual al volumen 
del líquido desalojado. 

«Quien comprenda a Arquímedes y Apolonio admirará 
menos los logros de los hombres más ilustres de su tiempo.» 
- GO'ITFRIED WJLHELM LEIBNIZ. 
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Este principio se relaciona con una de las supuestas anéc­
dotas de Arquímedes. Hierón, el tirano de Siracusa, encargó una 
corona y entregó una determinada cantidad de oro, pero cuando 
la corona fue entregada, el tirano no estaba convencido de si el or­
febre habría utilizado todo el oro o lo habría mezclado con plata. 
Consultado Arquímedes, comenzó a pensar en el problema y en­
contró la solución mientras se bañaba en su casa, con lo que salió 
directamente del baño y corrió por las calles de Siracusa gritando 
«¡Eureka!» («¡Lo he encontrado!»). Como conocía la densidad 
del oro y de la plata, le bastó sumergir objetos de oro y plata del 
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mismo volumen y estudiar el líquido desalojado en función del 
peso. Así descubrió que la corona había sido depreciada añadién­
dole una aleación. 

Las obras de Arquímedes eran ensayos cortos que trataban 
puntualmente sobre aspectos geométricos. Los propios títulos nos 
indican claramente la temática: Sobre la cuadratura de la pará­
bola, Sobre la esfera y el cilindro, Sobre las espirales, Sobre la 
medida del círculo, Sobre los cuerpos flotantes, Sobre el equili­
brio de los planos, etc. Algunos de sus libros se han perdido, por 
ejemplo, los escritos sobre gravedad, palancas u óptica. 

Pero fue su capacidad como inventor lo que lo hizo famoso 
en su época. En su juventud construyó un planetario donde si­
mulaba el movimiento de los planetas mediante un mecanismo 
hidráulico. Diseñó un juego compuesto de poleas que le permitió 
botar un barco del rey Hierón con una sola mano. Inventó gran 
cantidad de instrumentos militares que impidieron durante años 
que Siracusa fuese conquistada por los romanos, entre ellos la 
utilización de grandes espejos para quemar las naves enemigas a 
gran distancia. Fue el creador del tornillo de Arquímedes ( véase 
la figura), un ingenio manual para extraer agua de pozos y cister-
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nas consistente en un mecanismo con forma de espiral dentro de 
un cilindro. 

A pesar de su dedicación a los inventos, estos eran, según el 
historiador Plutarco -en la obra que dedicó a la vida de Marcelo, 
el general que conquistó Siracusa-, una mera «diversión para el 
geómetra». El propio Plutarco nos explica cuáles eran los intere­
ses del genio: 

Aunque sus descubrimientos le proporcionaron un nombre y una 
fama, no humana sino divina, no quiso dejar ningún tratado sobre 
ellos, sino que, considerando la ingeniería y todo arte utilitario como 
innoble y vulgar, ponía su ambición solamente en aquellas materias 
cuya belleza y sutilidad no están mezcladas con la necesidad, y que no 
pueden compararse con las otras, ofreciendo una disputa sobre la 
materia y la demostración, donde la primera proporciona fuerza y 
belleza, y la segunda, precisión y poder en grado sumo, porque es 
in1posible encontrar en la geometría proposiciones más difíciles e im­

portantes tratadas en términos más puros y más netos. 

Arquímedes utilizaba el método de exhaución para demostrar 
rigurosamente sus resultados. En su escrito Sobre la esfera y el 
cilindro, el primer axioma que plantea es que de todas las líneas 
que tienen los mismos extremos, la línea más corta es la línea 
recta. Incluye otros axiomas referidos a longitudes de curvas y su­
perficies. Con estos axiomas comparaba perínletros de polígonos 
inscritos y circunscritos con el círculo. 

NO TODO ES GEOMETRÍA 

En la parte geométrica los griegos tenían la limitación de consi­
derar solo aquellas figuras construibles con regla y compás. Por 
eso, se encontraban limitados por los famosos problemas délicos: 
la duplicación del cubo, la cuadratura del círculo y la trisección 
del ángulo. 

La matemática griega no presentaba métodos generales útiles 
para resolver problemas distintos. Además, al supeditar el rigor 
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EL MÉTODO DE EXHAUCIÓN 

Método debido al matemático griego Eudoxo de Cn ido (ca. 390 a.C.-ca. 337 
a.C.). Consiste en aproximar el área desconocida que se desea ca lcular por 
áreas mayores y menores que se acercan a la buscada todo lo que se quiera. El 
método se basa en lo que se conoce como principio de Eudoxo, que aparece 
mencionado en los Elementos de Euclides: 

Dadas dos magnitudes desiguales, si de la mayor se resta una magnitud mayor 
que su mitad y de lo que queda otra magnitud mayor que su mitad y se repite 

continuamente este proceso, quedará una magnitud menor que la menor de las 
magnitudes dadas. 

Veamos cómo hallar el área del círculo (figura 1). Para ello inscribimos un 
cuadrado (con superficie mayor que la mitad del círculo) y se le resta su área 
al círculo. De los segmentos circulares, constru imos triángulos sobre el punto 
medio y luego restamos el área de esos triángulos. Esto último se vuelve a 
hacer con los segmentos circulares restantes y así sucesivamente se llega tan 
cerca del área del círculo como se quiera. 

FIG.1 

Se puede apreciar en las imágenes que lo que se hace es insertar polígonos 
con cada vez mayor número de lados y cuya área cada vez está más cerca 
de la buscada. Se razona igual desde un cuadrado exterior (figura 2). De esta 
forma se va acotando el valor del área circular por arriba y por abajo. 

FIG. 2 
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matemático · a la geometría, las demostraciones fueron cada vez 
más elaboradas y complicadas. Eso les impidió avanzar más en el 
desarrollo del cálculo. 

Al principio, la aritmética griega estaba condicionada a la 
geometría, pues los matemáticos la reducían al cálculo de canti­
dades geométricas o trigonométricas. Más adelante, la aritmética 
y el álgebra comenzaron a desarrollarse como materias indepen­
dientes. Matemáticos de la época cristiana, como Herón de Ale­
jandría (siglo r), Nicómaco de Gerasa (siglo u) o Diofanto de 
Alejandría ( ca. 200-ca. 298), desarrollaron aspectos aritméticos y 
algebraicos sin limitaciones geométricas. Nicómaco, que sigue la 
tradición pitagórica, publicó su trabajo Introductio arithmetica, 
considerado el equivalente a los Elementos de Euclides para la 
aritmética. 

Por su parte, el punto álgido del álgebra griega se alcanzó con 
Diofanto, de cuya obra se conserva muy poco. Su Arithmetica, de 
la que se conserva solo la mitad, consiste en una serie de ejerci­
cios dirigidos a la enseñanza del álgebra. En su obra encontramos 
ejercicios que parecen sacados de un texto actual de secundaria. 
Un ejemplo sería «encontrar dos números cuya suma sea 20 y su 
producto 96». La forma en que lo resolvió Diofanto podía ser la 
siguiente, usando nuestra terminología actual. La suma es 20 y el 
producto 96; se considera 2x, que es la diferencia entre el número 
mayor y el menor; por tanto ambos números serían lO+x y 10-x, 
y su producto (lO +x)(l0 - x) =l00- x 2 = 96, x 2 = 4 y por tanto 
X = 2, ya que los griegos no consideraban soluciones negativas. Es 
decir, los números buscados son 12 y 8. 

A partir del siglo vn la cultura griega desapareció arrollada 
por los árabes. Los romanos, junto con los cristianos y los árabes, 
se esforzaron por hacer desaparecer toda la ciencia griega y, en 
gran parte, lo consiguieron. Miles de manuscritos fueron quema­
dos y buena parte del saber científico desapareció. Durante un 
milenio no se aportó nada nuevo en geometría. Hasta práctica­
mente 1600 no se comenzaron a desarrollar aspectos nuevos en 
ese can1po. 

A mediados del siglo xvr comenzaron a extenderse por Europa 
traducciones latinas de los principales textos griegos, recupera-
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dos por los sabios árabes, que fueron acogidas con entusiasmo 
por los matemáticos de la época. Se comenzaron a estudiar dete­
nidamente los resultados y demostraciones desarrolladas por los 
griegos. La admiración de los matemáticos de los siglos xv1 y XVII 

por los conocimientos griegos era innegable. 

LA EVOLUCIÓN DEL ÁLGEBRA 

Aunque la geometría se estancó durante un milenio, el avance del 
álgebra fue fundamental para el desarrollo posterior del cálculo. 
El álgebra seguía íntimamente unida a la geometría. El matemático 
Mohamed ib Musa Al-Khwarizmi (780-850) desarrolló su obra en 
Bagdad y de su nombre se deriva la palabra algoritmo. También 
se deben a él las palabras guarismo y álgebra. Muchos autores 
consideran, por ello, a Al-Khwarizmi como el padre del álgebra. 
Sin embargo, el método que usaba para resolver sus ecuaciones 
seguía siendo fundamentalmente geométrico, las soluciones se 
encontraban completando cuadrados. 

Uno de los personajes más importante del siglo XVI, que puso 
las bases para lo que vendría después, fue Franc;ois Viete, ya 
mencionado anteriormente. Retomó el análisis geométrico de los 
griegos, pero a partir del álgebra. Comenzó a sin1bolizar las expre­
siones utilizando letras para representar los parámetros de una 
ecuación, diferenciando entre parámetros constantes y variables. 
Hizo más hincapié en los métodos de resolución que en la propia 
solución del problema. De esa forma se pasó del estudio de pro­
blemas particulares al desarrollo de métodos generales, algo fun­
damental para desarrollar el cálculo infinitesimal. Su trabajo fue 
el que abonó el camino para la aparición de la geometría analítica. 

Dado que las cantidades simbólicas que utiliza Viete pueden 
considerarse como longitudes de segmentos o medidas de ángu­
los, y las operaciones simbólicas pueden considerarse, a su vez, 
como construcciones geométricas, las soluciones obtenidas pue­
den ser vistas no solo como problemas numéricos, sino también 
geométricos. 
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CAMBIO DE ENFOQUE 

Durante el Renacimiento las artes y la literatura tuvieron un no­
table desarrollo, mientras que los aspectos científicos quedaron 
algo más abandonados. Francis Bacon es considerado uno de los 
creadores del método científico. En su obra Nueva Atlántida 
los gobernantes eran los científicos, que acumulaban el conoci­
miento científico y tecnológico. Muchas sociedades científicas se 
inspiraron en dicha obra. Bacon se quejaba de que la sociedad es­
taba preparada para las humanidades y los metafísicos, mientras. 
que dejaba de lado al sabio de laboratorio. Un siglo más tarde, 
abundarían las obras sobre resultados experimentales. 

La forma de afrontar el desarrollo de las matemáticas a partir 
de mediados del siglo xvr can1bió radicalmente respecto al enfo­
que griego. Aparecieron nuevos problemas, procedentes de las 
ciencias y de las necesidades prácticas. Las matemáticas se vol­
caron hacia el mundo físico. Poco a poco la ciencia se basó cada 
vez más en principios matemáticos y, como contrapartida, las ma­
temáticas cada vez se basaron más en la ciencia para justificar sus 
nuevos campos de estudio. 

Los matemáticos de la época eran grandes científicos y de­
sarrollaban su saber en muchos campos diferentes. Descartes 
comentaba que las matemáticas eran la ciencia del orden y la me­
dida, y comprendían, además del álgebra y la geometría, la astro­
nomía, la música, la óptica y la mecánica. Los pilares del sistema 
mecánico de Newton fueron la fuerza y el movimiento. Los dos 
grandes motores que hicieron avanzar la ciencia en esa época fue­
ron la astronomía y la mecánica, impulsados por Galileo y Kepler. 
Tenemos así la aplicación, por ejemplo, de las cónicas a las cien­
cias de la naturaleza: las elipses son trayectorias de planetas y las 
parábolas trayectorias de proyectiles. 

Se abandonó el rigor griego en beneficio del empirismo. Para 
Galileo era tan importante la parte deductiva como la experimen­
tal. A diferencia de los griegos, interesaba más el descubrimiento 
de nuevos resultados que la fundamentación rigurosa de dichos 
resultados. Siempre habría tiempo después para el rigor, puesto 
que lo importante era el descubrimiento en sí. El convencimiento 
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de que los resultados que mostraban podían ser después demos­
trados rigurosamente mediante los métodos griegos, queda pa­
tente en el siguiente texto de Huygens: 

No es de gran interés el que demos una demostración absoluta, des­
pués ·de haber visto que una perfecta demostración puede ser dada. 
Concedo que debería aparecer en una forma clara, ingeniosa y ele­
gante, como en todos los trabajos de Arquímedes. Pero lo primero y 

más importante es el método de descubrimiento mismo. 

Pero al plantear los descubrimientos de una forma empírica, 
sin la rigurosidad griega, algunos resultados no eran aceptados o 
creaban mucha controversia en otros científicos. 

Otro aspecto fundamental fue considerar que los problemas 
no debían plantearse de forma independiente. Descartes plan-

LAS COORDENADAS CARTESIANAS 

La idea fundamental de la geo­
metría analítica reposa en las 
coordenadas cartesianas, lla­
madas así en honor a Descartes. 
Todo punto del plano se repre­
senta con dos números, que ha­
cen referencia a su situación en 
el plano. El sistema de ejes car­
tesianos consiste en dos rectas 
perpendiculares que se cortan 
en un punto, el origen de coor­
denadas. Al graduar las rectas, 
a cada punto le corresponden 
dos valores numéricos medidos 
sobre ambos ejes. El primero se 
mide en el eje horizontal, llama­
do eje de abscisas, y el segundo 

FIG. 1 
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en el eje vertical, llamado eje de ordenadas. Un punto general se escribiría, 
por tanto, P(x,y) , siendo x la abscisa e y la ordenada. 
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teaba que los problemas con una misma estructura deben resol­
verse por un método común. 

LA GEOMETRÍA ANALÍTICA 

El gran salto para pasar de la geometría al álgebra se dio con la 
creación de la geometría analítica, que pemüte sustituir las curvas 
por sus ecuaciones para trabajar directamente en la resolución alge­
braica. Una curva, desde el punto de vista de la geometría analítica, 
es cualquier lugar geométrico, es decir, el conjunto de puntos que 
cumple una condición, que lleva asociada una ecuación algebraica. 

Como muchos otros casos en esa época, la geometría ana­
lítica fue descubierta de forma independiente por dos autores, 

Las dos rectas, al cortarse, dividen el plano en cuatro regiones que reciben 
el nombre de cuadrantes y que se numeran de I a IV, comenzando por el que 
los puntos tienen ambas coordenadas positivas y siguiendo en el sentido 
contrario a las agujas del reloj (figura 1). Sin embargo, la expresión inicial de 
los ejes no era así. Fermat definió las coordenadas de la siguiente forma: la 
posición de un punto P venía dada por dos longitudes, una medida en hori­
zontal desde el punto O hasta un punto/ y otra medida oblicuamente desde 
1 hasta P (figura 2). Esas medidas serían nuestras actuales x e y. Como se ve 
no aparecen determinados los ejes ni hay medidas negativas. 

FIG. 2 

y 
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cuyos resultados no eran exactamente iguales. Los padres de la 
criatura fueron los franceses Pierre de Ferrnat (1601-1665) y René 
Descartes (1596-1650). 

Ferrnat, considerado por algunos como el príncipe de los afi­
cionados, pues en realidad ejercía de magistrado y se dedicaba a 
las matemáticas en su tiempo libre, realizó importantes descubri­
mient_os en teoría de números, en especial el famoso «último teo­
rema de Ferrnat», que tardó más de tres siglos en ser demostrado. 
Realizó también aportaciones a la óptica. Aparte de la geometría 
analítica fundó, junto con Blaise Pascal, la teoría de la probabili­
dad. No publicó ningún resultado en vida, por lo que su obra debe 
buscarse en las cartas y escritos que intercambiaba con amigos y 
conocidos. 

Descartes, filósofo, físico y matemático, trabajó la geometría, 
partiendo, como Ferrnat, de los clásicos. En 1637, publicó su gran 
obra, El discurso del método, en la que presentaba su filosofía 
y que incluía tres anexos donde presentaba su obra científica: 
«Dióptrica», «Meteoros» y «Geometría». 

Se planteó una de las grandes polémicas del siglo, sobre quién 
había sido el primero en descubrir esta geometría. Por un lado, en 
la obra de Ferrnat Introducción a los lugares planos y sólidos, 
escrita en 1629 pero no publicada hasta 1679, Ferrnat ya presenta 
las ideas básicas de su geometría analítica, que casualmente es 
mucho más cercana a la idea que tenemos actualmente. Por su 
parte, el científico neerlandés Isaac Beeckman (1588-1637); con­
siderado como uno de los pioneros en el estudio del vacío tem10-
métrico, amigo y profesor de Descartes desde 1619, comentaba 
que en aquella época su alumno ya tenía en mente un método 
para resolver todos los problemas que se pudieran proponer en 
geometría. 

Al parecer, Fermat llegó primero a desarrollar la geometría, 
pero Descartes fue el primero en publicarla, algo muy corriente 
en la época. Pero como se habían intercambiado información de 
forma epistolar a través de Mersenne, surgieron las acusaciones 
de plagio. Parece evidente que ambos llegaron a sus conclusio­
nes de forma independiente, pues sus enfoques son distintos. 
Descartes parte del lugar geométrico y estudia su ecuación, 
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mientras que Fermat parte de la ecuación y estudia qué curva 
la cumple y cuáles son sus propiedades. Es recorrer el camino 
entre geometría y álgebra de forma opuesta. 

LOS CIMIENTOS DEL CÁLCULO 

El primero que intentó avanzar en el método del cálculo, siguiendo 
un método riguroso al estilo griego, fue Bonaventura Cavalieri 
(1598-1647), discípulo de Galileo. En 1635 publicó su obra Geo­
metría superior mediante un método bastante desconocido, los 
indivisibles de los continuos. Cavalieri planteaba que todas las 
figuras están formadas por una serie de elementos básicos, que él 
llama indivis'ibles. Es decir, un área está formada por un número 
indefinido de segmentos paralelos (veáse la figura), y un volumen, 
por áreas planas paralelas. 

Los indivisibles son los elementos mínimos en que puede des­
componerse un elemento. En Exercitationes geometricae (1647) 
expuso la idea de que una línea está compuesta de puntos, como 
una sarta de cuentas; un plano está hecho de líneas, como fibras 
en un vestido, y un sólido está formado por áreas planas, como las 
hojas de un libro. Gracias a esta idea, Cavalieri consiguió hallar 
la cuadratura, es decir, el área, de las curvas del tipo :xf- para los 
valores de k hasta 6 y 9. En nuestra notación moderna, Cavalieri 
demostró que: 

n.+1 

rª " dx a J, X =--
o n+l · 

Enunció el conocido como principio de Cava­
lieri: «Si dos figuras planas ( o sólidas) tienen igual 
altura, y las secciones hechas por rectas paralelas 
( o planos paralelos) a las bases y a igual distancia 
de ellas están siempre en una misma razón, enton­
ces las figuras planas ( o sólidas) están también en 
esa razón». En la figura 1 de la página siguiente po­
demos ver el caso concreto de dos triángulos con 
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FIGURA 1: 

Dos triángulos con 
la misma base y 
altura tienen la 

misma área. 

FIGURA 2: 

Método de 
Cavalieri para 
hallar el área 

de una parábola. 
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e 

la misma base y la misma altura, en 
la que los indivisibles son iguales, 
luego su área es la misma. 

A pesar de las criticas que re­
cibió el método de Cavalieri, no 
respaldado con el rigor clásico, 
muchos matemáticos continuaron 
en la misma senda de los indivi-
sibles. Fermat, Torricelli, Pascal 
o Roberval también plantearon 
métodos parecidos, aunque sus­
tituyendo las líneas por otros 
elementos geométricos, como rec­
tángulos, triángulos, paralelepípe­
dos o cilindros. 

Gilles de Roberval, uno de los 
miembros fundadores de la Acade­
mia de Ciencias de París, sustituyó 
las líneas de Cavalieri por rectán­

gulos infinitesimales, con lo que su método se acercó bastante al 
usado hoy en día. Trazaba un conjunto de rectángulos de la misma 
anchura y suponía que el área bajo la función podía acercarse al 
área de esos rectángulos, cuando la anchura fuese muy pequeña. 
Para hallar el área bajo una parábola, por ejemplo, seguía el mé­
todo que se ve en la figura 2. En nuestra escritura actual se trataría 
de hallar J; x 2 dx. Consideramos n rectángulos de amplitud e. Por 
tanto, el rectángulo correspondiente al rectángulo de la posición 
t, tendrá de base e y de altura el valor de la parábola en su abscisa 
t • e. Luego su área será e. (t. e)2 = t2 • e3• 

Si sun1amos todos los rectángulos el área será: 

A = e• e2 + e. (2e )2 + e . (3e ) 2 + ... + e. ( ne ) 2 = 
= e3+4e3 +9e3 + ... +n2

• e3 = e3-(1 +4+9+ .. . +n2
). 

La suma de los cuadrados de los números ya era conocida y valía: 
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y si llamamos a a la suma de las n anchuras de los rectángulos, es 
decir, a = ne, por tanto: 

a 
e=­

n 

y la expresión anterior se convertía en: 

A = (~)
3 (n3 + n

2 + n) = a 3
( n

3 + n 2 +~) = a3 (_.!.+J_+_l_)· 
n 3 2 6 3n3 2n3 6n3 3 2n 6n2 

Como se supone que n es un número suficientemente grande 
para que sea buena la aproximación, las fracciones con n en el 
denominador pueden despreciarse, lo que lleva implícito una 
aproximación al paso al límite, y nos queda que el área bajo la 
parábola es: 

ª3 
3 

LOS GIGANTES 

Hubo otros matemáticos que se acercaron tanto a la definición 
estricta del cálculo infinitesimal, que pusieron la alfombra por la 
que Newton y Leibniz entraron en la historia. 

El matemático inglés John Wallis, criptógrafo real, presentó 
en 1656 su obra principalArithmetica irifi,nitorum, en la que pre­
sentaba, a partir de los trabajos de Descartes y Cavalieri, su mé­
todo de infinitésin1os. Wallis calculó la cuadratura de la hipérbola, 
es decir, las curvas cuyas ecuaciones son de la forma 

1 

con r distinto de l. 
En su método utilizaba una representación más aritmética 

que geométrica, como también hicieron en parte Fermat y Ro­
berval. Para hallar el área encerrada por la curva y=x3, Wallis 
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consideró la relación entre triángulos y cuadrados de la misma 
longitud de base. En ellos trazó todas las líneas que lo pueden 
formar, en el sentido de los indivisibles, y sumó las medidas de su 
valor cúbico, pues queremos trabajar con x3. De esa forma, cons­
truyó la siguiente relación. Si solo hay dos líneas, en el triángulo 
tendremos las longitudes asociadas con O y 1, mientras que en el 
cuadrado las dos líneas valdrán 1, luego tendremos la relación: 

oª + 1ª 1 1 1 
--=-=-+-
13+!3 2 4 4" 

Si consideramos tres líneas, las longitudes de las que están 
en el triángulo serían O, 1 y 2, mientras que las del cuadrado, en 
los tres casos, valdrían 2. Si consideran1os cuatro líneas (véase la 
figura), en el triángulo tenemos medidas de O, 1, 2 y 3, mientras 
que en el cuadrado todas las líneas miden 3: 

oª + 1 ª + 2ª 9 6 3 1 1 
----=-=-+-= - +-
23 + 23 + 23 24 24 24 4 8 ' 

oª + 1 ª + 2ª + 3ª 36 27 9 1 1 
--~~-~=-=-+-=-+-
33 +33 +33 +33 108 108 108 4 12. 

Como se puede apreciar, a medida que se va aumentando el 
número de líneas el resultado es siempre la fracción 1/4 más una 
fracción cada vez más pequeña. Al aumentar el número de líneas, 
llegará un momento en que esa segunda fracción sea menor que 
cualquier número que fijemos, y por tanto prácticamente cero, por 
lo que el área de la curva es 1/4. 

1 __ ... 
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su obra matemática principal, Lectiones opticae et geometricae 
(1669), escrita con la supervisión de Newton y en la que desarrolló 
su análisis. Si su supeditación a la geometría no hubiese sido tan 
excesiva, Barrow podría haber sido el fundador del cálculo. 

Un repaso a dicha obra nos da una idea de todo lo que se co­
nocía ya en relación con el cálculo: obtención de tangentes, dife­
renciación del producto y cociente de funciones, diferenciación de 
potencias de x, rectificación de curvas, cambios de variables en una 
integral definida o la diferenciación de funciones implícitas. Barrow 
fue además consciente de que los problemas de cuadraturas y los 
de cálculo de tangentes eran inversos, algo ya planteado por el esco-

. cés James Gregory, pero que había pasado desapercibido. Barrow 
lo planteó de forma geométrica y solo para algunas funciones. 

LOS PROBLEMAS DEL CÁLCULO 

Uno de los aspectos más relacionados con las matemáticas era el 
del movimiento. Pensemos que muchos matemáticos consideraban 
una curva como un punto en movintiento. Dos cuestiones destaca­
ban en relación con el movimiento: hallar la velocidad y la acele­
ración de un objeto cuando se conoce la distancia que recorre en, 
función del tiempo, y el problema inverso, conocida la aceleración, 
hallar la velocidad y la distancia recorrida. Sin embargo, lo que real­
mente constituía un gran desafío era averiguar cuál era la velocidad 
instantánea. Si hemos recorrido 90 kilómetros en una hora, sabe­
mos que la velocidad media de ese recorrido es 90 km/h, pero muy 
posiblemente en esa hora unas veces habremos llevado más velo­
cidad y otras menos. De forma análoga, si conocemos la velocidad 
en un instante y el tiempo de circulación, tan1poco podemos saber 
la distancia recorrida, porque esa velocidad cambia de un instante 
a otro. Para pasar de la variación media a la instantánea debemos 
hacer un proceso de paso al líntite, desconocido en el siglo xvn. 

El segundo gran desafío era hallar la tangente a una curva. La 
aplicación física de ese cálculo era inmediata en los estudios de 
óptica. En los problemas de lentes es importante saber el ángulo 
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con el que un rayo incide sobre la lente, pues será el mismo que el 
del rayo refractado. El ángulo se mide con respecto a la dirección 
normal, es decir, la perpendicular a la recta tangente en el punto 
en el que incide. También en el movimiento, la dirección de un 
móvil en cualquier punto por el que circule, es la de la tangente a 
la trayectoria que lleva. Se puede pensar en un experimento muy 
fácil para comprobarlo: si atamos un peso a una cuerda y la hace­
mos girar rápidamente alrededor de nuestra mano, cuando solte­
mos la cuerda el peso no seguirá girando, sino que se desplazará 
en la dirección tangente a la circunferencia descrita en el preciso 
momento en que la soltemos. 

Para los griegos, la tangente a una curva era aquella recta que 
tenía un único punto común con la curva, y quedaba toda ella a un 

LAS CURVAS MECÁNICAS: LA CICLOIDE 

Para los griegos, las curvas podían ser F1G.1 

planas -las que podían obtenerse solo 
con regla y compás-, cónicas -que se 
obtienen seccionando un cono- o li­
neales -las no incluidas en los grupos 
anteriores y que necesitaban algún me­
dio mecánico para su construcción-. 
Descartes, que decía que utilizar regla O(a,b) 
y compás era también un medio para 
dibujar curvas, llamó curvas geométri­
cas a aquellas cuya ecuac ión era una 
función polinómica f(x,y) = O, es decir, 
un polinomio en x e y. Por ejemplo, la 
circunferencia cuyo centro es el punto 
O(a,b) y radio r responde a la ecuación 
(x-a)2+(y-b)2 =r2 (figura 1). A las restan- Curva geométrica. 

tes curvas, Descartes las llamó mecáni-
cas. Ni Fermat ni Descartes estudiaron este segundo tipo de curvas. Curvas 
mecánicas son las espirales, las funciones exponenciales y logarítmicas o la 
catenaria, la curva que describe una cuerda sujeta por sus dos extremos, por 
ejemplo, los cables entre dos torres de electricidad. Pero indudablemente la cur­
va mecánica de la época por excelencia es la cicloide: la curva que describe un 
punto de una circunferencia que rueda por el suelo sin resbalar (figura 2). lma-
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mismo lado. Pero en el siglo XVII se 
planteó en términos de movimientos 
y fuerzas. Así, Roberval consideró 
que sobre un punto que se moviera 
tendrían influencia dos fuerzas, una 
horizontal y otra vertical. La diago­
nal del rectángulo formado por las 
dos rectas, daría la dirección de la 
recta tangente (véase la figura). 

El tercer y gran desafío era el 

Tangen~~--

cálculo de máximos y mínimos. Este problema era de aplicación 
a muchas situaciones cotidianas. Se suele considerar que los pro­
blemas de este tipo comenzaron cuando Kepler estudió las formas 

Dirección de la 
tangente según 
Roberval. 

ginemos la rueda de una bicicleta y un chicle pegado en la llanta: la curva que 
describiría ese chicle cuando nos desplazamos en la bicicleta es una cicloide. 

Curva cicloide. 

Galileo le dio el nombre de cicloide, aunque ya Mersenne había proporcionado 
una definición de la curva y algunas de sus propiedades. Roberva l consiguió 
hallar la cuadratura de un trozo de cicloide y aunque intentó encontrar un 
método para dibujar la tangente, fue Fermat quien lo logró. Pascal planteó 
un desafío para hallar el área de cualquier segmento de una cicloide y el 
centro de gravedad de un segmento. De todos los que respondieron, Pascal 
valoró especialmente el trabajo de Christopher Wren. Por su parte, Huygens 
planteó el problema de encontrar una curva, con un mínimo o punto más bajo, 
de forma que si se deja caer una bola rodando sin rozamiento por esa curva 
por efecto de la gravedad, tarda el mismo tiempo en llegar al punto más bajo 
desde cualquier punto donde se comience; llamó a la curva tautócrona. Pas­
cal demostró que la solución era una cicloide invertida. La curva alcanzó tal 
fama que salió citada en Los viajes de Gulliver. Leibniz renombró las curvas, 
llamando algebraicas a las geométricas y cambiando el nombre de mecánicas 
por trascendentes. Esa terminología aún se usa en la actua lidad. 
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óptimas que debían tener los toneles de vino, demostrando que 
de todos los paralelepípedos rectos de base cuadrada y la misma 
superficie, el cubo es el que guarda el mayor volumen. Este tipo 
de problema también tenía aplicaciones en el lanzamiento de pro­
yectiles y en el movimiento de los planetas. 

El cuarto problema era el de las medidas que comprendían 
la rectificación de curvas, es decir, transformar un trozo de curva 
en un segmento con la misma longitud, con lo que se podía saber 
lo que medía ese trozo de curva; la cuadratura de una curva, es 
decir, el área limitada por esa curva y la cubicación de un cuerpo, 
es decir, el volun1en encerrado dentro del cuerpo. Dentro de este 
grupo de problemas se incluían el del cálculo de los centros de gra­
vedad de los cuerpos o la atracción gravitatoria entre ellos. 

Y LLEGARON LOS GENIOS 

Prácticamente casi todos los grandes matemáticos del siglo XVII 

aportaron algo a la construcción del cálculo. De forma desorgani­
zada, casi todo estaba alú. Fermat, por ejemplo, utilizó el mismo 
método para obtener tangentes y valores extremos, máximos o 
mínimos, es decir, la derivada. Torricelli comprobó que, en casos 
particulares, los problemas de movimiento, es decir, el cambio 
relativo, era el inverso del problema de cuadraturas. Gregory de­
mostró que los problemas de la tangente y el área eran recíprocos, 
igual que Barrow. 

Hacía falta que llegara alguien con mejor vista para darse . 
cuenta de las relaciones claras que había entre los problemas. 
Tanto Newton como Leibniz dieron el salto cualitativo en la crea­
ción del cálculo con dos aspectos fundamentales. En primer lugar, 
dieron con un método que era general, que se podía aplicar a cual­
quier tipo de problema. En segundo lugar, pusieron de manifiesto 
que los problemas de tangentes y de cuadraturas eran inversos, 
por lo que para resolver uno de ellos bastaba invertir el método 
para hallar el otro. Ese resultado es lo que se conoce como teo­
rema fundamental del cálculo. Por ello, después de Leibniz y 
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Newton, los cuatro problemas del cálculo quedaron reducidos 
únicamente a dos: problemas de derivación e integración. 

Además, plantearon el cálculo completamente desligado de 
la geometría. Con ellos, el cálculo se convirtió en una ciencia 
independiente, que trabajaba con conceptos algebraicos, lo que 
permitía plantear un método que sirviera para cualquier tipo de 
función o de problema. 

ISAAC NEWTON 

Newton (1642-1727) fue matemático, 
físico, filósofo, alquimista, teólogo e in­
ventor. Estudió en la Universidad de 
Cambridge, donde asistió a las clases de 
Barrow, a quien sustituyó como profesor. 
En 1665, regresó a su pueblo natal tras 
cerrarse la universidad debido a la peste 
que asolaba Inglaterra. Durante dos años 
de vacaciones forzosas, Newton alumbró 
lo que sería la obra más importante del si­
glo xvI1. Trabajó en tres grandes campos, 
la óptica, la gravedad y los movimientos 
de los cuerpos, y por último, el cálculo in­
finitesimal. Siempre fue reacio a publicar 
sus resultados, pues no quería entrar en 
polémicas, y prefería mandar sus descubrimientos mediante escritos a otros 
científicos. Esto le llevó a publicar algunos de sus hallazgos muchos años des­
pués de haberlos descubierto, lo que planteó ciertos problemas de paternidad. 

Los «Principia» 
En 1686 aparecería el primero de los tres tomos de la obra que revolucionaría 
la ciencia: Philosophiae natura/is principia matematica (Principios matemáticos 
de la filosofía natural), más conocida por Principia. En ella incluía la celebérrima 
ley de la gravitación universal. 
En 1696 abandonó la enseñanza y se convirtió primero en interventor, y más 
tarde en director de la Casa de la Moneda de Londres, puesto desde el que 
dirigió el cambio de sistema monetario en Gran Bretaña. En 1703 fue elegido 
presidente de la Royal Society, cargo que mantuvo hasta su muerte. Durante 
una breve época fue parlamentario y recibió el título de sir en 1705 de manos 
de la reina Ana. 
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A pesar de la agria polémica sobre quién inventó antes el cál­
culo infinitesimal, los enfoques de Leibniz y Newton son distintos. 
Newton calculaba la derivada y la primitiva ayudándose de incre­
mentos infinitamente pequeños, mientras que Leibniz trabajaba 
directamente con esos incrementos, lo que para él eran los dife­
renciales. Por otro lado, Newton siempre trabajó las derivadas 
e integrales en términos de can1bio relativo entre las variables, 
mientras que Leibniz enfocaba su trabajo mediante los sumato­
rios de tém1inos para hallar áreas o volúmenes, en la línea de las 
sumas de indivisibles de Cavalieri. Además, Newton utilizó con 
profusión las series para representar funciones, mientras que 
Leibniz trabajó más directamente con la expresión general de la 
función. El científico alemán se preocupó asimismo de desarrollar 
reglas de cálculo y fórmulas de aplicación, algo que el inglés no 
tuvo en cuenta. Y la última gran diferencia hace referencia a la 
notación. Mientras que Leibniz se esforzó en buscar una notación 
adecuada y fácil de utilizar, Newton no se preocupó del tema. Hoy 
día usamos la notación que creó Leibniz, a pesar de que la concep­
ción del cálculo de Newton sea más cercana a la nuestra. 

Este divulgó su cálculo a partir de varios escritos. El primero 
fue De analysi per aequations numero terminurom infinitas, 
escrito en 1669 pero publicado en 1711; el segundo fue el libro 
Methodusjluxionum et serierum injinitorum, tem1inado en 1671 
pero no publicado hasta 1736. En esta obra define sus elementos 
fundamentales, los.fluyentes y las.fluxiones. Define los primeros 
como cantidades variables, ya que consideraba las rectas, planos 
y volúmenes como un movimiento continuo de puntos, rectas y 
superficies. Al cambio relativo de ese fluyente lo llama.fluxión. 
Corresponderían aproximadan1ente a nuestras variables y funcio­
nes y sus derivadas respectivas. Si x e y son fluyentes, sus fluxio­
nes las denota por :i: e y. La fluxión de la fluxión, lo que sería la 
derivada segunda, se representa por i e y, y así sucesivamente. 
Define asimismo el momento de un fluyente, que representa por 
o, como un can1bio muy pequeño de la variable, un intervalo infi­
nitamente pequeño de cambio. 

En un tercer artículo, De cuadratura curuarum, escrito en 
1676 y publicado en 1704 como apéndice de su obra de óptica, 

100 Y EL CÁLCULO SE HIZO 



Newton modificó en parte su enfoque infinitesimal, acercándose 
más a la idea intuitiva de límite. 

Veamos cómo utilizaba Newton estos elementos para hallar 
una derivada. Partamos de la función y=x". Newton dice que si 
la variable x fluye, es decir, cambia infinitesimalmente ax + o, la 
función se convertirá en ( x + o)". A continuación, desarrolla este 
binomio, obteniendo la serie: 

(x+o)" =X" +n·xn-1.o+ n(n-l) ·xn-2 · 02 + ... 
2 

Si restamos a esa expresión el valor y = x", tenemos entonces 
que el incremento de la variable x, es decir, o, es equivalente al 
incremento de la variable y, es decir: 

n·x"-1 · o+ n(n-l) ·x"- 2 ·02 + ... 
2 

y si simplificamos esa equivalencia por el incremento, nos queda 
que 1 es equivalente a la expresión: 

n · x"-1 + n(n-l) · x"-2 ·o+ ... 
2 

Y, como el propio Newton dice: «Ahora dejemos que estos 
incrementos se desvanezcan», es decir, todos los términos con 
el incremento desaparecen al hacer tender este valor a cero. De 
esa forma la relación que nos queda es 1 a n • x"-1

• 

EL CÁLCULO DE LEIBNIZ 

Sobre 1675 ya aparecían en las notas de Leibniz las ideas que le 
llevarían, con muchos cambios por el camino, a su concepción 
del cálculo. Sin embargo, parece que las ideas que lo pusieron 
en marcha ya las tenía previamente. En su obra Dissertatio de 
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arte combinatoria trabajó .con sucesiones y con diferencias de 
términos. Partía, por ejemplo, de la sucesión de cuadrados O, 1, 
4,9, 16,25, ... 

La primeras diferencias serían 1, 3, 5, 7, 9, ... Las segundas 
diferencias serían 2, 2, 2, 2, 2, ... y las terceras serían todas nulas. 
Si se tomaran las potencias terceras, todas las cuartas diferencias 
serían nulas y así sucesivamente. 

Comprobó que al sumar los primeros términos de las prime­
ras diferencias, da el término siguiente de la sucesión original, 
es decir, si se suman los dos primeros términos 1 + 3 = 4, que es 
el tercer término de la sucesión. Si se suman los tres primeros 
1 + 3 + 5 = 9, es decir, el cuarto término, y así sucesivamente. 

De esa forma, el cálculo infinitesimal de Leibniz tiene su base 
en las sun1as y diferencias de sucesiones. La suma nos daría el 
cálculo integral, es decir, el área comprendida por la curva, y las 
diferencias, la derivada. 

Leibniz consideró que las curvas estaban formadas por in­
finitos segmentos rectilíneos, infinitesimales que darían lugar a 
las tangentes a la curva. Con lo que en cada punto tendríamos el 
valor de la x, de la y y del segmento correspondiente de la curva; 
es decir, en el fondo, lo que tendríamos serían sucesiones de nú­
meros en las que se podían aplicar las sumas y diferencias. 

En el primer artículo que publicó sobre el cálculo en 1684 en 
la revista de Acta Eruditorum, de título Un nuevo método para 
los máximos y mínimos, que no se detiene ante cantidades 
fraccionarias o irracionales, y es un singular género de cál­
culo para estos problemas, Leibniz presentó su método y lo aplicó 
para resolver un problema planteado por el cartesiano Florimon 
de Beaune: encontrar las curvas de subtangente constante. Veá­
moslo en nuestra notación actual. 

La subtangente es la proyección sobre el eje X de la medida 
desde donde la tangente corta el eje X hasta el punto de tangencia; 
en la figura de la página siguiente sería la medidaAB, que queremos 
que sea constante e igual a c. En esta demostración Leibniz utilizó 
lo que conoce como triángulo característico, que también habían 
utilizado Pascal y Barrow, de catetos dx y dy y como hipotenusa 
uno de los segmentos infinitesimales que componían la curva. 
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La medidaBQ corresponde a y, 
y por tanto, como el triángulo ABQ 
es semejante al triángulo caracterís­
tico, tenemos que se cumple que 

de donde 

dy = dx 
y e 

e integrando esa expresión 

X 
ln(y) = -

e 

y, por tanto, las curvas de subtan- L-
gente constante son las de expre-
sión y= ex/e, es decir, las exponenciales. 

Veamos la forma en que Leibniz deducía la derivada de un 
producto a partir de un texto extraído de un manuscrito de 1675: 

d( xy) es lo mismo que la diferencia entre dos xy adyacentes, de los 
cuales uno seráxy, y el otro (x+dx) (y+dy). Entonces d(X'IJ) - xy= 

= (x + dx) (y+ dy)-xy = xdy + ydx + dxdy, y esto será igual a 
xdy + ydx si la cantidad dxdy es omitida, la cual es infinitamente 
pequeña con respecto a las restantes cantidades, porque dx y dy se 
suponen infinitamente pequeños. 

LA POLÉMICA DEL CÁLCULO 

Hoy día se acepta que Newton fue el primero en desarrollar los 
principios del cálculo, y Leibniz el primero en publicar resultados. 
Ambos llegaron de forma independiente apoyándose en los mis­
mos fundamentos: Descartes, Fermat, Cavalieri, Pascal, Wallis, 
Barrow, etcétera. 
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Triángulo 
característico 
de Leibniz, 
donde aparece 
la tangente a 
una curva y su 
subtangente. 
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Ya en 1674, Leibniz citaba de pasada en una carta a Oldenburg 
que había realizado la cuadratura aritmética del círculo con un 
método general que había encontrado, y en 1675 le indicaba que 
había descubierto un método para resolver cuadraturas que podía 
generalizarse, pero no especificaba mucho más. Ese mismo año 
llegó a París, vía Londres, el noble sajón Walter von Tschirnhaus 
con cartas de presentación de Oldenburg para Leibniz y Huygens. 
Von Tschirnhaus trabajó un tiempo con Leibniz, por ejemplo, en 
unos manuscritos de Pascal que después desaparecieron y solo 
nos queda información por el trabajo de Leibniz. Por los escritos, 
estaba claro que Tschirnhaus no tenía ningún interés en el cálculo 
infinitesimal, por lo que no podría haber informado de nada a 
Leibniz. Tschirnhaus defendía que todo lo rea~zado por Barrow 
y otros matemáticos ingleses eran derivaciones de lo aportado 
por Descartes y para contrarrestar esta opinión Collins elaboró 
un escrito de unas cincuenta páginas conocido por Historiola en 
el que explicaba el cálculo desarrollado por Barrow y Newton. 
Envió un extracto en 1675 a Tschirnhaus y Leibniz, aunque este 
ya dominaba su propio cálculo. 

Cuando Leibniz abandonó París en octubre de 1676, pasó una 
semana en Londres camino de Hanóver, y Collins, a la sazón bi­
bliotecario de la Royal Society, permitió a Leibniz copiar extrac­
tos de su Historiola y del escrito De analysi, del propio Newton. 

A lo largo de la historia, Newton y Leibniz se cartearon varias 
veces a través de Oldenburg. El 5 de agosto de 1676, Oldenburg 
le envió a Leibniz una carta de Newton, conocida como epístola 
prior, a través de Samuel Koning, que estaba de visita en París; la 
carta se traspapeló y no le llegó hasta el 26 de ese mes. En la carta, 
Newton se centraba especialmente en el teorema del binomio y 
presentaba varios resultados, todos conocidos ya por Leibniz, sin 
explicar en ningún momento los métodos por los que había lle­
gado a ellos. Leibniz le contestó al día siguiente, comentándole 
que su método era diferente. En el juicio sobre el descubrimiento 
del cálculo se insistió en que Leibniz había tenido casi tres sema­
nas para estudiar atentan1ente la carta antes de responder. 

En 1677 le llegó una segunda carta de Newton, la epístola poste­
rior, en la que le explicaba todo su trabajo sobre las series infinitas 
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y le hablaba también de su cálculo, aunque se lo presentó mediante 
un criptograma, basado en palabras latinas, que decía lo siguiente: 

La base de estas operaciones es suficientemente obvia, pero debido 
a que no puedo seguir ahora con la explicación, he preferido dejarla 

oculta: 6accd et 13eff. 71319n4o4orr4s8tl 12vx. 

Ese galimatías significaba, traducido de la frase latina: 
«Siendo dada una ecuación cualquiera que incluye un cierto 
número de cantidades fluyentes, encontrar las fluxiones y vice­
versa». Esto se completaba con otro anagrama más extenso, que 
incluso después de descifrado, daba poca información a quien no 
tuviese ya conocimientos del tema. 

«Los segundos inventores no cuentan para nada.» 
- ISAAC NEWTON, EN REFERENCIA A LEIBNIZ TRAS LA POLÉMICA 

DE LA PATERNIDAD DEL CÁLCULO INFINITESIMAL. 

Desde su primer artículo de 1684, Leibniz tuvo problemas de 
aut01ia, y aunque insistió en que su método era distinto y que lo 
había encontrado antes de consultar ningún escrito de Newton, 
cosa que demostraban las cartas escritas a Oldenburg, no sirvió 
de nada. El asunto se enconó cuando Nicolas Fatio de Duillier, 
discípulo de Newton, llegó a acusar a Leibniz de plagio. 

Las acusaciones comenzaron a ir y venir entre el continente y 
la isla, y los matemáticos a tomar partido por unos y otros. Hasta 
tal punto llegó la polémica que Leibniz solicitó una comisión de la 
Royal Society para dilucidar quién tenía razón en esa discusión. La 
comisión, creada casualmente por Newton, que en ese momento 
era presidente de la sociedad científica, llegó a la conclusión de 
que la prioridad era del inglés. 

Debido a esta disputa los científicos ingleses y el resto de los 
europeos rompieron relaciones y dejaron de intercambiar infor­
mación. Los científicos del continente siguieron a Leibniz y los 
ingleses a Newton, pero como el cálculo del inglés era mucho más 
geométrico que el del alemán, esto significó una rémora para la 
matemática inglesa, que quedó retrasada respecto al continente. 
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EL CÁLCULO SE EXPANDE 

El método de Leibniz fue rápidamente aceptado por los matemáti­
cos del continente europeo. Los «apóstoles» más eficientes de esta 
conversión fueron los hermanos Jacob y Johann Bernoulli, los pri­
meros de una larga familia de importantes matemáticos. Aunque 
el trabajo de Leibniz era original y rico en resultados, era un poco 
incompleto y, a veces, complicado de seguir. Por fortuna, los her­
manos Bernoulli lo organizaron y le dieron una estructura sólida, 
aportando multitud de ejemplos y desarrollos nuevos. Leibniz llegó 
a reconocer el gran trabajo realizado por los Bernoulli, e incluso 
recalcó que fueron los primeros en utilizar el nuevo cálculo para 
resolver problemas físicos. 

Jacob (1654-1705) fue autodidacta y bebió de las principales 
fuentes del cálculo: Descartes, Wallis y Barrow. Fue profesor de 
Matemáticas en la Universidad de Basilea. Le explicó matemáti­
cas a su hern1ano Johann y ambos comenzaron a trabajar sobre el 
cálculo de Leibniz. En 1690 publicó en Acta Eruditorum un artículo 
en el que hablaba de sus propios métodos del cálculo y resolvía 
un problema propuesto por Leibniz tres años antes: «Encontrar la 
curva, situada en un plano vertical, según la cual un punto material 
desciende alturas iguales en tiempos iguales». 

Por su parte, Johann (1667-1748), conocido corno el penden­
ciero, tenía mayor inteligencia e inventiva que su hermano. Fue 
un gran geómetra, aunque poco modesto, pues en su lápida grabó 
la frase: «Aquí yace el Arquímedes de su tiempo». Fue un firme 
defensor de Leibniz e impulsor de sus reclan1aciones de fundador 
del cálculo. Se enemistó con varios matemáticos, especialmente su 
hermano Jacob y su hijo Daniel. Fue profesor de Euler y le explicó 
el cálculo al rnaTqués de l'Hópital, un competente matemático. 

Efectivamente, Guillaurne Frarn;:ois Antaine, marqués de 
l'Hópital (1661-1704), contrató a Johann para que le explicara los 
entresijos del cálculo infinitesimal. Con lo aprendido en sus cla­
ses, publicó el primer libro de la historia en el que se hablaba del 
cálculo: Análisis de los infinitamente pequeños para el entendi­
miento de las líneas curvas (1696). L'Hópital lo publicó sin au­
toría y en la presentación comentaba su dependencia de Johann, 
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aunque la mayoría de resultados que aparecían en el libro eran del 
propio Bernoulli. 

Ambos hermanos resolvieron multitud de problemas utili­
zando el nuevo cálculo: rectificación de curvas, cálculo de curva­
turas, envolventes y evolutas, puntos de inflexión. Jacob trabajó 
especialmente con la espiral logarítmica y la admiraba de tal forma 
que acabó inscrita en su lápida. Lamentablemente el cantero tema 
menos conocimientos que él y le hizo pasar a la posteridad con 
una espiral de Arquímedes en su lápida. 

Una de las formas en que más se extendió el cálculo fue a 
base de desafíos. Lanzar un problema para que los restantes mate­
máticos lo solucionaran era un método muy corriente en la época. 

En el artículo de Jacob de 1690, donde resolvía el problema 
propuesto por Leibniz, planteaba también un desafío: encontrar 
la forma que toma una curva perfectamente flexible y homogénea 
por la acción solo de su peso, si está fijada por sus extremos. 
La solución es la curva conocida como catenaria. Fue resuelto 
por su hermano Johann, además de Huygens y Leibniz. El propio 
Leibniz publicó más tarde, en 1692, un artículo en el Journal des 
Sr;avans donde volvía a dar la solución y explicaba cómo utilizar 
la catenaria en navegación. 

En 1696, Johann Bernoulli lanzó un reto al mundo matemático, 
especialmente inglés, con el fin de probar quién estaba a la altura 
del nuevo cálculo. Pedía encontrar la curva por la que un cuerpo 
desciende entre dos puntos, no alineados vertical ni horizontal­
mente, en el menor tiempo posible. Esta curva recibe el nombre 
de braquistócrona. Antes de finalizar el plazo previsto, solo Leibniz 
había presentado una solución, que consideraba el problema muy 
bello y hasta el momento desconocido. El propio Leibniz pidió que 
se an1pliara el plazo para que otros matemáticos pudieran presen­
tar la solución. Tras el nuevo plazo solo se habían presentado cinco 
soluciones: Leibniz, los hermanos Bernoulli, l'Hópital y una solu­
ción anónima presentada en Inglaterra. Después de estudiar dicha 
solución, el propio Johann indicó: «Por las garras se conoce al 
león». La solución era, por supuesto de ewton. Por tanto, todas 
las soluciones usaban el nuevo cálculo. Por cierto, la curva que 
resuelve ese problema es también la cicloide invertida. 
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CAPÍTULO 3 

Códigos antiguos y modernos 

Hoy día no concebimos nuestra 
vida cotidiana sin los ordenadores. Pero para 

entendemos con ellos tenemos que manejar su idioma, 
el sistema binario, aunque sea de manera inconsciente. 

Quien sentó las bases actuales de ese sistema fue Leibniz, 
que lo relacionó con los antiguos hexagramas del J Ching, 

un libro oracular chino. También se preocupó de otros 
tipos de lenguajes, e incluso se planteó crear uno 

universal para expresar matemáticamente 
todas las ideas. 





Un proyecto que le creó a Leibniz muchos quebraderos de cabeza 
fue gestionar la extracción en unas minas en el Alto Harz, al sur 
de la ciudad de Goslar, a unos 100 kilómetros de Hanóver. Esas 
minas tenían grandes filones de plata, cobre, hierro y plomo. Leib­
niz tenía varias ideas para perfeccionar la tecnología minera. 

Tras visitar Hamburgo en 1678, entre los escritos que pre­
paró para el duque incluyó un proyecto en el que trabajaba desde 
su estancia en París, con el objetivo de utilizar las hoy llamadas 
energías renovables para mejorar la extracción de mineral. Leib­
niz diseñó bombas y molinos de viento que permitieran usar la 
energía eólica e hidráulica para optimizar el drenaje de las minas. 
Las bombas aprovechaban gran parte de la energía que se perdía 
por fricción, y necesitaban poco mantenimiento. El diseño de los 
molinos permitía que funcionaran incluso con vientos de poca in­
tensidad y con mayor rendimiento que los convencionales. La idea 
era usar los molinos todo el tiempo que se pudiera y complemen­
tarlo con la energía hidráulica cuando fallaran, consiguiendo un 
flujo de energía constante en cualquier época del año para elevar el 
agua y realizar las restantes operaciones mineras, pues en épocas 
de sequía no se podía garantizar el funcionamiento de las minas. 

La idea real de Leibniz, según informó al duque, tras el visto 
bueno al proyecto, es que parte de las ganancias se invirtieran en 
investigación en minería, pero parte de ellas irían a la financiación 
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de la Academia de Berlín, que tenía en esos momentos en mente. 
Aunque el proyecto inicialmente no fue muy bien visto, especial­
mente por el gasto que significaría la construcción de tanta herra­
mienta nueva, Leibniz argumentó en contra de todas las protestas, 
y recibió a finales de 1679 el beneplácito del duque pa¡a el acuerdo 
con la Oficina de Minas, que junto al duque y el propio Leibniz, 
financiarían el proyecto. 

Desde el principio todo fueron problemas. Al manifiesto re­
chazo entre los funcionarios de las minas, que lo consideraban un 
intruso sin los conocimientos necesarios, se unieron las inclemen­
cias del tiempo y especialmente las rachas de ausencia de viento. 
Al parecer, Leibniz había pasado por alto estudiar las variaciones 
y direcciones del viento en la zona. Otra dificultad era la construc­
ción de los elementos diseñados, pues en varias ocasiones, al no 
seguir correctan1ente las indicaciones, las máquinas no funciona­
ban de manera adecuada y había que corregirlas una y otra vez. 

Ante el aumento de los costes, que en 1683 eran ya de casi 
ocho veces lo previsto, el duque planteó cancelar el proyecto, 
pero Leibniz insistió en seguir un año más, pagando de su propio 
bolsillo, para demostrar que seguía siendo viable. Tuvo que re­
plantearlo por completo y perfeccionar los molinos, de forma que 
se pudieran construir a mitad de precio. Incluyó un mecanismo 
de velas que se plegaban y desplegaban según las necesidades, 
y planteó la posibilidad de optimizar las bombas de extracción 
inyectando aire comprimido, aunque ambas ideas no prospera­
ron. Más adelante, ante la escasez de viento en la zona, diseñó 
unos molinos horizontales, en lugar de verticales, que pudiesen 
aprovechar todo tipo de viento, funcionar en cualquier momento 
y soportar las tormentas. Pero su rendimiento era la tercera parte 
de los tradicionales, por lo que tampoco resultaron viables. Defi­
nitivamente, en 1685 se abandonó el proyecto. 

La minería no era un entretenimiento más entre la gran can­
tidad de temas que trató Leibniz; muy al contrario, fue uno de 
sus preferidos. Durante los seis años que duró el proyecto, Leib­
niz llegó a pasar más de la mitad del tiempo en Harz, lo que da 
una idea del ingente trabajo que supuso. Además, siempre tuvo 
en mente mejorar la extracción. En 1680, cuando aún tenía espe-
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ranza en el éxito del proyecto, escribió al duque que se podrían 
conseguir grandes beneficios de un acuerdo con los neerlandeses, 
para refinar la ganga procedente de las minas de oro y plata de Su­
matra, propiedad de la Compañía Neerlandesa de las Indias Orien­
tales. Un año más tarde, aconsejaba al duque en otro escrito un 
acuerdo con el emperador y el elector de Sajonia, para llevar una 
opinión conjunta a la conferencia política que se iba a celebrar en 
Frankfurt sobre el aumento del precio de la plata. 

Una vez abandonado el proyecto, Leibniz, que aún confiaba 
en que se reconocería que sus ideas eran interesantes, no dejó de 
lado el perfeccionamiento de los métodos de extracción de mine­
ral. Diseñó un mecanismo consistente en una serie de contenedo­
res encadenados, que estarían subiendo y bajando continuamente, 
posibilitando la extracción de ganga. Así se eliminaba el tremendo 
gasto de energía para elevar el contenedor de ganga desde las 
entrañas de la mina, pues a veces pesaba más la cadena para la 
extracción que la propia cantidad de desecho extraída. Su idea 
tuvo la misma nula acogida que el resto de los avances que ideó. 

LEIBNIZ HISTORIADOR 

En 1685, Leibniz obtuvo el encargo definitivo de realizar una his­
toria de la casa de Brunswick-Luneburgo, su trabajo más impor­
tante a partir de ese momento. Su idea era que se podría trazar la 
historia retrocediendo hasta más o menos el año 600 d.C., pero 
para ello había que acudir a las fuentes originales, que estaban en 
los monasterios. 

A principios de 1687 estaba investigando por los alrededores de 
Hanóver, y a finales de año emprendió un viaje por el sur de Alema­
nia y Austria. En abril de 1688 hizo un descubrimiento en Augsburgo 
que amplió bastante sus expectativas. En el monasterio benedic­
tino de dicha localidad pudo consultar el códice Hiswria de Guelfis 
principibus, en el que encontró las pruebas que relacionaban a los 
güelfos, creadores del ducado de Brunswick-Luneburgo, con la casa 
de Este, nobles italianos del ducado de Ferrara y Módena. Esto hizo 
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LA CASA DE ESTE 

La casa de Este, de origen francés, se 
dividió en dos: la casa de Welf-Este, 
conocida como casa de Welf, y la 
casa de Fulco-Este, que se convirt ió 
en la casa de Este italiana. Durante 
las guerras entre güelfos y gibelinos, 
que tu v ieron lugar en la Baja Edad 
Media, se apoderaron en 1240 de Fe­
rrara, que era un feudo papal, convir­
tiéndose en 1332 en vicarios papales. 
En 1288 se anexionaron Módena, 
aunque hasta 1452 no recibieron el 
título de duques de Módena y Regio 
de manos de Federico 111 de Habsbur­
go, emperador del Sacro Imperio Ro­
mano y archiduque de A ustria. Esta 
familia dio grandes mecenas para el 
arte del Renacimiento y llegó a estar emparentada con familias italianas muy 
importantes, como los Borgia o los Sforza. Cuando en 1597 se agotó la línea 
sucesoria directa, el papa volvió a incorporar Ferrara a los Estados Pontificios 
y el poder de la casa de Este comenzó a declinar. De la rama más antigua de 
la familia salieron duques de Bav iera, de Sajon ia y los de la casa de Brunswick 
y Luneburgo. 

que el viaje tuviera que ampliarse por Italia, en especial a Módena, 
donde también organizó el enlace político. 

La labor histórica de Leibniz fue mucho más complicada de 
lo esperado inicialmente. En 1691 le comentó al duque que la obra 
podría estar acabada en un par de años si conseguía colaboración, 
cosa que obtuvo con la contratación de un secretario. No obstante, 
si bien es verdad que tres tomos vieron la luz, la obra no llegó 
a terminarse nunca. Aunque sí escribió sobre parte de lo descu­
bierto. En 1695, con motivo del enlace matrimonial entre la casa de 
Brunswick-Luneburgo y la de Este en Módena, Leibniz diseñó una 
medalla conmemorativa de la nueva unión de las casas después 
de más de seis siglos, y escribió una obra editada en Hanóver, de 
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título Lettre sur la connexion des Maisons de Brunswic et d'Este, 
en la que exponía lo descubierto en sus pesquisas históricas. 

En todos esos viajes se entrevistó con intelectuales y cien­
tíficos, visitó museos y recogió información sobre aspectos muy 
diversos, por ejemplo, sobre fósiles, que después aparecería en 
su obra Protogaea. También estuvo varias semanas, en calidad 
de invitado, en casa del landgrave Ernesto de Hessen-Rheinfels, 
con quien departió sobre temas de historia y religión, con especial 
hincapié en su proyecto, siempre presente, de la reunificación de 
las iglesias católica y protestante. Incluso consiguió su gran deseo 
de ser recibido en audiencia por el emperador alemán Leopoldo l. 

«En el ámbito del espíritu, busca la claridad; en el mundo 
material, busca la utilidad.» 

- GOTIFRIED WILHELM LEIBNIZ. 

Durante su estancia en Roma pudo visitar la Biblioteca Vati­
cana, donde encontró manuscritos que corroboraban los descubri­
mientos hechos en Augsburgo. También coincidió con la muerte 
del papa Inocencio XI, que estaba a favor de la reunificación de las 
iglesias. En esas fechas comenzó a leer los Principia de Newton, 
tal como indican las anotaciones que realizó en su propio ejemplar. 

A pesar de su labor para el elector, Leibniz siguió acumulando 
cargos que no le obligaban a una presencia física constante. En 
1691 pasó a ser director de la biblioteca de Wolfenbüttel, en la 
Baja Sajonia, cargo que mantuvo. hasta su muerte. Aunque se 
debía encargar de la planificación a largo plazo, no era un trabajo 
para el día a día En 1693 ya publicó una primera obra, Codex juris 
pentium diplomaticus, en la que recopilaba documentos consti­
tucionales de los siglos XII al xrv, la mayoría inéditos. 

En 1696 fue nombrado consejero privado de justicia, un 
puesto cuya categoría era un poco inferior a la de vicecanciller. 
Sobre esas fechas realizó un proyecto para la instalación de fuen­
tes en el jardín de Herrenhausen, en Hanóver, lo que demuestra 
que Leibniz siempre tenía presente los aspectos prácticos y tecno­
lógicos, y que seguía interesado en todo tipo de proyectos. 
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A principios de los ochenta intentó conseguir una copia de la 
olla a presión con válvula de seguridad, que había inventado Denis 
Papin (1647-1717) y que permitía aprovechar los huesos para ela­
borar comida. Papin era físico e inventor, y había tenido que emi­
grar a Inglaterra y Alemania por problemas religiosos. Aparte de su 
marmita o digestor, como la llamaba, inventó un submarino, una 
catapulta y una máquina para elevar agua con aplicación en moli­
nos o fuentes. El invento de la olla a presión inspiró a Leibniz para 
escribir una obra satírica, en la que unos perros defienden su dere­
cho a los huesos, amenazado por la utilización de la olla a presión . 

. Durante 1696 y 1697, su p1incipal tarea diplomática consistió 
en obtener para el duque de forma permanente el obispado de 
Osnabrück, que ya llevaba personalmente el duque Ernesto. Este 
obispado tenía la característica de que era gobernado de forma 
alterna por un obispo católico y un conde protestante tras la Paz 
de W estfalia. 

CUESTIONES RELIGIOSAS 

Leibniz recibió en su vida muchos cargos de in1portancia. Espe­
cialmente fue consejero de grandes personalidades. Pero hubo 
otros puestos que se le ofrecieron, dentro de actividades que le 
eran muy gratas, y que no aceptó por no abandonar sus creencias. 
Por ejemplo, se le ofreció un cargo en la Biblioteca Vaticana, pero 
como requisito debía convertirse al catolicismo y no lo aceptó. 
Igual le pasó en 1698, cuando le ofrecieron ser bibliotecario en 
París. A través de su amigo el landgrave Ernesto recibió la oferta 
de ser canciller de la diócesis de Hildesheim, ciudad de la Baja 
Sajonia, pero la rechazó debido a sus ocupaciones y a su religión. 

Muchos de los personajes con quienes tuvo contacto intenta­
ron convertirlo al catolicismo, especialmente el landgrave Ernesto 
de Hessen-Rheinfels, pero Leibniz siempre se negó. Pensaba que la 
Iglesia era irrefutable en cuestiones de fe, pero que existían multi­
tud de temas científicos y filosóficos que no contradecían ni las Sa­
gradas Escrituras ni ningún concilio ecuménico, y que, sin embargo, 

CÓDIGOS ANTIGUOS Y MODERNOS 



eran rechazados por la Iglesia incluso cuando podía demostrarse 
que eran verdaderos. Él mismo decía que si hubiese sido criado 
dentro de la Iglesia católica, no la abandonaría; pero que al haberse 
criado en el luteranismo, no podía aceptar esas contradicciones. 

A pesar de todo, durante toda su vida siguió abogando por la 
reunificación de ambas confesiones. Buscó apoyos allí donde pudo, 
pues era consciente de que si no se conseguía involucrar al papa, al 
emperador o a algún príncipe gobernante, no habría posibilidad de 
lograrlo. Durante su vida realizó muchos escritos en defensa de esa 
idea, como Sistema theologicum, obra que planteaba la reunificación 
desde el punto de vista de un católico y que no se publicó hasta 1845. 

Durante su estancia en Viena se acercó a visitar a su amigo el 
obispo Cristóbal de Rojas y Spínola, con quien se había reunido 
varias veces en Hanóver, ya que este visitaba la ciudad para tratar 
distintos temas, a veces relacionados con el emperador o con la 
reunificación de los teólogos protestantes. El obispo estaba en 
la misma línea que Leibniz de abogar por la reunificación de las 
confesiones, y le mostró la documentación que había intercam­
biado con el papa y algunos cardenales en ese sentido. A través 
de Rojas, Leibniz entró en contacto con varios funcionarios im­
portantes de la corte imperial, que le abrieron el camino para ser 
recibido en audiencia por el emperador. 

Tras terminar sus pesquisas en Italia, su intención era regre­
sar a Hanóver, después de casi tres años de viaje. Pero el duque 
Ernesto Augusto le encargó que realizara una serie de recados en 
Viena. Volvió a entrevistarse con Rojas y plantearon apoyar un 
acercamiento diplomático co:ajunto por parte de los electores de 
Brunswick-Luneburgo y Sajonia frente al emperador, que había 
manifestado su rechazo al proyecto de reunificación religiosa. 

NUEVOS CONTACTOS CIENTÍFICOS 

La labor científica de Leibniz durante esos años fue incansable. 
Seguía carteándose con científicos de muchos países y mandando 
artículos a casi todas las revistas importantes del momento. ¡\mar-
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gamente se quejaba en carta a algún amigo de que en Hanóver no 
tenía nadie con quien hablar de temas importantes. En 1689, a 
su paso por Roma, fue elegido miembro de la Academia Físico­
Matemática. 

También continuaba con sus polémicas con otros intelectua­
les por temas científicos y filosóficos. Durante toda su vida, Leibniz 
fue bastante critico con la filosofía y ciencia de Descartes. Aunque 
ya había expresado en muchos escritos su disconformidad con su 
filosofía, en marzo de 1686 publicó en Acta Eruditorum un artí­
culo con un título muy explícito: «Breve demostración de un error 
notable de Descartes», en el que lo atacaba directamente. Meses 
más tarde apareció una traducción francesa en la revista neerlan­
desa Nouvelles de la ré'publique des lettres, realizada por el abad 
Catelan, acérrimo cartesiano que criticaba a Leibniz planteando 
que era él quien erraba. Esto le permitió al alemán publicar una 
respuesta en la misma revista. Tras algunas controversias más que 
aparecieron por parte de uno y otro en ese mismo medio, Leibniz 
le planteó un desafío a Catelan: que utilizara el método cartesiano 
para encontrar la curva de caída uniforme, es decir, la catenaria. 
El abad nunca respondió, pero sí se publicó una solución de Huy­
gens, aunque sin demostración. Leibniz publicó la solución junto 
con la demostración en un artículo de 1689 en Acta Eruditorum. 

En 1690 retomó su contacto con Londres a través de Henri 
Justel, bibliotecario real. Le pedía información sobre los últimos 
descubrimientos, ya que la última revista que había recibido da­
taba de 1678. Dos años más tarde, a través de Justel, entró en 
contacto con el astrónomo Edmund Halley (1656-1742), por aquel 
entonces secretario de la Royal Society. Ya por esa época, Fatio 
de Duillier había puesto en marcha la polémica acerca de la pater­
nidad del cálculo al mostrar, en carta a Huygens, la extrañeza por­
que Leibniz no hubiese mostrado el reconocimiento a Newton al 
publicar sus artículos sobre el cálculo. En 1693 Leibniz le mandó 
la primera carta directa a Newton, quien le contestó pasado un 
tiempo al haberse extraviado su carta, y sin mostrar ningún tipo 
de animosidad. 

En 1687 comenzó su fructífera correspondencia con los her­
manos Bernoulli, y en 1692 comenzó a cartearse con el marqués 
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de l'Hópital, ya un experto en cálculo tras haber leído y entendido 
el artículo de Leibniz publicado en 1688, además de haber reci­
bido clases de Johann Bemoulli. En sus cartas se contaban sus 
proyectos y l'Hópital le habló en particular del texto que estaba 
escribiendo, y que publicó en 1696, sobre el cálculo diferencial, al 
que estaba previsto que le siguiera otro sobre el cálculo integral. 
En el prólogo del libro, l'Hópital comentaba que Leibniz había re­
conocido en uno de sus artículos que Newton había descubierto 
algo similar a su cálculo, aunque la notación de Leibniz era de 
aplicación más rápida y fácil. 

ASPECTOS MÉDICOS 

Hay pocos temas en los que Leibniz no mostrara algún tipo de in­
terés: literatura, teatro, ópera, diseños tecnológicos, organización 
militar ... Casi todo lo imaginable llamaba su atención. Y como no 
podía ser menos, también se interesó por la medicina. 

Intentaba estar al tanto de los avances médicos y aconsejar 
mejoras en una ciencia que aún estaba en un estado muy elemen­
tal. Pensemos que no hacía ni cien años que se había descubierto 
la circulación de la sangre, o que aún se tardarían casi dos siglos 
en la simple idea de que los médicos debían lavarse las manos 
antes de una operación. Cuando en 1691 recibió información 
desde Inglaterra a través de Justel de un remedio para la disente­
ría, no descansó hasta conseguirlo, la ipecacuana, procedente de 
América, y abogar por su utilización en Alemania. 

Un par de años después, en escrito enviado a la princesa Sofía, 
hacía una serie de recomendaciones sobre medicina, que hoy en día 
nos parecen evidentes. Para avanzar en la medicina había que facili­
tar la investigación médica y la difusión de los resultados. Era fun­
damental que el diagnóstico fuera previo al tratamiento. Había que 
observar los síntomas de la enfermedad y llevar una historia escrita 
de su evolución y de la respuesta al tratamiento del paciente. Se 
debían divulgar informes de los casos más interesantes, y para ello 
era importante que los hospitales tuvieran financiación y personal 
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adecuados. Defendía la necesidad de una medicina preventiva y la 
creación de un Consejo de Salud, integrado por políticos y médicos 
que plantearan una serie de medidas para enfermedades de gran 
extensión social, como las petiódicas epidemias. 

Otro tema que trató, a partir de sus conversaciones con el 
médico Bernardino Ramazzini (1633-1714), al que conoció en 
Módena, fue la importancia de las estadísticas médicas. Leibniz 
estaba convencido de que la difusión de dichas estadísticas podía 
producir una ostensible mejora, pues los médicos estarían en 
mejor disposición a la hora de enfrentarse a las enfermedades 
más usuales. Sobre ese tema insistió en distintos foros, incluso 
propuso al Journal des Sr;avans que las publicara anualmente si­
guiendo el modelo establecido por Ramazzini. 

BERNARDINO RAMAZZINI 

Ramazzini (1633-1714) fue un médico y 
filósofo nacido en Carpi, ciudad próxima 
a Módena. Realizó sus estudios de me­
dicina en Parma, y comenzó a ejercer 
en su ciudad natal. En 1671 se trasladó a 
Módena, donde fue ayudante del médi­
co personal de Francesco 11 de Este. En 
1682 fue contratado como profesor de 
Teoría de la Medicina en la Universidad 
de Módena. En 1700 se trasladó a la Uni­
versidad de Padua, de la que llegó a ser 
decano. Perteneció a muchas sociedades 
médicas y a la Academia de Berlín por 
recomendación de Leibniz, que entonces 
era su presidente. Ha pasado a la histo-
ria de la medicina por ser el primero que se dedicó, de forma exhaustiva, al 
estudio de las enfermedades laborales, que recogió en su obra principal, De 
morbis artificum diatriba (Discurso de las enfermedades de los artesanos), 
publicada en 1700. Fue el primero que estudió las dolencias de los enfermos 
interesándose por la profesión que ejercían. Llegó a recoger multitud de datos 
y presentó la enfermedad no como una dolencia que afecta a un individuo, 
sino a todo un grupo laboral. 
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EL ESTUDIO DE LAS LENGUAS 

Leibniz tenía gran facilidad para las lenguas. En su juventud estu­
dió latín y griego de forma casi autodidacta, y escribió artículos 
en latín, francés y alemáni incluso publicó alguno en italiano con 
buen manejo del idioma. También estaba interesado en el estudio 
de las lenguas. Partía del convencimiento de que debió existir un 
lenguaje original del que habían partido todos los demás, y que 
debían quedar retazos de ese idioma primigenio en todas las len­
guas existentes. Para comprobarlo recopiló ejemplos lingüísticos 
de todo el mundo. Defendía además que el estudio de las lenguas 
debía ser complementario al de la historia, y servir de comple­
mento al estudio del origen y las migraciones de los pueblos. 

En 1696, con idea de promover el estudio de la lengua alemana, 
propuso la creación de la Sociedad Alemana en W olfenbüttel bajo 
la dirección del duque Antonio Ultico, que gobernaba junto con su 
hermano Rodolfo Augusto. Ambos eran amigos de Leibniz. 

Una de sus obras más importantes en ese ámbito fue Un­
vorgrei.tfliche Gedanken, betreffend die Ausübung und Verbes­
serung der teutschen Sprache (Reflexiones provisionales sobre 
el uso y el perfeccionamiento de la lengua alemana), escrita en 
1697 y publicada en 1717. En ella aboga por convertir la lengua 
alemana en vehículo de expresión cultural y científico y advertía 
que desde la Guerra de los Treinta Años el idioma alemán se había 
degradado y estaba en peligro de ser corrompido por el francés. 

Pero a Leibniz no solo le importaban las lenguas existentes, 
también estaba en disposición de crear su propia lengua, relacio­
nada con las matemáticas. Ya en la escuela había tenido la idea 
de crear un alfabeto universal, idea que desarrolló parcialmente 
en su De combinatoria. Leibniz planteaba un alfabeto del pen­
samiento humano, lo que le llevó al concepto de característica 
universal. De la misma manera que las palabras se forman por 
combinaciones de letras, a partir de un pequeño número de ideas 
simples se podían construir las ideas más complejas. En su len­
guaje universal las ideas estarían formadas por combinaciones de 
signos, que serían los componentes de esa idea. Si además se plan­
teaba una serie de reglas para combinar esos signos, se podrían 
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realizar razonamientos igual que se hace un cálculo numérico. En 
varias cartas en las que trataba el tema, ponía como ejemplo de 
caracteristica universal la escritura china. 

En 1678 redactó el escrito Lingua generalis, donde represen­
taba las ideas simples mediante números primos, y las ideas que 
se deducían de ellas mediante el producto de esos números. Para 
entender el lenguaje, se debían conocer las ideas simples y tener 
destreza en descomponer los números para hallarlas. Para conver­
tir los números en un lenguaje hablado, utilizó una idea del lingüista 
escocés George Dalgarno (1626-1687): las vocales representaban 
los números 1, 10, 100, 1000 y 10 000, y los números del 1 al 9 eran 
las primeras consonantes, b-1, c-2, d-3, f-4, etc. Así, el número 245 
se expresaría por cifega. La permutación de las sílabas daría lugar 
al mismo número, es decir, 245 también podria ser f egaci. 

Más tarde abandonó la idea por encontrarla demasiado com­
plicada, y adoptó otro esquema basado en el latín. En su nuevo en­
foque había que reducir todos los conceptos a sus elementos más 
simples, representarlos por símbolos y crear otros símbolos para 
las combinaciones de los anteriores. Para hacer esto planteaba 
que había que elaborar una enciclopedia que recogiera todo el 
conocimiento existente. Llegó incluso a escribir una introducción 
para la enciclopedia y realizó estudios para hacer aplicaciones del 
método, intentando plantear un cálculo lógico y una geometria 
encaminadas a la caracteristica universal. Finalmente, el proyecto 
no llegó a concretarse. 

UN LENGUAJE MUY ACTUAL 

Aunque en la historia existen algunos intentos aislados de crear 
un sistema binario, quien sistematizó un sistema de base dos tal 
como lo conocemos hoy día fue Leibniz. No sabemos exactamente 
en qué momento desarrolló la idea, pero ya en 1682 había escrito 
sobre las posibilidades del sistema, e incluso había estudiado el 
diseño de la máquina aritmética en binario, aunque tuvo que de­
sistir por la gran cantidad de engranajes que requeria. 
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Decimal 

o 

1 

2 

3 
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Nuestro sistema decimal, de base 10, dispone de diez dígitos: 
O, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Si agrupamos más de 9 elementos, como 
ya no disponemos de más dígitos distintos, pasamos a una unidad 
de carácter superior, la decena, y así el elemento posterior a 9 
se representa por 10, es decir, una decena y cero unidades. De 
la misma forma, si añadimos una unidad más a un grupo de 99 
elementos, obtenemos una centena, que se representa por 100, y 
así sucesivamente. 

En un sistema binario, o de base dos, solo tenemos dos dígi­
tos: O y l. Por eso, cuando queremos representar elementos supe­
riores a O o 1, debemos usar también unidades de rango superior. 
Por ejemplo, para representar el valor 2 usamos la notación 10, 
una unidad de segundo grado y cero unidades de primer grado. 
Un número en binario está compuesto de una serie de ceros y 
unos. Los primeros números en binario aparecen en la siguiente 
tabla: 

Binario Decimal Binario Decimal Binario Decimal Binario 

o 4 100 8 1000 12 1100 

1 5 101 9 1001 13 1101 

10 6 110 10 1010 14 1110 

11 7 111 11 1011 15 1111 

Para pasar de un número decimal a forma binaria, lo que debe­
mos hacer es dividir entre 2; los restos de las divisiones serán los 
ceros y unos, que se deben ordenar del último al primero. Veamos 
cómo convertir el número 54 en binario, que será 54 = ll0ll0c

2
: 

54 L2_ . 
O 27 ~ 

1 13 L2_ 
6 L2_ 
O 3 ~ 
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Para pasar de binario a decimal, debemos tener en cuenta la 
descomposición del número. En decimal, el número 2 537 es igual a: 

2357 = 2000 +300 + 50 + 7 = 2-1000+3-100 + 5-10 + 7-1 = 
= 2 -103 + 3-102 + 5-101 + 7. 10°. 

De forma análoga, el número 110110c
2 

es equivalente a: 

110110c2 = 1- 25 + 1- 24 + O- 23 + 1- 22 + 1- 21 + O- 2º = 
= 32 + 16+0+4+2 +O= 54. 

Durante una visita a Wolfenbüttel en 1696, le presentó su sis­
tema al duque Rodolfo Augusto, que quedó muy impresionado. 
Leibniz diseñó una moneda en la que en el anverso llevaba una 
imagen del duque y en el reverso una alegoría de la creación en re­
lación con los números binarios. En concreto, había grabado una 
tabla con los números del O al 15 y sus correspondientes valores 
binarios, así como ejemplos de suma y multiplicación de binarios. 

Leibniz veía en ese sistema una representación de su propia 
filosofía, y una analogía de la creación continua de las cosas a par­
tir de la nada. Tan1bién lo relacionaba con la creación del mundo. 
Al principio no había nada, el O, y en el primer día solo estaba 
Dios. Después de 7 días, dado que el 7 en notación binaria era el 
111, ya existía todo, pues no hay ningún cero. 

Cuando en 1700 fue escogido como miembro extranjero de la 
reconstituida Academia Real de Ciencias de París, Leibniz envió 
un escrito presentando el sistema binario. Sin embargo, aunque 
los académicos mostraron interés por el descubrimiento, encon­
traron que era muy complicado de manejar y aguardaron a que 
Leibniz presentara ejemplos de su aplicación. Varios años después 
volvió a presentar su estudio, que tuvo mejor acogida, pero esta 
vez lo relacionó con los hexagramas del I Ching. Envió también 
un artículo de título Explicación de la aritmética binaria para 
ser publicado en la Historie que editaba la academia. 

Hoy en día el sistema binario es la base de toda la informática. 
Los ordenadores trabajan en ese sistema y todo aquello que pasa 
por un soporte digital, como las imágenes, vídeos, telecomunica-
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OTROS S ISTEMAS DE NUMERACIÓN INFORMÁTICOS 

1 sistema de numeración de base dos, hay otros sistemas similares Aparte de 
que son us 
en el que 
es 10. Pero 
ya plantea 
solo tenem 
hexadecim 
siguiente 

adosen informática. Uno de ellos es el sistema octal, o de base ocho, 
solo hay ocho dígitos, del O al 7, y el sigu iente va lor, en lugar de 8, 

quizás el más util izado es el sistema hexadecimal, de base 16. Este 
mayor problema, porque necesitamos dieciséis dígitos distintos y 
os diez. Por eso se añaden letras en.los dígitos que faltan. El sistema 
al tiene los dígitos O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. En la tabla 

podemos ver la relac ión entre los tres sistemas de numeración: 

Bina rio 

o 000 

ººº· 
001_ 

1 

o 
00 11 

. 

010_ o 
1 010_ 

011 o 
. 

011 1 

Octal 

00 

01 

02 

03 

04 

05 

06 

07 

Hexa. Binario Octal Hexa. 

o 1000 10 8 

1 1001 11 9 

2 1010 12 A 

3 1011 13 B 

4 1100 14 e 
5 1101 15 D 

6 1110 16 E 

7 llll 17 F 

del método hexadecimal es que podemos util izar un solo dígito para La ventaja 
los primer 
tica, la un i 
O o l. El so 
bits; por ta 
dígitos en 
dígitos. Su 
d igital esta 
(green) y 
esos valor 
que indica 
frecuente q 
su cód igo 

os dieciséis valores, algo que en binario necesita cuatro. En informá-
dad básica de información se llama bit (Blnary digiT), que puede ser 
ftware del ordenador trabaja con bytes, unidad formada por ocho 
nto, cada byte puede tomar un va lor entre O y 255 y necesita ocho 
binario. En el sistema hexadecimal ese valor se obtiene solo con dos 
ele ser muy utilizado en la codificación de colores. Todo color en 
· formado por la mezcla de tres colores primarios, rojo (red), verde 
azul (blue) , lo que se conoce como cód igo RGB. Para cada uno de 
es primarios, y en ese mismo orden, se da un número entre O y 255 
la cantidad de ese color primario que forma parte del compuesto. Es 
ue un color se represente por seis dígitos hexadecimales para indicar 

RGB. En la tabla siguiente se exponen algunos ejemplos: 

Color RGB Color RGB Color RGB 
. 

Blanco # FFFFFF Marrón #800000 Plata #COCOCO 
. 

Verde #OOFFOO Magenta # FFOOFF Gris oscuro #5E5E5E 
. 

Amarillo #FFFFOO Cyan #OOFFFF Negro #000000 
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ciones, sonido, etc., se reduce a convertir ese elemento a una serie 
de ceros y unos. 

LA PASIÓN CHINA 

Leibniz siempre sintió una atracción especial hacia la cultura china. 
Ya en 1678 conocía su idioma y consideraba que era la mejor re­
presentación del idioma ideal que buscaba. Pensaba que la civiliza­
ción europea era la más perfecta por estar basada en la revelación 
cristiana, y que la china era el mejor ejemplo de civilización no 
cristiana. En 1689 conoció en Roma al misionero jesuita Claudio 
Filippo Grimaldi, presidente de la Oficina China de Matemáticas 
en Pekín, quien le contó que el emperador, príncipes y otros fun­
cionarios recibían una clase diaria de matemáticas, y que el propio 
emperador entendía a Euclides y sabía calcular movimientos en el 
cielo. En 1697, Leibniz publicó Novissima sinica (Últimas noti­
cias desde China), obra en la que recogía cartas y escritos de los 
misioneros jesuitas en China. A través del padre Verjus, director 
de la misión jesuita en China y a quien envió un ejemplar, el libro 
llegó a manos del padre Joachim Bouvet, un misionero que estaba 
de permiso en París. A partir de entonces, la relación entre Leibniz 
y Bouvet fue muy fluida y dio lugar al desarrollo más general del 
sistema binario. Tras conocer la filosofía de Leibniz, Bouvet llegó a 
compararla con la filosofía china antigua, ya que esta había instru­
mentado los principios de la ley natural. Fue también Bouvet quien 
le llamó la atención sobre los hexagramas del I Ching, que equiva­
lían a un sistema binario creado por Fu-Hsi, un personaje mítico 
fundador de la cultura china. Por desgracia, Bouvet utilizó fuentes 
erróneas y todo lo anterior no está bien documentado. 

Leibniz abogó en muchas instancias por conseguir una rela­
ción estrecha entre Europa y China a través de Rusia. Como tenía 
buenas relaciones con Moscú, pensaba intercambiar así descubri­
mientos y cultura. Incluso insistió en la Academia de Berlín para 
preparar una misión protestante en China, pues en su opinión, 
si se lograba que el emperador se convirtiese, se conseguiría un 
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gran éxito, ya que la misión católica no había avanzado mucho 
en ese aspecto. 

Leibniz publicó su obra principal sobre China pocos meses 
antes de morir, con el título Discours sur la théologie naturelle 
des chinois (Discurso sobre la teología natural de los chinos). En 
ella defendía que los antiguos chinos habían creado una religión 
natural que era compatible con el cristianismo. Mostró aquellos 
aspectos de la filosofía china antigua que eran compatibles con la 
suya propia. Y en la última parte exponía su sistema binario y su 
relación con el J Ching. También indicaba dos puntos importantes 
que hacían de China un pueblo civilizado a la altura de Europa: 
sus tres mil años de crónicas históricas, más tiempo que en Eu­
ropa, y un avance importante en la filosofía práctica ( educación, 
asuntos civiles, relaciones personales) y en las ciencias, solo su­
peradas por la ciencia europea. 

EL «1-CHING» Y EL SISTEMA BINARIO 

El I-Ching, o Libro de las mutaciones, es un antiguo tratado chino 
que sirve para hacer predicciones. Se trata de una especie de oráculo 
que nos indica cosas que pasarán relacionadas con la familia y otros 
aspectos, aunque también es una obra que desarrolla la filosofía 
taoísta del ying y el yang. Inicialmente escrito por el emperador 
mítico Fu-Hsi alrededor de 2400 a.c., después se fue ampliando en 
épocas posteriores, por ejemplo, por Confucio en el año 500 a.C. 

Su interpretación se basa en una serie de símbolos, cada uno 
de los cuales tiene distintos significados dependiendo del aspecto 
que se estudie. Estos símbolos están formados por líneas conti­
nuas y discontinuas, agrupadas en trigramas, variaciones con re­
petición de esos dos elementos tomados de tres en tres. Los ocho 
trigramas posibles aparecen en la figura siguiente: 
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Si unimos entre sí dos trigramas de todos los modos posibles, 
obtenemos los 64 hexagramas posibles, formados por seis líneas. 
Aunque Bouvet pensó que era creación del propio Fu-Hsi, fue el fi­
lósofo chino Shao Yong (1011-1077) quien ordenó los hexagramas 
en una distribución que recuerda al sistema binario. En la figura 
siguiente podemos ver parte de esa posible relación. Aunque los 
chinos no conocían el cero, si consideramos que la línea partida 
es el cero y la continua el uno, podemos ver los primeros números 
binarios codificados: 

O 2 3 4 5 6 7 
000000 000001 000010 000011 000100 000101 000110 000111 

De esa manera, se puede asociar un número en binario desde 
el O hasta el 63. Basta hacer corresponder al hexagran1a el código 
binario y convertirlo en decimal. Por ejemplo, el hexagran1a de la 
figura siguiente representaría el valor: 

10100lc2 = 1- 25 + O-24 + 1- 23 + O- 22 + O- 21 + 1-2º = 
= 32 + 8+ 1 = 41. 

LA NOTACIÓN MATEMÁTICA 

Es normal que las cosas que hemos conocido desde pequeños las 
aceptemos como si siempre hubiesen estado ahí. Elementos como 
Internet, los teléfonos móviles, los ordenadores o incluso la televi­
sión parece que son inventos que existen desde hace muchísimos 
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años, aunque muchos hemos vivido las épocas en que no existían. 
Con los símbolos que utilizamos en la ciencia pasa lo mismo. Esta­
mos acostumbrados a escribir y operar números y funciones con 
símbolos, que pensamos que se han utilizado siempre, cuando, por 
ejemplo, los números indoarábigos que usamos como numeración 
principal se han utilizado durante menos tiempo que los números 
romanos. 

En los siglos XVI y XVII, una de las dificultades para intercam­
biar resultados o para entender lo que habían desarrollado otros 
científicos era precisamente la inexistencia de una notación clara 
y unificada. 

Los símbolos + y - para las operaciones de sumar y restar 
no comenzaron a usarse hasta el siglo xv en Alemania. Incluso 
durante bastantes años hubo países, como España, donde se si­
guieron utilizando los símbolos j5 y iñ (iniciales de plus y minus ). 
El uso del signo x para la multiplicación se asocia a Oughtred, el 
inventor de la regla de cálculo. 

El uso de la barra para indicar la división se considera un in­
vento árabe, y fue Fibonacci ( ca. 1170-ca. 1250) quien la extendió 
por Europa. Como curiosidad, fue en el siglo XIX cuando el mate­
mático inglés Augustus de Margan (1806-1871) comenzó a utilizar 
la versión alb por motivos de tipografía, ya que en los libros la 
expresión 

a 
b 

ocupa tres líneas, mientras que la otra solo ocupa una. 
Newton fue el primero que utilizó las potencias para repre­

sentar fracciones y raíces. Así, utilizaba a-1 para la expresión 

1 

a 

y a315 para ~- El símbolo ✓ para las raíces, como deformación 
de la letra r, comenzó a utilizarse en el siglo XVI. 

El inglés Robert Recorde (1510-1558) fue el primero en uti­
lizar el símbolo =, pues decía que no había nada más igual que 
dos líneas paralelas, aunque tardó casi un siglo en ser aceptado 
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como símbolo general. Descartes, por ejemplo, usaba el símbolo 
rx (el símbolo real es con la abertura a la izquierda). Los símbolos 
< y > para indicar menor y mayor no se usaron hasta principios 
del xvrr por el inglés Thomas Harriot (1560-1621). 

Otro elemento importante para el cálculo fue el concepto de 
función. Se asigna al francés Nicolas de Oresme (1323-1382) una 
primitiva idea de función, que él definía así: «Todo lo que varía, 
se sepa medir o no, lo podemos imaginar como una cantidad con­
tinua representada por un segmento». Pero fue Descartes quien 
comenzó a manejar el concepto como una relación entre dos va­
riables que, representada, daba lugar a una curva. Él fue también 
el primero que utilizó las primeras letras del alfabeto para indicar 
constantes y las últimas para indicar variables, como hacemos 
actualmente. 

La primera idea clara de relación funcional se debe al escocés 
James Gregory, que indicaba que una variable dependía de varias 
expresiones si se podía obtener de ellas mediante cualquier ope­
ración imaginable. 

LA NOTACIÓN DE LEI BN IZ 

Leibniz fue una persona muy cuidadosa con la notación ele­
gida, y dedicaba mucho tiempo a perfeccionarla. Fue el primero 
que usó el punto (-) para indicar el producto, pues el símbolo x 
podía confundirse con la variable. También fue el primero en 
utilizar el símbolo : para la división, por una justificación visual 
igual a la que usó años más tarde Margan. Sus palabras exactas 
fueron: 

a dividido por b es comúnmente denotado por 

a 

b 

sin embargo, muy a menudo es deseable evitar esto y continuar en 
el mismo renglón, usando la interposición de dos puntos, de manera 
que a: b indique a dividido por b. 
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El suizo J ohann Heinrich Rahn había usado unos cuantos 
años antes el símbolo 7 como notación para la división. Este sím­
bolo fue adoptado por Inglaterra, y de esa manera se suele usar en 
los países anglosajones, mientras que en la mayoría de los otros 
países se usa la notación de Leibniz. 

Él fue también la primera persona en utilizar la palabra función 
en sus escritos, aunque no era todavía el concepto que nosotros 
utilizamos. Fue Johann Bemoulli el primero que utilizó la palabra 
dando una definición concreta: «Una función de una variable es 
definida como una cantidad compuesta de alguna manera por una 
variable y constantes», entendiendo que esa «de alguna manera» 
puede ser tanto algebraica como trascendente. También fue el pri­
mero en utilizar las palabras constante, variable y parámetro. 

Respecto a la notación del cálculo, Leibniz comenzó utilizando 
la abreviatura omn para el cálculo del área, es decir, la integral. Esa 
abreviatura había sido utilizada por Cavalieri y provenía del latín 
omnia lineas (todas las líneas) puesto que su área salía de sumar 
todas las líneas formadas por los indivisibles. En un manuscrito 
de 1675, Leibniz decidió cambiar omn por el símbolo que solemos 
utilizar actualmente J. Sin embargo, el primero que utilizó la pala­
bra integral fue Jakob Bemoulli en un artículo aparecido en Acta 
Eruditorum en 1690, el primero en que presentaba su cálculo. 

Leibniz había estudiado que omn aumentaba su valor, ya que 
se sumaba, y su operación inversa, la derivada, debía disminuir. 
En cierta forma, las omn sumaban y la operación inversa r,estaba, 
por eso para esa segunda operación utilizó la d de diferencia. Ini­
cialmente Leibniz escribía la d en el denominador. Según Leibniz: 
«Esto se obtendrá por el cálculo contrario, esto es, supongamos 
quefl=ya. Sea 

l= ya. 
d' 

entonces justo como f incrementa, así d disminuirá las dimensio­
nes». Poco después ya colocaba la den el numerador. 

En el primer artículo sobre el cálculo de 1684 ya aparecía la 
d para indicar diferenciación, y en el segundo de 1686 ya aparecía 
el símbolo fe incluso aparecía dx dentro de la integral. 
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UN NUEVO DUQUE 

Desde que en 1676 pasó a ser consejero de la casa de Brunswick­
Luneburgo en la corte de Hanóver, Leibniz había dedicado muchos 
esfuerzos a servir a los duques respectivos en todo aquello que le 
encargaban, proponiendo muchas veces temas que consideraba 
que podían ser de interés. Tuvo libertad y respaldo para dedicarse 
a proyectos que había considerado interesantes. Además, la labor 
de atención a los encargos del duque le permitió dedicar tiempo a 
sus estudios y sus relaciones con científicos, técnicos, teólogos y 
filósofos de muchos países. 

Muchos proyectos presentados al ducado fueron bien recibi­
dos y apoyados personal y económicamente. Pero eso iba a can1-
biar radicalmente, planteándole muchos quebraderos de cabeza y 
sinsabores en los años que le quedaban de vida. 

En junio de 1698 murió, después de una larga enfermedad, el 
duque Ernesto Augusto, el gobernante durante cuyo mandato el du­
cado de Brunswick-Luneburgo había pasado a convertirse en elec­
torado. Lo sustituiría su hijo Jorge Luis, quien llegaría a ser el rey 
Jorge I de Gran Bretaña. Las relaciones con el nuevo duque no fue­
ron nunca lo cordiales que habían sido con su padre y su tío, hasta 
el punto de que cuando Jorge se trasladó a Inglaterra, impidió que 
Leibniz viajara con él, obligándolo a permanecer en el continente. 
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CAPÍTULO 4 

No solo de matemáticas 
se nutre el genio 

En el siglo XVII todavía existían virtuosi, 
que desarrollaban grandes ideas tanto en la teoría 

corno en la práctica abarcando inquietudes muy diversas. 
Un ejemplo claro fue Leibniz, un pionero de la geología y la 

paleontología, ciencias que estaban naciendo. Además, 
aportó todo su genio al campo de la mecánica, 
especialmente la dinámica, con el estudio de 

las fuerzas que influyen en el movimiento. 





El 23 de junio de 1698 falleció el elector Ernesto Augusto, que 
fue sustituido por su hijo Jorge Luis. Leibniz fue refrendado en su 
puesto y aunque al principio nada pareció cambiar, las relaciones 
personales con el nuevo elector nunca fueron tan fluidas como 
con sus antecesores. Este nunca apoyó decididan1ente las múlti­
ples actividades a que se dedicaba Leibniz. 

Su trabajo principal siguió siendo la elaboración de la historia 
de la casa de Brunswick-Luneburgo, pero tras ocho años, aún no 
se veían resultados tangibles de su trabajo. Aunque Leibniz en 
todo momento inforn1aba de los lugares que visitaba y de las ac­
ciones que llevaba a cabo, el elector siempre manifestó sus quejas 
sobre su trabajo. En una carta a su madre, Sofía, se quejaba de 
que nunca sabía dónde estaba Leibniz, que siempre hablaba de los 
invisibles libros en los que trabajaba. 

En 1698 y 1700 editó y publicó dos volúmenes de crónicas 
históricas alemanas inéditas, con el título de Accesiones histori­
cae. También publicó la primera recopilación de documentos de 
la biblioteca de W olfenbüttel. 

Desde 1698 recibió invitaciones de Sofía Carlota para visi­
tar Berlín, pero no consiguió permiso hasta dos años después, 
cuando el propio elector de Brandeburgo lo reclamó para encar­
garle la dirección del proyecto de la nueva Academia Prusiana 
de las Ciencias. 
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En esa época, Leibniz ya tenía una edad avanzada y durante el 
resto de su vida tuvo problemas de salud. Eran frecuentes sus do­
lores de cabeza y fiebres. Los últimos años padeció gota y artritis. 
Muchas de esas enfermedades le impidieron viajar como hubiera 
querido, y le sirvieron de excusa, reales muchas veces, para no 
regresar inmediatamente a Hanóver cuando lo requería el elector. 

Durante su visita a Berlín, Leibniz intentó conseguir ayuda de 
Philippe Naudé (1654-1729), matemático de la corte, para seguir 
con el estudio del sistema binario. En esos años buscó varias 
veces la colaboración de algún matemático joven que le ayudara 
a terminar estudios que le resultaban muy laboriosos. Recibió 
unas tablas numéricas realizadas por Naudé en notación binaria, 
que incluían los números hasta el 1023, es decir, los que se pue­
den escribir con un máximo de diez cifras. Leibniz estudió por 
columnas las series de formación que tenían las cifras de esos 
números. Así, en la primera columna los números alternaban las 
cifras 01, en la segunda columna se repetían las series 0011, en 
las terceras 00001111 y así sucesivamente. También realizó estu­
dios respecto a la variación en múltiplos. Con todo ese material 
escribió Ensayo de una nueva ciencia de los números, que envió 
a la Academia de Ciencias de París con motivo de su elección 
como miembro extranjero. Es curioso que en la carta adjunta 
a esa obra comentase que ese sistema no estaba pensado para 
cálculos prácticos. 

En 1669, se había publicado el tercer volumen de Opera ma­
thematica, la gran obra de John Wallis. En él se incluía la corres­
pondencia entre Leibniz y Newton a través de Oldenburg, en 
concreto las epístolas prior y posterior. Aunque Leibniz había de­
jado la selección de cartas a Wallis, no quedó muy disgustado con 
el resultado. No le gustó nada el trabajo de Fatio de Duillier, en el 
que presentaba a Leibniz como el segundo inventor del cálculo. 
Mantuvo otra discusión con el matemático autodidacta Michel 
Rolle (1652-1719), que atacó el cálculo de Leibniz indicando que 
la noción de derivada era confusa, y rechazó la idea de infinité­
simos de órdenes superiores. La respuesta en la academia la dio 
el matemático Pierre Varignon (1654-1722), quien llegó a afimi:ar 
que Rolle no tenía ni idea sobre el cálculo que estaba rechazando. 
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LA DISCÍPULA REAL DE LEIBNIZ 

Leibniz guardó una gran amistad con la electora Sofía, esposa del 
elector Ernesto Augusto, y con su hija, la princesa Sofía Carlota, 
esposa del elector de Brandeburgo, quien se proclamó rey de Pru­
sia en enero de 1 70 l. Aunque Sofía Carlota siempre había visto a 
Leibniz como amigo de su madre, pronto comenzó a considerarlo 
como su propio anligo y maestro. En una carta de 1699 le decía que 
la podía considerar como discípula. A partir de 1700, cuando Leib­
niz la visitó por primera vez en su palacio de Lützenburg ( actual 
Charlottenburg), fue invitado con asiduidad a Berlín para charlar 
de multitud de temas con la reina. Frecuentemente se reunían 
para tratar temas filosóficos, religiosos y políticos. En los años 
siguientes le escribió en numerosas ocasiones, con contenido de 
temas filosóficos en su mayoría, pues era reacio a enviar temas 
matemáticos que eran complicados para alguien sin formación. 

En 1704 conoció a la princesa Carolina de Ansbach, que se 
casaría con el hijo de Jorge Luis, Jorge Augusto, quien sustituiría 
a su padre, primero como elector de Hanóver y posteriormente 
como rey de Inglaterra. 

Por desgracia, la relación con su discípula no duró mucho, ya 
que el 1 de febrero de 1705 moría la reina Sofía Carlota. 

LA DIPLOMACIA QUE NO CESA 

Por petición del emperador Leopoldo I, se reunió en Viena con el 
obispo Von Buchaim para tratar el tema de la reunificación de las 
iglesias católica y protestante. También había tenido reuniones con 
el capellán de la corte de Brandeburgo, Jablonski, para intentar re­
unificar las sectas luterana y reformada, algo que parecía incluso 
más difícil que la reunificación con los católicos. Leibniz continuó 
con estas negociaciones diplomáticas hasta su muerte, ya que en 
1716, su último año de vida, volvió a reunirse con Jablonski a peti­
ción del rey Federico Guillermo I de Prusia, para intentar la reuni­
ficación de ambas confesiones y entrar en negociaciones con la 
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Iglesia anglicana, aprovechando que el elector de Brandeburgo se 
había convertido en rey de Inglaterra, y por tanto, en cabeza de la 
Iglesia anglicana, pero sin abandonar su religión, lo que le daba cier­
tas esperanzas de conseguir resultados favorables. Sin embargo, 
el desinterés del rey por el tema hizo que la misión no prosperase. 

A principios de la década 1670, la labor diplomática más im­
portante en la que estuvo inmerso fue apoyar las aspiraciones de 
la electora Sofía a la corona de Inglaterra. Ya en 1698 hizo lle­
gar al rey inglés Guillermo III la propuesta de que se nombrara a 
Sofía con derecho a la línea sucesoria, así como el matrimonio del 
duque de Gloucester con la princesa de Hanóver. Sofía, debido a 
su avanzada edad, no mostraba mucho entusiasmo por la suce­
sión, por lo que realmente fue Leibniz quien más se esforzó en las 
negociaciones. En 1701 el Parlamento inglés promulgó el Acta de 
Establecimiento, garantizando la corona inglesa a los descendien­
tes protestantes de la casa de Hanóver. 

También medió entre las casas de Hanóver y Brandeburgo, 
enfrentadas con Wolfenbüttel, que tenía una alianza de neutrali­
dad con Francia y había creado un gran ejército. En ese tiempo se 
creó una gran alianza contra Francia, formada por Inglaterra y los 
Países Bajos, con el apoyo de Austria, Dinan1arca, Prusia, Hanó­
ver y el Palatinado. En 1 702 comenzó la guerra entre los aliados 
y Francia. Leibniz redactó un informe aconsejando aspectos que 
favoreciesen las condiciones militares y el desarrollo de la guerra: 
la coordinación entre estrategias y recursos, el cuidado médico de 
los soldados o la creación de dos cuarteles generales, uno impe­
rial y el otro neerlandés, eran algunas de sus apreciaciones. 

También abogó en favor de la sucesión austriaca en España, 
mediante uno de los recursos que más le gustaban: una carta, su­
puestamente escrita por un habitante de Ámsterdam en este caso, 
en respuesta a un ciudadano de Amberes. Ambas cartas fueron 
ampliamente difundidas. 

En 1713 se reunió en Karlsbad con Pedro I de Rusia, tras 
aceptar una invitación del propio zar, y aprovechó para interceder 
por una alianza entre el zar y Austria que permitiera al emperador 
terminar con la guerra contra Francia. Ya el año anterior, en la 
boda de Alejandro y Carlota, Leibniz se había entrevistado con 
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PEDRO I DE RUSIA 

Pedro 1 (1672-1725) fue el zar que refor­
mó Rusia, transformándola en un país 
más cercano a las naciones europeas 
occidentales de la época. Subió al trono 
con diez años, pero intrigas palaciegas lo 
relegaron a un segundo plano. En 1694, 
dio un golpe de Estado y se coronó como 
zar de Rusia. A partir de ese momento, 
comenzó una reforma profunda de la na­
ción en la línea que imperaba en el resto 
de Europa, que conocía bien gracias a 
sus múltiples viajes por Francia, Austria, 
Aleman ia, etc. Potenció el desarrollo in-
dustrial, especialmente en los sectores minero y metalúrgico. Real izó también 
grandes reformas económicas que le permitieron financiar una agresiva po­
lítica exterior, apoyada por la creación de un alistamiento obligatorio en el 
ejército, que reorganizó. Modificó la vida cotidiana de sus súbditos, obligando 
a abandonar muchas de las costumbres ancestrales rusas. Se enfrentó a Suecia 
en la conocida como Guerra del Norte, conquistando grandes territorios del 
Báltico, lo que le valió el apelativo de El Grande, con el que pasó a la historia. 

el zar, quien le había encargado el desarrollo de las ciencias en 
Rusia, otorgándole el título de consejero privado ruso de justicia, 
con un salario fijo anual, y encargándole además la elaboración 
de propuestas para reformar el derecho y la justicia en Rusia. Los 
temas concretos que presentó al zar fueron el estudio de la decli­
nación magnética a lo largo de toda Rusia y entablar relaciones 
con China para que la cultura y ciencia chinas llegaran a Europa. 

LA HISTORIA AVANZA 

Tras la visita a Karlsbad se desplazó a Viena, sin notifkarlo a Ha­
nóver, de donde recibía órdenes perentorias del elector para que 
regresase a la ciudad. Desde allí escribió una carta al primer minis-
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tro de Hanóver, Andreas Gottlieb von Bemstorff, en la que infor­
maba de que el emperador le había ofrecido acceso a su biblioteca 
particular, pues pensaba que una historia de la casa de Brunswick­
Luneburgo no podía hacerse sin hacer una historia del Imperio. 

A pesar de las continuas recriminaciones, el trabajo realizado 
por Leibniz empezó a dar sus frutos. En junio de 1707 apareció 
el primer volumen de Scriptorum brunsvicensia iUustrantium, 
editado por el p_ropio Leibniz. Tuvo que pagar a sus ayudantes, 
adelantar los costes de imprenta del segundo volumen y comprar 
una serie de ejemplares para ser distribuidos, gastos que recuperó 
con bastantes esfuerzos. 

El segundo volumen salió en 1710, un año bastante prolífico 
para Leibniz, pues también publicó el primer número. de Mis­
ceUanea Berolonensia, la revista de la Academia de Berlín, y una 
de sus principales obras filosóficas, la Teodicea. El año siguiente 
apareció el tercer volumen de la historia. 

Leibniz había previsto que la historia se completara con otros 
dos volúmenes. A finales de 1714 terúa previsto terminar el pri­
mero, que llegaria hasta los comienzos de la casa actual, y el se­
gundo volumen en breve después de este. Pero por desgracia, su 
muerte impidió que la historia se completara. No obstante, en 1749 
su secretario Eckhart publicó cuatro volúmenes sobre el origen de 
los güelfos como introducción a la historia. 

Una vez que el rey Jorge I estaba en su trono, Leibniz intentó 
ser nombrado historiógrafo de Inglaterra, pues aducía que en su 
estudio había tenido que investigar también aspectos de las casas 
inglesas. Pero no logró el puesto porque le quedaba poco más de 
un año de vida, y en ese momento el rey no confiaba en que pu­
diese terminar la historia de la casa de Brunswick-Luneburgo por 
las múltiples actividades que realizaba. 

En 1703 había conseguido de la reina Sofía Carlota la patente 
para la sedicultura en Prusia, a fin de financiar la Academia de 
Berlín, tema que siempre tuvo presente, pues en 1 707 presentó un 
escrito al rey con nuevos métodos para drenar pantanos, de forma 
que parte de los beneficios repercutieran en la sociedad. 

Leibniz aspiraba a muchos puestos vacantes. En 1 704 solicitó 
ser vicecanciller de Hanóver, pero el elector pensaba eliminar el 
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puesto, igual que había desaparecido el de canciller cuatro años 
antes. Tan1bién solicitó la alcaldía de llfeld, uno de los cargos que 
también desempeñaba el antiguo vicecanciller. En 1709, dadas las 
continuas tensiones con el elector, llegó incluso a proponer a su 
amigo el duque Antonio Ulrico que lo tomara a su servicio. 

Cuando en 1 711 se coronó al nuevo emperador Carlos VI, 
Leibniz movió todos los hilos a su alcance para obtener el cargo de 
consejero privado imperial, que finalmente logró al año siguiente, 
aunque con la desagradable sorpresa de que era un puesto hono­
rifico sin remuneración. Sin embargo, más adelante consiguió una 
cuota anual, que en algunos momentos desaparecía y entonces 
debía volver a insistir de nuevo para recobrarla. 

LAS OBRAS FILOSÓFICAS 

En el siglo XVIII Leibniz escribió sus obras más importantes, que 
reflejan la evolución de su filosofía desde sus primeros balbuceos 
juveniles. La primera referencia sería Teodicea: Ensayos sobre 
la bondad de Dios, la libertad del hombre y el origen del mal, 
obra publicada en dos volúmenes en 1710 como homenaje a Sofía 
Carlota, en la que recoge muchas de sus conversaciones con la 
reina en Charlottenburg e incluye referencias a las polémicas teo­
lógicas de la época. Su fundamento es que vivimos en el mejor de 
los mundos posibles, y que la maldad del mundo no está reñida 
con la bondad divina. Hoy día la teodicea es una ran1a filosófica, 
también llamada teología natural, que pretende la demostración 
racional de la existencia de Dios. La Teodicea fue caricaturizada 
por Voltaire, admirador de Newton, en su obra Cándido. 

La Teodicea y el De com binatoria fueron las únicas obras filo­
sóficas de Leibniz publicadas en vida del autor; las demás fueron 
póstumas. En 1686 escribió Discurso de metafísica, su primera 
gran obra filosófica, en la que recogía todas sus ideas hasta el 
momento sobre Dios, el mundo y el hombre, relacionados entre 
sí. Ahí aparecían ya sus ideas de sustancias simples y compues­
tas, que germinarían en las mónadas; especialmente rechazaba 
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las leyes cartesianas de conservación del movimiento, al mismo 
tiempo que promovía su idea de fuerza viva, germen de la energía 
cinética. La obra no fue publicada hasta 1846. 

En 1714, Leibniz escribió en Viena dos de sus trabajos: Prin­
cipios de la naturaleza y de la gracia, J1,,1,ndados en la razón, 
publicado en 1718, y sobre todo la Monadología, obra de su etapa 
de madurez, en la que presentaba, de forma bastante esquemática, 
un resumen de toda su filosofía. Fue escrita para su amigo Nico­
las Remond, quien años antes había animado a Leibniz a escribir 
sobre la teología natural china. Redactada en francés, no tenía 
título y el editor que la publicó por primera vez en 1720, por cierto 
en alemán, fue el que se lo puso. 

En ambas obras presentó su idea de sustancias simple y com­
puesta. En el primer punto de la Monadología podemos leer: 

La mónada de que hablaremos aquí no es otra cosa que una sustancia 
simple, que forma parte de los compuestos; simple, es decir, sin partes. 

Y en el punto tercero la ejemplifica en la naturaleza: 

Ahora bien, allí donde no hay partes tampoco hay extensión, ni figu­
ra, ni divisibilidad posibles. Y estas mónadas son los verdaderos 
átomos de la naturaleza y, en una palabra, los elementos de las cosas. 
[ ... ] Cabe afirmar, por lo tanto, que las mónadas no pueden comenzar 
ni acabar más que de repente, esto es, no pueden comenzar, a no ser 
por creación, ni acabar, a no ser por aniquilación; lo que es compues­
to, por el contrario, comienza o acaba por partes. 

Presenta estas mónadas como una especie de puntos meta­
físicos sin forma ni tamaño. Por tanto, deben diferenciarse en al­
guna cualidad para dar lugar a formas diferentes al componerse. 
Además, no cambian por ningún agente externo, sino por causas 
internas. Llama percepción al estado de relación de cada mónada 
con las demás, y al proceso interno que hace cambiar la percep­
ción lo llama apetición o apetitos. 

A partir de estos conceptos divide las mónadas en tres clases: 
mónadas que solo tienen percepción sin conciencia; mónadas en 
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las que la percepción va acompañada de conciencia, que serían las 
que corresponderían a los animales, y aquellas que además inclu­
yen el razonamiento, que es lo que llama alma razonable o espí­
ritu, y que sería característico del ser humano. 

LA IDEA DE ÁTOMO 

Desde la prehistoria los hombres descubrieron, al trabajar los 
metales, que había elementos que se transformaban en otros. 
Tales de Mileto (ca. 620 a.C.-ca. 546 a.C.) fue el primero que 
se planteó si cualquier sustancia podía convertirse en otra si­
guiendo una serie de pasos. Si ello era posible, tenía que existir 
un elemento básico que estuviera presente en todos los ele­
mentos. Consideró que ese elemento era el agua, de ahí que su 
máxima filosófica fuera «Todo es agua». Anaxímenes de Mileto 
(585 a.C.-524 a.C.) planteó que ese elemento era el aire y Herá­
clito de Éfeso (535 a.C.-484 a.C.) propuso el fuego. Empédocles 
(ca. 495 a.C.~ca. 435 a.C.), discípulo de Pitágoras, pensó que no 
debería ser un solo elemento y propuso los cuatro elementos 
básicos: agua, aire, fuego y tierra. 

Por su parte, Aristóteles (384 aC.-322 a.C.) tomó estos resulta­
dos y añadió un quinto elemento, el éter. Los griegos no aceptaban 
el vacío, y por ello debía existir un elemento entre la tierra y el 
cielo. La influencia de Aristóteles fue tal, que durante veinte siglos 
la concepción sobre la composición de la materia siguió sus pautas. 

No obstante, entre los griegos se produjo un interesante de­
bate sobre la divisibilidad de la materia. Unos defendían que la 
materia se podía dividir indefinidamente y cualquier elemento 
que se obtuviera, por pequeño que fuese, podía volverse a divi­
dir, idea defendida por Aristóteles. Otra corriente indicaba que 
en la división se llegaría a una partícula minúscula que ya no 
podría ser dividida más; esta corriente recibió el nombre de 
atomismo y su principal valedor fue el tracio Demócrito (460 a.C.-
370 a.C.), que llamó áwmos a esas partículas indivisibles e indicó 
que toda la materia está formada por átomos. 
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ROBERT BOYLE 

Boyle (1627-1691) fue un químico inglés 
que estudió las transformaciones que la 
presión provocaba en los gases. El fruto 
de dichas investigaciones fue una ley que 
indica que el vo lumen es inversamente 
proporcional a la presión, descubierta 
también de forma independiente por el 
francés Edme Mariotte (1620-1684), por 
lo que hoy se conoce como ley de Boyle­
Mariotte, estudiada en la enseñanza se­
cundaria. En 1661 escribió El químico es­
céptico, obra por la que es considerado 
el padre de la química moderna. En ella 
defiende que la materia está formada por 
grupos de átomos en movimiento, y que 
las colisiones entre ellos son las que dan 
lugar a los fenómenos que observamos. Realizó investigaciones sobre la pro­
pagación del sonido, la densidad relativa, la refracción en cristales y descubrió 
la intervención del oxígeno en la combustión y la respiración. 

Sin embargo, la figura de Aristóteles fue tan inmensa que el 
atomismo fue casi desterrado del pensamiento griego; se mantuvo 
gracias a Epicuro (341 a.C.-270 a.C.), cuya filosofía tuvo muchos 
seguidores. Otro personaje de relevancia, el poeta romano Lucre­
cio, del siglo I a.c., difundió el atomismo de forma didáctica en 
su poema De rerum natura (Sobre la naturaleza de las cosas). 

Durante veinte siglos, las ideas de Aristóteles rigieron el pen­
samiento científico. La alquimia fue la disciplina que se dedicó al 
estudio de la transformación de unos elementos en otros, bien 
por la búsqueda de elementos concretos como el oro, o como 
aplicación en la medicina, como hicieron Avicena (981-1037) o 
Paracelso (1493-1541). Pero sucedió un hecho curioso. Uno de los 
primeros libros que se publicó tras la invención de la imprenta fue 
precisan1ente el poema de Lucrecio, por lo que el atomismo volvió 
a coger fuerza en toda Europa. 

NO SOLO DE MATEMÁTICAS SE NUTRE EL GENIO 



La figura fundamental de esa época fue Robert Boyle, con 
quien Leibniz se reunió varias veces en Londres y con quien man­
tuvo correspondencia hasta su muerte. Esa línea de pensamiento 
fue, muy posiblemente, la que dio pie a la creación de las mónadas. 

EL INTERÉS POR LA FORMACIÓN DE LA TIERRA 

El hombre siempre ha sentido curiosidad por saber cómo se ha­
bían formado los distintos elementos que constituyen la Tierra. 
Aunque ya en la Grecia antigua hubo personas interesadas en el 
estudio de estos elementos, se suele considerar que fueron los 
filósofos árabes los primeros en comenzar a investigar sobre el 
tema. Avicena, por ejemplo, explicó cómo se formaban las mon­
tañas y el origen de los terremotos. Pero en la Edad Media, el tér­
mino geología todavía se utilizaba para indicar el estudio de todo 
lo terrenal en oposición a lo divino. 

La geología moderna comenzó su andadura en el siglo XVI. 

Abraham Ortelius (1527-1598) es el primero que aportó la hipótesis 
de la deriva continental, lo que daría pie a la tectónica de placas 
actual. Aunque sin duda la figura más importante en este campo 
fue Nicolas Steno, el padre de la geología moderna, pues fue el 
creador de las leyes por las que se rige la estratigrafía, la ciencia 
que estudia la superposición de capas o estratos de la Tierra. 

El geólogo danés Konrad von Gesner (1516-1565) es conside­
rado el fundador de la paleontología. Publicó una obra capital en 
dicha disciplina: De omni rerumfossilium genere, gemmis, lapi­
dibus, metallis, et huiusmodi ... , en la que separaba los fósiles de 
forma orgánica de las gemas y minerales a través de ilustraciones. 
Robert Hooke utilizó el microscopio para comparar la estructura 
de las maderas fósiles con las actuales, y presentó sus resultados 
en la obra Micrographia, de 1665. También estudió los amonites 
y los conectó con el nautilo actual, además de ser un precursor en 
la teoría de la evolución de las especies. 

El físico jesuita Atanasio Kircher (1601-1680) planteó que la 
Tierra es un astro en evolución y mostró lo que en su opinión, 
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NICOLAS STENO 

Nacido en Copenhague, Steno (1638-
1686) fue un anatomista, y científico en 
general, que fundó las bases de la estra­
tigrafía moderna, al defender que las ca­
pas de la corteza terrestre son producto 
de la sedimentación marina: cada capa 
es anterior a la que tiene encima y poste­
rior a la inferior, en la que se apoya. Tam­
bién postuló que cada estrato se crea ho­
rizontalmente, y cuando están inclinados 
es porque son debidos a movimientos 
posteriores. A su vez, distinguió entre ro­
cas primitivas, las anteriores a las plantas 
y animales, y rocas secundarias, que se 
sobreponen a las anteriores y contienen 
fósiles. Comparó fósiles de conchas ma­
rinas con especies vivas, y entre especies 
de agua .dulce y marina. Todo ello está recogido en la que puede considerarse 
su obra maestra: De solido intra solidum naturaliter contento dissertationis 
prodromus (Discurso preliminar de una disertación sobre los cuerpos sólidos 
de manera natural contenidos en un sólido; 1668), por la que es considerado 
el padre de la geología moderna. También elaboró algunas leyes sobre cris­
talografía y fue el descubridor de la glándula parótida. 

errónea por cierto, es el interior de la Tierra. Según él, los volca­
nes eran los respiradores de los fuegos internos. No obstante, su 
gran aportación fue hacer hincapié en la idea de la observación y 
el estudio de los movimientos de la Tierra. 

Hasta ese momento, la creencia generalizada acerca de la 
aparición de fósiles, tan alejados del mar, era achacada al diluvio 
universal. Fue el conde de Buffon (1707-1788) quien comenzó a 
criticar dicha teoría. Su teoría era que la erosión y la transforma­
ción geológicas eran debidas al agua y el fuego, y además dividió 
la evolución de la naturaleza en siete épocas, desde la creación del 
planeta hasta la aparición del hombre. Buffon reconoció en su His­
toria natural la contribución de Leibniz a la embrionaria geología. 
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EL PRECURSOR GEOLÓGICO 

Leibniz demostró siempre un gran interés por el estudio de la 
evolución de la Tierra y de las especies. En sus viajes siempre 
se interesaba por las colecciones de curiosidades, donde podía 
observar fósiles y restos minerales. Durante su estancia en Harz 
visitó cuevas en las que encontró huesos y dientes de animales 
prehistóricos. También recogió muchos ejemplares en sus viajes 
por Alemania e Italia. 

En Hanóver conoció a Steno, y también leyó a Kircher. Todos 
estos conocimientos desembocaron en la elaboración de su obra 
principal sobre el tema: Protogaea, escrita en 1691 y publicada en 
1749; no obstante, en 1693 salió una referencia en Acta Erudito­
rum. También incluyó un resun1en sobre su teoría de la evolución 
de la Tierra en Teodicea. Su idea era que el estudio histórico que 
estaba llevando a cabo debería comenzar con una exposición geo­
gráfica y geológica En la obra hablaba de una nueva ciencia, que 
él llama geografía natural, y que correspondería a nuestra actual 
geología. 

Protogaea es la primera obra que engloba buena parte de los 
grandes temas geológicos: el origen del planeta Tierra, la forma­
ción del relieve, las causas de la mareas, de los estratos y de los 
minerales, y el origen orgánico de los fósiles. Leibniz admite el ori­
gen ígneo del planeta y la existencia de un fuego central, tal como 
defendía Descartes. Pero a diferencia de este, que indicaba que el 
fuego era el causante de las transformaciones terrestres, Leibniz 
también consideraba el agua como agente geológico. 

En su opinión, las montañas eran debidas a erupciones an­
teriores al diluvio, provocado no solamente por las lluvias, sino 
por la irrupción de aguas del subsuelo. Hablaba además del agua 
y el viento como moldeadores del relieve y distinguía entre rocas 
ígneas y sedimentarias. 

Fue también uno de los pioneros de la teoría de la evolu­
ción, al considerar que el hecho de que los animales existentes 
no fueran iguales a los fósiles encontrados era debido a que las 
especies se habían transformado por las constantes revoluciones 
geológicas. 
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EL ESTUDIO DEL MOVIMIENTO 

Posiblemente la ciencia que más avanzó durante los siglos XVI y 
XVII fue la mecánica, el estudio de los movimientos en sus múl­
tiples aspectos. En esa época se planteó un estudio matemático 
serio de dichos fenómenos, a raíz del cual se creó la formulación 
fundamental para desarrollar la mecánica, que afecta a todos los 
ámbitos de la naturaleza. 

Dentro de esta ciencia existen dos grandes ramas: la cine­
mática, que trata del estudio del movimiento sin tener en cuenta 
las fuerzas que actúan en el proceso, y la dinámica, que se fun­
damenta en las causas que producen ese movimiento. Todos los 
grandes científicos de la época realizaron sus aportaciones a la 
mecánica, especialmente a su segunda rama. 

En el siglo VI, un seguidor de Aristóteles, de nombre Filipón, 
acuñó el término ímpetus para señalar las fuerzas impresas en 
los cuerpos, las causantes del movimiento. En la Edad Media, los 
escolásticos defendían que el movinúento es causa de una fuerza, 
y que se mantiene mientras esta actúa, extinguiéndose cuando 
cesa. En la física moderna, por el contrario, se considera que el 
movimiento se conserva sin necesidad de una fuerza constante 
que actúe sobre el móvil. 

Aunque muchos autores pensaban que ese ímpetus se con­
servaba indefinidamente si no encontraba resistencia, Nicolas de 
Oresme ( ca. 1323-1382) creía que era una fuerza que se agotaba 
espontáneamente. Esta idea le permitía explicar los movinúentos 
de los péndulos, resortes o cuerdas vibrantes. Por su parte, el es­
colástico francés Jean Buridan (1300-1358) aplicó el ímpetus para 
estudiar la caída de los cuerpos y el desplazamiento de proyecti­
les. Según decía: 

Cuando un motor mueve un cuerpo móvil imprime un cierto ímpetus 
o fuerza motriz que 3:ctúa en la dirección hacia la que el motor movía 
el móvil, sea arriba o abajo, lateralmente o en círculo. 

Pero quien realmente estableció las bases de la dinámica mo­
derna fue Galileo Galilei. Estudió también la caída de cuerpos y el 
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movimiento de proyectiles. Al principio aceptaba, como se hacía 
desde Aristóteles, que cuando un cuerpo cae va aumentando su 
velocidad hasta que llega un momento en que alcanza una veloci­
dad constante de caída. Más tarde sus experimentos le llevaron a 
describir el movimiento uniformemente acelerado. Dado que era 
muy complicado estudiar un cuerpo en caída libre, lo que hizo fue 
experimentar con bolas que caían por planos inclinados. 

Las leyes que rigen un movimiento con aceleración constante 
son bastante conocidas en la actualidad. Si consideramos que s 
representa la distancia recorrida, t el tiempo, v

0 
la velocidad ini­

cial, v la final y a la aceleración, las fórmulas fundamentales son: 

1 
s = v -t+ - (v-v) -t o 2 o , 

1 
S = V · t +-a• t2 

o 2 . 

No obstante, quien calculó el valor de la constante de la gra­
vedad para las caídas fue Huygens, que lo situó en g = 9,81 m/s2• 

Galileo planteó las siguientes leyes del movimiento: 

- Cualquier cuerpo en movimiento sobre un plano horizontal 
sin rozamientos continuará moviéndose indefinidamente 
con la misma velocidad (ley de inercia). 

- En caída libre en el vacío, todos los objetos [independien­
temente de su masa] caen una distancia determinada en el 
mismo tiempo. 

- El movimiento de un objeto en caída libre, o rodando sobre 
un plano inclinado, es uniformemente acelerado, es decir, 
se obtienen incrementos iguales de velocidad en tiempos 
iguales. 

La segunda ley chocaba con la intuición, así que para confir­
marla realizó - supuestamente- el famoso experimento en la 
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Torre de Pisa, que consistía en dejar caer dos objetos de diferente 
masa para averiguar si llegaban a la vez al suelo. Si bien es verdad 
que la fuerza de gravedad actúa más en el cuerpo con más masa, 
como esa fuerza es igual al producto de la masa del cuerpo por la 
aceleración, esta última es constante en el caso de an1bos cuerpos. 

La obra principal de Galileo fue Discursos y demostraciones 
matemáticas relativas a dos nuevas ciencias pertenecientes a 
la mecánica y al movimiento local, escrita mientras permanecía 
recluido por su disputa con la Inquisición y que tuvo que ser pu­
blicada en los Países Bajos en 1638. La obra se presenta como una 
charla entre tres personajes: Salviati, que representa el punto de 
vista galileano, Simplicio, que defiende el punto de vista aristoté­
lico, y Sagrado, un sujeto independiente y de mentalidad abierta, 
con ganas de aprender. Fue ampliamente difundida por Mersenne. 
Planteaba que si un cuerpo se desplaza por un plano horizontal, 
su movimiento unüorme se extiende indefinidamente, pero si el 
plano se acaba, sobre el cuerpo se aplica la fuerza de la grave­
dad, que le obliga a ir hacia abajo. De esa forma nacía el movi­
miento compuesto, que aplicó a los proyectiles: presentan los dos 
movimientos, el horizontal de avance y el vertical de atracción. 
También incluyó los dos movimientos más simples, el uniforme 
sin fuerza y el uniformemente acelerado, en el que el peso actúa 
como una aceleración constante. 

Su discípulo Torricelli, el iniciador de la hidrodinámica, de­
sarrolló la dinámica de los Discursos. Demostró la igualdad de las 
velocidades a lo largo de diferentes planos inclinados, que partían 
todos de la misma altura. Otro de sus seguidores, Pierre Gassendi 
(1592-1655), realizó un experin1ento que consistía en lanzar una 
piedra desde lo alto del mástil de un barco en movimiento. Según 
la intuición, la piedra debería caer alejada del mástil, pues el barco 
estaba en movimiento, pero comprobó que caía al mismo pie, con 
lo que demostraba que el movimiento es relativo y depende del 
sistema en que nos encontramos. Esto venía a solucionar la polé­
mica de por qué los pájaros no se quedaban rezagados si la Tierra 
estaba en movimiento. 

Descartes también estudió el movimiento, que definía así: «El 
movimiento no es otra cosa que la acción, por la cual un cuerpo 
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pasa de un lugar a otro». Para él el movimiento era relativo y debía 
ser definido en su relación entre cuerpos: 

El movimiento es la traslación de una parte de la materia, o de un 
cuerpo, de la vecindad de los cuerpos que lo tocan inmediatamente, 
y que consideramos como un reposo, a la vecindad de otros. 

Estudió también las fuerzas que se utilizan para elevar cuerpos 
en el espacio, indicando que: 

La fuerza que puede levantar un peso de 100 libras a la altura de 
2 pies, puede también levantar uno de 200 a la altura de 1 pie. [ ... ) 
Esa fuerza tiene siempre dos dimensiones, es decir, el producto de 
un peso por la altura. 

Si en vez de peso hablamos de masa, esa fuerza definida corres­
ponde a lo que entendemos hoy por energía potencial de un cuerpo. 

Debido al rechazo absoluto del vacío, Descartes defendía que 
el espacio estaba lleno de porciones de materia, que interactuaban 
al chocar, por lo que no aceptaba la fuerza o acción a distancia. 
Para explicar la gravedad, por ejemplo, hablaba de la propagación 
de impulsos a través de una materia etérea que llenaba el espacio. 
Las leyes del movimiento de Descartes eran: 

- Un cuerpo no cambia de movimiento ( o reposo) sino por 
choque con otro cuerpo. 

- Cada parte de la materia tiende a moverse en línea recta, 
salvo choque con otros cuerpos. 

- Cuando un cuerpo choca con otro, no puede transmitirle 
movimiento a menos que pierda otro tanto del suyo, ni 
puede privarle de él a menos que aumente el suyo en la 
misma proporción. 

Complementaba la última ley con una serie de reglas, donde 
estudiaba los distintos tipos de choque. Pero como no indicaba si 
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eran elásticos o inelásticos y no consideraba las direcciones, la 
mayoría no son ciertas. 

Lo que definía como cantidad de movimiento, el producto de 
la masa por la velocidad, era un número y defendía que se conser­
vaba. Algo erróneo si no se considera la dirección de la velocidad. 

Con la intención de aclarar la confusión entre choques, en 1668 
la Royal Society invitó a sus socios a estudiar los problemas deriva­
dos de estas situaciones, llegándose a la conclusión de que en los 
choques, la cantidad de movimiento solo se conserva si se atiende a 
la dirección y el sentido de las velocidades, es decir, se trabaja con 
su carácter vectorial, no como un escalar. 

A esa invitación respondieron John Wallis, con el estudio de 
los choques inelásticos; Christopher Wren, con el del choque elás­
tico, aunque sin basarlo en una verdadera demostración, y por úl­
timo Huygens, que trató el choque elástico a partir del principio de 
inercia, de un principio de relatividad y del postulado de que dos 
cuerpos iguales con velocidades iguales que chocan directamente 
rebotan con la misma velocidad. Su estudio sobre los choques 
entre cuerpos desiguales apareció póstumamente en 1700. 

Huygens descubrió las leyes de la fuerza centrípeta, aquella 
que retiene a un cuerpo que se mueve girando alrededor de un 
centro. Demostró que en un movimiento circular, la fuerza centrí­
peta es a la total ( m • a) como el perímetro (la longitud 2nr) es al 
radio, de donde obtenía Fe= 2nr · m:!:.., y como 

t 

s 2nr 
t=-=--, 

V V 

sustituyendo llegamos a la fórmula que dio Huygens: 

m·v2 

Fe=--. 
r 

De la expresión anterior y de la tercera ley de Kepler, según 
la cual la v2 es inversamente proporcional al r3, Newton dedujo en 
su ley de gravitación universal que la fuerza de atracción de dos 
masas era inversamente proporcional al cuadrado de la distancia: 
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F=Gm1 ·m2 
d2 ' 

donde G es la constante de gravitación universal. 

«La fuerza ejercida entre dos cuerpos de masas m
1 

y m 2 

separados una distancia d es proporcional al producto de sus 
masas e inversamente proporcional al cuadrado de la distancia.» 
- NEWTON, LEY DE GRAVITACIÓN UNIVERSAL (1687). 
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Newton, aparte de revolucionar el mundo gravitatorio, tam­
bién estudió los choques sin elasticidad y defendió la necesidad 
de fuerzas externas para crear o destruir movimiento, cambiando 
la dirección o la rapidez. El matemático inglés consideraba tres 
fuerzas distintas: 

- Vis insita o inerte: «Es un poder de resistencia de todos 
los cuerpos, en cuya virtud persevera cuanto está en ellos 
por mantenerse en su estado actual, ya sea de reposo o 
movimiento uniforme en línea recta». 

- Vis impresa: «Es una acción ejercida sobre el cuerpo para 
cambiar su estado». 

- Vis centrípeta: «Es aquella por la cual los cuerpos son 
arrastrados o impelidos, o tienden de cualquier modo 
hacia un punto como hacia un centro». 

Pone como ejemplos de esta última la gravedad o la fuerza 
que atrae al hierro hacia el imán. Es la que hace que los plane­
tas giren alrededor del Sol en lugar de seguir en línea recta. Esta 
fuerza centrípeta, que nombró Newton en honor a Huygens, crea 
movimiento y actividad en el cosmos, y la consideraba como una 
reacción a la fuerza centrífuga. 

Por su parte, Newton también planteó tres leyes del movi­
miento: 
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- Todo cuerpo persevera en su estado de reposo o movi­
miento uniforme rectilíneo salvo que fuerzas impresas 
tiendan a cambiar su estado. 

- El cambio de movimiento es proporcional a la fuerza mo­
triz impresa y ocurre según la línea recta a lo largo de la 
que se imprime dicha fuerza. 

- Con toda acción ocurre siempre una reacción igual y con­
traria; o sea, las acciones mutuas de los cuerpos siempre 
son iguales y dirigidas hacia partes contrarias. 

EL DINÁMICO LEIBNIZ 

En 1669 Leibniz estudió los trabajos de Wallis, Wren y Huygens 
sobre choques. Luego publicó su primera obra sobre el movi­
miento: Nuevas hipótesis físicas 
(1671), en la que trataba el problema 
del continuo, pues defendía, como 
los escolásticos, que la naturaleza no 
avanzaba mediante saltos. Tomaba 
el término conatus en el sentido de 
Hobbes, como una tendencia innata 
a continuar el movimiento en línea 
recta. Por eso, un cuerpo que aban-
dona un recorrido circular lo hace a 
través de su tangente. 

A finales de la década de los 
ochenta escribió Dinámica. Sobre la 
fuerza y las leyes de los cuerpos na­
turales. En la obra atacaba a Descar­
tes planteando que no es la cantidad 
de movimiento lo que se conserva en 
el universo. Para ello ponía un ejem­
plo (ver figura), que también incluyó 

• 
1 

l 1 
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Leibniz propuso 
que se necesita la 
misma fuerza para 
elevar un cuerpo 
de una libra (A) 
cuatro pies de 
altura que un 
cuerpo de cuatro 
libras (B) a un pie 
de altura. 
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en su Discurso de metafísica. Descartes decía que se debía utili­
zar la misma fuerza para subir un cuerpo de 1 libra de peso a una 
altura de 4 pies que una masa de 4 a una altura de l. Por tanto, los 
cuerpos A y B deberían tener la misma fuerza al caer. Aplicaba la 
ley de Galileo según la cual la velocidad es proporcional a la raíz 
cuadrada de la altura de caída. Según esto, al final de la caída, la 
velocidad de A será el doble que la de B y por tanto la cantidad de 

. movimiento de A será la mitad que la de B, lo que contradecía el 
postulado de Descartes. 

«Es una de mis más importantes y mejor verificadas máximas 
el que la naturaleza no realiza saltos. A esto lo he denominado 
la ley de la continuidad.» 
- LEIBNIZ, SOBRE LA LEY DE LA CONTINUIDAD DEL MOVIMIENTO, 
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Leibniz defendía que lo que se conservaba era el producto de la 
masa por la velocidad al cuadrado (mv2), lo que él llama vis viva. 
Esta fuerza viva es el doble de lo que hoy conocemos por energía 
cinética, algo que ya había defendido Huygens. Más adelante, en 
1840, se plantearía la ley de conservación de la energía tal como hoy 
la consideramos, en la que se verifica que la suma de las energías 
potencial y cinética de un cuerpo es una constante. En la Diná­
mica planteaba sus dos leyes p1incipales, la de la conservación de 
la fuerza viva y la de la continuidad del movimiento. 

En 1692 escribió Ensayo de dinámica, en el que recogía y 
organizaba todas sus ideas sobre dinámica. En él habla de la di­
ferencia entre fuerza estática o muerta, y fuerza cinética o viva. 
Pone como ejemplo de la primera la tendencia centrífuga y la gra­
vedad, manteniendo que en los choques la fuerza es viva, y surge 
de una infinidad de impresiones de la fuerza estática. La obra no 
se publicó hasta 1860, pero Leibniz presentó varios resún1enes en 
forma de artículos en Acta Eruditorum. 

Leibniz consideró por tanto la fuerza en un doble sentido. Por 
un lado, una fuerza pasiva o materia prima, que residía en la masa 
y que nunca aparecía aislada en la naturaleza. Y por otro, una 
segunda fuerza viva o activa, que era la que daba el movimiento. 
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Esta segunda fuerza se dividía a su vez en dos: una fuerza primi­
tiva, que existía en cada cuerpo en sí mismo, y una fuerza deriva­
tiva, que se consigue por el choque entre cuerpos, y que según él 
era la única que interviene en el movimiento. 

SE ACERCA EL FINAL 

Los tres últin1os años de la vida de Leibniz fueron bastante duros. 
En marzo de 1714 murió su gran amigo el duque Antonio Ulrico, 
que durante muchos años lo había respaldado ante el emperador 
y defendido frente al elector. En junio del mismo año perdió a su 
gran amiga y valedora, la electora viuda Sofía de Hanóver. Ya solo 
le quedaba la princesa Carolina, con quien solía charlar igual que 
lo había hecho antes con las dos electoras. 

Cuando un par de meses después de Sofía murió Ana, la reina 
de Inglaterra, el elector Jorge Luis pasó a convertirse en el rey 
Jorge I de Gran Bretaña, por lo que se trasladó con su corte, in­
cluido su hijo Jorge Augusto, el nuevo príncipe de Gales, a Ingla­
terra. Leibniz, que se encontraba en Viena desde hacía meses sin 
poder viajar debido a problemas de salud, hizo el esfuerzo de tras­
ladarse a Hanóver para despedirse del elector, pero llegó cuando 
ya había partido hacia las islas. 

Aunque intentó viajar a Inglaterra junto a la princesa Carolina 
el mes siguiente, tuvo que desistir por problemas de salud. Más 
tarde recibió cartas del ministro Bemstorff instándole a no viajar 
a Inglaterra y a que se centrara en la inteffi1inable historia. A prin­
cipios de 1715 el propio rey le envió una orden para que no hiciera 
ningún viaje largo hasta terminar el trabajo histórico. 

De esta manera, Leibniz pasó los últimos años de su vida sin 
ninguno de sus grandes amigos, con su movilidad cada vez más 
menguada, y viendo que el tiempo pasaba sin poder terminar su 
ingente labor. 

También comenzó una discusión con el capellán del rey, 
Sarnuel Clarke, amigo de Newton, quien ya había tenido un en­
contronazo dialéctico con la princesa Carolina sobre la filosofía 
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de Leibniz. En las cinco cartas que envió a Clarke, Leibniz atacaba 
la filosofía de Newton, indicando que sus errores principales eran, 
primero considerar que Dios necesitaba un órgano sensorial para 
percibir las cosas, pues en ese caso los objetos percibidos no de­
pendían totaimente de Dios y este no podía haberlos creado. En 
segundo lugar, defendía que en el mundo había siempre la misma 
cantidad de fuerza o vis viva, que pasaba de unas partes a otras 
según las leyes de la naturaleza, y que no necesitaba que Dios, 
como defendían los newtonianos, actuara de vez en cuando para 
hacer que todo marchara bien. La última carta que le envió Clarke 
le llegó pocos días antes de su muerte, por lo que fue la disputa 
con la que se despidió de este mundo. 

En julio de 1716 el rey Jorge visitó Hanóver y pasó unos días 
descansando en Bad Pynnont. Leibniz lo acompañó en todo mo­
mento, y al parecer había desaparecido la tensión anterior entre 
ellos. 

Sin embargo, la reconciliación le sirvió de poco, ya que el 14 
de noviembre Leibniz murió en su casa, dejando como único he­
redero a su sobrino Friedrich Simon Loffer. Ya a principios de ese 
mes la gota le había afectado las manos, lo que le impidió seguir 
escribiendo y los médicos no pudieron hacer nada por él. 

Según nos cuenta Johann Georg von Eckhart, secretario de 
Leibniz y el primero de sus biógrafos, a su funeral solo asistieron 
los amigos y familiares más cercanos. Aunque se había avisado 
a la corte, no apareció ningún representante, pese a encontrarse 
bastante cerca, lo que puede deberse a la idea bastante extendida 
de que Leibniz no era creyente. Su entierro fue el de una persona 
insignificante, y sus contemporáneos de· Hanóver no lo tuvieron en 
mucha consideración, ya que solo a finales del siglo se colocó en 
su memoria un busto en mármol blanco con la inscripción «Genio 
Leibnitii». Las academias y sociedades a que perteneció no reali­
zaron ningún acto en su honor, aunque aparecieron necrológicas 
en muchas de las revistas científicas de las que fue colaborador. 

Hasta medio siglo después de su muerte no comenzó a reva­
lorizarse su figura, en particular cuando se comenzaron a publicar 
algunos de sus ensayos y su correspondencia con grandes persona­
lidades, y a que Kant estudió a fondo su filosofía En la actualidad 
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su fama es mucho mayor que en vida, de lo que da fe la asigna­
ción del nombre de Leibniz a un cráter de la Luna en 1970, que en 
1985 se creara en Alemania el premio Leibniz, considerado como 
uno de los principales para las contribuciones científicas, o que en 
2006 la Universidad de Hanóver pasara a denominarse Universidad 
Gottfried Wilhelm Leibniz. 
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