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Introducción 

Cuando contemplamos el cielo en una noche estrellada y sin luna, 
lejos de la interferencia de las luces de la ciudad, y nos sentimos 
maravillados por el espectáculo sobrecogedor que se despliega 
ante nosotros, en ese mismo momento desde lo más profundo de 
nuestro ser nace un sentimiento que nos abruma con la idea de lo 
pequeños que somos comparados con el infinito. 

El infinito no es solo una sofisticada idea matemática; la dua­
lidad entre lo infinito, palabra que literalmente significa «aquello 
que jamás termina», y su opuesto, lo finito, lo que sí acaba alguna 
vez, ha acompañado a la humanidad probablemente desde que el 
primer Homo sapiens se preguntó si el cielo termina alguna vez, 
si se puede llegar hasta el horizonte, o si nuestra vida realmente 
termina o si de alguna manera puede seguir indefinidamente. 

Pero el infinito también es vértigo y, según el filósofo griego 
Zenón de Elea, hasta puede inmovilizar al universo; veamos qué 
queremos decir con esta idea En el siglo VI aC., Pannénides de Elea 
-según muchos autores, el padre de la metafísica occidental­
postuló la existencia del ser. La característica fundamental del ser, 
según Parménides, es, justamente, la de existir; el ser existe, el ser es. 

De esta premisa Parménides dedujo que el ser abarca todo 
el universo, porque si hubiera aunque sea alguna pequeña región 
de este donde el ser no estuviera, en esa región el ser no existiría; 
pero decir que el ser no existe es una contradicción de términos, 
es imposible. El ser, entonces, ocupa todo el universo; en otras 
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palabras, el universo entero, nosotros incluidos, constituye el ser. 
Pero además, el ser es inmutable, no puede cambiar, porque si pa­
sara, digamos, de un estado A a un estado B, entonces dejaría de 
existir en el estado A, y eso es imposible, porque el ser no puede 
dejar de existir. El ser es, en consecuencia, todo el universo, y es 
inmutable; por lo tanto, el universo es inmutable. Esto significa 
que el cambio y el movimiento que creemos ver a nuestro alrede­
dor en realidad no existen; el tiempo no existe, en el ser no hay 
pasado ni futuro, solamente hay ahora. 

Zenón, discípulo de Parménides, planteó una serie de razo­
namientos, conocidos como las paradojas de Zenón, con los que 
intentó demostrar, en respaldo de las ideas de su maestro, que el 
cambio y el movimiento no existen, que lo que creemos ver no 
es más que un engaño de los sentidos, y que la mente y la razón, 
guiadas por la lógica, son capaces de demostrar este hecho. 

Todas las paradojas de Zenón involucran el infinito de algún 
modo; una de ellas dice que si arrojan1os una piedra hacia un árbol 
que está a un metro de distancia delante de nosotros, entonces, 
contrariamente a lo que la vista parece mostramos, la piedra 
jamás llega al árbol; de hecho, jamás abandona nuestra mano. 

Para demostrarlo, Zenón decía que antes de llegar al árbol 
la piedra debe recorrer primero medio metro; pero antes de eso, 
debe recorrer un cuarto de metro; y antes debe recorrer un octavo 
de metro; y antes, un dieciseisavo de metro; y así sucesivamente. 
En realidad, para llegar al árbol la piedra debe completar una 
cantidad infinita de pasos previos, pero es imposible completar 
infinitos pasos en un tiempo finito; por lo tanto, deduce Zenón, la 
piedra jamás llega al árbol. Más aún, el mismo razonamiento que 
hemos hecho para una distancia de un metro, vale también para el 
primer milímetro o la primera milésima de milímetro; por lo que la 
piedra, en realidad, tal como dijimos antes, nunca abandona nues­
tra mano. El infinito, como se ha expuesto, permite demostrar, 
según Zenón, que el universo es inmutable. 

En el siglo rv a.c., Aristóteles -el padre del estudio sistemá­
tico de la lógica y tal vez de la ciencia en general- escribió su 
Física, un tratado que contiene, entre otras cuestiones, un estu­
dio del movimiento de los cuerpos; pero, desde luego, antes de 
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estudiar el movimiento Aristóteles debía demostrar que ese mo­
vimiento realmente existe; es decir, debía refutar los argumentos 
de Parménides y de Zenón. 

Si el ser esencialmente es, ¿cómo puede entonces cambiar de 
estado, cómo puede dejar de ser algo? Aristóteles dice que el ser 
es, en efecto, pero que a veces es en potencia y a veces es en acto. 
Cuando un niño crece y se transforma en adulto, no es que deje 
de ser un niño, sino que siendo niño era un adulto en potencia y al 
crecer pasa a ser un adulto en acto. Es decir, muta del estado de 
ser un adulto en potencia, al estado de ser un adulto en acto; el 
niño cambió, pero nunca dejó de ser. Una semilla es una planta en 
potencia, una hoja en blanco es un texto en potencia, y así sucesi­
vamente. Siglos más tarde, Miguel Ángel expresaría una idea similar 
al decir que la escultura ya existía en el bloque de mármol y que él 
se limitaba a quitar lo que sobraba. Aristóteles reconcilia de esta 
manera la idea del ser de Parménides con la posibilidad del cambio. 

Demostrado que el ser puede mutar, ¿cómo se refutan los ar­
gumentos de Zenón? Todas las paradojas de Zenón suponen que 
el espacio o el tiempo son infinitamente divisibles. En la paradoja 
del árbol, por ejemplo, hay infinitos pasos en el espacio que media 
entre la mano y el árbol. Para refutar estos argumentos, Aristóteles 
afirmó que el infinito no existe; o, mejor dicho, que existe, pero 
solamente en potencia, nunca en acto. Infinito en potencia refiere a 
una cantidad que puede crecer tanto como se quiera, pero que todo 
el tiempo es finita; infinito en acto es una cantidad que, de hecho, 
es infinita. Esta distinción es muy importante a la hora de pensar 
el infinito y volveremos varias veces a ella a lo largo de esta obra. 

Podemos admitir -dice Aristóteles- la existencia de cantida­
des que crecen indefinidamente, pero que son finitas todo el tiempo; 
sin embargo, no podemos admitir la existencia de cantidades infini­
tas de hecho. Podemos dividir la distancia entre la mano y el árbol 
en diez partes, o en cien, o en mil, o en cualquier cantidad finita tan 
grande como queramos, pero no podemos asumir que está dividida 
en una cantidad de partes que sea de hecho infinita. 

Aristóteles no se limitó a postular la inexistencia del infinito en 
acto, sino que dio una serie de argumentos para sustentar esta afir­
mación; como los argumentos de Aristóteles serán analizados a lo 
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largo de este libro, no los comentaremos aquí. Sin embargo, sí dire­
mos que el rechazo aristotélico al infinito en acto marcó durante más 
de dos mil años la ortodoxia del pensamiento occidental; y, además 
de la fuerza de los argumentos de Aristóteles, muy probablemente 
este dominio estuvo favorecido también por dos circunstancias. 

La primera es que la mente humana es incapaz de represen­
tarse una imagen del infinito en acto, por lo que resulta muy fácil 
aceptar que en realidad no existe. En efecto, sí podemos concebir, 
quizá, el infinito en potencia, podemos pensar en una cantidad 
que crece ilimitadamente; pero, insistimos, no el infinito en acto. 
¿Qué sería representarse, por ejemplo, la imagen de una recta 
cuya longitud es infinita en acto? Sería pensar en una línea com­
pleta ( es decir, lo que «vemos» con la mente no debería ser solo 
un fragmento) cuya longitud es de hecho infinita. Pero la mente no 
puede abarcar esa imagen; sí podemos pensar en una línea que se 
pierde en el horizonte y decirnos que sigue indefinidamente, pero 
en realidad estaríamos «viendo» una recta infinita en potencia, ya 
que nuestra «vista» solo abarca una parte. O pensemos en los nú­
meros O, 1, 2, 3, 4, 5, .. . ; visualizarlos como un infinito en acto sería 
pensarlos escritos todos juntos en una lista, todos sin excepción, 
una lista que está completa, pero que a la vez nunca termina, una 
imagen inabarcable para nuestra mente finita. 

El segundo motivo por el que el rechazo aristotélico al infinito 
en acto resultó convincente es que, al razonar a partir del infinito, 
parece casi inevitable caer en contradicciones lógicas o en conclu­
siones extrañas que son contrarias al sentido común; como en el 
caso de Zenón, a quien el infinito le permitió demostrar la inexis­
tencia del can1bio y del movimiento. Otro ejemplo lo tenemos en 
el siglo xvn, cuando Galileo Galilei se encontró también con con­
tradicciones que lo llevarían a rechazar la idea del infinito en acto; 
en el siglo XIX, por su parte, el matemático checo Bernard Bolzano 
intentó desarrollar una teoría del infinito matemático, pero también 
se encontró con paradojas que no supo resolver satisfactoriamente; 
estos dos casos serán comentados a lo largo del presente libro. 

Es cierto que hubo algunas discrepancias con respecto al pen­
samiento aristotélico; por ejemplo, en el siglo r d.C., el filósofo y 
poeta romano Lucrecio, en su poema didáctico De rerum natura 
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(Sobre la naturaleza de las cosas), argumentó que el universo 
debe ser infinito; en caso contrario -dice Lucrecio-, tendría una 
frontera, y si arrojáramos un objeto hacia esa frontera con la sufi­
ciente fuerza como para atravesarla, entonces ese objeto pasaría 
a existir fuera del universo; pero es imposible porque, por defi­
nición, nada puede existir fuera del universo. Hoy sabemos, sin 
embargo, que el argumento de Lucrecio es falaz, que el universo 
puede ser finito sin tener una frontera, de la misma manera que la 
superficie de una esfera es finita, pero sin tener una frontera. De 
hecho, según las modernas temias cosmológicas, es muy proba­
ble que el universo en su conjunto sea finito. Pero las disidencias 
fueron escasas y aisladas, y el pensamiento aristotélico sobre el 
infinito, como dijimos antes, dominó en la filosofía y tan1bién en las 
matemáticas; al menos hasta la década de 1870. En esa época, el 
matemático ruso-alemán Georg Cantor se vio llevado por la lógica 
de sus investigaciones, casi contra su voluntad según sus propias 
palabras, a introducir en las matemáticas el estudio del infinito 
en acto. La tarea no fue fácil, no solo por las dificultades que ella 
conlleva, sino también por la dura oposición que encontró entre 
muchos de sus colegas; no era fácil romper con una tradición de 
milenios y Cantor llegó a ser tratado de «científico charlatán» y 
«corruptor de la juventud». 

Sin embargo, Cantor no se detuvo, e impulsado por la convic­
ción de que una teoría matemática del infinito era posible, y hasta 
necesaria, y guiado por una lógica inflexible, desarrolló una de las 
teorías más asombrosas que hoy se conocen; pero abrió además 
la posibilidad de un modo nuevo de pensar a las matemáticas en 
su conjunto, un modo más libre y potente. 

Uno de los conceptos más originales que introdujo Cantor es 
el de los ordinales; la teoría de los ordinales será comentada en las 
siguientes páginas, por lo que no entraremos aquí en sus detalles; 
basta decir que se trata, esencialmente, de números que permiten 
contar más allá del infinito. Después de los infinitos números O, 1, 2, 
3, 4, 5, ... -dice Cantor- , viene el número ir,jinito (es decir, el or­
dinal) w, el súnbolo es la letra griega omega minúscula; luego vienen 
w + 1, w + 2, w + 3, ... ; y después de esta nueva serie de infinitos ordi­
nales viene w + w, y luego w + w + 1, w + w + 2, ... ; y así sucesivamente. 
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Pero, ¿es licito invent,ar números así como así? ¿ Qué representa 
ese «número» w? Hasta el siglo XIX, todos los conceptos con los que 
trabajaban los matemáticos estaban fuertemente ligados a proble­
mas que podemos llamar «concretos», a situaciones que podían ser 
visualizadas o asociadas con hechos reales; como la descripción 
de fenómenos físicos, el estudio de las propiedades de los objetos 
geométricos, o las propiedades de las cantidades finitas (1, 2, 3, 4, . .. ). 
El número O, por ejemplo, que representa una «cantidad que no es», 
debió esperar muchos siglos antes de ser reconocido como un nú­
mero de pleno derecho; otro tanto puede decirse de los números 
negativos, cuya existencia, por ejemplo, era todavía rechazada por 
Leibniz, en una fecha tan cercana como principios del siglo XVIII. Los 
números, en general, solo eran aceptados si representaban, de algún 
modo, una cantidad que pudiera visualizarse de manera concreta. 

El número w representa una cantidad infinita en acto, no re­
presenta ningún objeto concreto ni ningún fenómeno físico, ni 
puede visualizarse más que con los ojos de la mente. Pero Cantor, 
con su pensantiento riguroso, nos obligó a aceptarlo como exis­
tente, y su modo de entender las matemáticas debió cambiar para 
adaptarse a este hecho. Es así como, hoy en día, ya no se exige a 
los objetos matemáticos que tengan un correlato real o que sean 
la representación de un fenómeno concreto; solo se les pide co­
herencia lógica, y dentro de esa única exigencia los matemáticos 
actuales son libres de crear, estudiar, manipular y analizar con­
ceptos, ideas y teorías. 

La esencia de las matemáticas cambió después de Cantor, y 
él mismo hubiera visto con enorme satisfacción este nuevo es­
tado de cosas, estado en el que los matemáticos pueden crear 
libremente teorías y conceptos. Podemos afirmar que Cantor lo 
hubiera visto con satisfacción, porque fue él quien dijo que las 
matemáticas puras debían ser llamadas con más propiedad ma­
temáticas libres, porque, según sus propias palabras, «la esencia 
de la matemática radica precisamente en su libertad». 
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1845 El 3 de marzo, en San Petersburgo, 1878 Se publica «Una contribución a la 
Rusia, nace Georg Ferdinand Ludwig teoría de las variedades», donde Cantor 
Philipp Cantor, hijo de Georg Waldemar plantea explícitamente sus ideas sobre 
Cantor y de Maria Arma Bohm. el infinito. Leopold Kronecker pone en 

juego toda su influencia para evitar que 
1856 La familia Cantor se muda a Alemania. el artículo se publique. 

1862 Cantor desea estudiar matemáticas, 1883 Publicación de «Fundamentos para 
pero su padre se opone e ingresa en una teoría general de variedades», que 
el Politécnico de Zúrich para estudiar constituye el punto culminante de la 
ingeniería. Pocos meses después, el creatividad matemática de Cantor. 
padre le da su permiso para que estudie 
matemáticas, en el mismo centro. 1884 En mayo sufre un ataque depresivo, 

y abandona toda investigación 
1863 Muere su padre; Georg y su madre se matemática durante más de cinco años. 

mudan a Berlín, donde completará sus 
estudios de matemáticas. 1890 Se crea la Unión Matemática Alemana 

y Cantor es elegido como su primer 
1867 Obtiene el doctorado en matemáticas presidente. 

en la Universidad de Berlín. 
1892 Se publica «Sobre una cuestión 

1869 Comienza a trabajar en la Universidad elemental de la teoría de las 
de Halle. variedades», donde aparece su fan10sa 

«demostración de la diagonal». 
1872 Conoce a Richard Dedekind. Muchas 

de las ideas de Cantor sobre el infinito 1895 Publicación de la primera parte de 
saldrán a la luz por primera vez en «Contribuciones a la creación de una 
cartas escritas a Dedekind. teoría de los cortjuntos transfinitos»; 

la segunda parte vio la luz en 1897. 
1874 Se casa con Vally Guttmann; los 

Cantor tendrán seis hijos. Ese mismo 1899 El 16 de diciembre muere su hijo 
año se publica su artículo «Sobre una Rudolf, de trece años. La pérdida 
propiedad característica de la totalidad desencadena en Cantor una 
de los números reales algebraicos», enfem1edad mental de la que 
donde aparecen por primera vez sus nunca se recuperó. 
ideas sobre el infinito, aunque, por 
recomendación de Karl Weierstrass, 1918 Fallece en la clínica psiquiátrica 
esas ideas están «ocultas». de Halle el 6 de enero. 
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CAPÍTULO 1 

El comienzo del infinito 

Hay algunas preguntas que han acompañado 
a la humanidad desde que los primeros hombres 

y mujeres se sentaron alrededor del fuego a pensar e 
indagar acerca de todo aquello que los rodeaba. ¿El mundo 

existe desde siempre o comenzó a existir en algún 
momento? ¿Dejará alguna vez de existir? ¿Tiene 

el cielo un final o podríamos viajar por él 
indefinidamente? Detrás de todas estas 

preguntas subyace uno de los conceptos 
más potentes y maravillosos jamás 

concebidos: el infinito. 





Casi todas las ramas de las matemáticas son el resultado de un 
largo proceso hlstórico que se fue desarrollando a lo largo de dé­
cadas o siglos, con el aporte de muchas personas, y en el que 
suele ser muy difícil, por no decir imposible, señalar claramente 
un único iniciador. Por supuesto, este es el caso de las ramas 
más antiguas de las matemáticas, corno la geometría o el álgebra, 
cuyos comienzos se remontan al antiguo Egipto o a la antigua 
Mesopotarnia; pero también es el caso de ramas más recientes, 
corno el cálculo, por ejemplo, que fue creado a finales del siglo xvn 
simultánea e independientemente por dos ilustres matemáticos, 
el inglés Isaac Newton y el alemán Gottfried Wilhelrn von Leibniz, 
quienes en realidad dieron forma a ideas que muchos precursores 
habían estado investigando durante siglos (hablaremos un poco 
más sobre la hlstoria del cálculo en el capítulo 3). 

Sin embargo, la teoría matemática del infinito (y la teoría de 
coajuntos, ya que, corno veremos en estas páginas, ambas teorías 
son esencialmente la misma) es el fruto del talento y de la imagi­
nación de un solo hombre, que la creó casi de la nada, el matemá­
tico ruso-alemán Georg Cantor. 

Inclusive es posible señalar el momento casi exacto en el que 
Cantor dio el salto creativo que le llevó a su teoría; en una carta 
fechada el 5 de noviembre de 1882 le escribió a su amigo y colega 
Richard Dedekind: 
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Precisamente desde nuestros últimos encuentros en Harzburg y Ei­
senach [ ciudades alemanas en las que ambos se habían encontrado 
en septiembre de 1882], Dios Todopoderoso me ha concedido alcan­
zar las aclaraciones más notables e inesperadas en la teoría de con­
juntos y en la teoria de números [se refiere, como veremos en el ca­
pítulo 4, a números infinitos], o, más bien, que encontrara aquello que 
ha fermentado en mí durante a.fí.os y que he buscado tanto tiempo. 

¿ Cómo alcanzó Cantor estas «aclaraciones tan notables»? 
¿Qué desencadenó ese «fermento»? Para comprenderlo, iremos 
avanzando paso a paso a lo largo de estas páginas por el camino 
que siguieron las ideas de Cantor. Comenzaremos, como corres­
ponde, por el principio. 

DE SAN PETERSBURGO A HALLE 

Georg Ferdinand Ludwig Philipp Cantor nació en San Peters­
burgo, Rusia, el 3 de marzo de 1845. Su padre, Georg Waldemar 
Cantor, era un exitoso comerciante de origen danés, muy religioso 
y amante de la cultura y de las artes. Su madre, Maria Anna Bohm, 
era hija de dos eximios violinistas rusos y, ella misma también, 
una 'virtuosa del violín. El propio Georg heredó ese talento para 
la música y años más tarde, un poco en broma, un poco en serio, 
se lamentaría de que su padre no le hubiera permitido convertirse 
en violinista profesional. 

La música y el arte en general fueron siempre muy importan­
tes en la vida de Cantor. De hecho, el arte y las matemáticas no 
eran para él dominios alejados entre sí; por el contrario, siempre 
creyó que el trabajo del matemático estaba muy ligado a la crea­
tividad artística (idea que es compartida por muchos matemáti­
cos actuales, entre quienes se cuenta el autor de estas líneas). 
Por ejemplo, en 1883, en el artículo donde volcó las «notables 
aclaraciones» de las que hablaba en su carta a Dedekind, Cantor 
escribió: «La esencia de la matemática radica precisamente en su 
libertad» (las cursivas son del original). En ese mismo texto dice: 
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Debido a esta posición destacada, que la distingue de todas las demás 
ciencias y proporciona una explicación del carácter relativamente 
fácil y desenvuelto que el ocuparse de ella tiene, merece especial­
mente el nombre de matemática libre, una denominación a la que, 
si fuese mía la elección, daría preferencia sobre la de matemática 
«pura», que ha llegado a ser usual. 

Es decir, el matemático tiene la libertad de dejar volar su ima­
ginación, la libertad de crear conceptos, siempre y cuando estos 
no conduzcan a contradicciones lógicas. Pero si esas contradic­
ciones lógicas no se producen entonces, afirmaba Cantor, puede 
asegurarse que los objetos así creados existen realmente. El ma­
temático, al tener el poder de crear nuevos conceptos, es tanto 
un científico como un artista. Estas ideas, además de reflejar el 
pensamiento de Cantor, tenían para él, en ese histórico artículo 
en particular, una finalidad «estratégica» de la que hablaremos en 
los próximos capítulos. 

Pero volvamos ahora una vez más a los primeros años de la 
vida de Cantor. Su padre tenía una salud muy frágil y a causa de 
ello en 1856 los médicos le aconsejaron que dejara los crudos in­
viernos de San Petersburgo y se mudara a alguna región de clima 
más templado. Cantor padre liquidó entonces todos sus negocios 
y se trasladó con la familia a Alemania. Inicialmente, los Cantor vi­
vieron en la ciudad de Wiesbaden, donde Georg asistió al Gymna­
sium (el equivalente alemán de la escuela secundaria), pero poco 
tiempo después se trasladaron a Fránkfurt. 

Georg recordó siempre con nostalgia su infancia en San Pe­
tersburgo, más aún, a pesar de que vivió en Alemania el resto de 
su vida, nunca se sintió completamente a gusto allí. Es interesante 
agregar que, hasta donde se sabe (y esto es característico de su 
personalidad romántica y a veces exaltada), desde 1856 en ade­
lante nunca volvió a escribir en ruso. 

Durante sus años en el Gymnasium los informes escolares 
destacaron siempre la notable habilidad de Cantor para las mate­
máticas, y aunque en un principio su padre insistió en que estu­
diara ingeniería, finalmente en 1863 ingresó en la Universidad de 
Berlín para estudiar la que era su verdadera vocación, podríamos 
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decir que su pasión, las matemáticas. En esa época, la Universidad 
de Berlín era uno de los centros de investigación matemática más 
importantes del mundo. Por ejemplo, enseñaban allí los renom­
brados matemáticos Karl Weierstrass y Emst Kummer, que fueron 
ambos profesores de Cantor. También lo fue Leopold Kronecker, 
quien volverá más adelante a estas páginas, dado que llegaría a 
transfom1arse con el tiempo en uno de los enemigos más impla­
cables de la te01ia del infinito. 

Cantor se doctoró en Berlín en 1867 y dos años más tarde 
obtuvo una plaza de profesor en la Universidad de Halle. Hablare­
mos en el próximo capítulo de sus prinleros tiempos en esta ciu­
dad, pero podemos adelantar que fue allí, en Halle, donde Cantor 
desarrolló su teoría del infinito matemático, es decir, donde hizo 
los descubrintientos que le llevaron a ocupar el lugar destacado 
que tiene en la historia de las matemáticas. 

Pero estas ideas no se impusieron fácilmente, sino que halla­
ron mucha resistencia. Como muestra de esa resistencia ya hemos 
mencionado a Kronecker, quien haría todo lo posible para que las 
ideas de Cantor no se difundieran. Otro ejemplo que podemos aña­
dir data de 187 4, cuando Cantor quiso publicar sus prinleros des­
cubrinuentos acerca del infinito. Al ver el borrador de su artículo, 
Weierstrass le aconsejó que no hiciera mención a las consecuen­
cias más radicales de los teoremas expuestos en él; de hecho, le 
aconsejó que no incluyera ninguna referencia explícita al infinito. 

¿Por qué se produjeron estas reacciones tan adversas? ¿Qué 
consecuencias implicaba el artículo de 187 4 y por qué esas conse­
cuencias eran tan revolucionarias? Para responder estas pregun­
tas, tenemos que conocer prinlero la historia del infinito. 

EN POTENCIA O EN ACTO 

¿Qué es el infinito? Con mayor precisión, ¿qué queremos decir 
cuando afirmamos que una colección de objetos es infinita? Antes 
que nada, aclaremos que usaremos aquí la palabra «objeto» en su 
sentido más amplio, incluyendo objetos abstractos o imaginarios. 
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Podríamos hablar, por poner un ejemplo, de la colección formada 
por todos los días del mes de diciembre del año 3000. 

Hecha esta aclaración, volvamos a la pregunta inicial, y para 
comenzar a acercarnos a su respuesta analicemos primero el con­
cepto opuesto, mucho más familiar, de finitud. Preguntémonos 
entonces qué significa que una colección de objetos sea finita. 

La palabra «finita» quiere decir, literalmente, «que termina», 
«que no sigue indefinidamente». Con esta idea en mente, pode­
mos afirmar que una colección de objetos es finita si es posible, 
al menos en teoria, contar uno por uno todos los objetos que la 
forman de modo que la cuenta termine en algún momento. 

La colección de todos los días del mes de diciembre del año 
3000, que mencionábamos antes, es finita. Para mostrar otro ejem­
plo, imaginemos que a cada una de las personas adultas que viven 
hoy sobre la Tierra le pedimos que cierre herméticamente una 
botella llena de aire. La colección formada por todas las molécu­
las de oxígeno contenidas en esos miles de millones de botellas 
también es finita. Por supuesto, en este último caso seria extrema­
damente difícil en la práctica contar uno por uno todos los objetos 
que forman la colección, pero las dificultades prácticas no son 
relevantes para el concepto de finitud, el punto importante es el 
hecho teórico de que la cuenta terminaria en algún momento, aun 
cuando ese momento tarde siglos en llegar. 

Por oposición, una colección es infinita si al intentar con­
tar uno por uno todos los objetos que la forman resulta que esa 
cuenta nunca termina. Conviene enfatizar que en esta definición 
no estamos usando la palabra «nunca» en un sentido metafórico, 
como sinónimo de «por muchísimo tiempo», sino que, por el con­
trario, «nunca» debe ser entendida aquí en el sentido más potente 
y literal de «jamás por toda la eternidad». 

La idea del infinito, y esta distinción que haremos es muy 
importante, puede ser entendida a su vez de dos maneras bien 
diferentes. El infinito puede ser en potencia o puede ser en acto. 

Para comprender la diferencia entre una y otra manera de ver el 
infinito imaginemos un escriba que se ha propuesto la tarea de ano­
tar, uno por uno, todos los números naturales ( que son lo.s números 
que se obtienen a partir del O, sumando 1 cada vez; es decir, los nú-
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meros O, 1, 2, 3, 4, ... ). El escriba comienza a anotar y después de un 
rato llega al número cien, más tarde al mil y más adelante al diez mil. 

Observemos que el trabajo que el escriba se ha impuesto 
nunca terminará porque, por ejemplo, cuando llegue al número 
cien mil, deberá seguir con el cien mil uno, cuando llegue al millón, 
deberá seguir con el número un millón uno, y así sucesivamente. 
Nunca llegará al último número natural, simplemente porque tal 
último número natural no existe; siempre habrá un número más 
por escribir, y otro, y otro. 

«Protesto contra el uso de magnitudes infinitas como algo 
completo, lo que en matemáticas nunca se permite.» 

- CARL FRIEDRICII GAUSS, EN UNA CARTA ESCRITA EN 1831. 

En algún momento el escriba se da cuenta de que no le al­
canzará la vida para completar la tarea, y entonces entrena a un 
discípulo para que, llegado el momento, continúe con el trabajo 
de anotar los números. Este segundo escriba, a su vez, entrenará 
a su propio discípulo, y así sucesivamente por tiempo indefinido. 

¿Es infinita la colección de todos los números anotados por 
estos escribas? La respuesta es que sí, es infinita, pero solo en un 
sentido potencial. La colección de los números anotados no es una 
colección estática, sino que está en constante crecimiento, un cre­
cimiento sostenido que no se detendrá jamás. Fijado un instante 
cualquiera en el tiempo, no importa lo lejano en el futuro que esté, 
la colección de todos los números escritos hasta ese preciso mo­
mento será finita, pero seguirá siempre creciendo sin limitaciones. 

Hablamos entonces de un infinito en potencia, o potencial, 
cuando pensamos en una colección que es siempre finita, pero 
que puede ser aumentada indefinidamente sin restricciones. La 
infinitud está pensada en este caso como una propiedad negativa, 
asociada a la imposibilidad de completar una tarea. 

Pero pensemos ahora en la colección formada por todos los 
números naturales, absolutamente todos sin excepción (sin im­
portar si no han sido escritos). Se trata obviamente de una co­
lección que es también infinita, pero en este caso se trata de un 
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infinito estático, completo. En esta nueva colección están todos 
los números, no queda ya nada por agregar. Hablamos en este 
caso de un infinito en acto, o infinito actual. 

Podemos extender la misma idea a magnitudes, como pesos, 
volúmenes o longitudes. Si dibujamos, por ejemplo, un segmento 
(un trazo recto que conecta un punto A con un punto B), su lon­
gitud será obviamente finita. Pero la geometría nos dice que po­
demos prolongar esa línea tanto como queramos, y si admitimos 
que esa prolongación puede seguir indefinidamente, tendremos 
entonces un trazo cuya longitud es infinita en potencia. Es decir, 
es finita en todo momento, pero puede crecer de modo indefinido 
(figura 1). 

Sin embargo, las rectas que considera la geometría moderna 
tienen una longitud que se supone infinita en acto, estas rectas 
no tienen extremos y se extienden indefinidamente sin principio 
ni fin. Notemos que, de hecho, una recta es imposible de dibujar. 

Es interesante observar que, hasta donde se sabe, todas las 
colecciones o las magnitudes relacionadas con fenómenos na­
turales nunca son infinitas en acto; por el contrario, la mayoría 
son finitas y solo unas pocas son, quizá, infinitas pero solamente 

en potencia. Por ejemplo, según las 

~B 

A 

FIG. l 

teorías físicas hoy en día vigentes, 
la materia no es infinitamente di­
visible, sino que cada átomo está 
formado por una cantidad finita de 
partículas elementales indivisibles. 
Es posible, incluso, que ni el espa­
cio ni el tiempo sean infinitamente 
divisibles. 
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Por otra parte, los cosmólogos 
afirman que es muy probable que 
el universo en su cortjunto tenga 
un volumen y un diámetro que son 
solo potencialmente infinitos ( el 
diámetro del universo es la mayor 
distancia que puede medirse entre 
dos puntos del mismo). 



Si resultara que es cierto que el universo continuará expan­
diéndose de modo indefinido, entonces su edad medida en se­
gundos tan1bién sería solo potencialmente infinita. Para trazar un 
paralelismo con el ejemplo de los escribas, podernos imaginar a 
estas personas anotando un número por cada segundo transcu­
rrido desde el Big Bang; la colección de todos los segundos regis­
trados estaría en perpetuo crecimiento, pero siempre sería finita. 

«El número de granos de arena que contendría una esfera 
del tamaño de nuestro cosmos es menor que 1 000 unidades del 
séptimo orden [es decir, un 1 seguido de 51 ceros, una cantidad 

enorme, pero finita].» 

- ARQUÍMEDES, EN EL ARENAR/O. 

En resumen, tiempo, materia y espacio serían todos finitos, 
o a lo sumo infinitos en potencia. No debe resultamos extraño, 
entonces, que en el siglo rv a.C. Aristóteles afirmara que el infinito 
en acto simplemente no existe. 

EL INFINITO DE ARISTÓTELES 

Aristóteles fue el primero en estudiar la distinción que hay entre 
«ser en potencia» y «ser en acto». Por ejemplo, podernos decir 
que un niño es un adulto en potencia o que un bloque de rnám10l 
es potencialmente una escultura. Cuando el niño crece se trans­
forma, en acto, en un adulto; el escultor, por otra parte, convierte 
al bloque de mármol en una escultura que existe en acto. «Se da 
igualmente el nombre de sabio en potencia hasta al que no estu­
dia», dice Aristóteles en el Libro IX de su Metafísica, quizá con un 
toque de humor. Pero en relación al infinito, en ese mismo texto 
establfce que: 

La potencia respecto al infinito no es de una naturaleza tal que el 
acto pueda jamás realizarse. 
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Es decir, el infinito siempre es en potencia, nunca en acto. A 
lo largo de más de dos mil años, concretamente hasta mediados 
del siglo XIX, este rechazo aristotélico al infinito en acto fue soste­
nido por casi toda la ortodoxia del pensamiento occidental, tanto 
filosófico corno matemático. Vale la pena entonces detenerse en el 
análisis de al menos dos de los argumentos que expuso Aristóteles 
para justificar su afirmación. 

«La expresión "existencia potencial" no se debe tomar en el 
sentido en que se dice, por ejemplo, "esto es potencialmente una 
estatua, y después será una estatua", pues no hay un infinito tal 
que después sea en acto.» 
- ARISTÓTELES, EN FfSICA, HABLANDO DEL INFINITO. 

26 

En primer lugar, en el Libro III de su Física, Aristóteles dice 
que es inadmisible aceptar la existencia del infinito en acto porque 
no hay en el universo un cuerpo cuyo volumen sea infinito en acto, 
o un intervalo de tiempo cuya longitud sea actualmente infinita. En 
una palabra, porque no existen magnitudes que sean infinitas en 
acto. Aristóteles justifica esta inexistencia mediante argumentos 
filosóficos. Sin embargo, no necesitarnos explayamos aquí en ellos 
ya que, corno dijimos más arriba, la física moderna le da la razón. 
Por ejemplo, si el universo tiene un volumen que es solamente in­
finito en potencia, entonces no puede contener en su interior un 
cuerpo cuyo volumen sea infinito en acto. 

Dado que no existen magnitudes infinitas, tampoco tiene sen­
tido hablar de «números infinitos en acto» o de «cantidades infi­
nitas en acto», pues esas cantidades infinitas no medirían nada en 
absoluto, carecerían de todo sentido. 

Comparemos estos argumentos aristotélicos ( que, corno diji­
mos, dominaron el pensamiento occidental durante milenios) con 
la carta que citarnos al comienzo del capítulo, en la que Cantor le 
decía a Dedekind que había podido alcanzar las «aclaraciones más 
notables e inesperadas» en la teoría de los números infinitos. Esta 
contradicción con las ideas de Aristóteles nos da un primer atisbo 
de por qué la teoría de Cantor fue tan revolucionaria y resistida. 
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El segundo argumento que va-
FIG.2 

•-Circulo 

+-- Un «punto gráfico» es un circulo 
pequeño. 

mos a comentar, que Aristóteles ex­
pone en el Libro VIII de su Física, 
afirma que no es cierto que un seg­
mento esté formado por una canti- +-- Un «punto matemático» en realidad , 

es invisible. 
1 dad infinita de puntos. Aristóteles 

plantea una justificación filosófica ..__ _________ J 
para esta afirmación, pero podemos 
traducirla a un razonamiento matemático. 

Aclaremos que cuando decimos «punto» nos referimos a un 
«punto matemático», es decir, un objeto que carece de longitud, 
anchura y altura. El «punto ortográfico» que el lector puede ver 
al final de una oración en una página impresa no es un punto ma­
temático, en realidad es un círculo muy pequeño o, más exacta­
mente, un cilindro de tinta de base muy reducida, pero no nula, y 
de altura pequeñísima, pero tampoco nula (figura 2). 

Entonces, un punto matemático tiene, por definición, una 
longitud que es exactamente igual a cero. Si reunimos muchos 
puntos, la longitud total que obtendremos será O + O + O + O + ... 
Pero, no importa cuántas veces sumemos cero, ya sea una can­
tidad finita o infinita de veces (aun si esto último fuera posible), 
la longitud total que obtendremos seguirá siendo siempre cero. 
En conclusión, si un segmento estuviera formado por puntos, 
su longitud total sería cero. Pero sabemos que las longitudes de 
los segmentos no son iguales a cero, y por lo tanto no pueden 
estar formados por puntos. Volveremos a esta paradoja en el 
capítulo 3; allí veremos qué es lo que tiene que decir al respecto 
la teoría de Cantor. 

Como consecuencia de este razonamiento, sería imposible 
dividir un segmento en una cantidad infinita de partes. Tomemos, 
por ejemplo, un segmento de 10 cm de longitud. Si lo dividimos en 
10 partes iguales, cada una de ellas medirá 1 cm. Si lo dividimos 
en 100 partes iguales, cada una medirá 0,1 cm. Si lo dividimos en 
1000 partes iguales, cada una medirá 0,01 cm de longitud. Pero si 
lo dividiéramos en una cantidad infinita de partes iguales, cada 
una de ellas mediría O cm; es decir, el segmento estaría formado 
por partes de longitud exactamente cero. Pero ya vimos que esto 
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NÚMEROS PERFECTOS 

Una conjetura es una afirmación matemát ica de la que todavía no se sabe 
si es verdadera o falsa; muchas conjeturas se relacionan directamente con 
el infinito, un ejemplo es la conjetura de los números perfectos. Un número 
perfecto es un número que es igual a la suma de sus divisores (incluido el 1, 
pero sin inclu ir al número en sí). Por ejemplo, el 6 es perfecto, ya que sus di­
visores son 1, 2 y 3, y 6 == 1 + 2 + 3; otro número perfecto es 28 == 1 + 2 + 4 + 7 + 14. 
La conjetura, aun no demostrada ni refutada, dice que existen en realidad 
infinitos números perfectos. 

último es imposible; por lo tanto, no se podría dividir un segmento 
en infinitas partes. 

Aristóteles dice que este último argumento niega el infinito 
por división (no se puede dividir un objeto en infinitas partes), 
mientras que el argumento de las magnitudes infinitas que vimos 
antes niega el infinito por adición (no hay cantidades infinita­
mente grandes). En todos los casos, Aristóteles concluye que el 
infinito en acto no existe. 

EL INFINITO DE GALILEO 

A partir de la Edad Media, el rechazo aristotélico al infinito en 
acto adquirió además una dimensión religiosa. Por ejemplo, en el 
siglo v, san Agustín en La ciudad de Dios, su obra más famosa, 
argumenta que la divinidad, como Ser omnisciente, conoce la to­
talidad de los números naturales y que afirmar lo contrario es 
«hundirse en un remolino de impiedad». Y agrega que «la infini­
tud del número no es incomprensible para aquel cuya inteligencia 
no tiene límite». Es decir, el infinito en acto existe, pero su cono­
cimiento está reservado a la inteligencia ilimitada de Dios; luego, 
pretender que la mente humana pueda comprender el infinito 
sería equipararla con la mente divina y, por lo tanto, una herejía. 
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Georg Cantor, que era un hombre muy religioso, tenía bien 
presente esta cuestión y, como veremos más adelante, le pesaba 
en su ánimo al momento de desarrollar su temia matemática del 
infinito en acto. 

A vaneemos algunos años y consideremos ahora los Diálogos 
acerca de dos nuevas ciencias (1638), de Galileo Galilei (1564-
1642). Como su nombre indica, la obra está escrita en forma de 
diálogo; los que conversan en ella son tres personajes, Salviati, que 
expresa las ideas del propio Galileo, Sagredo, un hombre culto de 
la época, y Simplicio, que expone las ideas del saber tradicional, 
especialmente las basadas en la obra de Aristóteles. 

Las dos nuevas ciencias a las que se refiere el título son la 
estática y la dinánúca, y el libro en su conjunto es una crítica a las 
leyes aristotélicas del movimiento. Pero, aunque Galileo se dedica 
a demoler buena parte de la física de Aristóteles, mantiene sin 
embargo la suspicacia aristotélica hacia el infinito en acto. Vea­
mos sus argumentos, que nos interesan especialmente porque de 
alguna manera prefiguran ideas posteriores de Cantor. 

Para comenzar, in1aginemos un enorme salón de baile en el 
que hay una cantidad grande, aunque finita, de hombres y mujeres 
(figura 3). E imaginemos también que queremos saber si en ese 
salón hay más hombres que mujeres, o si hay más mujeres que 
hombres, o si hay la misma cantidad de ambos. 

FIG. 3 
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FIG. 4 
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Una manera de resolver la cuestión es contar cuántas mu­

jeres hay en el salón, después contar los hombres y finalmente 
comparar ambas cantidades. Dado que las cantidades involu­
cradas son finitas, esto puede hacerse sin problemas. Pero hay 
una manera más ingeniosa de obtener la respuesta, que consiste 
simplemente en poner música e invitar a todos los presentes a 
bailar en parejas (figura 4). Para que nuestro razonamiento sea 
válido, cada pareja de baile deberá estar formada por un hombre 
y una mujer. 

Si cada hombre logra formar pareja con una mujer, y nin­
guna mujer ni ningún hombre quedan solos, entonces podremos 
afirmar que en el salón hay la misma cantidad de hombres que 
de mujeres. Por el contrario, si todas las mujeres están bailando 
y quedan, no obstante, hombres solos, entonces podremos decir 
que hay más hombres que mujeres. Para finalizar, si todos los 
hombres están bailando, pero quedan mujeres solas, entonces 
podremos afirmar que hay mayor cantidad de mujeres que de 
hombres. 

En resumen, si tenemos dos colecciones finitas y podemos 
emparejar cada miembro de una colección con exactamente un 
miembro de la otra, de modo que no sobre ninguno, entonces 
podemos asegurar que las dos colecciones tienen exactamente 
la misma cantidad de miembros. ¿Podemos extender esta idea a 
colecciones infinitas? 
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«EL LIBRO DE ARENA» 

El libro de arena es un cuento del escritor 
argentino Jorge Luis Borges, y est á in­
c luido en el volumen del mismo nombre 
publ icado en 1975. En el cuento, el narra­
dor - el propio Borges- adquiere de un 
vendedor ambulante un libro que, según 
descubre, tiene infini tas pág inas. El lib ro 
no tiene comienzo ni fin y cuando se ha 
v isto una página es imposible volver a 
encontrarla. Asustado por este objeto 
que é l cons idera monstruoso, Borges 
p iensa en quemarlo, pero teme que la 
combustión de un libro infinito sea «pa­
rejamente infinita» y sofoque de humo a 
todo el p laneta, por lo que f inalmente lo 
esconde al azar en medio de todos los 
libros de la Biblioteca Nacional de Bue­
nos Aires. Jorge Luis Borges en 1976. 

Galileo, a través de las palabras de Salviati, considera dos 
colecciones en particular: por un lado, la que está formada por 
los números naturales, O, 1, 2, 3, 4, 5, . .. , y por otro, la colección 
de los números cuadrados, que son aquellos que se obtienen mul­
tiplicando cada número natural por sí mismo, O, 1, 4, 9, 16, 25, . .. 
Es evidente, dice Galileo, que los números cuadrados y los no 
cuadrados, todos reunidos, son más que los números cuadrados 
por sí solos. 

En consecuencia, parece obvio que en la primera colección 
hay más números que en la segunda. En realidad, Galileo co­
mienza a contar desde el 1 y no desde el O como hicimos nosotros, 
pero eso no cambia la esencia del razonamiento. 

Pero, por otra parte, sigue diciendo Galileo, es posible empa­
rejar perfectamente cada número de la primera colección con un 
número de la segunda. Para lograrlo, basta asociar cada número 
natural con su cuadrado: 
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Naturales 

o 

2 

3 

4 

5 

6 

Cuadrados 

o 

4 

9 

16 

25 

36 

Este emparejamiento nos diría que hay la misma cantidad 
de cuadrados que de números naturales, contradiciendo lo que 
dijimos antes en el sentido de que hay más naturales que cua­
drados. Entonces, ¿hay más naturales que cuadrados o hay la 
misma cantidad? ¿ Cómo resolvemos esta paradoja? La respuesta 
de Galileo es: 

Los atributos de «igual», «mayor» y «menor» no tienen lugar en los 
infinitos, sino solo en las cantidades limitadas [ o sea, finitas] . 

En otras palabras, su conclusión es que es absurdo comparar 
colecciones infinitas y que es inaceptable decir de un infinito que 
es igual, menor o mayor que otro infinito. No obstante, unos 250 
años más tarde, Georg Cantor se atrevió a medir y a comparar 
colecciones infinitas, y a sacar de esta comparación algunas con­
clusiones que seguramente tanto Galileo como Aristóteles habrían 
considerado inadmisibles. Hablaremos de este tema en el próximo 
capítulo. 
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CAPÍTULO 2 

Cardinales 

Aristóteles, Galileo y otros muchos pensadores 
anteriores al siglo XIX estaban de acuerdo en afirmar 

categóricamente que no tiene ningún sentido hablar de 
la cantidad de miembros de una colección infinita. En la 
década de 1870, esas ideas eran todavía tan dominantes 
que la más elemental prudencia habría indicado que no 

convenía cuestionarlas seriamente, y mucho menos 
en un artículo científico. Sin embargo, en 187 4 Cantor 
introdujo por primera vez el concepto de «cantidad 

de elementos de un conjunto infinito», 
y a ese concepto le dio el nombre 

de «cardinal de un conjunto». 





Después de haber obtenido su doctorado, y mientras aún residía 
en Berlín, Cantor publicó tres artículos en la Zeitschrift für Ma­
thematik und Physik ( «Revista de matemáticas y física»), uno de 
ellos en el año 1868 y los otros dos en 1869. El primero es un tra­
bajo sobre un tema muy clásico de aritmética, resuelto mediante 
métodos que ya en aquella época no eran novedosos, pero en los 
otros dos artículos Cantor comenzaba a tomar el camino que ter­
minaría por llevarlo a la teoría del infinito. 

Esos dos trabajos de 1869 se dedican a temas vinculados con 
el cálculo. · El primero de ellos llevaba por título «Über die ein­
fachen Zahlensysteme» [Sobre los sistemas numéricos sencillos] 
y estudiaba una propiedad de los números irracionales (habla­
remos de los números irracionales más adelante en este mismo 
capítulo). El segundo artículo, «Zwei Satze über eine gewisse Zer­
legung der Zahlen in unendliche Produkte» [Dos teoremas sobre 
la descomposición de ciertos números en productos infinitos], 
trataba, como su título indica, de la posibilidad de pensar en de­
terminados números como el resultado de una cantidad infinita 
de multiplicaciones. 

Los «productos infinitos» del título constituyen un tema 
que cae de lleno dentro del cálculo, aunque conviene aclarar que 
nos estamos refiriendo en realidad a un infinito en potencia. Por 
ejemplo, si multiplicamos 0,5 por sí mismo «infinitas veces» el 
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resultado es O, pero esta afirmación debe entenderse en el sentido 
de que cuantas más veces multipliquemos 0,5 por sí mismo, más 
próximos estaremos del número O. En efecto, si multiplicamos 
0,5 dos veces, el resultado es 0,25; multiplicado tres veces nos 
da 0,125; cuatro veces da 0,0625, y así sucesivamente, cada vez 
más cerca de O. Se trata, como se ve, de una idea relacionada con 
aproximaciones sucesivas, y no con el producto de infinitos 0,5 
en acto. 

«Hoy en día las demostraciones de Cantor son universalmente 
reconocidas entre las más brillantes y bellas de la historia 
de las matemáticas.» 
- MARTIN GARDNER EN CARNAVAL MATEMÁTICO (1975). 
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Mientras publicaba estos artículos, Cantor se ganaba la vida 
dando clases de matemáticas en una escuela para señoritas, 
a la vez que trabajaba en su tesis de habilitación -Habilita­
tionsschrift en alemán-, un grado posdoctoral que era requisito 
indispensable para ejercer como profesor universitario. La Habili­
tationsschrijt de Cantor, escrita en latín, se tituló «De transforma­
tione formarum ternariarum quadraticorum» [La transformación 
de las formas cuadráticas ternarias]. 

El mayor deseo de Cantor era trabajar en la Universidad de 
Berlín o en la de Gotinga, pero debió conformarse con un puesto 
en la Universidad de Halle, donde comenzó a trabajar en 1869; 
Halle era una institución con un pasado distinguido, pero que en 
el siglo XIX era considerada de segundo orden. Durante el resto de 
su carrera, Cantor no abandonó los intentos de pasar a Berlín o a 
Gotinga, pero todos ellos fracasaron y ello fue para él un motivo 
de frustración constante y una de las causas de las profundas de­
presiones que sufriría en años posteriores. 

En Halle, bajo la dirección de Heinrich Eduard Reine, Can­
tor orientó definitivamente sus investigaciones hacia el cálculo, y 
entre 1870 y 1872 publicó cinco artículos, de los que hablaremos 
en detalle en el próximo capítulo, y en los que estudiaba cierto 
tipo de sumas infinitas, aunque estas sumas, como los productos 
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infinitos que se han tratado con anterioridad, deben entenderse en 
potencia, nunca en acto. 

Sin embargo, aunque el infinito en acto no se mencionaba en 
ellos, fue como consecuencia de esos primeros trabajos en Halle 
que comenzó a tomar forma en la mente de Cantor la idea de tra­
bajar con el infinito actual. La primera aparición de ese concepto 
en sus trabajos científicos, aunque de manera muy disimulada, 
ocurrió en el artículo publicado en 1874 del que hablamos sucin­
tamente en el capítulo anterior y al que volveremos en breve. 

Además de la publicación ya mencionada, que marcó un quie­
bro en su carrera, el año de 187 4 trajo un acontecimiento muy 
importante para la vida personal de Cantor; el 9 de agosto se casó 
con Vally Guttmann, quien, como el propio Georg, era amante del 
arte y, además, había estudiado piano y canto. Pasaron su luna de 
miel en Interlaken, una ciudad turística de Suiza, y vale la pena 
mencionar, para comprender mejor el carácter de nuestro prota­
gonista, que Cantor dedicó buena parte de ese tiempo a sostener 
discusiones matemáticas con Dedekind. 

Vally Guttmann y Georg Cantor tuvieron seis hijos, cuatro 
niñas y dos niños, y el espíritu alegre de Vally, un complemento 
importante para el carácter serio y adusto de Cantor, marcó el 
ambiente de su hogar, en el que, tal como era usual en aquella 
época en la casa de un profesor universitario alemán, se llevaba 
una muy activa vida social. 

EL INFINITO DE CANTOR 

Pasemos ahora a analizar el artículo que publicó Cantor en 187 4 
en el J ournal de Crelle y que llevaba por título « Über eine Eigens­
chaft des Inbegriffes aller reellen algebraischen Zahlen» [Sobre 
una propiedad característica de la totalidad de los números reales 
algebraicos]. Este trabajo contenía algunas de las ideas básicas 
de la que más tarde llegaría a ser su teoría del infinito, aunque, 
como ya mencionamos en el capítulo anterior, Karl Weierstrass 
le aconsejó que las disimulara y que, sobre todo, no pusiera de 
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manifiesto las consecuencias revolucionarias que se derivaban 
de ellas. 

¿De qué hablaba exactamente ese artículo de Cantor? ¿Qué 
ideas contenía? ¿Por qué sus consecuencias eran tan provocati­
vas? Además, al ver el título del trabajo podría surgimos también 
otra pregunta: ¿qué son los números reales algebraicos? En las 
líneas que siguen nos dedicaremos a responder todas estas cues­
tiones. Mostraremos primero las ideas implícitas en ese artículo 
de 1874, las mismas que Weierstrass le aconsejó a Cantor que 
ocultara, veremos cómo se las arregló Cantor para que quedaran 
disimuladas en el texto y finalmente explicaremos sus revolucio­
narias consecuencias. 

Comencemos nuestro análisis por una de las primeras defini­
ciones de la teoría de Cantor. 

Esta definición dice que dos colecciones de objetos son coor­
dinables si es posible emparejar a cada miembro de una de ellas 
exactamente con un miembro de la otra, sin que sobre nada por 
ninguna de ambas partes; tal como vin10s en el capítulo anterior 
que hizo Galileo con la colección de los números naturales y la 
de los números cuadrados (véase el esquema, a modo de recor­
datorio): 

Naturales 

o 

Cuadrados 

o 

4 

9 

16 

2 

3 

4 

5 

6 

---- -- 25 
+-- - ---'--+ 36 

En lenguaje matemático, a esta operación de emparejamiento 
se la llama «establecer una correspondencia uno-a-uno» entre los 
miembros de las dos colecciones. 
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Observemos que si las dos colecciones son finitas, entonces, 
como ya se planteó en el capítulo 1 en el ejemplo de las parejas de 
baile, decir que dos colecciones son coordinables equivale a decir 
que tienen la misma cantidad de miembros. 

La teoría de Cantor se basa en la idea de que, contrariamente 
a lo que pensaba Galileo, es posible extrapolar este concepto a 
colecciones infinitas en acto sin que haya en ello ninguna contra­
dicción. 

«Los problemas del infinito han desafiado la mente del hombre, 
y encendido su imaginación como ningún otro problema del 

pensamiento humano.» 
- EDWARD JíASNER Y JAMES NEWMAN EN MATEMÁTICAS E IAfAGINACIÓN (1940). 

¿Podemos decir entonces que si dos colecciones son coordi­
nables, entonces tienen la misma cantidad de miembros? Esa es 
exactamente la intención de Cantor. 

Sin embargo, hablar de la «cantidad de miembros» de una 
colección que es infinita en acto se presta a confusión porque, 
como diría Aristóteles, no hay número que exprese esa canti­
dad, o al menos no lo había a mediados de la década de 1870 
(más adelante, como ya veremos, sí lo hubo; observemos ade­
más que el conocido símbolo oo, introducido por el matemático 
inglés John Wallis en 1655, representa un infinito en potencia, 
no en acto). De modo que Cantor se vio obligado a crear-el con­
cepto de «cardinal», que viene a representar la idea de cantidad 
de miembros de una colección finita o infinita en acto, pero sin 
hablar explícitamente de cantidades. En realidad, Cantor usó la 
palabra «potencia», pero los matemáticos posteriores la cambia­
ron por «cardinal», que es el término que se usa actualmente, y 
usaremos también nosotros, para representar el concepto defi­
nido por Cantor. 

El cardinal de una colección es, para Cantor, la característica 
de ella que subsiste si se hace abstracción de la naturaleza de los 
miembros de la colección así como de las relaciones que hubiera 
entre ellos. 
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Por ejemplo, si hablamos de la colección formada por las le­
tras de la palabra «cielo», su cardinal, según la definición de Can­
tor, podría escribirse co~o *****, los símbolos representan a los 
miembros de la colección haciendo abstracción de su naturaleza. 
El cardinal de la colección formada por los números 2, 3, 5, 7 y 11 
sería también*****. 

Ambas colecciones tienen el mismo cardinal precisamente 
porque tienen la misma cantidad de miembros ( cinco miembros, 
obviamente). De hecho, ***** puede pensarse perfectamente 
como una forma, quizá primitiva pero válida, de designar al nú­
mero cinco. 

«La intuición nos dice que debería haber el doble de números 
naturales que de pares, pero la correspondencia uno-a-uno nos 
dice que hay los mismos números en cada colección.» 
- BRYAN H. BUNCH EN MATEMÁTICA INSÓLITA, PARADOJAS Y PARALOGJS/lfOS (1982). 
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El cardinal de la colección de los números naturales sería: 
*********** ... (los símbolos siguen infinitamente), que es también 
el cardinal de la colección de los números cuadrados. Podemos 
decir entonces, siguiendo a Cantor, que si dos colecciones son 
coordinables, entonces tienen el mismo cardinal. 

¿Cómo supera la teoría de Cantor la paradoja de Galileo tra­
tada en el capítulo 1? Recordemos que la paradoja de Galileo dice 
que, por una parte, es evidente que hay más números naturales que 
cuadrados porque los naturales abarcan a los cuadrados y a los 
no cuadrados todos reunidos; pero, por otro lado, la corresponden­
cia uno-a-uno entre las dos colecciones nos diría que hay la misma 
cantidad de ambos números. 

La respuesta de Cantor es que la primera mitad de la afirma­
ción de Galileo es falsa. Sí es cierto que la colección de los núme­
ros cuadrados es solo una parte de la colección de los números 
naturales, pero es incorrecto deducir de este hecho que hay más 
naturales que cuadrados. 

Cuando se trata de colecciones infinitas, el todo no es ne­
cesariamente mayor que la parte; es decir, para las colecciones 
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infinitas en acto no valen siempre las mismas reglas que para las 
colecciones finitas . Los cuadrados están incluidos entre los natu­
rales, pero al mismo tiempo ambas colecciones tienen el mismo 
cardinal y ello no implica paradoja alguna. 

Basado en estas reflexiones, algunos años más tarde, el mate­
mático alemán Richard Dedekind (1831-1916) propuso una defini­
ción alternativa del infinito en acto. En lugar de tomar el concepto 
negativo según el cual una colección es infinita cuando no es fi­
nita, Dedekind propuso definir la idea de colección infinita en acto 
mediante una propiedad positiva. 

Para Dedekind, una colección infinita en acto debía definirse 
como aquella que es coordinable con alguna parte de sí misma 
(propiedad que, en efecto, tienen todas las colecciones infinitas 
en acto y solamente ellas). La idea de Dedekind fue aceptada y su 
definición es la que se usa en la actualidad en los trabajos sobre 
el infinito matemático. 

En capítulos posteriores veremos cómo la teoría de Cantor 
responde a las objeciones de Aristóteles tratadas en el capítulo 
anterior y cómo Cantor, el ser humano, se enfrentó a la cuestión 
religiosa planteada por san Agustín. 

ENTEROS Y RACIONALES 

Sigamos avanzando en el estudio de las ideas que estaban implíci­
tas en el artículo de Cantor de 1874. Ya sabemos que la colección 
formada por todos los números naturales es coordinable con la 
colección de los números cuadrados. Pasemos ahora a considerar 
los enteros. 

La colección de los números enteros incluye a los naturales y 
también a los números negativos -1, -2, -3, -4, ... Sucede que esta 
colección, como la de los cuadrados, también es coordinable con 
los naturales. Para probarlo, bastaría con mostrar una correspon­
dencia uno-a-uno entre ambas colecciones. 

Supongamos que emparejáramos al O consigo mismo, al 1 con 
el -1, al 2 con el - 2, al 3 con el - 3, y así sucesivamente: 
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Naturales Enteros 

o o 
-1 

2 -2 

3 -3 

4 -4 

5 -5 

6 -6 

···•· ···· ···· 

Este intento en realidad sería fallido porque en la columna 
de la derecha no aparece la colección completa de los números 
enteros, en otras palabras, hay enteros que no tienen pareja. Pero 
que haya una solución errónea no significa que no exista un em­
parejamiento correcto. 

En efecto, si asociarnos a los números naturales O, 1, 2, 3, 4, 
5, 6, . .. respectivamente con los enteros O, 1, -1, 2, -2, 3, -3, .. . en­
tonces sí habremos logrado una correspondencia uno-a-uno entre 
los enteros y los naturales: 

Naturales 

o 

2 

3 

4 

5 

Enteros 

o 

- 1 

2 

-2 

3 

El cardinal de los enteros es también *********** .. . 
La siguiente colección que nos interesa estudiar es la que 

está formada por los números racionales. La palabra «raciona­
les» viene, obviamente, de «razón», que en matemáticas es sinó-
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EL HOTEL DE HILBERT 

El matemático alemán David Hilbert (1862-1943) concibió una historia ficticia 
que sirve para ejemplificar una de las consecuencias de la teoría de Cantor, 
conocida como la historia del hotel de Hilbert. Imaginemos, dijo Hilbert, un 
hotel en el que hay infinitas habitaciones designadas respectivamente con los 
números 1, 2, 3, 4, 5, ... y que en cada habitación hay una persona, a quienes, 
para mayor comodidad, identificaremos también con los números 1, 2, 3, 4, 
5, .. . En un momento dado llega al hotel un nuevo cliente, al que llamaremos 
persona O, pero en la recepción le dicen que no podrán alojarlo porque todas 
las habitaciones están ocupadas y además una regla del hotel establece que 
dos personas no pueden ocupar una misma habitación. Parece que la persona 
O tendrá que irse, pero entonces alguien propone la siguiente solución: que 
la persona O ocupe la habitación 1, que la persona 1 pase a la habitación 2, la 
persona 2 pase a la 3, y así sucesivamente. De este modo, la persona O puede 
ingresar en el hotel y nadie se queda sin alojamiento: 

Personas 

o 

2 

3 

4 

5 
1 

............. 

Habitaciones 

2 

3 

4 

5 

6 

Traducida al lenguaje matemático, esta historia demuestra que la colección 
de los números O, 1, 2, 3, 4, ... es coord inable con la colección formada por los 
números 1, 2, 3, 4, 5, ... En realidad, un argumento similar al que se muestra en 
la historia permite probar que cualquier colección infinita a la que se le haya 
agregado un elemento nuevo es coordinable con la colección original. 

nimo de «cociente» o «división», y como este nombre sugiere, los 
números racionales son aquellos que se pueden escribir como el 
cociente de dos números enteros ( a estos cocientes se les llama 
también «fracciones»). 
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Por ejemplo, son racionales los números 

Los enteros son también números racionales ya que, por 
ejemplo: 3/1=3 y 0/1=0 (la expresión 0/0 no representa ningún nú­
mero racional, así como tampoco 1/0, 2/0, 3/0 ... ). 

Podemos comprobar entonces que la colección de números 
racionales incluye a la de los números enteros, que a su vez in­
cluye a la de los naturales. Sin embargo, hay una diferencia funda­
mental entre la colección de los números racionales, por un lado, 
y las colecciones de los naturales y los enteros, por el otro. Para 
entender esta diferencia debemos hablar de la recta numérica. 

La recta numérica es, como su nombre indica, una recta 
( que en este caso puede pensarse ilidiferentemente como infinita 
en potencia o en acto) en la que se representan los números. 
Para ello comenzamos eligiendo un punto cualquiera al que se le 
asigna el número O, y otro punto cualquiera al que se le asigna el 
número 1: 

o 

A cada número le corresponde en realidad un punto matemá­
tico de longitud cero, pero, para hacerlo visible, aquí lo represen­
tamos mediante un pequeño círculo. 

Las elecciones de los puntos correspondientes al O y al 1 son 
arbitrarias, pero una vez que estas dos elecciones han sido he­
chas, la ubicación de cada uno de los restantes números queda 
totalmente fijada. Por ejemplo, las posiciones de los demás núme­
ros enteros quedan determinadas por el hecho de que la distancia 
entre el O y el 1 debe ser la misma que la distancia entre el 1 y el 2, 
y la misma que entre el 2 y el 3, y así sucesivamente; y de manera 
similar para los negativos: 

-2 -1 o 2 
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También queda determinada la posición de cada número racio­
nal. Por ejemplo, si dividimos al segmento entre O y 1 en seis partes 
iguales, a la primera marca después del O le corresponde el número 
1/6, a la segunda marca le corresponde el 2/6 (nótese que 2/6 = 1/3), 
a la tercera, el 3/6 ( que es igual a 1/2), y así sucesivamente: 

o 1 '1 
1- 1 ' 2 5 

6 1 3 2 ' '· 3 6 
f ' 1 ' 

' 1 ' 1 ' ' 
1 3 5 11 1 
3 8 12 24 2 

¿Hay algún número racional entre 1/3 y 1/2? La respuesta es 
sí, porque está, por ejemplo, el promedio de ambos, que es 5/12. 
¿ Y entre 1/3 y 5/12? Entre ambos está su respectivo promedio, que 
es 3/8. Así, sin importar lo cerca que estén uno del otro, entre dos 
números racionales siempre hay otros números racionales. 

Una consecuencia de este hecho -y esta es la diferencia entre 
racionales y enteros referida anteriormente-- es que cualquier seg­
mento de la recta numérica, no importa lo pequeño que sea, siempre 
contiene infinitos números racionales. Obviamente, esta propiedad 
no vale para los naturales ni para los enteros. Podríamos decir en­
tonces que, de alguna manera, los racionales tienen en la recta nu­
mérica una mayor presencia que los naturales y, a pesar de ello, 
existe una correspondencia uno-a-uno entre las dos colecciones. 

Para explicar cómo se logra esta correspondencia ( que fue 
hallada por primera vez por Cantor), comencemos por colocar en 
una línea a las fracciones que están formadas por dos números na­
turales. Escribimos primero la única fracción en la que la suma de 
sus dos componentes es 2, que es la fracción 1/1. Seguimos con las 
dos fracciones en las cuales la suma es 3, que son 1/2 y 2/1. Luego, 
las fracciones en las que la suma es 4, que son 1/3 y 3/1, omitimos 
la fracción 2/2 porque 2/2 = 1/1, que ya había sido escrita antes. 
Continuarnos con las fracciones donde la suma es 5, luego con las 
que suman 6 y así sucesivamente, omitiendo siempre las fraccio-
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nes que sean iguales a alguna que haya sido anotada previamente. 
La línea resultante comienza de la siguiente manern,: 

1 1 2 1 3 1 2 3 4 1 
1' 2' 1' 3' 1' 4' 3' 2' 1' 5'··· 

Prolongando la línea suficientemente, cualquier racional po­
sitivo acabará por aparecer en ella ( estamos pensando en la línea 
como infinita en potencia). Para incluir a los demás racionales, 
ponemos al O delante e intercalamos positivos con negativos: 

1 o, -, 
1 

1 1 1 2 2 1 1 

Una vez hecho esto, para completar la correspondencia, al 
primer número de la línea lo emparejamos con el O, al segundo 
con el 1, al tercero con el 2, y así sucesivamente: 

Naturales 

o 

2 

3 

4 

5 

6 

7 

8 

Racionales 

o 
1 
T 
1 
1 

1 
2 
1 

-2 
2 
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De este modo, queda probado que hay una correspondencia 
uno-a-uno entre la colección de los números naturales y la colec­
ción de los números racionales. 

Ahora bien, siguiendo el consejo de Weierstrass, en su artí­
culo de 187 4 Cantor casi no habló de correspondencias uno-a-uno 
(solo mencionó el tema muy de pasada) y ni siquiera mencionó la 
idea de los cardinales. ¿ Cómo pudo entonces expresar que una 
cierta colección de números es coordinable con la colección de 
los naturales? Para hablar de este concepto, Cantor se basó en 
una idea que ocupó siempre un lugar muy importante en su pen­
samiento y a la que nos dedicaremos muy especialmente en el 
próximo capítulo, nos referimos a la noción de sucesión. 

«Habría incluido de buen grado el comentario sobre la 
distinción esencial de las colecciones, pero lo omití 
siguiendo el consejo del señor Weierstrass.» 
- GEORG CANTOR, EN UNA CARTA A RICHARD DEDEKIND, 27 DE DICIEMBRE DE 1873. 
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En una sucesión hay un primer número, luego un segundo 
número, y así sucesivamente. Tenemos, por ejemplo, la sucesión 
de los números naturales impares, 1, 3, 5, 7, 9, 11, ... y la suce­
sión de los números primos, 2, 3, 5, 7, 11, . .. Aunque una sucesión 
podría tener solamente una cantidad finita de términos - así es 
como se llan1a a los miembros que la forman- o podría tener 
también términos repetidos, nosotros solo tomaremos en cuenta 
sucesiones que, como las mostradas en los dos ejemplos, tienen 
infinitos términos todos diferentes entre sí. 

Observemos que para hallar la correspondencia uno-a-uno 
entre los naturales y los enteros debimos previan1ente organizar 
a estos últimos en la forma de una sucesión: O, 1, - 1, 2, - 2, 3, - 3, . . . , 
y lo mismo debimos hacer para hallar la correspondencia entre los 
naturales y los racionales: 

1 1 1 1 2 
o, i' -1, 2' - 2, 1) 
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Deducirnos entonces que decir que una colección de números 
es coordinable con los naturales es lo mismo que decir que sus 
miembros pueden organizarse en forma de sucesión. 

Aprovechándose de esta equivalencia, en su artículo de 187 4 
Cantor no habló de la propiedad de ser coordinable con los na­
turales, ni de tener el mismo cardinal, sino que se refirió simple­
mente a la posibilidad, o no, de organizar a los miembros de una 
cierta colección de números en forma de sucesión. 

EL ARGUMENTO DIAGONAL 

Volvamos ahora a la recta numérica y supongamos que ya le 
hemos asignado un punto al número O y otro al número l. Como 
ya se ha dicho, a partir de estas dos asignaciones quedan total­
mente determinadas las posiciones que ocupan en la recta todos 
los demás números racionales. Pero, ¿completan los racionales 
toda la recta numérica? En otras palabras, ¿todos los números 
pueden escribirse como cociente de enteros? 

La respuesta a estas preguntas es no. Una vez ubicados todos 
los números racionales, quedarán todavía puntos de la recta a los 
que no les corresponde ningún número. Suele atribuirse a Pitágo­
ras, en el siglo VI a.c., el descubrimiento de que existen números 
irracionales, es decir, números que no se pueden escribir como co­
ciente de enteros, aunque cabe la posibilidad de que el descubridor 
no fuera el mismo Pitágoras, sino alguno de sus seguidores. Por 
ejemplo, son irracionales los números J2 = 1,4142 ... y n =3,14159 ... 

Los nún1eros reales son aquellos que completan toda la recta, 
es decir, los números reales -que incluyen a los racionales y a los 
irracionales- no dejan ningún punto sin asignación: 

-2 -1,5 -1 O 0,5 1 V2 2 3 7t 

Volveremos a esta definición en el siguiente capítulo, ya que 
ocupa un lugar destacado en el desarrollo del pensamiento de 
Cantor. 
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La pregunta, desde luego, es: ¿será coordinable la colección 
de los números reales con la colección de los números naturales 
(tal como lo eran las colecciones de los enteros y de los raciona­
les)? La respuesta, uno de los descubrimientos fundamentales de 
Cantor, es que no, las dos colecciones no son coordinables, o sea, 
es imposible establecer una correspondencia uno-a-uno entre la 
colección de los reales y la de los naturales. 

Para probarlo, no basta con mostrar un ejemplo fallido de 
correspondencia (ya discutimos este punto cuando hablamos de 
los enteros), sino que hay que ver que cualquier intento de poner 
en correspondencia uno-a-uno a los números naturales con los 
números reales fracasará. Nunca podremos lograr que cada nú­
mero natural quede emparejado exactamente con un número real. 

Para facilitar la explicación, mostraremos el fracaso de un in­
tento específico de poner ambas colecciones en correspondencia 
uno-a-uno, pero quedará claro que la explicación es válida para 
cualquier otro intento, por lo que podremos asegurar que todo 
intento de emparejamiento fallará inevitablemente. Mostremos 
entonces un intento concreto de asignar un número real a cada 
natural y veamos cómo es posible encontrar un número real que 
haya quedado fuera de la asignación ( en el ejemplo que sigue solo 
se muestran los números naturales del O al 4, pero la lista en rea­
lidad sigue indefinidamente): 

Naturales Reales 

o 2,3333333 ... 

11,0000000 ... 

2 0,1 2 O 1 1 O 1 ... 

3 3,1415926 ... 

4 1,1 1 1 1 1 1 1 ... 

No está claro cuál es la regla por la que se han asignado los 
números, pero no es relevante porque el método que mostraremos 
funciona cualquiera que sea la regla de asignación. Centremos la 
atención en las cifras que se encuentran detrás de la coma decimal: 
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Naturales Reales 

o 2, 3333333 ... 

11, 0000000 ... 

2 º· 1 2 O 1 1 O 1 ... 

3 3, 1415926 ... 

4 1, 1 1 1 1 1 1 1 ... 

A su vez, dentro de ese recuadro que hemos dibujado, fijémo­
nos en la diagonal que comienza en el extremo superior izquierdo 
y que va descendiendo hacia la derecha. 

El papel destacado de esta línea de números hace que a esta 
demostración se la conozca bajo el nombre de «argumento dia­
gonal»: 

Naturales Reales 

o 2,3333333 ... 

11, O O O O O OO ... 

2 º· 1201101 ... 

3 3, 1415926 ... 

4 1, 1 1 1 1 1 1 1 ... 

El número que estarnos buscando ( el que queda fuera de la 
asignación) comenzará con O, ... y sus cifras decimales estarán 
determinadas por los números que aparecen en la diagonal. 

Para obtener la primera cifra decimal del número tornarnos la 
. primera cifra de la diagonal y le sumarnos 1 (si fuera un 9, torna­

rnos un O). En nuestro ejemplo, el primer número de la diagonal es 
un 3, de modo que nuestro número empezará con 0,4 ... 

Para obtener la segunda cifra decimal del número sumarnos 1 
al segundo número de la diagonal (si es un 9, tornarnos un O). Para 
la tercera cifra decimal usarnos el tercer número de la diagonal, 
y así sucesivamente. En nuestro ejemplo, el número buscado co­
mienza con 0,41162 ... : 
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Naturales Reales 
1 

lL 
o 2,3333333 ... 

1 
11,0000000 ... 

1 
2 º· 1 2 O 1 1 O 1 ... º· 4 1 1 6 2 ... 

3 3,1415926 ... i l 1 

4 1, 1 1 1 1 

El número que acabamos de calcular no está asignado a nin­
gún natural; se nos ha pasado por alto en el emparejamiento. 
¿Cómo podemos estar seguros de eso? De esta manera: el nú­
mero que calculamos no puede ser el que está asignado al O, por­
que ambos difieren en la primera cifra decimal. Tampoco puede 
ser el que está asignado al 1, porque ambos difieren en la segunda 
cifra decimal. Tampoco puede ser el que está asignado al 2, por­
que ambos difieren en la tercera cifra decimal. Y así sucesiva­
mente. 

Dado que hay un número que escapó a la asignación, enton­
ces nuestro ejemplo no puede constituir una correspondencia 
uno-a-uno entre los naturales y los reales, pero cualquier otro in~ 
tento fracasará por la misma razón; por lo tanto, no existe una 
correspondencia uno-a-uno entre las dos colecciones. 

De hecho, modificando ligeramente el razonamiento anterior, 
es posible demostrar que si tomamos cualquier segmento de la 
recta numérica, no importa lo pequeño que sea (siempre y cuando 
no se reduzca a un solo punto), entonces la colección de los nú­
meros contenidos en él no es coordinable con los naturales. 

La colección de los números reales ( o de los números conte­
nidos en un segmento de la recta) no puede organizarse en una 
sucesión, así es como lo enunció Cantor en 1874. Un detalle que 
cabe mencionar es que la demostración que presentó Cantor en 
esa ocasión no es exactamente la misma que se ha mostrado aquí. 
El argumento diagonal no aparecería publicado hasta 1892, en un 
artículo titulado «Sobre una cuestión elemental de la teoría de 
conjuntos», del que hablaremos más adelante. 
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NÚMEROS ALGEBRAICOS 

En realidad, en su trabajo de 187 4, Cantor no habló de los nú­
meros enteros ni de los racionales, aunque sí demostró que los 
números reales no pueden organizarse en una sucesión. De la otra 
colección de la que Cantor habló en ese artículo es de la formada 
por los números algebraicos, y para introducirlos debemos refe­
rirnos brevemente a un problema antiguo y muy famoso, el de la 
cuadratura del círculo. 

Este problema, planteado por primera vez por los geómetras 
griegos del siglo v a.C., pide, dado un círculo cualquiera y usando 
solamente regla no graduada y compás, hallar un cuadrado que 
tenga exactamente la misma área. 

La regla no graduada mencionada en el enunciado del pro­
blema es solamente un objeto rectilíneo que ayuda a trazar 
segmentos, pero que no tiene marcas que permitan medir ( es bá­
sicamente como una regla escolar moderna, pero completamente 
lisa, sin inscripciones). La restricción según la cual solo se puede 
usar regla no graduada y compás proviene del hecho de que la 
geometría clásica gliega solo admitía en sus construcciones el uso 
de esos dos instrumentos. Esto proviene a su vez de una concep­
ción elitista según la cual el acto de medir estaba reservado a las 
«clases inferiores», como la de los mercaderes o los artesanos, 
mientras que los geómetras y los filósofos, que trataban con figu­
ras e ideas perfectas, no se «rebajaban» a esas actividades «meno-

. res» y usaban instrumentos que trazaban las figuras más «puras» 
(rectas y círculos) sin medirlas. 

Durante siglos hubo muchísin1os intentos de hallar la cuadra­
tura del círculo., pero todos resultaron ser erróneos. Nadie parecía 
capaz de encontrar una solución para el problema, aunque tam­
poco parecía haber un argumento que demostrara que esa solu­
ción no existía. 

Ahora bien, recordemos que sir es el radio del círculo, enton­
ces su área se calcula como 1t •r, de modo que no debe sorpren­
dernos que el número 1t esté relacionado con esta cuestión. En 
efecto, puede demostrarse que el problema de la cuadratura del 
círculo es equivalente a este otro problema geométrico: fijado un 
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segmento cualquiera como unidad de medida, construir, usando 
una regla no graduada y compás, un segmento cuya longitud sea 
n: veces esa medida. Expresado más brevemente, este segundo 
problema pide construir un segmento de longitud n:. 

Que los dos problemas sean equivalentes quiere decir que si 
es posible construir un segmento de longitud n:, entonces es tam­
bién posible lograr la cuadratura del círculo, y viceversa. Por otra 
parte, si alguna de las dos construcciones es imposible, entonces 
también será imposible la otra. 

El primer avance significativo en el problema se dio en el 
siglo XVIII cuando se demostró que para que un segmento pudiera 
ser construido con una regla no graduada y compás, su longitud 
debía ser necesariamente un número algebraico. La definición 
exacta de lo que es un número algebraico es un poco técnica y 
la omitiremos aquí, basta decir que un número es algebraico si es 
solución de cierto tipo especial de ecuación (un tipo de ecuación 
en la que intervienen números enteros). Más aún, no todos los 
números algebraicos pueden ser construidos con regla y compás, 
sino, dentro de ellos, los algebraicos que cumplen una restricción 
específica. 

A los números que no son algebraicos se los llamó «trascen­
dentes», un nombre que a principios del siglo XIX era meramente 
teórico porque, aunque se sabía que todos los números racionales 
son algebraicos y que algunos irracionales, como J2, también son 
algebraicos, no se sabía todavía si existía algún número que fuera 
trascendente. En particular, a principios del siglo XIX se descono­
cía si el número n: era algebraico o trascendente. 

El primer ejemplo conocido de número trascendente fue mos­
trado por el matemático francés Joseph Liouville en 1844. Ese nú­
mero, llamado hoy en día la constante de Liouville, comienza con 
O, 110001000000000000000001000 ... ( el primer 1 aparece en el lugar 
1 detrás de la coma, el segundo 1 aparece en el lugar 1- 2 = 2, el 
tercer 1 aparece en el lugar 1- 2 • 3 = 6, y así sucesivamente). Liouvi­
lle mostró también otros números similares a este, todos ellos 
trascendentes. En 1873, el también matemático francés Charles 
Hermite aportó un nuevo ejemplo al demostrar que el número e 
(la base de los logaritmos naturales) es trascendente. 
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LOS NÚMEROS ALGEBRAICOS 

Decimos que un número es algebraico si es soluc ión de alguna ecuación del 
tipo anxn +an_,xn-1+ ... +a,x+a0 = O, donde los coefic ientes ª n• an_,, ... ,a

0 
son todos 

números enteros Y además se cumple que an" O. Por ejemplo, 7 / 5 es alge­
braico porque es solución de la ecuación 5x - 7 = O; otro ejemplo de número 
algebraico es ✓3, que es solución de la ecuación x 2 -3=0. Se dice que esta 
última ecuación es de grado 2, porque la mayor potencia de x que aparece 
en ella es x 2

; mientras que la primera ecuación, por su parte, es de grado 1 
(recordemos que x=x') . Pero puede probarse que ✓3, además de ser solución 
de x 2-3=0, también lo es de la ecuación x 3 -x 2 - 3x+3=0, que es de grado 
3, y también de X 4 

- 9 = O, que es de grado 4, y también de otra ecuación de 
grado 5, y otra de grado 6, y así sucesivamente; sin embargo, no es soluc ión 
de ninguna ecuac ión que sea de grado menor que 2 y que cumpla a la vez las 
cond iciones arriba ind icadas. El menor grado posible para ✓3 es 2, y por eso 
se dice que ✓3 es un número algebraico de orden 2; otros números algebra icos 
de orden 2 son, por ejemplo, ✓2 y 

1+✓5 
2 

Por otra parte, puede probarse que lf2 es de orden 3, que ✓2 + ✓3 es de orden 
4 y que todos los números rac iona les, como es el caso de 7 /5, son algebra icos 
de orden l. Ahora bien, para que un segmento pueda construirse con una re­
gla no graduada y compás su longitud debe ser un número algebra ico, pero 
además ese número debe ser de orden 1, 2, 4, 8, 16 o cualqu ier otra potencia 
de 2. Como 1t no es algebra ico, entonces no es pos ib le constru ir con regla y 
compás un segmento de esa long itud, pero también es imposible construir un 
segmento cuya longitud sea lf2 porque, aunque este número es algebraico, 
su orden es igual a 3. 

En su artículo de 1874, Cantor hizo un aporte significativo al 
tema, al demostrar de manera indirecta que cualquier segmento 
de la recta numérica contiene una infinidad de números trascen­
dentes. 

¿Cómo lo hizo? Perfeccionando el método que vimos y que 
nos permitió mostrar que los números racionales pueden orga­
nizarse en una sucesión, Cantor pudo probar que la colección de 
los números algebraicos contenidos en cualquier segmento de la 
recta numérica también puede organizarse en una sucesión. 
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Ahora bien, también vimos antes que, por el contrario, la 
colección de todos los números reales contenidos en ese mismo 
segmento no puede organizarse en una sucesión. Esto quiere decir 
que las dos colecciones no pueden ser la misma, porque una tiene 
la propiedad de poder ordenarse en una sucesión, y la otra, no. Por 
lo tanto, los números de cualquier segmento de la recta numérica 
no pueden ser todos algebraicos, tiene que haber allí necesaria­
mente números que son trascendentes. En consecuencia, en cada 
segmento de la recta numérica hay algún número trascendente, 
de modo que en toda la recta hay infinitos números trascendentes. 

Dijimos que la demostración era indirecta, con lo que se 
quiere hacer notar que el razonamiento de Cantor prueba que exis­
ten infinitos números trascendentes, pero no aporta ningún ejem­
plo específico. Si Liouville y Hermite no hubieran publicado sus 
resultados cuando lo hicieron y en 187 4 no se hubiera conocido ni 
un solo ejemplo de número trascendente, entonces Cantor habría 
mostrado que había infinitos números de un tipo del que no se co­
nocía ningún ejemplo. Más adelante trataremos más a fondo estas 
demostraciones indirectas, pero digan10s por ahora que en aquel 
momento fueron muy cuestionadas por algunos matemáticos. 

Pero, ¿qué pasó con re? En 1882, el matemático alemán Carl 
Louis Ferdinand von Lindemann demostró finalmente que re tam­
bién es un número trascendente y de este modo cerró el problema 
de la cuadratura del círculo, que desde entonces se sabe que es 
completamente imposible de resolver. 

LAS CONSECUENCIAS 

Cerramos así nuestro estudio de las ideas contenidas en el ar­
tículo de Cantor de 1874, pero ¿cuáles eran esas consecuencias 
tan revolucionarias que Weierstrass le aconsejó que ocultara? 

Volvamos al argumento diagonal y recordemos que en él se 
prueba que si intentamos establecer una correspondencia uno­
a-uno entre la colección de los números naturales y la colección 
de los números reales entonces nuestro intento fracasará porque 
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siempre quedarán números reales sin pareja. Vinculémoslo con el 
ejemplo de las parejas de baile que vimos en el capítulo anterior; 
si en ese caso nos dijeran que, no importa cómo se formen las pa­
rejas, siempre quedan mujeres sin bailar, nuestra conclusión sería 
que hay más mujeres que hombres. De la misma forma, si siempre 
quedan números reales sin pareja, esto quiere decir que hay más 
números reales que naturales, pero no en el sentido de que una 
colección es parte de la otra, sino en el sentido de los cardinales. 
El cardinal de los números reales (su «cantidad de miembros») es 
mayor que el de los naturales. 

Los naturales, enteros y racionales están en el mismo orden 
de infinitud, todos tienen el mismo cardinal. Los reales están en 
un orden de infinitud superior. El infinito de los reales es «más 
grande» que el de los naturales. Es decir, Georg Cantor no sola­
mente osó comparar infinitos -lo que hubiera sido rechazado 
por Aristóteles y Galileo-, sino que además llegó a la conclusión 
de que había infinitos mayores que otros. Expresado en estos tér­
minos, su demostración sobre los números trascendentes sería 
así: la colección de los números reales tiene un orden de infinitud 
superior al de la colección de los algebraicos, en consecuencia, 
tiene que haber infinitos números reales que no son algebraicos, 
es decir, tiene que haber infinitos números trascendentes. Como 
ya dijimos, en 1874 estas ideas eran tan revolucionarias que 
Weierstrass le aconsejó a Cantor que las disimulara. 

Pero, ¿por qué Cantor se planteó estos conceptos en primer 
lugar? ¿Por puro espíritu de contradicción? Como ya se ha apun­
tado antes, esas ideas comenzaron a estar presentes en su pen­
samiento como resultado de sus primeros trabajos en Halle; más 
aún, esas investigaciones lo llevaron casi contra su voluntad a 
considerar esas ideas. En efecto, en 1883, en el artículo que men­
cionamos al comienzo del capítulo anterior, Cantor escribió: 

Es en el transcurso de muchos años de esfuerzos e investigaciones 
científicas que me he visto impulsado lógicamente casi contra mi 
voluntad (pues se opone a tradiciones que habían llegado a ser muy 
apreciadas por mí), al punto de vista de considerar lo infinitamente 
grande no solo en la forma de algo que crece sin límites ( ... ],sino 
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también fijarlo matemáticamente por medio de números en la forma 
determinada de lo completamente infinito; y por ello no creo que se 
puedan hacer valer en contra razones que yo no estuviera en condi­
ciones de afrontar. 

¿Cuáles fueron esas investigaciones que lo impulsaron lógica­
mente, casi contra su voluntad, a admitir la posibilidad del infinito 
en acto? La respuesta a esta pregunta será uno de los temas cen­
trales del próximo capítulo. 
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CAPÍTULO 3 

El cálculo y el infinito 

La teoría del infinito matemático 
desafía constantemente nuestra intuición al 

enfrentamos a hechos que son correctos pero que 
contradicen totalmente el sentido común. La teoría nos 

muestra que el todo no es siempre mayor que cualquiera 
de sus partes, o proporciona ejemplos de colecciones 

con diferentes «niveles de infinitud». Esta teoría 
se relaciona estrechamente con la rama de las 

matemáticas cuyos orígenes se remontan 
a la Antigüedad clásica: el cálculo. 





Georg Cantor y Richard Dedekind se conocieron por casualidad 
durante las vacaciones de verano de 1872, y aunque tenían perso­
nalidades muy diferentes -Cantor era vehemente e impulsivo, 
mientras que Dedekind era mucho más reflexivo y reposado-, 
pronto descubrieron muchos puntos en común en su manera de 
concebir el trabajo matemático. A partir de ese encuentro, y du­
rante más o menos una década, mantuvieron una intensa corres­
pondencia científica y en esas cartas fueron discutidas y puestas 
a prueba por primera vez varias de las ideas que Cantor expuso 
más tarde en sus artículos. 

Por ejemplo, en una carta fechada en Halle, el 5 de enero de 
1874, Cantor le preguntaba a Dedekind cuál era su sensación con 
respecto al siguiente problema: 

¿Es posible hacer corresponder unívocamente una superficie ( diga­
mos un cuadrado incluyendo su frontera) con una linea ( digamos un 
segmento de recta incluyendo sus puntos extremos), de manera tal 

que a cada punto de la superficie le corresponda un punto de la linea, 
e inversamente a cada punto de la línea, un punto de la superficie? 

El problema que Cantor formulaba en aquella carta era una 
extensión natural de las ideas en las que estuvo trabajando hasta 
ese momento; en efecto, en 1873 Cantor ya sabía que la colección 
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de los números reales tiene un cardinal mayor que la colección de 
los números naturales. Dicho de otro modo, sabía que los núme­
ros reales tienen un orden de infinitud superior al de los números 
naturales, aunque no lo enunció públicamente hasta 1878, en un 
artículo al que nos refe1iremos en este mismo capítulo. 

Ante esta situación, surge naturalmente la pregunta de si 
habrá alguna colección con un cardinal todavía mayor que el de 
los números reales, y esa es precisamente la pregunta que Cantor 
tenía en mente cuando le escribió a Dedekind la carta que antes 
citamos. Detengámonos, entonces, un poco en analizar cómo la 
pregunta de si habrá alguna colección con un cardinal superior al 
de los números reales lleva al problema planteado por Cantor en 
su carta. 

En el capítulo anterior ya vimos que a cada punto de la recta 
numérica le corresponde un número real y que, recíprocamente, 
a cada número real le corresponde un punto de la recta. En otras 
palabras, hay una correspondencia uno-a-uno entre los números 
reales y los puntos de una recta (recordemos que otra forma de 
expresarlo es diciendo que esas dos colecciones son coordina­
bles ). Por lo tanto, cuando se trata de cardinales, es exactamente 
lo mismo hablar de los números reales que de los puntos de una 
recta. Entonces, ¿qué colección podríamos proponer como candi­
data a tener un cardinal mayor que el de los puntos de una recta? 
Dado que una recta es un objeto de una sola dimensión, parece 
razonable suponer que un objeto de dos dimensiones, es decir, 
una superficie, podría tener un cardinal mayor. 

Ahora bien, si en realidad estamos pensando en la colección 
de todos los números reales, y esta se corresponde con una recta, 
¿por qué Cantor habla en su carta de un segmento, que es so­
lamente la parte de la recta comprendida entre dos puntos? La 
respuesta es que puede probarse que todos los segmentos, no im­
porta su longitud, son coordinables entre sí, todos tienen el mismo 
cardinal, y que a su vez cualquier segmento es coordinable con la 
recta completa. En conclusión, cuando investigamos cardinales, 
es lo mismo hablar de una recta que de un segmento. 

Llegamos entonces a la pregunta que Cantor formulaba en la 
carta del 5 de enero de 187 4: ¿es posible que un objeto de una sola 
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dimensión (un segmento, pensado como una colección infinita 
de puntos) tenga el mismo cardinal que un objeto de dos dimen­
siones (un cuadrado, pensado también como colección infinita 
de puntos) o, por el contrario, el cuadrado tendrá un cardinal 
mayor? 

«La solución de los problemas que hasta ahora rondaban 
al infinito matemático es probablemente el mayor de los logros 

de los que nuestra época pueda enorgullecerse.» 
- LORD BERTRAND RusSELL, EN 1910. 

En la misma carta donde planteaba la pregunta, Cantor decía 
que parece obvio que el cuadrado debe tener un cardinal ma­
yor que el del segmento, opinión que Dedekind compartía, pero 
Cantor agregaba que el problema «ofrece graves dificultades». Y, 
efectivamente, hubo dificultades, porque Cantor tardó más de tres 
años en encontrar la solución, que finalmente comunicó a Dede­
kind en una carta fechada en Halle el 20 de junio de 1877. En su 
respuesta a dicha carta, escrita el día 22 del mismo mes, Dedekind 
hacía algunas objeciones a la argumentación de Cantor, a las que 
este contestó en dos cartas sucesivas escritas el 25 y el 29 de junio 
respectivamente. Las primeras palabras de esta última, muy repre­
sentativa del estilo de Cantor, fueron: 

Sea Ud. benévolo y perdone mi afán por esta cuestión, al exigir tan­
to de su amabilidad y sus esfuerzos. Lo que le he comunicado recien­
temente es para mí mismo tan inesperado, tan nuevo, que por así 
decir no podré alcanzar una cierta tranquilidad de ánimo hasta haber 
obtenido de Ud., muy estimado amigo, una decisión sobre si es 
correcto. Hasta que no me dé Ud. su aprobación, solo puedo decir 
que:je le vais, maisje ne le erais pas [«lo veo, pero no lo creo», en 
francés en el original]. 

Podemos suponer que Dedekind le permitió a Cantor alcanzar 
esa «cierta tranquilidad de ánimo» porque su respuesta, fechada 
en Brunswick el 2 de julio, comenzaba así: 
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He revisado una vez más su demostración y no he encontrado nin­
guna laguna; estoy seguro de que su interesante teorema es correcto, 
y le felicito por él. 

LA RESPUESTA 

La respuesta, para sorpresa del propio Cantor, es que existe una 
correspondencia uno-a-uno entre los puntos de un segmento y los 
puntos de un cuadrado. En otras palabras, a pesar de que tiene 
una dimensión más, el cardinal de un cuadrado no es mayor que 
el cardinal de un segmento. 

¿Cómo podernos demostrar este hecho? Un segmento, decía­
mos más arriba, es la parte de una recta comprendida entre dos 
puntos; en consecuencia, podernos equipararlo con la colección 
de todos los números reales comprendidos entre dos números 

r-
fijos. Más aún, dado que los puntos 
asignados al O y al 1 en la recta nu­
mérica son totalmente arbitrarios, 
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FIG. 1 

o 

FIG. 2 

p 
0,7 - - --, Abscisa = 0,2 

Ordenada = 0,7 

0,75 

o~-~'-------- -~ 
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podernos equiparar a cualquier 
segmento con la colección de los 
números reales comprendidos 
específicamente entre O y l. En 
la figura 1, a modo de ejemplo, se 
puede observar la posición que le 
corresponde al número O, 75. 

¿ Cómo representarnos numé­
ricamente los puntos de un cua­
drado? Corno sabernos, los puntos 
de un planisferio se representan 
mediante dos coordenadas, su 
longitud y su latitud; de la misma 
forma, los puntos de un cuadrado 
también tienen dos coordenadas, 
habitualmente llamadas abscisa y 
ordenada (figura 2). 



¿ Cómo se determina la abscisa y la ordenada de un punto P 
del cuadrado? Para determinar esas coordenadas elegimos, como 
se aprecia en la figura 2, dos lados del cuadrado que no sean para-

SEGMENTO SIN EXTREMOS 

Vamos a demostrar que los números reales entre O y 1, ambos incluidos, son 
coordinables con la colección que se obtiene al quitar el l. Gráficamente, la 
primera colección es un segmento con sus dos extremos incluidos, mientras 
que la segunda es un segmento del que se ha eliminado uno de sus extremos 
(figura 1). Para establecer la correspondencia (figura 2), asignamos el 1 de la 
primera colección al 1/2 de la segunda, el 1/2 de la primera colección es asig­
nado al 1/3 de la segunda, el 1/3 de la primera colección al 1/4 de la segunda, y 
así sucesivamente; todos los demás números de la primera colección, es decir, 
todos los números diferentes de 1/2, 1/3, 1/4, tal como el 3/4, por ejemplo, son 
asignados a sí mismos. De la misma forma se puede probar que el segmento 
al que le falta uno de sus extremos es coordinable con el segmento al que le 
faltan los dos extremos. Por lo tanto, los tres segmentos, el que tiene sus dos 
extremos, el que le falta uno de ellos y el que carece de los dos, son todos 
coordinables entre sí. 

FIG.1 

o 

o 

FIG. 2 3 

Gráficamente, 
representamos 
la falta del punto 
con un círculo 
sin rellenar; en 
realidad, la falta 
del punto sería 
completamente 
imperceptible. 

4 3 2 4 

5 4 3 2 4 
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lelos entre sí, y a cada uno de ellos le asignamos, tal como hicimos 
con el segmento, los números entre O y 1; al número O le corres­
ponde el vértice que es común a ambos lados. 

Para saber las coordenadas de un punto P, lo proyectamos 
perpendicularmente sobre cada uno de los dos lados elegidos (así 
como el punto de un planisferio se proyecta sobre el ecuador y 
sobre el meridiano de Greenwich); uno de los números que se 
obtiene es la abscisa de P y el otro es su ordenada. 

Cada punto del cuadrado queda entonces deterrninado por un 
par de coordenadas y convendremos, como es usual, en mencio­
nar siempre la abscisa en primer lugar y la ordenada en segundo, 
por lo que hablaremos simplemente del punto de coordenadas 0,2 
y O, 7, sobreentendiendo que 0,2 es la abscisa y O, 7 la ordenada ( el 
orden en que se mencionan los números es muy relevante, dado 
que el punto de abscisa 0,2 y ordenada O, 7 no es el mismo que el 
de abscisa O, 7 y ordenada 0,2). 

El problema consiste entonces en establecer una correspon­
dencia uno-a-uno entre los números reales comprendidos entre el 
O y el 1, y los pares de números comprendidos entre el O y el 1, de 
modo que a cada número individual le corresponda un único par 
y a cada par le corresponda un único número individual. 

-
SEGMENTOS DE DIFERENTES 
LONGITUDES 

\ '/ 
\/; 
;r,o 

Vamos a dem ostra r que dos seg­
mentos de d iferen t es long itudes 
son coord inab les entre sí. Primero 
t razamos dos rectas q ue pasen 
respecti vam ente por los extrem os 
de los segmentos y llamamos O al 
punto donde estas rectas se cor­
tan . Traza ndo nuevas rectas que 
pasen por el punto O, en la fi gura 
se muest ra cómo as ig nar a cada 
punto P en uno de los segmentos 
exactamente un punto P en el ot ro. 

EL CÁLCULO Y EL INFINITO 

//\ 
Í i \ / ¡ \ 

Í ' I t \ 
, ' \ 

1/J _lp--\ \ 
\ 
\ 

/ ,p;·-----\ 
/ 1 \ 

/ l \ 
/ / \ 



Veamos un ejemplo de cómo se define esta correspondencia. 
Supongamos que tenemos el número 0,213421342134 ... ¿Qué par 
de coordenadas le corresponde? Tomamos, por un lado, los dígi­
tos que ocupan las posiciones impares detrás de la coma (primera, 
tercera, quinta, y así sucesivamente); estos dígitos son 232323 .. . 
Por otro lado, tomamos los dígitos de las posiciones pares, que 
son 141414 ... El número 0,213421342134 ... se corresponde enton-
ces con el par de coordenadas 0,232323 ... y 0,141414 ... 

Recíprocamente, si nos dan el punto de coordenadas 
0,232323 ... y 0,141414 ... , para obtener el punto del segmento que 
le corresponde tomamos el primer dígito de la abscisa, luego el 
primer dígito de la ordenada, luego el segundo de la abscisa, el 
segundo de la ordenada y así sucesivamente, y formamos de ese 
modo el número 0,21342134 ... (figura 3). 

Para poner otro ejemplo, si nos dan el punto de coordenadas 
0,2 y 0,7, escribimos primero estos números como 0,20000 .. . y 
0,70000 .. . (el agregado de estos ceros no modifica el valor de la 

FIG. 3 

Número individual /42 1 3 4 2 1 3 4 2 1 3 4 

~ 
o, 2 3 2 3 2 3 ... o, 1 4 1 4 1 4 

Abscisa Ordenada 

FIG.4 

Número entre O y 1 Abscisa Ordenada 

0,121212 .. . 0,1111 .. . 0,2222 .. . 

0,123123123 ... 0,13213 .. . 0 ,21321 ... 

0 ,50000 .. . 0 ,5000 ... 0,000 .. . = 

0,3333 ... 0,333 ... 0 ,333 .. . 

o 

-----
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FIGURA 3: 
Correspondencia 
uno-a-uno entre 
números 
individuales y 
pares de números. 

FIGURA 4: 
Algunos 
ejemplos de 
correspondencias 
entre un número 
entre O y 1 y un 
par de números. 
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expresión); el número que corresponde a este par es entonces 
0,270000 .. . , que es simplemente 0,27. En la figura 4 (página ante­
rior) se muestran otros ejemplos de esta correspondencia. 

De este modo vemos que a cada número entre O y 1 le corres­
ponde exactan1ente un par de coordenadas, y que a cada par de 
coordenadas le corresponde exactamente un número. En otras 
palabras, hemos establecido una correspondencia uno-a-uno 
entre un segmento cualquiera y un cuadrado cualquiera, por lo 

SEGMENTO, CIRCUNFERENCIA, RECTA 

En la figura 1 se muestra cómo mediante el procedimiento de enrollar un 
segmento sin extremos podemos demostrar que este es coordinable con una 
circunferencia de la que hemos quitado un punto (la ausencia del punto se 
indica con un «circulito sin rellenar», aunque en la realidad esa ausencia sería 
imperceptible a simple vista). Es decir, ambas colecciones de puntos son 
esencialmente la misma. la única diferencia es la disposición gráfica en el pla­
no: en un caso·están en una línea recta, en el otro organizados en una curva. 
A su vez, en la figura 2 se muestra cómo establecer una correspondencia 
uno-a-uno entre una circunferencia sin un punto y la recta completa; a cada 
punto P de la circunferencia le corresponde el punto P' en la recta (P y P' 
siempre deben estar alineados con el punto faltante en la circunferencia). Por 
transitividad, deducimos que el segmento sin extremos es coordinable con 
la recta completa. 

FIG.1 

FIG.2 
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que podemos afirmar que ambas colecciones de puntos tienen 
exactamente el mismo cardinal. 

Decíamos antes que cualquier segmento tiene el mismo car­
dinal que la recta completa; de manera similar, puede probarse 
que un cuadrado tiene el mismo cardinal que el plano completo. 
Por lo tanto, de lo que hemos demostrado más arriba podemos 
concluir que tanto una recta, como cualquier segmento, cualquier 
cuadrado y el plano completo, todos tienen el mismo cardinal. 
Este hecho tan1bién se extiende a objetos tridimensionales, ya que 
es posible demostrar que el cardinal de un segmento es igual al 
cardinal de un cubo, que es a su vez igual al cardinal de todo el 
espacio tridimensional. 

Volvamos a la pregunta que había motivado el problema: 
¿existe alguna colección cuyo cardinal sea mayor que el de los 
números reales? Por el momento, no hemos podido encontrar una 
respuesta; ni un cuadrado, ni el plano, ni todo el espacio tridimen­
sional ( siempre pensados como colecciones infinitas de puntos) 
nos dan un ejemplo en ese sentido, aunque tampoco tenemos un 
argumento que nos pruebe que una colección con un cardinal 
mayor que el de los reales no pueda existir. 

En 1877, Cantor tampoco sabía si existía, o no, una colección 
con un cardinal mayor que el de los números reales y no pudo 
resolver la cuestión hasta su trabajo de 1883, tras haber alcanzado 
las «notables aclaraciones» que mencionaba en la carta a Dede­
kind que citamos al comienzo del primer capítulo. ¿ Cuál es la res­
puesta? ¿Existe o no esa colección? Volveremos a este problema 
en el capítulo siguiente. 

LA HIPÓTESIS DEL CONTINUO 

La colección de los números reales tiene un cardinal mayor que 
el de los números naturales; la pregunta que motivó el problema 
anterior es si habrá una colección con un cardinal aún mayor. 
Pero hay otra pregunta que también surge naturalmente y es si 
habrá una colección con un cardinal intermedio. En otras pala-
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La hipótesis del 
continuo afirma 

que no existe 
una colección 

intermedia, pero 
en 1877 no se 

sabía si esto era 
cierto. 
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bras, ¿habrá alguna colección con un cardinal mayor que el de los 
números naturales, pero menor que el de los reales? 

Otra forma de plantear la cuestión es la siguiente; Cantor 
llamaba numerables a las colecciones que son coordinables con 
la de los números naturales; así por ejemplo, la colección de los 
enteros y la de los racionales son ambas numerables, pero la co­
lección de los números reales no lo es. Entonces, una manera dife­
rente de plantear la pregunta es si habrá alguna colección infinita 
no numerable, pero que al mismo tiempo tenga un cardinal menor 
que el de los números reales. 

Durante años, Cantor buscó infructuosamente un ejemplo 
así; las colecciones de los números naturales, enteros, racionales 
y algebraicos son todas numerables; los números irracionales y 
los números trascendentes son no numerables, pero son coordi­
nables con los reales, y no tienen, en consecuencia, un cardinal 
menor que estos. 

Finalmente, después de fracasar en todos los intentos de ha­
llar una colección intermedia, en 1877 Cantor llegó a la convicción 
de que tal colección no existe y formuló la siguiente conjetura, 
que es conocida como la «hipótesis del continuo»: no existe una 
colección infinita con un cardinal intermedio entre el de los natu­
rales y el de los reales (véase la figura). 

Una conjetura es una afirmación matemática que se cree que 
es verdadera, pero que nadie ha podido todavía demostrar ni refu­
tar. En el caso de la hipótesis del continuo, demostrarla implicaría 
probar que no existe una colección con un cardinal intermedio 
entre los naturales y los reales; refutarla implicaría hallar una co­
lección así. 

---------- --- --- - -- -- ------

Colección d~~ 
números naturales. r---1 

lHabrá una colección 
con un cardinal intermedio? 

'------------ -
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En 1877 Cantor estaba convencido de la verdad de la hipóte­
sis del continuo; sin embargo, no había sido capaz de hallar una 
demostración. El problema le preocupó durante muchos años y 
en 1883, corno veremos, el hallar una respuesta positiva se trans­
formó para él en una cuestión sumamente importante. La res­
puesta final al problema resultó ser bastante sorprendente, corno 
veremos más adelante. 

EL SEGMENTO Y EL ESPACIO 

Corno ya se ha expuesto anteriormente, cualquier segmento, 
cualquier cuadrado y el plano completo tienen todos el mismo 
cardinal, y esto vale también para un cubo y para todo el espacio 
tridimensional. 

Una consecuencia de ello es que, por ejemplo, si volvernos al 
segmento que dibujamos antes, el fragmento comprendido entre 
los números O y 0,0000000000001, que es un segmento de longi­
tud pequeñísima (imposible de percibir a simple vista), tiene, en 
cuanto colección infinita de puntos, exactamente el mismo nivel 
de infinitud que todo el espacio tridimensional, aunque este último 
ocupe un volumen infinito en acto, es decir, un volumen infinita­
mente mayor que el de todo el universo (suponiendo que el uni­
verso tenga un volumen finito). 

Esta conclusión, matemáticamente correcta, es sin embargo 
tan contraria a la intuición que resulta muy difícil de aceptar, y 
tanto más difícil era en la década de 1870, cuando inclusive la 
mayoría de los matemáticos dudaba de la existencia misma del 
infinito en acto. 

Cantor expuso estas conclusiones en un artículo que escribió 
en 1877 y que tituló «Ein Beitrag zur Mannigfaltigkeitslehre» [Una 
contribución a la teoría de las variedades] ( «variedad» era, para 
Cantor, sinónimo de «colección»). En el mes de julio de ese año lo 
envió al prestigioso Journal de Crelle, la misma revista berlinesa 
que había publicado su trabajo de 1874, pero esta vez la situación 
era muy diferente. 
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Como vimos en el capítulo anterior, en el artículo de 187 4 Can­
tor mostraba que los números reales no se pueden escribir en forma 
de sucesión y deducía de este hecho que en cualquier segmento de 
la recta numérica hay infinitos números trasce~dentes (un infinito 
que, en el contexto de ese artículo, podía ser interpretado como en 
potencia). A sugerencia de Weierstrass, la comparación de infinitos 
era mencionada apenas al pasar y no tenía un papel destacado; 
además, el concepto de cardinal ni siquiera se mencionaba. 

«Las generaciones futuras contemplarán la teoría 
[ de las colecciones infinitas] como una enfermedad de la 
que nos hemos recuperado.» 
- HENRI POINCARÉ, MATEMÁTICO FRANCÉS, EN 1908. 
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Pero el artículo escrito en 1877 era un estudio de la com­
paración de infinitos como tema en sí mismo y no ya como una 
mera herramienta para demostrar un resultado numérico. En este 
nuevo trabajo, Cantor comenzaba definiendo explícitamente que 
dos colecciones son coordinables si es posible establecer entre 
ellas una correspondencia uno-a-uno, definía también el concepto 
de cardinal y volvía al teorema de 1874 sobre los números tras­
cendentes, pero ahora poniéndolo en el contexto de la compa­
ración de infinitos. También demostraba que un segmento al que 
se le quita un punto es coordinable con el segmento completo y 
además probaba el hecho, ya enunciado más arriba, de que un 
segmento es coordinable con un cuadrado. Cantor cerraba este 
trabajo enunciando por primera vez públicamente la hipótesis del 
continuo. 

El contenido de este artículo era muy controvertido para la 
época, motivo por el cual encontró mucha resistencia; tanto, que 
el 10 de noviembre de 1877 Cantor le escribía a Dedekind: 

La impresión del trabajo núo que Ud. conoce en el Journal de Bor­
chardt [Carl Wilhelm Borchardt fue el editor del Journal de Crelle 
entre 1856 y 1880] se está retrasando de una manera que resulta 
sorprendente e inexplicable, a pesar de que lo envié ya el 11 de julio 
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y poco después recibí la promesa de que sería impreso lo más rápi­
damente posible. 

Hoy he recibido a través de mi viejo amigo Lampe, que desde 
hace años se ocupa de revisar pruebas del Journal, la noticia de que 
B[ orchardt] ha vuelto a retrasar mi nuevo trabajo, alterando con ello 
el orden previamente fijado, con lo que de nuevo se deja en el aire 
indeterminadan1ente su publicación. También me escribió que, por 
su parte, está intentando frustrar esas intenciones mediante una há­
bil maniobra. 

Quiero pensar que lo logrará, pero en segundo lugar debo con­
tar con la posibilidad de que no lo consiga; y en tal caso tengo la 
intención de retirar el trabajo totalmente de las manos del señor 
B[orchardt] y hacerlo imprimir en algún otro lugar. 

NÚMEROS REALES SIN NOMBRE 

Vamos a comentar una consecuencia muy curiosa de la teoría de Cantor. 
Para ello, convengamos en decir que una frase, un cálculo o cualquier otra 
expresión idiomática es el nombre de un número si define a ese número sin 
ambigüedad. Por ejemplo, «La cantidad de días de la semana» es un nombre 
para el número 7, y también lo es «El resultado de sumar 6 más 1». Otro ejem­
plo es «El cociente entre la longitud de una circunferenc ia y su diámetro», 
que es un nombre para el número Jt. La oración «El número que comienza 
con 0,110001000000000000000001000 ... , donde el primer 1 aparece en el 
lugar 1 detrás de la coma, el segundo 1 aparece en el lugar 1 · 2 = 2, el tercer 1 
aparece en el lugar 1 · 2 · 3 = 6, y así sucesivamente» es un nombre del número 
trascendente de Liouville. Ahora bien, puede demostrarse que la colecc ión 
de todos los nombres posibles es coordinable con los naturales mientras que, 
según sabemos, la colección de los números reales no lo es; en otras palabras, 
hay más números reales que nombres posibles para designarlos. Deducimos 
entonces que existen números rea les inefables, números que no pueden ser 
nombrados o definidos de ninguna manera. En realidad, hay infinitos números 
inefables, aunque, por supuesto, es totalmente imposible dar ni siqu iera un solo 
ejemplo de ellos, ya que cualquier número que podamos mencionar tendrá 
necesariamente un nombre (el nombre que usamos para mencionarlo). Este 
es un ejemplo de demostración de existencia pura, un razonamiento en el que 
se prueba la existencia de objetos, pero de los cua les es imposible mencionar 
ni un solo ejemplo. 
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Es posible que la «hábil maniobra» de Lampe haya sido en 
definitiva exitosa, porque el Journal de Crelle finalmente publicó 
el trabajo de Cantor en el volumen 84 del año 1878, en las páginas 
242 a 258. En realidad, este fue el último artículo de Cantor que 
apareció impreso en el Journal de Crelle ya que, ofendido por la 
actitud de Borchardt, Cantor nunca volvió a enviar un escrito suyo 
a dicha reviE.ta. 

EL ADVERSARIO 

Aunque en su carta Cantor se queja de Borchardt, la oposición a la 
publicación de su trabajo en el Journal de Crelle estaba liderada 
por Leopold Kronecker, y Cantor era perfectamente consciente 
de ello. 

Kronecker, nacido en 1823, era un matemático alemán muy 
respetado e influyente; sus trabajos, muy bien considerados, abar­
caban el álgebra, el cálculo y la aritmética, y especialmente los 
puntos de contacto entre estas diferentes ramas de las matemáti­
cas. También estudió meteorología, astronomía, química y filoso­
fía, y en este último campo se interesó particularmente por la obra 
de Descartes, Leibniz, Kant, Spinoza y Hegel. 

En 1861, por recomendación de Kununer y gracias a sus nume­
rosos méritos académicos, fue elegido miembro de la Academia de 
Ciencias de Berlín, y en 1868 miembro de la Academia de Ciencias 
de París. Sin embargo, a pesar de su gran amplitud de intereses 
matemáticos, los métodos de trabajo de Kronecker estaban muy 
restringidos debido a su propia filosofía de las matemáticas, que 
suele resumirse en su fan1osa máxima: 

«Die Ganze Zahl schuf der liebe Gott, alles Übrige ist Mens­
chenwerk.» 
«Dios creó los números enteros, todo lo demás es obra del hombre.» 

Para Kronecker, la base de las matemáticas la forman los nú­
meros enteros, que están dados en la naturaleza y existen inde-
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pendientemente del pensamiento humano; cualquier otro objeto 
matemático debía ser definido de un modo preciso a partir de 
ellos en una cantidad finita de pasos. Es esencial aquí la idea de fi­
nitud; Kronecker estaba firmemente convencido de que el infinito 
en acto es un absurdo y solo aceptaba, incluso con cierta reserva, 
el infinito en potencia. 

Por ejemplo, para Kronecker, el número trascendente de 
Liouville que vimos en el capítulo anterior no existía. Kronec­
ker sí habría admitido la existencia de la sucesión potencial­
mente infinita que comienza con 0,1, sigue con 0,11, luego con 
0,110001 y así sucesivamente, pero habría dicho que la expresión 
0,110001000000000000000001000 ... , en la que se supone que hay 
infinitas cifras decimales, no representa ningún objeto matemá­
tico existente. De hecho, cuando Lindemann demostró en 1882 
que n: es trascendente (véase el capítulo precedente), Kronecker 
lo felicitó por la belleza de su argumentación, pero agregó que en 
realidad no probaba nada, porque los números trascendentes no 
existían. 

«Kronecker y Kummer han caído en un punto de vista muy 
sesgado, casi diría primitivo, a la hora de juzgar la matemática.» 

- GEORG CANTOR, EN UNA CARTA A GOSTA MITTAG-LEFFLER, EN AGOSTO DE 1884. 

Un número racional como 0,333 ... sí existía para Kronecker, 
pero solamente porque puede definirse mediante una expresión 
finita construida en base a números enteros, 1/3; sin embargo, 
la única expresión correcta sería esta última, y no 0,333 .. . , en la 
que se supone que hay infinitas cifras decimales. Kronecker fue 
además uno de los primeros en rechazar la validez de las demos­
traciones de existencia pura, en las que se prueba la existencia 
de objetos matemáticos, pero sin indicación de cómo hallar ni si­
quiera un ejemplo de ellos; una demostración así, según vimos en 
el capítulo anterior, es la prueba de Cantor de que existen infinitos 
números trascendentes. 

Después de todo lo dicho, queda claro que Kronecker re­
chazaba de plano las investigaciones de Cantor sobre el infinito, 
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no porque considerara que contenían errores sino, peor todavía, 
porque entendía que eran un sinsentido, que hablaban de objetos 
inexistentes, como por ejemplo colecciones infinitas en acto o co­
lecciones con diferentes niveles de infinitud. A consecuencia de 
ello, Kronecker influyó tanto como le fue posible para impedir la 
publicación de los trabajos de Cantor; en particular, trató de dete­
ner la publicación del artículo que este había enviado al Journal 
de Crelle en 1877. 

Con el correr de los años, Kronecker llegó a tratar a Cantor 
públicamente de «renegado», «corruptor de la juventud» y «cien­
tífico charlatán», y fue en parte responsable de que Cantor no pu­
diera acceder a trabajar, como siempre había sido su deseo, en 
universidades más prestigiosas que la de Halle, tales como las de 
Berlín o Gotinga. 

Cantor, que era muy susceptible y propenso a la depresión, 
sufrió mucho a causa de estos ataques y frustraciones, que a la 
larga terminaron por afectar su salud mental. 

LOS ORÍGENES 

¿Por qué Cantor se dedicó al estudio del infinito? ¿Cuáles fueron 
las investigaciones científicas que lo impulsaron lógicamente, casi 
contra su voluntad, a considerar colecciones infinitas en acto? 
Para responder estas preguntas debemos remontarnos a la histo­
ria del cálculo. 

Suele decirse que el cálculo es la rama de las matemáticas 
que se ocupa de los objetos infinitamente grandes y de los objetos 
infinitamente pequeños y, aunque en efecto, como veremos ense­
guida, el cálculo está estrechan1ente relacionado con lo infinita­
mente grande y lo infinitamente pequeño, hay que admitir que la 
definición anterior es algo inexacta. La verdad es que es inevitable 
caer en la imprecisión cuando se pretende caracterizar a la que es 
en realidad una de las ramas más amplias y complejas de las mate­
máticas; cualquier definición que intentemos será imperfecta. Sin 
embargo, quizá un modo de acercarnos a una descripción mejor 
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sea exponiendo uno de los problemas que discute y los métodos 
que utiliza para resolverlo. 

Aunque hoy en día el cálculo tiene aplicaciones en áreas del 
conocimiento tan diversas como la biología, la geología o la eco­
nomía, en sus orígenes estuvo estrechamente vinculado a la física 
y a la geometría, y dentro de esta última se ocupó, entre otros 
problemas, del modo de hallar el área de figuras delimitadas por 
una frontera curva. Nos concentraremos especialmente en esta 
última cuestión. 

«La teoría de [las colecciones infinitas] es un campo en el que 
nada es evidente por sí mismo, cuyos enunciados verdaderos son 
a menudo paradójicos y cuyos enunciados plausibles son falsos.» 
- FELIX IIAUSDORFF, MATEMÁTICO ALEMÁN, EN 1914. 

¿Cómo podemos calcular el área de un círculo? A modo de 
ejemplo, tomemos el círculo cuyo radio mide una vez y media la 
diagonal del cuadrado de 1 cm de lado (figura 5), que es la unidad 
de medida de área; la pregunta es: ¿cuántas veces cabe nuestra 
unidad de medida en ese círculo? 

En primer lugar, como se muestra en la figura 6, es fácil com­

r:GS ----------- --
probar que en el círculo caben nueve 
cuadrados de 1 cm de lado, aunque 
también se observa que esos cuadra­
dos no alcanzan a completar toda la 
figura. Han quedado partes en blanco 
que también debemos cubrir, y para 1 

= Cuadrado unidad 
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ello, como ya no caben más cuadra­
dos completos, podemos usar cuatro 
rectángulos que sean la mitad del cua­
drado unidad. 

Sin embargo, después de colocar 
esos cuatro rectángulos, todavía que­
dan partes sin cubrir, que habremos 
de llenar a su vez con más y más rec­
tángulos de tamaño decreciente. En 



FIG.6 _r-c::_ 

D = Cuadrado unidad 

,_ - _J 
realidad, para cubrir el círculo por completo necesitaríamos una 
cantidad infinita de rectángulos, la mayoría de ellos de tamaño 
menor que microscópico (figura 7). Vemos así cómo, rápidamente, 
el problema de calcular el área de un círculo nos ha llevado al 
dominio de lo infinitan1ente grande (la cantidad de rectángulos 
necesaria para cubrir el círculo) y lo infinitamente pequeño. 

Pero colocando rectángulos al azar, clifícilmente llegaremos a 
saber cuántos cuadrados unitarios caben en el círculo. Necesitamos 
un modo sistemático de cubrir la figura que nos permita controlar 
qué fracción del círculo está siendo cubierta en cada paso; ese modo 
sistemático fue ideado por el geómetra griego Eudoxo de Cnido. 

En el siglo vr a.C., Eudoxo imaginó 
polígonos regulares de una cantidad cre­
ciente de lados y con sus vértices ubica­
dos en el borde del círculo ( un polígono 
regular es aquel en el que los lados son 
todos iguales y forman además ángulos 
iguales). Cada polígono cubre una parte 
del círculo y, a medida que la cantidad 
de lados aumenta, la parte sin cubrir va 
haciéndose tan pequeña como se desee 
(figura 8, página siguiente). 

Basado en esta idea, y a partir de pro­
piedades de los polígonos regulares que 

FIG. 7 
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FIG. 8 
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Polígono regular 
de 4 lados 

Polígono regular 
de 7 lados 

Polígono regular 
de 11 lados 

eran ya conocidas en aquella época, Eudoxo pudo demostrar que 
el área de un círculo cualquiera es proporcional al área del cua­
drado construido sobre su radio. Traducido al lenguaje moderno, 
esto significa que si el radio del círculo mide r, entonces su área 
se calcula multiplicando r 2 por un cierto número fijo, un número 

RICHARD DEDEKIND 

Julius Wilhelm Richard Dedekind na­
ció en Braunschweig, Aleman ia, el 6 de­
octubre de 1831. Desde niño mostró 
siempre un gran interés por las c iencias, 
que poco a poco se fue .centra ndo es­
pecíficamente en las matemá ticas ; es 
por eso que en 1848 ingresó en el Colle­
gium Carolinum, de la cercana ciudad de 
Brunswick, para estud iar esa disciplina. 
Aunque el Collegium Carolinum no era 
una universidad, dictaba cursos de nivel 
equivalente al universitario y Dedekind 
obtuvo allí una educación muy sólida en 
algunas de las ramas más importantes 
de las matemáticas, entre el las el álge­
bra, la geometría analítica y el cá lculo. 
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que es el mismo para todos los círculos. En el siglo XVIII, el gran 
matemático suizo Leonhard Euler bautizó a ese número con la 
letra griega n, y es así como hoy en día decimos que el área del 
círculo se calcula como n. r 2. 

NEWTON Y LEIBNIZ 

Un siglo después de Eudoxo, Arquímedes utilizó ideas similares 
para hallar el modo de calcular el volumen de una esfera, y tam­
bién el área y el centro de gravedad de diversas figuras limitadas 
por curvas. Asimismo, obtuvo una de las mejores aproximaciones 
del valor de n conocidas en la Antigüedad. 

Sin embargo, los métodos griegos, brillantes como eran, ca­
recían de generalidad; cada cálculo requería una construcción 
diferente que servía solo para ese caso y para ningún otro. La de­
ducción de Eudoxo del área del círculo, por ejemplo, no era apli-

Con el fin de completar su for·mación, en 1850 se incorporó a la Universidad 
de Gotinga para obtener el doctorado en matemáticas, que logró dos años 
más tarde gracias a un trabajo de investigación supervisado nada menos que 
por Carl Friedrich Gauss, uno de los matemáticos más brillantes de todos 
los tiempos. 

Digno sucesor 
Gauss falleció en 1855 y, por ofrecimiento de la universidad, Dedekind se 
hizo cargo de la cátedra que había quedado vacante en Gotinga. A partir de 
ese año, además, comenzó a trabajar en estrecha colaboración con Bernhard 
Riemann, quien también había sido discípulo de Gauss. Pocos años después, 
Dedekind decidió volver a Braunschweig y en 1862 comenzó a trabajar como 
profesor de Matemáticas en su conocido Collegium Carolinum, puesto en el 
que permaneció hasta su jubilación en 1894. Sin embargo, nunca abandonó la 
investigación matemática, a la que hizo aportes decisivos, especialmente en 
cálculo y álgebra. Dedekind jamás se casó y desde su regreso a Braunschweig 
vivió siempre con una de sus hermanas, también soltera. Richard Dedekind 
falleció en Braunschweig el 12 de febrero de 1916. 
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Podemos calcular 
el área de cada 
una de las dos 

figuras de la 
derecha, que 

tienen un 
segmento como 

parte de su 
frontera. 
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cable a una elipse; su razonamiento se ajustaba específicamente a 
un círculo, y no a otras figuras. 

A partir del siglo XVI, diferentes matemáticos europeos em­
prendieron la búsqueda de un método general para resolver, entre 
otros problemas, la cuestión de calcular el área de figuras limi­
tadas por curvas. Cuatro de los matemáticos más destacados en 
esta tarea fueron Johannes Kepler (1571-1630), Bonaventura Ca­
valieri (1598-1647), René Descartes (1596-1650) y Pierre de Fer­
mat (1601-1665). Finalmente, a finales del siglo xvn, apoyados en 
los esfuerzos de sus predecesores, Isaac Newton (1643-1727) y 
Gottfried Wilhelm von Leibniz (1646-1716), independientemente 
uno del otro, hallaron el método general para calcular el área de 
figuras planas cualesquiera. Este método, una de las herramientas 
fundamentales del cálculo, se llama integral y es muy relevante 
para nosotros explicar brevemente la idea en la que está basado. 

Comencemos por decir que cualquier figura, aunque esté to­
talmente limitada por curvas, puede dividirse en dos o más frag­
mentos (siempre una cantidad finita), no necesariamente iguales 
entre sí, de modo que cada una de ellas tenga un segmento como 
parte de su frontera (figura 9). 

El problema de calcular el área total de la figura se reduce 
entonces al de calcular el área de cada uno de esos fragmentos. 
Tomemos uno de ellos. Podemos pensar que el segmento que es 
parte de su frontera, y al que por comodidad llamaremos base, 
es la parte de la recta numérica que está comprendida entre cier­
tos números a y b. Imaginemos también que conocemos la fór­
mula matemática que, dado cualquier número x de la base, nos 

FIG. 9 

+ 

EL CÁLCULO Y EL INFINITO 



permite calcular la longitud del 
segmento que une, de modo per­
pendicular a la base, al punto x 
con la curva; llamaremos y a esa 
longitud (figura 10). 

En principio, el método 
consiste en pensar en la figura 
como formada por los infinitos 
segmentos perpendiculares a la 
base y que unen a esta con la 
curva (habría un segmento por 
cada número x). El área total de 
la figura se obtendría entonces 
como la suma de las áreas de 
esos segmentos. Sin embargo, 
este pensamiento nos lleva a una 

FIG. 11 

a ~ b 

t iene área cero. Un rectang ulo tiene 
area no nu la, pero no 
completa la fi gura. 

paradoja, esencialmente la misma que discutimos en el primer ca­
pítulo al hablar del pensamiento de Aristóteles. 

En efecto, así como, según dijimos en aquella oportunidad, un 
punto matemático tiene longitud exactamente igual a cero, de la 
misma forma un segmento matemático ( que tiene longitud, pero 
no anchura ni profundidad) tiene un área que es también exacta­
mente igual a cero; por lo que el área de la figura, si la pensamos 
como la sun1a de segmentos, sería igual a O + O + O + ... = O. 

Sin embargo, tampoco podrían1os reemplazar a los segmen­
tos por rectángulos ( que sí tienen área mayor que cero), porque 
en ese caso volveríamos a una situación similar a nuestro primer 
intento por completar el círculo con rectángulos, siempre nos que­
daría una parte sin cubrir (figura 11). 

Para salvar esta situación, Newton y Leibniz introdujeron la 
idea de infinitésimo, un concepto que se volvió esencial para el 
cálculo hasta mediados del siglo xrx. Ahora bien, el quid de todo 
este relato es que el concepto de infinitésimo es totalmente ambi­
guo y muy difícil, o quizá imposible, de aprehender. 

¿Qué es un infinitésimo? Un infinitésimo sería un segmento 
«infinitamente pequeño», un objeto matemático a medio camino 
entre un punto de longitud cero y un segmento pequeñísimo. En 
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FIG.12 

y 

otras palabras, sería una línea más 
pequeña que cualquier otra línea 
concebible, pero que, no obstante, 
no se reduce a ser un punto. 

a~--- d+x- ------~b 

dx = infinitésimo 

Pensemos entonces en cada 
segmento perpendicular a la base, 

~---- -- -- - no como un segmento matemático, 
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sino como un rectángulo de base 
infinitesimal dx (figura 12); dx es la escritura que usaba Leibniz 
para los infinitésimos y que hoy en día, como veremos enseguida, 
se usa todavía en algunas nomenclaturas del cálculo. 

La figura no es pensada entonces como una suma de segmen­
tos, sino como la suma de rectángulos de base infinitesimal. El 
reemplazo de segmentos por rectángulos de base infinitesimal 
tiene una doble ventaja; por un lado, como la base de cada rec­
tángulo es una línea infinitesimal (y no es un punto), entonces el 
rectángulo no tiene área igual a cero, por lo que evitamos la para­
doja anterior. Por otra parte, como la base de cada rectángulo es 
infinitamente pequeña, se logra llenar todos los intersticios de la 
figura sin dejar nada descubierto. 

La base de cada rectángulo es entonces dx y su altura es y. 
Por lo tanto, el área de cada rectángulo de base infinitesimal es 
y • dx, que también se puede escribir, omitiendo el punto de mul­
tiplicación, como y dx. Para calcular el área de la figura, en teoría 
tendríamos que sumar todos los y dx para x entre a y b; Leibniz 
escribía esta idea de la siguiente forma: 

b 

fydx. 
a 

La línea curvada que aparece a la izquierda del símbolo es 
una letra S deformada (por la inicial de summa, que es suma en 
latín). El símbolo completo se llama integral y es usado todavía 
hoy para representar el área de la figura limitada por una curva y 
un segmento ( además de tener muchísimas otras aplicaciones en 
el cálculo). Y así como el método de Eudoxo le permitió deducir 
la fórmula para calcular el área de un círculo, de la misma forma, 
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el pensar en· las figuras como formadas por rectángulos de base 
infinitesimal permite, mediante razonamientos adecuados, hallar, 
por ejemplo, la fórmula para calcular el área encerrada por una 
elipse, así como por cualquier otra curva. 

LA FUNDAMENTACIÓN LÓGICA 

Pero todo el desarrollo anterior se basa en un concepto bastante 
dudoso porque, ¿qué significa que un segmento sea más pequeño 
que cualquier otro segmento concebible? Esto querría decir ob­
viamente que no hay ningún segmento más pequeño que él, pero, 
si lo partimos en dos, ¿no obtenemos de ese modo un segmento 
menor? 

El concepto de infinitésimo parece autocontradictorio y hay 
que decir que tanto Newton como Leibniz eran perfectamente 
conscientes de ello. Por ejemplo, en su primera exposición del 
cálculo, en 1680, en un artículo de seis páginas titulado «Un nuevo 
método para los máximos y los mínimos, así como para las tan­
gentes, que no se detiene ante cantidades fraccionarias o irracio­
nales, y es un singular género de cálculo para estos problemas», 
Leibniz expone las fórmulas que se deducen de los razonamientos 
basados en infinitésimos, pero omite hacer cualquier referencia 
a los infinitésimos en sí. Los hermanos Jean y Jacques Bernoulli, 
grandes matemáticos suizos de aquella época, comentaron que el 
trabajo de Leibniz era «más un enigma que una explicación». Por 
su parte, Newton decidió más adelante abandonar directamente 
la idea de infinitésimo y reemplazarla por el concepto, no menos 
oscuro en realidad, de «fluxiones» y «fluyentes», una idea que no 
es necesario explicar aquí. 

Ahora bien, ¿por qué se aceptó el cálculo, si su base lógica era 
tan endeble? La respuesta es que si se suspendía la incredulidad y 
se aceptaba la existencia de los infinitésimos, así como la validez 
de los razonamientos basados en ellos, las fórmulas que se obte­
nían a partir de esos razonamientos eran totalmente correctas. 
Las integrales permitían - y permiten hoy en día- la obtención 
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de áreas y volúmenes que estaban totalmente fuera del alcance de 
los métodos de la geometría griega ( como el área de superficies 
con forma de silla de montar o el volumen de cuerpos aovados). 
A lo largo del siglo xvur, de la mano, entre otros, de los hermanos 
Bernoulli y de Leonhard Euler, el cálculo diversificó sus métodos 
y sus aplicaciones, y se volvió, entre otras cosas, indispensable 
para la física matemática, que no podría haber existido sin él. 

Pero precisamente a causa de esa indispensabilidad del cál­
culo, con el correr de las décadas se volvió cada vez más impe­
riosa la necesidad de darle una fundamentación lógica precisa, 
la necesidad de basar sus razonamientos en conceptos claros e 
indubitables. Esta tarea de fundamentar lógicamente el cálculo 
fue emprendida por muchos matemáticos a lo largo del siglo xrx, 
entre ellos Karl Weierstrass, Richard Dedekind y Georg Cantor. 

LOS NÚMEROS REALES REVISIT ADOS 

El aporte más importante de Weierstrass en cuanto a la fundamen­
tación del cálculo fue la introducción del concepto de límite, que 
eliminó definitivamente a los infinitésimos (a pesar de eso, como 
dijimos antes, la escritura dx sobrevive todavía en algunas nomen­
claturas). Sin entrar en detalles técnicos, podemos decir que el 
límite básicamente sustituye la idea de un segmento infinitamente 
pequeño por la idea de un segmento que es solo en potencia infi­
nitamente pequeño. Es decir, en lugar de pensar en rectángulos 
de base infinitesimal, pensamos en rectángulos normales que se 
van afinando cada vez más hasta hacerse tan estrechos como se 
desee. Razonando en base a esta idea dinámica de magnitudes que 
se van haciendo cada vez más pequeñas (infinitamente pequeñas, 
pero solo en potencia) es posible llegar a las mismas fórnmlas que 
se obtenían en base a los infinitésimos, pero ahora sobre una base 
lógica más segura. 

Sin embargo, Weierstrass no hablaba de segmentos ni de 
rectángulos, sino que expresaba todas sus ideas numéricamente, 
en base a fórmulas. Dijimos antes que un segmento podía pen-
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sarse como la parte de la recta numérica comprendida entre dos 
números a y b. Para Weierstrass, en cambio, un segmento era 
directamente la colección (infinita en potencia) de los números 
reales entre a y b; el concepto geométrico de segmento ni siquiera 
aparecía en sus razonamientos. La noción de límite, por ejemplo, 
aunque nosotros la hemos asociado a segmentos y rectángulos, 
W eierstrass la expresaba completamente en términos de opera­
ciones numéricas. 

Esto se debe a que a lo largo del siglo XJX el cálculo se fue 
alejando cada vez más de su base geométrica hasta descartarla 
completamente; un proceso largo y difícil, considerando que hasta 
ese momento la geometría clásica griega había sido la base indis­
cutible de todo razonanúento matemático. En la historia de las 
matemáticas, este proceso se conoce como la «aritmetización del 
cálculo» y consiste, entonces, en el reemplazo de los razonanúen­
tos de tipo geométrico ( que trataban con objetos esencialmente 
estáticos) por razonamientos basados exclusivamente en fórmu­
las y en números, particularmente en los números reales (que per­
mitían razonamientos «dinámicos», como exigía, por ejemplo, la 
idea de límite). Por lo tanto, para que el cálculo tuviera una base 
lógica sólida a toda prueba se necesitaba ante todo una definición 
lógicamente rigurosa de los números reales, una definición que a 
su vez careciera de todo concepto geométrico. 

¿ Qué son los números reales? Decíamos en el capítulo ante­
rior que la propiedad esencial de los números reales, la propiedad 
que los define y caracteriza, es el hecho de que completan toda la 
recta numérica, es decir, el hecho de que a cada punto de la recta 
le corresponde un número real, así como a cada número real le 
corresponde un punto de la recta. Pero, a finales del siglo XIX, 

esta definición no era satisfactoria porque, como ya hemos co­
mentado, se buscaba una definición de los números reales que no 
apelara a conceptos geométricos. Pero, ¿cómo se puede expresar 
el hecho de que completan toda la recta sin hablar de «recta» ni 
de «punto»? Esta pregunta constituye el llamado «problema del 
continuo» ( «continuo» era el término que se usaba en aquella 
época para referirse a la recta numérica), y en la segunda mitad 
del siglo XIX llegó a ser una cuestión central del cálculo. 
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En Halle, a principios de la década de 1870, Cantor, que había 
sido alumno de W eierstrass en Berlín y estaba, por lo tanto, muy 
compenetrado con el problema de la fundamentación del cálculo, 
comenzó a trabajar en la búsqueda de una definición rigurosa de los 
números reales. Finalmente, expuso sus conclusiones en un artículo 
que tituló «Über die Ausdehnung eines Satzes aus der Theorie der 
trigonometrischen Reihen» [Sobre la extensión de un teorema de la 
teoría de las series trigonométricas], publicado en 1872 en Mathe­
matische Annalen. Antes, Dedekind había trabajado también en el 
mismo problema, lo que provocó entre ambos algunas fricciones 
por cuestiones de prioridad. 

La definición que encontró Cantor se basa en el concepto de 
sucesión fundamental. Dijimos en el capítulo anterior que una su­
cesión está formada por un primer número, luego otro, luego otro, 
y así siguiendo. Una sucesión fundamental, según Cantor, es una 
sucesión formada por números racionales en la cual, a medida que 
se avanza por ella, la diferencia entre dos términos cualesquiera, 
sean o no consecutivos, se hace tan pequeña como se desee. 

Tomemos, por ejemplo, la sucesión formada por los números 
3,1; 3,14; 3,141; 3,1415; 3,14159; 3,141592; 3,1415926; 3,14159265; 
3,141592653; 3,1415926535; ... (en cada paso, estamos agregando un 
dígito de la expresión decimal den). Observemos que, por ejemplo, 
del quinto término en adelante, todos los números de la sucesión 
comienzan con 3,14159 ... Esto quiere decir que a partir del quinto 
número la diferencia entre dos términos de la sucesión, sean o no 
consecutivos en ella, comienza con cinco ceros inmediatamente 
detrás de la coma decimal y es, por lo tanto, menor que 0,00001 
( que tiene solo cuatro ceros detrás de la coma decimal). De manera 
similar, a partir del sexto número la diferencia entre dos términos 
de la sucesión, consecutivos o no, es menor que 0,000001; a partir 
del séptimo, la diferencia entre dos términos de la sucesión, conse­
cutivos o no, es menor que 0,0000001; y así sucesivamente. 

Concluimos entonces que 3,1; 3,14; 3,141; 3,1415; 3,14159; 
3,141592; 3,1415926; 3,14159265; 3,141592653; 3,1415926535; ... es 
una sucesión fundamental. 

Para Cantor, la propiedad que define a los números reales 
está dada por el hecho de que a cada sucesión fundamental le 
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corresponde un número real y, recíprocamente, a cada número 
real le corresponde una sucesión fundamental. Todo número real 
está definido por una sucesión fundamental; la sucesión del ejem­
plo ante1ior define, obviamente, el número n. 

Una aclaración importante es que no debe confundirse lo que 
hemos dicho más arriba con la existencia de una corresponden­
cia uno-a-uno entre sucesiones fundamentales y números reales; 
porque, aunque a cada sucesión le corresponde un solo número 
real, en realidad diferentes sucesiones pueden corresponderse 
con el mismo número. Por ejemplo, la sucesión 3,1; 3,141; 3,14159; 
3,1415926; 3,141592653; ... , que se obtiene agregando cada vez dos 
dígitos de n, es una sucesión fundamental diferente a la anterior 
que también se corresponde con el número n. 

¿Cómo sabernos que 0,110001000000000000000001000 ... , es 
decir, el número de Llouville existe?¿ Cómo podernos asegurar que 
esa expresión representa en verdad un número real? (Recuérdese 
que Kronecker rechazaba esa afirmación.) Para Cantor, basta con 
mostrar una sucesión fundamental asociada a ese número, que en 
este caso es 0,1; 0,11; 0,110001; ... La existencia de esa sucesión 
fundamental, según Cantor, garantiza la existencia del número. 

Veamos cómo la definición de Cantor expresa, tal corno debe 
ser, el hecho de que a cada punto de la recta numérica le corres­
ponde un número real. 

Recordemos que a los números O y 1 se les asignan puntos 
arbitrarios de la recta y que, una vez que estos han sido elegidos, 
quedan totalmente determinadas las posiciones que corresponden 
a todos los números racionales. Supongamos ahora que tenernos 
un punto P al que no le ha correspondido ningún número racional 
(figura 13). ¿ Cómo podernos asegurar que a ese punto Ple corres­
ponde un número ( obviamente irracional)? 

Para asegurarlo, tornarnos una 
sucesión de puntos que correspon­
dan a números racionales y que 
estén cada vez más cerca del punto 
P. Los números racionales en cues­
tión formarán una sucesión funda­
mental, a esa sucesión fundamental 

FIG. 13 

3.1 3.14 
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le corresponderá un número real, y ese número real será el que le 
corresponda al punto P. En el ejemplo de la figma 13, al punto P 
le corresponde el número n:. 

Pero, para Cantor, además, y alú es donde llegamos al infinito, 
otra propiedad fundamental del continuo es el hecho de que no es 
numerable ( cabe recordar que una colección es numerable si es 
coordinable con los números natmales ), y en una serie de seis artí­
culos publicados entre 1879 y 1882 en losMathematischeAnnalen 
propuso, entre otras cuestiones relacionadas con los cardinales in­
finitos, definiciones alternativas del continuo en las que se incluía 
a la no numerabilidad como una de sus características esenciales. 

Observemos, por cierto, que el hecho de que los puntos de un 
segmento formen una colección no nun1erable pemúte resolver la 
paradoja de Aristóteles. Recordemos que esta paradoja dice que 
si un segmento estuviera formado por puntos, entonces, como 
cada punto tiene longitud cero, la longitud total del segmento 
sería O+ O+ O+ O+ ... = O. Ahora bien, ¿cuántos ceros estamos 
sumando? La respuesta es que estamos sumando infinitos ceros, 
pero, ¿infinito de qué cardinal? 

Cuando escribimos O + O+ O + O+ ... , el cardinal de los ceros 
que estamos sumando es ., .. , ..... , .. , .. , .. , .. , .... , que es el de los natmales. 
¡Estamos sumando solamente una cantidad numerable de ceros! 
La suma de una cantidad numerable de ceros es, en efecto, cero, 
y es por eso que el continuo no puede ser numerable. Pero las 
sumas no numerables tienen reglas propias que son diferentes a 
las de las sumas nun1erables y, curiosamente, una suma de una 
cantidad no numerable de ceros puede dar como resultado un 
número mayor que cero. De este modo, tal como decía Cantor, 
vemos que la distinción entre lo numerable y lo no numerable 
tiene un papel fundamental en la definición de los números reales 
y, por lo tanto, en el cálculo. 

Pero el cuadro todavía no está completo. ¿Por qué el artículo 
en el que Cantor define los números reales incluye en su título 
la expresión «series trigonométricas»? ¿ Qué son las series trigo­
nométricas y qué papel tuvieron en el pensamiento de Cantor? 
Hablaremos de ello en el próximo capítulo. 
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CAPÍTULO 4 

Los ordinales infinitos 

En 1883 Ge9rg Cantor publicó un artículo 
titulado «Fundamentos para una teoría general de 

variedades», trabajo que marcó el punto culminante de su 
creatividad matemática. En ese artículo define por primera 

vez toda una colección de números infinitos, a los que llamó 
ordinales. El germen de las ideas que Cantor expuso en 
ese trabajo histórico ya estaba presente en un artículo 

que había escrito más de diez años antes, pero para 
poder desarrollarlas plenamente tuvo que vencer 

los condicionamientos psicológicos que 
la época le imponía. 





Decíamos en el capítulo anterior que Georg Cantor y Richard Dede­
kind tenían muchos puntos en común en su modo de pensar las mate­
máticas, y una de las cuestiones en las que coincidían especialmente 
era en la necesidad de introducir nociones cortjuntistas en los razona­
mientos matemáticos. Pero, ¿qué son «conceptos cortjuntistas»? Para 
entenderlo, debemos preguntarnos ante todo qué es un cortjunto. 

En su artículo de 1883, titulado «Fundamentos para una teo­
ría general de variedades», con el subtítulo «Una investigación 
matemático-filosófica sobre la teoría del infinito», publicado priva­
damente por Cantor como una monografía separada-el mismo ar­
tículo de las «notables aclaraciones» que mencionan1os en el primer 
capítulo, y del que hablaremos en detalle en este-, Cantor decía: 

Mannigfaltigkeit,slehre [teoría de variedades]. Con esta palabra de­
signo el concepto de una doctrina muy amplia, que hasta ahora solo 
he tratado de elaborar bajo la forma especial de una teoría de con­
juntos aritméticos o geométricos. A saber, entiendo en general por 
vaiiedad o cor\junto toda multiplicidad que puede ser pensada como 
unidad, esto es, toda colección de elementos determinados que pue­
den ser unidos en una totalidad mediante una ley. 

En un artículo de 1895, al que volveremos en el capítulo si­
guiente, Cantor exponía, más brevemente: 
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Por un conjunto [Menge, en alemán] entenderemos la reunión en un 
todo de objetos definidos y separados de nuestra intuición o nuestro 
pensamiento. 

Es decir, «conjunto» es sinónimo de «colección», tal como 
hemos venido usando esta palabra hasta ahora. La importancia 
crucial que tuvieron estas definiciones en el desarrollo del pen­
samiento matemático es que establecen que un conjunto es un 
objeto en sí mismo diferente en su esencia de los entes que lo for­
man. Algunos años más tarde, el lógico británico Bertrand Russell 
(1872-1970) ilustraría esta diferencia al decir que «una colección 
de caballos no es un caballo». 

«Un conjunto es como un saco cerrado, que contiene cosas 
completamente determinadas, pero de modo que uno no las ve, 
y no sabe nada de ellas salvo que existen y están bien 
determinadas.» 
- RICIIARD DEDEKIND AL MATEMÁTICO ALEMÁN FELIX BERNSTEIN EN 1899. 
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Por ejemplo, el conjunto de todos los números racionales, 
que suele indicarse con la letra Ql, tiene propiedades específicas 
solamente atribuibles a Ql como un todo y no a los números ra­
cionales individualmente, como la propiedad de ser numerable. 
En este caso, además, en el que hablamos de Ql como un todo 
existente en acto, se muestra que la definición de conjunto implica 
inmediatamente la aceptación del infinito actual. 

Ahora bien, así como podemos efectuar operaciones entre 
números, tales corno la suma o la multiplicación, de la misma ma­
nera podemos efectuar operaciones entre conjuntos, como por 
ejemplo la unión. Si tenemos dos colecciones, su unión se define 
como el conjunto que se obtiene al reunir en un todo a los objetos 
que forman cada una de esas dos colecciones. Por ejemplo, si lla­
mamos N al conjunto de los números naturales, cuyos miembros 
son los números O, 1, 2, 3, ... , y N' al conjunto formado por los 
números -1, -2, -3, ... , entonces la unión de N y N' es el conjunto 
de los números enteros, que suele indicarse con la letra Z (por la 
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N 
Conjunto de los 

números naturales 

O, 1, 2, 3, 4, ... 

\ 
NUN' 

Números enteros 

N' 
Conjunto de los 

enteros negativos 

. .. , -4, -3, -2, -1 

/ 
... , -4, -3, -2, -1, o, 1, 2, 3, 4, ... 

inicial de la palabra Zahl, que en alemán significa número) y que 
contiene simultáneamente a los miembros de N y de N'. En símbo­
los matemáticos se escribiría N UN'= Z (véase la figura). 

Una propiedad que Cantor enuncia en su artículo de 1895, y 
que está ilustrada en la figura, es que la unión de dos conjuntos 
numerables da siempre como resultado un conjunto numerable. 
El estudio de las propiedades, que, como esta que acabamos de 
enunciar, se refieren a las colecciones en tanto que objetos en sí 
mismos, constituye la llamada teoría de conjuntos, y .Cantor es 
considerado su creador por haber sido el primero en concebir la 
idea de estudiar esta clase de propiedades. Al mismo tiempo, uno 
de los aspectos más importantes de la teoría de cortjuntos es el es­
tudio de los cardinales de las colecciones infinitas, y es por ese mo­
tivo que en el primer capítulo dijimos que la teoría de cortjuntos y la 
teoría del infinito matemático son esencialmente la misma teoría. 

PUNTOS EN COMÚN 

¿Estamos diciendo que la teoría de conjuntos nació en 1883? 
¿Cómo es posible entonces que en fecha tan temprana corno 1872, 
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La unión de 
dos conjuntos 
contiene a la vez 
a los elementos 
de uno y otro 
conjuntos. 
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EL INFINITO DE BOLZANO 

El matemático Bernard Bolzano, nacido 
en Praga en 1871. escribió Paradojas del 
infinito, libro publicado póstumamente 
en 1851. tres años después de su muerte. 
En esa obra, Bolzano adelantó algunas 
de las ideas que Cantor publicaría años 
después, aunque no llegó a darse cuen­
ta de que existen diferentes niveles de 
infinitud, ni logró tampoco desarrollar 
una teoría coherente del infinito mate­
mático. 

Cantor y Dedekind estuvieran ya de acuerdo en introducir en las 
matemáticas conceptos conjuntistas? Desarrollemos con cuidado 
las respuestas a estas dos preguntas. 

Como relatamos en el capítulo anterior, en 1872 Cantor pu­
blicó un artículo en el que proponía una solución para el problema 
del continuo; problema que, recordemos, pedía hallar una defini­
ción de los números reales que no apelara a conceptos geomé­
tricos. Es importante mencionar que ya por entonces Cantor era 
consciente de que ese problema lo llevaría a considerar coleccio­
nes infinitas en acto. 

En el mismo año, Dedekind publicó una solución para el pro­
blema del continuo similar a la de Cantor, basada en un concepto 
hoy conocido como «cortaduras de Dedekind». Se entiende en­
tonces por qué en 1872 Cantor y Dedekind encontraron que tenían 
mucho en común en cuanto a su modo de pensar las matemáticas. 

Pero, como decía Cantor en la cita de 1883 que mostramos al 
comienzo de este capítulo, hasta mediados de la década de 1880 
tanto él como Dedekind admitían solan1ente colecciones forma­
das por números o por puntos geométricos, no por objetos cuales­
quiera. Las respuestas a las preguntas del inicio de este apartado 
son, entonces, que aunque en la década de 1870 tanto Cantor 
como Dedekind empleaban ya conceptos conjuntistas en sus tra-
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bajos, esos conceptos todavía no eran aprovechados en toda su 
potencia, porque solamente se aplicaban a colecciones formadas 
por números o por puntos geométricos. La posibilidad de que un 
conjunto estuviera formado por objetos cualesquiera no apareció 
hasta 1883 en el trabajo antes citado, aunque en él, como veremos, 
Cantor todavía se restringía a colecciones formadas por números, 
aunque números de un tipo muy especial. 

Hay que decir, sin embargo, que el salto conceptual hacia la 
admisión de colecciones formadas por objetos de cualquier tipo 
estaba ya latente en la definición de cardinal, que Cantor publicó 
en 1877. En efecto, cuando Cantor dice que el cardinal es la pro­
piedad de una colección que se obtiene al hacer abstracción de la 
naturaleza de los miembros que la forman, queda claro que está 
diciendo que no importa qué objetos formen la colección. Si en 
una colección cualquiera reemplazamos, por ejemplo, a los nú­
meros o a los puntos por letras, por ideas o por cualquier otro 
objeto, el cardinal será exactamente el mismo, ya que la idea de 
cardinal, precisamente, no toma en cuenta cuál es la naturaleza 
de los miembros de la colección. 

CONFLICTOS PERSONALES 

El artículo de 1883, titulado «Fundamentos para una teoría ge­
neral de variedades», que estudiaremos más adelante, marcó el 
punto culminante de la carrera científica de Cantor; sin embargo, 
ese período de su vida estuvo marcado al mismo tiempo por serios 
problemas personales. 

El 21 de octubre de 1881 falleció Eduard Reine, quien había 
dirigido las primeras investigaciones de Cantor en Halle. Cantor 
concibió entonces un proyecto ambicioso; dado que se le impe­
día acceder a universidades de renombre como las de Berlín o 
Gotinga, decidió llevar a Halle a investigadores de prestigio que 
fueran afines al estudio del infinito con el objetivo de crear allí 
un polo de poder. Como primer paso en esa dirección, logró per­
suadir a las autoridades de la universidad de que le ofrecieran a 

LOS ORDINALES INFINITOS 97 



Dedekind el puesto que había quedado vacante. Sin embargo, para 
sorpresa y decepción de Cantor, Dedekind declinó el ofrecimiento 
y el puesto fue ocupado finalmente por Albert W angerin, un geó­
metra de segundo orden totalmente ajeno a las ideas de Cantor. 

No se conocen los motivos exactos por los que Dedekind re­
chazó la oferta de la Universidad de Halle, pero la verdad es que 
desde hacía casi veinte años vivía en su ciudad natal de Braun­
schweig, donde era director del colegio en el que él mismo había 
estudiado y donde realizaba sus investigaciones matemáticas a 
su propio ritmo, sin presiones, por lo que quizá el motivo fuera 
simplemente que no queria cambiar ese estilo de vida. 

«Me imagino un conjunto como un abismo.» 
- GEORG CANTOR AL MATEMÁTICO ALEMÁN FELIX BERNSTEIN EN 1899. 
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Sin embargo, Cantor se resintió mucho por el rechazo y las 
relaciones entre ambos se enfriaron rápidamente, hasta que a fi­
nales de 1882 la correspondencia que habían mantenido desde 
hacía diez años, así como cualquier otro contacto entre ellos, se 
interrumpió por completo. 

Casi al mismo tiempo en que daba por terminada su corres­
pondencia con Dedekind, Cantor comenzó a escribirse con el 
sueco Gasta Mittag-Leffler, un matemático de primer nivel que, 
como Dedekind, apoyaba también las investigaciones acerca del 
infinito. En ese mismo año de 1882, Mittag-Leffler había fundado 
la revista Acta Mathematica, en la que Cantor encontró un espa­
cio favorable para publicar sus trabajos, un espacio que estaba 
fuera de la esfera de influencia de Kronecker. Entre 1883 y 1885 se 
publicaron en Acta Mathematica tres artículos en los que Cantor 
estudiaba cuestiones vinculadas con su resolución del problema 
del continuo. 

Pero la relación con Mittag-Leffler no duró mucho. En 1884, el 
matemático sueco convenció a Cantor de que retirara un artículo 
que había enviado para su publicación; la intención de Mittag­
Leffler era completamente favorable a Cantor, ya que entendía 
que el trabajo, titulado «Principios de una teoria de los tipos de 
orden», era demasiado especulativo y carecía de resultados claros 
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y concisos, por lo que podía resultar negativo para la imagen de 
la teoría de conjuntos. Mittag-Leffler le escribió a Cantor que pu­
blicar demasiado sin presentar resultados tangibles podía llevar a 
su teoría al descrédito, y que en ese caso quizá tendrían que pasar 
más de cien años hasta que sus ideas fueran redescubiertas. Pero 
Cantor tomó a mal la recomendación de Mittag-Leffler, pues la 
interpretó en el sentido de que terúa que esperar cien años para 
publicar sus ideas: 

¡De haberle hecho caso a Mittag-Leffler, debería haber esperado has­
ta el año 1984, lo que me pareció una demanda excesiva! [ ... ) Pero, 
por supuesto, no quiero volver a saber nada de Acta Mathematica. 

Cantor escribió estas palabras en 1885 y a partir de ese mo­
mento interrumpió toda relación con Mittag-Leffler; además, fiel 
a lo que había escrito, nunca volvió a enviar un trabajo a Acta 
Mathematica. El artículo «Principios de una teoría de los tipos de 
orden» jamás fue publicado. 

En esa época, Cantor estaba pasando por uno de los períodos 
más oscuros de su vida. Abandonado, según él lo entendía, por 
Dedekind, acosado por sus detractores, cerrado su acceso larga­
mente deseado a Berlín o a Gotinga, e imposibilitado de crear un 
polo de poder en Halle, en mayo de 1884 cayó en una profunda 
depresión de la que tardaría mucho tiempo en recuperarse. La ver­
dad es que la creatividad matemática que había brillado en 1883 en 
los «Fundamentos para una teoría general de variedades» se había 
apagado y no renacería hasta la década de 1890. 

En esos años intermedios, Cantor publicó algunos artículos 
en los que exploraba, con escaso éxito, consecuencias filosóficas, 
así como posibles aplicaciones a la física de su teoría del infinito. 
También se obsesionó con la idea de que las obras de William 
Shakespeare habían sido escritas en realidad por Francis Bacon, 
una teoría que surgió a mediados del siglo XVIII y que es conside­
rada absurda por muchos estudiosos, aunque en la actualidad tiene 
todavía algunos seguidores. Cantor gastó una considerable canti­
dad de dinero en la adquisición de ediciones antiguas de las obras 
de Shakespeare y finalmente publicó tres monografías al respecto. 
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GOSTA MITTAG-LEFFLER 

Magnus Gósta Mittag-Leffler nació en 
Estocolmo, Suecia , el 16 de marzo de 
1846; fue un joven muy talentoso, con 
diversos intereses que incluían la cien­
cia y la literatura. En 1865 ingresó en la 
Universidad de Upsala, también en Sue­
cia, para estudiar la carrera de actuario, 
pero al poco tiempo se inclinó por las 
matemáticas y en 1872 obtuvo su doc­
torado. Mittag-Leffler hizo importantes 
contribuciones al cálculo, la geometría 
analítica, la teoría de probabilidades y la 
teoría de funciones; fue miembro de casi 
todas las sociedades matemáticas euro­
peas y recibió doctorados honorarios de 
las universidades de Oxford, Cambridge, 
Bolonia y Oslo, entre otras. En 1882 fundó la revista Acta Mathematica, que 
hoy en día todavía se publica, y de la que fue su editor hasta que falleció, el 
7 de julio de 1927. 

SERIES TRIGONOMÉTRICAS 

Pero volvamos al año 1883 y a los «Fundamentos para una teoría 
general de variedades», el momento más brillante de la carrera 
de Cantor. En realidad, el relato de la redacción de ese artículo 
histórico nos lleva a 1869, año de la llegada de Georg Cantor a 
Halle y al problema que Eduard Reine le propuso como tema de 
investigación, un problema relacionado con las series trigono­
métricas o series de Fourier. 

¿Qué es una serie trigonométrica? Imaginemos que tenemos 
un resorte que cuelga verticalmente de su extremo superior y que 
sostiene en su extremo inferior libre un cierto peso. Esta situación 
se representa en la posición A de la figura 1, en la que no se mues­
tran muchos objetos, sino las diferentes posiciones que ocupará 
el mismo resorte. 
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Ahora tiramos del peso hacia abajo hasta que llega a la po­
sición B y luego lo soltamos. El resorte comenzará a dilatarse y 
a contraerse, pasando sucesivamente por las posiciones C, D, E 
y F, además de todas las intermedias. Imaginemos también que 
estamos en una situación ideal en la que el resorte nunca deja 
de moverse y vuelve siempre perfectamente a sus posiciones de 
máxima contracción (D en la figura 1) y de máximo estiramiento 
(By F, en la figura 1). Si conectamos las sucesivas posiciones del 
peso inferior con una curva, esta nos dará una descripción mate­
mática del movimiento del resorte (figura 2). 

FIG.1 

B F 

FIG. 2 

B F 
D 

B F 
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FIG. 3 
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Observemos que, debido a que 
el peso pasa una y otra vez por 
las mismas posiciones, entonces 
el gráfico repite una y otra vez el 
mismo dibujo, esta característica 
se expresa diciendo que el gráfico 
es periódico. Ahora bien, los mate-

máticos del siglo xvm se dieron cuenta de que eran muchos los 
fenómenos físicos - tales como los relacionados con la propaga­
ción de un sonido o la propagación del calor- que podían des­
cribirse mediante gráficos periódicos. Además, observaron que 
a veces esos gráficos tenían discontinuidades, es decir, saltos 
abruptos; observemos, por ejemplo, la figura 3. 

El gráfico en sí está formado por las sucesivas líneas oblicuas, 
y corno vernos, al dibujarlo, tenemos que «saltar» del extremo su­
perior de cada línea al extremo inferior de la siguiente. 

En la figura 3 ya no se describe un movimiento físico, sino 
la intensidad de una señal sonora; la línea horizontal representa 

UNA PARADOJA 

¿cuál es el resultado de 1 - 1 + 1 - 1 + 1 - ... , 
donde las operaciones continúan infinita­
mente? El matemático alemán Gottfried 
Wilhelm von Leibniz (1646-1716) asegu­
raba que el resultado de ese «cá lculo 
infinito» es 1/2. Veamos cuál era su ra­
zonamiento. Llamemos 5 al resultado del 
cálculo, entonces: 

1-1+1-1+1- ... =S 
1-(1-1+1-1- ... )=S. 

En el paréntesis hay un 1 menos que en 
el cálculo original, pero como la cantidad 
de números 1 es infinita, al quitar uno de 
ellos no estamos cambiando nada ; es 
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la intensidad nula, o el silencio. Veamos cómo se interpreta el 
gráfico bajo estas condiciones. Al principio estamos en silencio y 
enseguida una señal sonora comienza a aumentar gradualmente 
de intensidad ( esto se ve en que la primera línea oblicua sube); el 
sonido llega a su intensidad máxima y cae el silencio, pero inme­
diatamente el sonido comienza a subir de intensidad exactamente 
igual que antes, hasta llegar una vez más al mismo nivel máximo 
de intensidad ( esto se ve en que la segunda línea oblicua sube 
igual que la primera); cae otra vez el silencio, y el mismo esquema 
vuelve a repetirse una y otra vez. 

A principios del siglo XIX, el matemático francés Joseph 
Fourier (1768-1830) desarrolló un método que le permitía escri­
bir cualquier gráfico periódico como la suma de ciertas curvas 
específicas muy sencillas, curvas que se describen matemática­
mente mediante fórmulas llamadasfunciones trigonométricas. 
Estas sumas, a su vez, acostumbran a involucrar una cantidad 
infinita (en potencia) de curvas, y como en matemáticas a las 
sumas infinitas se las suele llamar series, el método recibe 

decir, el resultado del paréntes is sigue siendo S . Tenemos así que 1- 5 = S, 
de donde deducimos que 5 vale 1/2. Pero también podemos agrupar de la 
siguiente manera: 

1-1 +l-1 +1-... =(1-1)+(1-1)+(1-l)+ ... = 0+0+0+ ... =0. 

El cálculo entonces daría cero como resultado. O también podemos agrupar 
así: 

1- 1 +1-1 +1- ... =1-(1-1)-(1-1)-... =1-0-0- .. . =1, 

por lo que el resultado sería l. ¿cuál es entonces el resultado correcto, 1/2, O 
o 1? Paradojas como esta preocuparon durante décadas a los matemáticos, 
hasta que, finalmente, en el siglo x1x se descubrieron las reglas correctas para 
operar con sumas o restas infinitas. La respuesta al dilema es que el cálculo 
1 - 1 + 1 - 1 + 1-... no da ningún resultado. En otras palabras, su supuesto resultado 
en realidad no existe. El razonamiento de Leibniz falla, precisamente, porque 
5 no es una cantidad existente. 
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actualmente el nombre de descomposición en series trigono­
métricas o, también, en series de Fourier. Gracias a la descom­
posición en series trigonométricas, Fourier pudo estudiar con 
gran éxito un muy importante número de fenómenos físicos; y 
hoy en día este método sigue siendo una herramienta fundamen­
tal en muchas ramas de las matemáticas, así como de la física y 
de la ingeniería. 

DESCOMPOSICIÓN ÚNICA 

En la década de 1860, en Halle, Eduard Reine trabajaba en el pro­
blema de determinar si la descomposición de un gráfico periódico 
como serie de Fourier siempre es única. Dicho de otra manera, la 
cuestión que se planteaba Reine es si podría llegar a suceder que 
un gráfico periódico tuviera dos escrituras diferentes como serie 
trigonométrica. 

Reine logró demostrar que si el gráfico no tiene «saltos» o 
discontinuidades, entonces la descomposición es, en efecto, única. 
Sin embargo, no había encontrado una demostración general que 
abarcara todas las situaciones posibles. Por ejemplo, no había 
podido demostrar la unicidad en el caso de que en cada período 
--que es como se llama al dibujo básico que se repite una y otra 
vez- hubiera una cantidad infinita (en potencia) de saltos. De 
modo que, cuando Cantor llegó a Halle en 1869, Reine le propuso 
que trabajara en la cuestión de si es siempre única la descomposi­
ción de un gráfico periódico, aun cuando la cantidad de saltos en 
cada período pudiera crecer indefinidamente. 

Cantor estudió el problema y en 1870 obtuvo una primera res­
puesta; la descomposición es única siempre y cuando los saltos 
estén distribuidos de una determinada manera. Es decir, para que 
se pueda garantizar la unicidad de la descomposición, la manera 
en que los saltos van apareciendo debe cumplir ciertas condicio­
nes específicas. En realidad, tal como vimos en el capítulo ante­
rior, los puntos de un gráfico tienen dos coordenadas, una abscisa 
y una ordenada, y eran las abscisas de los saltos las que debían 
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SUMAS INFINITAS 

Los matemáticos que trabajaron a lo 
largo del siglo x1x en el problema de la 
fundamentación del cálculo descubrieron 
que las series, es decir, las sumas infini­
tas, tienen reglas propias que pueden ser 
muy diferentes de las reglas conocidas 
para las sumas finitas habituales. Por 
ejemplo, en 1854 el matemático alemán 
Bernhard Riemann (1826-1866) demostró 
que ciertas sumas infinitas no son con­
mutativas, es decir, pueden ser reorde­
nadas de tal modo que se obtenga un re­
sultado diferente. Un ejemplo es la serie 

1 + (-2)+ 2+ (-2)+ .2. + ... 
2 3 4 5 ' 

cuya suma es 0,6931471..., pero que pue-
de ser reordenada de modo que se ob- Georg Friedrich Bernhard Riemann hacia 

tenga cualquier resultado que se desee. 1s62. 

cumplir esas condiciones. Pero Cantor encontró algunas dificulta­
des a la hora de expresar esos requisitos de una manera concreta, 
exacta y elegante. Seguramente tenía una intuición muy precisa 
de cuáles eran esas particularidades que quería enunciar, pero se 
le escapaba el modo de transmitirlas en palabras claras y precisas. 

CONJUNTOS DERIVADOS 

Entre 1870 y 1872, Cantor publicó cinco artículos en los que fue 
dando forma definitiva a su solución para el problema de unicidad 
de la descomposición en series de Fourier. A lo largo de ese pro­
ceso descubrió, además, su respuesta para el problema del conti-
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nuo y es por eso que su definición de los números reales mediante 
sucesiones fundamentales apareció publicada en el contexto de 
un trabajo sobre series trigonométricas. 

¿Cómo pudo expresar Cantor la condición que deben cumplir 
las abscisas de los puntos de discontinuidad de un gráfico perió­
dico para que su descomposición en serie de Fourier sea única? 
Para lograrlo, Cantor creó el concepto de conjunto derivado, un 
concepto muy relevante para nosotros porque fue el que le puso 
en el camino que lo condujo al artículo histórico de 1883. Veamos 
entonces qué es un conjunto derivado y cómo esa idea le permitió 
a Cantor resolver el problema que le había planteado Reine. 

Para comenzar, recordemos que una sucesión consta de un 
primer número, luego otro, luego otro, y así siguiendo; y recor­
demos asimismo que para nuestros fines solo contarán las suce­
siones formadas por infinitos números, todos diferentes entre sí. 

«La obra de Cantor es el producto más bello del genio 
matemático y uno de los logros supremos de la actividad 
humana puramente intelectual.» 
- DAVID ÜILBERT, MATEMÁTICO ALEMÁN. 

Pensemos en la colección de los números racionales. Es evi­
dente que rc, que es un número irracional, no pertenece a esa colec­
ción; sin embargo, aunque re; no es racional, sí puede aproximarse 
por una sucesión de racionales. Es decir, es posible encontrar 
una sucesión formada exclusivan1ente por números racionales de 
modo tal que, a medida que se avanza por ella, esta nos va mos­
trando números cada vez más cercanos a rc. Un ejemplo, que ya 
se expuso en el capítulo anterior, es la sucesión formada por 3,1; 
3,14; 3,141; 3,1415; . .. , que se obtiene agregando en cada paso una 
cifra de la expresión decimal de rc. 

Lo que acabamos de decir para rc vale para cualquier número 
irracional; cualquiera que sea el irracional que elijamos, siempre 
podrá aproxin1arse por una sucesión de racionales. Y también vale 
para los propios racionales; por ejemplo, si tomamos el número 
0,75, entonces la sucesión 0,751; 0,7501; 0,75001; 0,750001; . . . se va 
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acercando a él tanto como se quiera. En resumen, cualquier número 
real puede aproximarse por sucesiones de racionales ( que es, en 
esencia, la solución de Cantor para el problema del continuo). 

Si Pes un conjunto cualquiera de números, Cantor llamó con­
junto derivado de Pala colección de todos los números que pue­
den aproximarse mediante sucesiones formadas por elementos 
de P; al conjunto derivado de P lo indicó como P'. Si llamamos 
Q al conjunto de los números racionales, el ejemplo anterior nos 
muestra que Q' = IR, donde IR designa al conjunto de todos los nú­
meros reales. 

En sus artículos de comienzos de la década de 1870, Cantor 
planteó la definición de conjunto derivado en términos de infini­
tos potenciales. Sin embargo, la misma escritura Q' nos remite 
inmediatamente a un infinito en acto, dado que Q es la colección 
de todos los números racionales. Por otra parte, como ya obser­
vamos, la definición de Q' nos conduce a las sucesiones y a la 
definición de los números reales. Vemos así cómo el problema de 
las series trigonométricas guió a Cantor hacia los que serían los 
dos ejes fundamentales de sus investigaciones matemáticas pos­
teriores: el infinito en acto y el problema del continuo. 

LA CONDICIÓN DE UNICIDAD 

Tomemos ahora el conjunto P formado únicamente por los núme­
ros O, 1 y 2; el conjunto P' contiene, según la definición de Cantor, 
a todos los números que se puedan aproximar mediante sucesio­
nes formadas por infinitos elementos de P, todos diferentes entre 
sí. Pero es obvio que no hay infinitos elementos de P todos dife­
rentes entre sí, porque P tiene solo tres elementos. 

Como es imposible formar ni siquiera una sola sucesión de 
elementos de P, entonces en P' no hay nada; en esa situación, 
Cantor decía que P' se anula. En la terminología moderna de la 
teoría de conjuntos se diría que P' es el conjunto vacío, el que no 
tiene miembros, pero nosotros conservaremos la expresión origi­
nal de .Cantor. 
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EDUARD HEINE 

Heinrich Eduard Heine nació en Berlín, 
A lemania, el 16 de marzo de 1821, y fue 
el octavo de nueve hermanos. En 1838 
ingresó en la Universidad de Gotinga 

para estudiar matemáticas, pero al año 
siguiente pasó a la Universidad de Berlín, 
donde se doctoró el 30 de abril de 1842. 
Dos años más tarde comenzó a enseñar 
en la Universidad de Bonn y desde 1856, 
en Halle. En esta última universidad, don­
de era muy apreciado por la claridad de 
sus clases, Heine dictaba una gran varie­
dad de cursos sobre diversas áreas del 
cálculo y de la física. Como investigador, 
además, hizo importantes aportes al pro­
blema de la fundamentación lógica del 
cálculo. Heine falleció en Halle el 21 de 
octubre de 1881. 

Para entender la condición de unicidad que encontró Cantor, 
volvamos por un momento al ejemplo del derivado de (Ql. Observe­
mos que (Ql' es tan1bién un cortjunto de números, y por lo tanto po­
dernos calcular, a su vez, su derivado; Cantor escribía el derivado 
del derivado de (Ql corno (Ql' '. Y como (Q)'' es también un conjunto, 
podemos calcular su derivado, que se escribe (QlC3\ el derivado de 
este es (Q)C4l, y así sucesivamente. 

En el caso de (Ql, toda esta proliferación de derivados no nos 
conduce a nada interesante, porque puede demostrarse que (Ql', 
(Q)", (Q)C3l, (Q)C4l, . . . son todos el conjunto de los números reales y 
entonces, al seguir derivando no se obtiene nada nuevo. Sin em­
bargo, hay ejemplos de cortjuntos P, que no es necesario que de­
sarrollemos aquí en detalle, en los cuales P', P", pc3i, pc4l, ... son 
todos conjuntos diferentes, o conjuntos tales que, a la larga, el 
proceso P', P'', pc3J, p C4l, ... termina por anularse. Por ejemplo, es 
posible encontrar un conjunto P para el cual P' es la colección 
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formada por los números O, 1 y 2; en ese caso, P", que es el deri­
vado de P', se anula. Aquí, la anulación se produce en P' ', pero hay 
otros casos donde sucede enP', otros donde sucede enPC3l, otros 
donde ocurre en p c4i, y así sucesivamente. Desde luego, para (Ql el 
proceso jamás se anula, porque en todos los pasos obtenemos el 
conjunto IR de los números reales. 

La condición de unicidad que encontró Cantor es la siguiente: 
si P es el conjunto de las abscisas de los puntos de discontinuidad 
de un gráfico periódico, para que su descomposición en serie tri­
gonométrica sea única basta con que el procesoP', P'', p C3l, p C4l, ... 
acabe por anularse en algún momento. De esta manera, Cantor 
logró expresar de un modo claro y preciso la condición que ase­
gura la unicidad de la descomposición en serie de Fourier y resol­
vió así el problema que le había propuesto Reine en 1869. 

HACIA EL INFINITO 

Como ya hemos citado anteriormente, en la década de 1860 
Reine había demostrado que si un gráfico periódico no tiene dis­
continuidades, entonces su descomposición es única. De hecho, 
Reine también había probado que la descomposición era única 
si en cada período había solo una cantidad finita de discontinui­
dades. La solución de Cantor abarca estos dos resultados y los 
extiende al caso en que hay infinitas discontinuidades en cada 
período. 

Por lo tanto, si no hay discontinuidades, entonces hay unici­
dad; si hay solo una cantidad finita de discontinuidades en cada 
período, entonces también hay unicidad. En la misma línea, Can­
tor conjeturaba que su resultado debería poder enunciarse más 
o menos como sigue: «si en cada período hay infinitas disconti­
nuidades, pero "pocas", entonces hay unicidad». «Infinitas, pero 
pocas» parece una frase contradictoria, pero no para Cantor, por­
que para él «infinito pero poco» venía a significar «infinito nun1e­
rable»; es decir, infinitas pero con un cardinal menor al de todos 
los números reales. 
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Cantor conjeturó entonces -y de hecho lo demostró en sus 
«Fundamentos para una teoría general de variedades» de 1883-
que el proceso P', P", pc3i, P C4l, ... se anula en algún momento 
exactamente en los casos en que P y P' son ambos finitos o nume­
rables. Pero Cantor ya había conjeturado este resultado en 1872. 
¿Por qué tardó diez años en demostrarlo? En realidad, no fue la 
dificultad técnica del resultado lo que retrasó el hallazgo de la de­
mostración, sino una barrera psicológica. 

«La impresión que las memorias de Cantor hacen en nosotros es 
desastrosa. Leerlas nos parece a todos una completa tortura.» 
- CHARLES HERMlTE, MATEMÁTICO FRANCÉS, EN 1883. 
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Preguntémonos -como se preguntó Cantor- cuántos pasos 
pueden ser necesarios para que el proceso P', P", pc3J, pc4i,_ .. se 
anule. Ya dijimos que puede llegar a anularse en el primer paso, o 
en el segundo, o en el tercero, y así sucesivamente, pero la situa­
ción no es tan sencilla. 

Para entenderlo, volvamos a la sucesión 3,1; 3,14; 3,141; 
3,1415; ... que, como ya sabemos, se aproxima cada vez más al 
número n. Para describir esta situación, suele decirse que la suce­
sión «se acerca a nen el infinito»; este «infinito» debe entenderse 
en forma potencial y quiere decir que los sucesivos números 3,1; 
3,14; 3,141; 3,1415; .. . se aproximan a n tanto como se quiera, pero 
que de hecho nunca lo alcanzan. 

Durante sus investigaciones, Cantor encontró un ejemplo en 
el que P', P', pc3l, pc4i, ... eran todos conjuntos diferentes sin que el 
proceso llegara a anularse en ninguna cantidad finita de pasos. 
Este ejemplo le permitió definir el conjunto P "'l, donde co -sím­
bolo introducido por John Wallis en 1655-- se usa habitualmente 
en el cálculo para representar un infinito en potencia. Así como 
los números 3,1; 3,14; 3,141; 3,1415; ... se van pareciendo cada vez 
más a n, el conjunto P C00l es el conjunto al que se van pareciendo 
cada vez más las sucesivas colecciones P', P", p(3l, pc4i, . .. 

Pero, en el ejemplo que mencionábamos antes, Cantor en­
contró, además, que P "'l estaba formado por los números O, 1 y 2, 
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y su derivado, entonces, se anulaba. Pero, ¿quién es el derivado 
de JX."')? Si el derivado de p<.3) es JX-4\ y el derivado de J'(.4) es J'(.5\ 

parece lógico decir que el derivado de JX.00l es J'(.00
+1l; ¿pero entonces 

estamos diciendo que el proceso se anula al cabo de oo + 1 pasos? 
¿Qué significa «oo + l»? 

De hecho, Cantor halló situaciones en las cuales el proceso se 
anulaba en el paso 00 + 2, o oo + 3, o inclusive en el paso oo + oo; sin 
embargo, no le encontraba sentido a estos símbolos o, en realidad, 
un condicionamiento de muchos años, una barrera psicológica 
como dijimos antes, le impedía reconocerlos como lo que eran 
en realidad. 

LAS NOTABLES ACLARACIONES 

En el primer capítulo citamos la carta que le escribió Cantor a 
Dedekind en noviembre de 1882. Recordémosla: 

Dios Todopoderoso me ha concedido alcanzar las aclaraciones más 
notables e inesperadas en la teoría de conjuntos y en la teoría de 
números o, más bien, que encontrara aquello que ha fermentado en 
mí durante años y que he buscado tanto tiempo. 

En esa carta, Cantor se refería a que en 1882 se dio cuenta 
finalmente de que esos símbolos oo, oo + 1, oo + 2, ... , oo + oo, 

oo + oo + 1, ... representaban nada menos que números infinitos, 
números que permiten contar más allá de los naturales. Como 
primera medida, les asignó un nombre y un símbolo; llamó a 
estos números ordinales y para destacar que son infinitos en 
acto cambió el símbolo oo, fuertemente asociado al infinito en po­
tencia, por la letra griega w ( omega minúscula, la última letra del 
alfabeto griego). 

¿Qué son los ordinales? Según dice Cantor en su trabajo de 
1883, los ordinales surgen de dos principios de generación. El pri­
mer principio dice que todo ordinal tiene un sucesor, es decir, 
un ordinal que es el inmediatamente siguiente a él. El segundo 
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p1incipio dice que dada cualquier sucesión de ordinales, siempre 
hay un ordinal que es el inmediatamente siguiente a todos ellos. 

El primer ordinal es el número O; su sucesor, desde luego, es 
el 1; luego vienen el 2, el 3, y así sucesivamente. Los números O, 1, 
2, 3, .. . son los ordinales finitos o, como decía Cantor, los ordinales 
de clase I. 

El segundo principio de generación nos dice que después de 
la sucesión O, 1, 2, 3, 4, ... hay un ordinal que sigue inmediata­
mente a todos ellos; este es el ordinal w, el primer ordinal infinito. 
Después vienen w + 1, w + 2, w + 3, ... ; y aplicando otra vez el se­
gundo principio de generación, después de esta nueva sucesión 
viene otro ordinal, que es w+w; y después de él vienen w + w + 1, 
w+w+2, ... 

En resumen, la cuenta de los ordinales comienza de la si­
guiente manera: O, 1, 2, 3, ... , w, w+ 1, w+2, ... , w+w+ 1, w+w +2, .. . , 
w + w + w + 1, . .. , y en todos los casos los puntos suspensivos repre­
sentan una cantidad infinita de términos. 

Volvamos al ordinal w y pensemos ahora en el conjunto de 
todos sus predecesores, es decir, en el conjunto de todos los ordi­
nales que son menores que él. Este conjunto está formado por los 
números O, 1, 2, 3, .. . y, como es numerable, Cantor dice que w es 
un ordinal de clase II. Los ordinales de clase I tienen un conjunto 
finito de predecesores, los de clase II tienen un conjunto numera­
ble de predecesores. 

El ordinal w + 1, por ejemplo, también es de clase II porque 
sus predecesores son O, 1, 2, 3, ... , w, que forman un conjunto 
numerable. Los ordinales w, w+l, w+2, ... , w+w+l, w+w +2, ... , 
w + w + w + 1, ... son todos· de clase II. 

Pero pensemos ahora en la sucesión de todos los ordinales 
de clase II; por el segundo principio de generación, existe un or­
dinal que sigue inmediatamente a todos ellos. Este ordinal suele 
indicarse con el símbolo Q, que es la letra omega mayúscula. La 
pregunta es: ¿a qué clase pertenece Q? 

En el artículo de 1883, Cantor pudo demostrar que todos los 
predecesores de Q, es decir, las clases I y II, forman un conjunto 
no numerable; Q no es, por lo tanto, de clase II; de hecho, Q es el 
primer ordinal de clase III. Pero más importante todavía, Cantor 
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Ordinales de clase 1 
(números naturales) 

Ordinales de clase 11 

Ordinales de clase 111 

_ ;----+-- - - -+ El cardina l infin ito 
más pequeño 

_ l--i----+ El cardinal inmediato 
siguiente al anterior 

---+-- - - + El cardinal inmediato 
siguiente al anterior 

probó que al conjunto de las clases I y II le corresponde el cardinal 
que sigue inmediatamente al cardinal de los números naturales. 

Observemos la elegancia del sistema de Cantor (véase la fi­
gura); el conjunto de los ordinales de clase I es numerable, su car­
dinal es el más pequeño de entre todos los cardinales infinitos. Si 
agregamos la clase II, obtenemos el cardinal inmediato siguiente; 
si agregamos la clase III, obtenemos el cardinal que sigue, y así · 
sucesivamente con las clases IV, V, . .. En 1883, estos cardinales 
todavía no tenían un nombre. Como veremos en el próximo capí­
tulo, Cantor se lo daría en 1895. 

En sus «Fundan1entos para una teoría general de variedades» 
Cantor dice que siempre intuyó que había cardinales mayores que 
el de los reales, pero que hasta ese momento no había sido capaz 
de hallar ningún ejemplo. Este sistema de los ordinales - la «hé­
lice virtuosa de los ordinales y los cardinales», como la llama el 
historiador José Ferreirós- le permitió finalmente demostrar la 
existencia de una cantidad infinita de niveles de infinitud. 

¿Dónde encaja en este sistema el cardinal de los reales? Tal 
como vimos, el cardinal inmediato al de los naturales se obtiene 
al agregar la clase II a la clase I; a su vez, la hipótesis del continuo, 
recordemos, dice que ese cardinal es el de los reales. Es decir, si 
la hipótesis del continuo fuera cierta, toda la teoría tendría una 
elegante coherencia, ya que la clase I nos daría el cardinal de los 
naturales y la clase II el de los reales. 

Desde este descubrimiento, Cantor sintió que la hipótesis del 
continuo se volvía una pieza clave de su teoría y llegó casi hasta 
la obsesión en sus intentos de demostrarla, pero nunca lo logró 
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Cada vez que 
agregamos toda 
una clase de 
nuevos ordinales, 
pa samos al 
cardi nal inmediato 
siguiente. 
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EL TERNARIO DE CANTOR 

En uno de los artículos publicado en Acta Mathematica, Cantor presenta la 
definición de un conjunto, que es hoy conocido como el «ternario de Cantor», 
y que se define en pasos sucesivos. Observemos la figura. En el primer paso 
tenemos un segmento. que identificamos con el conjunto de todos los núme­
ros reales entre O y l. En el segundo paso dividimos al segmento en tres partes 
iguales, y de ellas descartamos la parte central (segundo renglón en la figura). 
En el tercer paso, en cada una de las dos partes que quedaron antes repeti­
mos el mismo proceso, las partimos en tres y descartamos la parte central; 
y así seguimos. El conjunto que queremos definir, el ternario de Cantor, está 
formado por todos los puntos que, al cabo de infinitos pasos, quedaron sin 
ser descartados. A primera vista, podría parecer que no quedó ningún punto: 
sin embargo, Cantor pudo demostrar que hay una correspondencia uno-a-uno 
entre el ternario y el conjunto de todos los números reales. En otras palabras, 
al cabo de infinitos pasos quedan sin descartar, en el sentido del cardinal, 
tantos puntos como los que hay en toda la recta. 

o 1 
9 

2 
9 

1 
3 

2 
3 

7 
9 

8 
9 

y es posible que esta frustración se haya sumado a las causas de 
su depresión de mayo de 1884. 

En realidad, Cantor no vivió para saber si la hipótesis del con­
tinuo es verdadera o falsa; en el último capítulo dedicaremos un 
espacio a comentar la curiosa solución que tuvo este problema. 

ASOMAN LAS PARADOJAS 

Una objeción que se le hizo a Cantor en esa época es que sus ordi­
nales, simplemente, no existían. Como respuesta, Cantor ofrecía 
su propia filosofía de las matemáticas, según la cual cualquier ob-
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jeto que un matemático defina, por el mero hecho de ser definido, 
existe, con la única condición de que esa definición no conduzca 
a contradicciones lógicas. Pero, ¿es cierto que las propiedades 
de los ordinales no conducen a contradicciones? Volvamos al se­
gundo principio de generación: dada cualquier sucesión de ordina­
les, siempre hay otro nuevo ordinal que es mayor que todos ellos. 
A la luz de este principio, si consideramos la sucesión formada 
por todos los ordinales, tiene que haber un nuevo ordinal mayor 
que todos ellos; pero, ¿cómo puede haber un nuevo ordinal si la 
sucesión ya contenía a todos los ordinales? Esto es una contradic­
ción lógica, una paradoja que Cantor descubrió en 1882. 

Para solucionar la contradicción, en el artículo de 1883 Can­
tor introdujo un tercer principio de generación de ordinales, que 
dice básicamente que el segundo principio no se puede aplicar a la 
sucesión completa de todos los ordinales. En definitiva, un parche 
que solucionaba el problema de la paradoja. 

La existencia de contradicciones lógicas en una teoría mate­
mática es siempre una mala noticia, porque indica que esta tiene 
un fallo en sus cimientos; y aunque la paradoja pueda ser solucio­
nada, como hizo Cantor al agregar su tercer principio, su aparición 
constituye una llamada de alerta. Pero Cantor no se preocupó por 
la paradoja; más bien, podríamos decir que la recibió con alivio 
y alegría. 

En el primer capítulo vimos que san Agustín, y como él mu­
chos otros teólogos, entendían que el infinito era un atributo 
exclusivamente divino y que pretender que la mente humana es 
capaz de abarcarlo constituía una herejía. Esta idea pesaba mucho 
en el ánimo de Cantor, que siempre había sido una persona muy 
religiosa; pero la paradoja, según él entendía, lo liberaba final­
mente de esa carga, de esa implícita acusación de hereje. 

Cantor concibió la idea de que el infinito estaba dividido en 
dos niveles, el nivel inferior correspondía a lo transfinito y abar­
caba el cortjunto de los naturales, el de los reales, los ordinales de 
las clases I, II, III, ... y en general todos los conceptos de los que 
hablaba su teoría, pero no el cortjunto de todos los ordinales. Este 
cortjunto caía en el nivel absoluto del infinito, el nivel superior 
reservado a la divinidad. 
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Según Cantor, la mente humana podía captar lo transfinito, 
pero la paradoja indicaba que el nivel absoluto, el de la divinidad, 
estaba fuera de su alcance. La paradoja, siempre según Cantor, no 
nacía de un fallo de la teoría, sino del intento de la mente humana 
por abarcar un concepto que está más allá de su comprensión. 
De este modo, al dejar un nivel de infinitud reservado exclusiva­
mente a la divinidad, Cantor, el hombre antes que el matemático, 
pudo reconciliarse con su espíritu religioso. Como veremos en el 
último capítulo, donde volveremos a hablar de las contradiccio­
nes lógicas de la teoría de Cantor, muchos matemáticos, aun sus 
defensores, no estaban de acuerdo con él en esta interpretación 
de las paradojas. 
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CAPÍTULO 5 

Los álef 

Una mirada ingenua podría llevarnos a pensar 
que «infinito más infinito» es simplemente «infinito», 

y que no hay nada interesante que se pueda agregar al 
respecto. Pero en la segunda mitad de la década de 1890, 

Georg Cantor publicó un artículo en el que introdujo 
una notación para los cardinales infinitos basada en 

la letra hebrea álef y que le permitió desarrollar 
una «aritmética del infinito», una aritmética 

que nos muestra que sí hay mucho que 
decir acerca de cuánto es «infinito 

más infinito». 





En la primera mitad del siglo xx, el físico alemán Max Planck 
(1858-1947) escribió: 

Una nueva teoría no se impone porque los científicos se convenzan 
de ella, sino porque los que siguen abrazando las ideas antiguas van 
muriendo poco a poco y son sustituidos por una nueva generación 
que asimila las nuevas ideas desde el principio. 

Al escribir esta frase, Planck se refería en realidad a la mecá­
nica cuántica, la teoría que revolucionó la física del siglo xx; sin 
embargo, tan1bién puede aplicarse perfectamente a la teoría de 
Cantor. En efecto, muchos matemáticos de la generación nacida 
en las últimas décadas del siglo XJX, ajenos a los prejuicios de sus 
mayores, vieron en la teoría del infinito matemático un desafío 
fresco y estimulante. Uno de los más destacados en este sentido 
fue David Hilbert, brillante matemático alemán nacido en 1862; así 
por ejemplo, cuando a principios del siglo xx el descubrimiento 
de varias paradojas en la teoría del infinito hizo tambalear la con­
fianza que muchos tenían en ella, Hilbert se puso a la cabeza de la 
defensa de la teoría de Cantor. 

Como otro ejemplo del apoyo de Hilbert a la teoría de Can­
tor, mencionemos que en el año 1900 Hilbert fue invitado a dar 
la conferencia inaugural del Segundo Congreso Internacional de 
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Matemáticas, celebrado en París, un puesto de honor que le fue 
ofrecido por los organizadores del congreso gracias a sus méritos 
académicos. Pues bien, en esa famosa conferencia Hilbert planteó 
23 problemas matemáticos que no habían podido ser resueltos 
hasta ese momento y que -él entendía- iban a guiar la investi­
gación matemática a lo largo del siglo xx; como homenaje y apoyo 
a Cantor, y para destacar la importancia de la teoría de conjuntos, 
Hilbert puso a la cabeza de su lista el problema de si la hipótesis 
del continuo es verdadera o falsa (recordemos que la hipótesis del 
continuo es la coajetura que formuló Cantor en 1878 de que no 
existe un cardinal intermedio entre el de los naturales y el de los 
reales). 

LA BASE DE LAS MATEMÁTICAS 

Gracias a la influencia de la nueva generación de matemáticos, 
hacia 1890 la teoría de conjuntos y la teoría del infinito no soio 
comenzaron a ser aceptadas, sino que empezaron a convertirse 
en parte esencial de muchas de las nuevas ramas de las mate­
máticas que se desarrollaron a partir de esos años. Por citar solo 
dos ejemplos, digamos que las nociones coajuntistas - y muy 
particularmente la distinción entre coajuntos numerables y no 
numerables- son fundamentales en la teoría de la medida, una 
generalización del cálculo que fue iniciada en los últimos años del 
siglo XIX por los matemáticos franceses Émile Borel (1871-1956) 
y Henri Lebesgue (1875-1941). Por otra parte, las nociones con­
juntistas son también esenciales para la topología, otra generali­
zación del cálculo, iniciada hacia la misma época por el también 
francés Henri Poincaré (1854-1912), aunque el propio Poincaré, a 
causa de la proliferación de las paradojas, se transformaría des­
pués en uno de los detractores de la teoría de coajuntos. 

También en los últimos años del siglo XIX comenzaba a tomar 
forma la idea de que la teoría de coajuntos podía ser el funda­
mento de todas las matemáticas. ¿Qué significa esto exactamente? 
Durante siglos el modelo de razonamiento matemático por exce-
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lencia había sido la geometría clásica griega; pero no solamente 
eso, sino que se entendía que el modo más claro de pensar las no­
ciones matemáticas era viéndolas como conceptos geométricos. 
Un número, por ejemplo, especialmente un número irracional, se 
veía como un segmento y las operaciones numéricas se entendían 
como construcciones; por mostrar un ejemplo de los muchos po­
sibles, en su libro Reglas para la dirección de la mente, escrito 
en la década de 1620, René Descartes explica que multiplicar dos 
números - es decir, dos segmentos- consiste básicamente en 
construir el rectángulo que tiene a esos dos segmentos por lados; 
notemos que Descartes no dice, tal como pensaríamos hoy en día, 
que el producto de los lados nos pemtite calcular el área del rec­
tángulo. Él dice que el rectángulo es el producto de los dos núme­
ros; los conceptos y operaciones er~ pensados como objetos y 
construcciones de naturaleza geométrica. 

«Del paraíso que Cantor creó para nosotros nadie podrá 
expulsarnos.» 
- DAVID HILBERT (1862 -1943), MATEMÁTICO ALEMÁN, 

122 

Este dominio de la geometría fue desapareciendo de manera 
gradual a lo largo del siglo XIX, durante el proceso conocido como 
«aritmetización del cálculo» (véase el capítulo 3). Como resul­
tado de este proceso, los conceptos matemáticos, sobre todo los 
conceptos del cálculo, dejaron de pensarse geométricamente y 
pasaron a basarse exclusivamente en los números. Pero si los nú­
meros ya no eran pensados como segmentos, ¿qué eran entonces? 
Algunos matemáticos, entre ellos Richard Dedekind, vieron una 
respuesta a esta pregunta en la teoría de conjuntos; si las defini­
ciones de los números y sus operaciones ya no podían apoyarse 
en conceptos geométricos, pensó Dedekind, entonces podrían ba­
sarse en nociones conjuntistas. 

Como vimos en el capítulo anterior, en 1872 Dedekind ya 
había usado conceptos conjuntistas para definir a los números 
reales, pero esta definición presuponía la existencia de los racio­
nales, que a su vez se definen en base a los números natur_ales. 
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FIG. l 

FIG. 2 

Números naturales 

..... 
Números enteros: 

Se agregan a los anteriores los opuestos de los naturales. 
-1 , -2, -3, -4, ... 

..... 
Racionales: 

Son las fracciones (cocientes de enteros). 

..... 
Reales: 

Se definen a partir de sucesiones de racionales (Cantor) 
o de cortaduras de racionales (Dedekind). 

Unión= suma 

Conjunto formado 
por la letra a a b 

Conjunto formado 
por la letra b 

/ 
ab 

Su unión tiene dos elementos 1 + 1 = 2 

Este ejemplo no es correcto 
para definir la suma: 

ab be 

/ 
abe 

/ 
En los conjuntos los 

elementos no se repiten 

Este ejemplo sí es correcto: 

ab ed 

/ 
abed 

2+2=4 

¿ Cómo definimos a los naturales, que son los que están al co­
mienzo de toda esta cadena de definiciones (figura l)? 

Dedekind respondió a esta pregunta en un artículo titulado 
«Was sind und was sollen die Zahlen» [Qué son y para qué sir-
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FIGURA 1: 

Definiciones 
de los conjuntos 
numéricos. Una 
vez que se tiene 
una definición 
de los naturales, 
todos los demás 
conjuntos 
numéricos pueden 
definirse en pasos 
sucesivos a partir 
de ellos. 

FIGURA 2: 

Para que la· unión 
equivalga a la 
suma los dos 
conjuntos no 
deben tener 
elementos 
en común. 
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ven los números], publicado como monografía independiente 
en 1887. En este trabajo, Dedekind retoma la definición de la 
noción de conjunto que Cantor había dado en 1883 (a los con­
juntos Dedekind los llama «sistema de elementos»), así como 
la definición de la unión de conjuntos. Para Dedekind, los nú­
meros naturales son, simplemente, los cardinales de los conjun­
tos finitos; por ejemplo, define al número O como el cardinal del 
conjunto vacío (el conjunto que carece de elementos), el 1 es el 
cardinal de cualquier conjunto que tenga un único elemento, y 
así sucesivamente. 

A su vez, la suma de números se define mediante la unión de 
conjuntos; por ejemplo, cuando enunciamos que 1 + 1 = 2 - dice 
Dedekind- , estamos afirmando en realidad que si tenemos dos 
conjuntos diferentes, cada uno de ellos de cardinal 1, entonces su 
unión tiene cardinal 2 (figura 2, página anterior). 

De la misma forma -dice Dedekind- , todas las nociones 
matemáticas pueden reducirse a nociones conjuntistas. Esta 
forma de pensar en las matemáticas como basadas totalmente en 
la teoría de conjuntos tuvo una enorme influencia a lo largo de 
todo el siglo )D( e inclusive sigue siendo muy influyente en nues­
tros días; volveremos a este tema en el próximo capítulo. 

LA UNIÓN MATEMÁTICA ALEMANA 

Como vemos, la última década del siglo XIX comenzó con muy 
buenos augurios para Cantor; matemáticos jóvenes aceptaban, 
estudiaban y aplicaban su teoría del infinito, a la vez que Richard 
Dedekind proponía que la teoría de conjuntos se transformara 
nada menos que en la base de todas las matemáticas. A estas cir­
cunstancias se le sumó otro hecho muy auspicioso; en 1890 se 
creó la Unión Matemática Alemana y Cantor fue elegido como su 
primer presidente, cargo que ejerció hasta 1893. 

La creación de la Unión Matemática Alemana fue el resultado 
de un intenso trabajo en el que Cantor ( cuando ya se había recu­
perado de su depresión) tuvo una participación muy activa, y que 
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se desarrolló, a su vez, en el marco de la unificación política de 
Alemania. 

¿Qué fue la unificación de Alemania? A comienzos del 
siglo xrx, la llamada Alemania estaba en realidad dividida en 38 es­
tados, que aunque tenían un idioma, una cultura y una historia en 
común, eran políticamente independientes. El más poderoso de 
los estados era Prusia, y hacia 1860 su primer ministro, el «canci­
ller de hierro» Otto von Bismarck, puso en marcha un proyecto de 
unificación, que incluyó tres conflictos bélicos, diversas alianzas 
políticas, y que culminó el 18 de enero de 1871 con la creación 
del Imperio alemán, una Alemania políticamente unificada bajo 
el gobierno del emperador Guillermo I, quien hasta ese momento 
había sido rey de Prusia. 

«Quien haya experimentado solamente una vez el atractivo 
de la personalidad de Cantor, sabe que estaba llena de agudeza 

y de temperamento, de ingenio y originalidad.» 
- ARTHUR MORITZ 8CHOENFLIES (1853 -1928), MATEMÁTICO ALEMÁN. 

Sin embargo, a fines de la década de 1880 Cantor y otros co­
legas, entre ellos el reconocido geómetra Felix: Klein (1849-1925), 
notaban que, aunque habían pasado casi veinte años desde la uni­
ficación política de Alemania, todavía existían muchas envidias y 
rivalidades regionales que impedían una genuina colaboración a 
nivel nacional; y es por eso que trabajaron en la creación de una 
sociedad que agrupara en su seno a todos los matemáticos ale­
manes. Como dijimos antes, este proyecto se concretó en 1890 y 
Cantor fue el primer presidente de esa asociación. 

La primera reunión de la Unión Matemática Alemana se cele­
bró en septiembre de 1891 y, en un gesto de reconciliación hacia 
su viejo enemigo, Cantor invitó personalmente a Kronecker a que 
dictara allí una conferencia. Kronecker aceptó, pero por desgracia 
no pudo asistir porque en agosto su esposa sufrió un grave acci­
dente y al mes siguiente falleció; en realidad, Kronecker la sobre­
vivió muy poco tiempo, hasta el 29 de diciembre de ese mismo 
año, día en que falleció él también. 
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EL REGRESO 

Recuperado de su depresión y reconciliado con el mundo cien­
tífico, en la década de 1890 Cantor retomó sus investigaciones 
matemáticas, y como resultado de ellas dio a conocer dos artícu­
los, los dos últimos que publicó en su vida. El primero, titulado 
«Über eine elementare Frage der Mannigfaltigkeitslehre» [Sobre 
una cuestión elemental de la teoría de variedades], se publicó 
en 1892 en el primer Informe anual de la Unión Matemática 
Alemana. 

El segundo de estos artículos, uno de sus trabajos más famo­
sos, fue publicado en dos partes, la primera en 1895 y la segunda 
en 1897, ambas incluidas en la revista Mathematische Annalen, 
bajo el título «Beitrage zur Begründung der transfiniten Mengen­
lehre» [ Contribuciones a la creación de una teoría de los cortjun­
tos transfinitos] (para el significado de la palabra «transfinito», 
véase el capítulo anterior). 

Nos dedicaremos ahora a analizar el contenido de estos dos 
artículos; aunque lo haremos invirtiendo el orden cronológico. 

El historiador José Ferreirós dice, con justicia, que «Contri­
buciones a la creación de una teoría de los conjuntos transfinitos» 
es el «testan1ento científico de Cantor»; en efecto, en este trabajo 
Cantor retoma todos los conceptos básicos de su teoría del infi­
nito, en especial las nociones de cardinal y de ordinal, y estudia 
sus propiedades y sus relaciones mutuas. 

Una de las innovaciones que Cantor introdujo en este artículo 
es su famosa notación de los álef para designar a los cardinales 
infinitos. Álef, X, es la primera letra del alfabeto hebreo, y Cantor 
llamó X 

O 
(léase álef-sub-cero o también álef-cero) al primer car­

dinal infinito, que es el que corresponde al conjunto de los na­
turales así como a cualquier otro conjunto numerable; X 

1 
es el 

segundo cardinal infinito, X 
2 

es el tercer cardinal infinito, y así su­
cesivamente. Relacionándolo con lo visto en el capítulo anterior, 
podemos decir entonces que el conjunto de todos los ordinales de 
clase I -es decir, el cortjunto de los números naturales- tiene 
cardinal X 0, al agregar los ordinales de clase II pasamos a tener 
un cortjunto de cardinal X 1' al agregar los ordinales de clase III ob-
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-----------------------------, 

Ordinales de clase 1 
(números naturales) 

Ordinales de clase 11 

Ordinales de clase 111 ---+----su cardinal es K2 

tenemos un conjunto de cardinal X
21 

y así sucesivamente (véase 
el esquema). 

Cada vez que 
agregamos toda 
una clase de 

nuevos ordinales, 
pasamos al 
cardinal inmediato 
siguiente. 

«El diámetro del Aleph sería de dos o tres centímetros, pero el 
espacio cósmico estaba ahí, sin disminución de tamaño.» 

- DEL CUENTO EL ALEPH, DE JORGE LUIS BORGES. 

Con esta nueva notación, el problema de saber si la hipótesis 
del continuo es verdadera -es decir, si es correcta la conjetura 
de Cantor de que no existe un cardinal intermedio entre el de los 
naturales y el de los reales- se transforma en la pregunta de si el 
cardinal de los reales es igual a X 

1 
(notemos que el menor cardi­

nal infinito es X 
O 

y que X 
I 
es el inmediato siguiente a él; sabemos 

iCUÁNTOS ÁLEF EXISTEN? 

La secuencia de los álef comienza con K
0

, K
1
, K

2
, ... Pero, ¿cuántos álef hay? 

¿Hay uno por cada número natural y, en consecuencia, son numerables? En 
realidad, los subíndices son ordinales. Después de los infinitos Kn donde n 
recorre todos números naturales, vienen Kw, Kw.,• K00 .,, ... , K00 • 00, Xw+w+J' '" Y así 
sucesivamente. La respuesta a la pregunta es. entonces, que hay tantos car­
dinales infinitos como ordinales (incluyendo entre estos a los ordinales de 
todas las clases). 

-
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además que el cardinal de los reales no es X 
0

, porque los reales no 
son numerables; por lo tanto, si el cardinal de los reales no es X 

1
, 

entonces la única alternativa es que sea mayor que él). 

ARITMÉTICA TRANSFINITA 

En sus «Contribuciones», Cantor retoma el trabajo de Dedekind 
de 1887, aunque sin hacer mención explícita de él, y tal como hizo 
Dedekind, entiende a los números naturales como los cardinales 
de los conjuntos finitos, y define su suma mediante la operación de 
unión. Pero Cantor, además, extiende esta idea a los cardinales 
infinitos y es así como establece la que él denomina, y es así como 
se llan1a todavía hoy, una aritmética transfinita. 

Veamos algunos ejemplos de operaciones de esta aritmética 
transfinita. Comencemos por recordar que, desde el punto de vista 
conjuntista, el hecho de que 1 + 1 sea igual a 2 significa que si uni­
mos dos conjuntos diferentes, ambos de cardinal 1, obtenemos 
un conjunto de cardinal 2. Otra forma de expresarlo es diciendo 
que si a un conjunto de cardinal l le agregamos un objeto nuevo, 
obtenemos como resultado un conjunto de cardinal 2. Siguiendo 
la misma idea, si, por ejemplo, a los números naturales ( que tienen 
cardinal l-<

0
) les agregamos el número - 1, obtenemos el conjunto 

- 1, O, 1, 2, 3, 4, ... , que es coordinable con los naturales y, por 
lo tanto, tiene también cardinal l-<

0 
(recordemos que si dos con­

juntos son coordinables, entonces tienen el mismo cardinal). En 
resumen, al agregar un objeto nuevo a un conjunto de cardinal l-\

0 

obtenemos otro conjunto de cardinal X 
0
; en términos de la aritmé­

tica transfinita, esto nos dice que X 
O
+ 1 = X 

O 
(figura 3). 

De manera similar, puede probarse que si a un conjunto de 
cardinal l-\

0 
le agregamos dos objetos, obtenemos nuevamente 

un conjunto de cardinal X 0, es decir, X 
O
+ 2 = X 

0
; y también vale 

que X 
O
+ 3 = X 

0
, que X 

O
+ 4 = X 

0
, y así sucesivamente para todos los 

números naturales. En definitiva, estas igualdades nos están di­
ciendo que si a un conjunto numerable le agregamos una cantidad 
finita de objetos volvemos a obtener un conjunto numerable. 
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FIG. 3 

º· 1, 2, 3, 4, 5, 6, ... u -1 -1 , O, 1, 2, 3, 4, 5, 6, ... 
Elca,dloaldelcoo:7 
formado por -1, O, jl~;'.~ 1 
es No+ 1 

FIG. 4 

O 1 2 3 4 5 6 7 8 9 

! ! ! l ! ! ! ! ¡ ! 
~ O 1 2 3 4 5 6 7 8 

Como los dos conjuntos son 
coord inables entonces 
No= N0 + 1 

Ordinales de clase I u Ordinales de c lase 11 Ordinales de clase I y 11 

No 

Como los ordinales de clases I y 11 todos juntos tienen 
card inal N1 entonces No + N1 = N1 

No+ N1 

¿ Qué ocurre con X 
O
+ X 

O
? En otras palabras, ¿qué cardinal obte­

nemos si unimos dos conjuntos numerables? En el capítulo anterior 
dijimos que en sus «Contribuciones», Cantor demuestra que la unión 
de dos cortjuntos numerables es también un cortjunto numerable; 
un ejemplo está dado por la unión de los naturales con el cortjunto 
formado por los números negativos -1, - 2, -3, -4, . .. , que da como 
resultado a los enteros. Podemos decir entonces que X 

O
+ X 

O
= X 

0
• 

Veamos un último ejemplo; ya se ha expuesto que el cortjunto 
de los ordinales de clase I ( que son los naturales) tiene cardinal 
X 

O 
y que si agregamos los ordinales de clase II ( que comienzan 

con w, w+l, w+2, ... ) obtenernos un cortjunto de cardinal X
1
; 

pero Cantor además demostró que el cortjunto de los ordinales de 
clase II por sí solo también tiene cardinal X 

1
. En resun1en, si a un 

cortjunto de cardinal X 
1 

(los ordinales de clase II por sí solos) le 
agregamos un cortjunto de cardinal X 

O 
(los ordinales de clase I), 

obtenernos un cortjunto de cardinal X 
1 

(los ordinales de clase I y 
II todos juntos); en términos de la ruitmética transfinita, esto nos 
dice que X

0 
+ X 

1 
= X 

1 
(figura 4). 
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PRODUCTO DE CARDINALES 

Dentro de la aritmética transfinita, además de la suma, puede definirse el 
producto de cardina les; para esta definición se apela al llamado producto 
cartesiano de conjuntos . Si A y B son dos conjuntos cua lesquiera, su pro­
ducto cartesiano. que se escribe Ax B. se define como el conjunto formado 
por todos los pares cuyos primeros miembros son elementos de A y cuyos 
segundos miembros son elementos de B. Tal como es muy habitual en los 
textos de teoría de conjuntos. al par formado, por ejemplo, por los números 
1 y 2 lo indicaremos como (1,2). Es importante hacer notar que el orden en 
que se escriben los elementos es relevante ya que, por ejemplo, no es lo 
mismo el par (1,2) que el par (2,1); es por esa razón que en este context o 
suele hablarse de pares ordenados. De esta forma, si A es el conjunto for­
mado por los números O y 1, mientras que B es el conjunto formado por 
los números 2, 3 y 4, entonces Ax B es el conjunto formado por los pares 
(0,2), (0,3), (0,4), (1,2), (1,3), (1,4). Nótese que A tiene card inal 2; B tiene 
card inal 3; mientras que Ax B tiene cardinal 6. Tal como queda sugerido en 
el ejemplo anterior, el producto del cardinal de A por el cardina l de B se 
define como el cardina l de Ax B (a diferencia de lo que sucede con la suma, 
no hay ningún inconveniente en que los conjuntos A y B tengan elementos 
en común). ¿cuánto es, por ejemp lo, K

0 
· K

0
? Si tomamos el conjunto N de 

los números naturales (cuyo card ina l, como sabemos, es K
0
), la definición 

anterior nos dice que K
0 

· K
0 

es el cardi nal de N x N (e l conjunto de todos 

En realidad, puede probarse que si se suma dos veces un 
mismo cardinal infinito el resultado es otra vez ese mismo cardi­
nal ( como en el caso de X 

O
+ X 

O
= X 

0
), y que si se suman dos cardi­

nales infinitos diferentes, entonces el resultado es el mayor de los 
dos ( como X 

O
+ X 

1 
= X¡). En consecuencia, por ejemplo, podemos 

afirmar que X 1 + X 1 = X 1 y que X 1 + X 2 = X 2. 

CONJUNTOS DE CONJUNTOS 

Nuestra intención es hablar de otra operación de la aritmética 
transfinita, pero antes será necesario introducir algunos conceptos. 
Como decíamos en el capítulo anterior, un conjunto debe pen-
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los pares de números naturales). Vamos a probar a continuación que N x N 
en realidad es numerable. 

Desarrollo 
Para probar que N x N es numerable, comenzamos escribiendo a todos los 
pares que lo forman en una sucesión. Primero escribimos el único par cuya 
suma es O, luego los pares cuya suma es 1, luego aquellos cuya suma es 2, 
y así sucesivamente: 

(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0), ... 

Esta escritura nos permite establecer una correspondencia uno-a-uno entre 
los números naturales «individuales» y los pares de números naturales: 

(0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (0,3) (1,2) (2,1) (3,0) ... ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ 
O 2 3 4 5 6 7 8 9 ... 

Esta correspondencia demuestra que N x N es numerable, es decir, que su 
cardinal es K . Tenemos así que, por un lado, la definición del producto de 
cardinales nos d ice que N x N tiene Cc)rdinal K

0 
· K

0
. Por otro lado, acabamos 

de probar que el cardinal de N x N es K0 . Deducimos que K
0 

• K0 = K0 . 

sarse como un objeto en sí mismo diferente de los miembros que 
lo fom1an. Por ejemplo, Q, el conjunto de los números racionales, 
e I, el conjunto de los números irracionales, son cada uno de ellos 
un solo objeto. Podemos considerar entonces el conjunto cuyos 
miembros son solamente esos dos objetos iQ) e I, conjunto que 
convendremos en llan1ar D. Vale la pena insistir en que los miem­
bros de D son solamente dos objetos, iQ) e I; es decir, su cardinal es 
2. No debemos confundir aD con la unión de iQ) e I, que se obtiene 
reuniendo en un todo a los miembros de esos dos conjuntos y que 
da como resultado al conjunto IR de todos los reales. El número 
3/2, por ejemplo, es miembro de Q y también de IR, pero no es 
miembro de D. 

Podemos hacer una analogía entre esta situación y el con­
junto formado por los planetas del sistema solar; este conjunto, 
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ARITMÉTICA ORDINAL 

No debe confundirse la aritmética de los card ina les con la aritmética de los 
ordinales; los ca rd inales están asociados a la idea de cantidad y su suma se 
relaciona con la idea de agregar elementos. Por lo tanto, como acabamos de 
ver. >-: 0 + 1 = >-: 0• es deci r , X 0 +1 no es mayor que X 0. Los ord inales, en cambio, 
están asociados al concepto de «posic ión que se ocupa en una suces ión» y su 
suma se relaciona con la idea de avanzar a lo largo de esa sucesión. Así por 
ejem plo, w + 1 representa la posic ión inmed iata sigu iente a w y es por eso q ue 
w+l sí es mayor q ue w. En sus «Contribuciones», Cantor desarro lla también una 
aritmética de los ord inales pero, por razones de espac io, no nos ded icaremos 
a ella en este tex to. 

llamémoslo S, tiene ocho miembros, Mercurio, Venus, Tierra, 
Marte, Júpiter, Saturno, Urano y Neptuno. Por otra parte, la Tierra 
en sí misma puede pensarse corno un conjunto que nos contiene a 
nosotros, seres hun1anos, como miembros; nosotros somos miem­
bros de la Tierra, pero no de S, porque no somos planetas del 
sistema solar. Desde el punto de vista de S, cada planeta es un 
objeto en sí mismo, sin importar cómo esté fom1ado. De la misma 
manera que en el caso del sistema solar, el conjunto D que defini­
mos antes tiene dos miembros, y no toma en cuenta lo que haya 
dentro de ellos. 

Pensemos ahora en conjuntos que estén formados por núme­
ros naturales. Por ejemplo, el conjunto N formado por todos los 
naturales, el conjunto de los números pares, el de los impares, 
el de los primos, el conjunto formado solo por el número 45, el 
formado por todos los números terminados en 8, el fom1ado so­
lamente por los números 5, 7 y 22, y muchísimos otros, cada uno 
de los cuales, igual que como antes hi<;imos con (Q e I, debe ser 
pensado como un objeto en sí mismo. 

Podemos considerar entonces el conjunto cuyos miembros 
son todos los conjuntos que se pueden fom1ar usando números 
naturales, tanto los que hemos mencionado antes como todos los 
demás conjuntos posibles; este nuevo conjunto suele llamarse 
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Conjunto formado por los números 2 y 34 - {2, 34} 

Conjunto formado por los números pares - {O, 2, 4, 6, 8,. } 

Conjunto vacío (que no tiene miembros) - { } 

Conjunto de los números primos - {2, 3, 5, 7, 11 , 13, ... } 

Estos son 
algunos 
miembros 
de '.P(N) 

'.P(N), que se lee «partes de N», y sus miembros son, en conse­
cuencia, cor\juntos, no números. 

Algunos conjuntos 
formados por 
números 

El cor\junto de todos los números pares es un miembro de 
'.P(N) y también el conjunto formado por el número 2; pero el nú­
mero 2 en sí mismo no es miembro de '.P(N), porque los miembros 
de '.P(N) son cor\juntos, no números. Aparece aquí una diferencia, 
sutil pero importante, que debe hacerse en la teoría de cor\juntos, 
no es lo mismo el número 2 que el cor\junto formado por el nú­
mero 2. Para resaltar esta diferencia el cor\junto formado por el 2 
se suele indicar como {2}; el uso de las llaves nos permite mostrar 
en la escritura la diferencia entre 2, que se refiere al número, y ( 2}, 
que se refiere al cor\junto formado por ese número. 

De la misma manera, por ejemplo, el cor\junto fom1ado por 
los números 2 y 34 se suele indicar corno (2, 34) y el conjunto 
de los números pares, como (O, 2, 4, 6, 8, ... ) (véase la figura). Con 
esta notación, el cor\junto D que mencionábamos antes, cuyos 
miembros son los cor\juntos (Q) e I, se escribiría ((Q), I). 

UNOS Y CEROS 

La pregunta que vamos a analizar, y que Cantor responde en su ar­
tículo de 1892, es: ¿cuál es el cardinal de '.P(N)? Para responderla, 
debernos hallar primero un modo conveniente de representar a 
los cor\juntos fom1ados por números naturales. 

Comencemos por observar que para definir un cor\junto de 
números es suficiente con saber qué números son los que pertene-

LOS ÁLEF 

naturales. 

133 



Correspondencia 
uno-a-uno entre 

conjuntos y 
secuencias de 
ceros y unos. 

cen al conjunto y cuáles no pertenecen a él. Para ejemplificar esta 
idea, imaginemos un juego entre dos personas, Alicia y Bruno; 
Alicia piensa un conjunto y Bruno debe adivinar cuál es y para ello 
va nombrando, en orden, los sucesivos números naturales, O, 1, 2, 
3, 4, ... ; en cada caso, Alicia le responde con un «sí», si el número 
mencionado pertenece al conjunto que ella pensó, y con un «no» 
en ca.so contrario. 

Por ejemplo, si las respuestas de Alicia son: no, sí, no, sí, no, 
sí, no, sí, ... Bruno puede concluir que el conjunto en cuestión es el 
de los números impares; si las respuestas son todas sí, el conjunto 
es N; para el conjunto de los plimos, las respuestas serían no, no, 
sí, sí, no, sí, no, sí, no, no, no, sí, ... 

Para abreviar, podemos reemplazar cada «sí» por un 1 y cada 
«no» por un O; de este modo, cada conjunto formado por números 
naturales queda caracterizado por una secuencia infinita de ceros 
y unos. Reesclibiendo las respuestas anteliores de Alicia, el con­
junto de los números impares está representado por la secuencia 
010101.. .; al conjunto N le corresponde la 11111, ... y al conjunto 
de los números plimos le corresponde 001101010001... 

En resumen, a cada secuencia infinita de ceros y unos le 
corresponde un conjunto y, recíprocamente, a cada conjunto le 
corresponde una secuencia infinita de ceros y unos. Esta corres­
pondencia uno-a-uno implica que es lo mismo preguntarse por el 
cardinal de P(N) que por el cardinal de todas las secuencias infini­
tas de ceros y unos (véase la figura). 

En su artículo de 1892 ( «Sobre una cuestión elemental de la 
teoría de conjuntos»), Cantor demuestra básicamente dos hechos, 
y el primero de ellos es que el conjunto de todas las secuencias de 

Conjuntos de naturales Secuencias de ceros y unos 

Conjunto formado por los números 2 y 34 __ __. 0011000000000000000 .. . 

Conjunto formado por los números pares 101010101010101010101010 .. . 

Conjunto vacío (que no tiene miembros) 000000000000000000 .. . 

Conjunto de los números primos 0011010100010100010100 .. . 

___J 
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ceros y unos no es numerable; por lo tanto, '.P(N) tampoco lo es. 
Para probarlo, Cantor utiliza el argumento diagonal, el mismo que 
usamos en el capítulo 2 para mostrar que IR, el conjunto de todos 
los reales, no es numerable. En realidad, como ya comentan1os en 
aquella ocasión, el argumento diagonal apareció por primera vez 
en este trabajo de 1892; la demostración que Cantor hizo en 1874 
del hecho de que IR no es numerable seguía ideas diferentes y se 
basaba en su definición de los reales. 

La demostración de que '.P(N) no es numerable repite exac­
tamente el mismo razonamiento que mostramos en el capítulo 2 
para los reales, por lo que no la reiteraremos aquí. Sí vale la pena 
aclarar que el hecho de demostrar que '.P(N) y IR no son numera­
bles, aun cuando en ambos casos se use el mismo razonamiento, 
no nos garantiza que los dos conjuntos tengan el mismo cardi­
nal. El argumento diagonal demuestra en realidad un resultado 
negativo, nos permite asegurar que ni IR ni '.P(N) tienen cardinal 
~ 

0
, pero no nos dice qué cardinal tiene cada uno de ellos ni nos 

permite deducir que an1bos cardinales sean iguales. 
Ahora bien, el segundo hecho que Cantor demuestra en su 

aitículo de 1892 es que, después de todo, '.P(N) y IR sí tienen el 
mismo cardinal pero, insistimos, este hecho requiere una demos­
tración, no se deduce del argumento diagonal. Hay que probar 
entonces que IR y '.P(N) son coordinables o, lo que es lo mismo, que 
IR es coordinable con el conjunto de todas las secuencias infinitas 
de ceros y unos. 

Para probarlo, empecemos por recordar que el modo en que 
habitualmente anotamos los números naturales se llama escri­
tura en base 1 O, porque usa diez cifras y además se basa fuer­
temente en las potencias del número 10; por ejemplo, cuando 
escribimos el número 235, estamos escribiendo en realidad 
2 • 102 + 3 • 101 + 5 -10º (recordemos que 101 = 10 y que 10º = 1). Algo 
similar sucede con los números que no son enteros, solo que 
en ese caso intervienen potencias de exponente negativo, tales 
como 10-1, que es igual a 0,1; 10-2, que es igual a 0,01; y así su­
cesivamente. Por ejemplo, cuando escribimos O, 76, estamos es­
cribiendo en realidad 7 • 10-1 + 6. 10-2• Es interesante mencionar 
que los números con infinitas cifras decimales, como 0,3333 ... , 
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se traducen en series, es decir, en sumas infinitas; en efecto 
0,333 ... = 3. 10-1 + 3. 10-2+ 3. 10--3+ 3. 10-4+ ... 

Aunque la esclitura en base 10 es la más usada, no es la única 
posible; por ejemplo, los números pueden esclibirse en base 2, 
también llamada escritura binaria. Esta base, como su nombre 
indica, usa solamente dos cifras, O y 1, y se apoya en las potencias 
de 2. Como muestra, el número 13 en base 2 se escribe 1101 por­
que 13 = 1- 23 + 1-22+ 0-21+ 1-2º. E igual que en el caso anterior, 
esta escritura se extiende a números no enteros; por ejemplo, en 
base 2 el número 0,333 ... se escribe 0,01010101... porque la suma 
infinita O• 2-1 + 1- 2-2 + O• 2--3 + 1 . 2-4 +O• 2-5 + 1 . 2-6 da como resultado 
0,333 .. .' ( este último escrito en base 10). 

«Las nociones de la teoría de conjuntos son instrumentos 
conocidos e indispensables.» 
- JACQUES IIADAMARD, MATEMÁTICO FRANCÉS (1865-1963), EN UNA CONFERENCIA DICTADA 

EN 1897. 

Correspondencia 
uno-a-uno entre 
números reales 

(ubicados ent re 
O y 1) y conjuntos 

formados por 
números 

naturales. 

136 

Vamos a probar ahora que el conjunto de todos los números 
reales entre O y 1, que es un segmento de la recta numérica, es 
coordinable con '.P(N); es decir, debemos lograr que cada número 
entre O y 1 quede asociado exactamente con un conjunto de núme­
ros naturales. Para mostrarlo, tomemos el número 0,333 ... ¿Cómo 
hallamos el conjunto que le corresponde? Como se muestra en el 
esquema, primero escribimos el número en base 2 y obtenemos 
así la expresión 0,01010101.. .; de esa expresión nos quedamos con 
la secuencia de cifras detrás de la coma, en este caso 010101.. . 
y vemos qué conjunto le corresponde a esa secuencia. Como el 
conjunto es el de los números impares, entonces al 0,333 .. . le co­
rresponde ese conjunto. 

Número real 
en base 10 

Número real 
en base 2 

Secuencia de Conjunto formado por 
ceros y unos números naturales 

0,33333... +-+ 0,01010101... +-+ 01010101... +-+ {1, 3, 5, 7, 9, ... } 

0,1875 +-+ 0,001100000 ... +-+ 0011 00000 ... +-+ {2,3} 
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Recíprocamente, si tenernos un conjunto, por ejemplo el for­
mado por los números 2 y 3, y querernos saber qué número le co­
rresponde, transformamos p1irnero al conjunto en una secuencia 
de ceros y unos, en este caso queda 00110000 ... , y pensamos en 
esa secuencia corno las cifras detrás de la coma de un número 
escrito en binario; en este caso, el número es 0,001100000 ... que, 
traducido a base 10, equivale a 0,1875. Entonces, al conjunto for­
mado por los números 2 y 3 le corresponde el número 0,1875. 

De este modo vernos que P(N) es coordinable con el conjunto 
de todos los números entre O y 1, pero dijimos en el capítulo 3 que 
este último conjunto es coordinable con IR ( cualquier segmento 
es coordinable con toda la recta); por lo tanto, deducirnos que 
P(N) es coordinable con R Finalmente, a la pregunta de cuál es 
el cardinal de P(N), en 1892 Cantor respondió que el cardinal de 
P(N) es el mismo que el de R 

POTENCIAS 

Anteriormente dijimos que íbamos a hablar de otra operación de 
la aritmética transfinita, vamos a hacerlo ahora. 

Volvamos a las secuencias de ceros y unos, pero por el mo­
mento pensemos solamente en secuencias finitas. ¿Cuántas se­
cuencias de ceros y unos podernos formar si estas solo pueden 
tener dos cifras en total? La respuesta es que hay exactamente 
cuatro secuencias así, que son 00, 01, 10 y 11. Si las cifras son tres, 
hay ocho secuencias, 000, 001, 010, 100, 110, 101, 011, 111, y para 
cuatro cifras hay dieciséis. Para una cifra solo hay dos, que son 
simplemente O y l. 

Tenernos así que hay 21 secuencias de una cifra, 22 secuencias 
de dos cifras, 23 secuencias de tres cifras, y así sucesivamente. 
Parece lógico suponer que para las secuencias de « X 

O 
cifras» el 

cardinal correspondiente sea 2':0. 
En efecto, en sus «Contribuciones» Cantor define una poten­

ciación de cardinales y se basa para ello en una idea que él llama 
cubrimiento. Cuando formamos una secuencia infinita de ceros 
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y unos -dice Cantor- , estarnos cubriendo cada elemento de N 
con un O o con un 1: 

1 o, 
L.. 

1 . 
..J º-J. 1 . 

J º· ,..J 
1 , o, 

.J ... 

Preguntarnos por el cardinal del conjunto de todas las se­
cuencia infinitas de ceros y unos es hacerlo por todos los modos 
posibles de cubrir a N usando dos elementos. Todos los modos de 
cubrir a los números O, 1 y 2 usando dos elementos es 23, todos los 
modos de cubrir a los números O, 1, 2 y 3 usando dos elementos 
es 24; entonces, por definición, según Cantor, el cardinal de todos 
los modos de cubrir a N con dos elementos es 2x0

• Y como el con­
junto de todas las secuencias de ceros y unos es coordinable con 
IR, concluimos entonces que el cardinal de IR es también t·\ por 
lo tanto, otro modo de enunciar el problema de la hipótesis del 
continuo es con la pregunta: ¿será 2i,;0 igual a X 

1
? 

Observemos ahora que si estuviéran10s cubriendo a N con 
tres elementos obtendrian1os el cardinal 3xº; en otras palabras, el 
conjunto de todas las secuencias infinitas de ceros, unos y doses 
tiene cardinal 3i,;0

• Pero no hay que confundirse. A primera vista 
podriamos pensar que 3xo es mayor que 2x0

; sin embargo, no es así, 
en realidad 2x0 = 3x0

• Para probarlo, basta ver que el conjunto de 
las secuencias de ceros y unos es coordinable con el conjunto 
de las secuencias de ceros, unos y doses; la idea que hay detrás de 
esta demostración es que, así como las secuencias de ceros y unos 
pueden verse, en esencia, como números escritos en base 2, de 
la misma forn1a las secuencias de ceros, unos y doses pueden 
verse como números escritos en base 3. La correspondencia entre 
ambos conjuntos se obtiene entonces mediante un cambio de 
base. 

Tomando la definición de la potencia de cardinales podemos 
decir que, dado que el cardinal de los ordinales de clase II es X 

1
, 

entonces para esos ordinales hay 2x, cubrimientos posibles; y aun­
que parece obvio que 2x, sí es mayor que 2x0

, este hecho aún no ha 
podido ser demostrado. Es interesante destacar que la afirmación 
2:-:, es mayor que 2i,;0 realmente necesita ser demostrada, no pode-

LOS ÁLEF 



mos simplemente decir que, como X 1 es mayor que X , entonces 
es obvio que 2:-, debe ser mayor que 2:-0

, porque ya vim~s que 3 es 
mayor que 2, pero que, no obstante, 3:-0 no es mayor que 2:-:0; la 
conclusión es que, cuando del infinito se trata, lo que parece obvio 
no siempre es verdadero. 

¿ Cómo puede visualizarse un cubrimiento de los ordinales 
de clase 11? Observemos que, dado que hay una cantidad X de 

• 1 
ordinales de clase 11, cada uno de sus cubrimientos contendrá una 
cantidad X 1 de cifras; es decir, una cifra por cada ordinal: 

o o o o 1 
w w +l w + 2 w+w w+w+l w+w+w 

Ahora bien, los cubrimientos de los ordinales de clase II tie­
nen, en general, una complejidad que es muchísimo mayor que la 
de los cubrimientos de N. En efecto, por ejemplo, para definir un 
cubrimiento de N podemos decir simplemente que «comienza con 
01 y después sigue repitiendo esas dos mismas cifras»; esta defi­
nición caracteriza totalmente al cubrimiento 010101.. ., dado que 
con solo esa regla podemos sabemos con qué cifra, O o 1, debemos 
cubrir a cada número natural. 

Pero esa misma definición no es suficiente para definir com­
pletamente un cubrimiento de los ordinales de clase 11, y la causa 
es que estos tienen un ordenamiento que es mucho más complejo 

LA HIPÓTESIS GENERALIZADA DEL CONTINUO 

La hipótesis del continuo es la conjetura de que 2x0 = X1, algo que Cantor nunca 
pudo demostrar ni refutar. La llamada hipótesis generalizada del cont inuo es 
una conjetura que extiende a la anterior y que fue formulada por Cantor en 
sus «Contribuciones». Esta conjetura afirma que, no solamente 2x0 = x,, sino 
que además 2x, = X2, 2x, = X3 , 2x, = ~4 • y así sucesivamente. Como dijimos an­
tes, Cantor nunca llegó a saber en vida si estas conjeturas eran ciertas o no. 

LOS ÁLEF 

1 

1 

139 



que el de los naturales. Según vimos en el capítulo anterior, los 
ordinales de clase II comienzan con w, w + 1, w + 2, ... , tras infinitos 
pasos viene w + w, w + w + 1, w + w + 2, ... y tras infinitos pasos viene 
w+w+w, ... y tras infinitas veces infinitos pasos viene w + w + w + w ... 
(infinitas veces w ), w + w + w + w ... (infinitas veces w) + 1, ... , y así 
sucesivamente. 

De modo que si decimos de un cubrimiento de los ordinales 
de clase II que «comienza con 01 y después sigue repitiendo esas 
dos mismas cifras», esa definición solo nos dirá cómo proceder 
con la primera parte de la secuencia w, w + 1, w + 2, ... Al saltar a 
w + w tenemos que indicar el modo de recomenzar el cubrimiento, 
que puede ser otra vez con 01 o de cualquier otro modo; y otra 
vez tendremos que indicar un comienzo al llegar a w + w + w, y 
otra vez en w + w + w + w, y así sucesivamente. Si todas las veces 
decidimos recomenzar con 01, el cubrimiento resultante podría 
visualizarse como el cubrimiento «básico» de N 010101 ... repetido 
una y otra vez una cantidad no numerable de veces. 

LA PARADOJA DE CANTOR 

El conjunto P(N) tiene como miembros a todos los conjuntos que 
se pueden formar con elementos de N; esta idea, por supuesto, 
puede generalizarse. SiA es un conjunto cualquiera, se llama P(A), 
que se lee «partes de A», al conjunto que tiene como miembros a 
todos los conjuntos que se pueden formar con elementos de A. Y así 
como P(N) tiene cardinal 2:-;0

, de la misma manera puede probarse 
que P(A) tiene cardinal «2 elevado al cardinal de A». Si la hipótesis 
del continuo fuera cierta, entonces el cardinal de POR) sería 2:-;'. 

Sabemos que N es nun1erable y que P(N) no lo es; en otras 
palabras: P(N) tiene un cardinal que es mayor que el de N. Esto 
también puede generalizarse; en efecto, el llamado teorema de 
Cantor afinna que P(A) tiene siempre un cardinal mayor que A. 

Una consecuencia del teorema de Cantor es que para cual­
quier conjunto existe siempre otro de cardinal mayor. En el ca­
pítulo anterior y, unas páginas antes en este mismo capítulo, 
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hicimos esa afirmación (que dado un conjunto existe otro de car­
dinal mayor), pero en aquellos casos nos referíamos específica­
mente a conjuntos formados por ordinales; el teorema de Cantor, 
en cambio, pemüte extender la afinnación a todos los conjuntos, 
no importa cuál sea la naturaleza de sus miembros. 

Consideremos entonces el conjunto universal, que es el con­
junto que lo contiene todo, absolutamente todo lo concebible. El 
teorema de Cantor nos dice que existe un conjunto que tiene un 
cardinal aún mayor que él. Pero, ¿cómo puede haber un conjunto 
que sea mayor que aquel que ya lo contiene todo? Ese conjunto 
mayor no puede existir; sin embargo, el teorema de Cantor nos 
dice que sí existe. Llegamos así a una contradicción; es decir, en­
contramos otra paradoja en la teoría de conjuntos. Esta nueva 
paradoja, que se suma a la que vimos en el capítulo anterior, es 
conocida como la paradoja de Cantor. 

A principios del siglo xx se descubrió una tercera paradoja, 
que lleva el nombre de Bertrand Russell, y que no es exagerado 
decir que generó una verdadera crisis en las matemáticas. En el 
próximo capítulo nos ocuparemos de todas estas paradojas de la 
teoría de Cantor, y en particular analizaremos qué consecuencias 
tuvieron para las matemáticas en general. 
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CAPÍTULO 6 

Las paradojas del infinito 

En una carta escrita en 1902, 
el lógico inglés Bertrand Russell formuló 

una pregunta muy simple, pero que desencadenó en 
el corazón de las matemáticas una crisis muy profunda 
que se extendió a lo largo de casi treinta años, y cuyas 

consecuencias pueden sentirse todavía en la actualidad. 
La pregunta que Russell formuló es: «¿Este 

conjunto del que estoy hablando es 
miembro de sí mismo?». 





Cuando en 1883 Cantor escribió su artículo «Fundamentos para 
una teoría general de variedades» ya era consciente, según co­
mentamos en el capítulo 4, de que su teoría contenía al menos 
una paradoja; pero ¿qué es exactamente una paradoja? La palabra 
«paradoja», en realidad, es usada en la literatura y en el lenguaje 
cotidiano en diferentes sentidos, no todos equivalentes entre sí. 
Para la lógica, específicamente, una paradoja ocurre cuando, por 
ejemplo, en una teoría podernos demostrar que un objeto existe y 
no existe al mismo tiempo, o que un cierto ente tiene propiedades 
que se contradicen entre sí; es decir, una paradoja se produce 
cuando se descubre que una teoría conduce a una imposibilidad 
lógica. Es en este sentido lógico del término que decirnos que Can­
tor encontró una paradoja en su teoría, o, lo que es lo mismo, halló 
una contradicción lógica, y el hallazgo de una contradicción es 
siempre una mala noticia porque indica que puede haber un error 
de base en la teoría, un fallo que debe ser localizado y subsanado. 

En un sentido completamente distinto, la palabra «paradoja» 
a veces es usada también corno sinónimo de «sorprendente» o de 
«contrario a la intuición», sin que ello implique necesariamente la 
existencia de una contradicción lógica. Por ejemplo, en referencia 
a lo visto en el capítulo anterior, podríamos decir que el hecho de 
que l'< 0 + 1 = l'< 

0 
es «paradójico», dado que nuestra percepción, que 

solo abarca cantidades finitas, nos lleva a pensar que si agregamos 
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un elemento nuevo a un cierto conjunto, entonces la cantidad total 
de elementos debe aumentar; en can1bio, X 

O
+ 1 = X 

O 
nos dice que, en 

el caso del infinito, la cantidad sigue siendo la misma. Pero, aunque 
sorprendente, la igualdad X 

O
+ 1 = X 

O 
no es una paradoja en el sen­

tido lógico del término, porque no implica genuinamente una contra­
dicción lógica, solo nos dice que las reglas que rigen a las cantidades 
infinitas son diferentes de las que rigen a las cantidades finitas. 

En este libro estamos usando la palabra «paradoja» siempre en 
el primer sentido, refiriéndonos a la existencia de una incoherencia 
lógica en una teoría. Hecha esta aclaración, volvamos a la paradoja 
que encontró Cantor en 1883 y recordemos brevemente en qué con­
siste. La secuencia de los ordinales -dice Cantor- está generada 
a partir de dos p1incipios. El p1in1ero afmna que cada ordinal tiene 
un sucesor inmediato; este es el principio, por ejemplo, que nos 
asegura que inmediatamente después de co viene el ordinal co + l. 

«Los conjuntos infinitos tienen algunas propiedades curiosas, 
que a veces han sido llamadas paradójicas. En realidad no son 
paradójicas, solo son algo sorprendentes cuando se las 
considera por primera vez.» 
- RAYMOND SMULLYAN, LÓGICO NORTEAMERICANO, EN SATÁN, CANTOR Y EL INFINITO (1992). 

El segundo principio dice que, dada cualquier secuencia infinita 
de ordinales, siempre hay otro ordinal que es el que sigue inmediata­
mente a todos ellos y que, en particular, no pertenece a esa secuencia 
Este principio nos garantiza, por ejemplo, que después de la sucesión 
infinita O, 1, 2, 3, 4, ... viene el nuevo ordinal co, y que después de la 
sucesión infinita co, co + 1, co + 2, co + 3, ... viene el nuevo ordinal co + co. 

La paradoja aparece cuando intentamos aplicar el segundo 
principio de generación a la secuencia formada por todos los ordi­
nales, llan1émosla C. En efecto, el segundo principio expone que si 
toman1os la secuencia C de todos los ordinales, entonces existe un 
nuevo ordinal que viene después de todos ellos, y que no aparece 
en C; llamemos O (la letra griega ómicron) a este nuevo ordinal. 
Pero O es también en sí mismo un ordinal, y C contiene a todos los 
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o es un ordinal y entonces 
pertenece a la secuencia de 

todos los ordinales. 

\ Í\ 
Secuencia de todos los ordinales o 

r 
Estas dos afirmaciones se 
contradicen mutuamente. 

1 

L __ _ 
o es un nuevo ordinal y no 
pertenece a la secuencia. 

I 

ordinales, por lo tanto O aparece en C, pero a la vez acabamos de 
decir que no aparece; de modo que hemos probado que O tiene dos 
propiedades que se contradicen, no aparece en C, pero a la vez sí 
aparece; hemos encontrado así una paradoja (véase el esquema). 

Como dijimos en el capítulo 4, para solucionar este problema 
Cantor introdujo un tercer principio de generación, una tercera 
regla según la cual el segundo principio no es aplicable a la se­
cuencia completa de todos los ordinales. En otras palabras, Can­
tor decretó que O no existe. 

Aunque en efecto esta tercera regla soluciona la paradoja, no 
parece ser por sí sola una solución satisfactoria; para expresarlo 
con una metáfora, estamos dándole al paciente un analgésico que 
calma su dolor, pero sin buscar las causas reales de su enferme­
dad. Para encontrar una solución genuina necesitamos saber cuál 
es la enfermedad que provoca el dolor; o sea, es necesario saber 
cuál es el fallo básico de la teoría que produce la paradoja. 

Para Cantor, la causa profunda de la paradoja radica en la 
necesidad de hacer la distinción -que él introdujo en su artículo 
de 1883- entre lo transfinito y el infinito absoluto. Según Cantor, 
dentro del dominio de lo transfinito caen todos los conjuntos in­
finitos que la mente humana puede conocer y con los que puede 
operar, como por ejemplo el conjunto de los números reales o el 
conjunto de los ordinales de clase I, clase II, clase III o de cual­
quier otra clase específica. En el dominio de lo absoluto, en cam-
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bio, caen aquellos conjuntos que son «demasiado grandes» como 
para ser accesibles a la mente humana; entre ellos, el conjunto 
formado por todos los ordinales o el conjunto universal ( el con­
junto que lo contiene absolutamente todo y del que hablan1os en 
el capítulo anterior). En referencia a este tema, Cantor escribía en 
su trabajo de 1883: 

Ahora bien, existe una diferencia esencial en el hecho de que yo he 
fijado en su concepto, de una vez y para siempre, las diferentes gra­
daciones del infinito propio [ que es corno Cantor llama al infinito en 
acto] mediante las clases nun1éricas (1), (11), (111), etc., y solo enton­
ces considero corno tarea no solo investigar matemáticamente las 
relaciones entre los números transfinitos, sino también perseguirlos 
y mostrarlos dondequiera que ocurran en la naturaleza. No admite 
para nú ninguna duda que siguiendo este canuno llegaremos siempre 
más allá, sin encontrar ningún límite insuperable, pero sin conseguir 
tampoco una captación siquiera aproximada de lo absoluto. Lo ab­
soluto solo puede ser reconocido [ es decir, reconocida su existen­
cia], pero nunca conocido, ni siquiera aproxin1adarnente conocido. 

Lo absoluto, según Cantor, sigue unas reglas que son diferentes 
a las de lo transfinito, reglas que no podemos ni siquiera enunciar 
porque son incognoscibles para nosotros. La paradoja, entonces, 
nace esencialmente del intento erróneo de aplicar a lo absoluto las 
reglas de lo transfinito. El tercer principio de generación de ordina­
les, que en esencia dice que una cierta regla de lo transfinito no se 
aplica a un cierto conjunto absoluto, no sería, por lo tanto, un prin­
cipi9 ad hoc, sino una consecuencia genuina de la filosofía básica 
que debe seguir la teoría de conjuntos. Análogamente, la solución 
de la paradoja de Cantor (véase el capítulo anterior) consistiría, 
según el propio Cantor, sin1plemente en decir que al conjunto uni­
versal, que cae en el dominio de lo absoluto, no se le puede aplicar 
el teorema que afirma que todo conjunto tiene siempre otro de car­
dinal mayor (véase el esquema de la página siguiente). 

Hay que decir que, en realidad, en el trabajo de 1883 las men­
ciones a lo absoluto, como la que citan10s más arriba, se encuen­
tran en mayor medida en unas notas que aparecen después del 
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Por el teorema de Cantor 

Conjunto universal, 
lo contiene todo 

Existe un conjunto 
«más grande» 

Pero ese conjunto cae dentro del universal 

texto principal del artículo, y que la existencia de posibles con­
tradicciones en la teoría de coajuntos está apenas insinuada. Esta 
reserva, que probablemente tuvo la intención de prevenir posibles 
ataques a la teoría, fue del todo deliberada, y esto último queda 
demostrado en una carta que Cantor le escribió a Hilbert el 15 de 
noviembre de 1899, en la cual, en referencia a su filosofía de la 
distinción entre lo transfinito y lo absoluto decía: «filosofía que 
puede encontrar Ud. en los "Fundamentos" publicados el año 
1883, especialmente en las notas al final, expresado de un modo 
bastante claro, pero intencionadamente algo oculto». 

Dedekind, que por aquel entonces trabajaba también con con­
ceptos conjuntistas, no parecía haber reparado en la existencia de 
paradojas, y el propio Cantor, después de la crisis depresiva que 
sufrió en mayo de 1884, abandonó por completo el tema durante 
mucho tiempo; como consecuencia, la cuestión de las paradojas 
de la teoría de conjuntos, hasta que fue redescubierta en el año 
1897, cayó totalmente en el olvido. 

EL CONGRESO DE 1897 

Del 9 al 11 de agosto de 1897 se celebró en Zúrich, Suiza, el Primer 
Congreso Internacional de Matemáticas, al que asistieron más de 
200 especialistas de 16 países, entre ellos Hilbert y Cantor. Puede 
decirse que este congreso marcó la consagración internacional de 
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la teoría de conjuntos, ya que muchas de las exposiciones que allí 
se hicieron trataron sobre aplicaciones de los conceptos conjun­
tistas, principalmente al cálculo. 

«¿Quién de nosotros no se alegraría de levantar el velo tras 
el que se oculta el futuro, de echar una mirada a los próximos 
avances de nuestra ciencia y a los secretos de su desarrollo 
durante los siglos futuros?» 
- PRIMERAS PALABRAS DE LA CONFERENCIA DE HlLBERT EN EL SEGUNDO CONGRESO INTERNACIONAL 

DE MATEMÁTICAS. 

Pero en las conversaciones que los asistentes mantenían 
entre sesión y sesión aparecía repetidamente una cuestión muy 
perturbadora ... nada menos que el descubrimiento de una pa­
radoja en la teoría de conjuntos. En efecto, en marzo de 1897, 
en el boletín del Círculo Matemático de Palermo, el matemático 
italiano Cesare Burali-Forti había publicado un artículo titulado 
«Una cuestión sobre números transfinitos» en el que redescubría 
la paradoja de los ordinales que comentamos más arriba. Dado 
que en 1883 Cantor no había formulado claramente la paradoja, 
y esta tomó notoriedad solo a partir del trabajo de Burali-Forti, 
hoy en día a esta contradicción en la teoría de los ordinales se la 
conoce como la «paradoja de Burali-Forti» y así la llamaremos 
también nosotros. Es interesante mencionar, además, que el pro­
pio Burali-Forti estuvo presente en el congreso y que presentó 
allí una ponencia, aunque no sobre el tema de los ordinales, sino 
sobre una cuestión de geometría. 

Hilbert, gran defensor de la te01ia de conjuntos, quedó muy 
preocupado por la aparición de esta paradoja, y a partir de 1897 
mantuvo una intensa correspondencia con Cantor acerca de 
este tema. Durante este intercambio, Cantor volvió a exponer su 
convicción de que todas las paradojas de la teoría de conjuntos 
pueden evitarse haciendo la distinción entre lo transfinito y lo ab­
soluto, aunque en esas cartas Cantor ya no utilizaba esas palabras, 
sino que hablaba de conjuntos «accesibles» e «inaccesibles» (a 
veces también de conjuntos «consistentes» e «inconsistentes»). 
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Para Cantor, los conjuntos accesibles son aquellos cuyas pro­
piedades podemos enunciar y estudiar; los inaccesibles, en cam­
bio, están más allá de nuestra capacidad de comprensión, y es 
por eso que al intentar analizarlos caemos en contradicciones. El 
problema, por así decirlo, no estaría en los conjuntos en sí, sino en 
nuestra mente finita y limitada que es incapaz de entender cierta 
clase de conjuntos. 

Hilbert no estaba nada convencido de la validez de esta solu­
ción de Cantor; Hilbert entendía que si somos capaces de compren­
der la definición de un conjunto, entonces también deberíamos ser 
capaces de conocer todas sus propiedades. La idea de que existen 
objetos matemáticos incognoscibles era totalmente contraria a 
su filosofía de las matemáticas, que suele resumirse en su famosa 
máxima «Debemos saber, y sabremos», frase que Hilbert expuso 

CESARE BURALI-FORTI 

Burali-Forti nació en Arezzo, Italia, el 13 
de agosto de 1861. Estudió matemáticas 
en la Universidad de Pisa, donde se gra­
duó en 1884, pero nunca llegó a docto­
rarse porque su propuesta de pensar la 
geometría desde un punto de vista alge­
braico (propuesta que hoy es totalmen­
te aceptada) fue, en aquel momento, re­
chazada por el comité que debía evaluar 
su trabajo de tesis y Burali-Forti nunca 
insistió. Hasta 1887 fue profesor de Ma­
temáticas en una escuela de Pisa y ese 
año se trasladó a Turín, donde comenzó a 
enseñar en una academia militar, trabajo 
que conservó hasta el final de su carrera . 
La falta de un doctorado le impidió ejer-
cer la docencia universitaria, aunque en la Universidad de Turín dio conferen­
cias que fueron muy apreciadas; en esa misma institución trabajó asimismo, 
informalmente, en estrecho contacto con muchos investigadores. En su vida, 
Burali-Forti escribió más de 200 artículos sobre geometría, lógica y también 
sobre la enseñanza de las matemáticas; falleció en Turín el 21 de enero de 1931. 
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en la conferencia inaugural del Segundo Congreso Internacional de 
Matemáticas de 1900 y que habla de su íntima convicción de que no 
existen problemas matemáticos inaccesibles. 

Pero la interesante discusión epistolar entre Hilbert y Cantor 
fue trágican1ente interrumpida en 1899 y nunca pudo llegar a una 
conclusión satisfactoria para ambos. 

LOS ÚLTIMOS AÑOS 

A fines de 1899, Cantor se encontraba preparando la tercera parte 
de su artículo «Contribuciones a la creación de una te01ia de los 
conjuntos transfinitos», que iba a estar dedicada principalmente 
a exponer su solución de las paradojas de la teoría de conjuntos; 
pero nunca pudo concluir el escrito porque su trabajo quedó in­
terrumpido por un durísimo golpe; el 16 de diciembre de 1899 
murió su hijo menor Rudolf, de trece años de edad. 

Esta terrible pérdida, de la que Cantor jamás pudo recuperarse, 
le provocó un grave trastorno mental, o tal vez desencadenó un 
trastorno mental que ya estaba latente. En los años sucesivos pasó 
alternativamente por períodos de lucidez y de desvarío, y tuvo que 
ser hospitalizado varias veces en una clínica psiquiátrica de Halle. 

En esos años de enfern1edad, Cantor volvió al tema de la con­
troversia Shakespeare-Bacon que, en verdad, nunca había abando­
nado del todo; ejemplo de ello es la siguiente frase, incluida en la 
carta a Hilbert del 15 de noviembre de 1899 que citamos antes, y en 
la que Cantor dice: «en este invierno impartiré cinco lecciones en 
Berlín, igualmente cinco lecciones en Leipzig sobre el mismo tema 
[la controversia Shakespeare-Bacon], donde he llegado al fondo 
mismo de la cuestión; los señores filólogos quedarán maravillados». 

Pero una muestra del grado que, después de 1900, llegó a al­
canzar su obsesión por esta controversia puede verse en un hecho 
ocurrido en 1911. En septiembre de ese año, Cantor fue invitado 
a asistir como académico distinguido a la celebración del 500. º 
aniversario de la fundación de la Universidad de St. Andrews, en 
Escocia. Ahora bien, como veremos en breve, desde el descubri-
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miento en 1902 de la llamada «paradoja de Russell», la cuestión 
de las contradicciones lógicas en la teoría de conjuntos había pa­
sado al primerísimo plano de la discusión matemática; visto este 
panorama, está claro que cuando en septiembre de 1911 Cantor 
subió al estrado de la Universidad de St. Andrews para dar una 
conferencia, todos los asistentes esperaban oír una disertación 
sobre las paradojas del infinito; Cantor, .en cambio, habló de la 
controversia Shakespeare-Bacon. 

Por otra parte, al año siguiente la Universidad de St. Andrews 
le otorgó un doctorado honoris causa, pero en ese momento Cantor 
se encontraba demasiado enfermo y no pudo asistir a la ceremonia. 

«La esencia de la matemática radica precisamente 
en su libertad.» 

- GEORG CANTOR, EN 1883. 

Sin embargo, especialmente en los primeros años de su crisis 
mental, Cantor no abandonó completamente las matemáticas; con­
tinuó enseñando en la Universidad de Halle, aunque con periódicas, 
y a veces largas, ausencias causadas por su enfermedad (por ejem­
plo, durante todo el año 1909 no pudo impartir sus clases); dio tam­
bién una conferencia, esta vez sí sobre las paradojas de la teoría de 
conjuntos, en la reunión de la Unión Matemática Alemana de sep­
tiembre de 1903; y asimismo asistió al Tercer Congreso Internacio­
nal de Matemáticas, celebrado en Heidelberg, Alemania, en agosto 
de 1904. Pero jamás completó la tercera parte de sus «Contribucio­
nes», ni volvió a publicar artículo alguno sobre matemáticas. 

Cantor se jubiló en 1913 y en sus últimos años sufrió muchas 
privaciones a causa de la escasez de alimentos provocada por la 
Primera Guerra Mundial. La guerra también impidió el gran fes­
tejo que sus colegas alemanes iban a organizar en su honor en 
1915 con motivo de su septuagésimo cumpleaños, pues la crisis 
económica obligó a reducirlo a una pequeña reunión en su casa 
con algunos amigos. En junio de 1917, Cantor fue hospitalizado 
por última vez en la clínica psiquiátrica de Halle, donde murió de 
un ataque cardíaco el 6 de enero de 1918. 
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Actualmente, en la Universidad de Halle hay un monumento 
con la forma de un gran cubo de bronce; cada una de sus cuatro 
caras laterales está dedicada a un profesor que ha dictado cátedra 
allí; una de esas caras, por supuesto, está consagrada a Cantor. Esta 
última cara tiene en su parte superior un busto en relieve del mate­
mático alemán, y a la derecha de este la inscripción: «Georg Cantor, 
matemático, creador de la teoria de conjuntos, 1845-1918». Debajo 
de la efigie de Cantor se lee la igualdad e = 2¡.:0, donde e, la inicial de 
continuum («continuo», en latín), representa el cardinal de los nú­
meros reales. A la derecha de esta igualdad se ve el esquema de una 
demostración de que los racionales son numerables. Finalmente, 
debajo de la igualdad e = 2¡.:º aparece una frase que Cantor escribió 
en su trabajo de 1883 y que ya citamos en el primer capítulo: «La 
esencia de la matemática radica precisamente en su libertad». 

Pero en realidad no necesitan10s un monumento para recor­
dar a Cantor, porque su voz nos habla con toda claridad desde sus 
cartas y sus artículos, y porque, mientras existan las matemáticas, 
su presencia seguirá siempre viva en su teoría del infinito. 

LA CONCEPCIÓN DE FREGE 

¿Qué pasó finalmente con las paradojas de la teoria de conjuntos? 
¿Cómo pudieron resolverse, si es que se resolvieron? Para respon­
der estas preguntas debemos volver atrás en el tiempo, otra vez a 
la segunda mitad de la década de 1880. 

Recordemos que por esos años Dedekind, y más tarde Cantor, 
habían propuesto definir a los números naturales y a sus operacio­
nes a partir de conceptos conjuntistas; recordemos también que 
esta propuesta equivale esencialmente a basar todas las ramas de 
las matemáticas en la teoría de conjuntos; ejemplifiquemos esta 
última idea tomando el caso del cálculo. ¿Cómo es posible que el 
cálculo quede basado en nociones conjuntistas si los naturales se 
definen en base a esas mismas nociones? Esto se debe a que, a 
partir de los naturales, se pueden definir los números enteros; de 
los enteros, a su vez, se definen los racionales; de los racionales 
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se definen los reales ( otra vez usando nociones cor\juntistas ); y los 
reales son, finalmente, la base del cálculo. 

En esa misma época, el matemático y lógico alemán Gott­
lob Frege (1848-1925) comenzaba a concebir el mismo proyecto 
de basar todas las matemáticas en conceptos cor\juntistas; es 
decir, Frege estaba a favor de las intenciones de Cantor y de De­
dekind, pero difería, sin embargo, en el estilo de argumentación 
matemática que ellos usaban; expliquemos en qué consiste esta 
idea. Durante siglos el modelo de razonamiento matemático por 
excelencia estuvo dado por los Elementos de Euclides, la obra 
fundamental de la geometría griega, escrita en el siglo rn a.c. En 
su estructura lógica, los razonamientos de Euclides se basan en 
axiomas, que son afirmaciones cuya verdad se acepta sin demos­
tración; a partir de esos axiomas, se deducen mediante razona­
miento lógicos todas las demás verdades de la teoría, verdades 
que, en el caso de los Elementos, son propiedades geométricas. 

Ahora bien, Euclides dividió a sus axiomas en dos grupos; 
en el primero, están los postulados, que son afirmaciones refe­
ridas específicamente a objetos geométricos, mientras que en el 
segundo están las llamadas «nociones comunes», que son reglas 
generales del pensamiento, es decir, afirmaciones generales que 
se aplican en cualquier situación, ya sea geométrica o no; un ejem­
plo de estas nociones comunes es que si dos cosas son iguales a 
una tercera, entonces son iguales entre sí (véase el esquema). 

El punto que queremos destacar es que el sistema de axiomas 
de Euclides no solamente se refiere a los objetos geométricos en 
sí, sino que además nos da reglas más amplias acerca de lo que 

Euclides Lenguaje moderno 

Algunas de las 
nociones comunes 
de Euclides y su 
traducción al 
lenguaje moderno. 

Si dos cosas son iguales a una tercera ___ _ 
entonces son iguales entre sí. Si a =e y b = e entonces a=b. 

Si a cosas iguales se añaden cosas 
iguales se obtienen cosas iguales. 

L Si de cosas iguales se sacan cosas 

ig-uales se o= n : sas iguale~. 

Si a=b entonces a+c=b+c . 

Si a=b entonces a-c=b-c. 

__ ___J 
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podemos decir, o no, sobre los objetos en general. En otras pala­
bras, el sistema de axiomas no solo habla de las propiedades de 
los objetos geométricos, sino que nos guía en las conclusiones que 
podemos extraer de esas propiedades. 

La teoría de conjuntos de Cantor, que es la misma en la que se 
basaba Dedekind, no terúa una estructura lógica tan depurada; la 
teoría no terúa axiomas; es decir, a diferencia de Euclides, Cantor 
nunca dio una lista de las propiedades básicas en las que funda­
mentaba sus demostraciones. Él se limitaba a definir los objetos 
(por ejemplo, los ordinales), muchas veces usando un lenguaje 
bastante coloquial, y directamente de esas definiciones extraía 
las conclusiones que le dictaba una lógica más o menos intuitiva. 
Para Frege, esta situación era inaceptable; según él, la teoría de 
conjuntos debía tener una estructura euclídea, es decir, debía co­
menzar con una lista clara y precisa de definiciones y de axiomas 
(incluyendo estos a las nociones comunes), a partir de los cuales 
se pudieran deducir rigurosamente todas las verdades de la teoría. 

Pero Frege iba aún más allá, él deploraba que en las matemá­
ticas en general - no solo en la teoría de conjuntos- se usara un 
lenguaje coloquial o que se apelara al sentido común en los razo­
namientos, prácticas que él denominaba «psicologismo». Frege 
entendía que las matemáticas debían tener un lenguaje específico, 
expresado mediante símbolos creados con ese fin y que las reglas 
de deducción lógica (las reglas que nos dicen las conclusiones 
que podemos extraer de determinadas premisas) debían estar asi­
mismo expresadas con toda precisión usando ese mismo lenguaje. 

Como dijimos, esta preocupación de Frege por el «psicolo­
gismo» se refería a las matemáticas en general, no solo a la teoría 
de conjuntos en particular; de hecho, sus primeras propuestas 
para un lenguaje matemático riguroso son anteriores al inicio de 
la teoría de conjuntos. Sin embargo, cuando, a la vez que Dede­
kind, en la segunda mitad de la década de 1880, Frege concibió la 
idea de fundamentar todas las matemáticas en la teoría de con­
juntos, se concentró en aplicar el lenguaje que había creado a esa 
teoría en particular. 

Frege dedicó muchos años a desarrollar los símbolos y las 
reglas de su lenguaje riguroso, que expuso por primera vez en su 
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libro Conceptografía, de 1879 (Begriffsschrift en alemán). Desde 
todo punto de vista, el lenguaje creado por Frege es muy diferente 
de nuestra esc1itura habitual; en realidad, más que un texto parece 
un dibujo lineal. Es probable que esta diferencia fuera deliberada 
y que tuviera como finalidad lograr que el lenguaje riguroso de las 
matemáticas se alejara todo lo posible del lenguaje coloquial. Sin 
embargo, esta decisión tuvo una consecuencia negativa, porque el 
sistema resultaba muy arduo de comprender y esto redujo sensi­
blemente la penetración que la obra de Frege pudo haber tenido 
en el público interesado en ella. 

LA PARADOJA DE RUSSELL 

En 1902, Frege acababa de enviar a la imprenta el segundo tomo 
de sus Fundamentos de la aritmética, la obra en la que desarro­
llaba su programa de fundamentar las matemáticas en la teoria de 
conjuntos, cuando recibió una carta del lógico inglés Bertrand Rus­
sell (1872-1970); la carta está fechada en Friday's Hill, Haslemere, 
Reino Unido, el 16 de junio de 1902, y ocupa apenas una página. 
En esa carta, Russell, que había leído el primer tomo de los Fun­
damentos, comenzaba elogiando el trabajo de Frege y manifestán­
dose completamente a favor de lo que él intentaba hacer; «pero 
- agregaba Russell- he encontrado una pequeña dificultad». 

¿Cuál era esa dificultad? Uno de los axiomas en los que Frege 
basa la teoría de conjuntos es el llamado axioma de compren­
sión, que expresado en lenguaje coloquial dice que a toda pro­
piedad le corresponde un conjunto, que es el conjunto formado 
por todos los objetos que cumplen esa propiedad. Por ejemplo, 
a la propiedad «ser un libro de matemáticas» le corresponde el 
conjunto formado por todos los libros de matemáticas; a la pro­
piedad «ser un número racional» le corresponde el conjunto de 
todos los números racionales; y así sucesivamente. En su carta 
a Frege, Russell formula la siguiente pregunta: ¿qué sucede si 
tomamos la propiedad «ser un conjunto que no es miembro de 
sí mismo»? 
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Esquema de la 
paradoja de 

Russell. Las 
flechas indican el 

orden en que 
deben hacerse las 

deducciones 
lógicas. 

Ahora bien - dice Russell- , según el axioma de Frege, a la 
propiedad de «ser un conjunto que no es miembro de sí mismo» le 
corresponde un conjunto, al que llamaremos F, que está formado 
por todos los conjuntos que cumplen la propiedad de no ser miem­
bros de sí mismos. La pregunta es: ¿Fes miembro de sí mismo? 

Si F fuera miembro de sí mismo, entonces, como todo miem­
bro, cumpliría la propiedad que define al conjunto; por lo tanto, F 
no sería miembro de sí mismo. Esto es una contradicción, porque 
partimos de una suposición y llegamos a la conclusión opuesta. 
Deducimos entonces que la suposición inicial no puede ser verda­
dera; es decir, F no es miembro de sí mismo. 

Pero si F no es miembro de sí mismo, entonces no cumple 
la propiedad que define a F; por lo tanto, sí sería miembro de sí 
mismo. Tenemos otra contradicción (véase el esquema). 

En resumen, F no puede ser miembro de sí mismo, pero tam­
poco puede dejar de serlo; esto es una imposibilidad lógica. El 
conjunto F, cuya existencia está garantizada por el axioma de 
comprensión, no puede existir porque su existencia genera una 
contradicción lógica. Por lo tanto, el axioma de comprensión, que 
parecía tan inocente, es contradictorio, genera una paradoja. La 
paradoja de los conjuntos que no son miembros de sí mismos es 
conocida actualmente como la «paradoja de Russell». 

------------- ---
Propiedad que define a F: No es miembro de sí mismo. 

F cumple la propiedad 
«no es miembro de sí mismo» ~ent< 

ento/ '-----------~ ~nces 

«Es miembro de F» 

Fes miembro de F equivaleª F no es miembro de F 
1 «cumple la propiedad 

L-
---- enton~ ~-F- n_º _: _:m_e _: _,:_,,:_e_,:_: _; _:,_d_ad-~ ~onces _ «no es miembro de sí mismo» 
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GOTTLOB FREGE 

Friedrich Ludwig Gottlob Frege nació en 
Wismar, A leman ia, el 8 de noviembre de 
1848. En 1869 ingresó en la Universidad 
de Jena, también en Alemania, para es­
tudiar matemáticas, y en 1871 se trasla­
dó a la Universidad de Gotinga, donde, 
además de matemáticas, estudió física, 
química y filosofía . Se doctoró en Gotin­
ga en 1873 con una tesis en la que pro­
ponía un lenguaje lógicamente riguroso 
para la geometría. Después de recibir la 
carta de Russell de 1902, en la que este 
le p lanteaba la paradoja del conjunto de 
los conjuntos que no son miembros de sí mismos, Frege cayó en un profundo 
abatimiento. Intentó recomponer su sistema y para ello modificó el axioma 
responsable de la paradoja, pero el sistema así corregido también resultó tener 
paradojas, aunque Frege tardó varios años en darse cuenta. Gran parte de sus 
últimos trabajos sobre lógica y filosofía estaban sin publ icar en el momento 
de su muerte; Frege los dejó en su testamento a su hijo adoptivo A lfred con 
estas pa labras: 

No desdeñes las piezas que he escrito. Aunque no todo esto sea oro, hay oro en 

el las. Creo que hay aquí cosas que algún día podrán tener un valor mucho mayor 

que el que ahora tienen. Cuídate de que nada se pierda. Es una buena parte de mí 

lo que te lego con esto. 

Gottlob Frege fa lleció en Bad Kleinen, A lemania, el 26 de julio de 1925. 

LA CRISIS DE LOS FUNDAMENTOS 

Recordemos que hemos convenido, tal como se hace usualmente, 
en llamar «paradoja de Burali-Forti» a la paradoja de los ordina­
les; otra convención usual que adoptaremos es llamar «paradoja 
de Cantor» a la paradoja del conjunto universal; recordemos 
(véase el capítulo 4) que esta última paradoja se relaciona con el 
teorema que dice que para todo conjunto existe otro de cardinal 
aún mayor; pero como el conjunto universal es, por definición, el 
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conjunto que lo contiene todo, entonces no puede haber otro con­
junto además de él, a la vez que el teorema nos dice que sí debe 
haberlo; tenemos así una contradicción. 

Hecha esta aclaración sobre los nombres, digamos que la pa­
radoja de Burali-Forti y la de Cantor, aunque causaron preocu­
pación en el mundo matemático, no provocaron, en cambio, una 
alarma descontrolada. 

Es cierto que las paradojas constituían un problema que había 
que resolver, pero a la vez tan1bién es verdad que las dos paradojas 
se refieren a objetos, como el conjunto de todos los ordinales o el 
conjunto universal, que jamás aparecían en los razonamientos del 
cálculo o de cualq~er otra rama de las matemáticas que empleara 
nociones conjuntistas. Por otra parte, además de la propuesta de 
solución de Cantor ya mencionada, muchos otros tenían confianza 
en que algún ajuste técnico en la teoría de conjuntos, como por 
ejemplo alguna modificación conveniente en las definiciones, po­
dría solucionar las paradojas. En resumen, aunque todos coinci­
dían en que había un problema, este parecía circunscribirse a un 
área muy específica de la teoría de conjuntos y ciertamente no 
parecía irresoluble. 

«No admite para mí ninguna duda que siguiendo este camino 
llegaremos siempre más allá, sin encontrar ningún límite 
insuperable.» 
- GEORG CANTOR, EN 1883. 

Sin embargo, la paradoja de Russell sí provocó una crisis de 
grandes proporciones; porque el axioma que dice que a toda propie­
dad le coffesponde un cor\junto había sido utilizado, implícitamente, 
una y otra vez durante años por todos aquellos que en las diferen­
tes ran1as de las matemáticas aplicaban nociones cor\juntistas. Al 
probar que este axioma es contradictorio, Russell no solan1ente 
derribaba el programa de Frege, sino que echaba un manto de duda 
sobre todos los desanollos basados en la teoría de conjuntos; muy 
en especial, quedaba en entredicho la validez del cálculo. Peor to­
davía, el axioma de comprensión es realmente una afirmación que 
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FOTO SUPERIOR: 

Cada cara lateral 
del cubo de este 
monumento de 
la Universidad 
de Halle está 
dedicada a un 
profesor que dictó 
cátedra allí. A la 
izquierda se ve la 
cara dedicada a 
Víctor Klemperer 
(1881-1960), 
profesor de 
Filología; la cara 
de la derecha es la 
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parece obvia, y si una afirmación en apariencia tan inocente resul­
taba ser contradictoria, ¿qué riesgos ocultos podía haber en otros 
axiomas o suposiciones que, de manera implícita o explícita, los 
matemáticos verúan usando confiadamente en sus razonamientos? 

La crisis provocada por la paradoja de Russell excedió el 
marco de la teoría de conjuntos, dado que los matemáticos se 
cuestionaron la validez de todos sus razonamientos y llegaron a 
preguntarse incluso qué estudiaban realmente las matemáticas. 
Esta crisis tan profunda es conocida hoy en día como la «crisis de 
los fundamentos» y provocó discusiones, a veces acaloradas, que 
se extendieron a lo largo de casi treinta años. Esta amplitud en 
el tiempo, y la ya mencionada amplitud de los temas discutidos, 
impiden que podamos hablar aquí de todas las ramificaciones y 
consecuencias de esta crisis; nos limitaremos específicamente a 
explicar cómo estas discusiones afectaron la cuestión de las pa­
radojas de la teoría de conjuntos. 

LA SOLUCIÓN 

A principios del siglo xx eran muchos los matemáticos que creían 
que para resolver el problema de las paradojas de la teoría de con­
juntos bastaba con dar una formulación adecuada de sus axiomas; 
el primero en proponer una solución viable en ese sentido, en el 
año 1908, fue el matemático alemán Emst Zermelo (1871-1953). 

El sistema de axiomas de Zem1elo fue perfeccionado en 1919 
por el también matemático alemán Abraham Fraenkel (1891-
1965), quien agregó algunos axiomas que eran necesarios y que 
Zermelo no había tomado en cuenta; es por eso que en la actua­
lidad se habla de los «axiomas de Zem1elo-Fraenkel», expresión 
que en la literatura especializada en teoría de conjuntos suele 
abreviarse simplemente como ZF. Estos axiomas constituyen 
hoy en día la fommlación estándar de la teoría de conjuntos y 
permiten solucionar todas las paradojas conocidas. La aclaración 
de «conocidas» se debe a que el matemático checo Kurt Godel 
(1906-1978) demostró que no hay modo infalible de garantizar que 

LAS PARADOJAS DEL INFINITO 



un sistema de axiomas estará libre de paradojas; en consecuencia, 
aunque los matemáticos están íntimamente convencidos de que 
ZF no conduce a contradicciones lógicas y que, de hecho, en todos 
los años transcurridos desde 1919 no se ha encontrado ninguna, 
no hay modo matemáticamente infalible de demostrar que jamás 
aparecerá alguna paradoja. 

Listamos a continuación los axiomas de Zermelo-Fraenkel: 

l. Dos conjuntos son iguales si tienen exactamente los mis­
mos miembros. 

2. Existe el conjunto vacío. 

3. Dados los objetos x e y existe siempre el par formado por 
ambos. 

4. La unión de dos o más conjuntos también es un conjunto. 

5. Existe al menos un conjunto infinito. 

6. Solo las propiedades expresables a partir de los restan­
tes axiomas pueden ser usadas para definir un conjunto. 

7. Dado un conjunto cualquiera, existe siempre su conjunto 
de partes (véase el capítulo 5). 

8. Dada una familia, finita o infinita, de conjuntos no vacíos 
( es decir, conjuntos cada uno de los cuales tiene al menos 
un miembro), existe siempre un nuevo conjunto que con­
tiene exactamente un miembro de cada conjunto de la fa­
milia (véase el esquema explicativo de este axioma en la 
página siguiente). 

9. Ningún conjunto es miembro de sí mismo. 

Analicemos brevemente cómo ZF evita que suceda la paradoja 
de Russell y la paradoja de Cantor. 
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Fami lia de conjuntos 

Conjunto 1 Conjunto 2 Conjunto 3 Conjunto 4 

C) ~99 
• Miembro • Miembro • Miembro • Miembro 

---------------
Nuevo conjunto 

,..._ ______________ -- -----

Esquema 
explicativo del 

axioma de 
elección. Se elige 

un miembro de 
cada conjunto y 

con todos ellos se 
forma un nuevo 

conjunto. 
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Comencemos por decir que el axioma 9 implica que el con­
junto universal no existe, porque seria un conjunto que se tiene a 
sí mismo como miembro, y el axioma 9 dice que no existen conjun­
tos así. De hecho, cuando los axiomas se escriben en el lenguaje 
simbólico adecuado puede probarse, en base al axioma 6, que el 
cortjunto universal ni siquiera puede definirse. Recordemos, ade­
más, que la paradoja de Cantor surge al pensar, precisamente, en 
el cardinal del conjunto universal; pero si este cortjunto no existe 
en realidad, entonces la paradoja de Cantor nunca llega a suceder. 

En cuanto a la paradoja de Russell, recordemos que surge al 
considerar el conjunto F formado por todos los cortjuntos que no 
son miembros de sí mismos; pero el axioma 9 nos dice que todos los 
cortjuntos cumplen la condición que define a F; por lo tanto, F seria 
en realidad el cortjunto de todos los cortjuntos. Pero el cortjunto 
de todos los cortjuntos, al ser él mismo un conjunto, se tendria a sí 
mismo como miembro y, en consecuencia, otra vez por el axioma 
9, no puede existir (de hecho - vale la misma observación que hi­
cimos antes para el universal-,-, es posible probar que F en reali­
dad no puede ni siquiera definirse en la teoria). En conclusión, en 
realidad no existe, por lo que la paradoja de Russell nunca sucede. 

La paradoja de Burali-Forti se resuelve de modo similar, de­
mostrando que el cortjunto de todos los ordinales no existe. 
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UNA SOLUCIÓN PARA LA HIPÓTESIS DEL CONTINUO 

A pesar del éxito de ZF, a lo largo del siglo xx se propusieron otros 
sistemas de axiomas para la teoría de conjuntos, sistemas que 
suelen ser mencionados usando las iniciales de quienes los formu­
laron por primera vez. Tenemos así, por ejemplo, el sistema NBG, 
por John von Neumann, Paul Bernays y Kurt Godel; o el sistema 
MK, por Robert Lee Morse y John L. Kelley. 

Estos distintos sistemas de axiomas no son equivalentes 
entre sí. Es decir, no son meramente distintas formulaciones de 
la misma idea, sino que hay entre ellos diferencias esenciales; en 
particular, no todos los sistemas ofrecen la misma solución para 
las paradojas. Y aunque ZF es el sistema de axiomas más usado 
-en parte por ser el más sencillo-, los otros tienen también sus 
grupos de defensores. 

Por razones de espacio, es imposible detallar aquí la solución 
que cada sistema ofrece para las paradojas, pero sí podemos 
decir que en todos los casos, o bien -como en el caso de ZF - se 
demuestra que los conjuntos que Cantor llamaba «inaccesibles» 
no existen, o bien -este es el caso de NBG y MK- se admite que 
los conjuntos «inaccesibles» sí existen, pero se demuestra que, 
como decía Cantor, cumplen reglas que son diferentes que las de 
los demás conjuntos. 

Es decir, la moderna teoría de conjuntos reivihdica la idea 
de Cantor de que la solución de las paradojas pasa por hacer una 
distinción entre los conjuntos «accesibles» y los «inaccesibles». 

Ahora bien, ¿todo esto significa que existen diferentes teorías 
de conjuntos? Y en definitiva, ¿los conjuntos inaccesibles exis­
ten o no? Estas preguntas todavía hoy no tienen una respuesta 
que convenza unánimemente a todos los matemáticos; a grandes 
rasgos, hay dos posturas que suelen adoptarse en torno a estas 
cuestiones, llamadas platonismo y formalismo. 

¿Qué es el platonismo? El platonismo sostiene que los objetos 
matemáticos tienen una existencia objetiva que es independiente 
de la mente humana, y que el trabajo de los matemáticos con­
siste básicamente en descubrir las características de esos objetos. 
Según esta postura, hay una única teoría de conjuntos verdadera; 
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el hecho de que por ahora convivan diferentes sistemas de rudo­
mas se debe simplemente a que todavía los matemáticos no han 
sido capaces de determinar cuál es el sistema correcto. Según 
los platonistas, cuando se haya determinado cuál es la verdadera 
teoría de conjuntos, lo que ella dictamine acerca de la existencia, 
o no, de los conjuntos inaccesibles será la verdad. 

El formalismo, en cambio, sostiene que la matemática es sim­
plemente una creación hun1ana, similar en muchos aspectos a la 
música o la literatura. Las matemáticas, según este punto de vista, 
son esencialmente un juego lingüístico en el que hay ciertos pun­
tos de partida -que son los rudomas- y ciertas reglas lógicas que 
permiten sacar conclusiones a partir de ellos. El trabajo del mate­
mático consistiría, según este punto de vista, en descubrir hacia 
dónde nos llevan las reglas de juego; este trabajo no sería muy 
diferente, en el fondo, al que hace un ajedrecista cuando busca la 
jugada óptima en una cierta posición del tablero. 

Para el formalismo, la cuestión de si los conjuntos «inaccesi­
bles» existen, o no, carece de todo sentido; para ciertos sistemas 
de reglas la respuesta es que sí existen, para otros sistemas de re­
glas la respuesta es que no existen, pero eso es todo lo que puede 
decirse al respecto. Ambas posturas tienen sus matices, las dos 
tienen sus puntos fuertes y sus puntos débiles, y las dos conviven 
hoy en día en el pensamiento de los matemáticos. 

La discusión entre platonismo y formalismo es un producto 
de la crisis de los fundamentos, por lo que Cantor no llegó a co­
nocerla, pero, de haber sabido del debate, ¿con cuál de las dos 
posturas se habría sentido identificado? Por una parte, dijimos 
que Cantor creía que los matemáticos tenían libertad absoluta en 
la definición de conceptos y la postulación de sus propiedades, 
con la única limitación de que estas no conduzcan a contradic­
ciones lógicas; esa postura lo acercaría al formalismo. Pero, al 
mismo tiempo, en algunos textos Cantor parece sostener la creen­
cia de que esos conceptos definidos por los matemáticos tienen 
una existencia objetiva en la mente de la divinidad, y esta idea lo 
acercaría al platonismo. 

El debate entre el platonismo y el formalismo se vincula, final­
mente, con la solución del problema de la hipótesis del continuo 
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NICOLAS BOURBAKI 

Nicolas Bourbaki, según una biografía 
apócrifa, seria un general del ejército 
francés, de ascendencia griega, quien 
después de retirarse de la milicia se ha­
bría dedicado al estudio de las matemá­
ticas; su residencia actual seria la inexis­
tente ciudad de Nancago, nombre que 
parece provenir de la combinación de los 
de las ciudades de Nancy, en Francia, y 
Chicago, en Estados Unidos, y a cuyas 
universidades habrían estado ligados 
algunos de los «creadores» de Bourba­
ki. En realidad, «Nicolas Bourbaki» es el 
seudónimo colectivo que a mediados de 
la década de 1930 adoptó un grupo de 
matemáticos, en su mayoría franceses. 
Según se dice, el grupo eligió tomar este 
seudónimo, en parte como broma, y en 
parte para evitar que sus obras colecti-

Imagen ficticia del «general Nicolas 
Bourbaki». 

vas estuvieran firmadas por una larga lista de nombres. Aunque casi todos 
sus miembros han preferido mantener en secreto su pertenencia al grupo, se 
sabe que este ha tenido siempre unos diez o veinte integrantes, y que entre 
sus fundadores estuvieron los notables matemáticos franceses André Weil 
(1906-1998), Jean Dieudonné (1906-1992) y Claude Chevalley (1909-1984). 

(a la que llamaremos, para abreviar, HC). Recordemos que HC es 
la coltjetura, planteada por Cantor, de que t'• = X1. Ahora bien, en 
1940 Kurt Godel demostró que, a partir de cualquiera de los siste­
mas de axiomas habitualmente usados para la teoría de coltjuntos, 
es imposible demostrar que la igualdad 2~0 = X1 es falsa. 

Pero en 1963 el matemático norteamericano Paul Cohen 
(1934-2007) demostró a su vez que tampoco puede probarse que 
2~0 = X 1 es verdadera. Es decir, la hipótesis del continuo no puede 
ser demostrada, pero tampoco refutada por ninguno de los siste­
mas de axiomas de la teoría de coltjuntos usados habitualmente. 
Entonces, ¿es verdadera o es falsa? Para el formalismo, la pre-

LAS PARADOJAS DEL INFINITO 167 



168 

gunta no tiene sentido; los axiomas son reglas de juego elegidas 
arbitrariamente que no refieren a ninguna «verdad» exterior y, 
según este punto de vista, es tan lícito agregar a cualquiera de las 
teorías de conjuntos un nuevo axioma que permita demostrar HC, 
así como agregar otro axioma que permita refutarla. 

Para los platonistas, en cambio, 2i.;0 = t< 1 es objetivamente, in­
dependientemente de nuestros axiomas, verdadera o falsa, y tarde 
o temprano se hallará un sistema de axiomas para la teoría de 
conjuntos que permita resolver esa cuestión. Para los formalistas, 
entonces, el problema de HC está resuelto; para los platonistas, la 
cuestión sigue abierta. 

LAS MATEMÁTICAS CONTEMPORÁNEAS 

En el año 1935 se reunió por primera vez Nicolas Bourbaki. Parece 
una oración extraña, que motivaría enseguida la pregunta de con 
quién se reunió Bourbaki, pero la verdad es que «Nicolas Bour­
baki» no es una persona, sino el nombre colectivo que adoptó un 
grupo de matemáticos, en su mayoría franceses. Decíamos, enton­
ces, que en 1935 se reunió por primera vez Nicolas Bourbaki, y el 
fin de esa primera reunión fue establecer los medios que usarían 
para alcanzar el objetivo que colectivamente se habían propuesto. 
Veamos cuáles son esos medios y cuál es ese objetivo, en el que 
los Bourbaki todavía trabajan, si bien los miembros del grupo ori­
ginal, desde luego, se han ido renovando con los años. 

Como vimos, los axiomas de Zermelo-Fraenkel (nos referimos 
solo a estos axiomas en particular porque son los más usados) 
permitieron finalmente solucionar el problema de las paradojas de 
la teoría de conjuntos. Quedaba entonces allanado el camino para 
retomar el programa de Frege de fundamentar todas las ramas de 
las matemáticas en conceptos conjuntistas; como ya se ha dicho, 
Russell había intentado retomar dicho programa sin éxito. 

El objetivo de los Bourbaki es, entonces, completar el pro­
yecto de Frege y para lograrlo, en aquella primera reunión de 1935 
acordaron redactar una serie de volúmenes, bajo el título general 
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de Elementos de matemáticas, cada uno de los cuales estaría de­
dicado a una rama de esa ciencia. En cada volumen los conceptos 
básicos de la rama en cuestión serían definidos y estudiados con 
los máximos criterios de rigor lógico, con el fin de ofrecer una 
base firme para todos los desarrollos posteriores. En todos los 
casos, la base fundamental de estas definiciones es la teoría de 
conjuntos. 

Hasta el momento, los Bourbaki llevan redactados más de 
una docena de volúmenes los cuales, a pesar de algunas críticas a 
la aridez de su redacción y de su estilo, han tenido, y tienen, una 
enorme influencia a la hora de establecer la base lógica de las 
matemáticas contemporáneas. 

Por otra paite, aunque la obra de los Bourbaki está esencial­
mente destinada a servir de base al trabajo de los científicos -es 
decir, de los investigadores que crean o descubren nuevos con­
ceptos o teoremas-, su influencia se sintió también con mucha 
fuerza en la enseñanza de las matemáticas, sobre todo durante la 
segunda mitad del siglo )Oc, a través de las llamadas «matemáticas 
modernas». En aquel momento, esa corriente propuso, pai·a bien 
o para mal -las opiniones al respecto estuvieron muy divididas 
en su tiempo-, que todos los conceptos matemáticos tenían que 
ser enseñados a partir de ideas conjuntistas, incluso en el caso de 
la instrucción elemental destinada a los niños más pequeños. La 
discusión de los beneficios o perjuicios causados por esta postura 
excede con mucho los fines de este libro; diremos solamente que 
en la actualidad esta corriente didáctica está muy desprestigiada 
y que ha sido abandonada casi por completo. 

Sin embargo, a nivel científico, la teoría de conjuntos está 
muy viva y goza de perfecta salud. De hecho, tal como se lo ha­
bían propuesto Cantor, Dedekind y Frege, en la actualidad se ha 
transformado, a través del trabajo de los Bourbaki, en la base de 
todas las matemáticas. 

LAS PARADOJAS DEL INFINITO 169 





Lecturas recomendadas 

BELL, E.T., Los grandes matemáticos, Buenos Aires, Losada, 2010. 
BoYER, C., Historia de la matemática, Madrid, Alianza, 1996. 
BuNCH, B.H., Matemática insólita (Paradojas y paralogismos), 

México, Reverté, 1997. 
CANTOR, G., Fundamentos para una teoría general de conjuntos 

(Escritos y correspondencia selecta), edición de José Ferrei­
rós; Barcelona, Crítica, 2006. 

HAwKING, S. (compilador y comentarista), Dios creó los números 
(Los descubrimientos matemáticos que cambiaron la histo­
ria), Barcelona, Crítica, 2010. 

KAsNER, E., NEWMAN, J., Matemáticas e imaginación, Barcelona, 
Salvat, 1994. 

LA.VINE, S., Comprendiendo el infinito, México, Fondo de Cultura 
Económica, 2005. 

MARTrNóN, A. (compilador), Las matemáticas del siglo xx (Una 
mirada en 101 artículos), Madrid, Nivola, 2000. 

ÜDIFREDDI, P., La matemática del siglo xx, Madrid, Katz Barpal 
Editores, 2006. 

SMULLYAN, R., Satán, Cantor y el infinito, Barcelona, Gedisa, 1995: 
STEWART, I., Historia de las matemáticas, Barcelona, Crítica, 2008. 

171 





Índice 

Acta Mathematica 98-100, 114 
álef, notación de los 126 
argumento diagonal 49-52, 56, 135 
Aristóteles 8-10, 25-29, 32, 33, 39, 

41, 57,83,90 
paradoja de 90 

aiitmética 
ordinal 132 
transfinita 128-130 

Arquímedes 25, 81 
axiomas de Zermelo-Fraenkel 162, 

163,168 

Bolzano, Bemai·d 10, 96 
Borel, Émile 120, 121 
Bourbaki, Nicolas 167-169 
Burali-Forti, Cesare 150, 151, 159, 

160,164 
pai·adoja de véase paradoja de 

Burali-Forti 

cálculo 17, 35, 36, 59, 73, 74, 76, 78, 
80-88,90, 100,102,103,105,108, 
110,120,122,150,154,155,160 

Cohen, Paul 167 

colección 20, 22-25, 30, 31-33, 38-
42, 44-46, 48-50, 52, 53, 55-57, 
59, 61-65, 68-73, 76, 78, 87, 90, 
91, 93, 94-97, 106-108, 110 

Conceptografía 157 
Congreso Internacional de 

Matemáticas 
de Heidelberg (1904) 153 
de París (1900) 119, 150, 152 
de Zúrich (1897) 149 

conjunto 
absoluto 148 
accesible 150, 151, 165 
cardinal de un 33, 124, 138, 164 
coordinable 39-41, 44, 48-50, 

52,62, 65, 68, 72, 73,90, 128, 
129, 135-138 

de partes 163 
derivado 105-107 
finito 112, 128 
inaccesible 150, 151, 165, 166 
infinito 33, 163 
no numerable 112, 120 
numerable 95, 112, 120, 126, 

128, 129 

173 



174 

teoria de 17, 18, 21, 52, 77, 95, 
99,107,111,120,122,124, 
130,133,134,136,141, 148-
150, 152-154, 156, 157, 160, 
162, 165-169 

transfinito 115, 126, 147-150 
universal 141, 148, 159, 160, 164 
vacío 107, 124 

continuo, problema del 87, 96, 98, 
105, 107 

correspondencia uno-a-uno 38, 40-
42, 46, 48, 50, 52,56,62, 64,66, 
68, 72,89, 114,131,134 

Crelle, Journal de 37, 71, 72, 74, 
76, 77 

cuadratura del círculo 53, 54, 56 
cubrimiento 137, 139, 140 

Dedekind, Richard 13, 17, 18, 26, 
37, 41, 43, 48, 61-63, 69, 72, 80, 
81,86,88,93,94,96,98,99, 111, 
122-124, 128,149, 154-156, 169 
cortaduras de 96, 123 

Euclides 155, 156 

formalismo 165-167 
Fourier, series de ( véase también 

series trigonométrica) 100, 
104-106, 109 

Fraenkel, Abraham 162 
Frege, Gottlob 155-160, 168, 169 

Galilei, Galileo 10, 28, 29, 33, 38, 
39,57 
paradoja de (véase paradoja de 

Galileo) 
Godel, Kurt 162, 165, 167 
Guttman, Vally 13, 37 

Reine, Heinrich Eduard 36, 97, 100, 
104, 106, 108, 109 

ÍNDICE 

Hilbert, David 44, 106, 119, 120, 
122, 149-152 
hotel de 44 

hipótesis del continuo 69-72, 113, 
114,120,127, 138-140, 165,167 

infinito 
en acto 9-11, 20-26, 28, 29, 37, 

41, 58, 71, 75,107,148 
en potencia 9, 10, 23, 26, 35, 39, 

75,110,111 

Kronecker, Leopold 13, 20, 74-77, 
89,98, 125 

Lebesgue, Henri 120, 121 
Leibniz, Gottfried Wilhelm von 12, 

17, 74,82-85, 102,103 
Liouville,Joseph 54,56, 73, 75,89 

Mittag-Leffler, Gosta 75, 98-100 

Newton, Isaac 17, 81-85 
número 

algebraico 13, 37, 38, 53-57, 
70, 77 

cuadrado 31,32,38,40,41 
entero 41, 42, 44-46, 48-50, 53-

55, 57, 70, 74, 75,94, 95,123, 
129,135,136,154 

irracional 35, 49, 54, 70, 85, 89, 
106,122,131 

racional 41, 42, 44-50, 53-55, 57, 
70, 75,88,89,94, 106,107, 
122,123,131,154,157 

real 13, 37, 38, 49, 50-53, 56, 57, 
62, 64-66, 69, 70, 72, 73, 77, 
86-90, 96, 105-109, 113-115, 
120,122,123,127,128,131, 
135,136,147,154,155 

trascendente 54-57, 70, 72, 73, 
75 



ordinal 11, 91, 111-115, 126, 127, 
132,141,146,147,148,150,156, 
159,160,164 
de clase I 112, 113, 127, 129, 

147 
de clase II 112, 127, 129, 138-

140, 147 
de clase III 112, 127, 129, 147 
omega mayúscula (Q) 112 
omega minúscula (w) 11, 12, 

111, 112, 146 

paradoja 10,32,41,83,84, 102,103, 
114-116, 119,120, 144-169 
de Aristóteles 90 
de Burali-Forti 150, 159, 160, 

163, 164 
de Cantor 140, 141, 148, 149, 

159,160,163,164 
de Galileo 28-32, 40 
de los ordinales 150, 159 
de Russell 153, 157, 158, 160, 

162-164 
de Zenón 8, 9 

platonismo 165, 166, 168 
Poincaré, Henri 72, 120, 121 

Riemann, Georg Friedrich 
Bernhard 81, 105 

Russell, Bertrand 63, 94, 141, 143, 
153, 157-160, 162-164, 168 
paradoja de véase paradoja de 

Russell 

san Agustín 28, 41, 115 
series trigonométricas 88, 90, 100, 

103,104,106,107,109 
sucesión 48,49,52,53,55,56, 72, 

75,88,89, 106,107, 110-112, 115, 
123,131,132,146 
fundan1ental 88,89 

teorema de Cantor 140, 141, 149 
teoría 

de conjuntos véase conjunto, 
teoría de 

MK 165 
NBG 165 
ZF 162, 163, 165 

unicidad 104, 105, 107, 109 
de la descomposición en series 

trigonométricas 103, 104 

variedad 13, 71,91,93,97,99, 100, 
108,110,113,126,145 

von Lindemann, Carl Louis 
Ferdinand 56, 75 

von Neumann, John 165 

Weierstrass, Karl Theodor Willlelm 
13,20,37,38,43,48, 56,57, 72, 
86-88 

Zermelo, Ernst 162, 163, 168 

ÍNDICE 175 


	30GIC001
	30GIC002
	30GIC003
	30GIC004
	30GIC005
	30GIC006
	30GIC007
	30GIC008
	30GIC009
	30GIC010
	30GIC011
	30GIC012
	30GIC013
	30GIC014
	30GIC015
	30GIC016
	30GIC017
	30GIC018
	30GIC019
	30GIC020
	30GIC021
	30GIC022
	30GIC023
	30GIC024
	30GIC025
	30GIC026
	30GIC027
	30GIC028
	30GIC029
	30GIC030
	30GIC031
	30GIC032
	30GIC033
	30GIC034
	30GIC035
	30GIC036
	30GIC037
	30GIC038
	30GIC039
	30GIC040
	30GIC041
	30GIC042
	30GIC043
	30GIC044
	30GIC045
	30GIC046
	30GIC047
	30GIC048
	30GIC049
	30GIC050
	30GIC051
	30GIC052
	30GIC053
	30GIC054
	30GIC055
	30GIC056
	30GIC057
	30GIC058
	30GIC059
	30GIC060
	30GIC061
	30GIC062
	30GIC063
	30GIC064
	30GIC065
	30GIC066
	30GIC067
	30GIC068
	30GIC069
	30GIC070
	30GIC071
	30GIC072
	30GIC073
	30GIC074
	30GIC075
	30GIC076
	30GIC077
	30GIC078
	30GIC079
	30GIC080
	30GIC081
	30GIC082
	30GIC083
	30GIC084
	30GIC085
	30GIC086
	30GIC087
	30GIC088
	30GIC089
	30GIC090
	30GIC091
	30GIC092
	30GIC093
	30GIC094
	30GIC095
	30GIC096
	30GIC097
	30GIC098
	30GIC099
	30GIC100
	30GIC101
	30GIC102
	30GIC103
	30GIC104
	30GIC105
	30GIC106
	30GIC107
	30GIC108
	30GIC109
	30GIC110
	30GIC111
	30GIC112
	30GIC113
	30GIC114
	30GIC115
	30GIC116
	30GIC117
	30GIC118
	30GIC119
	30GIC120
	30GIC121
	30GIC122
	30GIC123
	30GIC124
	30GIC125
	30GIC126
	30GIC127
	30GIC128
	30GIC129
	30GIC130
	30GIC131
	30GIC132
	30GIC133
	30GIC134
	30GIC135
	30GIC136
	30GIC137
	30GIC138
	30GIC139
	30GIC140
	30GIC141
	30GIC142
	30GIC143
	30GIC144
	30GIC145
	30GIC146
	30GIC147
	30GIC148
	30GIC149
	30GIC150
	30GIC151
	30GIC152
	30GIC153
	30GIC154
	30GIC155
	30GIC156
	30GIC157
	30GIC158
	30GIC159
	30GIC160
	30GIC161
	30GIC162
	30GIC163
	30GIC164
	30GIC165
	30GIC166
	30GIC167
	30GIC168
	30GIC169
	30GIC170
	30GIC171
	30GIC172
	30GIC173
	30GIC174
	30GIC175



