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fue el primero en abordar con rigor matemdico un concepto de
fanto calado filoséfico como el infinito. Lo hizo a partir de una forma nueva de entender
los matemticas, la teoria de conjuntos, y fruto de su trabajo son nociones tan contrarias
a lo intuicion como que hay infinitos «mayores» que otros. Antes de sus aportaciones
fundamentales, planteadas en el dlfimo cuarto del siglo «1%, el infinito se consideraba una
ficcion G, en una tradicion de pensomiento que se remontaba a Aristdteles. El ofrevi-
miento le salid caro: sus ideas despertaron el rechazo furibundo de muchos de sus con-
tempordneos, circunstancia que bien pudo ser el desencadenante de la locura que le llevo
0 lo muerte.
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Introduccion

Cuando contemplamos el cielo en una noche estrellada y sin luna,
lejos de la interferencia de las luces de la ciudad, y nos sentimos
maravillados por el especticulo sobrecogedor que se despliega
ante nosotros, en ese mismo momento desde lo méas profundo de
nuestro ser nace un sentimiento que nos abruma con la idea de lo
pequeiios que somos comparados con el infinito.

El infinito no es solo una sofisticada idea matematica; la dua-
lidad entre lo infinito, palabra que literalmente significa «aquello
que jamés termina», y su opuesto, lo finito, lo que si acaba alguna
vez, ha acompaiiado a la humanidad probablemente desde que el
primer Homo sapiens se pregunto si el cielo termina alguna vez,
si se puede llegar hasta el horizonte, o si nuestra vida realmente
termina o si de alguna manera puede seguir indefinidamente.

Pero el infinito también es vértigo y, segin el filésofo griego
Zenén de Elea, hasta puede inmovilizar al universo; veamos qué
queremos decir con esta idea. En el siglo vi a.C., Parménides de Elea
—segun muchos autores, el padre de la metafisica occidental—
postuld la existencia del ser. La caracteristica fundamental del ser,
segin Parménides, es, justamente, la de existir; el ser existe, el ser es.

De esta premisa Parménides dedujo que el ser abarca todo
el universo, porque si hubiera aunque sea alguna pequeia region
de este donde el ser no estuviera, en esa regién el ser no existiria;
pero decir que el ser no existe es una contradiccién de términos,
es imposible. El ser, entonces, ocupa todo el universo; en otras



palabras, el universo entero, nosotros incluidos, constituye el ser.
Pero ademds, el ser es inmutable, no puede cambiar, porque si pa-
sara, digamos, de un estado A a un estado B, entonces dejaria de
existir en el estado A, y eso es imposible, porque el ser no puede
dejar de existir. El ser es, en consecuencia, todo el universo, y es
inmutable; por lo tanto, el universo es inmutable. Esto significa
que el cambio y el movimiento que creemos ver a nuestro alrede-
dor en realidad no existen; el tiempo no existe, en el ser no hay
pasado ni futuro, solamente hay ahora.

Zenon, discipulo de Parménides, planteé una serie de razo-
namientos, conocidos como las paradojas de Zendn, con los que
intent6 demostrar, en respaldo de las ideas de su maestro, que el
cambio y el movimiento no existen, que lo que creemos ver no
es mas que un engaio de los sentidos, y que la mente y la razoén,
guiadas por la l6gica, son capaces de demostrar este hecho.

Todas las paradojas de Zenén involucran el infinito de algin
modo; una de ellas dice que si arrojamos una piedra hacia un arbol
que estd a un metro de distancia delante de nosotros, entonces,
contrariamente a lo que la vista parece mostrarnos, la piedra
jamas llega al arbol; de hecho, jamas abandona nuestra mano.

Para demostrarlo, Zenén decia que antes de llegar al arbol
la piedra debe recorrer primero medio metro; pero antes de eso,
debe recorrer un cuarto de metro; y antes debe recorrer un octavo
de metro; y antes, un dieciseisavo de metro; y asi sucesivamente.
En realidad, para llegar al arbol la piedra debe completar una
cantidad infinita de pasos previos, pero es imposible completar
infinitos pasos en un tiempo finito; por lo tanto, deduce Zenén, la
piedra jamas llega al arbol. Mas atin, el mismo razonamiento que
hemos hecho para una distancia de un metro, vale también para el
primer milimetro o la primera milésima de milimetro; por lo que la
piedra, en realidad, tal como dijimos antes, nunca abandona nues-
tra mano. El infinito, como se ha expuesto, permite demostrar,
segiin Zendn, que el universo es inmutable.

En el siglo v a.C., Aristételes —el padre del estudio sistema-
tico de la légica y tal vez de la ciencia en general— escribié su
Fisica, un tratado que contiene, entre otras cuestiones, un estu-
dio del movimiento de los cuerpos; pero, desde luego, antes de
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estudiar el movimiento Aristételes debia demostrar que ese mo-
vimiento realmente existe; es decir, debia refutar los argumentos
de Parménides y de Zenon.

Si el ser esencialmente es, ;c6mo puede entonces cambiar de
estado, cémo puede dejar de ser algo? Aristételes dice que el ser
es, en efecto, pero que a veces es en potencia y a veces es en acto.
Cuando un nifio crece y se transforma en adulto, no es que deje
de ser un nifio, sino que siendo nifio era un adulto en potencia y al
crecer pasa a ser un adulto en acto. Es decir, muta del estado de
ser un adulto en potencia, al estado de ser un adulto en acto; el
nino cambid, pero nunca dejé de ser. Una semilla es una planta en
potencia, una hoja en blanco es un texto en potencia, y asf sucesi-
vamente. Siglos més tarde, Miguel Angel expresarfa una idea similar
al decir que la escultura ya existia en el bloque de marmol y que él
se limitaba a quitar lo que sobraba. Aristételes reconcilia de esta
manera la idea del ser de Parménides con la posibilidad del cambio.

Demostrado que el ser puede mutar, ;cémo se refutan los ar-
gumentos de Zenén? Todas las paradojas de Zenén suponen que
el espacio o el tiempo son infinitamente divisibles. En la paradoja
del arbol, por ejemplo, hay infinitos pasos en el espacio que media
entre la mano y el arbol. Para refutar estos argumentos, Aristételes
afirmé que el infinito no existe; o, mejor dicho, que existe, pero
solamente en potencia, nunca en acto. Infinito en potencia refiere a
una cantidad que puede crecer tanto como se quiera, pero que todo
el tiempo es finita; infinito en acto es una cantidad que, de hecho,
es infinita. Esta distincién es muy importante a la hora de pensar
el infinito y volveremos varias veces a ella a lo largo de esta obra.

Podemos admitir —dice Aristételes— la existencia de cantida-
des que crecen indefinidamente, pero que son finitas todo el tiempo;
sin embargo, no podemos admitir la existencia de cantidades infini-
tas de hecho. Podemos dividir la distancia entre la mano y el arbol
en diez partes, o en cien, o en mil, o en cualquier cantidad finita tan
grande como queramos, pero no podemos asumir que esta dividida
en una cantidad de partes que sea de hecho infinita.

Aristételes no se limité a postular la inexistencia del infinito en
acto, sino que dio una serie de argumentos para sustentar esta afir-
macién; como los argumentos de Aristételes serdn analizados a lo
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largo de este libro, no los comentaremos aqui. Sin embargo, si dire-
mos que el rechazo aristotélico al infinito en acto marcé durante méas
de dos mil afios la ortodoxia del pensamiento occidental; y, ademas
de la fuerza de los argumentos de Aristételes, muy probablemente
este dominio estuvo favorecido también por dos circunstancias.

La primera es que la mente humana es incapaz de represen-
tarse una imagen del infinito en acto, por lo que resulta muy facil
aceptar que en realidad no existe. En efecto, si podemos concebir,
quiza, el infinito en potencia, podemos pensar en una cantidad
que crece ilimitadamente; pero, insistimos, no el infinito en acto.
;Qué seria representarse, por ejemplo, la imagen de una recta
cuya longitud es infinita en acto? Seria pensar en una linea com-
pleta (es decir, lo que «vemos» con la mente no deberia ser solo
un fragmento) cuya longitud es de hecho infinita. Pero la mente no
puede abarcar esa imagen, si podemos pensar en una linea que se
pierde en el horizonte y decirnos que sigue indefinidamente, pero
en realidad estariamos «viendo» una recta infinita en potencia, ya
que nuestra «vista» solo abarca una parte. O pensemos en los ni-
meros 0, 1, 2, 3,4, 5,...; visualizarlos como un infinito en acto seria
pensarlos escritos todos juntos en una lista, todos sin excepcion,
una lista que esta completa, pero que a la vez nunca termina, una
imagen inabarcable para nuestra mente finita.

El segundo motivo por el que el rechazo aristotélico al infinito
en acto resulté convincente es que, al razonar a partir del infinito,
parece casi inevitable caer en contradicciones logicas o en conclu-
siones extranas que son contrarias al sentido comiin; como en el
caso de Zenon, a quien el infinito le permitié demostrar la inexis-
tencia del cambio y del movimiento. Otro ejemplo lo tenemos en
el siglo xvi, cuando Galileo Galilei se encontré también con con-
tradicciones que lo llevarian a rechazar la idea del infinito en acto;
en el siglo xix, por su parte, el matematico checo Bernard Bolzano
intenté desarrollar una teoria del infinito matematico, pero también
se encontro con paradojas que no supo resolver satisfactoriamente;
estos dos casos seran comentados a lo largo del presente libro.

Es cierto que hubo algunas discrepancias con respecto al pen-
samiento aristotélico; por ejemplo, en el siglo 1 d.C., el filésofo y
poeta romano Lucrecio, en su poema didactico De rerum natura
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(Sobre la naturaleza de las cosas), argumenté que el universo
debe ser infinito; en caso contrario —dice Lucrecio—, tendria una
frontera, y si arrojaramos un objeto hacia esa frontera con la sufi-
ciente fuerza como para atravesarla, entonces ese objeto pasaria
a existir fuera del universo; pero es imposible porque, por defi-
nicién, nada puede existir fuera del universo. Hoy sabemos, sin
embargo, que el argumento de Lucrecio es falaz, que el universo
puede ser finito sin tener una frontera, de la misma manera que la
superficie de una esfera es finita, pero sin tener una frontera. De
hecho, segiin las modernas teorias cosmolégicas, es muy proba-
ble que el universo en su conjunto sea finito. Pero las disidencias
fueron escasas y aisladas, y el pensamiento aristotélico sobre el
infinito, como dijimos antes, dominé en la filosofia y también en las
matematicas; al menos hasta la década de 1870. En esa época, el
matematico ruso-aleman Georg Cantor se vio llevado por la légica
de sus investigaciones, casi contra su voluntad segiin sus propias
palabras, a introducir en las matematicas el estudio del infinito
en acto. La tarea no fue facil, no solo por las dificultades que ella
conlleva, sino también por la dura oposicién que encontré entre
muchos de sus colegas; no era facil romper con una tradicién de
milenios y Cantor llegé a ser tratado de «cientifico charlatan» y
«corruptor de la juventud».

Sin embargo, Cantor no se detuvo, e impulsado por la convic-
ci6n de que una teoria matematica del infinito era posible, y hasta
necesaria, y guiado por una légica inflexible, desarroll6 una de las
teorias mas asombrosas que hoy se conocen; pero abrié ademas
la posibilidad de un modo nuevo de pensar a las matematicas en
su conjunto, un modo mas libre y potente.

Uno de los conceptos mas originales que introdujo Cantor es
el de los ordinales; la teoria de los ordinales serd comentada en las
siguientes paginas, por lo que no entraremos aqui en sus detalles;
basta decir que se trata, esencialmente, de nimeros que permiten
contar mas alla del infinito. Después de los infinitos nimeros 0, 1, 2,
3,4, 5,... —dice Cantor—, viene el miimero infinito (es decir, el or-
dinal) w, el simbolo es la letra griega omega mintscula; luego vienen
w+1, w+2, w+3,...; y después de esta nueva serie de infinitos ordi-
nales viene w+w, y luego w+w+ 1, w+w+2,...; y asi sucesivamente.
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Pero, jes licito inventar nimeros asi como asi? ;Qué representa
ese «nimero» w? Hasta el siglo xix, todos los conceptos con los que
trabajaban los matematicos estaban fuertemente ligados a proble-
mas que podemos llamar «concretos», a situaciones que podian ser
visualizadas o asociadas con hechos reales; como la descripcién
de fenémenos fisicos, el estudio de las propiedades de los objetos
geométricos, o las propiedades de las cantidades finitas (1, 2, 3, 4,...).
El nimero 0, por ejemplo, que representa una «cantidad que no es»,
debi6 esperar muchos siglos antes de ser reconocido como un ni-
mero de pleno derecho; otro tanto puede decirse de los niimeros
negativos, cuya existencia, por ejemplo, era todavia rechazada por
Leibniz, en una fecha tan cercana como principios del siglo xvm. Los
nimeros, en general, solo eran aceptados si representaban, de algin
modo, una cantidad que pudiera visualizarse de manera concreta.

El niimero o representa una cantidad infinita en acto, no re-
presenta ningiin objeto concreto ni ningiin fenémeno fisico, ni
puede visualizarse mas que con los ojos de la mente. Pero Cantor,
con su pensamiento riguroso, nos obligd a aceptarlo como exis-
tente, y su modo de entender las matemaéticas debié cambiar para
adaptarse a este hecho. Es asi como, hoy en dia, ya no se exige a
los objetos matematicos que tengan un correlato real o que sean
la representaciéon de un fenémeno concreto; solo se les pide co-
herencia logica, y dentro de esa tnica exigencia los matemaéticos
actuales son libres de crear, estudiar, manipular y analizar con-
ceptos, ideas y teorias.

La esencia de las matematicas cambié después de Cantor, y
él mismo hubiera visto con enorme satisfaccién este nuevo es-
tado de cosas, estado en el que los matematicos pueden crear
libremente teorias y conceptos. Podemos afirmar que Cantor lo
hubiera visto con satisfaccién, porque fue él quien dijo que las
matemdticas puras debian ser llamadas con mds propiedad ma-
temdticas libres, porque, seglin sus propias palabras, «la esencia
de la matematica radica precisamente en su libertad».
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1845

1856

1862

1863

1867

1869

1872

1874

El 3 de marzo, en San Petersburgo,
Rusia, nace Georg Ferdinand Ludwig
Philipp Cantor, hijo de Georg Waldemar
Cantor y de Maria Anna Bohm.

La familia Cantor se muda a Alemania.

Cantor desea estudiar matematicas,
pero su padre se opone e ingresa en

el Politécnico de Zirich para estudiar
ingenieria. Pocos meses después, el
padre le da su permiso para que estudie
matematicas, en el mismo centro.

Muere su padre; Georg y su madre se
mudan a Berlin, donde completara sus
estudios de matematicas.

Obtiene el doctorado en matematicas
en la Universidad de Berlin.

Comienza a trabajar en la Universidad
de Halle.

Conoce a Richard Dedekind. Muchas
de las ideas de Cantor sobre el infinito
saldran a la luz por primera vez en
cartas escritas a Dedekind.

Se casa con Vally Guttmann; los
Cantor tendrén seis hijos. Ese mismo
ano se publica su articulo «Sobre una
propiedad caracteristica de la totalidad
de los nimeros reales algebraicos»,
donde aparecen por primera vez sus
ideas sobre el infinito, aunque, por
recomendacién de Karl Weierstrass,
esas ideas estdn «ocultas».

1878

1883

1884

1890

1892

1895

1899

1918

Se publica «Una contribucién a la
teoria de las variedades», donde Cantor
plantea explicitamente sus ideas sobre
el infinito. Leopold Kronecker pone en
Jjuego toda su influencia para evitar que
el articulo se publique.

Publicacién de «Fundamentos para
una teoria general de variedades», que
constituye el punto culminante de la
creatividad matematica de Cantor.

En mayo sufre un ataque depresivo,
y abandona toda investigacién
matematica durante mas de cinco afios.

Se crea la Unién Matematica Alemana
y Cantor es elegido como su primer
presidente.

Se publica «Sobre una cuestién
elemental de la teoria de las
variedades», donde aparece su famosa
«demostracion de la diagonal».

Publicacién de la primera parte de
«Contribuciones a la creacién de una
teoria de los conjuntos transfinitos»;
la segunda parte vio la luz en 1897.

El 16 de diciembre muere su hijo
Rudolf, de trece afios. La pérdida
desencadena en Cantor una
enfermedad mental de la que
nunca se recupero.

Fallece en la clinica psiquiatrica
de Halle el 6 de enero.
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CAPITULO 1

El comienzo del infinito

Hay algunas preguntas que han acompaiado
a la humanidad desde que los primeros hombres
y mujeres se sentaron alrededor del fuego a pensar e
indagar acerca de todo aquello que los rodeaba. ;El mundo
existe desde siempre 0 comenzé a existir en algin
momento? ;Dejara alguna vez de existir? ;Tiene
el cielo un final o podriamos vigjar por él
indefinidamente? Detras de todas estas
preguntas subyace uno de los conceptos
mas potentes y maravillosos jamas
concebidos: el infinito.






Casi todas las ramas de las matematicas son el resultado de un
largo proceso histérico que se fue desarrollando a lo largo de dé-
cadas o siglos, con el aporte de muchas personas, y en el que
suele ser muy dificil, por no decir imposible, sefialar claramente
un unico iniciador. Por supuesto, este es el caso de las ramas
mas antiguas de las matematicas, como la geometria o el algebra,
cuyos comienzos se remontan al antiguo Egipto o a la antigua
Mesopotamia; pero también es el caso de ramas maés recientes,
como el célculo, por ejemplo, que fue creado a finales del siglo xvn
simultdnea e independientemente por dos ilustres matematicos,
el inglés Isaac Newton y el aleman Gottfried Wilhelm von Leibniz,
quienes en realidad dieron forma a ideas que muchos precursores
habian estado investigando durante siglos (hablaremos un poco
mas sobre la historia del calculo en el capitulo 3).

Sin embargo, la teoria matematica del infinito (y la teoria de
conjuntos, ya que, como veremos en estas paginas, ambas teorias
son esencialmente la misma) es el fruto del talento y de la imagi-
nacién de un solo hombre, que la creé casi de la nada, el matema-
tico ruso-aleman Georg Cantor.

Inclusive es posible sefialar el momento casi exacto en el que
Cantor dio el salto creativo que le llev6 a su teoria; en una carta
fechada el 5 de noviembre de 1882 le escribi6 a su amigo y colega
Richard Dedekind:
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Precisamente desde nuestros 1ltimos encuentros en Harzburg y Ei-
senach [ciudades alemanas en las que ambos se habian encontrado
en septiembre de 1882], Dios Todopoderoso me ha concedido alcan-
zar las aclaraciones mas notables e inesperadas en la teoria de con-
juntos y en la teoria de niimeros [se refiere, como veremos en el ca-
pitulo 4, a nimeros infinitos], o, mas bien, que encontrara aquello que
ha fermentado en mi durante afos y que he buscado tanto tiempo.

:Como alcanzé Cantor estas «aclaraciones tan notables»?
¢Qué desencadené ese «fermento»? Para comprenderlo, iremos
avanzando paso a paso a lo largo de estas paginas por el camino
que siguieron las ideas de Cantor. Comenzaremos, como corres-
ponde, por el principio.

DE SAN PETERSBURGO A HALLE

Georg Ferdinand Ludwig Philipp Cantor nacié en San Peters-
burgo, Rusia, el 3 de marzo de 1845. Su padre, Georg Waldemar
Cantor, era un exitoso comerciante de origen danés, muy religioso
y amante de la cultura y de las artes. Su madre, Maria Anna Bohm,
era hija de dos eximios violinistas rusos y, ella misma también,
una virtuosa del violin. El propio Georg heredé ese talento para
la miisica y afios mas tarde, un poco en broma, un poco en serio,
se lamentaria de que su padre no le hubiera permitido convertirse
en violinista profesional.

La musica y el arte en general fueron siempre muy importan-
tes en la vida de Cantor. De hecho, el arte y las matematicas no
eran para él dominios alejados entre si; por el contrario, siempre
creyo que el trabajo del matematico estaba muy ligado a la crea-
tividad artistica (idea que es compartida por muchos matemati-
cos actuales, entre quienes se cuenta el autor de estas lineas).
Por ejemplo, en 1883, en el articulo donde volcé las «notables
aclaraciones» de las que hablaba en su carta a Dedekind, Cantor
escribié: «La esencia de la matemdtica radica precisamente en su
libertad» (las cursivas son del original). En ese mismo texto dice:
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Debido a esta posicién destacada, que la distingue de todas las demas
ciencias y proporciona una explicacién del caracter relativamente
facil y desenvuelto que el ocuparse de ella tiene, merece especial-
mente el nombre de matemdtica libre, una denominacién a la que,
si fuese mia la eleccién, daria preferencia sobre la de matematica
«pura», que ha llegado a ser usual.

Es decir, el matematico tiene la libertad de dejar volar su ima-
ginacion, la libertad de crear conceptos, siempre y cuando estos
no conduzcan a contradicciones légicas. Pero si esas contradic-
ciones l6gicas no se producen entonces, afirmaba Cantor, puede
asegurarse que los objetos asi creados existen realmente. El ma-
temaético, al tener el poder de crear nuevos conceptos, es tanto
un cientifico como un artista. Estas ideas, ademas de reflejar el
pensamiento de Cantor, tenian para él, en ese histérico articulo
en particular, una finalidad «estratégica» de la que hablaremos en
los préximos capitulos.

Pero volvamos ahora una vez més a los primeros afos de la
vida de Cantor. Su padre tenia una salud muy fragil y a causa de
ello en 1856 los médicos le aconsejaron que dejara los crudos in-
viernos de San Petersburgo y se mudara a alguna region de clima
més templado. Cantor padre liquidé entonces todos sus negocios
y se trasladé con la familia a Alemania. Inicialmente, los Cantor vi-
vieron en la ciudad de Wiesbaden, donde Georg asisti6 al Gymna-
sium (el equivalente alemén de la escuela secundaria), pero poco
tiempo después se trasladaron a Frankfurt.

Georg recordé siempre con nostalgia su infancia en San Pe-
tersburgo, més ain, a pesar de que vivié en Alemania el resto de
su vida, nunca se sintié completamente a gusto alli. Es interesante
agregar que, hasta donde se sabe (y esto es caracteristico de su
personalidad roméntica y a veces exaltada), desde 1856 en ade-
lante nunca volvié a escribir en ruso.

Durante sus afios en el Gymnasium los informes escolares
destacaron siempre la notable habilidad de Cantor para las mate-
madticas, y aunque en un principio su padre insistié en que estu-
diara ingenieria, finalmente en 1863 ingresé en la Universidad de
Berlin para estudiar la que era su verdadera vocacién, podriamos
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decir que su pasion, las matematicas. En esa época, la Universidad
de Berlin era uno de los centros de investigacion matemaética mas
importantes del mundo. Por ejemplo, ensefiaban alli los renom-
brados matemaéticos Karl Weierstrass y Ernst Kummer, que fueron
ambos profesores de Cantor. También lo fue Leopold Kronecker,
quien volvera mas adelante a estas paginas, dado que llegaria a
transformarse con el tiempo en uno de los enemigos mas impla-
cables de la teoria del infinito.

Cantor se doctoré en Berlin en 1867 y dos afios mads tarde
obtuvo una plaza de profesor en la Universidad de Halle. Hablare-
mos en el préximo capitulo de sus primeros tiempos en esta ciu-
dad, pero podemos adelantar que fue alli, en Halle, donde Cantor
desarroll6 su teoria del infinito matematico, es decir, donde hizo
los descubrimientos que le llevaron a ocupar el lugar destacado
que tiene en la historia de las matematicas.

Pero estas ideas no se impusieron ficilmente, sino que halla-
ron mucha resistencia. Como muestra de esa resistencia ya hemos
mencionado a Kronecker, quien haria todo lo posible para que las
ideas de Cantor no se difundieran, Otro ejemplo que podemos aiia-
dir data de 1874, cuando Cantor quiso publicar sus primeros des-
cubrimientos acerca del infinito. Al ver el borrador de su articulo,
Weierstrass le aconsejé que no hiciera mencion a las consecuen-
cias mas radicales de los teoremas expuestos en €l; de hecho, le
aconsej6 que no incluyera ninguna referencia explicita al infinito.

.Por qué se produjeron estas reacciones tan adversas? ;Qué
consecuencias implicaba el articulo de 1874 y por qué esas conse-
cuencias eran tan revolucionarias? Para responder estas pregun-
tas, tenemos que conocer primero la historia del infinito.

EN POTENCIA O EN ACTO

:Qué es el infinito? Con mayor precisién, ;qué queremos decir
cuando afirmamos que una coleccion de objetos es infinita? Antes
que nada, aclaremos que usaremos aqui la palabra «objeto» en su
sentido mas amplio, incluyendo objetos abstractos o imaginarios.
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Podriamos hablar, por poner un ejemplo, de la coleccién formada
por todos los dias del mes de diciembre del afio 3000.

Hecha esta aclaracion, volvamos a la pregunta inicial, y para
comenzar a acercarnos a su respuesta analicemos primero el con-
cepto opuesto, mucho mas familiar, de finitud. Preguntémonos
entonces qué significa que una coleccién de objetos sea finita.

La palabra «finita» quiere decir, literalmente, «que termina»,
«que no sigue indefinidamente». Con esta idea en mente, pode-
mos afirmar que una coleccién de objetos es finita si es posible,
al menos en teoria, contar uno por uno todos los objetos que la
forman de modo que la cuenta termine en algiin momento.

La coleccion de todos los dias del mes de diciembre del aifio
3000, que mencionabamos antes, es finita. Para mostrar otro ejem-
plo, imaginemos que a cada una de las personas adultas que viven
hoy sobre la Tierra le pedimos que cierre herméticamente una
botella llena de aire. La coleccion formada por todas las molécu-
las de oxigeno contenidas en esos miles de millones de botellas
también es finita. Por supuesto, en este tltimo caso seria extrema-
damente dificil en la practica contar uno por uno todos los objetos
que forman la coleccién, pero las dificultades practicas no son
relevantes para el concepto de finitud, el punto importante es el
hecho teédrico de que la cuenta terminaria en algliin momento, aun
cuando ese momento tarde siglos en llegar.

Por oposicién, una coleccién es infinita si al intentar con-
tar uno por uno todos los objetos que la forman resulta que esa
cuenta nunca termina. Conviene enfatizar que en esta definicién
no estamos usando la palabra «nunca» en un sentido metaférico,
como sinénimo de «por muchisimo tiempo», sino que, por el con-
trario, «<nunca» debe ser entendida aqui en el sentido mas potente
y literal de «jamas por toda la eternidad».

La idea del infinito, y esta distincion que haremos es muy
importante, puede ser entendida a su vez de dos maneras bien
diferentes. El infinito puede ser en potencia o puede ser en acto.

Para comprender la diferencia entre una y otra manera de ver el
infinito imaginemos un escriba que se ha propuesto la tarea de ano-
tar, uno por uno, todos los niimeros naturales (que son los niimeros
que se obtienen a partir del 0, sumando 1 cada vez; es decir, los ni-
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meros 0, 1, 2, 3, 4,...). El escriba comienza a anotar y después de un
rato llega al niimero cien, mas tarde al mil y mas adelante al diez mil.

Observemos que el trabajo que el escriba se ha impuesto
nunca terminard porque, por ejemplo, cuando llegue al niimero
cien mil, debera seguir con el cien mil uno, cuando llegue al millén,
debera seguir con el niimero un millén uno, y asi sucesivamente.
Nunca llegara al dltimo niimero natural, simplemente porque tal
iltimo niimero natural no existe; siempre habrd un nimero mas
por escribir, y otro, y otro.

«Protesto contra el uso de magnitudes infinitas como algo
completo, lo que en matematicas nunca se permite.»

— CARL FrIEDRICH GAUSS, EN UNA CARTA ESCRITA EN 1831.

En algiin momento el escriba se da cuenta de que no le al-
canzard la vida para completar la tarea, y entonces entrena a un
discipulo para que, llegado el momento, contintie con el trabajo
de anotar los niimeros. Este segundo escriba, a su vez, entrenara
a su propio discipulo, y asi sucesivamente por tiempo indefinido.

;Es infinita la coleccién de todos los niimeros anotados por
estos escribas? La respuesta es que si, es infinita, pero solo en un
sentido potencial. La coleccién de los niimeros anotados no es una
coleccion estitica, sino que estd en constante crecimiento, un cre-
cimiento sostenido que no se detendra jamas. Fijado un instante
cualquiera en el tiempo, no importa lo lejano en el futuro que esté,
la coleccién de todos los niimeros escritos hasta ese preciso mo-
mento serd finita, pero seguira siempre creciendo sin limitaciones.

Hablamos entonces de un infinito en potencia, o potencial,
cuando pensamos en una coleccién que es siempre finita, pero
que puede ser aumentada indefinidamente sin restricciones. La
infinitud estd pensada en este caso como una propiedad negativa,
asociada a la imposibilidad de completar una tarea.

Pero pensemos ahora en la coleccién formada por todos los
niimeros naturales, absolutamente todos sin excepcién (sin im-
portar si no han sido escritos). Se trata obviamente de una co-
leccién que es también infinita, pero en este caso se trata de un
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infinito estatico, completo. En esta nueva coleccién estan todos
los niimeros, no queda ya nada por agregar. Hablamos en este
caso de un infinito en acto, o infinito actual.

Podemos extender la misma idea a magnitudes, como pesos,
volimenes o longitudes. Si dibujamos, por ejemplo, un segmento
(un trazo recto que conecta un punto A con un punto B), su lon-
gitud serd obviamente finita. Pero la geometria nos dice que po-
demos prolongar esa linea tanto como queramos, y si admitimos
que esa prolongacion puede seguir indefinidamente, tendremos
entonces un trazo cuya longitud es infinita en potencia. Es decir,
es finita en todo momento, pero puede crecer de modo indefinido
(figura 1).

Sin embargo, las rectas que considera la geometria moderna
tienen una longitud que se supone infinita en acto, estas rectas
no tienen extremos y se extienden indefinidamente sin principio
ni fin. Notemos que, de hecho, una recta es imposible de dibujar.

Es interesante observar que, hasta donde se sabe, todas las
colecciones o las magnitudes relacionadas con fenémenos na-
turales nunca son infinitas en acto; por el contrario, la mayoria
son finitas y solo unas pocas son, quizd, infinitas pero solamente

en potencia. Por ejemplo, seguin las
teorias fisicas hoy en dia vigentes,

/‘B o la materia no es infinitamente di-
visible, sino que cada atomo esta

formado por una cantidad finita de

/ particulas elementales indivisibles.
A Es posible, incluso, que ni el espa-
cio ni el tiempo sean infinitamente
B 5

divisibles.
4 Por otra parte, los cosmoélogos
5 afirman que es muy probable que
- el universo en su conjunto tenga
un volumen y un didmetro que son
B solo potencialmente infinitos (el
7 didmetro del universo es la mayor
distancia que puede medirse entre

dos puntos del mismo).
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Si resultara que es cierto que el universo continuara expan-
diéndose de modo indefinido, entonces su edad medida en se-
gundos también seria solo potencialmente infinita. Para trazar un
paralelismo con el ejemplo de los escribas, podemos imaginar a
estas personas anotando un nimero por cada segundo transcu-
rrido desde el Big Bang; la colecci6n de todos los segundos regis-
trados estaria en perpetuo crecimiento, pero siempre seria finita.

«El nimero de granos de arena que contendria una esfera
del tamafio de nuestro cosmos es menor que 1000 unidades del
séptimo orden [es decir, un 1 seguido de 51 ceros, una cantidad

enorme, pero finita].»

— ARQUIMEDES, EN EL ARENARIO.

En resumen, tiempo, materia y espacio serian todos finitos,
o a lo sumo infinitos en potencia. No debe resultarnos extraiio,
entonces, que en el siglo v a.C. Aristételes afirmara que el infinito
en acto simplemente no existe.

EL INFINITO DE ARISTOTELES

Aristételes fue el primero en estudiar la distincién que hay entre
«ser en potencia» y «ser en acto». Por ejemplo, podemos decir
que un nifio es un adulto en potencia o que un bloque de marmol
es potencialmente una escultura. Cuando el nifio crece se trans-
forma, en acto, en un adulto; el escultor, por otra parte, convierte
al bloque de médrmol en una escultura que existe en acto. «Se da
igualmente el nombre de sabio en potencia hasta al que no estu-
dia», dice Aristételes en el Libro IX de su Metafisica, quiza con un
toque de humor. Pero en relacién al infinito, en ese mismo texto
establece que:

La potencia respecto al infinito no es de una naturaleza tal que el
acto pueda jamas realizarse.

EL COMIENZO DEL INFINITO
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Es decir, el infinito siempre es en potencia, nunca en acto. A
lo largo de mas de dos mil afos, concretamente hasta mediados
del siglo x1x, este rechazo aristotélico al infinito en acto fue soste-
nido por casi toda la ortodoxia del pensamiento occidental, tanto
filoséfico como matematico. Vale la pena entonces detenerse en el
analisis de al menos dos de los argumentos que expuso Aristételes
para justificar su afirmacion.

«La expresion “existencia potencial” no se debe tomar en el
sentido en que se dice, por ejemplo, “esto es potencialmente una
estatua, y después sera una estatua”, pues no hay un infinito tal
que después sea en acto.»

— ARISTOTELES, EN FfSICA, HABLANDO DEL INFINITO.
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En primer lugar, en el Libro III de su Fisica, Aristételes dice
que es inadmisible aceptar la existencia del infinito en acto porque
no hay en el universo un cuerpo cuyo volumen sea infinito en acto,
o un intervalo de tiempo cuya longitud sea actualmente infinita. En
una palabra, porque no existen magnitudes que sean infinitas en
acto. Aristoteles justifica esta inexistencia mediante argumentos
filos6ficos. Sin embargo, no necesitamos explayarnos aqui en ellos
ya que, como dijimos mds arriba, la fisica moderna le da la razén.
Por ejemplo, si el universo tiene un volumen que es solamente in-
finito en potencia, entonces no puede contener en su interior un
cuerpo cuyo volumen sea infinito en acto.

Dado que no existen magnitudes infinitas, tampoco tiene sen-
tido hablar de «ntimeros infinitos en acto» o de «cantidades infi-
nitas en acto», pues esas cantidades infinitas no medirian nada en
absoluto, carecerian de todo sentido.

Comparemos estos argumentos aristotélicos (que, como diji-
mos, dominaron el pensamiento occidental durante milenios) con
la carta que citamos al comienzo del capitulo, en la que Cantor le
decia a Dedekind que habia podido alcanzar las «aclaraciones mas
notables e inesperadas» en la teoria de los niimeros infinitos. Esta
contradiccion con las ideas de Aristételes nos da un primer atisbo
de por qué la teoria de Cantor fue tan revolucionaria y resistida.
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El segundo argumento que va-
mos a comentar, que Aristoteles ex- .._ Clvciilis
pone en el Libro VIII de su Fisica,
afirma que no es cierto que un seg-

FiG. 2

« <+— Un «punto gréafico» es un circulo

pequefo,
memfo esjcé formado por una canti- +— Un «punto matematicon en realidad
dad infinita de puntos. Aristételes es invisible.

plantea una justificacién filoséfica
para esta afirmacién, pero podemos
traducirla a un razonamiento matematico.

Aclaremos que cuando decimos «punto» nos referimos a un
«punto matematico», es decir, un objeto que carece de longitud,
anchura y altura. El «punto ortografico» que el lector puede ver
al final de una oracién en una pagina impresa no es un punto ma-
tematico, en realidad es un circulo muy pequefio o, mis exacta-
mente, un cilindro de tinta de base muy reducida, pero no nula, y
de altura pequerfiisima, pero tampoco nula (figura 2).

Entonces, un punto matematico tiene, por definicién, una
longitud que es exactamente igual a cero. Si reunimos muchos
puntos, la longitud total que obtendremos serd 0 + 0+ 0 + 0 +...
Pero, no importa cuantas veces sumemos cero, ya sea una can-
tidad finita o infinita de veces (aun si esto tltimo fuera posible),
la longitud total que obtendremos seguira siendo siempre cero.
En conclusién, si un segmento estuviera formado por puntos,
su longitud total seria cero. Pero sabemos que las longitudes de
los segmentos no son iguales a cero, y por lo tanto no pueden
estar formados por puntos. Volveremos a esta paradoja en el
capitulo 3; alli veremos qué es lo que tiene que decir al respecto
la teoria de Cantor.

Como consecuencia de este razonamiento, seria imposible
dividir un segmento en una cantidad infinita de partes. Tomemos,
por ejemplo, un segmento de 10 cm de longitud. Si lo dividimos en
10 partes iguales, cada una de ellas medirad 1 cm. Si lo dividimos
en 100 partes iguales, cada una medira 0,1 cm. Si lo dividimos en
1000 partes iguales, cada una medira 0,01 cm de longitud. Pero si
lo dividiéramos en una cantidad infinita de partes iguales, cada
una de ellas mediria 0 cm; es decir, el segmento estaria formado
por partes de longitud exactamente cero. Pero ya vimos que esto
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NUMEROS PERFECTOS

Una conjetura es una afirmacién matematica de la que todavia no se sabe
si es verdadera o falsa; muchas conjeturas se relacionan directamente con
el infinito, un ejemplo es la conjetura de los numeros perfectos. Un nimero
perfecto es un numero que es igual a la suma de sus divisores (incluido el 1,
pero sin incluir al nimero en sf). Por ejemplo, el 6 es perfecto, ya que sus di-
visoresson 1,2y 3,y 6 = 1+2+3; otro niumero perfecto es 28 = 1+2+4+7+14,
La conjetura, aun no demostrada ni refutada, dice que existen en realidad
infinitos numeros perfectos.

tiltimo es imposible; por lo tanto, no se podria dividir un segmento
en infinitas partes.

Aristételes dice que este dltimo argumento niega el infinito
por divisién (no se puede dividir un objeto en infinitas partes),
mientras que el argumento de las magnitudes infinitas que vimos
antes niega el infinito por adicién (no hay cantidades infinita-
mente grandes). En todos los casos, Aristételes concluye que el
infinito en acto no existe.

EL INFINITO DE GALILEO

A partir de la Edad Media, el rechazo aristotélico al infinito en
acto adquirié ademas una dimension religiosa. Por ejemplo, en el
siglo v, san Agustin en La ciudad de Dios, su obra mas famosa,
argumenta que la divinidad, como Ser omnisciente, conoce la to-
talidad de los nimeros naturales y que afirmar lo contrario es
«hundirse en un remolino de impiedad». Y agrega que «la infini-
tud del niimero no es incomprensible para aquel cuya inteligencia
no tiene limite». Es decir, el infinito en acto existe, pero su cono-
cimiento estd reservado a la inteligencia ilimitada de Dios; luego,
pretender que la mente humana pueda comprender el infinito
seria equipararla con la mente divina y, por lo tanto, una herejia.
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Georg Cantor, que era un hombre muy religioso, tenia bien
presente esta cuestion y, como veremos mas adelante, le pesaba
en su 4nimo al momento de desarrollar su teoria matematica del
infinito en acto.

Avancemos algunos aiios y consideremos ahora los Didlogos
acerca de dos nuevas ciencias (1638), de Galileo Galilei (1564-
1642). Como su nombre indica, la obra esti escrita en forma de
dialogo; los que conversan en ella son tres personajes, Salviati, que
expresa las ideas del propio Galileo, Sagredo, un hombre culto de
la época, y Simplicio, que expone las ideas del saber tradicional,
especialmente las basadas en la obra de Aristételes.

Las dos nuevas ciencias a las que se refiere el titulo son la
estdtica y la dinAmica, y el libro en su conjunto es una critica a las
leyes aristotélicas del movimiento. Pero, aunque Galileo se dedica
a demoler buena parte de la fisica de Arist6teles, mantiene sin
embargo la suspicacia aristotélica hacia el infinito en acto. Vea-
mos sus argumentos, que nos interesan especialmente porque de
alguna manera prefiguran ideas posteriores de Cantor.

Para comenzar, imaginemos un enorme salén de baile en el
que hay una cantidad grande, aunque finita, de hombres y mujeres
(figura 3). E imaginemos también que queremos saber si en ese
salén hay mas hombres que mujeres, o si hay mas mujeres que
hombres, o si hay la misma cantidad de ambos.
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Una manera de resolver la cuestién es contar cuidntas mu-
jeres hay en el salén, después contar los hombres y finalmente
comparar ambas cantidades. Dado que las cantidades involu-
cradas son finitas, esto puede hacerse sin problemas. Pero hay
una manera mas ingeniosa de obtener la respuesta, que consiste
simplemente en poner musica e invitar a todos los presentes a
bailar en parejas (figura 4). Para que nuestro razonamiento sea
vélido, cada pareja de baile debera estar formada por un hombre
¥ una mujer.

Si cada hombre logra formar pareja con una mujer, y nin-
guna mujer ni ningiin hombre quedan solos, entonces podremos
afirmar que en el salén hay la misma cantidad de hombres que
de mujeres. Por el contrario, si todas las mujeres estdn bailando
y quedan, no obstante, hombres solos, entonces podremos decir
que hay mads hombres que mujeres. Para finalizar, si todos los
hombres estdn bailando, pero quedan mujeres solas, entonces
podremos afirmar que hay mayor cantidad de mujeres que de
hombres.

En resumen, si tenemos dos colecciones finitas y podemos
emparejar cada miembro de una coleccién con exactamente un
miembro de la otra, de modo que no sobre ninguno, entonces
podemos asegurar que las dos colecciones tienen exactamente
la misma cantidad de miembros. ;Podemos extender esta idea a
colecciones infinitas?

EL COMIENZO DEL INFINITO



«EL LIBRO DE ARENA»

El libro de arena es un cuento del escritor
argentino Jorge Luis Borges, y esta in-
cluido en el volumen del mismo nombre
publicado en 1975. En el cuento, el narra-
dor —el propio Borges— adquiere de un
vendedor ambulante un libro que, segun
descubre, tiene infinitas paginas. El libro
no tiene comienzo ni fin y cuando se ha
visto una pagina es imposible volver a
encontrarla. Asustado por este objeto
gue él considera monstruoso, Borges
piensa en quemarlo, pero teme que la
combustién de un libro infinito sea «pa-
rejamente infinita» y sofoque de humo a
todo el planeta, por lo que finalmente lo
esconde al azar en medio de todos los
libros de la Biblioteca Nacional de Bue-
nos Aires. Jorge Luis Borges en 1976.

Galileo, a través de las palabras de Salviati, considera dos
colecciones en particular: por un lado, la que estd formada por
los ntiimeros naturales, 0, 1, 2, 3, 4, 5,..., y por otro, la coleccién
de los niimeros cuadrados, que son aquellos que se obtienen mul-
tiplicando cada niimero natural por si mismo, 0, 1, 4, 9, 16, 25,...
Es evidente, dice Galileo, que los niimeros cuadrados y los no
cuadrados, todos reunidos, son mas que los nimeros cuadrados
por si solos.

En consecuencia, parece obvio que en la primera colecciéon
hay més nimeros que en la segunda. En realidad, Galileo co-
mienza a contar desde el 1 y no desde el 0 como hicimos nosotros,
pero eso no cambia la esencia del razonamiento.

Pero, por otra parte, sigue diciendo Galileo, es posible empa-
rejar perfectamente cada niimero de la primera coleccion con un
nimero de la segunda. Para lograrlo, basta asociar cada nimero
natural con su cuadrado:
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Este emparejamiento nos dirfa que hay la misma cantidad
de cuadrados que de nimeros naturales, contradiciendo lo que
dijimos antes en el sentido de que hay mas naturales que cua-
drados. Entonces, ;hay mas naturales que cuadrados o hay la
misma cantidad? ;Cémo resolvemos esta paradoja? La respuesta
de Galileo es:

Los atributos de «igual», «mayor» y «menor» no tienen lugar en los
infinitos, sino solo en las cantidades limitadas [o sea, finitas].

En otras palabras, su conclusién es que es absurdo comparar
colecciones infinitas y que es inaceptable decir de un infinito que
es igual, menor o mayor que otro infinito. No obstante, unos 250
afios mas tarde, Georg Cantor se atrevié a medir y a comparar
colecciones infinitas, y a sacar de esta comparacion algunas con-
clusiones que seguramente tanto Galileo como Aristételes habrian
considerado inadmisibles. Hablaremos de este tema en el préximo
capitulo.
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CAPITULO 2

Cardinales

Aristoételes, Galileo y otros muchos pensadores
anteriores al siglo xix estaban de acuerdo en afirmar
categoéricamente que no tiene ningin sentido hablar de
la cantidad de miembros de una coleccién infinita. En la
década de 1870, esas ideas eran todavia tan dominantes
que la mas elemental prudencia habria indicado que no
convenia cuestionarlas seriamente, y mucho menos
en un articulo cientifico. Sin embargo, en 1874 Cantor
introdujo por primera vez el concepto de «cantidad
de elementos de un conjunto infinito»,

y a ese concepto le dio el nombre
de «cardinal de un conjunto».






Después de haber obtenido su doctorado, y mientras atn residia
en Berlin, Cantor publicé tres articulos en la Zeitschrift fiir Ma-
thematik und Physik («Revista de matematicas y fisica»), uno de
ellos en el afio 1868 y los otros dos en 1869. El primero es un tra-
bajo sobre un tema muy clasico de aritmética, resuelto mediante
métodos que ya en aquella época no eran novedosos, pero en los
otros dos articulos Cantor comenzaba a tomar el camino que ter-
minaria por llevarlo a la teoria del infinito.

Esos dos trabajos de 1869 se dedican a temas vinculados con
el célculo. El primero de ellos llevaba por titulo «Uber die ein-
fachen Zahlensysteme» [Sobre los sistemas numéricos sencillos]
y estudiaba una propiedad de los ntimeros irracionales (habla-
remos de los nimeros irracionales mas adelante en este mismo
capitulo). El segundo articulo, «Zwei Sitze iiber eine gewisse Zer-
legung der Zahlen in unendliche Produkte» [Dos teoremas sobre
la descomposicion de ciertos niimeros en productos infinitos],
trataba, como su titulo indica, de la posibilidad de pensar en de-
terminados nimeros como el resultado de una cantidad infinita
de multiplicaciones.

Los «productos infinitos» del titulo constituyen un tema
que cae de lleno dentro del cilculo, aunque conviene aclarar que
nos estamos refiriendo en realidad a un infinito en potencia. Por
ejemplo, si multiplicamos 0,5 por si mismo «infinitas veces» el
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resultado es 0, pero esta afirmacion debe entenderse en el sentido
de que cuantas mas veces multipliquemos 0,5 por si mismo, mas
proximos estaremos del niimero 0. En efecto, si multiplicamos
0,5 dos veces, el resultado es 0,25; multiplicado tres veces nos
da 0,125; cuatro veces da 0,0625, y asi sucesivamente, cada vez
mas cerca de 0. Se trata, como se ve, de una idea relacionada con
aproximaciones sucesivas, y no con el producto de infinitos 0,5
en acto.

«Hoy en dia las demostraciones de Cantor son universalmente
reconocidas entre las mas brillantes y bellas de la historia
de las matematicas.»

— MARTIN GARDNER EN CARNAVAL MATEMATICO (1975).
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Mientras publicaba estos articulos, Cantor se ganaba la vida
dando clases de matematicas en una escuela para seiioritas,
a la vez que trabajaba en su tesis de habilitacion —Habilita-
tionsschrift en aleman—, un grado posdoctoral que era requisito
indispensable para ejercer como profesor universitario. La Habili-
tationsschrift de Cantor, escrita en latin, se titul6 «De transforma-
tione formarum ternariarum quadraticorum» [La transformacion
de las formas cuadréiticas ternarias].

El mayor deseo de Cantor era trabajar en la Universidad de
Berlin o en la de Gotinga, pero debié conformarse con un puesto
en la Universidad de Halle, donde comenzé a trabajar en 1869;
Halle era una institucién con un pasado distinguido, pero que en
el siglo xix era considerada de segundo orden. Durante el resto de
su carrera, Cantor no abandoné los intentos de pasar a Berlin o a
Gotinga, pero todos ellos fracasaron y ello fue para él un motivo
de frustracién constante y una de las causas de las profundas de-
presiones que sufriria en ainos posteriores.

En Halle, bajo la direccién de Heinrich Eduard Heine, Can-
tor orient6 definitivamente sus investigaciones hacia el célculo, y
entre 1870 y 1872 publicé cinco articulos, de los que hablaremos
en detalle en el préximo capitulo, y en los que estudiaba cierto
tipo de sumas infinitas, aunque estas sumas, como los productos
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infinitos que se han tratado con anterioridad, deben entenderse en
potencia, nunca en acto.

Sin embargo, aunque el infinito en acto no se mencionaba en
ellos, fue como consecuencia de esos primeros trabajos en Halle
que comenzo a tomar forma en la mente de Cantor la idea de tra-
bajar con el infinito actual. La primera aparicion de ese concepto
en sus trabajos cientificos, aunque de manera muy disimulada,
ocurrio en el articulo publicado en 1874 del que hablamos sucin-
tamente en el capitulo anterior y al que volveremos en breve.

Ademas de la publicacion ya mencionada, que marcé un quie-
bro en su carrera, el afio de 1874 trajo un acontecimiento muy
importante para la vida personal de Cantor; el 9 de agosto se casd
con Vally Guttmann, quien, como el propio Georg, era amante del
arte y, ademas, habia estudiado piano y canto. Pasaron su luna de
miel en Interlaken, una ciudad turistica de Suiza, y vale la pena
mencionar, para comprender mejor el caricter de nuestro prota-
gonista, que Cantor dedicé buena parte de ese tiempo a sostener
discusiones matematicas con Dedekind.

Vally Guttmann y Georg Cantor tuvieron seis hijos, cuatro
nifias y dos nifios, y el espiritu alegre de Vally, un complemento
importante para el caracter serio y adusto de Cantor, marco el
ambiente de su hogar, en el que, tal como era usual en aquella
época en la casa de un profesor universitario aleméan, se llevaba
una muy activa vida social.

EL INFINITO DE CANTOR

Pasemos ahora a analizar el articulo que publicé Cantor en 1874
en el Journal de Crelle y que llevaba por titulo «Uber eine Eigens-
chaft des Inbegriffes aller reellen algebraischen Zahlen» [Sobre
una propiedad caracteristica de la totalidad de los niimeros reales
algebraicos). Este trabajo contenia algunas de las ideas béasicas
de la que més tarde llegaria a ser su teoria del infinito, aunque,
como ya mencionamos en el capitulo anterior, Karl Weierstrass
le aconsejé que las disimulara y que, sobre todo, no pusiera de
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manifiesto las consecuencias revolucionarias que se derivaban
de ellas.

.De qué hablaba exactamente ese articulo de Cantor? ;Qué
ideas contenia? ;Por qué sus consecuencias eran tan provocati-
vas? Ademas, al ver el titulo del trabajo podria surgirnos también
otra pregunta: ;qué son los nimeros reales algebraicos? En las
lineas que siguen nos dedicaremos a responder todas estas cues-
tiones. Mostraremos primero las ideas implicitas en ese articulo
de 1874, las mismas que Weierstrass le aconsejé a Cantor que
ocultara, veremos c6mo se las arreglé Cantor para que quedaran
disimuladas en el texto y finalmente explicaremos sus revolucio-
narias consecuencias.

Comencemos nuestro analisis por una de las primeras defini-
ciones de la teoria de Cantor.

Esta definicion dice que dos colecciones de objetos son coor-
dinables si es posible emparejar a cada miembro de una de ellas
exactamente con un miembro de la otra, sin que sobre nada por
ninguna de ambas partes; tal como vimos en el capitulo anterior
que hizo Galileo con la coleccién de los nimeros naturales y la
de los niimeros cuadrados (véase el esquema, a modo de recor-
datorio):

Naturales Cuadrados
Cli e =W S

-~ ]
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En lenguaje matemitico, a esta operacion de emparejamiento
se la llama «establecer una correspondencia uno-a-uno» entre los
miembros de las dos colecciones.
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Observemos que si las dos colecciones son finitas, entonces,
como ya se planteo en el capitulo 1 en el ejemplo de las parejas de
baile, decir que dos colecciones son coordinables equivale a decir
que tienen la misma cantidad de miembros.

La teoria de Cantor se basa en la idea de que, contrariamente
a lo que pensaba Galileo, es posible extrapolar este concepto a
colecciones infinitas en acto sin que haya en ello ninguna contra-
diccién.

«Los problemas del infinito han desafiado la mente del hombre,
y encendido su imaginaciéon como ningin otro problema del
pensamiento humano.»

— Epwarp KAsSNER ¥ JAMES NEWMAN EN MATEMATICAS E IMAGINACION (1940).

;Podemos decir entonces que si dos colecciones son coordi-
nables, entonces tienen la misma cantidad de miembros? Esa es
exactamente la intencién de Cantor.

Sin embargo, hablar de la «cantidad de miembros» de una
coleccién que es infinita en acto se presta a confusién porque,
como diria Aristételes, no hay niimero que exprese esa canti-
dad, o al menos no lo habia a mediados de la década de 1870
(mas adelante, como ya veremos, si lo hubo; observemos ade-
més que el conocido simbolo o, introducido por el matemaético
inglés John Wallis en 1655, representa un infinito en potencia,
no en acto). De modo que Cantor se vio obligado a crear el con-
cepto de «cardinal», que viene a representar la idea de cantidad
de miembros de una coleccién finita o infinita en acto, pero sin
hablar explicitamente de cantidades. En realidad, Cantor usoé la
palabra «potencia», pero los matemaéticos posteriores la cambia-
ron por «cardinal», que es el término que se usa actualmente, y
usaremos también nosotros, para representar el concepto defi-
nido por Cantor.

El cardinal de una coleccién es, para Cantor, la caracteristica
de ella que subsiste si se hace abstraccién de la naturaleza de los
miembros de la coleccion asi como de las relaciones que hubiera
entre ellos.
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Por ejemplo, si hablamos de la coleccién formada por las le-
tras de la palabra «cielo», su cardinal, segiin la definicién de Can-
tor, podria escribirse como **** los simbolos representan a los
miembros de la coleccion haciendo abstraccion de su naturaleza.
El cardinal de la coleccion formada por los niimeros 2, 3, 5, 7y 11
seria también #E

Ambas colecciones tienen el mismo cardinal precisamente
porque tienen la misma cantidad de miembros (cinco miembros,
obviamente). De hecho, **** pyede pensarse perfectamente
como una forma, quiza primitiva pero vélida, de designar al ni-
mero cinco.

«La intuicién nos dice que deberia haber el doble de niimeros
naturales que de pares, pero la correspondencia uno-a-uno nos
dice que hay los mismos nimeros en cada coleccién.»

— BryaN H. BUNCH EN MATEMATICA INSOLITA. PARADOJAS ¥ PARALOGISMOS (1982).

El cardinal de la coleccion de los nimeros naturales seria:
ek | (los simbolos siguen infinitamente), que es también
el cardinal de la coleccién de los niimeros cuadrados. Podemos
decir entonces, siguiendo a Cantor, que si dos colecciones son
coordinables, entonces tienen el mismo cardinal.

+Cémo supera la teoria de Cantor la paradoja de Galileo tra-
tada en el capitulo 1?7 Recordemos que la paradoja de Galileo dice
que, por una parte, es evidente que hay mas niimeros naturales que
cuadrados porque los naturales abarcan a los cuadrados y a los
no cuadrados todos reunidos; pero, por otro lado, la corresponden-
cia uno-a-uno entre las dos colecciones nos diria que hay la misma
cantidad de ambos nimeros.

La respuesta de Cantor es que la primera mitad de la afirma-
ci6én de Galileo es falsa. Si es cierto que la coleccién de los niime-
ros cuadrados es solo una parte de la coleccién de los nimeros
naturales, pero es incorrecto deducir de este hecho que hay mas
naturales que cuadrados.

Cuando se trata de colecciones infinitas, el todo no es ne-
cesariamente mayor que la parte; es decir, para las colecciones
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infinitas en acto no valen siempre las mismas reglas que para las
colecciones finitas. Los cuadrados est4n incluidos entre los natu-
rales, pero al mismo tiempo ambas colecciones tienen el mismo
cardinal y ello no implica paradoja alguna.

Basado en estas reflexiones, algunos afos mas tarde, el mate-
matico aleman Richard Dedekind (1831-1916) propuso una defini-
ci6n alternativa del infinito en acto. En lugar de tomar el concepto
negativo segtn el cual una coleccién es infinita cuando no es fi-
nita, Dedekind propuso definir la idea de coleccién infinita en acto
mediante una propiedad positiva.

Para Dedekind, una coleccién infinita en acto debia definirse
como aquella que es coordinable con alguna parte de si misma
(propiedad que, en efecto, tienen todas las colecciones infinitas
en acto y solamente ellas). La idea de Dedekind fue aceptada y su
definicién es la que se usa en la actualidad en los trabajos sobre
el infinito matematico.

En capitulos posteriores veremos como la teoria de Cantor
responde a las objeciones de Aristételes tratadas en el capitulo
anterior y como Cantor, el ser humano, se enfrenté a la cuestion
religiosa planteada por san Agustin.

ENTEROS Y RACIONALES

Sigamos avanzando en el estudio de las ideas que estaban implici-
tas en el articulo de Cantor de 1874. Ya sabemos que la coleccién
formada por todos los niimeros naturales es coordinable con la
coleccién de los niimeros cuadrados. Pasemos ahora a considerar
los enteros.

La coleccién de los niimeros enteros incluye a los naturales y
también a los nimeros negativos -1, -2, -3, —4,... Sucede que esta
coleccién, como la de los cuadrados, también es coordinable con
los naturales. Para probarlo, bastaria con mostrar una correspon-
dencia uno-a-uno entre ambas colecciones.

Supongamos que emparejaramos al 0 consigo mismo, al 1 con
el -1, al 2 con el -2, al 3 con el -3, y asi sucesivamente:
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Este intento en realidad seria fallido porque en la columna
de la derecha no aparece la colecciéon completa de los nimeros
enteros, en otras palabras, hay enteros que no tienen pareja. Pero
que haya una solucién errénea no significa que no exista un em-

Naturales

(&)

A v b W N =

parejamiento correcto.

En efecto, si asociamos a los nimeros naturales 0, 1, 2, 3, 4,
5, 6,... respectivamente con los enteros 0, 1, -1, 2, -2, 3, -3,... en-
tonces si habremos logrado una correspondencia uno-a-uno entre

los enteros y los naturales:

El cardinal de los enteros es también itk

La siguiente coleccion que nos interesa estudiar es la que
estd formada por los niimeros racionales. La palabra «raciona-
les» viene, obviamente, de «razén», que en matematicas es siné-
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EL HOTEL DE HILBERT

El matematico aleman David Hilbert (1862-1943) concibié una historia ficticia
que sirve para ejemplificar una de las consecuencias de la teoria de Cantor,
conocida como la historia del hotel de Hilbert. Imaginemos, dijo Hilbert, un
hotel en el que hay infinitas habitaciones designadas respectivamente con los
numeros 1, 2, 3, 4, 5,... y que en cada habitacion hay una persona, a quienes,
para mayor comodidad, identificaremos también con los nimeros 1, 2, 3, 4,
5,... En un momento dado llega al hotel un nuevo cliente, al que llamaremos
persona O, pero en la recepcion le dicen que no podran alojarlo porque todas
las habitaciones estan ocupadas y ademds una regla del hotel establece que
dos personas no pueden ocupar una misma habitacion. Parece que la persona
0 tendra que irse, pero entonces alguien propone la siguiente solucién: que
la persona O ocupe la habitacidn 1, que la persona 1 pase a la habitacion 2, la
persona 2 pase a la 3, y asi sucesivamente. De este modo, la persona O puede
ingresar en el hotel y nadie se queda sin alojamiento:

Personas Habitaciones
) S
1] «————»

-—

O ok W N

Traducida al lenguaje matematico, esta historia demuestra que la coleccién
de los numeros 0, 1, 2, 3, 4.... es coordinable con la coleccién formada por los
numeros 1, 2, 3, 4, 5.... En realidad, un argumento similar al que se muestra en
la historia permite probar que cualquier coleccién infinita a la que se le haya
agregado un elemento nuevo es coordinable con la coleccion original.

nimo de «cociente» o «division», y como este nombre sugiere, los
ntimeros racionales son aquellos que se pueden escribir como el
cociente de dos nimeros enteros (a estos cocientes se les llama
también «fracciones»).
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Por ejemplo, son racionales los nimeros

1 2 -2 11
2=0,5, -2 ="2=—-0,666...y —=2,75.
2 3 3 ¥'d

Los enteros son también nimeros racionales ya que, por
ejemplo: 3/1=3y 0/1=0 (la expresién 0/0 no representa ningin nu-
mero racional, asi como tampoco 1/0, 2/0, 3/0...).

Podemos comprobar entonces que la coleccién de niimeros
racionales incluye a la de los niimeros enteros, que a su vez in-
cluye a la de los naturales. Sin embargo, hay una diferencia funda-
mental entre la coleccién de los niimeros racionales, por un lado,
y las colecciones de los naturales y los enteros, por el otro. Para
entender esta diferencia debemos hablar de la recta numérica.

La recta numérica es, como su nombre indica, una recta
(que en este caso puede pensarse indiferentemente como infinita
en potencia o en acto) en la que se representan los nimeros.
Para ello comenzamos eligiendo un punto cualquiera al que se le
asigna el nimero 0, y otro punto cualquiera al que se le asigna el
nimero 1:

1

o¢

A cada nimero le corresponde en realidad un punto matema-
tico de longitud cero, pero, para hacerlo visible, aqui lo represen-
tamos mediante un pequeiio circulo.

Las elecciones de los puntos correspondientes al 0 y al 1 son
arbitrarias, pero una vez que estas dos elecciones han sido he-
chas, la ubicacién de cada uno de los restantes nimeros queda
totalmente fijada. Por ejemplo, las posiciones de los demas nime-
ros enteros quedan determinadas por el hecho de que la distancia
entre el 0y el 1 debe ser la misma que la distancia entre el 1y el 2,
y la misma que entre el 2 y el 3, y asi sucesivamente; y de manera
similar para los negativos:

1
N

1
(=}
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También queda determinada la posici6n de cada nimero racio-
nal. Por ejemplo, si dividimos al segmento entre 0 y 1 en seis partes
iguales, a la primera marca después del 0 le corresponde el niimero
1/6, a la segunda marca le corresponde el 2/6 (nétese que 2/6 =1/3),
a la tercera, el 3/6 (que es igual a 1/2), y asi sucesivamente:

L . 2 1
6 ¥ v 3

(A1 §
o|ung

1 3 5 J 1
3 8 12 24 2

;Hay algin niimero racional entre 1/3 y 1/2? La respuesta es
si, porque estd, por ejemplo, el promedio de ambos, que es 5/12.
.Y entre 1/3 y 5/12? Entre ambos est4 su respectivo promedio, que
es 3/8. Asi, sin importar lo cerca que estén uno del otro, entre dos
niimeros racionales siempre hay otros niimeros racionales.

Una consecuencia de este hecho —y esta es la diferencia entre
racionales y enteros referida anteriormente— es que cualquier seg-
mento de la recta numérica, no importa lo pequefio que sea, siempre
contiene infinitos niimeros racionales. Obviamente, esta propiedad
no vale para los naturales ni para los enteros. Podriamos decir en-
tonces que, de alguna manera, los racionales tienen en la recta nu-
mérica una mayor presencia que los naturales y, a pesar de ello,
existe una correspondencia uno-a-uno entre las dos colecciones.

Para explicar cémo se logra esta correspondencia (que fue
hallada por primera vez por Cantor), comencemos por colocar en
una linea a las fracciones que estan formadas por dos niimeros na-
turales. Escribimos primero la tinica fraccién en la que la suma de
sus dos componentes es 2, que es la fraccién 1/1. Seguimos con las
dos fracciones en las cuales la suma es 3, que son 1/2 y 2/1. Luego,
las fracciones en las que la suma es 4, que son 1/3 y 3/1, omitimos
la fraccién 2/2 porque 2/2=1/1, que ya habia sido escrita antes.
Continuamos con las fracciones donde la suma es 5, luego con las
que suman 6 y asi sucesivamente, omitiendo siempre las fraccio-

CARDINALES



nes que sean iguales a alguna que haya sido anotada previamente.
La linea resultante comienza de la siguiente manera:

1
1* L) ] » ) ] jras

2
1

—| 0
oo

3 4
B i

)
"5

= | =

1 a1
2" 1 8’
Prolongando la linea suficientemente, cualquier racional po-
sitivo acabara por aparecer en ella (estamos pensando en la linea
como infinita en potencia). Para incluir a los demas racionales,
ponemos al 0 delante e intercalamos positivos con negativos:

1
3
Una vez hecho esto, para completar la correspondencia, al

primer niimero de la linea lo emparejamos con el 0, al segundo
con el 1, al tercero con el 2, y asi sucesivamente:

Naturales Racionales

Q] M=o, ()

o

[

1

2
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CARDINALES

47



De este modo, queda probado que hay una correspondencia
uno-a-uno entre la coleccién de los niimeros naturales y la colec-
cion de los nimeros racionales.

Ahora bien, siguiendo el consejo de Weierstrass, en su arti-
culo de 1874 Cantor casi no hablé de correspondencias uno-a-uno
(solo mencioné el tema muy de pasada) y ni siquiera mencioné la
idea de los cardinales. ;C6mo pudo entonces expresar que una
cierta coleccion de nimeros es coordinable con la coleccién de
los naturales? Para hablar de este concepto, Cantor se basé en
una idea que ocup6 siempre un lugar muy importante en su pen-
samiento y a la que nos dedicaremos muy especialmente en el
préximo capitulo, nos referimos a la nocién de sucesion.

«Habria incluido de buen grado el comentario sobre la
distincion esencial de las colecciones, pero lo omiti
siguiendo el consejo del sefior Weierstrass.»

— GEorG CANTOR, EN UNA CARTA A RicHarDp DEDEKIND, 27 DE DICIEMBRE DE 1873.

En una sucesiéon hay un primer nimero, luego un segundo
numero, y asi sucesivamente. Tenemos, por ejemplo, la sucesion
de los numeros naturales impares, 1, 3, 5, 7, 9, 11,... y la suce-
sién de los niimeros primos, 2, 3, 5, 7, 11,... Aunque una sucesion
podria tener solamente una cantidad finita de términos —asi es
como se llama a los miembros que la forman— o podria tener
también términos repetidos, nosotros solo tomaremos en cuenta
sucesiones que, como las mostradas en los dos ejemplos, tienen
infinitos términos todos diferentes entre si.

Observemos que para hallar la correspondencia uno-a-uno
entre los naturales y los enteros debimos previamente organizar
a estos ultimos en la forma de una sucesién: 0, 1,-1, 2, -2, 3, -3,...,
y lo mismo debimos hacer para hallar la correspondencia entre los
naturales y los racionales:

1

0, e

b

» ’ 1 ? ]

i 22 AR 21
AL T A
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Deducimos entonces que decir que una coleccién de niimeros
es coordinable con los naturales es lo mismo que decir que sus
miembros pueden organizarse en forma de sucesién.

Aprovechindose de esta equivalencia, en su articulo de 1874
Cantor no hablé de la propiedad de ser coordinable con los na-
turales, ni de tener el mismo cardinal, sino que se refiri6 simple-
mente a la posibilidad, o no, de organizar a los miembros de una
cierta coleccién de nimeros en forma de sucesion.

EL ARGUMENTO DIAGONAL

Volvamos ahora a la recta numérica y supongamos que ya le
hemos asignado un punto al niimero 0 y otro al nimero 1. Como
ya se ha dicho, a partir de estas dos asignaciones quedan total-
mente determinadas las posiciones que ocupan en la recta todos
los demas niimeros racionales. Pero, ;completan los racionales
toda la recta numérica? En otras palabras, ;todos los nimeros
pueden escribirse como cociente de enteros?

La respuesta a estas preguntas es no. Una vez ubicados todos
los nimeros racionales, quedaridn todavia puntos de la recta a los
que no les corresponde ningin nimero. Suele atribuirse a Pitago-
ras, en el siglo v1 a.C., el descubrimiento de que existen nimeros
irracionales, es decir, nimeros que no se pueden escribir como co-
ciente de enteros, aunque cabe la posibilidad de que el descubridor
no fuera el mismo Pitagoras, sino alguno de sus seguidores. Por
ejemplo, son irracionales los nimeros v/2 = 1,4142... y n=3,14159. .

Los niimeros reales son aquellos que completan toda la recta,
es decir, los niimeros reales —que incluyen a los racionales y a los
irracionales— no dejan ningiin punto sin asignacién:

2 a5 A 0 o5 1 V2 2 i
Volveremos a esta definicién en el siguiente capitulo, ya que

ocupa un lugar destacado en el desarrollo del pensamiento de
Cantor.
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La pregunta, desde luego, es: ;sera coordinable la coleccién
de los niimeros reales con la coleccion de los niimeros naturales
(tal como lo eran las colecciones de los enteros y de los raciona-
les)? La respuesta, uno de los descubrimientos fundamentales de
Cantor, es que no, las dos colecciones no son coordinables, o sea,
es imposible establecer una correspondencia uno-a-uno entre la
coleccion de los reales y la de los naturales.

Para probarlo, no basta con mostrar un ejemplo fallido de
correspondencia (ya discutimos este punto cuando hablamos de
los enteros), sino que hay que ver que cualquier intento de poner
en correspondencia uno-a-uno a los nimeros naturales con los
nuimeros reales fracasard. Nunca podremos lograr que cada nu-
mero natural quede emparejado exactamente con un niumero real.

Para facilitar la explicacién, mostraremos el fracaso de un in-
tento especifico de poner ambas colecciones en correspondencia
uno-a-uno, pero quedara claro que la explicacién es vilida para
cualquier otro intento, por lo que podremos asegurar que todo
intento de emparejamiento fallara inevitablemente. Mostremos
entonces un intento concreto de asignar un nimero real a cada
natural y veamos c6mo es posible encontrar un nimero real que
haya quedado fuera de la asignacién (en el ejemplo que sigue solo
se muestran los nimeros naturales del 0 al 4, pero la lista en rea-
lidad sigue indefinidamente):

Naturales Reales
O 2 XX TR T RS

]+— 11,0000000..
2 «—— 0,320171071.,
T e 2] 0159264

Hm———— L R

No est4 claro cuél es la regla por la que se han asignado los
nimeros, pero no es relevante porque el método que mostraremos
funciona cualquiera que sea la regla de asignacién. Centremos la
atencion en las cifras que se encuentran detrés de la coma decimal:
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Naturales Reales
Q¢——» 3333333 .

14— 11,J0000000..
2 ———p DN O TR

e e S ) i e A T

# e LIRS e

A su vez, dentro de ese recuadro que hemos dibujado, fijémo-
nos en la diagonal que comienza en el extremo superior izquierdo
¥ que va descendiendo hacia la derecha.

El papel destacado de esta linea de niimeros hace que a esta
demostracién se la conozca bajo el nombre de «argumento dia-
gonal»:

Naturales Reales
De—» 2,3 33333F.
Yostem——=2i 11 ) O D000
% ceer——e gy e O e
S 2. 1435926

4+—— 1,1111111..

El niimero que estamos buscando (el que queda fuera de la
asignacién) comenzara con 0,... y sus cifras decimales estaran
determinadas por los mimeros que aparecen en la diagonal.

Para obtener la primera cifra decimal del niimero tomamos la

. primera cifra de la diagonal y le sumamos 1 (si fuera un 9, toma-

mos un 0). En nuestro ejemplo, el primer niimero de la diagonal es
un 3, de modo que nuestro niimero empezara con 0,4...

Para obtener la segunda cifra decimal del niimero sumamos 1
al segundo niimero de la diagonal (si es un 9, tomamos un 0). Para
la tercera cifra decimal usamos el tercer niimero de la diagonal,
y asi sucesivamente. En nuestro ejemplo, el nimero buscado co-
mienza con 0,41162...:
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Naturales Reales

|
O 2. 33535355
|
]+ 11, 0000000

—

|
2+——+0,1201101.. 0, 41
3+ -+ 3 1415926..
L

——-.m
L N

o 1.1111'{11..,

El nimero que acabamos de calcular no est4 asignado a nin-
gun natural; se nos ha pasado por alto en el emparejamiento.
,Coémo podemos estar seguros de eso? De esta manera: el nu-
mero que calculamos no puede ser el que esta asignado al 0, por-
que ambos difieren en la primera cifra decimal. Tampoco puede
ser el que est4 asignado al 1, porque ambos difieren en la segunda
cifra decimal. Tampoco puede ser el que estd asignado al 2, por-
que ambos difieren en la tercera cifra decimal. Y asi sucesiva-
mente.

Dado que hay un mimero que escapé a la asignaciéon, enton-
ces nuestro ejemplo no puede constituir una correspondencia
uno-a-uno entre los naturales y los reales, pero cualquier otro in-
tento fracasara por la misma razén; por lo tanto, no existe una
correspondencia uno-a-uno entre las dos colecciones.

De hecho, modificando ligeramente el razonamiento anterior,
es posible demostrar que si tomamos cualquier segmento de la
recta numérica, no importa lo pequeiio que sea (siempre y cuando
no se reduzca a un solo punto), entonces la coleccién de los nii-
meros contenidos en €l no es coordinable con los naturales.

La coleccién de los nimeros reales (o de los niimeros conte-
nidos en un segmento de la recta) no puede organizarse en una
sucesion, asi es como lo enuncié Cantor en 1874. Un detalle que
cabe mencionar es que la demostracién que presenté Cantor en
esa ocasion no es exactamente la misma que se ha mostrado aqui.
El argumento diagonal no apareceria publicado hasta 1892, en un
articulo titulado «Sobre una cuestién elemental de la teoria de
conjuntos», del que hablaremos mas adelante.

CARDINALES




NUMEROS ALGEBRAICOS

En realidad, en su trabajo de 1874, Cantor no hablé de los nii-
meros enteros ni de los racionales, aunque si demostré que los
nimeros reales no pueden organizarse en una sucesion. De la otra
coleccion de la que Cantor hablé en ese articulo es de la formada
por los nimeros algebraicos, y para introducirlos debemos refe-
rirnos brevemente a un problema antiguo y muy famoso, el de la
cuadratura del circulo.

Este problema, planteado por primera vez por los geémetras
griegos del siglo v a.C., pide, dado un circulo cualquiera y usando
solamente regla no graduada y compads, hallar un cuadrado que
tenga exactamente la misma drea.

La regla no graduada mencionada en el enunciado del pro-
blema es solamente un objeto rectilineo que ayuda a trazar
segmentos, pero que no tiene marcas que permitan medir (es ba-
sicamente como una regla escolar moderna, pero completamente
lisa, sin inscripciones). La restriccion segin la cual solo se puede
usar regla no graduada y compés proviene del hecho de que la
geometria clasica griega solo admitia en sus construcciones el uso
de esos dos instrumentos. Esto proviene a su vez de una concep-
cion elitista segin la cual el acto de medir estaba reservado a las
«clases inferiores», como la de los mercaderes o los artesanos,
mientras que los gedmetras y los filésofos, que trataban con figu-
ras e ideas perfectas, no se «rebajaban» a esas actividades «meno-
res» y usaban instrumentos que trazaban las figuras mas «puras»
(rectas y circulos) sin medirlas.

Durante siglos hubo muchisimos intentos de hallar la cuadra-
tura del circulo, pero todos resultaron ser erréneos. Nadie parecia
capaz de encontrar una solucién para el problema, aunque tam-
poco parecia haber un argumento que demostrara que esa solu-
cién no existia.

Ahora bien, recordemos que si 7 es el radio del circulo, enton-
ces su area se calcula como nt-7%, de modo que no debe sorpren-
dernos que el nimero n esté relacionado con esta cuestion. En
efecto, puede demostrarse que el problema de la cuadratura del
circulo es equivalente a este otro problema geométrico: fijado un
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segmento cualquiera como unidad de medida, construir, usando
una regla no graduada y compds, un segmento cuya longitud sea
n veces esa medida. Expresado mas brevemente, este segundo
problema pide construir un segmento de longitud .

Que los dos problemas sean equivalentes quiere decir que si
es posible construir un segmento de longitud x, entonces es tam-
bién posible lograr la cuadratura del circulo, y viceversa. Por otra
parte, si alguna de las dos construcciones es imposible, entonces
también sera imposible la otra.

El primer avance significativo en el problema se dio en el
siglo xvi1 cuando se demostré que para que un segmento pudiera
ser construido con una regla no graduada y compas, su longitud
debia ser necesariamente un nimero algebraico. La definicién
exacta de lo que es un nimero algebraico es un poco técnica y
la omitiremos aqui, basta decir que un niimero es algebraico si es
solucién de cierto tipo especial de ecuacién (un tipo de ecuacion
en la que intervienen nimeros enteros). Mas atin, no todos los
nimeros algebraicos pueden ser construidos con regla y compés,
sino, dentro de ellos, los algebraicos que cumplen una restriccion
especifica.

A los nimeros que no son algebraicos se los llamé «trascen-
dentes», un nombre que a principios del siglo xix era meramente
tedrico porque, aunque se sabia que todos los niimeros racionales
son algebraicos y que algunos irracionales, como /2, también son
algebraicos, no se sabia todavia si existia algin nimero que fuera
trascendente. En particular, a principios del siglo xix se descono-
cia si el niimero n era algebraico o trascendente.

El primer ejemplo conocido de nimero trascendente fue mos-
trado por el matemdtico francés Joseph Liouville en 1844. Ese nii-
mero, llamado hoy en dia la constante de Liouville, comienza con
0,110001000000000000000001000... (el primer 1 aparece en el lugar
1 detras de la coma, el segundo 1 aparece en el lugar 1-2=2, el
tercer 1 aparece en el lugar 1-2-3 =6, y asi sucesivamente). Liouvi-
lle mostré también otros niimeros similares a este, todos ellos
trascendentes. En 1873, el también matemaético francés Charles
Hermite aporté un nuevo ejemplo al demostrar que el nimero e
(la base de los logaritmos naturales) es trascendente.
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LOS NUMEROS ALGEBRAICOS

Decimos que un nimero es algebraico si es solucién de alguna ecuacién del
tipoa,x"+a,  ,x™'+..+ax+a,=0, donde los coeficientes a , a, _,....a, son todos
numeros enteros y ademas se cumple que a, =0. Por ejemplo, 7/5 es alge-
braico porque es solucién de la ecuacién 5x-7=0; otro ejemplo de numero
algebraico es V3, que es solucidn de la ecuacion x?-3=0. Se dice que esta
ultima ecuacion es de grado 2, porque la mayor potencia de x que aparece
en ella es x* mientras que la primera ecuacién, por su parte, es de grado 1
(recordemos que x=x"). Pero puede probarse que 3, ademads de ser solucién
de x?-3=0, también lo es de la ecuacién x*-x?-3x+3=0, que es de grado
3, y también de x*-9=0, que es de grado 4, y también de otra ecuacién de
grado 5, y otra de grado 6, y asi sucesivamente; sin embargo, no es solucién
de ninguna ecuacion que sea de grado menor que 2 y que cumpla a la vez las
condiciones arriba indicadas. El menor grado posible para J3es2, y por eso
se dice que v/3 es un numero algebraico de orden 2; otros nimeros algebraicos
de orden 2 son, por ejemplo, »?5 y
'I+J§

2

Por otra parte, puede probarse que ¥2 es de orden 3, que J2 + /3 es de orden
4 y que todos los nimeros racionales, como es el caso de 7/5, son algebraicos
de orden 1. Ahora bien, para que un segmento pueda construirse con una re-
gla no graduada y compas su longitud debe ser un numero algebraico, pero
ademas ese numero debe ser de orden 1, 2, 4, 8, 16 o cualquier otra potencia
de 2. Como m no es algebraico, entonces no es posible construir con regla y
compas un segmento de esa longitud, pero también es imposible construir un
segmento cuya longitud sea 32 porque, aunque este numero es algebraico,
su orden es igual a 3.

En su articulo de 1874, Cantor hizo un aporte significativo al
tema, al demostrar de manera indirecta que cualquier segmento
de la recta numérica contiene una infinidad de niimeros trascen-
dentes.

Como lo hizo? Perfeccionando el método que vimos y que
nos permitié mostrar que los niimeros racionales pueden orga-
nizarse en una sucesién, Cantor pudo probar que la coleccién de
los nimeros algebraicos contenidos en cualquier segmento de la
recta numérica también puede organizarse en una sucesion.
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Ahora bien, también vimos antes que, por el contrario, la
coleccién de todos los niimeros reales contenidos en ese mismo
segmento no puede organizarse en una sucesién. Esto quiere decir
que las dos colecciones no pueden ser la misma, porque una tiene
la propiedad de poder ordenarse en una sucesién, y la otra, no. Por
lo tanto, los nimeros de cualquier segmento de la recta numérica
no pueden ser todos algebraicos, tiene que haber alli necesaria-
mente mimeros que son trascendentes. En consecuencia, en cada
segmento de la recta numérica hay algin nimero trascendente,
de modo que en toda la recta hay infinitos niimeros trascendentes.

Dijimos que la demostracién era indirecta, con lo que se
quiere hacer notar que el razonamiento de Cantor prueba que exis-
ten infinitos nimeros trascendentes, pero no aporta ningin ejem-
plo especifico. Si Liouville y Hermite no hubieran publicado sus
resultados cuando lo hicieron y en 1874 no se hubiera conocido ni
un solo ejemplo de niimero trascendente, entonces Cantor habria
mostrado que habia infinitos niimeros de un tipo del que no se co-
nocia ningtin ejemplo. M4s adelante trataremos maés a fondo estas
demostraciones indirectas, pero digamos por ahora que en aquel
momento fueron muy cuestionadas por algunos matematicos.

Pero, ;qué pasé con n? En 1882, el matematico alemén Carl
Louis Ferdinand von Lindemann demostré finalmente que n tam-
bién es un niimero trascendente y de este modo cerr6 el problema
de la cuadratura del circulo, que desde entonces se sabe que es
completamente imposible de resolver.

LAS CONSECUENCIAS

Cerramos asi nuestro estudio de las ideas contenidas en el ar-
ticulo de Cantor de 1874, pero ;cudles eran esas consecuencias
tan revolucionarias que Weierstrass le aconsejé que ocultara?
Volvamos al argumento diagonal y recordemos que en él se
prueba que si intentamos establecer una correspondencia uno-
a-uno entre la coleccién de los niimeros naturales y la coleccién
de los niimeros reales entonces nuestro intento fracasara porque
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siempre quedaran nimeros reales sin pareja. Vinculémoslo con el
ejemplo de las parejas de baile que vimos en el capitulo anterior;
si en ese caso nos dijeran que, no importa como se formen las pa-
rejas, siempre quedan mujeres sin bailar, nuestra conclusién seria
que hay més mujeres que hombres. De la misma forma, si siempre
quedan nimeros reales sin pareja, esto quiere decir que hay mas
nameros reales que naturales, pero no en el sentido de que una
coleccion es parte de la otra, sino en el sentido de los cardinales.
El cardinal de los niimeros reales (su «cantidad de miembros») es
mayor que el de los naturales.

Los naturales, enteros y racionales estdn en el mismo orden
de infinitud, todos tienen el mismo cardinal. Los reales estidn en
un orden de infinitud superior. El infinito de los reales es «maés
grande» que el de los naturales. Es decir, Georg Cantor no sola-
mente 0s6 comparar infinitos —lo que hubiera sido rechazado
por Aristételes y Galileo—, sino que ademas lleg6 a la conclusién
de que habia infinitos mayores que otros. Expresado en estos tér-
minos, su demostracion sobre los nimeros trascendentes seria
asf: la coleccién de los niimeros reales tiene un orden de infinitud
superior al de la coleccién de los algebraicos, en consecuencia,
tiene que haber infinitos niimeros reales que no son algebraicos,
es decir, tiene que haber infinitos nimeros trascendentes. Como
ya dijimos, en 1874 estas ideas eran tan revolucionarias que
Weierstrass le aconsejé a Cantor que las disimulara.

Pero, ;por qué Cantor se plante6 estos conceptos en primer
lugar? ;Por puro espiritu de contradiccién? Como ya se ha apun-
tado antes, esas ideas comenzaron a estar presentes en su pen-
samiento como resultado de sus primeros trabajos en Halle; mas
ain, esas investigaciones lo llevaron casi contra su voluntad a
considerar esas ideas. En efecto, en 1883, en el articulo que men-
cionamos al comienzo del capitulo anterior, Cantor escribi6:

Es en el transcurso de muchos afios de esfuerzos e investigaciones
cientificas que me he visto impulsado l6gicamente casi contra mi
voluntad (pues se opone a tradiciones que habian llegado a ser muy
apreciadas por mi), al punto de vista de considerar lo infinitamente
grande no solo en la forma de algo que crece sin limites [...], sino
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también fijarlo mateméticamente por medio de nimeros en la forma
determinada de lo completamente infinito; y por ello no creo que se
puedan hacer valer en contra razones que yo no estuviera en condi-
ciones de afrontar.

¢ Cuadles fueron esas investigaciones que lo impulsaron légica-
mente, casi contra su voluntad, a admitir la posibilidad del infinito
en acto? La respuesta a esta pregunta sera uno de los temas cen-
trales del préximo capitulo.
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CAPITULO 3

El calculo y el infinito

La teoria del infinito matematico
desafia constantemente nuestra intuicién al
enfrentarnos a hechos que son correctos pero que
contradicen totalmente el sentido comun. La teoria nos
muestra que el todo no es siempre mayor que cualquiera
de sus partes, o proporciona ejemplos de colecciones
con diferentes «niveles de infinitud». Esta teoria
se relaciona estrechamente con la rama de las
matematicas cuyos origenes se remontan
a la Antigliedad cléasica: el calculo.






Georg Cantor y Richard Dedekind se conocieron por casualidad
durante las vacaciones de verano de 1872, y aunque tenian perso-
nalidades muy diferentes —Cantor era vehemente e impulsivo,
mientras que Dedekind era mucho mads reflexivo y reposado—,
pronto descubrieron muchos puntos en comiin en su manera de
concebir el trabajo matematico. A partir de ese encuentro, y du-
rante mas o menos una década, mantuvieron una intensa corres-
pondencia cientifica y en esas cartas fueron discutidas y puestas
a prueba por primera vez varias de las ideas que Cantor expuso
mas tarde en sus articulos.

Por ejemplo, en una carta fechada en Halle, el 5 de enero de
1874, Cantor le preguntaba a Dedekind cudl era su sensacién con
respecto al siguiente problema:

. Es posible hacer corresponder univocamente una superficie (diga-
mos un cuadrado incluyendo su frontera) con una linea (digamos un
segmento de recta incluyendo sus puntos extremos), de manera tal
que a cada punto de la superficie le corresponda un punto de la linea,
e inversamente a cada punto de la linea, un punto de la superficie?

El problema que Cantor formulaba en aquella carta era una

extension natural de las ideas en las que estuvo trabajando hasta
ese momento; en efecto, en 1873 Cantor ya sabia que la coleccion
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de los nimeros reales tiene un cardinal mayor que la coleccién de
los nimeros naturales. Dicho de otro modo, sabia que los nime-
ros reales tienen un orden de infinitud superior al de los niimeros
naturales, aunque no lo enunci6 piblicamente hasta 1878, en un
articulo al que nos referiremos en este mismo capitulo.

Ante esta situacion, surge naturalmente la pregunta de si
habra alguna coleccién con un cardinal todavia mayor que el de
los mimeros reales, y esa es precisamente la pregunta que Cantor
tenia en mente cuando le escribié a Dedekind la carta que antes
citamos. Detengamonos, entonces, un poco en analizar cémo la
pregunta de si habra alguna coleccién con un cardinal superior al
de los niimeros reales lleva al problema planteado por Cantor en
su carta.

En el capitulo anterior ya vimos que a cada punto de la recta
numérica le corresponde un ntimero real y que, reciprocamente,
a cada niimero real le corresponde un punto de la recta. En otras
palabras, hay una correspondencia uno-a-uno entre los nimeros
reales y los puntos de una recta (recordemos que otra forma de
expresarlo es diciendo que esas dos colecciones son coordina-
bles). Por lo tanto, cuando se trata de cardinales, es exactamente
lo mismo hablar de los niimeros reales que de los puntos de una
recta. Entonces, ;qué coleccién podriamos proponer como candi-
data a tener un cardinal mayor que el de los puntos de una recta?
Dado que una recta es un objeto de una sola dimensién, parece
razonable suponer que un objeto de dos dimensiones, es decir,
una superficie, podria tener un cardinal mayor.

Ahora bien, si en realidad estamos pensando en la coleccién
de todos los niimeros reales, y esta se corresponde con una recta,
ipor qué Cantor habla en su carta de un segmento, que es so-
lamente la parte de la recta comprendida entre dos puntos? La
respuesta es que puede probarse que todos los segmentos, no im-
porta su longitud, son coordinables entre si, todos tienen el mismo
cardinal, y que a su vez cualquier segmento es coordinable con la
recta completa. En conclusién, cuando investigamos cardinales,
es lo mismo hablar de una recta que de un segmento.

Llegamos entonces a la pregunta que Cantor formulaba en la
carta del 5 de enero de 1874: ;es posible que un objeto de una sola
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dimensién (un segmento, pensado como una coleccién infinita
de puntos) tenga el mismo cardinal que un objeto de dos dimen-
siones (un cuadrado, pensado también como coleccién infinita
de puntos) o, por el contrario, el cuadrado tendra un cardinal
mayor?

«La solucién de los problemas que hasta ahora rondaban
al infinito matematico es probablemente el mayor de los logros
de los que nuestra época pueda enorgullecerse.»

— Lorp BERTRAND RussELL, EN 1910,

En la misma carta donde planteaba la pregunta, Cantor decia
que parece obvio que el cuadrado debe tener un cardinal ma-
yor que el del segmento, opinién que Dedekind compartia, pero
Cantor agregaba que el problema «ofrece graves dificultades». Y,
efectivamente, hubo dificultades, porque Cantor tard6 mas de tres
afos en encontrar la solucién, que finalmente comunicé a Dede-
kind en una carta fechada en Halle el 20 de junio de 1877. En su
respuesta a dicha carta, escrita el dia 22 del mismo mes, Dedekind
hacia algunas objeciones a la argumentacién de Cantor, a las que
este contesto en dos cartas sucesivas escritas el 25 y el 29 de junio
respectivamente. Las primeras palabras de esta tltima, muy repre-
sentativa del estilo de Cantor, fueron:

Sea Ud. benévolo y perdone mi afin por esta cuestién, al exigir tan-
to de su amabilidad y sus esfuerzos. Lo que le he comunicado recien-
temente es para mi mismo tan inesperado, tan nuevo, que por asi
decir no podré alcanzar una cierta tranquilidad de animo hasta haber
obtenido de Ud., muy estimado amigo, una decisién sobre si es
correcto. Hasta que no me dé Ud. su aprobacion, solo puedo decir
que: je le vois, mais je ne le crois pas [«lo veo, pero no lo creo», en
francés en el original].

Podemos suponer que Dedekind le permitié a Cantor alcanzar

esa «cierta tranquilidad de animo» porque su respuesta, fechada
en Brunswick el 2 de julio, comenzaba asi:
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FIG. 1

LA RESPUESTA

He revisado una vez mas su demostracion y no he encontrado nin-
guna laguna; estoy seguro de que su interesante teorema es correcto,

y le felicito por éL

La respuesta, para sorpresa del propio Cantor, es que existe una
correspondencia uno-a-uno entre los puntos de un segmento y los
puntos de un cuadrado. En otras palabras, a pesar de que tiene
una dimensién mas, el cardinal de un cuadrado no es mayor que

el cardinal de un segmento.

(Cémo podemos demostrar este hecho? Un segmento, decia-
mos maés arriba, es la parte de una recta comprendida entre dos
puntos; en consecuencia, podemos equipararlo con la coleccién
de todos los niimeros reales comprendidos entre dos nimeros

Oe

FIG. 2
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P :
— — 4 Abscisa=0,2

Ordenada = 0,7
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fijos. Mas aiin, dado que los puntos
asignados al 0 y al 1 en la recta nu-
mérica son totalmente arbitrarios,
podemos equiparar a cualquier
segmento con la coleccién de los
nimeros reales comprendidos
especificamente entre 0 y 1. En
la figura 1, a modo de ejemplo, se
puede observar la posicién que le
corresponde al nimero 0,75.

;Cémo representamos numé-
ricamente los puntos de un cua-
drado? Como sabemos, los puntos
de un planisferio se representan
mediante dos coordenadas, su
longitud y su latitud; de la misma
forma, los puntos de un cuadrado
también tienen dos coordenadas,
habitualmente llamadas abscisa y
ordenada (figura 2).



.Coémo se determina la abscisa y la ordenada de un punto P
del cuadrado? Para determinar esas coordenadas elegimos, como
se aprecia en la figura 2, dos lados del cuadrado que no sean para-

SEGMENTO SIN EXTREMOS

Vamos a demostrar que los numeros reales entre O y 1, ambos incluidos, son
coordinables con la coleccién que se obtiene al quitar el 1. Graficamente, la
primera coleccion es un segmento con sus dos extremos incluidos, mientras
que la segunda es un segmento del que se ha eliminado uno de sus extremos
(figura 1). Para establecer la correspondencia (figura 2), asignamos el 1 de la
primera coleccién al 1/2 de la segunda, el 1/2 de la primera coleccién es asig-
nado al 1/3 de la segunda, el 1/3 de la primera coleccién al 1/4 de la segunda, y
asi sucesivamente; todos los demas numeros de la primera coleccion, es decir,
todos los nimeros diferentes de 1/2, 1/3, 1/4, tal como el 3/4, por ejemplo, son
asignados a si mismos. De la misma forma se puede probar que el segmento
al que le falta uno de sus extremos es coordinable con el segmento al que le
faltan los dos extremos. Por lo tanto, los tres segmentos, el que tiene sus dos
extremos, el que le falta uno de ellos y el que carece de los dos, son todos

coordinables entre si.

FiE1 Graficamente,

(e] 1 representamos
la falta del punto
con un circulo
sin rellenar; en
realidad, la falta
del punto seria

—0 completamente

0 1 imperceptible.
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lelos entre si, y a cada uno de ellos le asignamos, tal como hicimos
con el segmento, los nimeros entre 0 y 1; al niimero 0 le corres-
ponde el vértice que es comin a ambos lados.

Para saber las coordenadas de un punto P, lo proyectamos
perpendicularmente sobre cada uno de los dos lados elegidos (asi
como el punto de un planisferio se proyecta sobre el ecuador y
sobre el meridiano de Greenwich); uno de los niimeros que se
obtiene es la abscisa de Py el otro es su ordenada.

Cada punto del cuadrado queda entonces determinado por un
par de coordenadas y convendremos, como es usual, en mencio-
nar siempre la abscisa en primer lugar y la ordenada en segundo,
por lo que hablaremos simplemente del punto de coordenadas 0,2
y 0,7, sobreentendiendo que 0,2 es la abscisa y 0,7 la ordenada (el
orden en que se mencionan los niimeros es muy relevante, dado
que el punto de abscisa 0,2 y ordenada 0,7 no es el mismo que el
de abscisa 0,7 y ordenada 0,2).

El problema consiste entonces en establecer una correspon-
dencia uno-a-uno entre los niimeros reales comprendidos entre el
0y el 1,y los pares de nimeros comprendidos entre el O y el 1, de
modo que a cada nimero individual le corresponda un unico par
y a cada par le corresponda un tinico nimero individual.

SEGMENTOS DE DIFERENTES
LONGITUDES

Vamos a demostrar que dos seg-
mentos de diferentes longitudes
son coordinables entre si. Primero
trazamos dos rectas que pasen
respectivamente por los extremos
de los segmentos y llamamos O al
punto donde estas rectas se cor-
tan. Trazando nuevas rectas gue
pasen por el punto O, en la figura
se muestra cémo asignar a cada
punto P en uno de los segmentos
exactamente un punto P en el otro.
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Veamos un ejemplo de cémo se define esta correspondencia.
Supongamos que tenemos el niimero 0,213421342134... ;Qué par
de coordenadas le corresponde? Tomamos, por un lado, los digi-
tos que ocupan las posiciones impares detras de la coma (primera,
tercera, quinta, y asi sucesivamente); estos digitos son 232323...
Por otro lado, tomamos los digitos de las posiciones pares, que
son 141414... El nimero 0,213421342134... se corresponde enton-
ces con el par de coordenadas 0,232323... y 0,141414...

Reciprocamente, si nos dan el punto de coordenadas
0,232323... y 0,141414..., para obtener el punto del segmento que
le corresponde tomamos el primer digito de la abscisa, luego el
primer digito de la ordenada, luego el segundo de la abscisa, el
segundo de la ordenada y asi sucesivamente, y formamos de ese
modo el nimero 0,21342134... (figura 3).

Para poner otro ejemplo, si nos dan el punto de coordenadas
0,2 y 0,7, escribimos primero estos niimeros como 0,20000... y
0,70000... (el agregado de estos ceros no modifica el valor de la

FIG. 3

Numero individual
£ 2115314121113 :412111314

DN213121312]13 8
Abscisa

FIG. 4

Namero entre O y 1 Abscisa Ordenada
0,121212... Sa— O, 1171... 0,2222...
0,123123123... ls====a 0,13213... 0,21321...
0,50000... e 0. 5000... 0,000... =
0,3335... SE—— O, 5335... 0,333...
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expresion); el nimero que corresponde a este par es entonces
0,270000..., que es simplemente 0,27. En la figura 4 (p4gina ante-
rior) se muestran otros ejemplos de esta correspondencia.

De este modo vemos que a cada niimero entre 0 y 1 le corres-
ponde exactamente un par de coordenadas, y que a cada par de
coordenadas le corresponde exactamente un nimero. En otras
palabras, hemos establecido una correspondencia uno-a-uno
entre un segmento cualquiera y un cuadrado cualquiera, por lo

SEGMENTO, CIRCUNFERENCIA, RECTA

En la figura 1 se muestra cémo mediante el procedimiento de enrollar un
segmento sin extremos podemos demostrar que este es coordinable con una
circunferencia de la que hemos quitado un punto (la ausencia del punto se
indica con un «circulito sin rellenar», aunque en la realidad esa ausencia seria
imperceptible a simple vista). Es decir, ambas colecciones de puntos son
esencialmente la misma, la Unica diferencia es la disposicion grafica en el pla-
no: en un caso estan en una linea recta, en el otro organizados en una curva.
A su vez, en la figura 2 se muestra como establecer una correspondencia
uno-a-uno entre una circunferencia sin un punto y la recta completa; a cada
punto P de la circunferencia le corresponde el punto P' en la recta (Py P'
siempre deben estar alineados con el punto faltante en la circunferencia). Por
transitividad, deducimos que el segmento sin extremos es coordinable con
la recta completa.

FIG. 2 o

FIG. 1
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que podemos afirmar que ambas colecciones de puntos tienen
exactamente el mismo cardinal.

Deciamos antes que cualquier segmento tiene el mismo car-
dinal que la recta completa; de manera similar, puede probarse
que un cuadrado tiene el mismo cardinal que el plano completo.
Por lo tanto, de lo que hemos demostrado mas arriba podemos
concluir que tanto una recta, como cualquier segmento, cualquier
cuadrado y el plano completo, todos tienen el mismo cardinal.
Este hecho también se extiende a objetos tridimensionales, ya que
es posible demostrar que el cardinal de un segmento es igual al
cardinal de un cubo, que es a su vez igual al cardinal de todo el
espacio tridimensional.

Volvamos a la pregunta que habia motivado el problema:
jexiste alguna coleccién cuyo cardinal sea mayor que el de los
niimeros reales? Por el momento, no hemos podido encontrar una
respuesta; ni un cuadrado, ni el plano, ni todo el espacio tridimen-
sional (siempre pensados como colecciones infinitas de puntos)
nos dan un ejemplo en ese sentido, aunque tampoco tenemos un
argumento que nos pruebe que una coleccién con un cardinal
mayor que el de los reales no pueda existir.

En 1877, Cantor tampoco sabia si existia, o no, una coleccién
con un cardinal mayor que el de los niimeros reales y no pudo
resolver la cuestién hasta su trabajo de 1883, tras haber alcanzado
las «notables aclaraciones» que mencionaba en la carta a Dede-
kind que citamos al comienzo del primer capitulo. ;Cudl es la res-
puesta? ;Existe o no esa coleccién? Volveremos a este problema
en el capitulo siguiente.

LA HIPOTESIS DEL CONTINUO

La coleccién de los niimeros reales tiene un cardinal mayor que
el de los niimeros naturales; la pregunta que motivé el problema
anterior es si habra una colecciéon con un cardinal ain mayor.
Pero hay otra pregunta que también surge naturalmente y es si
habra una coleccién con un cardinal intermedio. En otras pala-
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bras, ;habréi alguna coleccién con un cardinal mayor que el de los
nimeros naturales, pero menor que el de los reales?

Otra forma de plantear la cuestién es la siguiente; Cantor
llamaba numerables a las colecciones que son coordinables con
la de los nimeros naturales; asi por ejemplo, la colecciéon de los
enteros y la de los racionales son ambas numerables, pero la co-
leccién de los niimeros reales no lo es. Entonces, una manera dife-
rente de plantear la pregunta es si habra alguna coleccién infinita
no numerable, pero que al mismo tiempo tenga un cardinal menor
que el de los niimeros reales.

Durante afios, Cantor buscé infructuosamente un ejemplo
asf; las colecciones de los niumeros naturales, enteros, racionales
y algebraicos son todas numerables; los niimeros irracionales y
los niimeros trascendentes son no numerables, pero son coordi-
nables con los reales, y no tienen, en consecuencia, un cardinal
menor que estos.

Finalmente, después de fracasar en todos los intentos de ha-
llar una coleccién intermedia, en 1877 Cantor llegé a la conviccién
de que tal coleccién no existe y formul6 la siguiente conjetura,
que es conocida como la «hipétesis del continuo»: no existe una
coleccién infinita con un cardinal intermedio entre el de los natu-
rales y el de los reales (véase la figura).

Una conjetura es una afirmacién matematica que se cree que
es verdadera, pero que nadie ha podido todavia demostrar ni refu-
tar. En el caso de la hipé6tesis del continuo, demostrarla implicaria
probar que no existe una coleccién con un cardinal intermedio
entre los naturales y los reales; refutarla implicaria hallar una co-
leccién asf.

La hipétesis del
continuo afirma

que no existe

una colecclén - —— = owil
intermedia, pero Coleccién de los 'p Coleccién de los |

en 1877 no se numeros naturales. . numeros reales.
sabia si esto era | . L §

clorto, ¢Habré una coleccién
con un cardinal intermedio?
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En 1877 Cantor estaba convencido de la verdad de la hip6te-
sis del continuo; sin embargo, no habia sido capaz de hallar una
demostracién. El problema le preocupé durante muchos afios y
en 1883, como veremos, el hallar una respuesta positiva se trans-
formoé para €l en una cuestién sumamente importante. La res-
puesta final al problema resulté ser bastante sorprendente, como
veremos mas adelante.

EL SEGMENTO Y EL ESPACIO

Como ya se ha expuesto anteriormente, cualquier segmento,
cualquier cuadrado y el plano completo tienen todos el mismo
cardinal, y esto vale también para un cubo y para todo el espacio
tridimensional.

Una consecuencia de ello es que, por ejemplo, si volvemos al
segmento que dibujamos antes, el fragmento comprendido entre
los nimeros 0 y 0,0000000000001, que es un segmento de longi-
tud pequenisima (imposible de percibir a simple vista), tiene, en
cuanto coleccién infinita de puntos, exactamente el mismo nivel
de infinitud que todo el espacio tridimensional, aunque este tiltimo
ocupe un volumen infinito en acto, es decir, un volumen infinita-
mente mayor que el de todo el universo (suponiendo que el uni-
verso tenga un volumen finito).

Esta conclusion, matematicamente correcta, es sin embargo
tan contraria a la intuicién que resulta muy dificil de aceptar, y
tanto més dificil era en la década de 1870, cuando inclusive la
mayoria de los matematicos dudaba de la existencia misma del
infinito en acto.

Cantor expuso estas conclusiones en un articulo que escribié
en 1877 y que titul6 «Ein Beitrag zur Mannigfaltigkeitslehre» [Una
contribucién a la teoria de las variedades] («variedad» era, para
Cantor, sinénimo de «coleccién»). En el mes de julio de ese afo lo
envi6 al prestigioso Journal de Crelle, la misma revista berlinesa
que habia publicado su trabajo de 1874, pero esta vez la situacién
era muy diferente.
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Como vimos en el capitulo anterior, en el articulo de 1874 Can-
tor mostraba que los niimeros reales no se pueden escribir en forma
de sucesi6n y deducia de este hecho que en cualquier segmento de
la recta numérica hay infinitos niimeros trascendentes (un infinito
que, en el contexto de ese articulo, podia ser interpretado como en
potencia). A sugerencia de Weierstrass, la comparacién de infinitos
era mencionada apenas al pasar y no tenia un papel destacado;
ademas, el concepto de cardinal ni siquiera se mencionaba.

«Las generaciones futuras contemplaran la teoria
[de las colecciones infinitas] como una enfermedad de la
que nos hemos recuperado.»

— HENRI POINCARE, MATEMATICO FRANCES, EN 1908,

72

Pero el articulo escrito en 1877 era un estudio de la com-
paracion de infinitos como tema en si mismo y no ya como una
mera herramienta para demostrar un resultado numérico. En este
nuevo trabajo, Cantor comenzaba definiendo explicitamente que
dos colecciones son coordinables si es posible establecer entre
ellas una correspondencia uno-a-uno, definia también el concepto
de cardinal y volvia al teorema de 1874 sobre los niimeros tras-
cendentes, pero ahora poniéndolo en el contexto de la compa-
racion de infinitos. También demostraba que un segmento al que
se le quita un punto es coordinable con el segmento completo y
ademas probaba el hecho, ya enunciado mas arriba, de que un
segmento es coordinable con un cuadrado. Cantor cerraba este
trabajo enunciando por primera vez publicamente la hipétesis del
continuo.

El contenido de este articulo era muy controvertido para la
época, motivo por el cual encontré mucha resistencia; tanto, que
el 10 de noviembre de 1877 Cantor le escribia a Dedekind:

La impresién del trabajo mio que Ud. conoce en el Journal de Bor-
chardt [Carl Wilhelm Borchardt fue el editor del Journal de Crelle
entre 1856 y 1880] se estd retrasando de una manera que resulta
sorprendente e inexplicable, a pesar de que lo envié ya el 11 de julio
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y poco después recibi la promesa de que seria impreso lo més rapi-
damente posible.

Hoy he recibido a través de mi viejo amigo Lampe, que desde
hace afios se ocupa de revisar pruebas del Journal, la noticia de que
Blorchardt] ha vuelto a retrasar mi nuevo trabajo, alterando con ello
el orden previamente fijado, con lo que de nuevo se deja en el aire
indeterminadamente su publicacién. También me escribié que, por
su parte, esté intentando frustrar esas intenciones mediante una ha-
bil maniobra.

Quiero pensar que lo logrard, pero en segundo lugar debo con-
tar con la posibilidad de que no lo consiga; y en tal caso tengo la
intencion de retirar el trabajo totalmente de las manos del sefior
Blorchardt] y hacerlo imprimir en algin otro lugar.

NUMEROS REALES SIN NOMBRE

Vamos a comentar una consecuencia muy curiosa de la teoria de Cantor.
Para ello, convengamos en decir que una frase, un calculo o cualquier otra
expresion idiomatica es el nombre de un numero si define a ese numero sin
ambigledad. Por ejemplo, «La cantidad de dias de la semana» es un nombre
para el numero 7, y también lo es «El resultado de sumar 6 mas 1». Otro ejem-
plo es «El cociente entre la longitud de una circunferencia y su didmetro»,
que es un nombre para el numero n. La oracion «El numero que comienza
con 0,110001000000000000000001000..., donde el primer 1 aparece en el
lugar 1 detras de la coma, el segundo 1 aparece en el lugar 1-2=2, el tercer 1
aparece en el lugar 1-2-3=6, y asi sucesivamente» es un nombre del numero
trascendente de Liouville. Ahora bien, puede demostrarse que la coleccion
de todos los nombres posibles es coordinable con los naturales mientras que,
segln sabemos, la coleccién de los nimeros reales no lo es; en otras palabras,
hay mas numeros reales que nombres posibles para designarlos. Deducimos
entonces que existen numeros reales inefables, niumeros que no pueden ser
nombrados o definidos de ninguna manera. En realidad, hay infinitos numeros
inefables, aunque, por supuesto, es totalmente imposible dar ni siquiera un solo
ejemplo de ellos, ya que cualquier numero que podamos mencionar tendra
necesariamente un nombre (el nombre que usamos para mencionarlo). Este
es un ejemplo de demostracion de existencia pura, un razonamiento en el que
se prueba la existencia de objetos, pero de los cuales es imposible mencionar
ni un solo ejemplo.

EL CALCULO Y EL INFINITO

73



74

Es posible que la «habil maniobra» de Lampe haya sido en
definitiva exitosa, porque el Journal de Crelle finalmente publicé
el trabajo de Cantor en el volumen 84 del afio 1878, en las p4ginas
242 a 258. En realidad, este fue el Gltimo articulo de Cantor que
apareci6 impreso en el Journal de Crelle ya que, ofendido por la
actitud de Borchardt, Cantor nunca volvi6 a enviar un escrito suyo
a dicha revista.

EL ADVERSARIO

Aunque en su carta Cantor se queja de Borchardt, 1a oposicién a la
publicacién de su trabajo en el Journal de Crelle estaba liderada
por Leopold Kronecker, y Cantor era perfectamente consciente
de ello.

Kronecker, nacido en 1823, era un matemaético aleman muy
respetado e influyente; sus trabajos, muy bien considerados, abar-
caban el dlgebra, el cdlculo y la aritmética, y especialmente los
puntos de contacto entre estas diferentes ramas de las matemati-
cas. También estudié meteorologia, astronomia, quimica y filoso-
fia, y en este tiltimo campo se interesé particularmente por la obra
de Descartes, Leibniz, Kant, Spinoza y Hegel.

En 1861, por recomendacién de Kummer y gracias a sus nume-
rosos méritos académicos, fue elegido miembro de la Academia de
Ciencias de Berlin, y en 1868 miembro de la Academia de Ciencias
de Paris. Sin embargo, a pesar de su gran amplitud de intereses
matematicos, los métodos de trabajo de Kronecker estaban muy
restringidos debido a su propia filosofia de las matematicas, que
suele resumirse en su famosa maxima:

«Die Ganze Zahl schuf der liebe Gott, alles Ubrige ist Mens-
chenwerk.»

«Dios cre6 los nimeros enteros, todo lo demés es obra del hombre.»

Para Kronecker, la base de las matematicas la forman los ni-
meros enteros, que estan dados en la naturaleza y existen inde-
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pendientemente del pensamiento humano; cualquier otro objeto
matematico debia ser definido de un modo preciso a partir de
ellos en una cantidad finita de pasos. Es esencial aqui la idea de fi-
nitud; Kronecker estaba firmemente convencido de que el infinito
en acto es un absurdo y solo aceptaba, incluso con cierta reserva,
el infinito en potencia.

Por ejemplo, para Kronecker, el nimero trascendente de
Liouville que vimos en el capitulo anterior no existia. Kronec-
ker si habria admitido la existencia de la sucesién potencial-
mente infinita que comienza con 0,1, sigue con 0,11, luego con
0,110001 y asi sucesivamente, pero habria dicho que la expresién
0,110001000000000000000001000..., en la que se supone que hay
infinitas cifras decimales, no representa ningiin objeto matema-
tico existente. De hecho, cuando Lindemann demostré en 1882
que 7 es trascendente (véase el capitulo precedente), Kronecker
lo felicit6 por la belleza de su argumentacion, pero agreg6 que en
realidad no probaba nada, porque los niimeros trascendentes no
existian.

«Kronecker y Kummer han caido en un punto de vista muy
sesgado, casi diria primitivo, a la hora de juzgar la matematica.»

— GEORG CANTOR, EN UNA CARTA A GOSTA MITTAG-LEFFLER, EN AGOSTO DE 1884,

Un ntmero racional como 0,333... si existia para Kronecker,
pero solamente porque puede definirse mediante una expresién
finita construida en base a nimeros enteros, 1/3; sin embargo,
la inica expresion correcta seria esta tltima, y no 0,333..., en la
que se supone que hay infinitas cifras decimales. Kronecker fue
ademads uno de los primeros en rechazar la validez de las demos-
traciones de existencia pura, en las que se prueba la existencia
de objetos matematicos, pero sin indicacién de cémo hallar ni si-
quiera un ejemplo de ellos; una demostracién asi, segiin vimos en
el capitulo anterior, es la prueba de Cantor de que existen infinitos
nimeros trascendentes.

Después de todo lo dicho, queda claro que Kronecker re-
chazaba de plano las investigaciones de Cantor sobre el infinito,
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no porque considerara que contenian errores sino, peor todavia,
porque entendia que eran un sinsentido, que hablaban de objetos
inexistentes, como por ejemplo colecciones infinitas en acto o co-
lecciones con diferentes niveles de infinitud. A consecuencia de
ello, Kronecker influyé tanto como le fue posible para impedir la
publicacion de los trabajos de Cantor; en particular, traté de dete-
ner la publicacién del articulo que este habia enviado al Journal
de Crelle en 1877.

Con el correr de los afios, Kronecker llegé a tratar a Cantor
publicamente de «renegado», «corruptor de la juventud» y «cien-
tifico charlatan», y fue en parte responsable de que Cantor no pu-
diera acceder a trabajar, como siempre habia sido su deseo, en
universidades mas prestigiosas que la de Halle, tales como las de
Berlin o Gotinga.

Cantor, que era muy susceptible y propenso a la depresion,
sufrié mucho a causa de estos ataques y frustraciones, que a la
larga terminaron por afectar su salud mental.

LOS ORIGENES

,Por qué Cantor se dedicé al estudio del infinito? ;Cuéles fueron
las investigaciones cientificas que lo impulsaron l6gicamente, casi
contra su voluntad, a considerar colecciones infinitas en acto?
Para responder estas preguntas debemos remontarnos a la histo-
ria del calculo.

Suele decirse que el calculo es la rama de las matematicas
que se ocupa de los objetos infinitamente grandes y de los objetos
infinitamente pequeiios y, aunque en efecto, como veremos ense-
guida, el cdlculo estd estrechamente relacionado con lo infinita-
mente grande y lo infinitamente pequeiio, hay que admitir que la
definicion anterior es algo inexacta. La verdad es que es inevitable
caer en la imprecisién cuando se pretende caracterizar a la que es
en realidad una de las ramas mas amplias y complejas de las mate-
maticas; cualquier definicién que intentemos serd imperfecta. Sin
embargo, quizd un modo de acercarnos a una descripciéon mejor
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sea exponiendo uno de los problemas que discute y los métodos

que utiliza para resolverlo.

Aunque hoy en dia el célculo tiene aplicaciones en dreas del
conocimiento tan diversas como la biologia, la geologia o la eco-
nomia, en sus origenes estuvo estrechamente vinculado a la fisica
y a la geometria, y dentro de esta ultima se ocupd, entre otros
problemas, del modo de hallar el 4drea de figuras delimitadas por
una frontera curva. Nos concentraremos especialmente en esta

ultima cuestion.

«La teoria de [las colecciones infinitas] es un campo en el que
nada es evidente por si mismo, cuyos enunciados verdaderos son
a menudo paraddjicos y cuyos enunciados plausibles son falsos.»

— FEL1Xx HAUSDORFF, MATEMATICO ALEMAN, EN 1914,
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FIG. 5

iCémo podemos calcular el drea de un circulo? A modo de
ejemplo, tomemos el circulo cuyo radio mide una vez y media la
diagonal del cuadrado de 1 cm de lado (figura 5), que es la unidad
de medida de drea; la pregunta es: jcudntas veces cabe nuestra
unidad de medida en ese circulo?

En primer lugar, como se muestra en la figura 6, es facil com-

= Cuadrado unidad
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probar que en el circulo caben nueve
cuadrados de 1 cm de lado, aunque
también se observa que esos cuadra-
dos no alcanzan a completar toda la
figura. Han quedado partes en blanco
que también debemos cubrir, y para
ello, como ya no caben mis cuadra-
dos completos, podemos usar cuatro
rectangulos que sean la mitad del cua-
drado unidad.

Sin embargo, después de colocar
esos cuatro rectéangulos, todavia que-
dan partes sin cubrir, que habremos
de llenar a su vez con mas y més rec-
tangulos de tamaiio decreciente. En




FIG. 6

| = Cuadrado unidad

realidad, para cubrir el circulo por completo necesitariamos una
cantidad infinita de rectangulos, la mayoria de ellos de tamario
menor que microscopico (figura 7). Vemos asi cémo, rdpidamente,
el problema de calcular el drea de un circulo nos ha llevado al
dominio de lo infinitamente grande (la cantidad de rectdngulos
necesaria para cubrir el circulo) y lo infinitamente pequefio.

Pero colocando rectangulos al azar, dificilmente llegaremos a
saber cuintos cuadrados unitarios caben en el circulo. Necesitamos
un modo sistematico de cubrir la figura que nos permita controlar
qué fraccién del circulo esté siendo cubierta en cada paso; ese modo
sistematico fue ideado por el geémetra griego Eudoxo de Cnido.

En el siglo vi a.C., Eudoxo imaginé
poligonos regulares de una cantidad cre-
ciente de lados y con sus vértices ubica-
dos en el borde del circulo (un poligono
regular es aquel en el que los lados son
todos iguales y forman ademés dngulos
iguales). Cada poligono cubre una parte
del circulo y, a medida que la cantidad
de lados aumenta, la parte sin cubrir va
haciéndose tan pequefia como se desee
(figura 8, pégina siguiente).

Basado en esta idea, y a partir de pro-
piedades de los poligonos regulares que
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FIG. 8

Poligono regular Poligono regular Poligeno regular
de 4 lados de 7 lados de 11 lados

eran ya conocidas en aquella época, Eudoxo pudo demostrar que
el area de un circulo cualquiera es proporcional al area del cua-
drado construido sobre su radio. Traducido al lenguaje moderno,
esto significa que si el radio del circulo mide 7, entonces su area
se calcula multiplicando 72 por un cierto nimero fijo, un nimero

RICHARD DEDEKIND

Julius Wilhelm Richard Dedekind na-
cié en Braunschweig, Alemania, el 6 de
octubre de 1831. Desde nifio mostré
siempre un gran interés por las ciencias,
que poco a poco se fue centrando es-
pecificamente en las matematicas; es
por eso que en 1848 ingreso en el Colle-
gium Carolinum, de la cercana ciudad de
Brunswick, para estudiar esa disciplina.
Aungue el Collegium Carolinum no era
una universidad, dictaba cursos de nivel
equivalente al universitario y Dedekind
obtuvo alli una educacion muy sdlida en
algunas de las ramas mas importantes
de las matematicas, entre ellas el dlge-
bra, la geometria analitica y el célculo.
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que es el mismo para todos los circulos. En el siglo xvm, el gran
matemaético suizo Leonhard Euler bautizé a ese ntiimero con la
letra griega n, y es asf como hoy en dia decimos que el drea del
circulo se calcula como x- 7%

NEWTON Y LEIBNIZ

Un siglo después de Eudoxo, Arquimedes utilizé ideas similares
para hallar el modo de calcular el volumen de una esfera, y tam-
bién el drea y el centro de gravedad de diversas figuras limitadas
por curvas. Asimismo, obtuvo una de las mejores aproximaciones
del valor de x conocidas en la Antigiiedad.

Sin embargo, los métodos griegos, brillantes como eran, ca-
recian de generalidad; cada cdlculo requeria una construccién
diferente que servia solo para ese caso y para ninguin otro. La de-
duccién de Eudoxo del drea del circulo, por ejemplo, no era apli-

Con el fin de completar su formacion, en 1850 se incorporo a la Universidad
de Gotinga para obtener el doctorado en matematicas, que logré dos afos
mas tarde gracias a un trabajo de investigacion supervisado nada menos que
por Carl Friedrich Gauss, uno de los matematicos mas brillantes de todos

los tiempos.

Digno sucesor

Gauss fallecié en 1855 y, por ofrecimiento de la universidad, Dedekind se
hizo cargo de la catedra que habia quedado vacante en Gotinga. A partir de
ese afo, ademas, comenzo a trabajar en estrecha colaboracion con Bernhard
Riemann, quien también habia sido discipulo de Gauss. Pocos afos después,
Dedekind decidié volver a Braunschweig y en 1862 comenzé a trabajar como
profesor de Matematicas en su conocido Collegium Carolinum, puesto en el
que permanecio hasta su jubilacion en 1894. Sin embargo, nunca abandoné la
investigaciéon matematica, a la que hizo aportes decisivos, especialmente en
calculo y dlgebra. Dedekind jamas se caso y desde su regreso a Braunschweig
vivio siempre con una de sus hermanas, también soltera. Richard Dedekind

fallecid en Braunschweig el 12 de febrero de 1916.
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Podemos calcular
el drea de cada
una de las dos
figuras de la
derecha, que

tienen un

segmento como
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parte de su
frontera.

cable a una elipse; su razonamiento se ajustaba especificamente a
un circulo, y no a otras figuras.

A partir del siglo xvi, diferentes matematicos europeos em-
prendieron la biisqueda de un método general para resolver, entre
otros problemas, la cuestion de calcular el drea de figuras limi-
tadas por curvas. Cuatro de los matematicos méas destacados en
esta tarea fueron Johannes Kepler (1571-1630), Bonaventura Ca-
valieri (1598-1647), René Descartes (15696-1650) y Pierre de Fer-
mat (1601-1665). Finalmente, a finales del siglo xvi, apoyados en
los esfuerzos de sus predecesores, Isaac Newton (1643-1727) y
Gottfried Wilhelm von Leibniz (1646-1716), independientemente
uno del otro, hallaron el método general para calcular el drea de
figuras planas cualesquiera. Este método, una de las herramientas
fundamentales del célculo, se llama integral y es muy relevante
para nosotros explicar brevemente la idea en la que esta basado.

Comencemos por decir que cualquier figura, aunque esté to-
talmente limitada por curvas, puede dividirse en dos o mas frag-
mentos (siempre una cantidad finita), no necesariamente iguales
entre si, de modo que cada una de ellas tenga un segmento como
parte de su frontera (figura 9).

El problema de calcular el area total de la figura se reduce
entonces al de calcular el drea de cada uno de esos fragmentos.
Tomemos uno de ellos. Podemos pensar que el segmento que es
parte de su frontera, y al que por comodidad llamaremos base,
es la parte de la recta numérica que estd comprendida entre cier-
tos nimeros a y b. Imaginemos también que conocemos la fér-
mula matematica que, dado cualquier nimero x de la base, nos

FIG.9
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permite calcular la longitud del
segmento que une, de modo per- TR g
pendicular a la base, al punto x i

con la curva; llamaremos y a esa ' B
longitud (figura 10). 2 P '
En principio, el método
consiste en pensar en la figura orc
FIG.T
como formada por los infinitos e,
segmentos perpendiculares a la Wi
base y que unen a esta con la £ : .
curva Qabna un segmento por 5l / an ),
cada nimero x). El drea total de i ; \
n segmento ; ;

la ﬁgura se obtendria entonces tiene drea cero. UN rectangulo tiene

. area no nula, pero no
como la suma de las areas de completa la figura.

esos segmentos. Sin embargo,

este pensamiento nos lleva a una

paradoja, esencialmente la misma que discutimos en el primer ca-
pitulo al hablar del pensamiento de Aristételes.

En efecto, asi como, segin dijimos en aquella oportunidad, un
punto matemadtico tiene longitud exactamente igual a cero, de la
misma forma un segmento matemaético (que tiene longitud, pero
no anchura ni profundidad) tiene un drea que es también exacta-
mente igual a cero; por lo que el drea de la figura, si la pensamos
como la suma de segmentos, seriaiguala0+0+0+ ... =0.

Sin embargo, tampoco podriamos reemplazar a los segmen-
tos por rectangulos (que si tienen drea mayor que cero), porque
en ese caso volveriamos a una situacién similar a nuestro primer
intento por completar el circulo con rectingulos, siempre nos que-
daria una parte sin cubrir (figura 11).

Para salvar esta situacién, Newton y Leibniz introdujeron la
idea de infinitésimo, un concepto que se volvié esencial para el
céalculo hasta mediados del siglo xix. Ahora bien, el quid de todo
este relato es que el concepto de infinitésimo es totalmente ambi-
guo y muy dificil, o quiza imposible, de aprehender.

(Qué es un infinitésimo? Un infinitésimo seria un segmento
«infinitamente pequefio», un objeto matemético a medio camino
entre un punto de longitud cero y un segmento pequeiisimo. En
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FIG. 12

otras palabras, seria una linea méas

_ ol pequefia que cualquier otra linea

concebible, pero que, no obstante,

p ¥ - -
{ P, no se reduce a ser un punto.
P b Pensemos entonces en cada
dx = infinitésimo segmento perpendicular a la base,

B4

no como un segmento matematico,

sino como un rectidngulo de base
infinitesimal dw (figura 12); dx es la escritura que usaba Leibniz
para los infinitésimos y que hoy en dia, como veremos enseguida,
se usa todavia en algunas nomenclaturas del célculo.

La figura no es pensada entonces como una suma de segmen-
tos, sino como la suma de rectangulos de base infinitesimal. El
reemplazo de segmentos por rectdngulos de base infinitesimal
tiene una doble ventaja; por un lado, como la base de cada rec-
tangulo es una linea infinitesimal (¥ no es un punto), entonces el
rectdngulo no tiene drea igual a cero, por lo que evitamos la para-
doja anterior. Por otra parte, como la base de cada rectdngulo es
infinitamente pequefia, se logra llenar todos los intersticios de la
figura sin dejar nada descubierto.

La base de cada rectangulo es entonces dx y su altura es y.
Por lo tanto, el 4rea de cada rectangulo de base infinitesimal es
y-dx, que también se puede escribir, omitiendo el punto de mul-
tiplicacién, como ydx. Para calcular el drea de la figura, en teoria
tendriamos que sumar todos los ydx para x entre a y b; Leibniz
escribia esta idea de la siguiente forma:

Jyda.

a

La linea curvada que aparece a la izquierda del simbolo es
una letra S deformada (por la inicial de summa, que es suma en
latin). El simbolo completo se llama integral y es usado todavia
hoy para representar el drea de la figura limitada por una curva y
un segmento (ademads de tener muchisimas otras aplicaciones en
el calculo). Y asi como el método de Eudoxo le permitié deducir
la férmula para calcular el area de un circulo, de la misma forma,
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el pensar en las figuras como formadas por rectdngulos de base
infinitesimal permite, mediante razonamientos adecuados, hallar,
por ejemplo, la férmula para calcular el drea encerrada por una
elipse, asi como por cualquier otra curva.

LA FUNDAMENTACION LOGICA

Pero todo el desarrollo anterior se basa en un concepto bastante
dudoso porque, jqué significa que un segmento sea més pequefio
que cualquier otro segmento concebible? Esto querria decir ob-
viamente que no hay ningin segmento mas pequefio que él, pero,
si lo partimos en dos, ;jno obtenemos de ese modo un segmento
menor?

El concepto de infinitésimo parece autocontradictorio y hay
que decir que tanto Newton como Leibniz eran perfectamente
conscientes de ello. Por ejemplo, en su primera exposicién del
célculo, en 1680, en un articulo de seis paginas titulado «Un nuevo
método para los maximos y los minimos, asi como para las tan-
gentes, que no se detiene ante cantidades fraccionarias o irracio-
nales, y es un singular género de célculo para estos problemas»,
Leibniz expone las formulas que se deducen de los razonamientos
basados en infinitésimos, pero omite hacer cualquier referencia
a los infinitésimos en si. Los hermanos Jean y Jacques Bernoulli,
grandes matematicos suizos de aquella época, comentaron que el
trabajo de Leibniz era «mas un enigma que una explicacién». Por
su parte, Newton decidié mds adelante abandonar directamente
la idea de infinitésimo y reemplazarla por el concepto, no menos
oscuro en realidad, de «fluxiones» y «fluyentes», una idea que no
es necesario explicar aqui.

Ahora bien, ;jpor qué se acept6 el calculo, si su base 16gica era
tan endeble? La respuesta es que si se suspendia la incredulidad y
se aceptaba la existencia de los infinitésimos, asi como la validez
de los razonamientos basados en ellos, las férmulas que se obte-
nian a partir de esos razonamientos eran totalmente correctas.
Las integrales permitian —y permiten hoy en dia— la obtencién
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de areas y volimenes que estaban totalmente fuera del alcance de
los métodos de la geometria griega (como el drea de superficies
con forma de silla de montar o el volumen de cuerpos aovados).
A lo largo del siglo xvi, de la mano, entre otros, de los hermanos
Bernoulli y de Leonhard Euler, el calculo diversificé sus métodos
y sus aplicaciones, y se volvid, entre otras cosas, indispensable
para la fisica matemadtica, que no podria haber existido sin él.
Pero precisamente a causa de esa indispensabilidad del cal-
culo, con el correr de las décadas se volvié cada vez mas impe-
riosa la necesidad de darle una fundamentacién légica precisa,
la necesidad de basar sus razonamientos en conceptos claros e
indubitables. Esta tarea de fundamentar légicamente el calculo
fue emprendida por muchos matematicos a lo largo del siglo xix,
entre ellos Karl Weierstrass, Richard Dedekind y Georg Cantor.

LOS NUMEROS REALES REVISITADOS

El aporte mas importante de Weierstrass en cuanto a la fundamen-
tacién del calculo fue la introduccién del concepto de limite, que
eliminé definitivamente a los infinitésimos (a pesar de eso, como
dijimos antes, la escritura da sobrevive todavia en algunas nomen-
claturas). Sin entrar en detalles técnicos, podemos decir que el
limite basicamente sustituye la idea de un segmento infinitamente
pequeiio por la idea de un segmento que es solo en potencia infi-
nitamente pequefio. Es decir, en lugar de pensar en rectangulos
de base infinitesimal, pensamos en rectidngulos normales que se
van afinando cada vez mas hasta hacerse tan estrechos como se
desee. Razonando en base a esta idea dindmica de magnitudes que
se van haciendo cada vez mas pequenas (infinitamente pequenas,
pero solo en potencia) es posible llegar a las mismas férmulas que
se obtenian en base a los infinitésimos, pero ahora sobre una base
l6gica mas segura.

Sin embargo, Weierstrass no hablaba de segmentos ni de
rectangulos, sino que expresaba todas sus ideas numéricamente,
en base a formulas. Dijimos antes que un segmento podia pen-
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sarse como la parte de la recta numérica comprendida entre dos
numeros a y b. Para Weierstrass, en cambio, un segmento era
directamente la coleccién (infinita en potencia) de los nimeros
reales entre a y b; el concepto geométrico de segmento ni siquiera
aparecia en sus razonamientos. La noci6n de limite, por ejemplo,
aunque nosotros la hemos asociado a segmentos y rectangulos,
Weierstrass la expresaba completamente en términos de opera-
ciones numéricas.

Esto se debe a que a lo largo del siglo xix el calculo se fue
alejando cada vez mas de su base geométrica hasta descartarla
completamente; un proceso largo y dificil, considerando que hasta
ese momento la geometria clasica griega habia sido la base indis-
cutible de todo razonamiento matemaético. En la historia de las
matematicas, este proceso se conoce como la «aritmetizacion del
calculo» y consiste, entonces, en el reemplazo de los razonamien-
tos de tipo geométrico (que trataban con objetos esencialmente
estaticos) por razonamientos basados exclusivamente en férmu-
las y en niimeros, particularmente en los niimeros reales (que per-
mitian razonamientos «dindmicos», como exigia, por ejemplo, la
idea de limite). Por lo tanto, para que el cilculo tuviera una base
légica sélida a toda prueba se necesitaba ante todo una definicién
légicamente rigurosa de los ntimeros reales, una definicién que a
su vez careciera de todo concepto geométrico.

:Qué son los niimeros reales? Decfamos en el capitulo ante-
rior que la propiedad esencial de los niimeros reales, la propiedad
que los define y caracteriza, es el hecho de que completan toda la
recta numeérica, es decir, el hecho de que a cada punto de la recta
le corresponde un nimero real, asi como a cada nimero real le
corresponde un punto de la recta. Pero, a finales del siglo xix,
esta definicién no era satisfactoria porque, como ya hemos co-
mentado, se buscaba una definicién de los niimeros reales que no
apelara a conceptos geométricos. Pero, ;cémo se puede expresar
el hecho de que completan toda la recta sin hablar de «recta» ni
de «punto»? Esta pregunta constituye el llamado «problema del
continuo» («continuo» era el término que se usaba en aquella
época para referirse a la recta numérica), y en la segunda mitad
del siglo x1x llegé a ser una cuestién central del célculo.
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En Halle, a principios de la década de 1870, Cantor, que habia
sido alumno de Weierstrass en Berlin y estaba, por lo tanto, muy
compenetrado con el problema de la fundamentacién del célculo,
comenzo a trabajar en la biisqueda de una definicién rigurosa de los
numeros reales. Finalmente, expuso sus conclusiones en un articulo
que titulé «Uber die Ausdehnung eines Satzes aus der Theorie der
trigonometrischen Reihen» [Sobre la extension de un teorema de la
teoria de las series trigonométricas], publicado en 1872 en Mathe-
matische Annalen. Antes, Dedekind habia trabajado también en el
mismo problema, lo que provocé entre ambos algunas fricciones
por cuestiones de prioridad.

La definicién que encontré Cantor se basa en el concepto de
sucesion fundamental. Dijimos en el capitulo anterior que una su-
cesion estd formada por un primer niimero, luego otro, luego otro,
y asi siguiendo. Una sucesion fundamental, segin Cantor, es una
sucesion formada por niimeros racionales en la cual, a medida que
se avanza por ella, la diferencia entre dos términos cualesquiera,
sean o no consecutivos, se hace tan pequefia como se desee.

Tomemos, por ejemplo, la sucesién formada por los niimeros
3,1; 3,14; 3,141, 3,1415; 3,14159; 3,141592; 3,1415926; 3,14159265;
3,141592663; 3,14159265635;... (en cada paso, estamos agregando un
digito de la expresion decimal de ). Observemos que, por ejemplo,
del quinto término en adelante, todos los niimeros de la sucesion
comienzan con 3,14159... Esto quiere decir que a partir del quinto
nimero la diferencia entre dos términos de la sucesién, sean o no
consecutivos en ella, comienza con cinco ceros inmediatamente
detras de la coma decimal y es, por lo tanto, menor que 0,00001
(que tiene solo cuatro ceros detras de la coma decimal). De manera
similar, a partir del sexto niimero la diferencia entre dos términos
de la sucesién, consecutivos o no, es menor que 0,000001; a partir
del séptimo, la diferencia entre dos términos de la sucesién, conse-
cutivos o no, es menor que 0,0000001; y asi sucesivamente.

Concluimos entonces que 3,1; 3,14; 3,141; 3,1415; 3,14159;
3,141592; 3,1415926; 3,14159265; 3,141592653; 3,1415926535;... es
una sucesiéon fundamental.

Para Cantor, la propiedad que define a los nimeros reales
estd dada por el hecho de que a cada sucesién fundamental le
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corresponde un nimero real y, reciprocamente, a cada mimero
real le corresponde una sucesién fundamental. Todo niimero real
esté definido por una sucesién fundamental; la sucesién del ejem-
plo anterior define, obviamente, el niimero .

Una aclaracién importante es que no debe confundirse lo que
hemos dicho mas arriba con la existencia de una corresponden-
cia uno-a-uno entre sucesiones fundamentales y niimeros reales;
porque, aunque a cada sucesién le corresponde un solo niimero
real, en realidad diferentes sucesiones pueden corresponderse
con el mismo nimero. Por ejemplo, la sucesién 3,1; 3,141; 3,14159;
3,1415926; 3,141592653;..., que se obtiene agregando cada vez dos
digitos de m, es una sucesién fundamental diferente a la anterior
que también se corresponde con el niimero .

;Cémo sabemos que 0,110001000000000000000001000..., es
decir, el niimero de Liouville existe? ;Cémo podemos asegurar que
esa expresion representa en verdad un niimero real? (Recuérdese
que Kronecker rechazaba esa afirmacién.) Para Cantor, basta con
mostrar una sucesiéon fundamental asociada a ese nimero, que en
este caso es 0,1; 0,11; 0,110001;... La existencia de esa sucesion
fundamental, segiin Cantor, garantiza la existencia del nimero.

Veamos cémo la definicién de Cantor expresa, tal como debe
ser, el hecho de que a cada punto de la recta numérica le corres-
ponde un niimero real.

Recordemos que a los niimeros 0 y 1 se les asignan puntos
arbitrarios de la recta y que, una vez que estos han sido elegidos,
quedan totalmente determinadas las posiciones que corresponden
a todos los niimeros racionales. Supongamos ahora que tenemos
un punto P al que no le ha correspondido ningiin niimero racional
(figura 13). ;Cémo podemos asegurar que a ese punto P le corres-
ponde un nimero (obviamente irracional)?

Para asegurarlo, tomamos una
sucesién de puntos que correspon-

dan a nimeros racionales y que P
estén cada vez més cerca del punto l
P. Los niimeros racionales en cues- 31 314 3141 T
tion formaran una sucesiéon funda- 31415

mental, a esa sucesion fundamental
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le correspondera un niimero real, y ese niimero real seré el que le
corresponda al punto P. En el ejemplo de la figura 13, al punto P
le corresponde el niimero .

Pero, para Cantor, ademas, y ahi es donde llegamos al infinito,
otra propiedad fundamental del continuo es el hecho de que no es
numerable (cabe recordar que una coleccion es numerable si es
coordinable con los niimeros naturales), y en una serie de seis arti-
culos publicados entre 1879 y 1882 en los Mathematische Annalen
propuso, entre otras cuestiones relacionadas con los cardinales in-
finitos, definiciones alternativas del continuo en las que se incluia
ala no numerabilidad como una de sus caracteristicas esenciales.

Observemos, por cierto, que el hecho de que los puntos de un
segmento formen una coleccién no numerable permite resolver la
paradoja de Aristoteles. Recordemos que esta paradoja dice que
si un segmento estuviera formado por puntos, entonces, como
cada punto tiene longitud cero, la longitud total del segmento
seria 0+ 0+ 0+ 0+...=0. Ahora bien, ;jcudntos ceros estamos
sumando? La respuesta es que estamos sumando infinitos ceros,
pero, ;infinito de qué cardinal?

Cuando escribimos 0+ 0+ 0+ 0+ ..., el cardinal de los ceros
que estamos sumando es R | aue es el de los naturales.
iEstamos sumando solamente una cantidad numerable de ceros!
La suma de una cantidad numerable de ceros es, en efecto, cero,
y es por eso que el continuo no puede ser numerable. Pero las
sumas no numerables tienen reglas propias que son diferentes a
las de las sumas numerables y, curiosamente, una suma de una
cantidad no numerable de ceros puede dar como resultado un
nimero mayor que cero. De este modo, tal como decia Cantor,
vemos que la distincién entre lo numerable y lo no numerable
tiene un papel fundamental en la definicién de los ntimeros reales
¥, por lo tanto, en el calculo.

Pero el cuadro todavia no estd completo. ;jPor qué el articulo
en el que Cantor define los nimeros reales incluye en su titulo
la expresion «series trigonométricas»? ;Qué son las series trigo-
nométricas y qué papel tuvieron en el pensamiento de Cantor?
Hablaremos de ello en el préoximo capitulo.

EL CALCULO ¥ EL INFINITO




CAPITULO 4

Los ordinales infinitos

En 1883 Georg Cantor publicé un articulo
titulado «Fundamentos para una teoria general de
variedades», trabajo que marcé el punto culminante de su
creatividad matematica. En ese articulo define por primera
vez toda una coleccion de niimeros infinitos, a los que llamé
ordinales. El germen de las ideas que Cantor expuso en
ese trabajo histérico ya estaba presente en un articulo
que habia escrito mas de diez afos antes, pero para
poder desarrollarlas plenamente tuvo que vencer
los condicionamientos psicolégicos que
la época le imponia.






Deciamos en el capitulo anterior que Georg Cantor y Richard Dede-
kind tenian muchos puntos en comiin en su modo de pensar las mate-
maticas, y una de las cuestiones en las que coincidian especialmente
era en la necesidad de introducir nociones conjuntistas en los razona-
mientos matematicos. Pero, ;qué son «conceptos conjuntistas»? Para
entenderlo, debemos preguntarnos ante todo qué es un conjunto.
En su articulo de 1883, titulado «Fundamentos para una teo-
ria general de variedades», con el subtitulo «Una investigacion
matematico-filosofica sobre la teoria del infinito», publicado priva-
damente por Cantor como una monografia separada —el mismo ar-
ticulo de las «notables aclaraciones» que mencionamos en el primer
capitulo, y del que hablaremos en detalle en este—, Cantor decia:

Mannigfaltigkeitsiehre [teoria de variedades]. Con esta palabra de-
signo el concepto de una doctrina muy amplia, que hasta ahora solo
he tratado de elaborar bajo la forma especial de una teoria de con-
juntos aritméticos o geométricos. A saber, entiendo en general por
variedad o conjunto toda multiplicidad que puede ser pensada como
unidad, esto es, toda coleccién de elementos determinados que pue-
den ser unidos en una totalidad mediante una ley.

En un articulo de 1895, al que volveremos en el capitulo si-
guiente, Cantor exponia, mas brevemente:
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Por un conjunto [Menge, en alemén) entenderemos la reunién en un
todo de objetos definidos y separados de nuestra intuicién o nuestro
pensamiento.

Es decir, «conjunto» es sinénimo de «coleccién», tal como
hemos venido usando esta palabra hasta ahora. La importancia
crucial que tuvieron estas definiciones en el desarrollo del pen-
samiento matematico es que establecen que un conjunto es un
objeto en si mismo diferente en su esencia de los entes que lo for-
man. Algunos anos més tarde, el 16gico britdnico Bertrand Russell
(1872-1970) ilustraria esta diferencia al decir que «una coleccién
de caballos no es un caballo».

«Un conjunto es como un saco cerrado, que contiene cosas
completamente determinadas, pero de modo que uno no las ve,
y no sabe nada de ellas salvo que existen y estan bien
determinadas.»

— RicHARD DEDEKIND AL MATEMATICO ALEMAN FELIX BERNSTEIN EN 1899,
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Por ejemplo, el conjunto de todos los niimeros racionales,
que suele indicarse con la letra (), tiene propiedades especificas
solamente atribuibles a () como un todo y no a los niimeros ra-
cionales individualmente, como la propiedad de ser numerable.
En este caso, ademads, en el que hablamos de Q como un todo
existente en acto, se muestra que la definicién de conjunto implica
inmediatamente la aceptacién del infinito actual.

Ahora bien, asf como podemos efectuar operaciones entre
nimeros, tales como la suma o la multiplicacién, de la misma ma-
nera podemos efectuar operaciones entre conjuntos, como por
ejemplo la unién. Si tenemos dos colecciones, su unién se define
como el conjunto que se obtiene al reunir en un todo a los objetos
que forman cada una de esas dos colecciones. Por ejemplo, si lla-
mamos N al conjunto de los niimeros naturales, cuyos miembros
son los nimeros 0, 1, 2, 3,..., y N' al conjunto formado por los
niimeros -1, -2, -3,..., entonces la unién de N y N' es el conjunto
de los niimeros enteros, que suele indicarse con la letra Z (por la
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La unién de
dos conjuntos
contiene a la vez

N N' a los elementos
Conjunto de los Conjunto de los de uno y otro
numeros naturales enteros negativos conjuntos.
0.1234,.. vy =4, =3, -2, -1
NUN'

MNumeros enteros

L T e W I W1 L

inicial de la palabra Zahl, que en aleman significa niimero) y que
contiene simultdneamente a los miembros de N y de N'. En simbo-
los matematicos se escribiria NUN'=Z (véase la figura).

Una propiedad que Cantor enuncia en su articulo de 1895, y
que est4 ilustrada en la figura, es que la unién de dos conjuntos
numerables da siempre como resultado un conjunto numerable.
El estudio de las propiedades, que, como esta que acabamos de
enunciar, se refieren a las colecciones en tanto que objetos en si
mismos, constituye la llamada teoria de conjuntos, y Cantor es
considerado su creador por haber sido el primero en concebir la
idea de estudiar esta clase de propiedades. Al mismo tiempo, uno
de los aspectos méas importantes de la teoria de conjuntos es el es-
tudio de los cardinales de las colecciones infinitas, y es por ese mo-
tivo que en el primer capitulo dijimos que la teoria de conjuntos y la
teoria del infinito matematico son esencialmente la misma teoria.

PUNTOS EN COMUN

JEstamos diciendo que la teorfa de conjuntos nacié en 18837
+Cémo es posible entonces que en fecha tan temprana como 1872,
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EL INFINITO DE BOLZANO

El matematico Bernard Bolzano, nacido
en Praga en 1871, escribio Paradojas del
infinito, libro publicado péstumamente

en 1851, tres anos después de su muerte,
En esa obra, Bolzano adelanto algunas

de las ideas que Cantor publicaria afios
después, aunque no llego a darse cuen-
ta de que existen diferentes niveles de
infinitud, ni logré tampoco desarrollar
una teoria coherente del infinito mate-
matico.

Cantor y Dedekind estuvieran ya de acuerdo en introducir en las
matematicas conceptos conjuntistas? Desarrollemos con cuidado
las respuestas a estas dos preguntas.

Como relatamos en el capitulo anterior, en 1872 Cantor pu-
blicé un articulo en el que proponia una solucién para el problema
del continuo; problema que, recordemos, pedia hallar una defini-
cién de los nimeros reales que no apelara a conceptos geomé-
tricos. Es importante mencionar que ya por entonces Cantor era
consciente de que ese problema lo llevaria a considerar coleccio-
nes infinitas en acto.

En el mismo afio, Dedekind publicé una solucién para el pro-
blema del continuo similar a la de Cantor, basada en un concepto
hoy conocido como «cortaduras de Dedekind». Se entiende en-
tonces por qué en 1872 Cantor y Dedekind encontraron que tenian
mucho en comiin en cuanto a su modo de pensar las matematicas.

Pero, como decia Cantor en la cita de 1883 que mostramos al
comienzo de este capitulo, hasta mediados de la década de 1880
tanto él como Dedekind admitian solamente colecciones forma-
das por niimeros o por puntos geométricos, no por objetos cuales-
quiera. Las respuestas a las preguntas del inicio de este apartado
son, entonces, que aunque en la década de 1870 tanto Cantor
como Dedekind empleaban ya conceptos conjuntistas en sus tra-
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bajos, esos conceptos todavia no eran aprovechados en toda su
potencia, porque solamente se aplicaban a colecciones formadas
por niimeros o por puntos geométricos. La posibilidad de que un
conjunto estuviera formado por objetos cualesquiera no aparecio
hasta 1883 en el trabajo antes citado, aunque en él, como veremos,
Cantor todavia se restringia a colecciones formadas por niimeros,
aunque nimeros de un tipo muy especial.

Hay que decir, sin embargo, que el salto conceptual hacia la
admision de colecciones formadas por objetos de cualquier tipo
estaba ya latente en la definicién de cardinal, que Cantor publicé
en 1877. En efecto, cuando Cantor dice que el cardinal es la pro-
piedad de una coleccién que se obtiene al hacer abstraccion de la
naturaleza de los miembros que la forman, queda claro que esti
diciendo que no importa qué objetos formen la coleccién. Si en
una coleccién cualquiera reemplazamos, por ejemplo, a los ni-
meros o a los puntos por letras, por ideas o por cualquier otro
objeto, el cardinal serd exactamente el mismo, ya que la idea de
cardinal, precisamente, no toma en cuenta cudl es la naturaleza
de los miembros de la coleccion.

CONFLICTOS PERSONALES

El articulo de 1883, titulado «Fundamentos para una teoria ge-
neral de variedades», que estudiaremos mas adelante, marcé el
punto culminante de la carrera cientifica de Cantor; sin embargo,
ese periodo de su vida estuvo marcado al mismo tiempo por serios
problemas personales.

El 21 de octubre de 1881 fallecié Eduard Heine, quien habia
dirigido las primeras investigaciones de Cantor en Halle. Cantor
concibié entonces un proyecto ambicioso; dado que se le impe-
dia acceder a universidades de renombre como las de Berlin o
Gotinga, decidié llevar a Halle a investigadores de prestigio que
fueran afines al estudio del infinito con el objetivo de crear alli
un polo de poder. Como primer paso en esa direccion, logré per-
suadir a las autoridades de la universidad de que le ofrecieran a
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Dedekind el puesto que habia quedado vacante. Sin embargo, para
sorpresa y decepcion de Cantor, Dedekind decliné el ofrecimiento
y el puesto fue ocupado finalmente por Albert Wangerin, un geé-
metra de segundo orden totalmente ajeno a las ideas de Cantor.
No se conocen los motivos exactos por los que Dedekind re-
chazé la oferta de la Universidad de Halle, pero la verdad es que
desde hacia casi veinte afios vivia en su ciudad natal de Braun-
schweig, donde era director del colegio en el que é]l mismo habia
estudiado y donde realizaba sus investigaciones mateméticas a
su propio ritmo, sin presiones, por lo que quizi el motivo fuera
simplemente que no queria cambiar ese estilo de vida.

«Me imagino un conjunto como un abismo.»

— GEOrG CANTOR AL MATEMATICO ALEMAN FELIX BERNSTEIN EN 1899,

28

Sin embargo, Cantor se resintié mucho por el rechazo y las
relaciones entre ambos se enfriaron rapidamente, hasta que a fi-
nales de 1882 la correspondencia que habian mantenido desde
hacia diez afos, asi como cualquier otro contacto entre ellos, se
interrumpié por completo.

Casi al mismo tiempo en que daba por terminada su corres-
pondencia con Dedekind, Cantor comenzé a escribirse con el
sueco Gosta Mittag-Leffler, un matematico de primer nivel que,
como Dedekind, apoyaba también las investigaciones acerca del
infinito. En ese mismo aio de 1882, Mittag-Leffler habia fundado
la revista Acta Mathematica, en la que Cantor encontré un espa-
cio favorable para publicar sus trabajos, un espacio que estaba
fuera de la esfera de influencia de Kronecker. Entre 1883 y 1885 se
publicaron en Acta Mathematica tres articulos en los que Cantor
estudiaba cuestiones vinculadas con su resolucién del problema
del continuo.

Pero la relacién con Mittag-Leffler no duré mucho. En 1884, el
matematico sueco convencié a Cantor de que retirara un articulo
que habia enviado para su publicacién; la intencién de Mittag-
Leffler era completamente favorable a Cantor, ya que entendia
que el trabajo, titulado «Principios de una teoria de los tipos de
orden», era demasiado especulativo y carecia de resultados claros
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y concisos, por lo que podia resultar negativo para la imagen de
la teoria de conjuntos. Mittag-Leffler le escribi6 a Cantor que pu-
blicar demasiado sin presentar resultados tangibles podia llevar a
su teoria al descrédito, y que en ese caso quiza tendrian que pasar
més de cien afios hasta que sus ideas fueran redescubiertas. Pero
Cantor tomé6 a mal la recomendacién de Mittag-Leffler, pues la
interpret6 en el sentido de que tenia que esperar cien afos para
publicar sus ideas:

iDe haberle hecho caso a Mittag-Leffler, deberia haber esperado has-
ta el afio 1984, lo que me pareci6 una demanda excesiva! [...] Pero,
por supuesto, no quiero volver a saber nada de Acta Mathematica.

Cantor escribié estas palabras en 1885 y a partir de ese mo-
mento interrumpié toda relacion con Mittag-Leffler; ademas, fiel
a lo que habia escrito, nunca volvié a enviar un trabajo a Acta
Mathematica. El articulo «Principios de una teoria de los tipos de
orden» jamas fue publicado.

En esa época, Cantor estaba pasando por uno de los periodos
més oscuros de su vida. Abandonado, segun €l lo entendia, por
Dedekind, acosado por sus detractores, cerrado su acceso larga-
mente deseado a Berlin o a Gotinga, e imposibilitado de crear un
polo de poder en Halle, en mayo de 1884 cayé en una profunda
depresion de la que tardaria mucho tiempo en recuperarse. La ver-
dad es que la creatividad matematica que habia brillado en 1883 en
los «Fundamentos para una teoria general de variedades» se habia
apagado y no renaceria hasta la década de 1890.

En esos afios intermedios, Cantor publicé algunos articulos
en los que exploraba, con escaso éxito, consecuencias filoséficas,
asi como posibles aplicaciones a la fisica de su teoria del infinito.
También se obsesiond con la idea de que las obras de William
Shakespeare habian sido escritas en realidad por Francis Bacon,
una teoria que surgié a mediados del siglo xvit y que es conside-
rada absurda por muchos estudiosos, aunque en la actualidad tiene
todavia algunos seguidores. Cantor gasté una considerable canti-
dad de dinero en la adquisicién de ediciones antiguas de las obras
de Shakespeare y finalmente publicé tres monografias al respecto.
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GOSTA MITTAG-LEFFLER

Magnus Gosta Mittag-Leffler nacid en
Estocolmo, Suecia, el 16 de marzo de
1846; fue un joven muy talentoso, con
diversos intereses que incluian la cien-
cia y la literatura. En 1865 ingresé en la
Universidad de Upsala, también en Sue-
cia, para estudiar la carrera de actuario,
pero al poco tiempo se inclind por las
matematicas y en 1872 obtuvo su doc-
torado. Mittag-Leffler hizo importantes
contribuciones al célculo, la geometria
analitica, la teoria de probabilidades y la
teoria de funciones; fue miembro de casi \
todas las sociedades matematicas euro-
peas y recibié doctorados honorarios de

las universidades de Oxford, Cambridge,
Bolonia y Oslo, entre otras. En 1882 fundo la revista Acta Mathematica, que
hoy en dia todavia se publica, v de la que fue su editor hasta que fallecid, el
7 de julio de 1927.

SERIES TRIGONOMETRICAS

Pero volvamos al aiio 1883 y a los «Fundamentos para una teoria
general de variedades», el momento més brillante de la carrera
de Cantor. En realidad, el relato de la redaccién de ese articulo
histérico nos lleva a 1869, aifio de la llegada de Georg Cantor a
Halle y al problema que Eduard Heine le propuso como tema de
investigacion, un problema relacionado con las series trigono-
métricas o series de Fourier.

,Qué es una serie trigonométrica? Imaginemos que tenemos
un resorte que cuelga verticalmente de su extremo superior y que
sostiene en su extremo inferior libre un cierto peso. Esta situacion
se representa en la posicién A de la figura 1, en la que no se mues-
tran muchos objetos, sino las diferentes posiciones que ocupara
el mismo resorte.
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Ahora tiramos del peso hacia abajo hasta que llega a la po-
sicién B y luego lo soltamos. El resorte comenzara a dilatarse y
a contraerse, pasando sucesivamente por las posiciones C, D, E
y F, ademas de todas las intermedias. Imaginemos también que
estamos en una situacién ideal en la que el resorte nunca deja
de moverse y vuelve siempre perfectamente a sus posiciones de
maxima contraccién (D en la figura 1) y de maximo estiramiento
(B y F, en lafigura 1). Si conectamos las sucesivas posiciones del
peso inferior con una curva, esta nos dara una descripcién mate-
matica del movimiento del resorte (figura 2).

FIG. 1

FIG. 2
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Observemos que, debido a que
el peso pasa una y otra vez por
las mismas posiciones, entonces
el grafico repite una y otra vez el
mismo dibujo, esta caracteristica
se expresa diciendo que el grifico
es periddico. Ahora bien, los mate-
maticos del siglo xvui se dieron cuenta de que eran muchos los
fenémenos fisicos —tales como los relacionados con la propaga-
cién de un sonido o la propagacién del calor— que podian des-
cribirse mediante grificos periédicos. Ademds, observaron que
a veces esos graficos tenian discontinuidades, es decir, saltos

abruptos; observemos, por ejemplo, la figura 3.

El gréfico en si esta formado por las sucesivas lineas oblicuas,
y como vemos, al dibujarlo, tenemos que «saltar» del extremo su-
perior de cada linea al extremo inferior de la siguiente.

En la figura 3 ya no se describe un movimiento fisico, sino
la intensidad de una seiial sonora; la linea horizontal representa

UNA PARADOJA

éCudl es el resultado de 1-1+1-1+1-..,,
donde las operaciones continuan infinita-
mente? El matematico aleman Gottfried
Wilhelm von Leibniz (1646-1716) asegu-
raba que el resultado de ese «calculo
infinito» es 1/2. Veamos cual era su ra-
zonamiento. Llamemos S al resultado del
calculo, entonces:

1-141-1+1-..=§
1-(1=141-1-..)=S.

En el paréntesis hay un 1 menos que en
el calculo original, pero como la cantidad
de numeros 1 es infinita, al quitar uno de
ellos no estamos cambiando nada; es
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de hacia 1700, conservado en el Herzog
Anton Ulrich Museum, Braunschweig,
Alemania.



la intensidad nula, o el silencio. Veamos cémo se interpreta el
grafico bajo estas condiciones. Al principio estamos en silencio y
enseguida una sefial sonora comienza a aumentar gradualmente
de intensidad (esto se ve en que la primera linea oblicua sube); el
sonido llega a su intensidad méxima y cae el silencio, pero inme-
diatamente el sonido comienza a subir de intensidad exactamente
igual que antes, hasta llegar una vez mas al mismo nivel maximo
de intensidad (esto se ve en que la segunda linea oblicua sube
igual que la primera); cae otra vez el silencio, y el mismo esquema
vuelve a repetirse una y otra vez.

A principios del siglo xix, el matematico francés Joseph
Fourier (1768-1830) desarroll6 un método que le permitia escri-
bir cualquier grafico periédico como la suma de ciertas curvas
especificas muy sencillas, curvas que se describen matematica-
mente mediante férmulas llamadas funciones trigonométricas.
Estas sumas, a su vez, acostumbran a involucrar una cantidad
infinita (en potencia) de curvas, y como en matemadticas a las
sumas infinitas se las suele llamar series, el método recibe

decir, el resultado del paréntesis sigue siendo S. Tenemos asi que 1-5=85,
de donde deducimos que S vale 1/2. Pero también podemos agrupar de la
siguiente manera:

1-1+1-1+1-..=0-D+(0-D+(0-D+..=0+0+0+..=0.

El calculo entonces daria cero como resultado. O también podemos agrupar
asi:

1=141-141-...=1-(-D-1-1)-..=1-0-0-...=],

por lo que el resultado seria 1. éCual es entonces el resultado correcto, 1/2, 0

o 1?7 Paradojas como esta preocuparon durante décadas a los matematicos,

hasta que, finalmente, en el siglo xix se descubrieron las reglas correctas para g
operar con sumas o restas infinitas. La respuesta al dilema es que el célculo i
1-1+1-1+1-... no da ningun resultado. En otras palabras, su supuesto resultado I
en realidad no existe. El razonamiento de Leibniz falla, precisamente, porque
S no es una cantidad existente. ﬁ

BEEEES s = =N S !
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actualmente el nombre de descomposicion en series trigono-
métricas o, también, en series de Fourier. Gracias a la descom-
posicion en series trigonométricas, Fourier pudo estudiar con
gran éxito un muy importante nimero de fenémenos fisicos; y
hoy en dia este método sigue siendo una herramienta fundamen-
tal en muchas ramas de las matematicas, asi como de la fisica y
de la ingenieria.

DESCOMPOSICION UNICA

En la década de 1860, en Halle, Eduard Heine trabajaba en el pro-
blema de determinar si la descomposicién de un grafico periédico
como serie de Fourier siempre es tinica. Dicho de otra manera, la
cuestion que se planteaba Heine es si podria llegar a suceder que
un grafico periddico tuviera dos escrituras diferentes como serie
trigonométrica.

Heine logré demostrar que si el grafico no tiene «saltos» o
discontinuidades, entonces la descomposicién es, en efecto, tinica.
Sin embargo, no habia encontrado una demostracién general que
abarcara todas las situaciones posibles. Por ejemplo, no habia
podido demostrar la unicidad en el caso de que en cada periodo
—que es como se llama al dibujo bésico que se repite una y otra
vez— hubiera una cantidad infinita (en potencia) de saltos. De
modo que, cuando Cantor llegé a Halle en 1869, Heine le propuso
que trabajara en la cuestion de si es siempre tnica la descomposi-
cién de un grafico periédico, aun cuando la cantidad de saltos en
cada periodo pudiera crecer indefinidamente.

Cantor estudio el problema y en 1870 obtuvo una primera res-
puesta; la descomposicion es unica siempre y cuando los saltos
estén distribuidos de una determinada manera. Es decir, para que
se pueda garantizar la unicidad de la descomposicién, la manera
en que los saltos van apareciendo debe cumplir ciertas condicio-
nes especificas. En realidad, tal como vimos en el capitulo ante-
rior, los puntos de un grafico tienen dos coordenadas, una abscisa
y una ordenada, y eran las abscisas de los saltos las que debian
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SUMAS INFINITAS

Los matematicos que trabajaron a lo
largo del siglo xix en el problema de la
fundamentacion del célculo descubrieron
que las series, es decir, las sumas infini-
tas, tienen reglas propias que pueden ser
muy diferentes de las reglas conocidas
para las sumas finitas habituales. Por
ejemplo, en 1854 el matematico aleman
Bernhard Riemann (1826-1866) demostrd
que ciertas sumas infinitas no son con-
mutativas, es decir, pueden ser reorde-
nadas de tal modo que se obtenga un re-
sultado diferente. Un ejempilo es la serie

1.3 1 1
T+ ==+ =+|-——=[|+=+...,
[-2)3+(-3)3
cuya suma es 0,6931471..., pero que pue-

de ser reordenada de modo que se ob-
tenga cualquier resultado que se desee.

CONJUNTOS DERIVADOS

Georg Friedrich Bernhard Riemann hacia
1862.

cumplir esas condiciones. Pero Cantor encontré algunas dificulta-
des a la hora de expresar esos requisitos de una manera concreta,
exacta y elegante. Seguramente tenia una intuicién muy precisa
de cudles eran esas particularidades que queria enunciar, pero se
le escapaba el modo de transmitirlas en palabras claras y precisas.

Entre 1870 y 1872, Cantor publicé cinco articulos en los que fue
dando forma definitiva a su solucién para el problema de unicidad
de la descomposicién en series de Fourier. A lo largo de ese pro-
ceso descubrid, ademads, su respuesta para el problema del conti-
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nuo y es por eso que su definicién de los nimeros reales mediante
sucesiones fundamentales aparecié publicada en el contexto de
un trabajo sobre series trigonométricas.

;Como pudo expresar Cantor la condicién que deben cumplir
las abscisas de los puntos de discontinuidad de un gréfico peri6-
dico para que su descomposicién en serie de Fourier sea tinica?
Para lograrlo, Cantor creé el concepto de conjunto derivado, un
concepto muy relevante para nosotros porque fue el que le puso
en el camino que lo condujo al articulo histérico de 1883. Veamos
entonces qué es un conjunto derivado y cémo esa idea le permiti6
a Cantor resolver el problema que le habia planteado Heine.

Para comenzar, recordemos que una sucesién consta de un
primer numero, luego otro, luego otro, y asi siguiendo; y recor-
demos asimismo que para nuestros fines solo contaran las suce-
siones formadas por infinitos niimeros, todos diferentes entre si.

«La obra de Cantor es el producto mas bello del genio
matematico y uno de los logros supremos de la actividad
humana puramente intelectual.»

— Davip HILBERT, MATEMATICO ALEMAN.

106

Pensemos en la coleccién de los niimeros racionales. Es evi-
dente que m, que es un niimero irracional, no pertenece a esa colec-
cién; sin embargo, aunque x no es racional, si puede aproximarse
por una sucesién de racionales. Es decir, es posible encontrar
una sucesion formada exclusivamente por niimeros racionales de
modo tal que, a medida que se avanza por ella, esta nos va mos-
trando niimeros cada vez mas cercanos a n. Un ejemplo, que ya
se expuso en el capitulo anterior, es la sucesién formada por 3,1;
3,14; 3,141, 3,1415;..., que se obtiene agregando en cada paso una
cifra de la expresién decimal de .

Lo que acabamos de decir para & vale para cualquier niimero
irracional; cualquiera que sea el irracional que elijamos, siempre
podra aproximarse por una sucesion de racionales. Y también vale
para los propios racionales; por ejemplo, si tomamos el nimero
0,75, entonces la sucesion 0,751; 0,7501; 0,75001; 0,750001;... se va
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acercando a €l tanto como se quiera. En resumen, cualquier niimero
real puede aproximarse por sucesiones de racionales (que es, en
esencia, la solucién de Cantor para el problema del continuo).

Si P es un conjunto cualquiera de niimeros, Cantor llamé con-
Jumnto derivado de P ala coleccién de todos los niimeros que pue-
den aproximarse mediante sucesiones formadas por elementos
de P; al conjunto derivado de P lo indicé como P'. Si llamamos
Q al conjunto de los niimeros racionales, el ejemplo anterior nos
muestra que Q'=R, donde R designa al conjunto de todos los ni-
meros reales.

En sus articulos de comienzos de la década de 1870, Cantor
planted la definicién de conjunto derivado en términos de infini-
tos potenciales. Sin embargo, la misma escritura Q' nos remite
inmediatamente a un infinito en acto, dado que @ es la coleccién
de todos los niimeros racionales. Por otra parte, como ya obser-
vamos, la definicién de @' nos conduce a las sucesiones y a la
definicién de los niimeros reales. Vemos asi cémo el problema de
las series trigonométricas guié a Cantor hacia los que serian los
dos ejes fundamentales de sus investigaciones matematicas pos-
teriores: el infinito en acto y el problema del continuo.

LA CONDICION DE UNICIDAD

Tomemos ahora el conjunto P formado tinicamente por los niime-
ros 0, 1y 2; el conjunto P' contiene, segin la definicién de Cantor,
a todos los niimeros que se puedan aproximar mediante sucesio-
nes formadas por infinitos elementos de P, todos diferentes entre
si. Pero es obvio que no hay infinitos elementos de P todos dife-
rentes entre si, porque P tiene solo tres elementos.

Como es imposible formar ni siquiera una sola sucesion de
elementos de P, entonces en P' no hay nada; en esa situacién,
Cantor decia que P' se anula. En la terminologia moderna de la
teoria de conjuntos se diria que P' es el conjunto vacio, el que no
tiene miembros, pero nosotros conservaremos la expresion origi-
nal de Cantor.
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EDUARD HEINE

Heinrich Eduard Heine nacid en Berlin,
Alemania, el 16 de marzo de 1821, y fue
el octavo de nueve hermanos. En 1838
ingresé en la Universidad de Gotinga
para estudiar matematicas, pero al afio
siguiente paso a la Universidad de Berlin,
donde se doctord el 30 de abril de 1842.
Dos afios mas tarde comenzo a ensefiar
en la Universidad de Bonn y desde 1856,
en Halle. En esta Ultima universidad, don-
de era muy apreciado por la claridad de
sus clases, Heine dictaba una gran varie-
dad de cursos sobre diversas areas del
calculo y de la fisica. Como investigador,
ademas, hizo importantes aportes al pro-
blema de la fundamentacion légica del
calculo. Heine fallecié en Halle el 21 de
octubre de 1881.

Para entender la condicién de unicidad que encontré Cantor,
volvamos por un momento al ejemplo del derivado de Q. Observe-
mos que @' es también un conjunto de niimeros, y por lo tanto po-
demos calcular, a su vez, su derivado; Cantor escribia el derivado
del derivado de Q@ como Q". Y como "' es también un conjunto,
podemos calcular su derivado, que se escribe Q®; el derivado de
este es QW, y asi sucesivamente.

En el caso de (@, toda esta proliferacién de derivados no nos
conduce a nada interesante, porque puede demostrarse que Q',
Q", @@, QW,... son todos el conjunto de los niimeros reales y
entonces, al seguir derivando no se obtiene nada nuevo. Sin em-
bargo, hay ejemplos de conjuntos P, que no es necesario que de-
sarrollemos aqui en detalle, en los cuales P', P", P®, P® . son
todos conjuntos diferentes, o conjuntos tales que, a la larga, el
proceso P', P", P® P® . termina por anularse. Por ejemplo, es
posible encontrar un conjunto P para el cual P' es la coleccién
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formada por los niimeros 0, 1 y 2; en ese caso, P", que es el deri-
vado de P, se anula. Aqui, la anulacién se produce en P, pero hay
otros casos donde sucede en P', otros donde sucede en P®, otros
donde ocurre en P, y asi sucesivamente. Desde luego, para Q el
proceso jamas se anula, porque en todos los pasos obtenemos el
conjunto R de los niimeros reales.

La condicion de unicidad que encontré Cantor es la siguiente:
si P es el conjunto de las abscisas de los puntos de discontinuidad
de un grafico periédico, para que su descomposicién en serie tri-
gonométrica sea tinica basta con que el proceso P', P", P® P®
acabe por anularse en algiin momento. De esta manera, Cantor
logré expresar de un modo claro y preciso la condicién que ase-
gura la unicidad de la descomposicion en serie de Fourier y resol-
vi6 asi el problema que le habia propuesto Heine en 1869.

HACIA EL INFINITO

Como ya hemos citado anteriormente, en la década de 1860
Heine habia demostrado que si un grafico periédico no tiene dis-
continuidades, entonces su descomposicion es tinica. De hecho,
Heine también habia probado que la descomposicion era tinica
si en cada periodo habia solo una cantidad finita de discontinui-
dades. La solucion de Cantor abarca estos dos resultados y los
extiende al caso en que hay infinitas discontinuidades en cada
periodo.

Por lo tanto, si no hay discontinuidades, entonces hay unici-
dad; si hay solo una cantidad finita de discontinuidades en cada
periodo, entonces también hay unicidad. En la misma linea, Can-
tor conjeturaba que su resultado deberia poder enunciarse mas
0 menos como sigue: «si en cada periodo hay infinitas disconti-
nuidades, pero “pocas”, entonces hay unicidad». «Infinitas, pero
pocas» parece una frase contradictoria, pero no para Cantor, por-
que para él «infinito pero poco» venia a significar «infinito nume-
rable»; es decir, infinitas pero con un cardinal menor al de todos
los ntimeros reales.
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Cantor conjetur6 entonces —y de hecho lo demostré en sus
«Fundamentos para una teoria general de variedades» de 1883—
que el proceso P', P", P® P® . se anula en algin momento
exactamente en los casos en que Py P' son ambos finitos o nume-
rables. Pero Cantor ya habia conjeturado este resultado en 1872.
(Por qué tardé6 diez afios en demostrarlo? En realidad, no fue la
dificultad técnica del resultado lo que retrasé el hallazgo de la de-
mostracion, sino una barrera psicolégica.

«La impresi6én que las memorias de Cantor hacen en nosotros es
desastrosa. Leerlas nos parece a todos una completa tortura.»

— CHarLES HERMITE, MATEMATICO FRANCES, EN 1883,

no

Preguntémonos —como se pregunto Cantor— cudntos pasos
pueden ser necesarios para que el proceso P', P", P® P® . se
anule. Ya dijimos que puede llegar a anularse en el primer paso, o
en el segundo, o en el tercero, y asi sucesivamente, pero la situa-
cién no es tan sencilla.

Para entenderlo, volvamos a la sucesion 3,1; 3,14; 3,141;
3,1415;... que, como ya sabemos, se aproxima cada vez mas al
nimero n. Para describir esta situacién, suele decirse que la suce-
sién «se acerca a x en el infinito»; este «infinito» debe entenderse
en forma potencial y quiere decir que los sucesivos niimeros 3,1;
3,14; 3,141; 3,1415;... se aproximan a rt tanto como se quiera, pero
que de hecho nunca lo alcanzan.

Durante sus investigaciones, Cantor encontré un ejemplo en
el que P, P", P® P® . eran todos conjuntos diferentes sin que el
proceso llegara a anularse en ninguna cantidad finita de pasos.
Este ejemplo le permitié definir el conjunto P®, donde o« —sim-
bolo introducido por John Wallis en 1655— se usa habitualmente
en el célculo para representar un infinito en potencia. Asi como
los mimeros 3,1; 3,14; 3,141; 3,1415;... se van pareciendo cada vez
més a x, el conjunto P™ es el conjunto al que se van pareciendo
cada vez maés las sucesivas colecciones P', P", P® P® .

Pero, en el ejemplo que menciondbamos antes, Cantor en-
contrd, ademas, que P™ estaba formado por los niimeros 0, 1y 2,
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y su derivado, entonces, se anulaba. Pero, ;quién es el derivado
de P™? Si el derivado de P® es P®, y el derivado de P® es P®,
parece l6gico decir que el derivado de P™ es P™*Y; ;pero entonces
estamos diciendo que el proceso se anula al cabo de = + 1 pasos?
&Qué significa «oo + 1»?

De hecho, Cantor hallé situaciones en las cuales el proceso se
anulaba en el paso « +2, 0 ®+3, o inclusive en el paso « + «; sin
embargo, no le encontraba sentido a estos simbolos o, en realidad,
un condicionamiento de muchos afios, una barrera psicolégica
como dijimos antes, le impedia reconocerlos como lo que eran
en realidad.

LAS NOTABLES ACLARACIONES

En el primer capitulo citamos la carta que le escribié Cantor a
Dedekind en noviembre de 1882. Recordémosla:

Dios Todopoderoso me ha concedido alcanzar las aclaraciones méas
notables e inesperadas en la teoria de conjuntos y en la teoria de
nimeros o, mas bien, que encontrara aquello que ha fermentado en
mi durante afios y que he buscado tanto tiempo.

En esa carta, Cantor se referia a que en 1882 se dio cuenta
finalmente de que esos simbolos ®, w+1, ©+2,..., w0+,
w+o+1,... representaban nada menos que nimeros infinitos,
nimeros que permiten contar mas alld de los naturales. Como
primera medida, les asigné un nombre y un simbolo; llamé a
estos nimeros ordinales y para destacar que son infinitos en
acto cambio6 el simbolo o, fuertemente asociado al infinito en po-
tencia, por la letra griega o (omega miniscula, la iltima letra del
alfabeto griego).

:Qué son los ordinales? Segiin dice Cantor en su trabajo de
1883, los ordinales surgen de dos principios de generacién. El pri-
mer principio dice que todo ordinal tiene un sucesor, es decir,
un ordinal que es el inmediatamente siguiente a él. El segundo
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principio dice que dada cualquier sucesién de ordinales, siempre
hay un ordinal que es el inmediatamente siguiente a todos ellos.

El primer ordinal es el niimero 0; su sucesor, desde luego, es
el 1; luego vienen el 2, el 3, y asi sucesivamente. Los niimeros 0, 1,
2, 3,... son los ordinales finitos o, como decia Cantor, los ordinales
de clase L.

El segundo principio de generacion nos dice que después de
la sucesioén 0, 1, 2, 3, 4,... hay un ordinal que sigue inmediata-
mente a todos ellos; este es el ordinal w, el primer ordinal infinito.
Después vienen w + 1, +2, +3,...; y aplicando otra vez el se-
gundo principio de generacién, después de esta nueva sucesiéon
viene otro ordinal, que es w+w; y después de él vienen w+w+1,
0+w+2,...

En resumen, la cuenta de los ordinales comienza de la si-
guiente manera: 0,1,2,3,..., 0,0+1,0+2,...,0+0+ 1,0+ 0+2,...,
w+w+w+1,...,yentodos los casos los puntos suspensivos repre-
sentan una cantidad infinita de términos.

Volvamos al ordinal w y pensemos ahora en el conjunto de
todos sus predecesores, es decir, en el conjunto de todos los ordi-
nales que son menores que él. Este conjunto estd formado por los
nimeros 0, 1, 2, 3,... y, como es numerable, Cantor dice que w es
un ordinal de clase II. Los ordinales de clase I tienen un conjunto
finito de predecesores, los de clase II tienen un conjunto numera-
ble de predecesores.

El ordinal w+ 1, por ejemplo, también es de clase II porque
sus predecesores son 0, 1, 2, 3,..., o, que forman un conjunto
numerable. Los ordinales o, o +1, w+2,..., o+w+1, o+w+2,...,
w+w+n+1,... son todos de clase II.

Pero pensemos ahora en la sucesion de todos los ordinales
de clase II; por el segundo principio de generacion, existe un or-
dinal que sigue inmediatamente a todos ellos. Este ordinal suele
indicarse con el simbolo Q, que es la letra omega mayuscula. La
pregunta es: ;a qué clase pertenece Q7

En el articulo de 1883, Cantor pudo demostrar que todos los
predecesores de Q, es decir, las clases I y II, forman un conjunto
no numerable; Q no es, por lo tanto, de clase II; de hecho, Q es el
primer ordinal de clase III. Pero mas importante todavia, Cantor
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| Ordinales de clase | _1?33—. El cardinal infinito

(numeros naturales) &3 mads pequefio

El cardinal inmediato
siguiente al anterior

El cardinal inmediato
siguiente al anterior

probo que al conjunto de las clases Iy II le corresponde el cardinal
que sigue inmediatamente al cardinal de los ntimeros naturales.
Observemos la elegancia del sistema de Cantor (véase la fi-
gura); el conjunto de los ordinales de clase I es numerable, su car-
dinal es el mas pequefio de entre todos los cardinales infinitos. Si
agregamos la clase II, obtenemos el cardinal inmediato siguiente;

si agregamos la clase III, obtenemos el cardinal que sigue, y asi:

sucesivamente con las clases IV, V,... En 1883, estos cardinales
todavia no tenian un nombre. Como veremos en el préximo capi-
tulo, Cantor se lo daria en 1895.

En sus «<Fundamentos para una teoria general de variedades»
Cantor dice que siempre intuyé que habia cardinales mayores que
el de los reales, pero que hasta ese momento no habia sido capaz
de hallar ningiin ejemplo. Este sistema de los ordinales —la «hé-
lice virtuosa de los ordinales y los cardinales», como la llama el
historiador José Ferreir6s— le permitio finalmente demostrar la
existencia de una cantidad infinita de niveles de infinitud.

;Dénde encaja en este sistema el cardinal de los reales? Tal
como vimos, el cardinal inmediato al de los naturales se obtiene
al agregar la clase I a la clase I; a su vez, la hipétesis del continuo,
recordemos, dice que ese cardinal es el de los reales. Es decir, si
la hipétesis del continuo fuera cierta, toda la teoria tendria una
elegante coherencia, ya que la clase I nos daria el cardinal de los
naturales y la clase II el de los reales.

Desde este descubrimiento, Cantor sintié que la hipétesis del
continuo se volvia una pieza clave de su teoria y llegé casi hasta
la obsesion en sus intentos de demostrarla, pero nunca lo logré
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EL TERNARIO DE CANTOR

En uno de los articulos publicado en Acta Mathematica, Cantor presenta la
definicion de un conjunto, que es hoy conocido como el «ternario de Cantor»,
y que se define en pasos sucesivos. Observemos la figura. En el primer paso
tenemos un segmento, que identificamos con el conjunto de todos los nume-
ros reales entre O y 1. En el segundo paso dividimos al segmento en tres partes
iguales, y de ellas descartamos la parte central (segundo renglén en la figura).
En el tercer paso, en cada una de las dos partes que quedaron antes repeti-
mos el mismo proceso, las partimos en tres y descartamos la parte central;
y asi seguimos. El conjunto que queremos definir, el ternario de Cantor, esta
formado por todos los puntos que, al cabo de infinitos pasos, quedaron sin
ser descartados. A primera vista, podria parecer que no quedé ningun punto;
sin embargo, Cantor pudo demostrar que hay una correspondencia uno-a-uno
entre el ternario y el conjunto de todos los nimeros reales. En otras palabras,
al cabo de infinitos pasos quedan sin descartar, en el sentido del cardinal,
tantos puntos como los que hay en toda la recta.
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y es posible que esta frustracion se haya sumado a las causas de
su depresion de mayo de 1884.

En realidad, Cantor no vivi6 para saber si la hip6tesis del con-
tinuo es verdadera o falsa; en el tltimo capitulo dedicaremos un
espacio a comentar la curiosa solucién que tuvo este problema.

ASOMAN LAS PARADOJAS
Una objecién que se le hizo a Cantor en esa época es que sus ordi-

nales, simplemente, no existian. Como respuesta, Cantor ofrecia
su propia filosofia de las matematicas, segiin la cual cualquier ob-
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Jjeto que un matematico defina, por el mero hecho de ser definido,
existe, con la dnica condicién de que esa definicién no conduzca
a contradicciones l6gicas. Pero, ;es cierto que las propiedades
de los ordinales no conducen a contradicciones? Volvamos al se-
gundo principio de generacién: dada cualquier sucesién de ordina-
les, siempre hay otro nuevo ordinal que es mayor que todos ellos.
A la luz de este principio, si consideramos la sucesién formada
por todos los ordinales, tiene que haber un nuevo ordinal mayor
que todos ellos; pero, jcémo puede haber un nuevo ordinal si la
sucesion ya contenia a todos los ordinales? Esto es una contradic-
cién l6gica, una paradoja que Cantor descubri6 en 1882.

Para solucionar la contradiccién, en el articulo de 1883 Can-
tor introdujo un tercer principio de generacién de ordinales, que
dice basicamente que el segundo principio no se puede aplicar ala
sucesion completa de todos los ordinales. En definitiva, un parche
que solucionaba el problema de la paradoja.

La existencia de contradicciones légicas en una teoria mate-
matica es siempre una mala noticia, porque indica que esta tiene
un fallo en sus cimientos; y aunque la paradoja pueda ser solucio-
nada, como hizo Cantor al agregar su tercer principio, su aparicién
constituye una llamada de alerta. Pero Cantor no se preocup6 por
la paradoja; més bien, podriamos decir que la recibié con alivio
y alegria.

En el primer capitulo vimos que san Agustin, y como él mu-
chos otros tedlogos, entendian que el infinito era un atributo
exclusivamente divino y que pretender que la mente humana es
capaz de abarcarlo constituia una herejia. Esta idea pesaba mucho
en el animo de Cantor, que siempre habia sido una persona muy
religiosa; pero la paradoja, segin €l entendia, lo liberaba final-
mente de esa carga, de esa implicita acusacién de hereje.

Cantor concibi6 la idea de que el infinito estaba dividido en
dos niveles, el nivel inferior correspondia a lo transfinito y abar-
caba el conjunto de los naturales, el de los reales, los ordinales de
las clases I, II, ITI,... y en general todos los conceptos de los que
hablaba su teoria, pero no el conjunto de todos los ordinales. Este
conjunto caia en el nivel absoluto del infinito, el nivel superior
reservado a la divinidad.
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Segun Cantor, la mente humana podia captar lo transfinito,
pero la paradoja indicaba que el nivel absoluto, el de la divinidad,
estaba fuera de su alcance. La paradoja, siempre segiin Cantor, no
nacia de un fallo de la teoria, sino del intento de la mente humana
por abarcar un concepto que estd mas alla de su comprension.
De este modo, al dejar un nivel de infinitud reservado exclusiva-
mente a la divinidad, Cantor, el hombre antes que el matematico,
pudo reconciliarse con su espiritu religioso. Como veremos en el
ultimo capitulo, donde volveremos a hablar de las contradiccio-
nes logicas de la teoria de Cantor, muchos mateméticos, aun sus
defensores, no estaban de acuerdo con él en esta interpretacién
de las paradojas.
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CAPITULO 5

Los alef

Una mirada ingenua podria llevarnos a pensar
que «infinito mas infinito» es simplemente «infinito»,
y que no hay nada interesante que se pueda agregar al
respecto. Pero en la segunda mitad de la década de 1890,
Georg Cantor publicé un articulo en el que introdujo
una notacion para los cardinales infinitos basada en
la letra hebrea alef y que le permitié desarrollar
una «aritmética del infinito», una aritmética
que nos muestra que si hay mucho que
decir acerca de cuanto es «infinito
mas infinito».






En la primera mitad del siglo xx, el fisico alem4n Max Planck
(1858-1947) escribio:

Una nueva teoria no se impone porque los cientificos se convenzan
de ella, sino porque los que siguen abrazando las ideas antiguas van
muriendo poco a poco y son sustituidos por una nueva generacién
que asimila las nuevas ideas desde el principio.

Al escribir esta frase, Planck se referia en realidad a la mecéa-
nica cudntica, la teoria que revolucioné la fisica del siglo xx; sin
embargo, también puede aplicarse perfectamente a la teoria de
Cantor. En efecto, muchos matematicos de la generacion nacida
en las iltimas décadas del siglo xix, ajenos a los prejuicios de sus
mayores, vieron en la teoria del infinito matemaético un desafio
fresco y estimulante. Uno de los mas destacados en este sentido
fue David Hilbert, brillante matemaético aleman nacido en 1862; asf
por ejemplo, cuando a principios del siglo xx el descubrimiento
de varias paradojas en la teoria del infinito hizo tambalear la con-
fianza que muchos tenian en ella, Hilbert se puso a la cabeza de la
defensa de la teoria de Cantor.

Como otro ejemplo del apoyo de Hilbert a la teoria de Can-
tor, mencionemos que en el afio 1900 Hilbert fue invitado a dar
la conferencia inaugural del Segundo Congreso Internacional de
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Matematicas, celebrado en Paris, un puesto de honor que le fue
ofrecido por los organizadores del congreso gracias a sus méritos
académicos. Pues bien, en esa famosa conferencia Hilbert planteé
23 problemas matematicos que no habian podido ser resueltos
hasta ese momento y que —él entendia— iban a guiar la investi-
gacion matematica a lo largo del siglo xx; como homenaje y apoyo
a Cantor, y para destacar la importancia de la teoria de conjuntos,
Hilbert puso a la cabeza de su lista el problema de si la hipétesis
del continuo es verdadera o falsa (recordemos que la hipétesis del
continuo es la conjetura que formulé Cantor en 1878 de que no
existe un cardinal intermedio entre el de los naturales y el de los
reales).

LA BASE DE LAS MATEMATICAS

Gracias a la influencia de la nueva generacion de matemiticos,
hacia 1890 la teoria de conjuntos y la teoria del infinito no solo
comenzaron a ser aceptadas, sino que empezaron a convertirse
en parte esencial de muchas de las nuevas ramas de las mate-
maticas que se desarrollaron a partir de esos afos. Por citar solo
dos ejemplos, digamos que las nociones conjuntistas —y muy
particularmente la distincién entre conjuntos numerables y no
numerables— son fundamentales en la teoria de la medida, una
generalizacién del cdlculo que fue iniciada en los ultimos anos del
siglo xix por los matemiticos franceses Emile Borel (1871-1956)
y Henri Lebesgue (1875-1941). Por otra parte, las nociones con-
juntistas son también esenciales para la topologia, otra generali-
zacién del céalculo, iniciada hacia la misma época por el también
francés Henri Poincaré (1854-1912), aunque el propio Poincaré, a
causa de la proliferacion de las paradojas, se transformaria des-
pués en uno de los detractores de la teoria de conjuntos.
También en los tltimos afios del siglo xix comenzaba a tomar
forma la idea de que la teoria de conjuntos podia ser el funda-
mento de todas las matematicas. ;Qué significa esto exactamente?
Durante siglos el modelo de razonamiento matematico por exce-
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lencia habia sido la geometria clsica griega; pero no solamente
€s0, sino que se entendia que el modo mas claro de pensar las no-
ciones matematicas era viéndolas como conceptos geométricos.
Un nimero, por ejemplo, especialmente un nimero irracional, se
veia como un segmento y las operaciones numéricas se entendian
como construcciones; por mostrar un ejemplo de los muchos po-
sibles, en su libro Reglas para la direccién de la mente, escrito
en la década de 1620, René Descartes explica que multiplicar dos
numeros —es decir, dos segmentos— consiste basicamente en
construir el rectdngulo que tiene a esos dos segmentos por lados;
notemos que Descartes no dice, tal como pensariamos hoy en dia,
que el producto de los lados nos permite calcular el drea del rec-
tangulo. El dice que el rectdngulo es el producto de los dos niime-
ros; los conceptos y operaciones eran pensados como objetos y
construcciones de naturaleza geométrica.

«Del paraiso que Cantor cre6 para nosotros nadie podra
expulsarnos.»

— Davip HiLBerT (1862-1943), MATEMATICO ALEMAN.
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Este dominio de la geometria fue desapareciendo de manera
gradual a lo largo del siglo x1x, durante el proceso conocido como
«aritmetizacién del cédlculo» (véase el capitulo 3). Como resul-
tado de este proceso, los conceptos matematicos, sobre todo los
conceptos del célculo, dejaron de pensarse geométricamente y
pasaron a basarse exclusivamente en los nimeros. Pero si los nui-
meros ya no eran pensados como segmentos, ;qué eran entonces?
Algunos matemadticos, entre ellos Richard Dedekind, vieron una
respuesta a esta pregunta en la teoria de conjuntos; si las defini-
ciones de los niimeros y sus operaciones ya no podian apoyarse
en conceptos geométricos, pensé Dedekind, entonces podrian ba-
sarse en nociones conjuntistas.

Como vimos en el capitulo anterior, en 1872 Dedekind ya
habia usado conceptos conjuntistas para definir a los nimeros
reales, pero esta definicién presuponia la existencia de los racio-
nales, que a su vez se definen en base a los niimeros naturales.
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FIG.1

Numeros naturales
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Son las fracciones (cocientes de enteros).

9

Reales:
Se definen a partir de sucesiones de racionales (Cantor)
o de cortaduras de racionales (Dedekind).

FIG. 2
Unién = suma
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bc

/

abc

ab

Y \ /

‘abcd

En los conjuntos los 2+2=4

elementos no se repiten

;Como definimos a los naturales, que son los que estan al co-
mienzo de toda esta cadena de definiciones (figura 1)?

Dedekind respondié a esta pregunta en un articulo titulado
«Was sind und was sollen die Zahlen» [Qué son y para qué sir-
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ven los nimeros], publicado como monografia independiente
en 1887. En este trabajo, Dedekind retoma la definicién de la
nocién de conjunto que Cantor habia dado en 1883 (a los con-
Jjuntos Dedekind los llama «sistema de elementos»), asi como
la definicién de la unién de conjuntos. Para Dedekind, los nu-
meros naturales son, simplemente, los cardinales de los conjun-
tos finitos; por ejemplo, define al nimero 0 como el cardinal del
conjunto vacio (el conjunto que carece de elementos), el 1 es el
cardinal de cualquier conjunto que tenga un tnico elemento, y
asi sucesivamente.

A su vez, la suma de nimeros se define mediante la unién de
conjuntos; por ejemplo, cuando enunciamos que 1+ 1=2 —dice
Dedekind—, estamos afirmando en realidad que si tenemos dos
conjuntos diferentes, cada uno de ellos de cardinal 1, entonces su
unién tiene cardinal 2 (figura 2, pagina anterior).

De la misma forma —dice Dedekind—, todas las nociones
matematicas pueden reducirse a nociones conjuntistas. Esta
forma de pensar en las matematicas como basadas totalmente en
la teoria de conjuntos tuvo una enorme influencia a lo largo de
todo el siglo xx e inclusive sigue siendo muy influyente en nues-
tros dias; volveremos a este tema en el préximo capitulo.

LA UNION MATEMATICA ALEMANA

Como vemos, la idltima década del siglo xix comenzé con muy
buenos augurios para Cantor; matematicos jévenes aceptaban,
estudiaban y aplicaban su teoria del infinito, a la vez que Richard
Dedekind proponia que la teoria de conjuntos se transformara
nada menos que en la base de todas las matemadticas. A estas cir-
cunstancias se le sumé otro hecho muy auspicioso; en 1890 se
cred la Unién Matematica Alemana y Cantor fue elegido como su
primer presidente, cargo que ejercié hasta 1893.

La creacién de la Unién Matematica Alemana fue el resultado
de un intenso trabajo en el que Cantor (cuando ya se habia recu-
perado de su depresion) tuvo una participacién muy activa, y que
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se desarroll6, a su vez, en el marco de la unificacién politica de
Alemania.

(Qué fue la unificacién de Alemania? A comienzos del
sigloxix, la llamada Alemania estaba en realidad dividida en 38 es-
tados, que aunque tenian un idioma, una cultura y una historia en
comun, eran politicamente independientes. El mas poderoso de
los estados era Prusia, y hacia 1860 su primer ministro, el «canci-
ller de hierro» Otto von Bismarck, puso en marcha un proyecto de
unificacion, que incluy6 tres conflictos bélicos, diversas alianzas
politicas, y que culminé el 18 de enero de 1871 con la creacién
del Imperio aleman, una Alemania politicamente unificada bajo
el gobierno del emperador Guillermo I, quien hasta ese momento
habia sido rey de Prusia.

«Quien haya experimentado solamente una vez el atractivo
de la personalidad de Cantor, sabe que estaba llena de agudeza
y de temperamento, de ingenio y originalidad.»

— ArTHUR MoRriTz ScHOENFLIES (1853-1928), MATEMATICO ALEMAN.

Sin embargo, a fines de la década de 1880 Cantor y otros co-
legas, entre ellos el reconocido geémetra Felix Klein (1849-1925),
notaban que, aunque habian pasado casi veinte afos desde la uni-
ficacién politica de Alemania, todavia existian muchas envidias y
rivalidades regionales que impedian una genuina colaboracién a
nivel nacional; y es por eso que trabajaron en la creacién de una
sociedad que agrupara en su seno a todos los matematicos ale-
manes. Como dijimos antes, este proyecto se concreté en 1890 y
Cantor fue el primer presidente de esa asociacion.

La primera reunion de la Unién Matematica Alemana se cele-
bré en septiembre de 1891 y, en un gesto de reconciliacién hacia
su viejo enemigo, Cantor invité personalmente a Kronecker a que
dictara alli una conferencia. Kronecker acepto, pero por desgracia
no pudo asistir porque en agosto su esposa sufrié un grave acci-
dente y al mes siguiente fallecid; en realidad, Kronecker la sobre-
vivié muy poco tiempo, hasta el 29 de diciembre de ese mismo
ano, dia en que falleci6 él también.
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EL REGRESO

Recuperado de su depresion y reconciliado con el mundo cien-
tifico, en la década de 1890 Cantor retomé sus investigaciones
matematicas, y como resultado de ellas dio a conocer dos articu-
los, los dos 1ltimos que publicé en su vida. El primero, titulado
«Uber eine elementare Frage der Mannigfaltigkeitslehre» [Sobre
una cuestion elemental de la teoria de variedades), se publicé
en 1892 en el primer Informe anual de la Unién Matemdtica
Alemana.

El segundo de estos articulos, uno de sus trabajos méas famo-
sos, fue publicado en dos partes, la primera en 1895 y la segunda
en 1897, ambas incluidas en la revista Mathematische Annalen,
bajo el titulo «Beitridge zur Begriindung der transfiniten Mengen-
lehre» [Contribuciones a la creacién de una teoria de los conjun-
tos transfinitos] (para el significado de la palabra «transfinito»,
véase el capitulo anterior).

Nos dedicaremos ahora a analizar el contenido de estos dos
articulos; aunque lo haremos invirtiendo el orden cronolégico.

El historiador José Ferreirds dice, con justicia, que «Contri-
buciones a la creacién de una teoria de los conjuntos transfinitos»
es el «testamento cientifico de Cantor»; en efecto, en este trabajo
Cantor retoma todos los conceptos béasicos de su teoria del infi-
nito, en especial las nociones de cardinal y de ordinal, y estudia
sus propiedades y sus relaciones mutuas.

Una de las innovaciones que Cantor introdujo en este articulo
es su famosa notacién de los dlef para designar a los cardinales
infinitos. Alef, R, es la primera letra del alfabeto hebreo, y Cantor
llamé R (1éase dlef-sub-cero o también alef-cero) al primer car-
dinal infinito, que es el que corresponde al conjunto de los na-
turales asi como a cualquier otro conjunto numerable; X es el
segundo cardinal infinito, X, es el tercer cardinal infinito, y asi su-
cesivamente. Relacionandolo con lo visto en el capitulo anterior,
podemos decir entonces que el conjunto de todos los ordinales de
clase I —es decir, el conjunto de los nimeros naturales— tiene
cardinal X, al agregar los ordinales de clase II pasamos a tener
un conjunto de cardinal X , al agregar los ordinales de clase III ob-
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Ordinales de clase | - Su cardinal es Rg
(nGmeros naturales)

srclinalés de clase i Su cardinal es &,

Su cardinal es R»

tenemos un conjunto de cardinal X,, y asi sucesivamente (véase
el esquema).

Cada vez que

una clase de
nuevos ordinales,

pasamos al
cardinal inmediato
siguiente.

«El diametro del Aleph seria de dos o tres centimetros, pero el
espacio coésmico estaba ahi, sin disminucién de tamaio.»

— DEL cuento EL ALEPH, DE JorGE Luis BorGEs.

Con esta nueva notacion, el problema de saber si la hipé6tesis
del continuo es verdadera —es decir, si es correcta la conjetura
de Cantor de que no existe un cardinal intermedio entre el de los
naturales y el de los reales— se transforma en la pregunta de si el
cardinal de los reales es igual a R, (notemos que el menor cardi-
nal infinito es Xy que R, es el inmediato siguiente a él; sabemos

e & 3 o= SR My i § T S S ety TR - engmi
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! éCUANTOS ALEF EXISTEN?

i

3 La secuencia de los alef comienza con N, 8, N,... Pero, écuantos alef hay?

l éHay uno por cada numero natural y, en consecuencia, son numerables? En

¥ realidad, los subindices son ordinales. Después de los infinitos R donde n

E recorre todos nimeros naturales, vienen R, R .. R o N0 Roigep Y @8I

g sucesivamente. La respuesta a la pregunta es, entonces, que hay tantos car-
dinales infinitos como ordinales (incluyendo entre estos a los ordinales de

) todas las clases). i
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ademas que el cardinal de los reales no es X, porque los reales no
son numerables; por lo tanto, si el cardinal de los realesno es X ,
entonces la tnica alternativa es que sea mayor que €l).

ARITMETICA TRANSFINITA

En sus «Contribuciones», Cantor retoma el trabajo de Dedekind
de 1887, aunque sin hacer mencion explicita de él, y tal como hizo
Dedekind, entiende a los niimeros naturales como los cardinales
de los conjuntos finitos, y define su suma mediante la operaci6n de
unién. Pero Cantor, ademads, extiende esta idea a los cardinales
infinitos y es asi como establece la que él denomina, y es asi como
se llama todavia hoy, una aritmética transfinita.

Veamos algunos ejemplos de operaciones de esta aritmética
transfinita. Comencemos por recordar que, desde el punto de vista
conjuntista, el hecho de que 1+ 1 sea igual a 2 significa que si uni-
mos dos conjuntos diferentes, ambos de cardinal 1, obtenemos
un conjunto de cardinal 2. Otra forma de expresarlo es diciendo
que si a un conjunto de cardinal 1 le agregamos un objeto nuevo,
obtenemos como resultado un conjunto de cardinal 2. Siguiendo
la misma idea, si, por ejemplo, alos niimeros naturales (que tienen
cardinal R ) les agregamos el nimero -1, obtenemos el conjunto
-1, 0, 1, 2, 3, 4,..., que es coordinable con los naturales y, por
lo tanto, tiene también cardinal X (recordemos que si dos con-
Jjuntos son coordinables, entonces tienen el mismo cardinal). En
resumen, al agregar un objeto nuevo a un conjunto de cardinal X
obtenemos otro conjunto de cardinal X ; en términos de la aritmé-
tica transfinita, esto nos dice que X +1= X (figura 3).

De manera similar, puede probarse que si a un conjunto de
cardinal X le agregamos dos objetos, obtenemos nuevamente
un conjunto de cardinal X, es decir, X +2=N; y también vale
que X +3=N  que X +4=N  yasisucesivamente para todos los
nimeros naturales. En definitiva, estas igualdades nos estan di-
ciendo que si a un conjunto numerable le agregamos una cantidad
finita de objetos volvemos a obtener un conjunto numerable.

LOS ALEF



FIG. 3

El cardinal del conjunto
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FIG. 4
Ordinales declase | U Ordinales de clase Il = Ordinales de clase | y Il
Ko Ky Ro+ iy

Como los ordinales de clases | y Il todos juntos tienen
cardinal ®; entonces ¥g+ 8= 8,

(Qué ocurre con X + N ? En otras palabras, ;qué cardinal obte-
nemos si unimos dos conjuntos numerables? En el capitulo anterior
dijimos que en sus «Contribuciones», Cantor demuestra que la unién
de dos conjuntos numerables es también un conjunto numerable;
un ejemplo esta dado por la unién de los naturales con el conjunto
formado por los niimeros negativos -1, -2, =3, —4,..., que da como
resultado a los enteros. Podemos decir entonces que X + X =X .

Veamos un tltimo ejemplo; ya se ha expuesto que el conjunto
de los ordinales de clase I (que son los naturales) tiene cardinal
N, ¥ que si agregamos los ordinales de clase II (que comienzan
con m, w+1, w+2,...) obtenemos un conjunto de cardinal X ;
pero Cantor ademas demostré que el conjunto de los ordinales de
clase II por si solo también tiene cardinal X . En resumen, si a un
conjunto de cardinal X (los ordinales de clase II por si solos) le
agregamos un conjunto de cardinal X (los ordinales de clase I),
obtenemos un conjunto de cardinal X, (los ordinales de clase I y
II todos juntos); en términos de la aritmética transfinita, esto nos

dice que X + N =X (figura4).
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PRODUCTO DE CARDINALES

Dentro de la aritmética transfinita, ademas de la suma, puede definirse el
producto de cardinales; para esta definicion se apela al llamado producto
cartesiano de conjuntos. Si A y B son dos conjuntos cualesquiera, su pro-
ducto cartesiano. gue se escribe A x B, se define como el conjunto formado
por todos los pares cuyos primeros miembros son elementos de A v cuyos
segundos miembros son elementos de B. Tal como es muy habitual en los
textos de teoria de conjuntos, al par formado, por ejemplo, por los nimeros
1y 2 lo indicaremos como (1,2). Es importante hacer notar que el orden en
que se escriben los elementos es relevante ya que, por ejemplo, no es lo
mismo el par (1,2) que el par (2,1); es por esa razén que en este contexto
suele hablarse de pares ordenados. De esta forma, si A es el conjunto for-
mado por los nimeros O y 1, mientras que B es el conjunto formado por
los numeros 2, 3 y 4, entonces 4 x B es el conjunto formado por los pares
(0,2), (0,3), (0,4), (1,2), (1,3), (1,4). Notese que A tiene cardinal 2; B tiene
cardinal 3; mientras que A x B tiene cardinal 6. Tal como queda sugerido en
el ejemplo anterior, el producto del cardinal de A por el cardinal de B se
define como el cardinal de A x B (a diferencia de lo que sucede con la suma,
no hay ningun inconveniente en que los conjuntos 4 y B tengan elementos
en comun). {Cuanto es, por ejemplo, K - K,? Si tomamos el conjunto N de
los ndimeros naturales (cuyo cardinal, como sabemos, es R), la definicion
anterior nos dice que N,- X, es el cardinal de NxN (el conjunto de todos

En realidad, puede probarse que si se suma dos veces un
mismo cardinal infinito el resultado es otra vez ese mismo cardi-
nal (como en el caso de X + X =X ), y que si se suman dos cardi-
nales infinitos diferentes, entonces el resultado es el mayor de los
dos (como R + R, =R ). En consecuencia, por ejemplo, podemos
afirmar que X |+ R =X yque R +X,=R,.

CONJUNTOS DE CONJUNTOS
Nuestra intenciéon es hablar de otra operacién de la aritmética

transfinita, pero antes sera necesario introducir algunos conceptos.
Como deciamos en el capitulo anterior, un conjunto debe pen-

LOS ALEF



los pares de numeros naturales). Vamos a probar a continuacién que NxN

en realidad es numerable.

Desarrollo

Para probar que NxN es numerable, comenzamos escribiendo a todos los
pares que lo forman en una sucesién. Primero escribimos el Unico par cuya
suma es O, luego los pares cuya suma es 1, luego aquellos cuya suma es 2,

y asi sucesivamente:

(0,0), (0.1, (1,0, (0.2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0),...

Esta escritura nos permite establecer una correspondencia uno-a-uno entre
los numeros naturales «individuales» y los pares de nimeros naturales:

(0,0) (O (1,0) (0,2) (.1 (2,0) (0,3) (1,2) (2,1 (3,0).
s 4 4 4 & $ 4 't

I O | O A
o 1 2 3 4 5 6 7 8 9.

Esta correspondencia demuestra que N x N es numerable, es decir, que su
cardinal es X. Tenemos asi que, por un lado, la definicién del producto de
cardinales nos dice que Nx N tiene cardinal X,- X . Por otro lado, acabamos

de probar que el cardinal de NxN es X . Deducimos que R, R, = K.

sarse como un objeto en si mismo diferente de los miembros que
lo forman. Por ejemplo, @, el conjunto de los niimeros racionales,
e I, el conjunto de los nimeros irracionales, son cada uno de ellos
un solo objeto. Podemos considerar entonces el conjunto cuyos
miembros son solamente esos dos objetos Q e I, conjunto que
convendremos en llamar D. Vale la pena insistir en que los miem-
bros de D son solamente dos objetos, Q e I; es decir, su cardinal es
2. No debemos confundir a D con la unién de @ e I, que se obtiene
reuniendo en un todo a los miembros de esos dos conjuntos y que
da como resultado al conjunto R de todos los reales. El niimero
3/2, por ejemplo, es miembro de ) y también de R, pero no es
miembro de D.

Podemos hacer una analogia entre esta situacién y el con-
junto formado por los planetas del sistema solar; este conjunto,

LOS ALEF
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ARITMETICA ORDINAL

No debe confundirse la aritmética de los cardinales con la aritmética de los
ordinales; los cardinales estan asociados a la idea de cantidad y su suma se
relaciona con la idea de agregar elementos. Por lo tanto, como acabamos de
ver, 8,+1 =R, es decir, X +1no es mayor que N_. Los ordinales, en cambio,
estan asociados al concepto de «posicion que se ocupa en una sucesiéns y su
suma se relaciona con la idea de avanzar a lo largo de esa sucesién. Asi por
ejemplo, w+1representa la posicion inmediata siguiente a w y es por eso que
w1 si es mayor que w. En sus «Contribuciones», Cantor desarrolla también una
aritmética de los ordinales pero, por razones de espacio, no nos dedicaremos
a ella en este texto.

llamémoslo S, tiene ocho miembros, Mercurio, Venus, Tierra,
Marte, Jupiter, Saturno, Urano y Neptuno. Por otra parte, la Tierra
en si misma puede pensarse como un conjunto que nos contiene a
nosotros, seres humanos, como miembros; nosotros somos miem-
bros de la Tierra, pero no de S, porque no somos planetas del
sistema solar. Desde el punto de vista de S, cada planeta es un
objeto en si mismo, sin importar cémo esté formado. De la misma
manera que en el caso del sistema solar, el conjunto D que defini-
mos antes tiene dos miembros, y no toma en cuenta lo que haya
dentro de ellos.

Pensemos ahora en conjuntos que estén formados por niime-
ros naturales. Por ejemplo, el conjunto N formado por todos los
naturales, el conjunto de los niimeros pares, el de los impares,
el de los primos, el conjunto formado solo por el nimero 45, el
formado por todos los niimeros terminados en 8, el formado so-
lamente por los niimeros 5, 7y 22, y muchisimos otros, cada uno
de los cuales, igual que como antes hicimos con Q) e I, debe ser
pensado como un objeto en si mismo.

Podemos considerar entonces el conjunto cuyos miembros
son todos los conjuntos que se pueden formar usando nimeros
naturales, tanto los que hemos mencionado antes como todos los
demads conjuntos posibles; este nuevo conjunto suele llamarse
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Conjunto formado por los numeros 2y 34 —» {2, 34}

Conjunto formado por los nimeros pares — {0, 2, 4,6, 8,...} glsgtﬁi ;’SO g
Conjunto vacio (que no tiene miembros) —» {} :ln;egg;os

Conjunto de los nimeros primos — 2 S U 1)

?(N)r que se lee «pal‘tes de N», ¥y sus miembros s0n, en conse- Algunos conjuntos

cuencia, conjuntos, no nimeros. L%L’Z‘:i‘:’ 2
El conjunto de todos los niimeros pares es un miembro de  naturales.

P(N) y también el conjunto formado por el ntiimero 2; pero el ni-

mero 2 en si mismo no es miembro de P(N), porque los miembros

de P(N) son conjuntos, no niimeros. Aparece aqui una diferencia,

sutil pero importante, que debe hacerse en la teoria de conjuntos,

no es lo mismo el niimero 2 que el conjunto formado por el nu-

mero 2. Para resaltar esta diferencia el conjunto formado por el 2

se suele indicar como {2}; el uso de las llaves nos permite mostrar

en la escritura la diferencia entre 2, que se refiere al nimero, y {2},

que se refiere al conjunto formado por ese nimero.
De la misma manera, por ejemplo, el conjunto formado por

los nimeros 2 y 34 se suele indicar como {2, 34} y el conjunto

de los numeros pares, como {0, 2, 4, 6, 8,...} (véase la figura). Con

esta notacion, el conjunto D que mencionidbamos antes, cuyos

miembros son los conjuntos (Q e I, se escribiria {Q, I}.

UNOS Y CEROS

La pregunta que vamos a analizar, y que Cantor responde en su ar-
ticulo de 1892, es: ;cudl es el cardinal de P(N)? Para responderla,
debemos hallar primero un modo conveniente de representar a
los conjuntos formados por niimeros naturales.

Comencemos por observar que para definir un conjunto de
nimeros es suficiente con saber qué nimeros son los que pertene-

LOS ALEF 133



Correspondencia
ung-a-uno entre
conjuntos y
secuencias de
Ceros y unos.

cen al conjunto y cudles no pertenecen a él. Para ejemplificar esta
idea, imaginemos un juego entre dos personas, Alicia y Bruno;
Alicia piensa un conjunto y Bruno debe adivinar cudl es y para ello
va nombrando, en orden, los sucesivos nimeros naturales, 0, 1, 2,
3, 4,...; en cada caso, Alicia le responde con un «si», si el nimero
mencionado pertenece al conjunto que ella pensd, y con un «no»
€N caso contrario.

Por ejemplo, si las respuestas de Alicia son: no, sf, no, si, no,
si, no, si,... Bruno puede concluir que el conjunto en cuestién es el
de los numeros impares; si las respuestas son todas si, el conjunto
es N; para el conjunto de los primos, las respuestas serian no, no,
si, si, no, si, no, si, no, no, no, si,...

Para abreviar, podemos reemplazar cada «si» por un 1y cada
«no» por un 0; de este modo, cada conjunto formado por niimeros
naturales queda caracterizado por una secuencia infinita de ceros
y unos. Reescribiendo las respuestas anteriores de Alicia, el con-
Jjunto de los niimeros impares estd representado por la secuencia
010101...; al conjunto N le corresponde la 11111,... y al conjunto
de los nimeros primos le corresponde 001101010001...

En resumen, a cada secuencia infinita de ceros y unos le
corresponde un conjunto y, reciprocamente, a cada conjunto le
corresponde una secuencia infinita de ceros y unos. Esta corres-
pondencia uno-a-uno implica que es lo mismo preguntarse por el
cardinal de P(N) que por el cardinal de todas las secuencias infini-
tas de ceros y unos (véase la figura).

En su articulo de 1892 («Sobre una cuestién elemental de la
teoria de conjuntos»), Cantor demuestra basicamente dos hechos,
y el primero de ellos es que el conjunto de todas las secuencias de

Conjuntos de naturales Secuencias de ceros y unos

Conjunto formado por los nimeros 2 y 34 +—— 0011000000000000000...

Conjunto formado por los nimeros pares <«———— 101010101010101010101010...

Conjunto vacio (que no tiene miembros) <———— 000000000000000000...

Conjunto de los numeros primos -— 0011010100010100010100...
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ceros y unos no es numerable; por lo tanto, P(N) tampoco lo es.
Para probarlo, Cantor utiliza el argumento diagonal, el mismo que
usamos en el capitulo 2 para mostrar que IR, el conjunto de todos
los reales, no es numerable. En realidad, como ya comentamos en
aquella ocasion, el argumento diagonal aparecié por primera vez
en este trabajo de 1892; la demostracion que Cantor hizo en 1874
del hecho de que R no es numerable seguia ideas diferentes y se
basaba en su definicién de los reales.

La demostracién de que P(N) no es numerable repite exac-
tamente el mismo razonamiento que mostramos en el capitulo 2
para los reales, por lo que no la reiteraremos aqui. Si vale la pena
aclarar que el hecho de demostrar que P(N) y R no son numera-
bles, aun cuando en ambos casos se use el mismo razonamiento,
no nos garantiza que los dos conjuntos tengan el mismo cardi-
nal. El argumento diagonal demuestra en realidad un resultado
negativo, nos permite asegurar que ni R ni P(N) tienen cardinal
N,, pero no nos dice qué cardinal tiene cada uno de ellos ni nos
permite deducir que ambos cardinales sean iguales.

Ahora bien, el segundo hecho que Cantor demuestra en su
articulo de 1892 es que, después de todo, P(N) y R si tienen el
mismo cardinal pero, insistimos, este hecho requiere una demos-
tracién, no se deduce del argumento diagonal. Hay que probar
entonces que R y P(N) son coordinables o, lo que es lo mismo, que
IR es coordinable con el conjunto de todas las secuencias infinitas
de ceros y unos.

Para probarlo, empecemos por recordar que el modo en que
habitualmente anotamos los niimeros naturales se llama eseri-
tura en base 10, porque usa diez cifras y ademas se basa fuer-
temente en las potencias del nimero 10; por ejemplo, cuando
escribimos el nimero 235, estamos escribiendo en realidad
2.10%+3.10'+5-10° (recordemos que 10'=10 y que 10°=1). Algo
similar sucede con los nimeros que no son enteros, solo que
en ese caso intervienen potencias de exponente negativo, tales
como 107!, que es igual a 0,1; 10, que es igual a 0,01; y asi su-
cesivamente. Por ejemplo, cuando escribimos 0,76, estamos es-
cribiendo en realidad 7-10'+6- 10 Es interesante mencionar
que los niimeros con infinitas cifras decimales, como 0,3333...,
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se traducen en series, es decir, en sumas infinitas; en efecto
0,333...=3-10"+ 3-10%+ 3-10°+3-10"+...

Aunque la escritura en base 10 es 1a més usada, no es la tinica
posible; por ejemplo, los nimeros pueden escribirse en base 2,
también llamada escritura binaria. Esta base, como su nombre
indica, usa solamente dos cifras, 0 y 1, y se apoya en las potencias
de 2. Como muestra, el nimero 13 en base 2 se escribe 1101 por-
que 13=1-29+1.224+0-2'+1.2° E igual que en el caso anterior,
esta escritura se extiende a nimeros no enteros; por ejemplo, en
base 2 el niimero 0,333... se escribe 0,01010101... porque la suma
infinita 0-2+1.2240.2%+1.244+0-2%+ 1.2 da como resultado
0,333... (este 1ltimo escrito en base 10).

«Las nociones de la teoria de conjuntos son instrumentos
conocidos e indispensables.»

— JacQues HADAMARD, MATEMATICO FRANCES (1865-1963), EN UNA CONFERENCIA DICTADA
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Vamos a probar ahora que el conjunto de todos los nimeros
reales entre 0 y 1, que es un segmento de la recta numérica, es
coordinable con P(N); es decir, debemos lograr que cada niimero
entre 0 y 1 quede asociado exactamente con un conjunto de niime-
ros naturales. Para mostrarlo, tomemos el niimero 0,333... ;Cémo
hallamos el conjunto que le corresponde? Como se muestra en el
esquema, primero escribimos el niimero en base 2 y obtenemos
asi la expresion 0,01010101...; de esa expresién nos quedamos con
la secuencia de cifras detras de la coma, en este caso 010101...
y vemos qué conjunto le corresponde a esa secuencia. Como el
conjunto es el de los niimeros impares, entonces al 0,333... le co-
rresponde ese conjunto.

Ndmero real Numero real Secuenciade  Conjunto formado por
en base 10 en base 2 Ceros y unos numeros naturales

0,33333... =—» 0,01010101.. =-—» 01010101.. =— {1,3,5,79,..}

0,875 <+— (0,001100000... «—» 00100000.., *— {2, 3}
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Reciprocamente, si tenemos un conjunto, por ejemplo el for-
mado por los nimeros 2 y 3, y queremos saber qué niimero le co-
rresponde, transformamos primero al conjunto en una secuencia
de ceros y unos, en este caso queda 00110000..., y pensamos en
esa secuencia como las cifras detras de la coma de un niimero
escrito en binario; en este caso, el nimero es 0,001100000... que,
traducido a base 10, equivale a 0,1875. Entonces, al conjunto for-
mado por los niimeros 2 y 3 le corresponde el niimero 0,1875.

De este modo vemos que P(N) es coordinable con el conjunto
de todos los numeros entre 0y 1, pero dijimos en el capitulo 3 que
este ultimo conjunto es coordinable con R (cualquier segmento
es coordinable con toda la recta); por lo tanto, deducimos que
P(N) es coordinable con R. Finalmente, a la pregunta de cudl es
el cardinal de P(N), en 1892 Cantor respondi6 que el cardinal de
P(N) es el mismo que el de R.

POTENCIAS

Anteriormente dijimos que ibamos a hablar de otra operacién de
la aritmética transfinita, vamos a hacerlo ahora.

Volvamos a las secuencias de ceros y unos, pero por el mo-
mento pensemos solamente en secuencias finitas. ;Cuéantas se-
cuencias de ceros y unos podemos formar si estas solo pueden
tener dos cifras en total? La respuesta es que hay exactamente
cuatro secuencias asi, que son 00, 01, 10 y 11. Si las cifras son tres,
hay ocho secuencias, 000, 001, 010, 100, 110, 101, 011, 111, y para
cuatro cifras hay dieciséis. Para una cifra solo hay dos, que son
simplemente 0 y 1.

Tenemos asi que hay 2! secuencias de una cifra, 2° secuencias
de dos cifras, 2° secuencias de tres cifras, y asi sucesivamente.
Parece logico suponer que para las secuencias de «X  cifras» el
cardinal correspondiente sea 2™,

En efecto, en sus «Contribuciones» Cantor define una poten-
ciacién de cardinales y se basa para ello en una idea que él llama
cubrimiento. Cuando formamos una secuencia infinita de ceros
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y unos —dice Cantor—, estamos cubriendo cada elemento de N
conun 0 o conun I:

0 N O W K B NN
\) ' c_' < -"l' o J l' J...

Preguntarnos por el cardinal del conjunto de todas las se-
cuencia infinitas de ceros y unos es hacerlo por todos los modos
posibles de cubrir a N usando dos elementos. Todos los modos de
cubrir a los nimeros 0, 1 y 2 usando dos elementos es 2%, todos los
modos de cubrir a los nimeros 0, 1, 2 y 3 usando dos elementos
es 2% entonces, por definicion, segiin Cantor, el cardinal de todos
los modos de cubrir a N con dos elementos es 2%, Y como el con-
Jjunto de todas las secuencias de ceros y unos es coordinable con
R, concluimos entonces que el cardinal de R es también 2™; por
lo tanto, otro modo de enunciar el problema de la hipétesis del
continuo es con la pregunta: jserd 2" igual a R o

Observemos ahora que si estuviéramos cubriendo a N con
tres elementos obtendriamos el cardinal 3"; en otras palabras, el
conjunto de todas las secuencias infinitas de ceros, unos y doses
tiene cardinal 3". Pero no hay que confundirse. A primera vista
podriamos pensar que 3" es mayor que 2"; sin embargo, no es asf,
en realidad 2% = 3™, Para probarlo, basta ver que el conjunto de
las secuencias de ceros y unos es coordinable con el conjunto
de las secuencias de ceros, unos y doses; la idea que hay detras de
esta demostracion es que, asi como las secuencias de ceros y unos
pueden verse, en esencia, como niimeros escritos en base 2, de
la misma forma las secuencias de ceros, unos y doses pueden
verse como nimeros escritos en base 3. La correspondencia entre
ambos conjuntos se obtiene entonces mediante un cambio de
base.

Tomando la definicion de la potencia de cardinales podemos
decir que, dado que el cardinal de los ordinales de clase Il es X,
entonces para esos ordinales hay 2" cubrimientos posibles; y aun-
que parece obvio que 2" si es mayor que 2", este hecho atin no ha
podido ser demostrado. Es interesante destacar que la afirmacion
2% es mayor que 2™ realmente necesita ser demostrada, no pode-
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mos simplemente decir que, como X, es mayor que N, entonces
es obvio que 2" debe ser mayor que 2“", porque ya vunos que 3 es
mayor que 2, pero que, no obstante, 3" no es mayor que 2'; la
conclusion es que, cuando del infinito se trata, lo que parece obvio
no siempre es verdadero.

:Como puede visualizarse un cubrimiento de los ordinales
de clase II? Observemos que, dado que hay una cantidad R, de
ordinales de clase II, cada uno de sus cubrimientos contendra una
cantidad X de cifras; es decir, una cifra por cada ordinal:

0 1 o 0 o] 1

w W+ w+ 2 W+w wW+rw+1 - W+W+wW

Ahora bien, los cubrimientos de los ordinales de clase II tie-
nen, en general, una complejidad que es muchisimo mayor que la
de los cubrimientos de N. En efecto, por ejemplo, para definir un
cubrimiento de N podemos decir simplemente que «comienza con
01 y después sigue repitiendo esas dos mismas cifras»; esta defi-
nicién caracteriza totalmente al cubrimiento 010101..., dado que
con solo esa regla podemos sabemos con qué cifra, 0 o 1, debemos
cubrir a cada nimero natural.

Pero esa misma definicién no es suficiente para definir com-
pletamente un cubrimiento de los ordinales de clase II, y la causa
es que estos tienen un ordenamiento que es mucho mas complejo

LA HIPOTESIS GENERALIZADA DEL CONTINUO

La hipotesis del continuo es la conjetura de que 2% = N, algo que Cantor nunca
pudo demostrar ni refutar. La llamada hipotesis generalizada del continuo es
una conjetura que extiende a la anterior y que fue formulada por Cantor en
sus «Contribuciones». Esta conletura afirma que, no solamente 2% = X,, sino
que ademas 2% =R, 2% =N;, 2% =R, y asi sucesivamente. Como dijimos an-
tes, Cantor nunca llegd a saber en vida si estas conjeturas eran ciertas o no.
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que el de los naturales. Segin vimos en el capitulo anterior, los
ordinales de clase Il comienzan con w, w + 1, w+2,..., tras infinitos
pasos viene w+w, w+w+ 1, w+w+2,... y tras infinitos pasos viene
W+w+0,... y tras infinitas veces infinitos pasos viene o + w + w + w. ..
(infinitas veces w), w+w+ w+ w...(infinitas veces w) +1,..., y asi
sucesivamente.

De modo que si decimos de un cubrimiento de los ordinales
de clase II que «comienza con 01 y después sigue repitiendo esas
dos mismas cifras», esa definicién solo nos dird c6mo proceder
con la primera parte de la secuencia w, w+1, w+2,... Al saltar a
® + tenemos que indicar el modo de recomenzar el cubrimiento,
que puede ser otra vez con 01 o de cualquier otro modo; y otra
vez tendremos que indicar un comienzo al llegar a w+w+w, y
otra vez en w+w+w+w, y asi sucesivamente. Si todas las veces
decidimos recomenzar con 01, el cubrimiento resultante podria
visualizarse como el cubrimiento «bdsico» de N 010101... repetido
una y otra vez una cantidad no numerable de veces.

LA PARADOJA DE CANTOR

El conjunto P(N) tiene como miembros a todos los conjuntos que
se pueden formar con elementos de N; esta idea, por supuesto,
puede generalizarse. Si A es un conjunto cualquiera, se llama P(A),
que se lee «partes de A», al conjunto que tiene como miembros a
todos los conjuntos que se pueden formar con elementos de A. Y asi
como P(N) tiene cardinal 2", de la misma manera puede probarse
que P(A) tiene cardinal «2 elevado al cardinal de A». Si la hip6tesis
del continuo fuera cierta, entonces el cardinal de P(R) seria 2".
Sabemos que N es numerable y que P(N) no lo es; en otras
palabras: P(N) tiene un cardinal que es mayor que el de N. Esto
también puede generalizarse; en efecto, el llamado teorema de
Cantor afirma que P(A) tiene siempre un cardinal mayor que A.
Una consecuencia del teorema de Cantor es que para cual-
quier conjunto existe siempre otro de cardinal mayor. En el ca-
pitulo anterior y, unas paginas antes en este mismo capitulo,
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hicimos esa afirmacién (que dado un conjunto existe otro de car-
dinal mayor), pero en aquellos casos nos referiamos especifica-
mente a conjuntos formados por ordinales; el teorema de Cantor,
en cambio, permite extender la afirmacion a todos los conjuntos,
no importa cudl sea la naturaleza de sus miembros.

Consideremos entonces el conjunto universal, que es el con-
Jjunto que lo contiene todo, absolutamente todo lo concebible. El
teorema de Cantor nos dice que existe un conjunto que tiene un
cardinal aiin mayor que €l. Pero, ;c6mo puede haber un conjunto
que sea mayor que aquel que ya lo contiene todo? Ese conjunto
mayor no puede existir; sin embargo, el teorema de Cantor nos
dice que si existe. Llegamos asi a una contradiccion; es decir, en-
contramos otra paradoja en la teoria de conjuntos. Esta nueva
paradoja, que se suma a la que vimos en el capitulo anterior, es
conocida como la paradoja de Cantor.

A principios del siglo xx se descubrié una tercera paradoja,
que lleva el nombre de Bertrand Russell, y que no es exagerado
decir que generé una verdadera crisis en las matematicas. En el
préximo capitulo nos ocuparemos de todas estas paradojas de la
teoria de Cantor, y en particular analizaremos qué consecuencias
tuvieron para las matematicas en general.
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CAPITULO 6

Las paradojas del infinito

En una carta escrita en 1902,
el 16gico inglés Bertrand Russell formul6
una pregunta muy simple, pero que desencadené en
el corazon de las matematicas una crisis muy profunda
que se extendio a lo largo de casi treinta afos, y cuyas
consecuencias pueden sentirse todavia en la actualidad.
La pregunta que Russell formulo es: «;Este
conjunto del que estoy hablando es
miembro de si mismo?».






Cuando en 1883 Cantor escribi6 su articulo «Fundamentos para
una teoria general de variedades» ya era consciente, segin co-
mentamos en el capitulo 4, de que su teoria contenia al menos
una paradoja; pero ;qué es exactamente una paradoja? La palabra
«paradoja», en realidad, es usada en la literatura y en el lenguaje
cotidiano en diferentes sentidos, no todos equivalentes entre si.
Para la 16gica, especificamente, una paradoja ocurre cuando, por
ejemplo, en una teoria podemos demostrar que un objeto existe y
no existe al mismo tiempo, o que un cierto ente tiene propiedades
que se contradicen entre si; es decir, una paradoja se produce
cuando se descubre que una teoria conduce a una imposibilidad
légica. Es en este sentido légico del término que decimos que Can-
tor encontré una paradoja en su teoria, o, lo que es lo mismo, hall6é
una contradiccion légica, y el hallazgo de una contradiccion es
siempre una mala noticia porque indica que puede haber un error
de base en la teoria, un fallo que debe ser localizado y subsanado.

En un sentido completamente distinto, la palabra «paradoja»
a veces es usada también como sinénimo de «sorprendente» o de
«contrario a la intuicién», sin que ello implique necesariamente la
existencia de una contradiccion légica. Por ejemplo, en referencia
a lo visto en el capitulo anterior, podriamos decir que el hecho de
que X +1=R es «paradGjico», dado que nuestra percepcion, que
solo abarca cantidades finitas, nos lleva a pensar que si agregamos
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un elemento nuevo a un cierto conjunto, entonces la cantidad total
de elementos debe aumentar; en cambio, X +1= R nos dice que, en
el caso del infinito, la cantidad sigue siendo la misma. Pero, aunque
sorprendente, la igualdad X +1= X no es una paradoja en el sen-
tido légico del término, porque no implica genuinamente una contra-
diccién légica, solo nos dice que las reglas que rigen a las cantidades
infinitas son diferentes de las que rigen a las cantidades finitas.

En este libro estamos usando la palabra «paradoja» siempre en
el primer sentido, refiriéndonos a la existencia de una incoherencia
légica en una teoria. Hecha esta aclaracioén, volvamos a la paradoja
que encontr6 Cantor en 1883 y recordemos brevemente en qué con-
siste. La secuencia de los ordinales —dice Cantor— esti generada
a partir de dos principios. El primero afirma que cada ordinal tiene
un sucesor inmediato; este es el principio, por ejemplo, que nos
asegura que inmediatamente después de w viene el ordinal o+ 1.

«Los conjuntos infinitos tienen algunas propiedades curiosas,
que a veces han sido llamadas paradéjicas. En realidad no son
paraddjicas, solo son algo sorprendentes cuando se las
considera por primera vez.»

— RAYMOND SMULLYAN, LOGICO NORTEAMERICANO, EN SATAN, CANTOR ¥ EL INFINITO (1992).
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El segundo principio dice que, dada cualquier secuencia infinita
de ordinales, siempre hay otro ordinal que es el que sigue inmediata-
mente a todos ellos y que, en particular, no pertenece a esa secuencia.
Este principio nos garantiza, por ejemplo, que después de la sucesién
infinita 0, 1, 2, 3, 4,... viene el nuevo ordinal w, y que después de la
sucesion infinita w, w+ 1, w +2, w+3,... viene el nuevo ordinal w + m.

La paradoja aparece cuando intentamos aplicar el segundo
principio de generacion a la secuencia formada por todos los ordi-
nales, llamémosla C. En efecto, el segundo principio expone que si
tomamos la secuencia C de todos los ordinales, entonces existe un
nuevo ordinal que viene después de todos ellos, y que no aparece
en C; llamemos O (la letra griega 6micron) a este nuevo ordinal.
Pero O es también en si mismo un ordinal, y C contiene a todos los
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| 0 es un ordinal y entonces
| pertenece a la secuencia de |
| todos los ordinales. |

N\ N

Secuencia de todas oz ordinales o Estas dos afirmaciones se
contradicen mutuamente.

= =

0 es un nuevo ordinal y no
pertenece a la secuencia.

ordinales, por lo tanto O aparece en C, pero a la vez acabamos de
decir que no aparece; de modo que hemos probado que Otiene dos
propiedades que se contradicen, no aparece en C, pero a la vez si
aparece; hemos encontrado asi una paradoja (véase el esquema).

Como dijimos en el capitulo 4, para solucionar este problema
Cantor introdujo un tercer principio de generacién, una tercera
regla segin la cual el segundo principio no es aplicable a la se-
cuencia completa de todos los ordinales. En otras palabras, Can-
tor decret6 que O no existe.

Aunque en efecto esta tercera regla soluciona la paradoja, no
parece ser por si sola una solucién satisfactoria; para expresarlo
con una metafora, estamos ddndole al paciente un analgésico que
calma su dolor, pero sin buscar las causas reales de su enferme-
dad. Para encontrar una solucién genuina necesitamos saber cual
es la enfermedad que provoca el dolor; o sea, es necesario saber
cudl es el fallo basico de la teoria que produce la paradoja.

Para Cantor, la causa profunda de la paradoja radica en la
necesidad de hacer la distincién —que él introdujo en su articulo
de 1883— entre lo transfinito y el infinito absoluto. Segiin Cantor,
dentro del dominio de lo transfinito caen todos los conjuntos in-
finitos que la mente humana puede conocer y con los que puede
operar, como por ejemplo el conjunto de los niimeros reales o el
conjunto de los ordinales de clase I, clase II, clase III o de cual-
quier otra clase especifica. En el dominio de lo absoluto, en cam-
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bio, caen aquellos conjuntos que son «demasiado grandes» como
para ser accesibles a la mente humana; entre ellos, el conjunto
formado por todos los ordinales o el conjunto universal (el con-
junto que lo contiene absolutamente todo y del que hablamos en
el capitulo anterior). En referencia a este tema, Cantor escribia en
su trabajo de 1883:

Ahora bien, existe una diferencia esencial en el hecho de que yo he
fijado en su concepto, de una vez y para siempre, las diferentes gra-
daciones del infinito propio [que es como Cantor llama al infinito en
acto] mediante las clases numéricas (I), (I), (ITI), ete., y solo enton-
ces considero como tarea no solo investigar mateméaticamente las
relaciones entre los niimeros transfinitos, sino también perseguirlos
y mostrarlos dondequiera que ocurran en la naturaleza. No admite
para mi ninguna duda que siguiendo este camino llegaremos siempre
mas alla, sin encontrar ningiin limite insuperable, pero sin conseguir
tampoco una captacion siquiera aproximada de lo absoluto. Lo ab-
soluto solo puede ser reconocido [es decir, reconocida su existen-
cia], pero nunca conocido, ni siquiera aproximadamente conocido.

Lo absoluto, segiin Cantor, sigue unas reglas que son diferentes
a las de lo transfinito, reglas que no podemos ni siquiera enunciar
porque son incognoscibles para nosotros. La paradoja, entonces,
nace esencialmente del intento erréneo de aplicar a lo absoluto las
reglas de lo transfinito. El tercer principio de generacion de ordina-
les, que en esencia dice que una cierta regla de lo transfinito no se
aplica a un cierto conjunto absoluto, no seria, por lo tanto, un prin-
cipio ad hoc, sino una consecuencia genuina de la filosofia basica
que debe seguir la teoria de conjuntos. Andlogamente, la solucién
de la paradoja de Cantor (véase el capitulo anterior) consistiria,
segtn el propio Cantor, simplemente en decir que al conjunto uni-
versal, que cae en el dominio de lo absoluto, no se le puede aplicar
el teorema que afirma que todo conjunto tiene siempre otro de car-
dinal mayor (véase el esquema de la pigina siguiente).

Hay que decir que, en realidad, en el trabajo de 1883 las men-
ciones a lo absoluto, como la que citamos mas arriba, se encuen-
tran en mayor medida en unas notas que aparecen después del
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Esquema de
la paradoja

de Cantor, que
Por el teorema de Cantor i qie sidita

/’—\ un conjunto
mayor que aquel
que ya lo contiene

Conjunto universal, Existe un conjunto todo.
lo contiene todo «mas grande»

i e

Fero ese conjunto cae dentro del universal

texto principal del articulo, y que la existencia de posibles con-
tradicciones en la teoria de conjuntos esta apenas insinuada. Esta
reserva, que probablemente tuvo la intencién de prevenir posibles
ataques a la teoria, fue del todo deliberada, y esto ultimo queda
demostrado en una carta que Cantor le escribié a Hilbert el 15 de
noviembre de 1899, en la cual, en referencia a su filosofia de la
distincion entre lo transfinito y lo absoluto decia: «filosofia que
puede encontrar Ud. en los “Fundamentos” publicados el afio
1883, especialmente en las notas al final, expresado de un modo
bastante claro, pero intencionadamente algo oculto».

Dedekind, que por aquel entonces trabajaba también con con-
ceptos conjuntistas, no parecia haber reparado en la existencia de
paradojas, y el propio Cantor, después de la crisis depresiva que
sufrié en mayo de 1884, abandoné por completo el tema durante
mucho tiempo; como consecuencia, la cuestién de las paradojas
de la teoria de conjuntos, hasta que fue redescubierta en el afio
1897, cayo totalmente en el olvido.

EL CONGRESO DE 1897

Del 9 al 11 de agosto de 1897 se celebré en Zirich, Suiza, el Primer
Congreso Internacional de Matematicas, al que asistieron més de
200 especialistas de 16 paises, entre ellos Hilbert y Cantor. Puede
decirse que este congreso marco la consagracion internacional de
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la teoria de conjuntos, ya que muchas de las exposiciones que alli
se hicieron trataron sobre aplicaciones de los conceptos conjun-
tistas, principalmente al cdlculo.

«;,Quién de nosotros no se alegraria de levantar el velo tras

el que se oculta el futuro, de echar una mirada a los préximos
avances de nuestra ciencia y a los secretos de su desarrollo
durante los siglos futuros?»

— PRIMERAS PALABRAS DE LA CONFERENCIA DE HILBERT EN EL SEGUNDO CONGRESO INTERNACIONAL
DE MATEMATICAS.
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Pero en las conversaciones que los asistentes mantenian
entre sesion y sesién aparecia repetidamente una cuestién muy
perturbadora... nada menos que el descubrimiento de una pa-
radoja en la teoria de conjuntos. En efecto, en marzo de 1897,
en el boletin del Circulo Matemaético de Palermo, el matematico
italiano Cesare Burali-Forti habia publicado un articulo titulado
«Una cuestién sobre niimeros transfinitos» en el que redescubria
la paradoja de los ordinales que comentamos mas arriba. Dado
que en 1883 Cantor no habia formulado claramente la paradoja,
y esta tomé notoriedad solo a partir del trabajo de Burali-Forti,
hoy en dia a esta contradiccién en la teoria de los ordinales se la
conoce como la «paradoja de Burali-Forti» y asi la llamaremos
también nosotros. Es interesante mencionar, ademas, que el pro-
pio Burali-Forti estuvo presente en el congreso y que presenté
alli una ponencia, aunque no sobre el tema de los ordinales, sino
sobre una cuestion de geometria.

Hilbert, gran defensor de la teoria de conjuntos, qued6é muy
preocupado por la aparicion de esta paradoja, y a partir de 1897
mantuvo una intensa correspondencia con Cantor acerca de
este tema. Durante este intercambio, Cantor volvié a exponer su
conviccion de que todas las paradojas de la teoria de conjuntos
pueden evitarse haciendo la distincién entre lo transfinito y lo ab-
soluto, aunque en esas cartas Cantor ya no utilizaba esas palabras,
sino que hablaba de conjuntos «accesibles» e «inaccesibles» (a
veces también de conjuntos «consistentes» e «inconsistentes»).
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Para Cantor, los conjuntos accesibles son aquellos cuyas pro-
piedades podemos enunciar y estudiar; los inaccesibles, en cam-
bio, estdn mas alld de nuestra capacidad de comprensién, y es
por eso que al intentar analizarlos caemos en contradicciones. El
problema, por asi decirlo, no estaria en los conjuntos en si, sino en
nuestra mente finita y limitada que es incapaz de entender cierta
clase de conjuntos.

Hilbert no estaba nada convencido de la validez de esta solu-
cién de Cantor; Hilbert entendia que si somos capaces de compren-
der la definicién de un conjunto, entonces también deberiamos ser
capaces de conocer todas sus propiedades. La idea de que existen
objetos matematicos incognoscibles era totalmente contraria a
su filosofia de las matematicas, que suele resumirse en su famosa
maxima «Debemos saber, y sabremos», frase que Hilbert expuso

CESARE BURALI-FORTI

Burali-Forti nacié en Arezzo, ltalia, el 13
de agosto de 1861, Estudid matematicas
en la Universidad de Pisa, donde se gra-
dud en 1884, pero nunca llegd a docto-
rarse porgue su propuesta de pensar la
geometria desde un punto de vista alge-
braico (propuesta que hoy es totalmen-
te aceptada) fue, en aguel momento, re-
chazada por el comité que debia evaluar
su trabajo de tesis y Burali-Forti nunca
insistio. Hasta 1887 fue profesor de Ma-
tematicas en una escuela de Pisa y ese
afio se trasladé a Turin, donde comenzé a
ensefar en una academia militar, trabajo
que conservo hasta el final de su carrera.
La falta de un doctorado le impidio ejer-
cer la docencia universitaria, aunque en la Universidad de Turin dio conferen-
cias que fueron muy apreciadas; en esa misma institucion trabajé asimismo,
informalmente, en estrecho contacto con muchos investigadores. En su vida,
Burali-Forti escribié méas de 200 articulos sobre geometria, I6gica y también
sobre la ensefianza de las mateméticas; fallecié en Turin el 21 de enero de 1931.
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en la conferencia inaugural del Segundo Congreso Internacional de
Matematicas de 1900 y que habla de su intima conviccion de que no
existen problemas matematicos inaccesibles.

Pero la interesante discusion epistolar entre Hilbert y Cantor
fue tragicamente interrumpida en 1899 y nunca pudo llegar a una
conclusion satisfactoria para ambos.

LOS ULTIMOS ANOS

A fines de 1899, Cantor se encontraba preparando la tercera parte
de su articulo «Contribuciones a la creacién de una teoria de los
conjuntos transfinitos», que iba a estar dedicada principalmente
a exponer su solucién de las paradojas de la teoria de conjuntos;
pero nunca pudo concluir el escrito porque su trabajo quedé in-
terrumpido por un durisimo golpe; el 16 de diciembre de 1899
murié su hijo menor Rudolf, de trece afos de edad.

Esta terrible pérdida, de la que Cantor jamds pudo recuperarse,
le provocd un grave trastorno mental, o tal vez desencadend un
trastorno mental que ya estaba latente. En los ainos sucesivos paso
alternativamente por periodos de lucidez y de desvario, y tuvo que
ser hospitalizado varias veces en una clinica psiquiatrica de Halle.

En esos anos de enfermedad, Cantor volvio al tema de la con-
troversia Shakespeare-Bacon que, en verdad, nunca habia abando-
nado del todo; ejemplo de ello es la siguiente frase, incluida en la
carta a Hilbert del 15 de noviembre de 1899 que citamos antes, y en
la que Cantor dice: «en este invierno impartiré cinco lecciones en
Berlin, igualmente cinco lecciones en Leipzig sobre el mismo tema
[la controversia Shakespeare-Bacon], donde he llegado al fondo
mismo de la cuestién; los sefores filélogos quedaran maravillados».

Pero una muestra del grado que, después de 1900, llego a al-
canzar su obsesién por esta controversia puede verse en un hecho
ocurrido en 1911. En septiembre de ese aino, Cantor fue invitado
a asistir como académico distinguido a la celebracién del 500.°
aniversario de la fundacion de la Universidad de St. Andrews, en
Escocia. Ahora bien, como veremos en breve, desde el descubri-
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miento en 1902 de la llamada «paradoja de Russell», la cuestién
de las contradicciones l6gicas en la teoria de conjuntos habia pa-
sado al primerisimo plano de la discusion matematica; visto este
panorama, esta claro que cuando en septiembre de 1911 Cantor
subié al estrado de la Universidad de St. Andrews para dar una
conferencia, todos los asistentes esperaban oir una disertacién
sobre las paradojas del infinito; Cantor, en cambio, hablé de la
controversia Shakespeare-Bacon.

Por otra parte, al afio siguiente la Universidad de St. Andrews
le otorgé un doctorado honoris causa, pero en ese momento Cantor
se encontraba demasiado enfermo y no pudo asistir a la ceremonia.

«La esencia de la matematica radica precisamente
en su libertad.»

— Geore CaNTOR, EN 1883.

Sin embargo, especialmente en los primeros anos de su crisis
mental, Cantor no abandoné completamente las matematicas; con-
tinué ensenando en la Universidad de Halle, aunque con periddicas,
y a veces largas, ausencias causadas por su enfermedad (por ejem-
plo, durante todo el afio 1909 no pudo impartir sus clases); dio tam-
bién una conferencia, esta vez si sobre las paradojas de la teoria de
conjuntos, en la reunién de la Unién Matematica Alemana de sep-
tiembre de 1903; y asimismo asisti6 al Tercer Congreso Internacio-
nal de Matematicas, celebrado en Heidelberg, Alemania, en agosto
de 1904. Pero jamas completo la tercera parte de sus «Contribucio-
nes», ni volvié a publicar articulo alguno sobre matematicas.

Cantor se jubil6 en 1913 y en sus tultimos anos sufrié muchas
privaciones a causa de la escasez de alimentos provocada por la
Primera Guerra Mundial. La guerra también impidi6 el gran fes-
tejo que sus colegas alemanes iban a organizar en su honor en
1915 con motivo de su septuagésimo cumpleaiios, pues la crisis
econdémica obligé a reducirlo a una pequena reunioén en su casa
con algunos amigos. En junio de 1917, Cantor fue hospitalizado
por tltima vez en la clinica psiquidtrica de Halle, donde murié6 de
un ataque cardiaco el 6 de enero de 1918.
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Actualmente, en la Universidad de Halle hay un monumento
con la forma de un gran cubo de bronce; cada una de sus cuatro
caras laterales esta dedicada a un profesor que ha dictado catedra
allf; una de esas caras, por supuesto, esta consagrada a Cantor. Esta
tlltima cara tiene en su parte superior un busto en relieve del mate-
matico alemdn, y a la derecha de este la inscripcién: «Georg Cantor,
matematico, creador de la teoria de conjuntos, 1845-1918». Debajo
de la efigie de Cantor se lee la igualdad ¢ = 2%, donde c, la inicial de
continuum («continuo», en latin), representa el cardinal de los nii-
meros reales. A la derecha de esta igualdad se ve el esquema de una
demostracion de que los racionales son numerables. Finalmente,
debajo de la igualdad ¢ = 2% aparece una frase que Cantor escribié
en su trabajo de 1883 y que ya citamos en el primer capitulo: «La
esencia de la matematica radica precisamente en su libertad».

Pero en realidad no necesitamos un monumento para recor-
dar a Cantor, porque su voz nos habla con toda claridad desde sus
cartas y sus articulos, y porque, mientras existan las matematicas,
su presencia seguira siempre viva en su teoria del infinito.

LA CONCEPCION DE FREGE

;Qué pasé finalmente con las paradojas de la teoria de conjuntos?
;Como pudieron resolverse, si es que se resolvieron? Para respon-
der estas preguntas debemos volver atras en el tiempo, otra vez a
la segunda mitad de la década de 1880.

Recordemos que por esos afos Dedekind, y mas tarde Cantor,
habian propuesto definir a los niimeros naturales y a sus operacio-
nes a partir de conceptos conjuntistas; recordemos también que
esta propuesta equivale esencialmente a basar todas las ramas de
las matematicas en la teoria de conjuntos; ejemplifiquemos esta
ultima idea tomando el caso del calculo. ;Cémo es posible que el
calculo quede basado en nociones conjuntistas si los naturales se
definen en base a esas mismas nociones? Esto se debe a que, a
partir de los naturales, se pueden definir los niimeros enteros; de
los enteros, a su vez, se definen los racionales; de los racionales
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se definen los reales (otra vez usando nociones conjuntistas); y los
reales son, finalmente, la base del cilculo.

En esa misma época, el matematico y logico aleman Gott-
lob Frege (1848-1925) comenzaba a concebir el mismo proyecto
de basar todas las matematicas en conceptos conjuntistas; es
decir, Frege estaba a favor de las intenciones de Cantor y de De-
dekind, pero diferia, sin embargo, en el estilo de argumentacién
matemitica que ellos usaban; expliquemos en qué consiste esta
idea. Durante siglos el modelo de razonamiento matematico por
excelencia estuvo dado por los Elementos de Euclides, la obra
fundamental de la geometria griega, escrita en el siglo m a.C. En
su estructura légica, los razonamientos de Euclides se basan en
axiomas, que son afirmaciones cuya verdad se acepta sin demos-
tracién; a partir de esos axiomas, se deducen mediante razona-
miento légicos todas las demas verdades de la teoria, verdades
que, en el caso de los Elementos, son propiedades geométricas.

Ahora bien, Euclides dividié a sus axiomas en dos grupos;
en el primero, estan los postulados, que son afirmaciones refe-
ridas especificamente a objetos geométricos, mientras que en el
segundo estan las llamadas «nociones comunes», que son reglas
generales del pensamiento, es decir, afirmaciones generales que
se aplican en cualquier situacion, ya sea geométrica o no; un ejem-
plo de estas nociones comunes es que si dos cosas son iguales a
una tercera, entonces son iguales entre si (véase el esquema).

El punto que queremos destacar es que el sistema de axiomas
de Euclides no solamente se refiere a los objetos geométricos en
si, sino que ademaés nos da reglas mas amplias acerca de lo que

Euclides Lenguaje moderno

Si dos cosas son iguales a una tercera
entonces son iguales entre si.

Si a cosas iguales se afiaden cosas
iguales se obtienen cosas iguales.

Si de cosas iguales se sacan cosas
iguales se obtienen cosas iguales.
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Algunas de las
nociones comunes
de Euclides y su
traduccién al
lenguaje moderno.

Sia=c y b=c entoncesa=b,

Sia=b entonces a+c=b+c.

Sia=b entonces a-c=b-c.
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podemos decir, o no, sobre los objetos en general. En otras pala-
bras, el sistema de axiomas no solo habla de las propiedades de
los objetos geométricos, sino que nos guia en las conclusiones que
podemos extraer de esas propiedades.

La teoria de conjuntos de Cantor, que es la misma en la que se
basaba Dedekind, no tenia una estructura logica tan depurada; la
teoria no tenia axiomas; es decir, a diferencia de Euclides, Cantor
nunca dio una lista de las propiedades bésicas en las que funda-
mentaba sus demostraciones. El se limitaba a definir los objetos
(por ejemplo, los ordinales), muchas veces usando un lenguaje
bastante coloquial, y directamente de esas definiciones extraia
las conclusiones que le dictaba una l6gica mas o menos intuitiva.
Para Frege, esta situacion era inaceptable; segin él, la teoria de
conjuntos debia tener una estructura euclidea, es decir, debia co-
menzar con una lista clara y precisa de definiciones y de axiomas
(incluyendo estos a las nociones comunes), a partir de los cuales
se pudieran deducir rigurosamente todas las verdades de la teoria.

Pero Frege iba aiin mas alld, él deploraba que en las matema-
ticas en general —no solo en la teoria de conjuntos— se usara un
lenguaje coloquial o que se apelara al sentido comin en los razo-
namientos, practicas que €l denominaba «psicologismo». Frege
entendia que las matematicas debian tener un lenguaje especifico,
expresado mediante simbolos creados con ese fin y que las reglas
de deduccién légica (las reglas que nos dicen las conclusiones
que podemos extraer de determinadas premisas) debian estar asi-
mismo expresadas con toda precision usando ese mismo lenguaje.

Como dijimos, esta preocupacion de Frege por el «psicolo-
gismo» se referia a las matematicas en general, no solo a la teoria
de conjuntos en particular; de hecho, sus primeras propuestas
para un lenguaje matematico riguroso son anteriores al inicio de
la teoria de conjuntos. Sin embargo, cuando, a la vez que Dede-
kind, en la segunda mitad de la década de 1880, Frege concibié la
idea de fundamentar todas las matematicas en la teoria de con-
juntos, se concentroé en aplicar el lenguaje que habia creado a esa
teoria en particular.

Frege dedicé muchos ainos a desarrollar los simbolos y las
reglas de su lenguaje riguroso, que expuso por primera vez en su
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libro Conceptografia, de 1879 (Begriffsschrift en aleman). Desde
todo punto de vista, el lenguaje creado por Frege es muy diferente
de nuestra escritura habitual; en realidad, m4s que un texto parece
un dibujo lineal. Es probable que esta diferencia fuera deliberada
¥ que tuviera como finalidad lograr que el lenguaje riguroso de las
matematicas se alejara todo lo posible del lenguaje coloquial. Sin
embargo, esta decisién tuvo una consecuencia negativa, porque el
sistema resultaba muy arduo de comprender y esto redujo sensi-
blemente la penetracién que la obra de Frege pudo haber tenido
en el publico interesado en ella.

LA PARADOJA DE RUSSELL

En 1902, Frege acababa de enviar a la imprenta el segundo tomo
de sus Fundamenitos de la aritmética, la obra en la que desarro-
llaba su programa de fundamentar las matematicas en la teoria de
conjuntos, cuando recibi6é una carta del 16gico inglés Bertrand Rus-
sell (1872-1970); la carta esta fechada en Friday’s Hill, Haslemere,
Reino Unido, el 16 de junio de 1902, y ocupa apenas una pagina.
En esa carta, Russell, que habia leido el primer tomo de los Fun-
damentos, comenzaba elogiando el trabajo de Frege y manifestin-
dose completamente a favor de lo que él intentaba hacer; «pero
—agregaba Russell— he encontrado una pequefia dificultad».

+Cudl era esa dificultad? Uno de los axiomas en los que Frege
basa la teoria de conjuntos es el llamado axioma de compren-
sion, que expresado en lenguaje coloquial dice que a toda pro-
piedad le corresponde un conjunto, que es el conjunto formado
por todos los objetos que cumplen esa propiedad. Por ejemplo,
a la propiedad «ser un libro de matematicas» le corresponde el
conjunto formado por todos los libros de matematicas; a la pro-
piedad «ser un nimero racional» le corresponde el conjunto de
todos los niimeros racionales; y asi sucesivamente. En su carta
a Frege, Russell formula la siguiente pregunta: ;qué sucede si
tomamos la propiedad «ser un conjunto que no es miembro de
si mismo»?
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Esquema de la
paradoja de
Russell. Las

flechas indican el
orden en que
deben hacerse las
deducciones
légicas.
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F es miembro de F

Ahora bien —dice Russell—, segiin el axioma de Frege, a la
propiedad de «ser un conjunto que no es miembro de si mismo» le
corresponde un conjunto, al que llamaremos F, que estd formado
por todos los conjuntos que cumplen la propiedad de no ser miem-
bros de si mismos. La pregunta es: jF' es miembro de si mismo?

Si F' fuera miembro de si mismo, entonces, como todo miem-
bro, cumpliria la propiedad que define al conjunto; por lo tanto, F
no seria miembro de si mismo. Esto es una contradiccién, porque
partimos de una suposicion y llegamos a la conclusién opuesta.
Deducimos entonces que la suposicién inicial no puede ser verda-
dera; es decir, F' no es miembro de si mismo.

Pero si F' no es miembro de si mismo, entonces no cumple
la propiedad que define a F; por lo tanto, si seria miembro de si
mismo. Tenemos otra contradiccién (véase el esquema).

En resumen, F' no puede ser miembro de sf mismo, pero tam-
poco puede dejar de serlo; esto es una imposibilidad l6gica. El
conjunto F, cuya existencia esti garantizada por el axioma de
comprensién, no puede existir porque su existencia genera una
contradiccion l6gica. Por lo tanto, el axioma de comprension, que
parecia tan inocente, es contradictorio, genera una paradoja. La
paradoja de los conjuntos que no son miembros de si mismos es
conocida actualmente como la «paradoja de Russell».

Propiedad que define a F: No es miembro de si mismo.

| F cumple la propiedad

| «no es miembro de si mismo» |
entorV | { entonces

«Es miembro de F»
equivale a
«cumple la propiedad
que define a F»

enton‘(k F no cumple la propiedad ‘/nto nees

«no es miembro de si mismo»

F no es miembro de F
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GOTTLOB FREGE

Friedrich Ludwig Gottlob Frege nacioé en
Wismar, Alemania, el 8 de noviembre de
1848. En 1869 ingreso en la Universidad
de Jena, también en Alemania, para es-
tudiar matematicas, y en 1871 se trasla-
do a la Universidad de Gotinga, donde,
ademas de matematicas, estudio fisica,
quimica v filosofia. Se doctord en Gotin-
ga en 1873 con una tesis en la que pro-
ponia un lenguaje légicamente riguroso
para la geometria. Después de recibir la
carta de Russell de 1902, en la que este
le planteaba la paradoja del conjunto de
los conjuntos que no son miembros de si mismos, Frege cayd en un profundo
abatimiento. Intenté recomponer su sistema y para ello modificé el axioma
responsable de la paradoja, pero el sistema asi corregido también resultd tener
paradojas, aunque Frege tardd varios afios en darse cuenta. Gran parte de sus
ultimos trabajos sobre légica v filosofia estaban sin publicar en el momento
de su muerte; Frege los dejo en su testamento a su hijo adoptive Alfred con
estas palabras:

Mo desdefies las piezas que he escrito. Aungue no todo esto sea oro, hay oro en
ellas. Creo gue hay aqui cosas que algun dia podran tener un valor mucho mayor
que el gue ahora tienen. Cuidate de que nada se pierda. Es una buena parte de mi
lo que te lego con esto. :

Gottlob Frege fallecié en Bad Kleinen, Alemania, el 26 de julio de 1925.

LA CRISIS DE LOS FUNDAMENTOS

Recordemos que hemos convenido, tal como se hace usualmente,
en llamar «paradoja de Burali-Forti» a la paradoja de los ordina-
les; otra convencién usual que adoptaremos es llamar «paradoja
de Cantor» a la paradoja del conjunto universal; recordemos
(véase el capitulo 4) que esta dltima paradoja se relaciona con el
teorema que dice que para todo conjunto existe otro de cardinal
alin mayor; pero como el conjunto universal es, por definicién, el
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conjunto que lo contiene todo, entonces no puede haber otro con-
junto ademads de é€l, a la vez que el teorema nos dice que si debe
haberlo; tenemos asi una contradiccién.

Hecha esta aclaracién sobre los nombres, digamos que la pa-
radoja de Burali-Forti y la de Cantor, aunque causaron preocu-
pacién en el mundo matematico, no provocaron, en cambio, una
alarma descontrolada.

Es cierto que las paradojas constituian un problema que habia
que resolver, pero a la vez también es verdad que las dos paradojas
se refieren a objetos, como el conjunto de todos los ordinales o el
conjunto universal, que jamas aparecian en los razonamientos del
célculo o de cualquier otra rama de las matematicas que empleara
nociones conjuntistas. Por otra parte, ademas de la propuesta de
solucion de Cantor ya mencionada, muchos otros tenian confianza
en que algun ajuste técnico en la teoria de conjuntos, como por
ejemplo alguna modificacién conveniente en las definiciones, po-
dria solucionar las paradojas. En resumen, aunque todos coinci-
dian en que habia un problema, este parecia circunscribirse a un
area muy especifica de la teoria de conjuntos y ciertamente no
parecia irresoluble.

«No admite para mi ninguna duda que siguiendo este camino
llegaremos siempre mas alld, sin encontrar ningin limite
insuperable.» '

— GEeore CanTOR, EN 1883.
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Sin embargo, la paradoja de Russell si provocé una crisis de
grandes proporciones; porque el axioma que dice que a toda propie-
dad le corresponde un conjunto habia sido utilizado, implicitamente,
una y otra vez durante aios por todos aquellos que en las diferen-
tes ramas de las matematicas aplicaban nociones conjuntistas. Al
probar que este axioma es contradictorio, Russell no solamente
derribaba el programa de Frege, sino que echaba un manto de duda
sobre todos los desarrollos basados en la teoria de conjuntos; muy
en especial, quedaba en entredicho la validez del cdlculo. Peor to-
davia, el axioma de comprension es realmente una afirmacién que
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parece obvia, y si una afirmacién en apariencia tan inocente resul-
taba ser contradictoria, ;qué riesgos ocultos podia haber en otros
axiomas o suposiciones que, de manera implicita o explicita, los
matematicos venian usando confiadamente en sus razonamientos?

La crisis provocada por la paradoja de Russell excedi6 el
marco de la teoria de conjuntos, dado que los matematicos se
cuestionaron la validez de fodos sus razonamientos y llegaron a
preguntarse incluso qué estudiaban realmente las matematicas.
Esta crisis tan profunda es conocida hoy en dfa como la «crisis de
los fundamentos» y provocé discusiones, a veces acaloradas, que
se extendieron a lo largo de casi treinta afios. Esta amplitud en
el tiempo, y la ya mencionada amplitud de los temas discutidos,
impiden que podamos hablar aqui de todas las ramificaciones y
consecuencias de esta crisis; nos limitaremos especificamente a
explicar como estas discusiones afectaron la cuestion de las pa-
radojas de la teoria de conjuntos.

LA SOLUCION

A principios del siglo xx eran muchos los matemaéticos que creian
que para resolver el problema de las paradojas de la teoria de con-
juntos bastaba con dar una formulacién adecuada de sus axiomas;
el primero en proponer una solucién viable en ese sentido, en el
ano 1908, fue el matematico aleman Ernst Zermelo (1871-1953).
El sistema de axiomas de Zermelo fue perfeccionado en 1919
por el también matematico aleman Abraham Fraenkel (1891-
1965), quien agregd algunos axiomas que eran necesarios y que
Zermelo no habia tomado en cuenta; es por eso que en la actua-
lidad se habla de los «axiomas de Zermelo-Fraenkel», expresion
que en la literatura especializada en teoria de conjuntos suele
abreviarse simplemente como ZF. Estos axiomas constituyen
hoy en dia la formulacion estandar de la teoria de conjuntos y
permiten solucionar todas las paradojas conocidas. La aclaracién
de «conocidas» se debe a que el matematico checo Kurt Godel
(1906-1978) demostré que no hay modo infalible de garantizar que
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un sistema de axiomas estara libre de paradojas; en consecuencia,
aunque los matematicos estan intimamente convencidos de que
ZF no conduce a contradicciones lgicas y que, de hecho, en todos
los anos transcurridos desde 1919 no se ha encontrado ninguna,
no hay modo matematicamente infalible de demostrar que jamas
aparecera alguna paradoja.

Listamos a continuacién los axiomas de Zermelo-Fraenkel:

1. Dos conjuntos son iguales si tienen exactamente los mis-
mos miembros.

2. Existe el conjunto vacio.

3. Dados los objetos x e y existe siempre el par formado por
ambos.

4. La unién de dos o mas conjuntos también es un conjunto.
5. Existe al menos un conjunto infinito.

6. Solo las propiedades expresables a partir de los restan-
tes axiomas pueden ser usadas para definir un conjunto.

7. Dado un conjunto cualquiera, existe siempre su conjunto
de partes (véase el capitulo 5).

8. Dada una familia, finita o infinita, de conjuntos no vacios
(es decir, conjuntos cada uno de los cuales tiene al menos
un miembro), existe siempre un nuevo conjunto que con-
tiene exactamente un miembro de cada conjunto de la fa-
milia (véase el esquema explicativo de este axioma en la
pagina siguiente).

9. Ningiin conjunto es miembro de si mismo.

Analicemos brevemente cémo ZF evita que suceda la paradoja
de Russell y la paradoja de Cantor.
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Familia de conjuntos

Esquema

explicativo del
axioma de
eleccion. Se elige
un miembro de
cada conjunto y
con todos ellos se
forma un nuevo
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Comencemos por decir que el axioma 9 implica que el con-
junto universal no existe, porque seria un conjunto que se tiene a
si mismo como miembro, y el axioma 9 dice que no existen conjun-
tos asi. De hecho, cuando los axiomas se escriben en el lenguaje
simbdlico adecuado puede probarse, en base al axioma 6, que el
conjunto universal ni siquiera puede definirse. Recordemos, ade-
mas, que la paradoja de Cantor surge al pensar, precisamente, en
el cardinal del conjunto universal; pero si este conjunto no existe
en realidad, entonces la paradoja de Cantor nunca llega a suceder.

En cuanto a la paradoja de Russell, recordemos que surge al
considerar el conjunto F' formado por todos los conjuntos que no
son miembros de si mismos; pero el axioma 9 nos dice que todos los
conjuntos cumplen la condicién que define a F', por lo tanto, F'seria
en realidad el conjunto de todos los conjuntos. Pero el conjunto
de todos los conjuntos, al ser él mismo un conjunto, se tendria a si
mismo como miembro y, en consecuencia, otra vez por el axioma
9, no puede existir (de hecho —vale la misma observacion que hi-
cimos antes para el universal—, es posible probar que F' en reali-
dad no puede ni siquiera definirse en la teoria). En conclusién, en
realidad no existe, por lo que la paradoja de Russell nunca sucede.

La paradoja de Burali-Forti se resuelve de modo similar, de-
mostrando que el conjunto de todos los ordinales no existe.
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UNA SOLUCION PARA LA HIPOTESIS DEL CONTINUO

A pesar del éxito de ZF, a lo largo del siglo xx se propusieron otros
sistemas de axiomas para la teoria de conjuntos, sistemas que
suelen ser mencionados usando las iniciales de quienes los formu-
laron por primera vez. Tenemos asi, por ejemplo, el sistema NBG,
por John von Neumann, Paul Bernays y Kurt Godel; o el sistema
MK, por Robert Lee Morse y John L. Kelley.

Estos distintos sistemas de axiomas no son equivalentes
entre si, Es decir, no son meramente distintas formulaciones de
la misma idea, sino que hay entre ellos diferencias esenciales; en
particular, no todos los sistemas ofrecen la misma solucién para
las paradojas. Y aunque ZF es el sistema de axiomas mas usado
—en parte por ser el mas sencillo—, los otros tienen también sus
grupos de defensores.

Por razones de espacio, es imposible detallar aqui la solucién
que cada sistema ofrece para las paradojas, pero si podemos
decir que en todos los casos, o bien —como en el caso de ZF— se
demuestra que los conjuntos que Cantor llamaba «inaccesibles»
no existen, o bien —este es el caso de NBG y MK— se admite que
los conjuntos «inaccesibles» si existen, pero se demuestra que,
como decia Cantor, cumplen reglas que son diferentes que las de
los demds conjuntos.

Es decir, la moderna teoria de conjuntos reivindica la idea
de Cantor de que la solucién de las paradojas pasa por hacer una
distincién entre los conjuntos «accesibles» y los «inaccesibles».

Ahora bien, ;jtodo esto significa que existen diferentes teorias
de conjuntos? Y en definitiva, ;jlos conjuntos inaccesibles exis-
ten o no? Estas preguntas todavia hoy no tienen una respuesta
que convenza unanimemente a todos los matemaéticos; a grandes
rasgos, hay dos posturas que suelen adoptarse en torno a estas
cuestiones, llamadas platonismo y formalismo.

. Qué es el platonismo? El platonismo sostiene que los objetos
matematicos tienen una existencia objetiva que es independiente
de la mente humana, y que el trabajo de los mateméticos con-
siste basicamente en descubrir las caracteristicas de esos objetos.
Segiin esta postura, hay una inica teoria de conjuntos verdadera,;
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el hecho de que por ahora convivan diferentes sistemas de axio-
mas se debe simplemente a que todavia los matematicos no han
sido capaces de determinar cudl es el sistema correcto. Segin
los platonistas, cuando se haya determinado cual es la verdadera
teoria de conjuntos, lo que ella dictamine acerca de la existencia,
0 no, de los conjuntos inaccesibles sera la verdad.

El formalismo, en cambio, sostiene que la matematica es sim-
plemente una creacién humana, similar en muchos aspectos a la
musica o la literatura. Las matematicas, segin este punto de vista,
son esencialmente un juego lingiiistico en el que hay ciertos pun-
tos de partida —que son los axiomas— y ciertas reglas l6gicas que
permiten sacar conclusiones a partir de ellos. El trabajo del mate-
matico consistiria, seguin este punto de vista, en descubrir hacia
dénde nos llevan las reglas de juego; este trabajo no seria muy
diferente, en el fondo, al que hace un ajedrecista cuando busca la
jugada 6ptima en una cierta posicion del tablero.

Para el formalismo, la cuestion de si los conjuntos «inaccesi-
bles» existen, o no, carece de todo sentido; para ciertos sistemas
de reglas la respuesta es que si existen, para otros sistemas de re-
glas la respuesta es que no existen, pero eso es todo lo que puede
decirse al respecto. Ambas posturas tienen sus matices, las dos
tienen sus puntos fuertes y sus puntos débiles, y las dos conviven
hoy en dia en el pensamiento de los matematicos.

La discusion entre platonismo y formalismo es un producto
de la crisis de los fundamentos, por lo que Cantor no llegé a co-
nocerla, pero, de haber sabido del debate, ;con cudl de las dos
posturas se habria sentido identificado? Por una parte, dijimos
que Cantor creia que los matematicos tenian libertad absoluta en
la definicién de conceptos y la postulacion de sus propiedades,
con la unica limitacién de que estas no conduzcan a contradic-
ciones logicas; esa postura lo acercaria al formalismo. Pero, al
mismo tiempo, en algunos textos Cantor parece sostener la creen-
cia de que esos conceptos definidos por los matemaéticos tienen
una existencia objetiva en la mente de la divinidad, y esta idea lo
acercaria al platonismo.

El debate entre el platonismo y el formalismo se vincula, final-
mente, con la solucién del problema de la hipétesis del continuo
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NICOLAS BOURBAKI

Nicolas Bourbaki, segln una biografia
apocrifa, seria un general del ejército
francés, de ascendencia griega, quien
después de retirarse de la milicia se ha-
bria dedicado al estudio de las matema-
ticas; su residencia actual seria la inexis-
tente ciudad de Nancago, nombre que
parece provenir de la combinacion de los
de las ciudades de Nancy, en Francia, y
Chicago, en Estados Unidos, y a cuyas
universidades habrian estado ligados
algunos de los «creadores» de Bourba-
ki. En realidad, «Nicolas Bourbaki» es el
seuddnimo colectivo que a mediados de
la década de 1930 adoptd un grupo de
matematicos, en su mayoria franceses.

Seglin se dice, el grupo eligio tomar este  Imagen ficticia del «general Nicolas

seudénimo, en parte como broma, y en  Bourbaki»

parte para evitar que sus obras colecti-

vas estuvieran firmadas por una larga lista de nombres. Aunque casi todos
sus miembros han preferido mantener en secreto su pertenencia al grupo, se
sabe que este ha tenido siempre unos diez o veinte integrantes, y que entre
sus fundadores estuvieron los notables matematicos franceses André Weil
(1906-1998), Jean Dieudonné (1906-1992) y Claude Chevalley (1909-1984).

(a la que llamaremos, para abreviar, HC). Recordemos que HC es
la conjetura, planteada por Cantor, de que 2% = X,. Ahora bien, en
1940 Kurt Godel demostré que, a partir de cualquiera de los siste-
mas de axiomas habitualmente usados para la teoria de conjuntos,
es imposible demostrar que la igualdad 2" = R, es falsa.

Pero en 1963 el matematico norteamericano Paul Cohen
(1934-2007) demostro a su vez que tampoco puede probarse que
2% =X, es verdadera. Es decir, la hipétesis del continuo no puede
ser demostrada, pero tampoco refutada por ninguno de los siste-
mas de axiomas de la teoria de conjuntos usados habitualmente.
Entonces, ;es verdadera o es falsa? Para el formalismo, la pre-
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gunta no tiene sentido; los axiomas son reglas de juego elegidas
arbitrariamente que no refieren a ninguna «verdad» exterior y,
seglin este punto de vista, es tan licito agregar a cualquiera de las
teorias de conjuntos un nuevo axioma que permita demostrar HC,
asi como agregar otro axioma que permita refutarla.

Para los platonistas, en cambio, 2™ =X, es objetivamente, in-
dependientemente de nuestros axiomas, verdadera o falsa, y tarde
o temprano se hallard un sistema de axiomas para la teoria de
conjuntos que permita resolver esa cuestion. Para los formalistas,
entonces, el problema de HC est4 resuelto; para los platonistas, la
cuestién sigue abierta.

LAS MATEMATICAS CONTEMPORANEAS

En el afno 1935 se reunié por primera vez Nicolas Bourbaki. Parece
una oracion extraiia, que motivaria enseguida la pregunta de con
quién se reunié Bourbaki, pero la verdad es que «Nicolas Bour-
baki» no es una persona, sino el nombre colectivo que adopté un
grupo de matematicos, en su mayoria franceses. Deciamos, enton-
ces, que en 1935 se reuni6 por primera vez Nicolas Bourbaki, y el
fin de esa primera reunion fue establecer los medios que usarian
para alcanzar el objetivo que colectivamente se habian propuesto.
Veamos cudles son esos medios y cudl es ese objetivo, en el que
los Bourbaki todavia trabajan, si bien los miembros del grupo ori-
ginal, desde luego, se han ido renovando con los anos.

Como vimos, los axiomas de Zermelo-Fraenkel (nos referimos
solo a estos axiomas en particular porque son los mas usados)
permitieron finalmente solucionar el problema de las paradojas de
la teoria de conjuntos. Quedaba entonces allanado el camino para
retomar el programa de Frege de fundamentar todas las ramas de
las matematicas en conceptos conjuntistas; como ya se ha dicho,
Russell habia intentado retomar dicho programa sin éxito.

El objetivo de los Bourbaki es, entonces, completar el pro-
yecto de Frege y para lograrlo, en aquella primera reunién de 1935
acordaron redactar una serie de voliimenes, bajo el titulo general
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de Elementos de matemdticas, cada uno de los cuales estaria de-
dicado a una rama de esa ciencia. En cada volumen los conceptos
basicos de la rama en cuestién serian definidos y estudiados con
los maximos criterios de rigor légico, con el fin de ofrecer una
base firme para todos los desarrollos posteriores. En todos los
casos, la base fundamental de estas definiciones es la teoria de
conjuntos.

Hasta el momento, los Bourbaki llevan redactados més de
una docena de volimenes los cuales, a pesar de algunas criticas a
la aridez de su redaccién y de su estilo, han tenido, y tienen, una
enorme influencia a la hora de establecer la base logica de las
matematicas contemporaneas.

Por otra parte, aunque la obra de los Bourbaki est4 esencial-
mente destinada a servir de base al trabajo de los cientificos —es
decir, de los investigadores que crean o descubren nuevos con-
ceptos o teoremas—, su influencia se sintié también con mucha
fuerza en la ensefianza de las matematicas, sobre todo durante la
segunda mitad del siglo xx, a través de las llamadas «matematicas
modernas». En aquel momento, esa corriente propuso, para bien
o para mal —las opiniones al respecto estuvieron muy divididas
en su tiempo—, que todos los conceptos matemdticos tenfan que
ser ensefnados a partir de ideas conjuntistas, incluso en el caso de
la instruccion elemental destinada a los nifios mas pequernios. La
discusién de los beneficios o perjuicios causados por esta postura
excede con mucho los fines de este libro; diremos solamente que
en la actualidad esta corriente didactica estd muy desprestigiada
y que ha sido abandonada casi por completo.

Sin embargo, a nivel cientifico, la teoria de conjuntos esta
muy viva y goza de perfecta salud. De hecho, tal como se lo ha-
bian propuesto Cantor, Dedekind y Frege, en la actualidad se ha
transformado, a través del trabajo de los Bourbaki, en la base de
todas las matematicas.

LAS PARADOJAS DEL INFINITO

169






Lecturas recomendadas

BeL, E.T., Los grandes matemdticos, Buenos Aires, Losada, 2010.

Bover, C., Historia de la matemdtica, Madrid, Alianza, 1996.

Bunch, B.H., Matemdtica insdlita (Paradojas y paralogismos),
México, Reverté, 1997.

CANTOR, G., Fundamentos para una teoria general de conjuntos
(Escritos y correspondencia selecta), edicién de José Ferrei-
ros; Barcelona, Critica, 2006.

Hawxking, S. (compilador y comentarista), Dios cred los niimeros
(Los descubrimientos matemdticos que cambiaron la histo-
ria), Barcelona, Critica, 2010.

Kasner, E., NEwMAN, J., Matemdticas e imaginacion, Barcelona,
Salvat, 1994.

Laving, S., Comprendiendo el infinito, México, Fondo de Cultura
Econdémica, 2005.

MARTINON, A. (compilador), Las matemdticas del siglo xx (Una
mirada en 101 articulos), Madrid, Nivola, 2000.

Opirreppl, P., La matemdtica del siglo xx, Madrid, Katz Barpal
Editores, 2006.

SMULLYAN, R., Satdn, Cantor y el infinito, Barcelona, Gedisa, 1995.

StewART, 1., Historia de las matemdticas, Barcelona, Critica, 2008.






Indice

Acta Mathematica 98-100, 114
alef, notacion de los 126
argumento diagonal 49-52, 56, 135
Aristételes 8-10, 25-29, 32, 33, 39,
41, 57, 83, 90
paradoja de 90
aritmética
ordinal 132
transfinita 128-130
Arquimedes 25, 81
axiomas de Zermelo-Fraenkel 162,
163, 168

Bolzano, Bernard 10, 96
Borel, Emile 120, 121
Bourbaki, Nicolas 167-169
Burali-Forti, Cesare 150, 151, 159,
160, 164
paradoja de véase paradoja de
Burali-Forti

calculo 17, 35, 36, 59, 73, 74, 76, T8,
80-88, 90, 100, 102, 103, 105, 108,
110, 120, 122, 150, 154, 155, 160
Cohen, Paul 167

coleccién 20, 22-25, 30, 31-33, 38-
42, 44-46, 48-50, 52, 53, 55-57,
59, 61-65, 68-73, 76, 78, 87, 90,
91, 93, 94-97, 106-108, 110
Conceptografia 157
Congreso Internacional de
Mateméticas
de Heidelberg (1904) 153
de Paris (1900) 119, 150, 152
de Zarich (1897) 149
conjunto
absoluto 148
accesible 150, 151, 165
cardinal de un 33, 124, 138, 164
coordinable 39-41, 44, 48-50,
52, 62, 65, 68, 72, 73, 90, 128,
129, 135-138
de partes 163
derivado 105-107
finito 112, 128
inaccesible 150, 151, 165, 166
infinito 33, 163
no numerable 112, 120
numerable 95, 112, 120, 126,
128, 129

173



174

teoria de 17, 18, 21, 52, 77, 95,
99, 107, 111, 120, 122, 124,
130, 133, 134, 136, 141, 148-
150, 152-154, 156, 157, 160,
162, 165-169
transfinito 115, 126, 147-150
universal 141, 148, 159, 160, 164
vacio 107, 124
continuo, problema del 87, 96, 98,
105, 107
correspondencia uno-a-uno 38, 40-
42, 46, 48, 50, 52, 56, 62, 64, 66,
68, 72, 89, 114, 131, 134
Crelle, Journal de 37,71, 72, 74,
76, 77
cuadratura del circulo 53, 54, 56
cubrimiento 137, 139, 140

Dedekind, Richard 13, 17, 18, 26,
37, 41, 43, 48, 61-63, 69, 72, 80,
81, 86, 88, 93, 94, 96, 98, 99, 111,
122-124, 128, 149, 154-156, 169
cortaduras de 96, 123

Euclides 155, 156

formalismo 165-167

Fourier, series de (véase también
series trigonométrica) 100,
104-106, 109

Fraenkel, Abraham 162

Frege, Gottlob 155-160, 168, 169

Galilei, Galileo 10, 28, 29, 33, 38,
39, 57
paradoja de (véase paradoja de
Galileo)
Godel, Kurt 162, 165, 167
Guttman, Vally 13, 37

Heine, Heinrich Eduard 36, 97, 100,
104, 106, 108, 109

INDICE

Hilbert, David 44, 106, 119, 120,
122, 149-152
hotel de 44

hipétesis del continuo 69-72, 113,
114, 120, 127, 138-140, 165, 167

infinito
en acto 9-11, 20-26, 28, 29, 37,
41,58, 71, 75, 107, 148
en potencia 9, 10, 23, 26, 35, 39
75, 110, 111

?

Kronecker, Leopold 13, 20, 74-77,
89, 98, 125

Lebesgue, Henri 120, 121

Leibniz, Gottfried Wilhelm von 12,
17, 74, 82-85, 102, 103

Liouville, Joseph 54, 56, 73, 75, 89

Mittag-Leffler, Gosta 75, 98-100

Newton, Isaac 17, 81-85
numero

algebraico 13, 37, 38, 53-57,
70, 77

cuadrado 31, 32, 38, 40, 41

entero 41, 42, 44-46, 48-50, 53-
55, 57, 70, 74, 75, 94, 95, 123,
129, 135, 136, 154

irracional 35, 49, 54, 70, 85, 89,
106, 122, 131

racional 41, 42, 44-50, 53-55, 57,
70, 75, 88, 89, 94, 106, 107,
122, 123, 131, 154, 157

real 13, 37, 38, 49, 50-563, 56, 57,
62, 64-66, 69, 70, 72, 73, 77,
86-90, 96, 105-109, 113-115,
120, 122, 123, 127, 128, 131,
135, 136, 147, 154, 155

trascendente 54-57, 70, 72, 73,
75



ordinal 11,91, 111-115, 126, 127,
132, 141, 146, 147, 148, 150, 156,
159, 160, 164
de clase I 112, 113, 127, 129,

147
de clase II 112, 127, 129, 138-
140, 147
de clase III 112, 127, 129, 147
omega mayuascula () 112
omega miniscula (w) 11, 12,
111,112, 146

paradoja 10, 32, 41, 83, 84, 102, 103,
114-116, 119, 120, 144-169
de Aristételes 90
de Burali-Forti 150, 159, 160,
163, 164
de Cantor 140, 141, 148, 149,
159, 160, 163, 164
de Galileo 28-32, 40
de los ordinales 150, 159
de Russell 153, 157, 158, 160,
162-164
de Zendn 8,9
platonismo 165, 166, 168
Poincaré, Henri 72, 120, 121

Riemann, Georg Friedrich
Bernhard 81, 105
Russell, Bertrand 63, 94, 141, 143,
153, 157-160, 162-164, 168
paradoja de véase paradoja de
Russell

san Agustin 28, 41, 115

series trigonométricas 88, 90, 100,
103, 104, 106, 107, 109

sucesion 48, 49, 52, 53, 55, 56, 72,
75, 88, 89, 106, 107, 110-112, 115,
123, 131, 132, 146
fundamental 88, 89

teorema de Cantor 140, 141, 149
teoria
de conjuntos véase conjunto,
teoria de
MK 165
NBG 165
ZF 162, 163, 165

unicidad 104, 105, 107, 109
de la descomposicion en series
trigonométricas 103, 104

variedad 13, 71, 91, 93, 97, 99, 100,
108, 110, 113, 126, 145

von Lindemann, Carl Louis
Ferdinand 56, 75

von Neumann, John 165

Weierstrass, Karl Theodor Wilhelm
13, 20, 37, 38, 43, 48, 56, 57, 72,
86-88

Zermelo, Ernst 162, 163, 168

INDICE

175



	30GIC001
	30GIC002
	30GIC003
	30GIC004
	30GIC005
	30GIC006
	30GIC007
	30GIC008
	30GIC009
	30GIC010
	30GIC011
	30GIC012
	30GIC013
	30GIC014
	30GIC015
	30GIC016
	30GIC017
	30GIC018
	30GIC019
	30GIC020
	30GIC021
	30GIC022
	30GIC023
	30GIC024
	30GIC025
	30GIC026
	30GIC027
	30GIC028
	30GIC029
	30GIC030
	30GIC031
	30GIC032
	30GIC033
	30GIC034
	30GIC035
	30GIC036
	30GIC037
	30GIC038
	30GIC039
	30GIC040
	30GIC041
	30GIC042
	30GIC043
	30GIC044
	30GIC045
	30GIC046
	30GIC047
	30GIC048
	30GIC049
	30GIC050
	30GIC051
	30GIC052
	30GIC053
	30GIC054
	30GIC055
	30GIC056
	30GIC057
	30GIC058
	30GIC059
	30GIC060
	30GIC061
	30GIC062
	30GIC063
	30GIC064
	30GIC065
	30GIC066
	30GIC067
	30GIC068
	30GIC069
	30GIC070
	30GIC071
	30GIC072
	30GIC073
	30GIC074
	30GIC075
	30GIC076
	30GIC077
	30GIC078
	30GIC079
	30GIC080
	30GIC081
	30GIC082
	30GIC083
	30GIC084
	30GIC085
	30GIC086
	30GIC087
	30GIC088
	30GIC089
	30GIC090
	30GIC091
	30GIC092
	30GIC093
	30GIC094
	30GIC095
	30GIC096
	30GIC097
	30GIC098
	30GIC099
	30GIC100
	30GIC101
	30GIC102
	30GIC103
	30GIC104
	30GIC105
	30GIC106
	30GIC107
	30GIC108
	30GIC109
	30GIC110
	30GIC111
	30GIC112
	30GIC113
	30GIC114
	30GIC115
	30GIC116
	30GIC117
	30GIC118
	30GIC119
	30GIC120
	30GIC121
	30GIC122
	30GIC123
	30GIC124
	30GIC125
	30GIC126
	30GIC127
	30GIC128
	30GIC129
	30GIC130
	30GIC131
	30GIC132
	30GIC133
	30GIC134
	30GIC135
	30GIC136
	30GIC137
	30GIC138
	30GIC139
	30GIC140
	30GIC141
	30GIC142
	30GIC143
	30GIC144
	30GIC145
	30GIC146
	30GIC147
	30GIC148
	30GIC149
	30GIC150
	30GIC151
	30GIC152
	30GIC153
	30GIC154
	30GIC155
	30GIC156
	30GIC157
	30GIC158
	30GIC159
	30GIC160
	30GIC161
	30GIC162
	30GIC163
	30GIC164
	30GIC165
	30GIC166
	30GIC167
	30GIC168
	30GIC169
	30GIC170
	30GIC171
	30GIC172
	30GIC173
	30GIC174
	30GIC175



