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Introducción 

Adelante, entremos en una biblioteca cualquiera y echemos un 
somero vistazo a los libros que guarda. Comprobaremos sin di­
ficultad que las obras de Euclides, Newton o Einstein figuran en 
los anaqueles al lado de las obras de Platón, Aristóteles o Kant, 
por no mencionar las de Cervantes o Shakespeare. Lo verdadero 
junto a lo bueno y lo bello. Pero, alto alú, un momento, ¿por qué 
esta disposición? ¿Acaso se debe a la mano de algún descuidado 
bibliotecario o, más bien, dando de lado al azar, hay alguna razón 
de fondo? Quizá debamos comenzar preguntándonos por qué las 
obras de Euclides, y quien dice Euclides otro tanto podría decir 
de Arquímedes, Leibniz, Euler o Gauss, siguen inmersas en nues­
tro presente, siguen vigentes. No en vano, durante siglos los Ele­
mentos de geometría de Euclides han constituido el manual con 
que múltiples generaciones_ de estudiantes se han iniciado en las 
verdades de la ciencia. ¿Cuál ha sido el papel de la geometría y, 
en general, de la matemática en el conjunto del saber? Para unos, 
la matemática fue el pórtico y la llave de la ciencia; para otros, 
además, el alfabeto de la filosofía. 

Sin embargo, la pregunta por el fundamento y la naturaleza 
de las matemáticas ha tenido demasiadas respuestas. Casi tantas 
como matemáticos en el mundo han sido, desde los agrimenso­
res a la sombra de las pirámides hasta los matemáticos actuales, 
pasando por los geómetras griegos. Ahora bien, desde la noche 
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de los tiempos, quien dice matemáticas dice demostración. La 
demostración es el pegamento que mantiene unidas las matemá­
ticas. Pero, ¿qué es una demostración? Este es uno de los interro­
gantes a los que nuestro protagonista, David Hilbert (1862-1943), 
dedicó buena parte de su vida científica. ¿En qué consiste la de­
mostración de un teorema matemático? Más aún: ¿son demostra­
bles todas las verdades matemáticas? Estos y otros misterios, en 
la frontera entre la ciencia y la filosofía, rodean las bases de la 
matemática. Una honda preocupación que consumió gran parte 
del amor de Hilbert por esta ciencia. 

David Hilbert es probablemente uno de los matemáticos más 
importantes que ha conocido el siglo xx. Su obra en álgebra, geo­
metría, análisis, física, lógica y fundamentos de la matemática le 
ha valido el calificativo de «Matemático del siglo». Este sobre­
nombre tiene, naturalmente, su justificación. Su trabajo -tanto 
en calidad como en cantidad- posee un valor incalculable y ape­
nas tiene precedentes en la historia de las matemáticas. Está a la 
altura de Gauss o Poincaré. Pero, ¿se habria convertido en un mito 
si no hubiera sido Hilbert? A las continuas innovaciones y los es­
pectaculares resultados a que acostumbró a sus contemporáneos 
se tiene que añadir un carisma personal que cautivó y fascinó a 
los matemáticos de la época. El camino que ha seguido la mate­
mática del siglo xx no puede explicarse sin su huella. Su influencia 
se deja notar sobre varias generaciones que han trabajado en los 
celebérrimos problemas que marcó en la agenda del siglo. Fue, en 
suma, un matemático de matemáticos. 

Mientras que su vida personal se caracterizó por una enco­
miable tranquilidad, su vida intelectual representó una aventura 
constante. Una vida que quizá no entre en la imagen del héroe, 
pero sí en la del creador. Una historia que está esperando ser con­
tada. Hilbert tuvo la suerte de vivir en una época en la que tanto 
las matemáticas como la física progresaron enormemente, aunque 
al mismo tiempo experimentaron convulsiones muy profundas, 
que culminaron en una nueva forma de hacer matemáticas y, en 
física, en la plasmación de toda una revolución. Un periodo que 
registró una extraordinaria eclosión de creatividad, y del que Hil­
bert no solo fue espectador. 
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Nuestro recorrido por la vida y la obra científica de David 
Hilbert se articula en varias etapas que coinciden con los intereses 
matemáticos -álgebra, geometría, análisis, física teórica y fun­
damentos de la matemática- que fue desarrollando a lo largo de 
los años y que forjaron su reputación legendaria. Pero a lo largo 
del libro no solo trabaremos contacto con los conceptos que ideó 
o contribuyó a alumbrar, sino que también conoceremos a algu­
nos de los personajes más importantes para la ciencia de comien­
zos del siglo xx. Minkowski, Poincaré, Einstein, Von Neumann o 
Godel, entre muchos otros, desfilarán por estas páginas. El lector 
disfrutará de conocer o reencontrar a estas personalidades, cuyos 
nombres todo estudiante de ciencias ha conocido a través de los 
objetos y teoremas que los honran. 

Hilbert pasó su infancia y su juventud en Konigsberg, su ciu­
dad natal, para trasladarse, entrado ya en la madurez, a Gotinga, 
donde residiría hasta el final de sus días. Desde su plaza de ca­
tedrático en la universidad promovió la creación de un instituto 
matemático que aglutinó a las mejores cabezas pensantes del mo­
mento. En torno a él medró la vanguardia de la matemática ale­
mana y, en general, europea. Hasta que la llegada al poder de los 
nazis convirtió Gotinga en un erial. 

La carrera del joven Hilbert comenzó a despuntar cuando 
resolvió, para asombro de sus colegas, un peliagudo problema 
algebraico que parecía inabordable. Pero poco después dejó el ál­
gebra y comenzó a estudiar los fundamentos de la geometría, con 
la inestimable ayuda del método axiomático. Su trabajo apostó 
por el triunfo de este método. Él, más que cualquier otro, enseñó 
a los matemáticos a pensar axiomáticamente, y convirtió el nuevo 
enfoque en la guía más segura en el universo matemático. 

La conferencia que pronunció el 8 de agosto de 1900, un día 
de sofocante calor, durante el Congreso Internacional de Matemá­
ticos de París mostró a la comunidad matemática la perspicacia 
del que pasaba por ser el hombre del futuro en matemáticas. La 
lógica es la higiene del matemático, pero no es su fuente de ali­
mento. Son los grandes problemas los que le proporcionan el pan 
de cada día. Así, el abanico de veintitrés problemas que Hilbert 
planteó se tradujo en otros tantos retos que concitaron las ener-
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gías de muchos de los mejores matemáticos de los siguientes cien 
años. De resultas, la matemática saldría expandida en múltiples 
direcciones. Algunos de estos problemas galvanizantes han sido 
definitivamente resueltos ( caso, por ejemplo, de la hipótesis del 
continuo), aunque otros (como la hipótesis de Riemann) siguen 
esperando una solución. 

Pero Hilbert no es solo un nombre mítico de la matemática. 
También lo es de la física, que transformó el mundo durante el si­
glo xx. Las ecuaciones de la relatividad general están parcialmente 
en deuda con su genialidad creativa, que estuvo a la par de la de 
Einstein. Por su parte, la mecánica cuántica se encuentra íntin1a­
mente ligada a una estructura matemática que lleva su nombre: el 
«espacio de Hilbert». Y es que el nuevo siglo encontró al matemá­
tico alemán perfilando -sin ser muy consciente de ello- lo que 
sería una nueva rama del análisis matemático: el análisis funcional. 

No obstante, son los fundamentos de la matemática el tema 
que más páginas reclama. Las paradojas de la lógica y de la teoría 
de conjuntos, así como la pléyade de cuestiones abiertas sobre 
la propia seguridad de la matemática clásica, habían provocado 
profundas divisiones en la comunidad científica y generado un 
debate creciente sobre los fundamentos de la disciplina. Hacia 
1920, nuestro protagonista, entonces en la cima de su carrera, se 
embarcó resueltamente en un ambicioso programa de fundamen­
tación, por cuya defensa hubo de medirse a algunos de los prime­
ros espadas en matemáticas del resto de Europa. Cual arquitecto 
que explorara los cimientos de un antiguo palacio que amenaza 
con derrumbarse, Hilbert recorrió las bases de la matemática bus­
cando reparar sus grietas y asegurarla firmemente por los siglos 
de los siglos. Quería borrar la fea mancha de las paradojas del 
edificio por otra parte tan perfecto de la matemática. Le animaba 
a ello una confianza ciega en que era posible probar que la ma­
temática, debidamente axiomatizada, no contenía contradicción 
alguna, era consistente. Una cuestión que Hilbert había fijado 
como uno de los primeros problemas de las matemáticas en la 
conferencia de 1900. 

Siguiendo la pista a sus aportaciones, reviviremos una aven­
tura épica y apasionante en pos de la certeza, en donde conflu-
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yeron grandes lógicos y matemáticos de finales del siglo xrx y 
principios del xx, como Frege, Russell, Cantor, Poincaré, Brouwer 
o Godel. Movidos por la riqueza de las matemáticas finiseculares, 
este puñado de matemáticos se pusieron a reflexionar sobre la 
naturaleza y el alcance de su quehacer. Tres tendencias se dejaron 
sentir especialmente: el logicismo, surgido con Frege y revitali­
zado por Russell, que defendía que todos los principios matemáti­
cos podían reducirse a leyes lógicas; el intuicionismo, creación de 
Poincaré y Brouwer, que rechazaba los métodos de la matemática 
clásica que habían conducido a las paradojas; y, finalmente, el for­
malismo, identificable con el pensamiento de Hilbert, que buscaba 
axiomatizar la matemática al completo, demostrando rigurosa­
mente que los axiomas no conducían nunca a una contradicción. 

Hilbert lideró la escuela formalista, que en esencia defendía 
que los razonamientos matemáticos podían ser presentados axio­
máticamente, dentro de un sistema formal, sin mención alguna al 
significado de los símbolos. Por medio de esta idea crucial, toda 
referencia al escurridizo y paradójico infinito podría soslayarse. 
Y, mediante la manipulación simbólica de un reducido número de 
axiomas de acuerdo a una o más reglas de inferencia, Hilbert pen­
saba que podrían deducirse en un número finito de pasos todos los 
teoremas de las matemáticas. Uno podría ver entonces la matemá­
tica como un mero juego de fórmulas y el problema de demostrar la 
no-contradictoriedad de los axiomas como una cuestión de combi­
natoria finita, de un análisis cuidadoso de las fórmulas que podían 
demostrarse dentro del sistema formal, de las secuencias de sím­
bolos que producía el sistema Pero los tenaces intentos de Hilbert 
por resolver este punto, poniendo las bases de la matemática más 
allá de toda duda razonable, se saldaron con un rotundo fracaso. 

Un lógico austríaco de nombre Kurt Godel saltó a la fama 
cuando anunció en 1931 que los métodos de Hilbert eran insufi­
cientes para demostrar la consistencia de las matemáticas. Los 
teoremas de incompletitud de Godel cayeron como un jarro de 
agua fría sobre Hilbert y sus seguidores; y, a la postre, significaron 
la quiebra de su programa. No era posible probar la ce1teza incon­
trovertible de las matemáticas. El insobornable convencimiento 
de que la matemática era la más segura de las ciencias acabó para 
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algunos en una frustración colectiva e histórica. Las matemáti­
cas tienen una condición incierta, contingente y desfundada, pero 
que, aun a trancas y barrancas, progresa. 

Hilbert personificó el ideal del matemático para la generación 
de entre guerras. Su patronazgo impulsó definitivamente la matemá­
tica moderna, que se configuró como una ciencia axiomática que 
estudia estructuras abstractas, lo que supuso una ruptura con la 
matemática del pasado, centrada en números, fórmulas y figuras 
en principio construibles. 

David Hilbert fue, en definitiva, un matemático universal, 
pues tuvo un conocimiento casi total de todas las ramas de las 
matemáticas de su tiempo. Fue el último ejemplar de una especie 
ya extinguida. 
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1862 David Hilbert nace en la ciudad 
de Konigsberg, Prusia. 

1880 Comienza sus estudios de matemáticas 
en la Universidad de Konigsberg, donde 
entabla amistad con Adolf Hurwitz y, 
en especial, con Hermann Minkowski. 

1888 Se anota su prin1er gran triunfo 
matemático al resolver el problema 
de Gordan de la teoría de invariantes. 

1892 Es nombrado profesor titular de la 
Universidad de Konigsberg. Se casa 
con Kathe Jerosch. 

1895 Es nombrado catedrático de la 
Universidad de Gotinga gracias 
al buen hacer de Felix Klein. 

1897 Publica El informe, una síntesis 
magistral de los conocimientos de 
la época en el campo de la teoría 
algebraica de números. 

1899 Publica Fundamentos de la geometría, 
en el que presenta todas las posibles 
geometrías con la única ayuda del 
método axiomático. 

1900 Hilbert imparte la célebre conferencia 
titulada «Problemas matemáticos» 
en el II Congreso Internacional de 
Matemáticos en París. 

1904 Rehabilita el principio de Diriclúet 
para el cálculo de variaciones. 

1912 Compendia todos sus artículos 
sobre ecuaciones integrales en una 

monografía que incluye aplicaciones 
a la física del momento, así como 
una colección de herramientas 
imprescindibles para desarrollar la 
mecánica cuántica a partir de 1925. 

1915 Compite con Albert Einstein en la 
búsqueda de las ecuaciones de campo 
de la teoría de la relatividad general. 

1922 Retoma casi en exclusiva el interés por 
los fundamentos de las matemáticas, 
queriendo probar la consistencia de 
la matemática clásica para erradicar 
las dudas escépticas sobre su validez 
sembradas por los intuicionistas. 

1928 Publica, en colaboración con Wilhelrn 
Ackermann, Fundamentos de lógica 
teórica, el primer manual en sentido 
moderno de lógica matemática. 

1930 Hilbert se retira de su puesto en 
Gotinga. Da una conferencia muy 
optintista tras ser nombrado ciudadano 
de honor de Konigsberg, que remata 
con el lema «Debemos saber, 
sabremos». Kurt Godel pone líntites al 
formalismo auspiciado por Hilbert en 
un congreso celebrado en paralelo. 

1934 Publica, junto con Paul Bernays, el 
primer volumen de Fundamentos 
de las matemáticas, que recoge los 
avances parciales en la materia. 

1943 Muere en Gotinga (Alemania) ntientras 
la Segunda Guerra Mundial se 
desarrolla con toda su crudeza. 
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CAPÍTULO 1 

Los fundamentos de la geometría 

La carrera del joven Hilbert comenzó a despuntar 
cuando resolvió el esquivo problema de Gordan. No 
obstante, aparcó el álgebra y la teoría de números y 

se sumergió de lleno en el estudio de los fundamentos 
de la geometría. El descubrimiento de las geometrías no 
euclídeas había puesto en jaque a la venerable geometría 

griega, con casi dos mil años de existencia. Una 
reformulación del método axiomático permitió a 

Hilbert poner orden en la materia, subrayando 
que no hay una única geometría válida sino 

muchas, cada una con un conjunto 
diferente de axiomas. 





Kbnigsberg, año 1862. Se cumplían cincuenta y ocho años de la 
muerte de Immanuel Kant. Y ciento veintiséis desde que Leonhard 
Euler (1707-1783) solucionara el célebre problema de los siete 
puentes. David Hilbert vino al mundo un 23 de enero. Lo hizo en 
el seno de una fanillia protestante de clase media afincada desde 
hacía dos generaciones en la capital de la Prusia Oriental. Una 
Prusia que en esos momentos comenzaba a liderar la unificación 
alemana, guiada con mano de hierro por el káiser Guillermo I y 
su canciller Otto von Bismarck. El padre era juez de la ciudad 
y educó a su hijo en los severos valores prusianos: puntualidad, 
disciplina y sentido del deber. La madre, en cambio, era aficionada 
a la filosofía, la astronomía y, según cuentan, los números primos. 

Ya en sus años escolares Hilbert manifestó una personalidad 
tenaz, enérgica y decidida, aunque sufrió mucho en el instituto a 
causa de la obligación del aprendizaje meramente memorístico. 
No obstante, desarrolló una gran afición artística y literaria, que 
compartía con su gusto por las matemáticas, aunque sin llegar a 
ser un matemático precoz. En 1880, se examinó para el ingreso 
en la universidad, matriculándose en matemáticas, pese a que la 
fanillia quería que orientase su carrera hacia las leyes. 

Si bien es cierto que Kbnigsberg no era Berlín, donde ejercían 
profesores de la talla de Karl Weierstrass (1815-1897) o Leopold 
Kronecker (1823-1891), contaba con una sólida tradición mate-
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mática. Allí había dado clases Carl Jacobi (1804-1851), conside­
rado el segundo mejor matemático alemán en tiempos de Gauss. 
El telón de fondo de la educación que Hilbert recibió en la Univer­
sidad de Konigsberg es el siguiente. Los matemáticos del último 
cuarto del siglo XIX solían considerar que su disciplina se dividía 
en tres: análisis, álgebra y geometría. El análisis incluía estudios 
sobre el uso cada vez más riguroso del cálculo infinitesimal, la 
resolución de ecuaciones diferenciales y, en general, la teoría de 
funciones. El álgebra estaba poco a poco dejando de parecerse a 
la que todos hemos estudiado en el instituto, para estudiar objetos 
cada vez más abstractos, aunque sin descuidar la teoría de núme­
ros. Y, por último, la geometría englobaba en realidad una familia 
de geometrías diferentes y mal avenidas: la geometría euclídea y 
las no euclídeas (incluyendo aquí la geometría proyectiva), pero 
también la geometría diferencial y la geometría algebraica, que 
empleaban herramientas prestadas del análisis y del álgebra. 

«Toda disciplina matemática atraviesa tres etapas en su 
desarrollo: la ingenua, la formal y la crítica.» 
- DAVID HrLBERT. 

18 

Hilbert siguió con aprovechamiento cursos de álgebra, aná­
lisis y geometría; y en ellos conoció al que desde entonces sería 
su mejor amigo: Hermann Minkowski (1864-1909). Este condiscí­
pulo era dos años más joven, pero iba un trimestre por delante. 
Con poco más de diecinueve años había ganado el Gran Premio 
de Matemáticas, concedido por la Academia de Ciencias de París 
( aunque la concesión no estuvo exenta de polémica, ya que hubo 
quien habló de plagio). Ambos amigos solían caminar juntos y dis­
cutir embelesados sobre matemáticas. Paseando exploraron cada 
rincón del saber matemático. Un hábito peripatético de los años 
de estudiante que Hilbert conservaría el resto de su vida. 

Con el título de doctor en el bolsillo, Hilbert pensó en ha­
bilitarse a fin de ganar la condición de privatdozent, que le per­
mitiría dar clases en la universidad ( aunque sin sueldo por parte 
de la institución, cobrando solo la matrícula a los estudiantes). 
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Este proyecto pasaba por la presentación de alguna aportación 
original. A tal fin, Hilbert viajó para encontrarse con Felix Klein 
(1849-1925), uno de los popes de la matemática del momento. 
Pasados los años, Klein diría que supo inmediatamente que este 
joven era el hombre del porvenir en matemáticas. Siguiendo su 
consejo, Hilbert prolongó su viaje hasta París, donde conoció a 
Henri Poincaré (1854-1912). El científico francés era solo ocho 
años mayor que Hilbert, pero se trataba ya de un matemático con­
sagrado. Era el máximo exponente de la matemática francesa, 
que buscaba tornar el relevo de la sobresaliente matemática ale­
mana. A resultas de esto, Poincaré y Hilbert no congeniaron, y 
este distanciamiento se convirtió con el paso del tiempo en una 
acendrada rivalidad cuyo trasfondo sería la torna del timón de la 
matemática del futuro ( de hecho, las relaciones entre Poincaré y 
Klein tampoco eran buenas: la competencia entre ambos se había 
saldado con una crisis depresiva por parte del último). Durante el 
viaje de regreso a Konigsberg, Hilbert hizo un alto en la Univer­
sidad de Gotinga para visitar a un recién instalado Klein. Gracias 
a su mediación, entró en contacto con Paul Gordan (1837-1912), 
uno de los mayores expertos en teoría de invariantes, un campo 
en el que Hilbert se apuntaría su primer gran éxito. 

DEL ÁLGEBRA A LA TEORÍA DE NÚMEROS 

La teoría de invariantes era una rama del álgebra del siglo xrx que 
estudiaba qué cantidades no cambian (permanecen invariantes) 
cuando transformarnos un polinomio en otro de acuerdo a ciertas 
reglas. Uno de los problemas abiertos más estimulantes había sido 
bautizado corno el problema de Gordan. En 1888, Hilbert dejó bo­
quiabiertos a sus contemporáneos ofreciendo una solución revolu­
cionaria del problema, que Gordan, el rey de los invariantes, tildó 
de «teológica». Hilbert consiguió demostrar el resultado que todos 
los expertos en invariantes llevaban años persiguiendo: el llamado 
teorema fundamental de la teoria de invariantes, que afirma que 
cualquier sistema de invariantes está finitamente generado ( es 
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decir, simplificando, que cualquier invariante del sistema puede 
representarse como una combinación de unos pocos invariantes, 
que forman una base). Un bello teorema, en absoluto trivial. 

Lo que aquí nos interesa no es explicar su contenido, sino la 
fonna en que Hilbert lo demostró, ya que nos dará muchas pistas 
del camino que tomó su carrera como investigador. Al igual que 
hizo en otras ramas de la matemática, Hilbert avanzó muchos de 
los elementos que constituirían un nuevo enfoque. En este caso, 
el enfoque estructural del álgebra, que se fija en las estructuras 
que satisfacen los objetos matemáticos más que en los objetos 
matemáticos en sí mismos; en los grupos, ideales, anillos y cuer­
pos (las estructuras algebraicas) más que en los propios números 
o polinomios concretos que contienen. Sin ser muy consciente de 
ello, Hilbert estaba preparando el álgebra abstracta del siglo xx y, 
de paso, defendiendo una nueva manera de hacer matemáticas, 
que él abanderaría. 

El tratamiento de Hilbert era muy diferente al habitual: en 
vez de buscar explícitamente la solución del problema, demostró 
que el problema no podía no tener solución. Su prueba no era 
constructiva. Era existencial. No ofrecía directamente la solución 
(«aquí está, esta es la base de invariantes»), sino que demostraba 
que necesariamente tenía que haberla («si no hubiera una base 
de invariantes, llegarían10s a una contradicción»). La demostra­
ción del teorema fundamental se basaba, por tanto, en un razona­
miento por reducción al absurdo. Una argumentación que no era 
aceptada unánimemente por la comunidad matemática. 

Kronecker, una de las grandes figuras de la matemática ale­
mana del momento, arremetió duramente. La demostración era 
(supuestamente) «siniestra». Para Kronecker, una demostración 
de existencia pasaba forzosamente por la construcción del objeto 
cuya existencia se quería demostrar. En este caso, por la cons­
trucción de la base de invariantes que Hilbert afirmaba que existía. 
No aceptaba la argumentación de que la no existencia de la base 
implicaba una contradicción y, por tanto, la base en cuestión tenía 
obligatoriamente que existir, aunque no fuera factible calcularla. 

No obstante, Hilbert pudo publicar su artículo en 1890 en los 
Mathematische Annalen que editaba Klein. Gordan fue el árbitro 
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DEMOSTRACIONES CONSTRUCTIVAS Y DEMOSTRACIONES EXISTENCIALES 

Pongamos un ejemplo para comprender la diferencia entre ambas. Si la pre­
gunta es, pongamos por caso, si la ecuación x 2 - l = O tiene solución, uno tiene 
dos alternativas. O bien, de forma obvia, determina explícitamente las solu ­
ciones mediante cálculos y manipulaciones algebraicas: x =l y x=-1. O bien, de 
otra manera, intenta responder indirectamente: garantiza recurriendo a algún 
teorema que la ecuación tiene solución, aunque no sepa hallarla. Naturalmente, 
esta segunda vía resulta de mayor utilidad cuando el matemático se enfrenta 
a problemas mucho más complicados que resolver una sencilla ecuación de 
segundo grado. Muchas veces, con ecuaciones de grado superior, es más fácil 
demostrar la existencia de solución que dar con ella. 

Una vía ya utilizada en la Antigüedad 
Esta característica es común a muchos problemas matemáticos. En la Antigüe­
dad, Euclides demostró que existen infinitos números primos sin necesidad de 
enumerarlos todos. Para ello, razonó por reducción al absurdo. El primer paso 
en una demostración por reducción al absurdo consiste en negar el enuncia­
do que se quiere probar. Euclides, para probar que existen infinitos números 
primos, supuso que solo había una cantidad finita: P,, p 2 , .. . , Pn· A partir de 
esta suposición, comenzó a hacer deducciones hasta llegar a una afirmación 
absurda. En efecto, si suponemos que solo hay esos n números primos, enton­
ces, una de dos: el número P, · p

2 
• ... • Pn + 1 (formado multiplicándolos todos y 

sumando uno) es primo, o no lo es. En el primer caso, existe una contradicción, 
pues este nuevo número primo no es ninguno de los de partida. En el segundo 
caso, si no es primo, debe ser divisible por un número primo, pero claramente 
ninguno de los P,, p

2
, •.• , Pn lo divide (la división no es exacta, da 1 de resto). 

Y llegamos de nuevo a una contradicción. Por consiguiente, la hipótesis 
de que solo hay una cantidad finita de números primos ha de ser falsa, y tiene 
que haber una cantidad infinita de ellos (aunque no sepamos determinarlos 
uno a uno). La reducción al absurdo, que Euclides y Hilbert tanto amaban, es 
una de las mejores armas de la matemática. 

del artículo y, aunque al principio exigió cambios sustanciales, 
terminó apreciando la aproximación revolucionaria de Hilbert. 
Los trabajos anteriores de Gordan, repletos de páginas con cál­
culos enormemente largos y complicados, contrastaban con el de 
Hilbert, que procedía de manera breve, elegante y sucinta, por 
medio de una reducción al absurdo. Pero la intervención de Klein 
fue decisiva para limar asperezas entre ambos, dado que Hilbert 
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se había negado a cambiar ni una coma del artículo. Al final, Gor­
dan acabó reconociendo que hasta la teología tenía sus usos. 

Hilbert había desafiado y ganado a quienes insistían en que las 
demostraciones matemáticas debían proporcionar un método que 
mostrara explícitamente las entidades cuya existencia se quería 
demostrar. Había probado que la suposición de que la hipótesis 
de Gordan ( «existe una base de invariantes») era falsa conducía 
a una contradicción. Con eso bastaba. Muchos años después, Hil­
bert explicaría a sus alumnos la diferencia entre las demostracio­
nes constructivas y las que no lo son (las existenciales) señalando 
que entre sus estudiantes (ninguno de los cuales era completa­
mente calvo), había uno que tenía menos pelos en la cabeza, aun­
que no contaba con ningún medio de identificar a ese alumno. 

«¡Esto no son matemáticas! ¡Es teología!» 
- GORDAN, TRAS CONOCER LA PRUEBA DE HILBERT. 
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Lo que estaba en juego no era solamente el futuro de la teoría 
de invariantes (un área de investigación que Hilbert dejó prácti­
camente cerrada), sino algo más, mucho más en realidad: la lucha 
entre dos visiones muy distintas del hacer matemático. Por un 
lado, la constructiva, típica del siglo XIX. Por otro, la existencial, 
una tendencia que caracterizaría el siglo xx, y donde la palabra 
existir no tendría más que un significado: estar exento de contra­
dicción. El enfoque existencial hilbertiano iba a ser, como tendre­
mos ocasión de averiguar, la fuente de muchos de sus éxitos y de 
muchas controversias posteriores. 

Por fin, en 1892, Hilbert vio coronado su esfuerzo y fue nom­
brado profesor titular de la Universidad de Konigsberg. Pese a que 
llegó a ser un profesor muy bueno, apenas atrajo estudiantes en 
sus inicios. Lejos de desanimarse, se tomó este período como un 
proceso de lenta pero continua maduración. Ese mismo año se 
casó con Khate Jerosch, a quien conocía desde la infancia ( era su 
pareja de baile favorita) y con quien tuvo un único hijo, Franz, que 
nació al año siguiente, pero que desde pequeño sufrió una grave 
enfermedad mental. Cuando al muchacho le diagnosticaron esqui­
zofrenia, su padre lo internó en un manicomio, donde pasó buena 
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EL ÁLGEBRA MODERNA Y EL NULLSTELLENSA TZ 

Babilonios, egipcios y griegos resolvían 
ecuaciones de primer y segundo grado 
mediante diversas técnicas algebraicas. 
La influencia del álgebra geométrica 
griega se percibe aún en la conserva­
ción de expresiones como «cuadrado» y 
«cubo» para la segunda y tercera poten­
cias: «a al cuadrado» es un cuadrado de 
lado a y «a al cubo» es un cubo de arista 
a. La introducción de un nuevo aparato 
simbólico (Diofanto, AI-Juarismi, Vieta) 
produjo una verdadera inflex ión en el 
desarrollo del álgebra que posibilitó su 
despegue. En el Renacimiento, Tartaglia 
(llamado así por su tartamudez) dio con 
la fórmula para resolver ecuaciones de 
tercer grado, pero decidió mantenerla 
en secreto. El astrólogo y matemático 
Gerolamo Cardano consiguió que se la 
confiara, pero le traicionó y la publicó 

Gauss a la edad de cincuenta años. 
Litografía aparecida en Astronomische 
Nachrichten (1828) . 

haciéndola pasar por suya. Finalmente, Ludovico Ferrari, antiguo secretario 
de Cardano, dio con otra fórmula para resolver ecuaciones de cuarto grado. 
Sin embargo, la resolución por radicales de la ecuación polinómica de quin­
to grado se les resistió. Trescientos años después, Abe! demostraría que es 
imposible. 

Gauss y el teorema fundamental del álgebra 
Pero para asistir al nacimiento del álgebra moderna hemos de asomarnos a la 
lectura de la tesis doctoral de Gauss, presentada en 1797. El genial Gauss halló 
lo que se conoce como teorema fundamental del álgebra, que prueba que 
cualquier ecuación polinómica de grado n posee exactamente n soluciones 
en el cuerpo de los números complejos. Aunque este resultado ya había sido 
conjeturado, entre otros, por Descartes (distinguiendo entre raíces reales 
e imaginarias), así como demostrado en falso por D'Alembert (su prueba 
contenía varios gazapos), solo con Gauss fue probado de forma completa. 
Su trabajo cambió dramáticamente el aspecto del álgebra. Precisamente, el 
largo camino de Hilbert a través de la teoría de invariantes sirv ió para que 
demostrara lo que se conoce como Nullstellensatz o teorema de los ceros: un 
potente resultado que generaliza el teorema fundamental del álgebra para 
el caso en que, en vez de una ecuación, tenemos un sistema de ecuaciones 
algebraicas. 
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parte del resto de su vida. Desde ese momento Hilbert decidió 
comportarse como si nunca hubiera tenido un hijo. 

En 1895 tuvo lugar un cambio decisivo en su vida. En una 
carta confidencial se le anunciaba el nombramiento, a propuesta 
de Klein, como catedrático de la prestigiosa Universidad de Go­
tinga, donde habían ejercido dos grandes de las matemáticas 
como Gauss y Riemann. Su marcha no se hizo esperar. No aban­
donaría Gotingajamás. 

Entre tanto, Hilbert había pasado de la teoría de invariantes 
a la teoría de números, una disciplina típicamente alemana desde 
que Gauss publicara sus Disquisitiones arithmeticae (1801) y 
se refiriera a ella como «la reina de las matemáticas». La Socie­
dad Matemática Alemana (fundada en 1890 bajo la presidencia de 
Georg Cantor (1845-1918]) encargó a Hilbert y Minkowski la elabo­
ración de un informe sobre el estado de la cuestión. Minkowski no 
tardó en retirarse, porque estaba demasiado ocupado. Y Hilbert, en 
solitario, hizo mucho más de lo que le pedían y esperaban. Escribió 
una joya de la literatura matemática, un clásico de obligada par­
tida P!1J"ª todos los investigadores del área. Der Zahlbericht (El in­
forme) está fechado el 10 de abril de 1897. En él recopiló todos los 
conocintientos relevantes, reorganizados bajo un nuevo punto de 
vista, rehaciendo formulaciones y demostraciones. No solo reor­
denó las piezas del rompecabezas que era la teoría algebraica de 
números, sino que rellenó los huecos con investigaciones origina­
les. Con sus propias palabras, entresacadas del prólogo al informe: 

La teoría de números es un edificio de rara belleza y armonía. [ ... ] El 
objetivo del presente informe es describir los resultados de la teoría 
de números, con sus demostraciones, con un desarrollo lógico y des­
de un punto de vista unificado, y así contribuir a acercar el momento 
en que los logros de nuestros grandes autores clásicos de teoría de 
números pasen a ser propiedad común de todos los matemáticos. 

El inf arme colocó a Hilbert a la vanguardia de la matemática 
europea. Desde luego, esta primera ojeada a su actividad matemá­
tica en estos años clave de formación puede dar la impresión de 
que se trataba de un investigador muy bueno, pero muy especiali-
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LA PRIMERA REVOLUCIÓN CIENTÍFICA 

Las antiguas civilizaciones babilónica y 
egipcia lograron apreciables conocimien­
tos geométricos. Pero sus «matemáticas», 
si pueden llamarse así, no sobrepasaban 
un estadio técnico, ya que radicaban en 
colecciones de recetas indicadas para re­
solver problemas cotidianos, que tenían 
que ver con la práctica de los agrimenso­
res y en las que la noción de demostración 
apenas se atisbaba. Los enunciados de los 
teoremas geométricos de Tales de Mileto 
(ca. 624 a.C.-ca. 546 a.C.) harían sonreír 
a los agrimensores egipcios por su sim­
plicidad y falta de utilidad (por ejemplo, 
el diámetro de la circunferencia divide el 
círculo en dos partes iguales); pero se tra­
taba de los primeros teoremas, prot1ados 
por puesta en evidencia, y que siguen sien­
do verdad más de dos mil años después. 
Con el tiempo, Tales logró medir la altura 
de la Gran Pirámide mediante una simple 
regla de tres. Otro que entabló contacto 
con babilonios y egipcios fue Pitágoras. 
Bajo la direcdón de Platón, la Academia 
de Atenas sistematizó las matemáticas 
pitagóricas, destacando Teeteto (ca. 417 

Imagen idealizada de Euclides, pintada 
por Justus van Gent en 1474. 

a.C.-ca. 369 a.C.) y Eudoxo (ca. 390 a.C.-ca. 337 a.C.); al primero se le atri­
buye el teorema que establece que solo existen cinco poliedros regulares, 
los cinco sólidos platónicos. Simultáneamente, los tres problemas clásicos 
(trisección del ángulo, cuadratura del círculo, duplicación del cubo) sirvieron 
de cuestiones fascinantes de la geometría del momento (imposibles de zanjar 
empleando regla y compás). Pero hay que saltar de la Academia al Museo de 
Alejandría para encontrarnos con Euclides, cuya obra -junto a la de Apolonio 
y Arquímedes- cierra la época qorada de la geometría griega. 

zado. No era fácil prever lo que iba a venir: el ascenso de Hilbert 
a la cumbre del mundo matemático y la convicción general de que 
fue -al igual que Poincaré- uno de los últimos matemáticos uni­
versales, que dominó todos los campos de su ciencia, incluyendo 
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aquí su siguiente conquista: la geometría. Pero, para poder valorar 
la aportación fundamental de Hilbert en este terreno, es necesario 
decir antes algunas palabras sobre el trasfondo histórico, sobre el 
fuerte impulso que el siglo XIX dio a la geometría, y contar cómo 
el descubrimiento de las geometrías no euclídeas cambió de for­
ma radical el método axiomático. 

LAS GEOMETRÍAS NO EUCLÍDEAS 

La geometría griega fue la piedra angular de las matemáticas 
durante siglos. En los Elementos, un tratado que se remonta al 
300 a.c., Euclides ofreció una presentación axiomática, extrema­
damente ordenada y estructurada, del corpus de conocimiento 
transmitido por los matemáticos pitagóricos y platónicos. Su pre­
sentación, influida por las reflexiones aristotélicas sobre la lógica, 
poseía una característica muy destacable: un enorme rigor a la 
hora de demostrar cada teorema. 

Los Elementos se dividen en 13 libros y contienen 465 propo­
siciones geométricas, desde los principios más básicos a las con­
secuencias más elaboradas. Euclides comienza el Libro I con una 
lista de 23 definiciones, de manera que el lector sepa precisamente 
qué significan los términos geométricos fundamentales (punto, 
recta, triángulo, circunferencia, etc.). Por ejemplo: «Un punto es 
lo que no tiene partes». A continuación, definidos los términos, 
Euclides presenta cinco postulados que sirven de fundamento a 
toda su geometría. Estos postulados se presentan sin demostra­
ción o justificación. Sencillamente deben aceptarse. Son premisas 
de todo lo demás. Por ejemplo: «Es posible trazar una línea recta 
entre dos puntos cualesquiera». Finalmente, tras las definiciones 
y los postulados geométricos, especifica una serie de nociones 
comunes o verdades indiscutibles. Por ejemplo: «El todo es mayor 
que la parte» o «Dos cosas iguales a una tercera son iguales entre 
sí». A partir de aquí, Euclides comienza a meterse en honduras. 
Así, la primera proposición de los Elementos muestra cómo cons­
truir un triángulo equilátero sobre un segmento lineal dado. 
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Mientras que las nociones comunes son de raigambre pura­
mente lógica, los postulados o axiomas son de naturaleza ne­
tamente geométrica. Especifican, por así decir, las reglas de 
acuerdo con las cuales se manipulan los objetos matemáticos que 
Euclides ha definido previamente. Estos cinco postulados o axio­
mas son los siguientes: 

1. Dados dos puntos A y B hay una recta que pasa por ambos. 

2. Todo segmento puede prolongarse indefinidamente. 

3. Dado un punto A y un segmento r, puede construirse una 
circunferencia de centro A y de radio r. 

4. Todos los ángulos rectos son iguales entre sí. 

5. Si una recta corta a otras dos de modo que la suma de los 
ángulos internos a y ~ es menor que dos rectos, entonces 
las dos rectas se cortarán en un punto que estará del mismo 
lado que los ángulos (véase la figura). 

A diferencia del resto, el quinto postulado de Euclides tiene 
un enunciado bastante poco intuitivo, lo que llevó a que nume­
rosos matemáticos -Ptolomeo (siglo rr d.C.), John Wallis (1616-
1703) y Jerónimo Saccheri (1667-1733), entre otros- intentaran 
demostrarlo infructuosamente a partir del resto de postulados. 

1 
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Esquema que 
ilustra el quinto 
postulado de 
Euclides. 
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Esq uema que 
ilustra el ax ioma 

de paralelas. 
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Cada uno superó en sutileza e in­
genio al anterior en su intento de 
probarlo. Pero en el curso de sus 
demostraciones lo único que lo­
graron fue dar con formulaciones 
equivalentes del quinto postulado. 
Una de ellas es el célebre axioma 
de paralelas: «Por un punto exte-
rior a una recta cabe trazar una 
única paralela» (véase la figura) . 

Otra versión equivalente establece que «la suma de los ángulos 
de un triángulo es exactamente la de dos rectos». No obstante, la 
historia del quinto postulado o axioma de paralelas guardaba un 
final sorprendente. 

¿ Cómo lograron los matemáticos liberarse de las cadenas de 
la geometría euclídea? Durante más de dos mil años estuvieron 
convencidos de que era la única geometría posible, la única des­
cripción convincente del mundo, puesto que solo había un espacio 
físico. Pero, a lo largo del siglo XJX el descubrimiento de geome­
trías distintas ( que no satisfacían el axioma de paralelas) alimentó 
la ansiedad que sentían y les hizo pensar que habían estado equi­
vocados demasiado tiempo. Aclarar esta cuestión palpitante era 
en cierto modo esclarecer qué forma tenía el mundo (si es que 
tenía alguna). 

La primera geometría no euclídea con la que se familiarizaron 
era, aunque parezca mentira, una vieja conocida: la geometría pro­
yectiva. Esta geometría comenzó su andadura en el Renacimiento, 
cuando los pintores se interesaron por la proyección del espacio 
en el plano del lienzo. Descubrieron entonces una de las propie­
dades distintivas de la geometría proyectiva (y que la diferencia 
radicalmente de la euclídea): dos rectas que en el espacio tridi­
mensional aparecen como paralelas, se transforman en el lienzo 
bidimensional en un par de rectas secantes que se cortan en el 
horizonte, en el infinito. A la manera como las vías del tren, que 
siempre son paralelas, aparecen en las fotografías como cortán­
dose en el punto de fuga. De modo que en la geometría proyectiva 
dos rectas cualesquiera siempre se intersecan: o bien en un punto 
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propio, o bien en el infinito. En consecuencia, la geometría pro­
yectiva contradice el axioma de paralelas, ya que por un punto 
exterior a una recta no pasa ninguna otra recta paralela 

A comienzos del siglo XIX, la geometría proyectiva recibió un 
gran impulso de manos del matemático francés Víctor Poncelet 
(1788-1867), un oficial napoleónico que aprovechó su cautiverio 
en Rusia para perfeccionar sus ideas al respecto. A su regreso pu­
blicó el Tratado sobre las propiedades proyectivas de las.figuras 
(1822), donde acuñó precisamente el término geometría proyec­
tiva para referirse al estudio de las propiedades de las figuras que 
se conservan al proyectarlas, o de otra forma, las propiedades 
que las figuras tienen en común con sus sombras, con sus proyec­
ciones. Estas propiedades incluyen relaciones de incidencia, pero 
no de distancia o tamaño. Así, si tres puntos están alineados, al 
proyectarlos siguen alineados, pero es muy posible que la distan­
cia entre ellos haya variado. Del mismo modo, la sombra que cada 
uno de nosotros proyecta no tiene exactamente nuestro mismo 
tamaño. Avanzado el siglo, el matemático alemán Julius Plücker 
(1801-1868) introdujo coordenadas en la geometría proyectiva, lo 
que permitió algebrizarla y probar múltiples resultados desde una 
perspectiva analítica. 

Ahora bien, la geometría proyectiva constituía un caso muy 
especial de geometría no euclídea. Estaba claro que el axioma 
de paralelas no se verificaba (puesto que en el plano proyectivo 
no existen rectas paralelas), pero la geometría proyectiva no solo 
renunciaba al axioma de paralelas, sino también a medir ángulos 
y distancias (ya que las proyecciones no los conservan). En suma, 
no solo no se verificaba el quinto postulado de Euclides, tampoco 
lo hacía, por ejemplo, el cuarto ( que habla de ángulos). Este hecho 
hizo que los matemáticos no consideraran la geometría proyectiva 
como una verdadera geometría no euclídea. 

La meta que parecía inalcanzable era construir desde cero una 
nueva geometría que satisficiera todos los axiomas euclídeos a ex­
cepción del axioma de paralelas. Si este último se negaba, había 
dos opciones: o bien se negaba la existencia de rectas paralelas 
( «no hay paralelas»), o bien se negaba la unicidad de la recta para­
lela a una dada por un punto exterior ( «hay más de una paralela»). 
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EL PROGRAMA DE ERLANGEN 

Felix Klein (1849-1925), maestro de Hil­
bert, difundió una visión muy articulada 
de la geometría. Cualquier geometría 
consistía en un espacio y un grupo de 
transformaciones. Así pues, para Klein, 
la geometría era el estudio de las pro­
piedades de los objetos que quedan 
invariantes a través de cierto grupo de 
transformaciones o movimientos que se 
han fijado de antemano. Obsesionado 
con el papel de la geometría proyectiva 
como unificador de las distintas geome­
trías, demostró que esta, al venir dada 
por el grupo de las proyecciones, que 
era el grupo mayor, se constituía como 
la geometría más fundamental, la que 
descansaba sobre el mínimo número de 
hipótesis iniciales. Todas las demás geo­
metrías se derivaban de ella añadiendo 

Felix Klein. 

hipótesis adicionales. En concreto, lo hacía la geometría euclídea, que here­
daba todas las propiedades proyectivas. Esta es la tesis que difundió en la 
lección inaugural de su toma de posesión en 1872 de la cátedra en la Univer­
sidad de Erlangen. 

Tanto Carl Friedrich Gauss (1777-1855) como János Bol­
yai (1802-1860) y Nikolái Lobachevski (1792-1856) aceptaron la 
existencia de paralelas negando su unicidad: por un punto ex­
terior a una recta pasaba más de una recta paralela. Estos tres 
matemáticos lograron deducir una buena ración de teoremas de 
su geometría imaginaria sin llegar a ningún absurdo, a ninguna 
contradicción. Pero, ¿no estaría esperándolos a la vuelta de la es­
quina? ¿Quién les aseguraba que si no hubieran llevado un poco 
más lejos sus deducciones no habrían llegado a alguna contra­
dicción? A mediados de siglo se hacía cada vez más necesario 
ofrecer un modelo de esta nueva geometría dentro de la geometría 
euclídea, de modo que si encerraba una contradicción, también 
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sería parte de la venerable geometría euclídea (lo que parecía im­
posible). Mediante este subterfugio se probaba de una vez por 
todas que la validez de la nueva geometría descansaba, precisa­
mente, sobre la de la geometría euclídea, que se tenía por segura. 
Este cometido le correspondió en parte a Eugenio Beltrami (1835-
1900), que ofreció un modelo local en 1868: la pseudoesfera. Dos 
años después, en 1870, Klein descubrió el primer modelo global 
de geometría no euclídea. 

«Por amor de Dios, te lo ruego, olvídalo. Témelo como a las 
pasiones sensuales, porque lo mismo que ellas, puede llegar 

a absorber todo tu tiempo y privarte de tu salud, de la paz 
de espíritu y de la felicidad en la vida.» 

- CARTA DE FARKAS BoLYAI A su HIJO JANos, AL SABER QUE ESTABA TRABAJANDO 

EN EL QUINTO POSTULADO DE EUCLIDES. 

Conozcamos el modelo de Klein. Imaginemos que nuestro es­
pacio se ha reducido al interior de un círculo (sin incluir su borde) 
y construyamos una especie de diccionario haciendo correspon­
der, uno a uno, una serie de términos, de la misma manera que 
lo hace un diccionario corriente con las palabras de dos lenguas 
cuyo significado es el mismo. Cuando Euclides dice «punto», no­
sotros pensaremos en los puntos del interior del círculo; y cuando 
dice «recta», interpretaremos los segmentos que empiezan y ter­
minan en el borde del círculo. Con esta traducción hemos cons­
truido un modelo de geometría no euclídea dentro del propio 
espacio euclídeo. Veamos qué ocurre con el axioma de paralelas. 
Dada una recta r y un punto exterior A, hay más de una recta 
paralela ar que pasa por A. En efecto, las rectas s y t son paralelas 
a la rectar, ya que no se cortan nunca en nuestro espacio, dentro 
del círculo (véase la figura 1, en la página siguiente). De la nada 
se había creado un nuevo y extraño universo. Definitivamente, 
Euclides estaba herido de muerte. 

Las dudas sobre la geometría no euclídea se disiparon aún 
más cuando se difundieron las ideas que Bernhard Riemann (1826-
1866) había presentado en su disertación Sobre las hipótesis en 
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que se basa la geometría, leída en 
1854 ( ante un Gauss casi octoge­
nario que no pudo disimular su en­
tusiasmo ante lo que escuchaba), 
pero no publicada hasta después 
de su muerte. Basándose en los es­
tudios de este último en geometría 
diferencial, Riemann planteó que 
en cada espacio puede definirse 
una forma distinta de medir la dis­
tancia, de modo que una recta en 
ese espacio ( que, por definición, 
es «el camino más corto entre dos 
puntos») no coincida con la idea 
preconcebida que tenemos de ella. 

La curva especial resultante, denominada geodésica, jugaría en 
ese espacio el papel que la línea recta hace en la geometría euclí­
dea. Según Riemann, el espacio euclídeo se caracteriza por tener 
curvatura constante cero, donde hay una única paralela (véase 
la figura 2 [l]). Pero, si cambiamos el valor de la curvatura, obte­
nemos otro tipo de espacio, que será modelo de una geometría no 
euclídea. Si la curvatura es negativa, obtenemos la geometría 
hiperbólica de Gauss-Bolyai-Lobachevski, donde por un punto ex­
terior a una recta pasa más de una paralela [2]. Por el contrario, si 
la curvatura es positiva, obtenemos la geometría elíptica, donde 
no hay paralelas [3]. 

Riemann contribuyó a aclarar cómo interpretar la esfera 
como un modelo de geometría elíptica y, por tanto, de geometría 
no euclídea, donde el axioma de paralelas es falso en el sentido 
de que no hay rectas paralelas ( como ocurre en la geometría pro­
yectiva). En la esfera, el papel de las rectas lo juegan los círculos 
máximos. Entonces, si llamamos rectas a los círculos máximos, 
obtenemos un modelo euclídeo de la geometría elíptica. Y dos 
círculos máximos cualesquiera siempre se intersecan entre sí. Es 
el caso de los meridianos terrestres, que siempre se cortan en los 
polos. Al no cumplirse el axioma de paralelas, la suma de los án­
gulos de un triángulo no tiene por qué ser 180º, como se muestra 
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FIG. 2 

en el triángulo esférico de la figura 3, cuyos ángulos suman 230º. 
Sin embargo, localmente, a pequeña escala, la geometría euclí­
dea parece cumplirse (véase la figura 4, en la que los ángulos del 
triángulo suman 180°). Además, el resultado de realizar otras iden­
tificaciones permitió contemplar el plano proyectivo, a su vez, en 
términos de geometría esférica. 

En resumen, los modelos de geometrías no euclídeas que los 
matemáticos del siglo XIX fueron sacando a la luz no hicieron sino 

· devolver la pelota al tejado de la geometría euclídea. En efecto, si 
antes esta última era la única que aparecía como válida y ahora re­
sultaba que la validez de las extrañas geometrías no euclídeas era 
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exactamente la misma que la de la geometría euclídea (puesto que 
los distintos modelos estaban contenidos dentro de ella), cabía 
hacerse la siguiente pregunta candente: ¿cuál era, entonces, la va­
lidez de la geometría euclídea? ¿Podía demostrarse fuera de toda 
duda que no engendraba ninguna contradicción? 

La consecuencia más importante del nacimiento de las geo­
metrías no euclídeas fue, en el orden de los fundamentos, sacar a 
la luz el problema de la validez de la geometría y de la matemática 
toda. Hasta entonces, la coherencia de la geometría euclídea se 
había asegurado basándose en que se correspondía con el espacio 
físico, donde no hay contradicciones. Además de los interesan­
tes resultados que se iban agregando continuamente, la atención 
se dirigió hacia estas preguntas fundacionales. El enfoque axio­
mático del último tercio del siglo xrx -:capitaneado por Moritz 
Pasch (1843-1930) y Giuseppe Peano (1858-1930)- se las planteó 
vigorosamente, pero solo con Hilbert encontraron una respuesta 
definitiva. El paso previo a responderlas era buscar una axiomá­
tica adecuada de la geometría euclídea, que cerrase las brechas 
lógicas que se habían ido descubriendo gradualmente. 

EL ENFOQUE AXIOMÁTICO DE HILBERT 

Al igual que hiciera con la teoría de invariantes, llegó un día en que 
Hilbert se cansó y abandonó la teoría de números, pasándose al 
estudio de los fundamentos de la geometría. Nadie podía sospe­
charlo, aunque hubiera dictado un par de cursos sobre la materia 
en Konigsberg. Este cambio de rumbo pilló por sorpresa a todos 
sus nuevos colegas de Gotinga. No obstante, en El informe Zahl­
bericht, Hilbert enfatizaba que el desarrollo moderno de la mate­
mática había sucedido ante todo bajo el signo del número y, acto 
seguido, animaba a una aritmetización de la geometría, orientada 
a un análisis puramente lógico del tema. Puede verse aquí la pro­
mesa de escribir los célebres Grundlagen der Geometrie (Funda­
mentos de la geometría), que aparecieron en 1899 con ocasión 
de la inauguración en Gotinga de una estatua dedicada a Gauss y 
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Wilhelm Weber que conmemoraba su invención del telégrafo. La 
obra se convirtió enseguida en un paradigma esencial para la in­
vestigación de fundamentos y ha hecho por promover la práctica 
axiomática en el siglo xx lo mismo que los Elementos hicieron en 
los siglos anteriores. 

El libro contenía una axiomática para la geometría que su­
peraba con creces no solo a la de Euclides, sino a las propuestas 
por Pasch o Peana. Hilbert había percibido con claridad que la 
labor de establecer el mínimo número de suposiciones del cual 
pudiera derivarse toda la geometría no había sido aún comple­
tan1ente realizada. Es así que propuso un total de veintiún axio­
mas, que Hilbert no se sacó de la chistera, sino que venían siendo 
empleados implícita o explícitamente desde antiguo y que, en 
todo caso, no eran solo fruto del pensamiento puro, sino también 
de la intuición sensorial (lo que justifica que el libro arranque 
con una cita de Kant). La geometría, según la concebía Hilbert, 
estaba más cerca de la mecánica y de la física que del álgebra y 
la teoría de números. 

Hilbert formuló sus axiomas para tres sistemas de objetos 
indefinidos. A los objetos del primer sistema los denominó por 
conveniencia puntos; a los del segundo, rectas; y, a los del tercero, 
planos. Pero, a diferencia de Euclides, en ningún momento entró a 
definir los entes geométricos primitivos. Son los axiomas los que 
los definen implícitamente, ya que establecen qué relaciones hay 
entre ellos. Determinan lo que se puede afirmar y hacer con pun­
tos, rectas y planos. Para Hilbert había que purgar el significado 
que los objetos elementales colaban de matute. Son los axiomas, y 
solo los axiomas ( sin ninguna idea preconcebida o dibujo alguno), 
los que definen los objetos elementales a través de sus relaciones 
mutuas. «Uno debería poder decir siempre, en lugar de "puntos, 
rectas y planos", "mesas, sillas y jarras de cerveza"», esc1ibió. Los 
axiomas admiten interpretaciones múltiples, siendo esta caracte­
rística la principal diferencia entre la axiomática material de 
Euclides y la nueva axiomáticaformal de Hilbert. 

Pero hay más. Hilbert desplegó toda su habilidad matemática 
y organizó sus veintiún axiomas para la geometría euclídea en 
cinco grupos: 
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- Axiomas de incidencia o enlace, que conectan entre sí los 
diferentes objetos y, por ejemplo, permiten afirmar que 
«este punto yace en esta recta» o «esta recta yace en este 
plano». 

- Axiomas de orden, que permiten decir, por ejemplo, «este 
punto está entre estos dos» ( como notara Pasch, esta clase 
de axiomas estaba completamente ausente de la lista de 
postulados euclídeos). 

- Axiomas de congruencia, que sirven para comparar e igua­
lar segmentos. 

- Axiomas de paralelismo, un grupo de axiomas que solo 
contiene el célebre axioma de paralelas. 

- Axiomas de continuidad, que son dos axiomas en realidad. 
Por un lado, el llamado axioma de Arquímedes, que esta­
blece que dados dos segmentos arbitrarios, si repetimos 
sucesivas veces cualquiera de ellos, podemos lograr cons­
truir un segmento mayor que el otro en un número finito 
de pasos; y, por otro, el axioma de plenitud lineal o de 
continuidad de la recta: los puntos de una recta forman un 
sistema que no es susceptible de ampliación alguna bajo la 
condición de conservar la ordenación lineal, los axiomas 
de congruencia y el axioma de Arquímedes. 

Este último axioma brillaba por su ausencia en los Elementos, 
pese a que su uso es indispensable incluso para demostrar la Pro­
posición I del Libro I. Constituye una de las grandes aportaciones 
de Hilbert el haberlo sacado a la luz. Sin él, Q2 ( esto es, el plano 
en el que nos hemos quedado solo con los puntos que tienen coor­
denadas racionales) sería un modelo de la geometría euclídea, 
ya que satisfaría todos los axiomas anteriores. Y, sin embargo, 
como subrayara Richard Dedekind (1831-1916), en este plano agu­
jereado dos circunferencias, cada una pasando por el centro de 
la otra, no tendrían por qué cortarse ( algo que se presuponía en la 
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Proposición I), porque pueden hacerlo en un punto con coorde­
nadas irracionales ( en un agujero). El axioma de plenitud lineal o 
de continuidad de la recta permite identificar cualquier recta con 
los números reales lR y, de este modo, el plano con lR2 

( esto es, 
con el plano al completo, con todos los puntos con coordenadas 
racionales e irracionales), donde está garantizado que las dos cir­
cunferencias anteriores se cortan (véase la figura). Es el puente 
entre la geometría sintética, basada en diagramas y dibujos, y la 
geometría analítica, que solo recurre a razonamientos numéricos. 

Pero además de enunciar los axiomas, Hilbert fue pionero 
en ascender del nivel puramente matemático en que se estudia 
la geometría al nivel metamatemático o metageométrico, que 
se preocupa por las propiedades que debe cumplir todo sistema 
axiomático, en particular el que él estaba prescribiendo para la 
geometría. ¿Qué se puede pedir a los axiomas? Hilbert señaló tres 
propiedades: independencia, consistencia y completitud. 

Un sistema de axiomas es independiente si ningún axioma 
puede deducirse de los otros, es decir, si el sistema de axiomas 
es el más económico posible porque no contiene redundancia al­
guna. Aunque no todos los axiomas que formuló eran indepen­
dientes entre sí ( como se descubrió más tarde), Hilbert demostró 
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Sin el axioma de 
continuidad no se 
puede asegurar 
que las dos 
circunferencias 
del dibujo se 
corten en el punto 
C y, por tanto, 
que sea posible 
construir 
el triángulo 
equilátero de lado 
AS (tal y como 
se afirma en la 
Proposición I del 
Libro I de los 
Elementos). 
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AXIOMAS, DEMOSTRACIONES, TEOREMAS Y TEORÍAS 

Desde una perspectiva axiomática, un axioma no es más que un enunciado que 
se coloca, por una u otra razón (en general, por su fertilidad), en la base de 
una teoría matemática para poder deducir teoremas a partir de él. Pero para 
poder deducir teoremas necesitamos una serie de reglas de deducción o de 
inferencia que nos digan cómo hacerlo. Los matemáticos usan habitualmente 
dos reglas clásicas. Una es el modus ponens, que consiste en deducir de la 
implicación «Si P, entonces Q» y de la verificación de P, que se da Q. Y otra 
es el modus tollens, que consiste en deducir de la implicación «Si P, entonces 
Q» y del hecho de que Q no se verifica, que tampoco lo hace P. De este modo, 
formalmente, una demostración o prueba es una cadena de razonamientos 
que permite obtener nuevos resultados aplicando los axiomas y las reglas de 
inferencia. Al resultado final de una demostración se le denomina teorema. 
Si a partir de un conjunto de axiomas 5 hemos podido deducir el teorema 
T, suele escribirse 5 f--- T («Tes demostrable a partir de 5»), donde el signo f­
representa la relación sintáctica de deducción o demostración. Finalmente, se 
llama teoría al conjunto de todos los teoremas que se pueden demostrar. Y 
se llama modelo de una teoría a una estructura matemática en que los axiomas 
son verdaderos, se satisfacen. Si M es un modelo del conjunto de axiomas 5, 
se escribe M r= 5 («M satisface 5», es decir, «los axiomas 5 son verdad en M»). 
El signo F representa la relación semántica de verdad o satisfacción. Una de 
las preguntas fundacionales que se hará Hilbert es qué relación hay en mate­
máticas entre la relación de demostración y la relación de verdad (entre f- y 
r=): ¿es verdadero todo lo demostrable?, ¿es demostrable todo lo verdadero? 

la independencia entre los distintos grupos de axiomas. En con­
creto, demostró que el axioma de paralelas era independiente del 
resto de axiomas, es decir, que no podía deducirse a partir de 
ellos, con lo que cerró definitivamente una cuestión abierta desde 
hacía siglos. Esto lo logró empleando un método que muy pronto 
se volvió estándar: construyendo modelos de geometrías que sa­
tisfacen todos los axiomas deseados excepto aquel del cual se 
investiga su independencia, en cuyo caso este último no puede 
ser consecuencia de los otros (ya que si lo fuera, obtendríamos 
una contradicción: el axioma y su negación). Para demostrar la 
independencia del axioma de paralelas, construyó un modelo de 
geometría no euclídea. Y para demostrar la independencia del 
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axioma de Arquímedes, construyó un modelo de geometría no 
arquimediana, donde existen magnitudes infinitesimales. De esta 
forma, Hilbert, al igual que Giuseppe Veronese (1845-1917), abrió 
las puertas del pensamiento a la exploración de otra nueva clase 
de geometría. 

La segunda demanda que Hilbert hizo a su sistema axiomático 
es la consistencia. Un sistema de axiomas es consistente si no 
genera contradicciones, si no puede deducirse ninguna contradic­
ción a partir de ellos. También se dice que el sistema de axiomas 
es, entonces, coherente o compatible. Los modelos de Beltrami, 
Klein, Poincaré y Riemann habían probado la consistencia rela­
tiva de las geometrías no euclídeas respecto de la euclídea, ya 
que estos modelos no euclídeos estaban contenidos dentro del 
propio espacio euclídeo. Pero, ¿era consistente la geometría euclí­
dea? Hilbert demostró la consistencia de la geometría euclídea en 
relación a la aritmética, ofreciendo por vez primera un modelo 
puramente numérico. Construyó un conjunto de números que 
satisface todos los axiomas geométricos, donde los puntos son 
ciertos pares de números algebraicos; las rectas, ciertas ternas 
de esos números; donde la incidencia de una recta en un punto 
quiere decir que se verifica cierta ecuación numérica, etc. De este 
modo, cualquier inconsistencia en su sistema axiomático de la 
geometría desembocaría en una inconsistencia en la aritmética. 
Cualquier contradicción en las deducciones hechas a partir de los 
axiomas geométricos sería reconocida como una contradicción 
aritmética (por ejemplo, 0= 1). 

En consecuencia, Hilbert redujo la consistencia de la geome­
tría euclídea a la de la aritmética, que por aquel entonces daba 
por supuesta, aunque no tardó en reconocer que se trataba de 
un problema abierto al que inmediatamente asignó una alta prio­
ridad (como tendremos ocasión de ver en el próximo capítulo). 
Era natural. Las geometrías no euclídeas descansaban sobre la 
euclídea, y esta última se apoyaba a su vez sobre la aritmética de 
los números reales. A la manera como en el sueño del sabio indio 
el mundo descansaba sobre un elefante, y el elefante sobre una 
tortuga. Pero, ¿y la tortuga? La pregunta por la consistencia de la 
aritmética se planteó enseguida en toda su agudeza. Hilbert no 
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LA INFLUENCIA DEL MALOGRADO HERTZ 

Es muy probable que Hilbert no conocie­
ra bien los trabajos axiomáticos de la es­
cuela italiana de Peano, aunque sí los de 
la escuela alemana, tanto en la corriente 
que se interesó por la geometría (Pasch) 
como en la que lo hizo por la mecánica. 
Heinrich Rudolf Hertz (1857-1894) mu­
rió cuando solo contaba treinta y siete 
años. Pero en ese breve lapso de tiempo 
deslumbró a sus contemporáneos como 
físico experimental (descubrió las ondas 
electromagnéticas y el efecto fotoeléc­
trico) y, al final de sus días, como físico 
teórico. En 1894 publicó Los principios de 
la mecánica presentados de una forma 
nueva, donde exponía axiomáticamente 
dicha ciencia. A su sistema axiomático 
le pedía dos requisitos: permisibilidad y 
corrección. La permisibilidad coincide Heinrich Rudolf Hertz alrededor de 1893. 

con la consistencia, con la ausencia de 
contradicción. Y la corrección lo hace con la completitud, con que podamos 
demostrar dentro de la teoría todo lo que es verdadero en el mundo. Dos 
conceptos, como puede comprobarse, en estrecho paralelismo con los que 
introdujo David Hilbert. 

la abordó en el libro, pero a estas alturas creía que la compatibi­
lidad de los axiomas de la aritmética podría probarse de manera 
relativamente sencilla (¡cuán equivocado estaba!). 

Por último, un tercer requerimiento que al cabo de pocos 
años Hilbert observó que debía pedirse, a ser posible, es la com­
pletitud (aunque apenas aparece esbozada en los Grundlagen). 
Un sistema axiomático es completo si podemos demostrar den­
tro del sistema todas las proposiciones que son verdad respecto 
de los objetos del sistema, es decir, si ninguna verdad escapa al 
poder de la demostración, si todas las verdades son demostrables. 
Mientras que la consistencia nos asegura que todo lo demostrable 
es cierto ( «todos los teoremas son verdad»), la completitud nos 
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garantiza lo recíproco: todo lo verdadero es demostrable ( «todas 
las verdades son teorema»). Si el sistema de axiomas que propuso 
para la geometría euclídea era completo, permitiría deducir todos 
los resultados conocidos y por conocer de la geometría euclídea. 

No queremos adelantar acontecimientos, pero responder a esta 
cuestión no era baladí. Como explicaremos en el último capítulo, 
Hilbert acabaría descubriendo que cualquier sistema axiomático 
mínimamente interesante es incompleto. En él lo verdadero no 
coincide con lo demostrable. Hay proposiciones verdaderas que 
no pueden ser demostradas. Una situación paradójica que recuerda 
a la del detective de policía que sabe con certeza quién es el asesino 
pero no es capaz de probarlo. Por suerte, en 1951, el lógico polaco 
Alfred Tarski (1902-1983) demostró que una versión muy elemental 
de la geometría euclídea es completa-obviamente, esta versión no 
contiene a la aritmética, por lo que no viola los famosos teoremas 
de incompletitud de la aritmética de Kurt Godel (1906-1978)-. 

Recapitulemos. Tres son los requerimientos que Hilbert esta­
blece para su sistema de axiomas de la geometría: independencia, 
consistencia y completitud. El matemático alemán se planteó con 
acierto si su axiomática era minimal, demostrando en particular 
que el axioma de paralelas y el axioma de Arquímedes eran in­
dependientes del resto. Además, resolvió parcialmente la cues­
tión de la consistencia, probando la consistencia relativa de la 
geometría con respecto a la aritmética. En suma, sentó las bases 
sobre las cuales estudiar axiomáticamente cualquier geometría, 
euclídea o no euclídea, arquimediana o no arquimediana; y mos­
tró cómo es posible derivar los resultados geométricos conocidos 
dependiendo de qué grupos de axiomas se admitan. 

EL GRITERÍO DE LOS BEOCIOS 

En una carta escrita a un colega matemático en 1829, Gauss mani­
festaba que no pensaba publicar nada en vida sobre geometría no 
euclídea por temor al «griterío de los beocios». Con esta expresión 
el matemático alemán aludía, sin duda alguna, a los filósofos kan-
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tianos, para quienes la geometria euclídea era la única posible, dado 
que la unicidad del espacio implicaba la unicidad de la geometria. 
Un espacio físico, una geometría matemática. Gauss se guardó de 
publicar sus resultados por miedo al escándalo, ya que el descu­
brimiento de las geometrias no euclídeas constituía un motivo muy 
serio para poner en cuestión toda la filosofía kantiana. Si había 
más de una geometría lógicamente concebible, preguntar por la 
verdad de una en concreto era como preguntar si el sistema de nu­
meración decimal es más verdadero que el binario, o si el sistema 
de coordenadas cartesiano lo es más que el polar. La relatividad de 
la geometría apuntaba, contra las ideas de Kant, a que el espacio 
era amorfo y carece de sentido preguntar qué geometria es la verda­
dera. No fue Gauss el único matemático que sintió cierta antipatía 
por Kant, el gran filósofo paisano de Hilbert. Georg Cantor confe­
saba que su lectura le ponía enfermo y se refería al sabio prusiano 
como «aquel sofístico filisteo que sabía tan poco de matemáticas». 

Al igual que Gauss, Hilbert tuvo sus más y sus menos con un 
filósofo, como consecuencia de las ideas expuestas en los Fun­
damentos de la geometría. En este caso, con el lógico y filósofo 
Gottlob Frege (1848-1925). Este oscuro profesor de la Universidad 
de Jena fue (como veremos en el capítulo 4) el padre de la lógica 
moderna, pero también uno de los más conspicuos defensores del 
enfoque axiomático de los antiguos. La reacción de Frege tras una 
atenta lectura del libro de Hilbert no se hizo esperar. Dio inicio a 
una correspondencia y a un sinfín de malentendidos. 

En su primera carta, fechada a finales de 1899, Frege sometía 
el libro a una crítica dura y algo pedante. Irritado, pero armándo­
se de paciencia, Hilbert respondió con otra prolija misiva. Sin em­
bargo, a partir de ese momento, se limitó a hacerlo escuetamente, 
y cuando Frege le propuso publicar el intercambio epistolar, se 
negó en redondo. No obstante, la polémica encierra gran interés, 
por cuanto muestra el choque frontal entre dos concepciones del 
método axiomático: la antigua o tradicional, representada por 
Frege, y la nueva iniciada por Hilbert. 

Frege jamás cuestionó el análisis kantiano de la geometría, y 
no concebía más método axiomático que el que Aristóteles des­
cribiera en los Analíticos posteriores y Euclides ejercitara en los 
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Elementos. Los axiomas eran verdades evidentes entresacadas de 
la realidad. En consecuencia, el axioma de paralelas era verdad o 
no lo era. Pero no podía ser ambas cosas a la vez. En una de sus 
cartas, el filósofo alemán escribía: 

Nadie puede seIVir a la vez a dos señores: si la geometría euclídea es 
verdadera, entonces hay que echar a la geometria no euclídea fuera 
de la lista de las ciencias y colocarla junto a la alquimia y la astrología 

Su postura retrógrada le impidió comprender que para Hil­
bert los axiomas no eran más que esquemas abstractos que se 
situaban pragmáticamente como principios de la teoría matemá­
tica. Y no eran, ni mucho menos, inamovibles. 

Pero el disgusto de Frege fue aún mayor cuando leyó que Hil­
bert estaba dispuesto a llamar «puntos», «rectas» y «planos» a 
cualesquiera tres conjuntos arbitrarios que satisficieran sus axio­
mas, aunque fueran mesas, sillas y jarras de cerveza. Para Frege 
los axiomas hablaban de cosas reales y, por tanto, difícilmente 
podían tener más de una interpretación posible. Hilbert volvió a 
reiterarle su posición por carta: 

Cada teoria no es sino un tinglado de conceptos junto con ciertas re­
laciones necesarias entre ellos, y sus elementos básicos pueden ser 
pensados arbitrariamente. Si entiendo por puntos, etc. , cualquier sis­
tema de cosas, por ejemplo el sistema formado por amor, ley, desho­
llinador, etc., y considero que todos mis axiomas son válidos para esas 
cosas, entonces resultan válidos para esas cosas mis teoremas, como, 
por ejemplo, el de Pitágoras. Con otras palabras: cada teoria puede 
ser aplicada a una infinidad de sistemas de elementos básicos. 

Para cuando Frege publicó un par de largos artículos tildán­
dole de Doctor Matasanos, Hilbert replicó por mano de Alwin 
Korselt (1864-1947), mostrando de nuevo su concepción de la 
matemática: «Podemos, pues, llamarla también "juego de signos 
vacío, carente de significado" y cosas por el estilo; como precisa 
asociación legal de proposiciones no precisa de ninguna otra dig­
nidad especial». 
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Curiosamente, otro que tampoco se encontraba cómodo con 
este uso de los términos que aparecen en los axiomas como pa­
labras vacías que expresan generalidad fue Henri Poincaré. El 
matemático francés se sumó al carro de las críticas al libro de Hil­
bert, ya que detestaba a quienes querían reducir las matemáticas 
a meras relaciones formales entre símbolos. Escribió una larga 
reseña en la que acusaba al matemático alemán de tramposo, por­
que el método axiomático nunca es creador. No es un instrun1ento 
conceptualizador original, pues disfraza y oculta lo que se quiere 
axiomatizar. Según Poincaré, Hilbert tenía siempre presente la 
geometría euclídea en sus Fundamentos de la geometría, aunque 
lo negara. Su axiomática, aunque pretenda ser enfocada como una 
serie de definiciones implícitas, parte ya de una teoría existente y 
se limita meramente a reorganizarla. El titán francés salió al paso, 
una vez más, del titán alemán. 

Mucho menos comprendió Frege el interés de Hilbert por el 
axioma de plenitud lineal o de continuidad de la recta, que es­
tablecía que no existía otro sistema mayor de objetos que tam­
bién obedeciera a los axiomas. El filósofo se quejó con rudeza al 
matemático de que era como hacer teología con un axioma que 
dijera: «Axioma 3. Existe al menos un Dios». No deja de ser iró­
nico que fuera la segunda vez que el enfoque hilbertiano recibía la 
acusación de teológico. Pero más que un teólogo, Hilbert era un 
místico, capaz de adivinar el futuro y otear el rumbo que tomarían 
las matemáticas. 

La polaridad entre Frege y Hilbert, como entre Gordan y él, 
es crucial para entender en qué se diferencian las matemáticas del 
siglo XIX de las del siglo xx. Para Frege la existencia matemática 
tenía que ver con qué objetos materiales o ideales existen en el 
mundo. Así, como hay solo un mundo, tiene que haber una única 
geometría. Los sistemas axiomáticos venían, en principio, vacíos. 
En cambio, Hilbert mantenía la opinión radicalmente opuesta. Los 
axiomas no solo codifican el comportanúento de los objetos mate­
máticos, sino que tan1bién pueden crear objetos matemáticos nue­
vos si no incurren en contradicción. En consecuencia, uno tiene 
más de una geometría en matemáticas, dado que cada una de ellas 
es consistente (en relación a la aritmética). 
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Los Grundlagen fueron el broche perfecto a la edad heroica 
de la geometría, abriendo el camino a toda una panoplia de geo­
metrías (las no euclídeas, las no arquimedianas, etc.). Fueron, 
además, el primer hito en la corriente axiomatizadora moderna. 
Desde 1900, pertrechado con su nuevo método, Hilbert impulsaría 
la axiomatización del resto de disciplinas científicas. Si la axio­
mática había funcionado tan bien en geometría, ¿por qué no iba a 
hacerlo en la aritmética, el análisis o la física? 
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CAPÍTULO 2 

El desafío de Hilbert 

La sombra de Hilbert es alargada 
y se proyecta sobre gran parte del hacer 

matemático del siglo xx. Cuando el 8 de agosto 
de 1900 subió a la tribuna y tornó la palabra en el 

II Congreso Internacional de Matemáticos, Hilbert 
condensó los retos futuros a los que debía enfrentarse 

la matemática en veintitrés problemas, influyendo 
decisivamente en la evolución de la disciplina. 

Estaba levantando el velo tras el que se 
ocultaba el futuro de las matemáticas. 





Corría el año de 1900. Un nuevo siglo comenzaba. Mientras cien­
tos de parisinos se debatían entre recorrer los pabellones de la 
Exposición Universal o asistir a las competiciones de los Juegos 
Olímpicos, David Hilbert tomaba la palabra en la Universidad de 
la Sorbona, con ocasión del II Congreso Internacional de Mate­
máticos. No iba a hablar de lo que había demostrado, sino de lo 
que quedaba por demostrar. Lo hacía en calidad de ser uno de los 
mejores matemáticos de su generación y líder de la escuela mate­
mática radicada en Gotinga. Y aunque su charla no era una con­
ferencia plenaria, ya que Hilbert se había demorado demasiado a 
la hora de enviar un título y los organizadores habían tenido que 
excluirla del programa, estaba llamada a ser la ponencia más re­
cordada del congreso. 

A sus treinta y ocho años, David Hilbert había ya demostrado 
el brío de sus ideas. Tras revolucionar la teoría de invariantes con 
un inédito salto de abstracción, había incursionado en la teoría de 
números y en la geometría axiomática, dejando a su paso obras 
que se convertirían en clásicos de an1bas disciplinas. Consciente 
de ser uno de los matemáticos más destacados, quería demostrar 
su penetrante visión de conjunto de las matemáticas. Podemos 
imaginar a nuestro matemático ese caluroso 8 de agosto de 1900. 
Alto, enjuto, con la barba recortada, y acompañado de sus incon­
fundibles anteojos, se dirigió al estrado y tomó la palabra. Lo hizo 
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para subrayar que el motor del progreso en matemáticas era la 
resolución de problemas y para emplazar a los matemáticos del 
siglo xx a resolver veintitrés cuestiones escogidas. 

HILBERT FRENTE A POINCARÉ 

El I Congreso Internacional de Matemáticos se había celebrado 
en Zúrich tres años antes, en 1897. El matemático francés Henri 
Poincaré había sido la estrella del encuentro, con su conferencia 
«Sobre las relaciones entre el análisis puro y la física matemá­
tica». A resultas de ello, ahora era el presidente del comité orga­
nizador. En París Hilbert quería demostrar su valía rivalizando con 
el patrón de la matemática francesa. Al igual que Klein, ansiaba 
recuperar el predominio, el prestigio para los matemáticos ale­
manes. Pero albergaba serias dudas acerca de cómo lograrlo. En 
consecuencia, tardó más de la cuenta en elegir un tema para la 
conferencia. 

En su discurso, Poincaré había expuesto un programa marco 
para el desarrollo de las matemáticas. Esta ciencia posee un tri­
ple fin. Un fin físico, consistente en proporcionar un instrumento 
adecuado para el estudio de la naturaleza. Un fin filosófico, ayu­
dar al filósofo a profundizar en las nociones de número, espacio 
y tiempo. Y, finalmente, un fin estético, comparable a la música 
o la pintura. Las matemáticas, añadía, merecen ser cultivadas en 
sí mismas, no solo por sus aplicaciones, puesto que sin teoría la 
investigación práctica y el progreso se estancan. Pero la mejor 
opción se da cuando los fines físico y estético son solidarios. A lo 
largo de su charla, Poincaré se esforzó por mostrar en detalle la 
relación entre la ciencia pura y sus aplicaciones, entre el análisis 
y la física. 

Este entorno programático encontraría una respuesta frontal 
en los veintitrés problemas futuros de las matemáticas dados a 
conocer por Hilbert. Ambos matemáticos se conocían y se admi­
raban, pero su concepción de las matemáticas era muy distinta. El 
matemático alemán defendió el valor de la matemática pura en sí 
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misma, sin contaminación. Aunque buena parte de su carrera en 
los siguientes veinte años permanecería ligada a la física, quería 
rebatir algunas de las ideas de su homólogo francés. Según era su 
costumbre consultó con su amigo Minkowski, quien le escribió a 
pocos meses de su participación en el congreso: 

He releído la conferencia de Poincaré y encuentro que todas sus 
afirmaciones están expresadas de un modo tan vago que no se pue­
den contradecir [ ... ]. Más atractivo sería que intentes mirar hacia el 
futuro, enumerando los problemas a los cuales deberían dedicarse 
los matemáticos en adelante. Así podrías crear las circunstancias 
para que se siga hablando de tu charla en las décadas venideras. Eso 
sí, debes tener en cuenta que la profecía tiene sus dificultades. 

Siguiendo su consejo, las primeras palabras que pronunció 
Hilbert en París componían una hermosa batería de preguntas al 
respecto: 

¿Cuáles serán los objetivos concretos por los que se esforzarán las 
mejores mentes matemáticas de las próximas generaciones? ¿Qué 
nuevos métodos y nuevos hechos nos depararán las centurias p·or 
venir en el amplio y rico campo del pensanúento matemático? 

El leitmotiv de su discurso fue revalorizar la matemática pura 
a través de los problemas que ella misma se propone. A su enten­
der, mientras las matemáticas ofrezcan abundancia de problemas, 
estarán vivas y efervescentes. Es la falta de problemas lo que pro­
nostica la extinción o desaparición de una rama de la ciencia. Las 
ciencias avanzan resolviendo problemas. Pero, ¿qué característi­
cas debería reunir un buen problema matemático? Para empezar, 
debería ser fácil de enunciar y explicar, y, además, difícil de resol­
ver, aunque no imposible, para no frustrar los esfuerzos. 

Pero hay más, Hilbert aprovechó esta oportunidad inigua­
lable para divulgar su fe en la centralidad del método axiomá­
tico como vehículo de definición de los conceptos matemáticos. 
Mientras que para Poincaré la intuición y las analogías físicas 
jugaban un papel esencial, para Hilbert lo hacía la lógica más es-
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tricta: el rigor y la simplicidad. Como explicamos en el capítulo 
anterior, el último tercio del siglo XIX asistió a la constitución de 
un nuevo modo de hacer en matemáticas, con una inversión radi­
cal respecto al hacer matemático anterior. La noción de estruc­
tura abstracta, incluyendo aquí la de conjunto, se convirtió en un 
nuevo punto de partida, ligado a una nueva forma de definición, 
como la implícita por axiomas. Asimismo, aparecieron nuevos 
métodos de demostración, como los indirectos o existenciales, 
y nuevos modos de expresión, que requerían el uso de lenguajes 
formales. Una revolución que se fue imponiendo entre los mate­
máticos, aunque no sin vueltas del revés, y que debe mucho al 
matemático alemán. 

A lo largo de la charla, Hilbert reiteró su concepción de la 
existencia matemática: si puede demostrarse que los atributos 
asignados a un concepto no conducen nunca a una contradic­
ción, entonces el concepto en cuestión existe matemáticamente. 
Una afirmación tajante que tuvo que resultar chocante a oídos de 
muchos de sus colegas. También afirmó que al investigar los fun­
damentos de una ciencia debía postularse un sistema de axiomas 
que contuviera una descripción exacta de las relaciones básicas 
entre las ideas elementales de esa ciencia. Los axiomas así postu­
lados serían a la vez las definiciones de dichas ideas elementales, 
y ninguna proposición de la ciencia bajo examen sería conside­
rada verdadera a menos que fuera derivable de los axiomas en un 
número finito de pasos lógicos. 

Además, en el preámbulo filosófico a su lista de problemas, 
Hilbert se opuso - al igual que ya hiciera Poincaré- a la corriente 
escéptica, iniciada por el fisiólogo Emil du Bois-Reymond (1818-
1896) y secundada por el físico Pierre Duhem (1861-1916), que tan 
en boga estaba en la época. Para estos autores, la ciencia estaba 
llegando a su límite, de modo que había cierto tipo de cuestiones 
que, según la máxima acuñada por Du Bois-Reymond en 1872, 
«ignoramos e ignoraremos» («lgnoramus, ignorabimus!»). Por 
contra, Hilbert apuntaba con optinusmo que todo problema ma­
temático era resoluble, en el sentido de admitir una respuesta po­
sitiva o negativa. Esta era una de sus convicciones más íntimas y 
un poderoso acicate en su trabajo diario: 
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En nuestro interior escuchamos la perpetua llamada: he ahí un pro­
blema. Busca su solución. Puedes hallarla por medio de la razón 
porque en matemáticas no existe el ignorabimus. 

Desafortunadamente, no sería así. Como es sabido esa es una 
de las ideas que en los años treinta recibió un fuerte golpe. 

EL RETO DE HILBERT 

La lista de problemas matemáticos que Hilbert propuso contenía 
un total de veintitrés, aunque por limitaciones de tiempo solo 
mencionó diez de ellos en su charla. No obstante, facilitó a los 
asistentes una copia impresa del texto completo, que enseguida 
fue publicado tanto en Alemania como en Francia, lo que amplió 
su conocimiento y difusión. A continuación vamos a enunciar los 
veintitrés problemas, aunque solo vamos a describir algunos 
(los más simples y menos técnicos), ya que una exposición deta­
llada de cada uno nos llevaría demasiado lejos. 

Los problemas pueden agruparse en varios bloques, depen­
diendo de la materia que tratan: fundamentos de las matemáticas 
( a saber, los problemas 1, 2, 3, 4 y 5) y de la física matemática (pro­
blema 6), teoría de números (problemas 7, 8, 9, 10 y 11), álgebra 
(12, 13, 14 y 17), geometría (15, 16 y 18) y análisis (19, 20, 21, 22 y 
23). Los fundamentos de la matemática, la geometría y el álgebra 
desde distintos ángulos, la teoría de números y el análisis están 
representados en la lista, junto con otros asuntos de más esquiva 
clasificación. 

Dentro del primer bloque nos encontramos con los problemas 
de fundamentos de la matemática y de la física: 

l. El problema del continuo ( cuya explicación posponemos al 
capítulo 4). Baste por ahora contar que se trataba de probar 
la verdad o la falsedad de la famosa hipótesis del continuo 
de Cantor, que afirmaba que no existe un subconjunto de la 
recta real cuyo cardinal (su tamaño, para entendernos de 
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momento) esté estrictamente entre el de los números ra­
cionales y el de los números reales. Al proponer esta cues­
tión como primer problema matemático del futuro, Hilbert 
estaba tomando partido y apostando decididamente por la 
teoría abstracta de coajuntos frente a sus opositores, que 
no eran pocos. 

2. El problema de la consistencia de los axiomas de la arit­
mética. Esta cuestión, como vimos en el capítulo anterior, 
era fundamental, porque una respuesta positiva probaría 
de forma indirecta la consistencia de toda la matemática. 
En los Fundamentos de la geometría, Hilbert había dejado 
aparcado este problema, pero volvió a él en sus últimos 
años como investigador, a partir de 1920, como explicare­
mos en el último capítulo. Por desgracia, el lógico austriaco 
Kurt Godel demostró en 1931 que este problema era formal­
mente indecidible. No es posible probar la consistencia de 
los axiomas de la aritmética. 

3. La igualdad de los volúmenes de dos tetraedros de igual 
base y altura. En su libro, Hilbert se había preocupado por 
definir el concepto de área en geometría plana sin recurrir 
al cálculo infinitesimal (a las integrales) y lo había logrado 
caracterizando los polígonos de igual área como aquellos 
que son equicomplementables ( esto es, simplificando, que 
se descomponen en el mismo número de triángulos igua­
les). ¿Era posible hacer lo mismo para el concepto de volu­
men en geometría espacial? ¿Sería posible caracterizar los 
poliedros de igual volumen como aquellos que pueden des­
componerse en el mismo número de tetraedros iguales? 
En 1902, Max Dehn (1878-1952) respondió negativamente: 
existen dos tetraedros de igual base y altura (por tanto, 
de igual volumen) que, sin embargo, no son equicomple­
mentables. No es posible cortar el primero en una can­
tidad finita de piezas poliédricas que puedan ensamblarse 
de modo que quede armado el segundo. Mientras que en 
dos dimensiones era posible evitar un complicado proceso 
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de paso al límite conocido como la escalera del demonio 
y de ese modo definir el área sin emplear el cálculo, en 
tres dimensiones este proceso se mostró imprescindible, 
lo que impedía definir la noción de volumen sin recurrir al 
análisis. 

4. El problema de la línea recta como la distancia más corta 
entre dos puntos. Hilbert propone que se continúe la inves­
tigación de las distintas geometrías axiomáticas posibles, 
prestando atención a qué grupo de axiomas permite dedu­
cir el resultado que afirma que en un triángulo cualquiera la 
suma de dos de sus lados es siempre mayor que el tercero 
y, por consiguiente, la línea recta es el camino más corto 
entre dos puntos. Aunque este problema tiene una formu­
lación un poco vaga, adquirió una más precisa en el ámbito 
de la geometría riemanniana, donde se trataba de construir 
todas las distancias posibles de forma que las líneas rectas 
ordinarias fuesen geodésicas (los caminos más cortos). 

5. Análisis del concepto introducido por Sophus Lle (1842-
1899) de grupo de transformaciones sin incluir la hipóte­
sis de diferenciabilidad de las funciones que componen el 
grupo. 

6. Tratamiento matemático de los axiomas de la física. Hil­
bert estaba realmente interesado en la axiomatización de 
las distintas ramas de la física ( en especial, de la mecánica 
y del cálculo de probabilidades, que en la época pasaba por 
ser la herramienta más potente de la termodinámica) a fin 
de conferirles un formato similar al de la geometría, a la que 
consideraba una suerte de ciencia casi empírica. Era un 
problema en cuya resolución ya se había avanzado gracias 
al trabajo de físicos como E. Mach (1838-1916) y H. Hertz, 
pero en el que los matemáticos aún no habían colaborado. 
Este programa de axiomatización de la física obtendría 
( como veremos en el próximo capítulo) algunas victorias 
parciales en las primeras décadas del siglo xx. 
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Por su parte, dentro del bloque de teoría de números, Hilbert 
apuntó cinco problemas: 

7. Irracionalidad y trascendencia de ciertos números. Un nú­
mero trascendente es un tipo de número irracional, aquel 
que no es raíz de ningún polinomio con coeficientes ente­
ros. Por el contrario, un número algebraico es cualquier 
número que es solución de una ecuación polinómica con 
coeficientes enteros. Como todavía no se conocían muchos 
números trascendentes (aparte den: y e), Hilbert planteó 
una cuestión muy concreta: si a es un número algebraico 
( distinto de O y 1) y b es un número algebraico irracional, 
¿es ab un número trascendente? Para Hilbert este era uno de 
los problemas más difíciles de la lista. No obstante, en 1934, 
A.O. Gelfond (1906-1968) y T. Schneider (1911-1988) demos­
tr~on que así era. En particular, J2J?. es trascendente. 

8. Estudio de los números primos. Aquí Hilbert planteó una 
serie de cuestiones enlazadas con la distribución de los nú­
meros primos. La principal es, desde luego, la célebre hipó­
tesis de Riemann, que establece que una cierta función rela­
cionada con estos números, y denominada función zeta de 
Riemann s(z), tiene todos sus ceros en la recta Re(z) = 1/2 
del plano complejo, es decir, todos sus ceros son números 
complejos con parte real igual a 1/2. A día de hoy sigue sin 
demostración, aunque mediante ordenador se ha probado 
que los primeros 1,5 billones de ceros cumplen la hipótesis. 
Pero también mencionó la coajetura de Goldbach (según la 
cual todo número par puede expresarse como suma de dos 
números primos), la existencia de infinitos primos gemelos 
( es decir, de primos cuya diferencia es 2), etcétera. 

9. Demostración de la ley ·de reciprocidad más general en 
cualquier cuerpo de números. 

10. Determinación de la resolubilidad de las ecuaciones dio­
fánticas. 
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EL DÉCIMO PROBLEMA DE HILBERT 

Este es uno de los grandes problemas. Parece engañosamente simple, pero 
no lo es. Se trata de buscar algún procedimiento general que permita averi­
guar si una ecuación diofántica tiene o no soluciones enteras, sin necesidad 
de calcularlas. Una ecuación diofántica es una ecuación en la que solo inter­
viene un polinomio con coeficientes enteros y se desean conocer todas las 
soluciones enteras. Recibe su nombre por el matemático griego Diofanto 
(siglo 11 1 d.C.), que se interesó por ellas. En particular, la famosa ecuación 
x"+y" =z" del último teorema de Fermat es una ecuación diofántica -en 1995, 
Andrew Wiles (n. 1953) logró demostrar que la ecuación no tiene soluciones 
enteras diferentes de cero cuando n es mayor que 2-. El problema perma­
neció abierto durante setenta años, hasta que en 1970 la teoría de números 
y la lógica matemática se dieron la mano: el matemático soviético Yuri Mati­
jasevich (n. 1947), siguiendo ideas desarrolladas por Martín Davis (n. 1928), 
Hilary Putnam (n. 1926) y Julia Robinson (1919-1985), logró demostrar que no 
existe tal algoritmo. Esta última, convaleciente de una afección cardiaca, 
solía pedir en sus cumpleaños el siguiente deseo: «Que alguien resuelva el 
décimo problema de Hilbert. No podré descansar hasta que alguien dé con 
la respuesta». Curiosamente, su hermana mayor, Constance Reid (1918-2010), 
escribió la que pasa por ser la mejor biografía de David Hilbert. 

11. Estudio de las formas cuadráticas con coeficientes alge­
braicos cualesquiera. 

En el bloque de álgebra: 

12. Extensión del teorema de Kronecker sobre cuerpos abe­
lianos a cualquier dominio de racionalidad algebraico. 

13. Imposibilidad de resolver la ecuación general de séptimo 
grado por medio de funciones de solo dos argumentos. 

14. Demostración de la finitud de ciertos sistemas completos 
de funciones. 

17. Expresión de formas definidas por sumas de cuadrados. 
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En el bloque de geometría: 

15. Fundamentación rigurosa del cálculo enumerativo de H. 
Schubert (1848-1911). 

16. Estudio de la topología de curvas y superficies algebrai­
cas, incluyendo aquí -en lo que significaba un guiño a la 
obra de Poincaré- el estudio del número y la forma de los 
ciclos límite solución de ciertas ecuaciones diferenciales. 

18. Construcción del espacio a partir de poliedros congruentes. 
Este problema es uno de los clásicos de la matemática. Co­
nocido corno el problema del teselado o del friso, consiste 
en detemúnar de cuántas formas diferentes puede relle­
narse por completo el plano con figuras geométricas idénti­
cas. Hilbert lo amplió al considerar la posibilidad de rellenar 
el espacio con poliedros congruentes (véase la figura). Se 
trat.aba, por tanto, de generalizar el estudio ya hecho de los 
grupos de simetría y las teselaciones -muchas de ellas re­
present.adas en los mosaicos de La Alharnbra- del plano 
bidimensional al caso del espacio tridimensional. Avan­
ces intermedios en est.a materia se produjeron en 1910 de 
manos de Ludwig Bieberbach (1886-1982), un matemático 
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que terminaría afiliándose al Partido Nazi y tomando el 
relevo de Hilbert. Además, dentro de este apartado, Hilbert 
incluyó la famosa coI\jetura de Kepler: ¿qué disposición de 
esferas del mismo radio deja menos hueco libre en el espa­
cio? Kepler cortjeturó que la manera en que el frutero co­
loca las narartjas es la solución correcta --como de hecho 
muy recientemente se ha demostrado gracias a Thomas C. 
Hales (n. 1958)-. 

Y, finalmente, dentro del bloque dedicado al análisis, se en­
contraban los últimos cinco problemas: 

19. Estudio de la analiticidad de las soluciones de los proble­
mas regulares del cálculo de variaciones. 

20. Estudio de la existencia de soluciones de los problemas 
del cálculo de variaciones con valores de contorno. 

21. Demostración de la existencia de ecuaciones diferenciales 
lineales con grupo de monodromía prefijado. 

22. Uniformización de relaciones analíticas por medio de fun­
ciones automorfas (un problema cuyo origen estaba en 
los trabajos de Klein y Poincaré al respecto). 

23. Extensión de los métodos del cálculo de variaciones. Como 
veremos en el próximo capítulo, Hilbert contribuyó nota­
blemente al progreso de esta área del análisis ( que estaba 
directamente relacionada con los problemas 19 y 20, que 
se interesan por la existencia, la unicidad y las propiedades 
de las soluciones del cálculo de variaciones). Un tema que 
ha tenido una vitalidad extraordinaria en el siglo xx, lo que 
demuestra el buen olfato de Hilbert al terminar la lista de 
problemas con una cuestión general acerca de este campo. 

En París, por limitaciones de tiempo, Hilbert solo pudo dis­
cutir diez de sus veintitrés problemas: la hipótesis del continuo 
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(problema 1); la consistencia de la aritmética (2); la axiomatiza­
ción de teorías físicas (6); varios problemas de teoría de números, 
incluyendo la hipótesis de Riemann (7 y 8); la imposibilidad de 
resolución de la ecuación de séptimo grado (13); una cuestión 
sobre curvas y superficies definidas por ecuaciones polinómicas 
(16); las soluciones analíticas de los problemas regulares en el cál­
culo de variaciones (19); la existencia de ecuaciones diferenciales 
ordinarias que correspondan a grupos monodrómicos dados (21), 
y una cuestión de Poincaré sobre la parametrización de curvas 
algebraicas por medio de funciones automorfas (22). 

«Si despertara después de haber dormido durante mil años, 
la primera pregunta que haría sería: ¿se ha demostrado la 

hipótesis de Riemann?» 
- DAV1D H!LBERT. 

Muy recientemente, el historiador de la matemática Thiele 
Rudiger ha descubierto en un cuaderno de notas que Hilbert tenía 
la intención de añadir un nuevo problema, es decir, el número 
24, que finalmente descartó. El problema iba a consistir en lo si­
guiente: determinar criterios para la simplicidad o la demostra­
ción de la máxima simplicidad de ciertas demostraciones. Hilbert 
buscaba desarrollar una teoría general sobre los métodos de de­
mostración en matemáticas. Paradójicamente, algunos años des­
pués, él núsmo fundaría ( como estudiaremos en el capítulo 5) una 
teoría de la demostración. 

Hubo, sin embargo, algunos olvidos importantes en la lista. 
Varios caminos no seguidos. El álgebra matricial, la estadística, 
la lógica o la matemática aplicada, que habían sufrido un intenso 
desarrollo a finales del siglo, junto a una topología, una teoría 
de la medida y un análisis funcional en gestación, fueron margi­
nados por Hilbert en su presentación. Exactamente igual que el 
problema de los tres cuerpos o el último teorema de Fermat, que 
fueron mencionados pero no propuestos como problemas abier­
tos de la matemática del futuro. 

La siguiente tabla recoge el estado actual de los veintitrés 
problemas de Hilbert: 
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Problema Descripción Estado 

Kurt Godel (1938) y Paul 
Cohen (1963) demostraron 

1 La hipótesis del continuo 
la imposibilidad de probarla 
como cierta o falsa a partir 
de los axiomas estándar de 
la teoría de conjuntos. 

Kurt Godel (1931) demostró 
que establecer la consistencia 

2 Consistencia de la aritmética de la aritmética es un 
problema formalmente 
indecidible. 

Definición de la noción de 
Resuelto negativamente 

3 volumen sin emplear el 
cálculo 

por Dehn (1902). 

Construcción de todas las 
Resuelto positivamente 

4 métricas cuyas rectas sean 
geodésicas 

por Pogorelov (1975). 

¿son los grupos continuos 
Resuelto en sentido positivo 

5 diferenciables de forma 
automática? 

por And rew Gleason (1952). 

Parcialmente resuelto: 
- Mecánica: Hamel (1909). 
- Termodinámica: 

Carathéodory (1909). 

6 A xiomatización de la física 
- Relatividad especial: Robb 

(1914) y Carathéodory (1923). 
- Mecánica cuántica: Von 

Neumann (1932). 
- Teoría de la probabilidad: 

Kolmogórov (1933). 

¿Es ab trascendental, siendo Resuelto de forma 
7 a,. 0,1 algebraico y b independiente por Gelfond 

irracional algebraico? y Schneider (1934). 

8 
La hipótesis de Riemann 

Abierto. 
y la conjetura de Goldbach 

Encontrar la ley de 
9 reciprocidad más general en Resuelto por Emil Artin (1923). 

cualquier cuerpo numérico 

Encontrar un algoritmo que 

10 
determine si una ecuación Resuelto en sentido negativo 
diofántica tiene soluciones por Matijasevich (1970). 
enteras 
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Problema Descripción Estado 

Resolver las formas 
Parcialmente resuelto: Hasse 

11 cuadráticas con coeficientes 
(1923) y Siegel (1930). 

numéricos algebraicos 

12 
Extensión del teorema 

Abierto. 
de Kronecker 

Resolución de la ecuación 

13 
general de séptimo grado Resuelto negativamente por 
por medio de funciones de Arnold y Kolmogórov (1957). 
dos argumentos 

Demostración de la Resuelto en sentido negativo, 
14 finitud de ciertos sistemas mediante un contraejemplo, 

completos de funciones por Nagata (1959). 

Fundamentación rigurosa 
Resuelto por Van der Waerden 

15 del cálculo enumerativo de 
Schubert 

(1930). 

16 
Topología de las curvas 

Abierto. 
y superficies algebraicas 

Expresión de formas 
Resuelto en sentido positivo 

17 
definidas por cuadrados 

por Emil Artin (1927) y Georg 
Kreisel (1957). 

18 Conjetura de Kepler Resuelto por Hales (2005). 

¿son siempre analíticas las 

19 
soluciones de los problemas Resuelto afirmativamente por 
regulares del cálculo de Bernstein (1904). 
variaciones? 

¿ Tienen solución todos 

20 
los problemas variacionales 

Resuelto a lo largo del siglo xx. 
con ciertas condiciones 
de contorno? 

Probar la existencia de 

21 
ecuaciones diferenciales Resuelto de forma negativa 
lineales que tengan un grupo por Anosov y Bolibruch (1989). 
monodrómico prescrito 

Uniformización de relaciones 
Resuelto independientemente 

22 analíticas por medio de 
funciones automorfas 

por Koebe y Poincaré (1907). 

23 
Extensión de los métodos 

Resuelto a lo largo del siglo xx. 
del cálculo de variaciones 
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LOS DIECIOCHO PROBLEMAS DE SMALE Y LOS SIETE PROBLEMAS 
DEL MILENIO 

En 1992 la Unión Matemática Internacional tomó la iniciativa de adaptar la con­
ferencia de Hilbert de 1900 al desarrollo actual de las matemáticas. A pesar de 
los tremendos logros de las matemáticas del siglo xx, docenas de problemas 
notables aún esperan solución. Stephen Smale (n. 1930, ganador de la Medalla 
Fields, el equivalente al premio Nobel para matemáticos) planteó en el año 
2000 una lista con dieciocho problemas para el siglo xx1. Los tres primeros 
son la hipótesis de Riemann, la conjetura de Poincaré (una famosa cuestión 
topológica planteada en 1904) y el problema P=NP (ltiene todo problema 
resoluble en tiempo exponencial, no polinómico, una resolución alternativa en 
tiempo polinómico?). Simultáneamente, el Instituto Clay instauró siete premios 
de un millón de dólares para cada uno de los denominados problemas del 
milenio. Algunos son nuevos, otros viejos conocidos, que llevan más de cien 
años esperando una solución. Entre estos desafíos están, como es natural, 
los tres ya citados, así como el problema de la existencia de soluciones en las 
ecuaciones de Navier-Stokes (que describen el movimiento de los fluidos). En 
2002 el matemático ruso Grigori Perelman (n. 1966) demostró uno de ellos, 
la conjetura de Poincaré; pero, sorprendentemente, rehusó recoger el premio 
alegando que no quería ser expuesto como un animal en el zoológico. 

EL MAESTRO Y LOS DISCÍPULOS 

Hoy, más de cien años después, el balance es altamente positivo: 
más de la mitad de los problemas han sido resueltos, aunque al­
gunos no de la forma esperada. Otros, los menos, siguen abiertos 
( caso del problema 8: la hipótesis de Riemann, la estrella de la 
lista) o parcialmente abiertos (caso de los problemas 11, 12 y 16). 
Los problemas que Hilbert encomendó al nuevo siglo no cayeron 
en saco roto, sino que fascinaron a varias generaciones de mate­
máticos, generando un verdadero aluvión de artículos de investi­
gación. Resolver un problema de Hilbert era una tarea digna de 
respeto, que ayudaba a forjar una carrera. Cualquier matemático 
que resolviera uno solo de los problemas ingresaba con ello en 
«la clase de honor de la comunidad matemática», por decirlo con 
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la expresión que acuñó Hennann Weyl (1885-1955) en su escrito 
necrológico sobre Hilbert. 

Fue un bello caso de profecía autocurnplida. Pese a que la 
conferencia de Hilbert no logró arrastrar a muchos asistentes ( de 
hecho, no se sabe a ciencia cierta si ni siquiera Poincaré, implíci­
tamente aludido, acudió) ni generó un debate animado (apenas un 
rifirrafe con Peano, que recordó a Hilbert los trabajos de los mate­
máticos italianos en relación al segundo problema), la reputación 
de su autor y la del claustro de Gotinga que tenía detrás hicieron el 
resto. Los problemas matemáticos del futuro fueron precisamente 
los que Hilbert marcó en la agenda porque su aura legendaria in­
fluyó para que fuera así. De todos modos, las propuestas de Poin­
caré también se cumplieron: a modo de ejemplo, el desarrollo del 
análisis funcional, que tanto debe a Hilbert, se produjo en paralelo 
al de la mecánica cuántica. Y, pasada la tendencia de principios 
del siglo xx hacia la abstracción y las estructuras axiomáticas, se 
ha vivido un despegue de la matemática aplicada (investigación 
operativa, teoría del caos, etc.) que ha devuelto parte de la razón 
al matemático francés. 

Hilbert imprimió su sello sobre toda una era de las matemáti­
cas. Y, sin embargo, no basta su investigación para explicar el brillo 
que irradiaba. Gauss y Riemann, por mencionar otros dos hombres 
de Gotinga, fueron matemáticos de más talla que Hilbert, pero su 
impacto inmediato sobre sus contemporáneos fue indudablemente 
menor. Hilbert, cual Flautista de Hamelin, sedujo a múltiples ma­
temáticos a seguirle al profundo río de las matemáticas puras. El 
éxito de los problemas de Hilbert como programa de investigación 
radica también en el círculo que logró crear a su alrededor. Con 
otras palabras, no es posible hacer un balance serio de su influencia 
si no se toma en cuenta que siempre destacó por ser un profesor 
de lo más laborioso. Hilbert destilaba un entusiasmo contagioso 
por intercambiar ideas científicas, a través de conversaciones o en 
largas caminatas. La piedra angular de su actividad matemática fue 
combinar investigación y enseñanza. Otto Blumenthal (1876-1944), 
el primero de los sesenta y nueve alumnos que acabaron una tesis 
doctoral bajo su dirección, rememoraba cuarenta años después la 
impresión que Hilbert causó cuando llegó a Gotinga: 
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Comparado con los demás profesores, aquel hombre ágil con su 
poblada barba pelirroja y un atuendo bastante normal tenía un aire 
poco académico. Sus clases eran muy concisas. Las daba de una 
fom1a un poco aburrida, pero el rico contenido y la claridad de su 
presentación hacían que uno se olvidara de la forma. A menudo pre­
sentaba cosas nuevas que él mismo había descubierto, pero se to­
maba la molestia de comprobar que todo el mundo le seguía. Daba 
las clases para los alumnos, no para sí mismo. 

RETRATO DE HILBERT CON SOMBRERO 

Esta fotografía, tomada en 1912, ha pasa­
do al imaginario colectivo de los mate­
máticos. Sombrero panamá, ojos brillan­
tes tras los anteojos, barba puntiaguda, 
voz que se adivina firme. Pero hay algo 
que este celebérrimo retrato no trasluce: 
la personalidad cautivadora de su prota­
gonista. Una pasión inquebrantable por 
las matemáticas que se palpa en la flo­
rida retórica de sus discursos. Y muchas 
de esas excentricidades que habitual­
mente identificamos con los matemáti­
cos. Uno de sus discípulos contaba que 
un día tras otro se veía a Hilbert con los 
mismos pantalones rotos, lo cual era un 
poco embarazoso. La tarea de informarle 
con delicadeza recayó en su ayudante, 
Richard Courant (1888-1972). Una tar­
de, aprovechando que atravesaban una 
zona de arbustos espinosos, Courant le 
dijo que se había roto los pantalones. 
«iAh! No», replicó Hilbert, «l levan semanas así, pero nadie se ha dado cuen­
ta». Aún más, este matemático, .que solía montar en bicicleta por las calles de 
Gotinga, nunca se cansó de flirtear. En una fiesta de cumpleaños se improvi­
saron versos sobre sus galanteos con nombres de chica para cada una de las 
letras del abecedario. Pero cuando se llegó a la letra K nadie sabia qué decir. 
En ese momento Kathe, su sensata e inteligente mujer, señaló: «Por lo menos 
podíais pensar en mi una vez». 
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Naturalmente, también pesaron las circunstancias, esto es, el 
tiempo y el lugar: la pequeña pero poderosa Universidad de Go­
tinga. La muerte del anciano Kronecker y el retiro de W eierstrass 
descongelaron el mundo académico alemán, desembocando en 
un baile de cátedras académicas del cual salieron muy benefi­
ciados Klein y Hilbert, quienes, como vimos, pudieron asentarse 
definitivamente en Gotinga. Una vez allí, ese gran político cien­
tífico que fue Felix Klein orquestó que Gotinga se convirtiera en 
el centro matemático más importante del mundo, con un impre­
sionante grupo de profesores, entre los que descollaban Hilbert y 
Minkowski ( quien se incorporó a la institución en 1902), así como 
con numerosos discípulos de alto nivel y visitantes extranjeros. 

Los treinta y cinco años como docente en Gotinga dieron 
para mucho. La nómina de discípulos de Hilbert es impresionante: 
Otto Blumenthal, Max Dehn, Erhard Schmidt (1876-1959), Richard 
Courant, Ernst Zermelo (1871-1953), el famoso campeón mundial 
de ajedrez Emanuel Lasker (1868-1941), etc. Entre todos ellos so­
bresale Hermann Weyl, quien se doctoró con Hilbert en 1908 y 
le sucedió cuando se retiró en 1930. Hilbert siempre actuó con 
ellos como maestro, ayudándoles en la medida de lo posible. Así, 
por ejemplo, cuando brotó la oposición a la propuesta de que una 
joven y eminente matemática, Emmy Noether (1882-1935), fuese 
nombrada profesora en Gotinga, Hilbert se enfrentó a sus colegas 
más reaccionarios, declarando con ironía: «No veo que el sexo de 
un candidato sea una razón en contra de su admisión. Después 
de todo, esto es una universidad y no un establecimiento de baños 
públicos». Otra muestra de la libertad de su pensamiento. 
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CAPÍTULO 3 

Axiomatizar la física 

Los primeros años del nuevo 
siglo encontraron a Hilbert trabajando en el 

campo del cálculo de variaciones y de las ecuaciones 
integrales. Sus aportaciones dieron forma a una nueva rama 
del análisis: el análisis funcional. Y, además, fueron claves 
en la formulación matemática de la relatividad general y de 
la mecánica cuántica. Hilbert compitió de igual a igual con 
Einstein en la búsqueda de unas ecuaciones que incluyeran 

la gravedad en el marco relativista. Pero hay más: 
el denominado espacio de Hilbert ha terminado 

siendo la estructura matemática que 
guarda la llave de entrada al 

universo cuántico. 





Uno de los descubrimientos más recientes de los historiadores 
de las matemáticas ha sido el alto grado de interés que Hilbert 
manifestó por la física de su tiempo. La amistad de Minkowski y 
la lectura de Hertz supusieron dos importantes catalizadores de 
este interés en su juventud; y la tradición matemática de Gotinga 
hizo, indudablemente, el resto (Gauss, Riemann y Klein compar­
tieron el gusto por la física). Aún más: el hecho de que su ac:tivi­
dad científica coincidiera con el nacimiento de las grandes teorías 
de la física del siglo xx, la teoría cuántica (1900) y la relatividad 
(1905), intensificó esta afición durante las dos primeras décadas 
del nuevo siglo. 

Desde su llegada a Gotinga en 1895, Hilbert impartió nume­
rosos cursos y seminarios dedicados a la física matemática. No 
es de extrañar, por tanto, que en la conferencia de París de 1900, 
dentro del epígrafe dedicado al sexto problema, señalase que las 
investigaciones sobre los fundamentos de la geometría sugerían 
tratar de la misma manera, por medio de axiomas, aquellas cien­
cias físicas en que las matemáticas jugaban un papel destacado. 
La mecánica, la óptica, pero también la termodinámica o la teoría 
de la electricidad, debían seguir el pulcro modelo preconizado por 
la geometría. El rigor no era una propiedad exclusiva de la mate­
mática. La física podía hacerse completamente rigurosa según los 
estándares del método axiomático. 

AXIOMATIZAR LA FÍSICA 71 



72 

En 1905, avanzando en esta dirección, el matemático alemán 
ofreció una exposición axiomática de la mecánica, describiendo 
el concepto de fuerza a través de varios axiomas sobre vecto­
res. A continuación, axiomatizó la teoría de probabilidades, tal 
y como esta aparecía dentro de la teoría cinética de los gases. 
Varios licenciados de Gotinga, relacionados con el insigne cate­
drático, realizaron aportaciones significativas. En 1909, Georg 
Hamel (1877-1954) axiomatizó la mecánica clásica y Constantin 
Carathéodory (1873-1950) hizo lo propio con la termodinámica. 
Y, según veremos, Hilbert dio otro paso de gigante cuando en 1915 
formuló sus propias ecuaciones para la teoría de la relatividad 
general. Finalmente, a finales de los felices años veinte, intentó, 
en colaboración conLothar W. Nordheim (1899-1985) y John von 
Neumann (1903-1957), anclar la mecánica cuántica en un sistema 
axiomático. 

Pero su interés por la física no puede desconectarse de sus 
aportaciones al análisis. Sus saltos del análisis a la física, y de la 
física al análisis, durante las dos primeras décadas del siglo, son 
una constante a tener muy en cuenta. Hilbert centró su atención 
en dos ramas bastante próximas del análisis: el cálculo de varia­
ciones y las ecuaciones integrales. De hecho, tres de los veinti­
trés problemas que Hilbert presentó en París trataban del cálculo 
de vaiiaciones y, en particular, del desarrollo de la teoría de las 
ecuaciones en derivadas parciales. El hilo, precisamente, del que 
vamos a comenzar a tirar. 

LAS ECUACIONES EN DERIVADAS PARCIALES 

Las ecuaciones de toda la vida (las ecuaciones algebraicas) res­
ponden a la necesidad de calcular números desconocidos, como 
por ejemplo las raíces de un polinomio. Pero en las aplicaciones 
de las matemáticas surgen a menudo problemas cualitativamente 
distintos: problemas en los que la incógnita no es un número sino 
una función, que expresa la relación entre varias variables (por 
ejemplo, en el caso del movimiento de un planeta, la dependencia 

AXIOMATIZAR LA FÍSICA 



de las coordenadas espaciales respecto del tiempo). Una clase 
especial de estas ecuaciones son las llamadas ecuaciones diferen­
ciales, en las que se trata de determinar la función desconocida a 
partir de una o varias ecuaciones en que intervienen las derivadas 
de la función. 

Tras fundar el cálculo (diferencial e integral), Newton for­
muló las leyes de la física de una forma que relacionaba entre sí 
las magnitudes físicas y sus ritmos de cambio. Es decir, por ejem­
pló, el espacio recorrido por un móvil con su velocidad, y la velo­
cidad del móvil con su aceleración. Las leyes físicas quedaron, por 
tanto, expresadas por medio de ecuaciones diferenciales, siendo 
los diferenciales y las derivadas medidas de los ritmos de cambio. 
La derivada de una función representa cómo varía el valor de la 
función, si aumenta, disminuye o permanece constante. La acele­
ración, por seguir con el ejemplo, mide los cambios en la veloci­
dad del móvil, la variación de la velocidad en el tiempo, porque 
es el cociente de los diferenciales de la velocidad y del tiempo; 
en otros términos, es la derivada de la velocidad con respecto al 
tiempo: 

dv 
a =-. 

dt 

Sin embargo, la resolución de ecuaciones diferenciales, como 
de ecuaciones algebraicas, no siempre es fácil. Es más, casi nunca 
lo es. Cuando la función incógnita depende de una única variable, 
se llaman ecuaciones diferenciales ordinarias. Por ejemplo, la 
derivada de la función seno y =senx es y' = cosx, donde y' denota 
la derivada primera. Esta última función puede derivarse, a su 
vez, para dar y'' = - sen x, de lo que podemos deducir la ecuación 
diferencial y" =-y. Esta ecuación es una ecuación diferencial de 
segundo orden, ya que aparece una derivada segunda. 

Otro ejemplo de ecuación diferencial de segundo orden es la 
segunda ley de Newton: F = m • a ( «fuerza igual a masa por acele­
ración»), donde 

dv d2x 
a=-=--

dt dt2 
' 
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la aceleración es la derivada primera de la velocidad, pero tam­
bién la derivada segunda de la posición, si x ( t) denota la posición 
del móvil en función del tiempo. 

En cambio, si la función desconocida depende de más de una 
variable y aparecen derivadas con respecto a estas variables, se 
llaman ecuaciones en derivadas parciales. Para citar un ejemplo 
muy sencillo, el volumen V de un gas es una función de su tempe­
ratura T y de la presión P sobre él; o sea, V(T,P). Cuando T o P 
varían, V varía. La derivada de V(T,P) con respecto a T se llama 
derivada parcial respecto a T, y se escribe: 

De igual modo, 

avcr,P) 
ar 

avcr,P) 
aP 

es la derivada parcial respecto a P. Como en el caso de las deri­
vadas ordinarias, hay derivadas parciales segunda, tercera, etc.; 
así, corno ilustración, 

es la segunda derivada parcial respecto a P. Pero las ecuaciones 
diferenciales en que intervienen derivadas parciales presentan 
rasgos peculiares que las diferencian esencialmente de las ordina­
rias. En el estudio de los fenómenos naturales, las ecuaciones en 
derivadas parciales aparecen con tanta frecuencia corno las ecua­
ciones diferenciales ordinarias, pero normalmente son mucho 
más difíciles de resolver. 

A lo largo del siglo XVIII, estudiar un fenómeno físico y ha­
llar la ecuación diferencial que lo gobierna se hicieron sinónimos. 
Así, tras el hallazgo por Newton de la célebre ecuación diferen­
cial «fuerza igual a masa por aceleración», que rige el movimiento 
de los sistemas de puntos y de los sólidos rígidos, el matemático 
suizo Leonhard Euler (1707-1783) formuló un sistema de ecuacio­
nes en derivadas parciales que describía el movimiento de me-
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dios continuos como el agua, el aire u otros fluidos sin viscosi­
dad. Poco·después, el matemático francés Joseph-Louis Lagrange 
( 1736-1813) enfocó su atención en la música, en la ecuación en de­
rivadas parciales que representa la propagación de las ondas del 
sonido. Y, más tarde, Jean-Baptiste Fourier (1768-1830) se centró 
en el flujo de calor, proponiendo otra ecuación en derivadas par­
ciales que describe su difusión. Entrado el siglo xrx, las ecuaciones 
de Navier-Stokes describieron el movimiento de los fluidos vis­
cosos, y las ecuaciones de Maxwell, el electromagnetismo. Toda 
la naturaleza - sólidos, fluidos, sonido, calor, luz, electricidad­
quedó modelada mediante ecuaciones en derivadas parciales. 
Ahora bien, una cosa era dar con las ecuaciones del fenómeno en 
cuestión y otra, bien distinta, resolverlas. 

«La física se está haciendo demasiado complicada 
para dejársela a los físicos.» 

- DAVID HILBERT. 

Las ecuaciones en derivadas parciales paradigmáticas son, de 
hecho, tres ecuaciones gestadas en el ámbito de la física matemá­
tica: la ecuación de ondas, la ecuación del calor y la ecuación de 
Laplace. Antes de ocuparnos de esta últin1a, conviene introducir 
una notación que simplifica extraordinariamente su escritura: se 
llama laplaciano de una función u= u(x, y, z, t) de las coordena­
das espaciales y del tiempo a la suma de las segundas derivadas 
respecto de x, y, z: 

a2u a2u a2 u 
!.!U = - , +-+-. 

ax- ay2 az2 

Este grupo de parciales recibió el nombre de laplaciano de 
manos de James Clerk Maxwell (1831-1879), aunque su represen­
tación mediante la letra griega delta mayúscula se remonta a un 
tratado- de 1833. 

En estas condiciones, !.!u= O es la ecuación de Laplace o ecua­
ción de continuidad, que expresa que un fluido perfecto en el que 
no hay remolinos es indestructible. Esta ecuación codifica mate-
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LA ECUACIÓN DE ONDAS Y LA ECUACIÓN DEL CALOR 

La ecuación de ondas, que describe la propagación de las ondas del sonido 
o de la luz, pero también de las ondas físicas producidas sobre una cuerda o 
una membrana vibrantes, es la siguiente: 

a2u 2 
-=C !iU. 
at2 

Por su parte, la ecuación del calor, que rige cómo se difunde el calor, es decir, 
cómo circula desde las zonas donde la temperatura es más alta a las zonas 
donde es más baja, responde a la siguiente forma: 

Ambas ecuaciones parecen engañosamente similares, salvo porque en la pri­
mera aparece la derivada segunda respecto al tiempo en vez de la derivada 
primera. Esta sutil diferencia matemática tiene drásticas implicaciones físicas: 
la ecuación de ondas es reversible, en el sentido de que permanece invariante 
si cambiamos el sentido del paso del tiempo. Matemáticamente: si cambiamos 
t por -t, la ecuación no cambia, ya que al derivar dos veces los signos nega­
tivos se cancelan. En consecuencia, la ecuación no regulariza las soluciones 
con el paso del tiempo, con lo que se puede recuperar información del pasado 
(por esta razón los seres humanos empleamos señales lumínicas o sonoras 
para comunicarnos). Por el contrario, la ecuación del calor no es reversible 
(al cambiar t por -t, no obtenemos la misma ecuación). La difusión del calor 
está orientada temporalmente, depende de la flecha del tiempo. Esta irre­
versibilidad se manifiesta en que la ecuación regulariza las soluciones con el 
paso del tiempo, con lo que en general no puede recuperarse información del 
pasado (la solución correspondiente a un pico de calor termina por suavizarse 
de tal modo que, pasado el tiempo, resulta imposible saber dónde y cómo 
se produjo la explosión o el encendido, dado que el calor se ha difundido por 
todo el espacio). 

máticamente una perogrullada: si el fluido es incompresible, debe 
salir tanto fluido de cualquier pequeño volumen en un instante 
de tiempo como fluye dentro de él. No obstante, al matemático y 
físico francés Pierre-Simon Laplace (17 49-1827) se le apareció en 
mecánica celeste estudiando el potencial gravitatorio, esto es, la 
función que mide la fuerza gravitatoria con que un cuerpo, tenga 
la forma que tenga, atrae a una masa puntual exterior. A resultas 
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de esto, la ecuación de Laplace también recibe el nombre de ecua­
ción del potencial. Pues bien, podemos ya anticipar que una de 
las aportaciones geniales de Hilbert al análisis tiene que ver con 
la resolución rigurosa de esta ecuación en derivadas parciales. 

DEL PROBLEMA AL PRINCIPIO DE DIRICHLET 

Uno de los problemas relacionados con la ecuación de Laplace 
que trajo de cabeza a los matemáticos y los físicos del siglo XIX fue 
el denominado problema de Dirichlet, llamado así en honor del 
matemático alemán Peter Gustav Lejeune Dirichlet (1805-1859). 
Consiste en encontrar unafunción armónica en un dominio del 
espacio, es decir, una función u que satisface la ecuación de La­
place 6.u = O en ese dominio del espacio, cumpliendo, en la fron­
tera del dominio (figura 1), que toma unos valores prefijados (por 
ejemplo, u= f en la frontera). Formalmente, si denotamos por Q 

al dominio y por y a la frontera del dominio: 

{
6.u= O enº. 
u=f en y 

Este problema matemático estaba 
relacionado con multitud de proble-

En el problema de 
Dirichlet se busca 
una función u que 
tome unos valores 
determinados 
en la frontera y 
cuyo laplaciano se 
anule en el interior 
de la región. 

- -, 
FIG.1 mas físicos. Uno de ellos proporcio­

naba una idea sobre cómo resolverlo. 
Imaginemos una membrana elástica 
uniformemente estirada sobre una re­
gión del plano Q, delimitada por una 
curva y. Supongamos, ahora, que se de­
forma el contorno de manera que cada 
punto de y pasa a ocupar un punto de 
una cierta altura dada por la funciónf 
Como es natural, al haber deformado 
su contorno, la membrana se combará 

Condición de frontera. definida 
a lo largo del borde de la región 

y comenzará a oscilar. Si la dejamos 
que oscile libremente, transcurrido 

Región donde está definida 
la ecuación diferencial 

n 
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Posible posición 
de equilibrio de la 
membrana pasado 

el tiempo. 
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FIG. 2 

cierto tiempo alcanzará el equilibrio, adoptando cierta posición 
(figura 2). Y nos gustaría calcular la magnitud de la deformación 
de cada punto del interior de la membrana respecto al plano, es 
decir, la altura que ahora ocupa, lo que se ha desplazado. La fun­
ción u(x,y), que mide estas cantidades, satisface el problema de 
Dirichlet (en dos dimensiones). 

Físicamente, parece claro que tiene que existir una función 
u solución del problema y que, además, ha de ser única, puesto 
que antes o después la membrana terminará parándose, y lo hará 
de una única manera. Sin embargo, matemáticamente la cuestión 
no es tan evidente. En sus lecciones sobre la materia, Dirichlet 
-al igual que Gauss, G. Green (1793-1841) o W. Thompson (1824-
1907)- ideó un método para resolver el problema y hallar la fun­
ción desconocida u. Este método fue bautizado, posteriormente, 
como principio de Dirichlet por Riemann. 

Dirichlet conjeturó que en la posición de equilibrio estable la 
función solución u debe tener la mínima energía, es decir, debe dar 
el menor valor para la siguiente integral (la energía de Dirichlet): 
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Con otras palabras, la función que buscarnos ha de dar, en 
comparación con todas las posibles funciones que verifican la 
misma condición de contorno, el mínimo valor posible para la 
energía. Sobre bases físicas se toma muy plausible que, dada cual­
quier curva cerrada en el espacio, existe una superficie de mínima 
energía que la llena, porque cualquier superficie o membrana ten­
derá a adoptar una configuración que requiera la mínima energía. 

Corno el integrando de J( u) es siempre positivo ( es una suma 
de cuadrados), la integral J( u) siempre es mayor o igual que cero. 
Por lo que a Dirichlet le pareció razonable que tenía que existir 
una función u que dé el valor más pequeño. Nótese que si no es­
tuviese esa cota inferior que supone el cero, podría ser que los 
valores que obtuviéramos fuesen cada vez más pequeños (O, - 1, 
- 2, - 3 ... ) sin que hubiera necesariamente un valor mínimo. Su­
poniendo la existencia de esta función u rninirnizadora de J(u), 
Dirichlet demostró que la función u es armónica y, por tanto, sa­
tisface el problema inicial que se quería resolver. 

Ahora bien, lo que no estaba nada claro es si existía efecti­
vamente ese mínimo, esa función u donde la integral de Dirichlet 
alcanzaba su menor valor. Piénsese, por ejemplo, en el conjunto 
de todos los números reales positivos: todos son mayores o iguales 
que cero, pero no hay ninguno que sea el más pequeño (para cual­
quier número que seleccionemos siempre habrá uno más pequeño). 
El ínfimo del conjunto ( el cero) no se alcanza dentro del propio 
conjunto (los números positivos), por lo que no hay mínimo. Los 
esfuerzos de Weierstrass y su escuela de matemáticos por funda­
mentar rigurosamente la existencia de u se dieron de bruces con la 
cuestión. No obstante, los físicos seguían creyendo que el llamado 
principio de Dirichlet garantizaba, precisamente, la resolución del 
problema de Dirichlet. Solo Hilbert, alrededor de 1904, logró reha­
bilitar el principio y demostrar fuera de toda duda la existencia del 
mínimo. Pero, para explicar su prueba, tenernos que sumergimos 
en el campo limítrofe del cálculo de variaciones, que busca deter­
minar qué funciones hacen mínima una integral. 
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EL CÁLCULO DE VARIACIONES 

El problema de la braquistócrona, o curva de descenso más rá­
pido, fue históricamente el primer problema en el desarrollo del 
cálculo de variaciones. Entre todas las curvas que unen dos pun­
tos, se desea hallar aquella a lo largo de la cual una partícula, 
moviéndose bajo la fuerza de la gravedad, cae en menos tiempo. 
Considerando todas las posibles curvas que unen el punto A con 
el punto B, se busca aquella que minimiza el tiempo de caída, que 
puede expresarse en forma de integral. Por consiguiente, se trata 
de buscar la curva o función que hace menor el valor de esa inte­
gral. Este problema fue propuesto en 1696 por Johann Bemoulli 
(1667-1748) a sus colegas europeos, y fue resuelto independiente­
mente por Newton, Leibniz, Johann y Jakob Bemoulli: la solución 
no era la línea recta ni un arco de circunferencia, sino un arco de 
una curva denominada cicloide (figura 3). 

Las nociones básicas de esta nueva rama del análisis llevan 
la firma de Euler y Lagrange. El primero fue, de hecho, quien la 
bautizó como cálculo de variaciones; y el segundo, el creador 
del «método de variaciones» que permite resolver muchos de 
los problemas encuadrados dentro de la disciplina. La base de los 
problemas variacionales es la siguiente: se supone un conjunto 
C de elementos cualesquiera (números, puntos geométricos, fun­
ciones, etc.), a los que denotamos por u, y a cada elemento u le 
asociamos un número F( u). Si C es un conjunto numérico, F( u) 
es una función de una variable; si C es un coajunto de puntos del 
plano, F(u) es una función de dos variables; etc. Pero si Ces un 
conjunto de funciones, F(u) es lo que se llama unfuncional, que 
en alguna de las diversas funciones que componen el conjunto 
puede tomar un valor extremo (máximo o mínimo). 

Para resolver un problema de cálculo de variaciones se com­
paraba una función u de prueba con todas las funciones próximas, 
esto es, con aquellas que se obtienen variando ligeramente la fun­
ción u de prueba ( de aquí precisamente el nombre de «cálculo de 
variaciones»), y se calculaba el funcional Fa lo largo de cada fun­
ción. La función solución tiene la propiedad de que el funcional 
a lo largo de todas las funciones próximas es siempre mayor (si 
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estamos buscando un mínimo).' Este es, en esencia, el núcleo del 
«método de variaciones». Es más, Euler y Lagrange encontraron 
que para que una función u de C proporcione un valor extremo 
(máximo o mínimo) al funcional, F(u) tiene que satisfacer una 
cierta ecuación diferencial (las ecuaciones de Euler-Lagrange). 
Pero la satisfacción de esta ecuación era una condición necesaria 
aunque no suficiente. 

Una medida del éxito de esta constelación de ideas es que múl­
tiples matemáticos de los siglos xvm y xrx se esforzaron por inter­
pretar las ecuaciones diferenciales que aparecían en la física como 
condiciones extremas de determinados funcionales. Las leyes físi­
cas podían reescribirse en términos de principios de mínimo, ya 
que la naturaleza se conducía siempre de la manera más econó­
mica. Una meta que ya había acariciado Pierre de Fermat (1601-
1665) para la óptica: la trayectoria que sigue un rayo de luz cuando 
pasa de un punto A a otro punto B de un medio distinto es aquella 
que requiere el menor tiempo, así como· Pierre Louis de Maupertuis 
(1698-1759) para la mecánica, con 
su principio de mínima acción (fi­
gura 4). Los libros de física de fina­
les del siglo XIX estaban llenos de 
principios similares, que afirma-
ban que determinados procesos fí-
sicos sucedían siempre de manera 
que se minimizaba cierta cantidad. 
Eran los denominados principios 
variacionales. 

En suma, esta venerable rama 
del análisis era una suerte de ex­
tensión del cálculo infinitesimal. 
Mientras que el cálculo tradicio­
nal . enseñaba cómo hallar los 
máximos o los mínimos de una 
función, el cálculo de variaciones 
enseñaba cómo determinar la fun­
ción que maximiza o minimiza un 
determinado funcional, que nor-

FIG. 3 

A 

F!G.4 
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FIGURA 3: 

Un arco 
de cicloide 
entre A y B. 

FIGURA 4: 

De las tres 
trayectorias 
posibles, lcuál 
elegiría una 
partícula para 
pasar de A a B? 
El principio de 
mínima acción 
establece que 
aquella que 
minimice una 
cantidad 
denominada 
acción. 

l 
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malmente venía expresado en forma de una integral. No obstante, 
este problema era mucho más difícil y a finales del siglo XIX aún no 
había podido especificarse una serie de criterios que garantizaran 
la existencia del extremo (del máximo o del mínimo). No es de 
extrañar, por tanto, que el cálculo de variaciones copara tres 
de los veintitrés problemas de Hilbert. 

Mientras que en el problema 23 Hilbert planteaba una posible 
generalización de los métodos variacionales, en los problemas 
19 y 20 se preocupaba, respectivamente, por las propiedades y 
la existencia de las soluciones de los problemas del cálculo de 
variaciones. En efecto, había dos cuestiones abiertas. Una era la 
existencia o no de solución (problema 20). Y otra, las propiedades 
que esta solución, caso de existir, satisfacía. Desnudado de su 
ropaje técnico, lo que Hilbert estaba preguntando en el problema 
19 era si el tipo de problemas físicos que solían plantearse como 
problemas de cálculo de variaciones -el problema de Dirichlet, 
por ejemplo- debían tener siempre soluciones con el mejor com­
portamiento: ¿las soluciones eran siempre tan suaves y regulares 
como las funciones analíticas (que son derivables infinitas veces)? 
Este problema fue resuelto en 1904 por el matemático ruso Sergei 
Bernstein (1880-1968), como parte de su tesis doctoral (codiri­
gida por Hilbert). Bernstein demostró que las soluciones de las 
ecuaciones en derivadas parciales que interesaban a Hilbert -in­
cluyendo aquí las de la ecuación del potencial de Laplace- eran, 
caso de existir, regulares, con un comportamiento inmejorable 
si satisfacían ciertas condiciones bastante simples sobre sus tres 
primeras derivadas. Ahora era evidente que, por ejemplo, la inte­
gral de Dirichlet, si alcanzaba su mínimo, lo hacía necesariamente 
en una función admisible. 

Pero fue en ese mismo año de 1904 cuando Hilbert dejó 
asombrado al mundo matemático al rescatar el principio de Di­
richlet del descrédito en que había caído después de las críticas 
de W eierstrass. Antes de W eierstrass se había supuesto que en el 
cálculo de variaciones todo funcional tenía un mínimo. Hilbert 
demostró que en el caso concreto de la energía de Dirichlet J( u) 
había, efectivamente, un mínimo. Construyó una sucesión mini­
mizante de funciones, cuyos valores para la integral eran cada vez 
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más pequeños y convergían al valor ínfimo. Y a partir de ella ob­
tuvo el mínimo, es decir, la función u que alcanzaba de facto ese 
valor ínfimo. Físicos y matemáticos podían respirar tranquilos. 

LA CIENCIA EN LA ENCRUCIJADA 

A finales del siglo XIX, la física funcionaba correctamente den­
tro del dominio de la experiencia común. La mecánica clásica 
(creada por Newton) y la electrodinámica clásica (finalizada por 
Maxwell) proporcionaban un marco totalmente satisfactorio para 
la comprensión del mundo que nos rodea. Con el aumento de pre­
cisión en los instrumentos de medida y la posibilidad de realizar 
experimentos más y más complejos, los físicos empezaron a estu­
diar fenómenos en condiciones poco usuales: a velocidades muy 
altas (próximas a la de la luz) y a escala macrocósmica o micros­
cópica. Fue entonces cuando comenzaron a surgir discrepancias 
con las predicciones suministradas por la física clásica, lo que 
motivó una profunda revisión de sus fundamentos y dio origen 
a las dos grandes temias físicas del siglo pasado: la teoría de la 
relatividad y la teoría cuántica. La primera trataba de explicar 
los fenómenos que ocurren a altas velocidades (relatividad espe­
cial) y a escalas cósmicas (relatividad general), mientras que la 
segunda se enfrentaba con los que tienen lugar a escala atómica 
(mecánica cuántica). 

Hacia 1900, la claridad de la física clásica solo estaba oscu­
recida por cuatro nubarrones, por cuatro problemas que inexpli­
cablemente se resistían: la radiación del cuerpo negro, el efecto 
fotoeléctrico, los espectros de los elementos químicos y el viento 
de éter. Mientras que los tres primeros abrieron las puertas a la fí­
sica cuántica, el último lo hizo con la física relativista. El principio 
clásico de relatividad, debido a Galileo, no era capaz de explicar 
ciertos fenómenos electromagnéticos medidos sobre un interfe­
rómetro (el experimento de Michelson-Morley). En 1905, Albert 
Einstein (1879-1955) sentó las bases de la teoría especial de la 
relatividad con su artículo «Sobre la electrodinámica de cuerpos 
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en movimiento». Para resolver la aparente contradicción que sur­
gía al estudiar el comportamiento de las ecuaciones de Maxwell 
bajo las transformaciones de Galileo ( sin recurrir a un hipotético 
viento de éter), Einstein propuso mantener la teoría de Maxwell 
modificando la mecánica de Newton. Había que abandonar las 
transformaciones de Galileo, sustituyéndolas por las transforma­
ciones de Lorentz, y adoptar -como es bien sabido- una hipó­
tesis revolucionaria: la invariancia de la velocidad de la luz. Entre 
sus consecuencias se contaban las siguientes: el rechazo del éter, 
la relatividad de la simultaneidad, la contracción del espacio, la 
dilatación del tiempo, etc. La teoría de la relatividad especial eli­
minó de un plumazo la ilusión del espacio y el tiempo absolutos 
de la física clásica. 

La relatividad especial, aunque tremendamente atrevida en 
sus postulados físicos, no requería matemáticas desconocidas 
hasta entonces por los físicos -estaba, de hecho, en germen en 
la obra de Poincaré y de H. Lorentz (1853-1928)-. En su alum­
bramiento Einstein empleó matemáticas poco exigentes. No obs­
tante, algunos físicos y matemáticos opinaban que una colección 
de ideas físicas y filosóficas tan radicales debía aderezarse con un 
nuevo planteamiento matemático. Y aquí entró en juego un viejo 
conocido de Hilbert: su amigo Hermann Minkowski. 

Ambos amigos habían vuelto a reunirse en 1902. El prusiano 
rechazó el ofrecimiento de una cátedra en Berlín y, a cambio de 
su permanencia en Gotinga, negoció la dotación de otra cátedra 
para el judío de origen ruso. Gotinga se convirtió de la noche a la 
mañana en la meca de las matemáticas teutonas. Allí vivían tres 
profetas: Klein, Hilbert y Minkowski. Muestra de lo mucho que los 
dos últimos congeniaron fue que entre 1902 y 1909 impartieron 
al alimón varios cursos de física matemática, en particular sobre 
la electrodinámica de los cuerpos en movimiento (lo que hoy se 
conoce por el nombre de relatividad). Minkowski, que había per­
manecido muy atento a las teorías pre-relativistas de Poincaré y 
Lorentz, se hizo eco enseguida del enfoque preconizado por Ein­
stein. Constituyó toda una sorpresa que este enfoque revoluciona­
rio proviniera de un antiguo alumno suyo en Zúrich, sobre cuyos 
conocimientos matemáticos albergaba alguna duda. 
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LA CONJETURA DE WARING 

Tanto para Minkowski como para Hilbert 
la teoría de números era la creación más 
maravillosa de la mente humana. En 1908, 
aprovechando una tregua en su crisis de 
salud, Hilbert demostró la conjetura pro­
puesta por el matemático británico Ed­
ward Waring (1734-1798): «Todo número 
natural es igual a la suma de como mu­
cho 9 cubos, de no más de 19 potencias 
cuartas, y así sucesivamente». En otras 
palabras, se afirmaba, sin prueba algu­
na, que para cualquier potencia k hay un 
cierto número mínimo de tales potencias 
-llamémoslo g(k), dado que depende de 
la potencia k seleccionada- que permite 
expresar cualquier número n como suma 
de exactamente g(k) potencias k-ésimas: 

n = xf + x1 + ... + x~<kl· 

Edward Waring. 

A título de ejemplo, Joseph-Louis Lagrange había probado en 1770 que todo 
número es la suma de cuatro cuadrados, es decir, que g (2) = 4. Pero hasta 
Hilbert muy pocos avances se habían conseguido. Para algunos valores con­
cretos de k (k= 3, 4, 5, 6, 7 y 8), se había logrado acotar el valor de g (k) ; por 
ejemplo, se había probado que g(4)s53, pero aún quedaba lejos demostrar 
que bastaban solo 19 potencias cuartas para escribir cualquier número, esto 
es, queg(4)=19. 

Un premio bien merecido 
Hilbert, fiel a su estilo, no estimó directamente los valores de g(k) (cuyo cál­
culo exacto se obtendría a lo largo del siglo xx), sino que demostró indirecta­
mente que la función g(k) está bien definida, es decir, que para cada k toma 
un valor finito (nunca toma valores infinitos, de lo que se deduce que siem­
pre existe un mínimo número de potencias necesarias para escribir cualquier 
número). Este hito le reportó el premio János Bolyai en su edición de 1910. 
En calidad de miembro del jurado internacional , Poincaré ensalzó la obra del 
matemático alemán, no solo por lo que se refería a la teoría de números, sino 
también por el amplio espectro de temas tratados: los invariantes, los funda­
mentos axiomáticos de la geometría, el principio de Dirichlet, etc. Asimismo, 
resaltaba el rigor y la simplicidad de los métodos empleados, ponderando el 
influjo de Hilbert como profesor. 
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Para Minkowski, había que considerar el tiempo como una 
cuarta dimensión. Había una ligazón ineludible entre el espacio y 
el tiempo en virtud de la cual existía una única entidad: el espacio­
tiempo. Todo lo que en Einstein era confuso aparecía claro en 
el mundo seudoeuclídeo de cuatro dimensiones que imaginaba 
Minkowski. Este marco geométrico hizo mucho por la difusión 
de la teoría de la relatividad especial. Su impacto fue tremendo, 
aunque tardó en asimilarse (parecía desconcertante que para 
hacer física hubiera que recurrir a una geometría en que los vec­
tores pueden tener longitud negativa). A Einstein le pareció una 
erudición superflua, en una actitud que encontró la oposición de 
Hilbert, quien llegó a afirmar: «cualquier muchacho en las calles 
de Gotinga comprende mejor que Einstein la geometría cuadridi­
mensional». Minkowski presentó su formalismo en varias confe­
rencias pronunciadas a lo largo de 1908, pero no vivió lo suficiente 
para verlas publicadas y disfrutar del éxito que cosecharon: en 
1909 murió como consecuencia de las complicaciones surgidas 
en una operación de apendicitis. Esta pérdida irreparable agravó 
la profunda depresión que Hilbert sufría desde el año anterior 
como consecuencia de un agotamiento nervioso. 

EINSTEIN, HILBERT Y LAS ECUACIONES 
DE LA RELATIVIDAD GENERAL 

A partir de 1911, Einstein dirigió sus esfuerzos a integrar la gravi­
tación en su teoría especial de la relatividad. Buscaba una teoría 
general. Pese a su reticencia inicial, Einstein acabó admitiendo la 
utilidad del formalismo de Minkowski, puesto que le puso sobre 
la pista de que la clave estaba en la geometría. Se trataba de re­
presentar los efectos de la gravitación por medio de la estructura 
geométrica del espacio-tiempo, que obligaría a los objetos a des­
plazarse en la forma prevista. Había que geometrizar la gravedad. 

En los primeros intentos el formalismo matemático em­
pleado por Einstein fue bastante elemental y los resultados no 
fueron nada prometedores. Si la geometría del espacio-tiempo 

A XIOMATIZAR LA FÍSICA 



debía depender de su contenido energético-material, es decir, si 
la gravedad tenía que curvar el espacio-tiempo, se precisaba una 
geometría variable, no prefijada de antemano y muy distinta de la 
usual. Un matemático conocido suyo llamó su atención sobre los 
trabajos clásicos de Gauss, Riemann y, en especial, los publicados 
por Gregorio Ricci (1853-1925) y Tullio Levi-Civita (1873-1941) en 
1901. A la postre, estos últimos contuvieron la mayor parte de 
los elementos de la geometría riemanniana necesarios para la 
relatividad general. Con la ayuda de su amigo Marcel Grossmann 
(1878-1936), Einstein comenzó a estudiar dichos trabajos y des­
cubrió que constituían el aparato matemático que precisaba y 
desconocía. Juntos, físico y matemático publicaron a finales de 
1913 un folleto de veintiocho páginas titulado Esbozo de una teo­
ría general de la relatividad y de una teoría de la gravitación. 
Su meta era modelizar el universo como una variedad geométrica 
tetradimensional, dotada de una métrica o distancia riemanniana 
dada por el tensor: 

4 

ds2 = I, g;/1:r:/1:r:1 . 
i,j=l 

Este tensor métrico, que determinaba las propiedades geomé­
tricas (claramente, no euclídeas), caracterizaba también el campo 
gravitatorio (véase la figura). No obstante, las ecuaciones del 
can1po gravitacional contenidas en el artículo no eran correctas y 
no tardaron en abandonarlas. Comenzó entonces un largo y fati­
goso período para Einstein, que solo vislumbraría la luz a finales 
de noviembre de 1915. Einstein pugnaba con el cálculo tensorial 
para dar con las ecuaciones correctas. Se estaba adentrando en 
un océano que solo los matemá­
ticos, en realidad algunos ma­
temáticos, se atrevían a surcar. 
Uno de ellos era nuestro prota­
gonista: David Hilbert. 

Desde 1909, y hasta prác­
ticamente 1920, Hilbert mostró 
una gran inclinación por la física 
teórica, aplicando los métodos 
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que una sábana 
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deforma cuando 
se deja caer en 
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en su superficie. 
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del cálculo de variaciones a ella. Fruto de todos estos años sería 
el libro publicado en 1924 en colaboración con Richard Courant: 
Métodos de la física matemática, un manual de éxito durante 
decenios. Hilbert dedicó su atención a problemas físicos canden­
tes, como los del átomo y la relatividad. Gracias al legado de 
Paul W olkskehl, un rico industrial alemán aficionado a las mate­
máticas, pudo organizar periódicamente en Gotinga una serie de 
conferencias y estancias de académicos extranjeros de prestigio 
(Hilbert ironizaba a menudo con que la única razón por la que 
se reprimía de probar el último teorema de Fermat era para no 
hacerse con los 100 000 marcos que el legado establecía como 
premio y acabar de golpe con la gallina de los huevos de oro). 
Entre los primeros invitados con cargo a estos fondos estuvie­
ron Poincaré y Lorentz, cuyas charlas trataron sobre cuestiones 
relacionadas con la mecánica relativista. Pero, posiblemente, la 
visita más famosa fue la de Einstein a comienzos del verano de 
1915. Era la primera vez que el físico y el matemático coincidían. 
Einstein impartió una serie de seis conferencias en Gotinga y se 
hospedó con la familia Hilbert. Tras varios días en su compañía, 
Hilbert estaba ansioso por poner su capacidad matemática al ser­
vicio de las nuevas ideas sobre la gravitación. Durante los meses 
siguientes ambos entraron en una fase de trabajo febril, con fre­
cuentes intercambios epistolares. Perseguían un mismo objetivo: 
dar con las ecuaciones de la relatividad general. 

En algún momento, a Einstein comenzó a preocuparle que 
Hilbert estuviese tan implicado. Así, a finales de noviembre de 
1915, Hilbert escribió a Einstein ofreciéndole sus ecuaciones y 
este, que acababa de descubrir las ecuaciones finales de la relativi­
dad general, le respondió inmediatamente, intentando establecer 
su prioridad. Hilbert no pudo hacer otra cosa que mandar una 
nota de felicitación. 

Tradicionalmente se ha afirmado que Hilbert descubrió las 
ecuaciones relativistas del campo gravitatorio antes que Ein­
stein, aunque nunca reclamó la prioridad. Hilbert envió su artí­
culo a publicar el 20 de noviembre de 1915, cinco días antes de 
que lo hiciera Einstein. Sirviéndose de sus amplios conocimien­
tos matemáticos, formuló un principio variacional del que se de-
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LAS ECUACIONES DE CAMPO DE LA RELA TI VI DAD GENERAL 

El espacio-tiempo de Minkowski es un espacio de cuatro dimensiones. Lama­
teria retuerce el espacio-tiempo de Minkowski, de modo que los objetos dejan 
de moverse en líneas rectas para hacerlo en curvas, en geodésicas. bajo la 
acción de la gravedad o, equivalentemente, de cierta aceleración. Cuanto más 
masa o energía inyectemos, más se curvará el espacio-tiempo de Minkowski. 
La relación entre la presencia de masa-energía y la forma del espacio-tiempo 
cuadridimensional viene dada por las ecuaciones de campo de Einstein: 

81tG 
Gµv • - 4-Tµv· 

e 

En el primer miembro de la ecuación aparece G µv• que es el tensor de curvatura 
de Einstein: mide la deformación del espacio y depende, a su vez, del tensor 
métrico, de los 9 ;¡ de la distancia. En el segundo miembro aparece, aparte del 
número 1t, la constante de gravitación universal G y la velocidad de la luz e, el 
tensor de energía-momento T

1
,v, que encarna la materia. Resumiendo: el es­

pacio le dice a la materia cómo debe moverse, y la materia le dice al espac io 
cómo debe curvarse. Anotemos. como curiosidad, que Hilbert fue el encarga­
do de demostrar en 1917 que la geometría euclídea era la verdadera geometría 
del universo si y solo si el tensor de energía-momento era idénticamente nulo, 
esto es, en ausencia de materia. De todos modos, que la geometría euclídea 
haya sido destronada globalmente no quiere decir, ni mucho menos, que no 
sea útil localmente, en nuestro entorno. 

dudan las ecuaciones de la gravitación y del electromagnetismo 
(Einstein, en cambio, se limitó a la interacción gravitacional). 
Postulaba, por un lado, que las leyes de la física están determi­
nadas de manera que cierta integral alcanza su mínimo. Por otro, 
que cierta función que depende de la métrica riemanniana se 
mantiene invariante bajo transformaciones arbitrarias de coor­
denadas. Quería hacer con la gravitación y el electromagnetismo 
lo mismo que había hecho para la geometría: establecer con cla­
ridad sus fundamentos y deducir los principales resultados a 
partir de un número mínimo de axiomas o principios básicos. 
Estructura axiomática, método deductivo y cálculo de variacio­
nes son los tres ingredientes fundamentales de todas las aporta­
ciones de Hilbert a la física. 
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Ahora bien, si el artículo de Hilbert contenía las ecuaciones 
de la relatividad general en su versión más general (geometri­
zando no solo la gravedad, sino también el electromagnetismo), 
y si el artículo fue entregado por Hilbert cinco días antes que el 
de Einstein, ¿no debería recaer el mérito del descubrimiento de la 
teoría de la relatividad general en Hilbert, por mucho que se reco­
nozca que Einstein allanó el camino? La respuesta a esta pregunta 
es negativa, por dos razones. La primera es porque la teoría hilber­
tiana no era idéntica a la einsteiniana. Formalmente eran equiva­
lentes, pero diferían en la interpretación física. Para Einstein, el 
método axiomático era de poca utilidad en la materia; y, además, 
a diferencia de la mayoría de sus colegas, tampoco era partidario 
de que toda teoría física hubiera de expresarse mediante un prin­
cipio variacional. Aunque a día de hoy asociamos el nombre de 
Einstein con el de un físico teórico ensimismado en cuestiones 
muy abstractas, conviene no perder de vista que tanto durante su 
educación como durante su período de mayor creatividad siempre 
se mantuvo muy apegado a la realidad física y experimental. Era 
más inductivo que deductivo. 

«Ha habido algo de malos sentimientos entre nosotros, la causa 
de los cuales no quiero analizar. [ .. . ] Objetivamente es una 
lástima que dos colegas que se las han arreglado para sacar algo 
de este mezquino mundo no se lleven bien el uno con el otro.» 
- ALBERT EINSTEIN, EN UNA CARTA DIRIG IDA A ÜILBERT (20 DE DICIEMBRE DE 1915 ). 

90 

La segunda razón, tanto más importante, es que muy recien­
temente se ha conocido - gracias al historiador de la matemática 
Leo Corry- que el contenido presentado por el catedrático de 
Gotinga en la Academia de Ciencias el 20 de noviembre no coin­
cide con el finalmente publicado. Hilbert introdujo enmiendas 
y correcciones en su artículo el día 6 de diciembre teniendo en 
cuenta el presentado por Einstein el 25 de noviembre. Parece que 
Hilbert alteró sus ecuaciones para acomodarlas a las de Einstein. 
A pesar de la breve disputa entre ambos, el episodio no llevó a una 
animosidad a largo plazo. 
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LA CIENCIA Y LA GRAN GUERRA 

En 1914, gran parte de los europeos cele­
bró el desencadenamiento de la Primera 
Guerra Mundial con una euforia desenfre­
nada. Hilbert, por el contrario, dejó claro 
desde el primer momento que la guerra 
le parecía absurda. En agosto de ese año, 
noventa y tres famosos intelectuales ale­
manes dirigieron un manifiesto al «mun­
do civilizado» en respuesta a la indig­
nación creciente por las acciones del 
ejército alemán. Inmerso en esa atmósfe­
ra claramente nacional ista, Felix Klein 
firmó la declaración que secundaba la 
política del káiser. A Hilbert le pidieron 
que firmara, pero se negó insistiendo en 
que simplemente no sabía si las acusacio­
nes vertidas contra Alemania eran falsas 
o no. Una conducta que lo equiparó a 
Einstein, que, fiel a su pacifismo militante, 
tampoco se avino a firmar el manifiesto. 
Aún más, en mitad de la contienda, en 1917, 

Jean Gaston Darboux. 

Hilbert publicó un obituario laudatorio de Jean Gastan Darboux (1842-1917), 
un distinguido matemático francés recientemente fallecido. Cuando los estu­
diantes rodearon su casa pidiendo que rectificara esta conmemoración de un 
matemático enemigo, Hilbert respondió exigiendo una disculpa formal (y la 
obtuvo). Por todo esto, el resto de colegas europeos lo vio como un espíritu 
libre, desdeñoso de tradiciones y convenciones. De modo que al acabar la 
guerra, con la derrota sin paliativos de Alemania, mantuvo intacta su reputa­
ción. Y en el primer congreso internacional de matemáticos celebrado duran­
te el período de entreguerras (Bolonia, 1928, el VIII Congreso Internacional de 
Matemáticos), no dudó en insistir en el carácter universal de las matemáticas, 
poniendo de relieve que todas las fronteras eran contrarias a la naturaleza. 

LAS ECUACIONES INTEGRALES 

Si la etapa investigadora de Hilbert en el cálculo de variaciones le 
puso en condiciones de participar en la elaboración de la teoría 
de la relatividad general, la etapa que dedicó entre 1904 y 1910 a 
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las ecuaciones integrales le permitió lo propio con la mecánica 
cuántica. Se trata, desde luego, de su contribución más impor­
tante al análisis matemático e, indirectamente, a la física: una 
serie de artículos que posteriormente recopiló en una monografía, 
Fundamentos de una teoría general de las ecuaciones integrales 
lineales (1912), que contenía no solo una teoría matemática rigu­
rosa, sino también una gran variedad de aplicaciones físicas que 
van desde la teoría cinética de los gases a la teoría de la radiación. 

Pero comencemos por el principio. Una ecuación integral se 
caracteriza porque la función desconocida aparece también den­
tro de una integral. Por ejemplo: 

b 

x(t) + f K(t,s)x(s)ds = f(t), 
a 

donde la función K( t, s) recibe el nombre de núcleo o kernel ( de 
la raíz alemana kern, «núcleo, hueso») de la ecuación integral. 
Dado el núcleo K(t,s) y la funciónf(t) (que se suponen funciones 
continuas), se trata de hallar la función desconocida x (t). 

A lo largo del siglo xrx se habían planteado algunas ecua­
ciones integrales en relación con cuestiones físicas, como el 
problema de la braquistócrona o el problema de Dirichlet. Pero 
fue en 1888 cuando Paul du Bois-Reymond (1831-1889) acuñó 
el nombre de ecuaciones integrales para designarlas y propuso 
que se desarrollara una teoría general de estas ecuaciones como 
método alternativo para resolver problemas de ecuaciones dife­
renciales. 

En 1900, el matemático sueco lvar Fredholm (1866-1927) 
recogió una observación aparentemente inocua del matemático 
italiano Vito Volterra (1860-1940) y la empleó con gran maestría 
para ofrecer una nueva forma de resolver el problema de Dirichlet 
utilizando ecuaciones integrales. En su estudio de la ecuación del 
potencial o ecuación de Laplace con condiciones de contorno, 
Fredholm transformó el problema en una ecuación integral como 
la de arriba, y explotó al máximo la semejanza entre esta ecuación 
integral y un sistema de infinitas ecuaciones lineales cuando se 
sustituye la integral por sus sumas de Riemann. Como es sabido, 
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una integral no es más que un pro-
cedimiento para calcular el área f(x) 

encerrada por una curva. Pues 
bien, básicamente, una suma de 
Riemann no es más que una forma 
equivalente de calcular el valor 
de la integral: se traza un número 
finito de rectángulos dentro del 
área encerrada por la curva y se 
aproxima esta área por la sun1a de 
las áreas de cada uno de los rec-
tángulos (véase la figura). Cuando 

1 ¡ 

1 

a 

l : 
1 

el número de rectángulos se hace tender a infinito, las sumas de 
Riemann convergen al valor exacto de la integral. Mediante esta 
técnica, la ecuación integral se desdoblaba en un sistema de in­
finitas ecuaciones lineales. Resolver la ecuación integral de par­
tida era, por tanto, equivalente a resolver este sistema de infinitas 
ecuaciones lineales. 

La noticia de los sensacionales resultados de Fredholm se ex­
tendió como la pólvora. En el invierno de 1900-1901, un profesor 
visitante expuso la analogía entre las ecuaciones integrale~ y los 
sistemas de ecuaciones lineales dentro del seminario de Hilbert 
en Gotinga, lo que hizo que se interesara vivamente por el tema y 
disparó su productividad en esta nueva dirección (llevado por el 
entusiasmo, auguró que la nueva herranlienta permitiría incluso 
probar finalmente la hipótesis de Riemann). Sus seis trabajos al 
respecto, publicados entre 1904 y 1910, contenían los rudimentos 
de una nueva rama del análisis ( el análisis funcional) y conduje­
ron al concepto de espacio de Hilbert, base de toda la mecánica 
cuántica. 

iY SE HIZO EL ANÁLISIS FUNCIONAL! 

El análisis funcional estudia las funciones colectivamente, es 
decir, los espacios de funciones. Probablemente, los antecedentes 
más claros se encuentran en las ecuaciones integrales, que sugi-
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Una suma de 
Riemann es la 
suma de las áreas 
de los rectángulos 
de la figura, lo 
que sirve para 
aproximar el área 
encerrada por la 
curva, es decir, 
la integral de la 
función f(x) entre 
a y b. 
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rieron algebrizar el análisis (un enfoque típico del análisis funcio­
nal), pero también en el cálculo de variaciones, donde aparecen 
por vez primera las ideas de conjunto de funciones admisibles 
para resolver un problema y de distancia entre funciones ( a través 
del funcional). El aparato matemático que cristalizó con el análisis 
funcional se convirtió a finales de los años veinte en el pilar de 
toda una disciplina física: la mecánica cuántica. Este hecho cru­
cial determinó que se beneficiara continuamente de renovados y 
vigorosos planteamientos ligados a la extensión del formalismo 
cuántico. 

El análisis funcional generaliza las nociones geométricas del 
espacio n-dimensional ( distancia, teorema de Pitágoras, etc.) a 
los espacios funcionales de dimensión infinita. Entre estos es­
pacios infinito-dimensionales destaca con nombre propio el 
llamado espacio de Hilbert, construido en el ámbito de las ecua­
ciones integrales por el propio Hilbert, pero axiomatizado en 
conexión con la mecánica cuántica por su aventajado discípulo 
John von Neumann, que le dio este nombre en honor a su maes­
tro hacia 1930. 

El espacio de Hilbert aparece en germen en un artículo de 
1906 ( el cuarto de la serie de seis sobre ecuaciones integrales y el · 
primer artículo genuino sobre análisis funcional). Podría decirse, 
simplificando, que las funciones solución de las ecuaciones inte­
grales formaban el espacio de Hilbert. En efecto, mientras estu­
diaba una ecuación integral, Hilbert tuvo la idea de considerar un 
sistema especial de funciones que cumpliera ciertas propiedades 
(por ejemplo, el sistema trigonométrico, para que fuera una base 
del espacio funcional) y reducir la resolución de la ecuación a la 
determinación de los coeficientes de la función incógnita respecto 
a ese sistema (para entendernos, las coordenadas de la función in­
cógnita con respecto a esa base del espacio). Tomando el sistema 
trigonométrico, se trataba de hallar la función desconocida por 
medio de su representación mediante los coeficientes de · Fourier 
( una sucesión infinita de números que permiten expresar una fun­
ción de cuadrado integrable en forma de una suma de funciones 
trigonométricas multiplicadas por esos números). Los coeficien­
tes, según observó, satisfacían la condición de que la suma de sus 
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cuadrados era finita. Sustituyendo estas identificaciones ( o desa­
rrollos) en la ecuación integral, el problema se transformó en el de 
resolver un sistema de infinitas ecuaciones lineales con infinitas 
incógnitas (los coeficientes de la función, que eran de cuadrado 
sumable ). Siguiendo con el ejemplo: si en la ecuación 

b 

x(t)+ f K(t,s)x (s)ds = f(t) 
a 

se representan las funciones x(t),f(t) y K(t,s) por sus coeficien­
tes de Fourier, entonces esta ecuación se escribe en términos del 
sistema infinito de ecuaciones: 

-
xP + I,kP<Ixª = JP p = 1, 2, 3 ... 

q=l 

bajo la condición de que la suma de los diferentes coeficientes al 
cuadrado es finita, esto es, por ejemplo, que 

., 
~x2 oo L, p < . 
p•l 

De esta manera, al pasar del reino de lo continuo al reino de 
lo discreto, la integral se transforma en una suma (la operación 
análoga). 

El espacio de todas las sucesiones de números reales de 
cuadrado sumable (hoy designado R

2
), donde había que buscar 

la solución, era el espacio de Hilbert. En este espacio de sucesio­
nes numéricas Hilbert definió, en analogía con el espacio euclí­
deo usual, una distancia, y extendió las nociones clásicas de 
límite, continuidad, etc. Tanto Hilbert como sus mejores discí­
pulos ( en especial, Erhard Schmidt, dentro de su tesis doctoral) 
explotaron al máximo esta semejanza geométrica del espacio 
funcional R2 con el espacio geométrico usual lR". Toda la teoría 
de espacios de Hilbert hizo la entrada en escena en su versión 
canónica sobre R2, el primer espacio con un número infinito de 
dimensiones conocido. 

Estos años fueron decisivos para que cuajase la posibilidad 
de un análisis general de los espacios de funciones. En 1906 apa­
reció la tesis doctoral de Maurice Fréchet (1878-1973), que tuvo 
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una influencia tremenda, ya que introdujo de modo abstracto la 
noción de distancia en un cortjunto de funciones, así como el resto 
de nociones geométricas asociadas. 

Poco después, en 1907, dos jóvenes matemáticos, Ernst Fis­
cher (1875-1954), antiguo alumno de Minkowski, y Frigyes Riesz 
(1880-1956), a la sazón profesor de enseñanza media en una pe­
queña ciudad húngara, descubrieron independientemente una co­
nexión inesperada entre el floreciente análisis funcional y otro de 
los grandes descubrimientos matemáticos de la época: la teoría 
de la integración de Henri Lebesgue (1875-1941 ), que venía a sutu­
rar las fisuras mostradas por las teorías de la integración clásicas 
de Cauchy y Riemann. El teorema de Fischer-Riesz establece que 
existe una correspondencia, un isomorfismo, entre el espacio de 
Hilbert f 2 y el espacio de las funciones de cuadrado integrable 
(que hoy llamamos L

2
). De la noche a la mañana había nacido un 

segundo modelo del espacio de Hilbert. Estos trabajos abrieron 
la puerta a la introducción de nuevos espacios funcionales como 
generalización de los ya conocidos: los espacios f P y L P con p > 1 
(por ejemplo, si p = 3, de sucesiones/funciones de cubo sumable/ 
integrable, etc.). 

El bautismo oficial del análisis funcional como tal se pro­
dujo en 1922, con la publicación del libro Lecciones de análisis 
funcional, de Paul Lévy (1886-1971). Ese mismo año apareció 
publicada la tesis doctoral del polaco Stefan Banach (1892-
1945), que buscaba demostrar una retahíla de teoremas válidos 
para diversos espacios funcionales sin fijarse en la naturaleza 
concreta de estos espacios ( en las funciones particulares que 
los componían). 

Curiosamente, muchas de las contribuciones de Banach al 
análisis funcional se fraguaron en la ruidosa atmósfera de un 
café, el Café Escocés de Leópolis (bajo jurisdicción polaca en la 
época), donde al tiempo que demostraba su fama de buen bebe­
dor, garabateaba notas sobre el mármol de la mesa o en una ser­
villeta. Fruto de estas notas escritas por Banach y otros insignes 
matemáticos que lo acompañaban fue lo que después se ha dado 
en llamar el Cuaderno escocés, uno de los documentos matemáti­
cos más importantes del siglo xx. 
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CUANTOS, MATRICES Y ONDAS 

Tras mil y un intentos fallidos de explicar la radiación del cuerpo 
negro (esto es, dentro de una cavidad cerrada), el físico alemán 
Max Planck (1858-1947) lo consiguió al postular que la emisión y 
la absorción de energía se realizan siempre en paquetes, de forma 
discontinua o «cuantizada». La energía, como el dinero, no toma 
valores dentro de un rango continuo, sino solo en unidades dis­
cretas. La «discretización» dictada por Plank fue un acto desespe­
rado en toda regla. El origen heroico de la teoría de los quanta se 
remonta, por tanto, al 14 de diciembre de 1900, cuando presentó 
públicamente su ley de radiación del cuerpo negro. 

Pero el dramatis personae de la teoría cuántica antigua in­
cluye, amén de Planck, los nombres de Albert Einstein y Niels 
Bohr (1885-1962). En el annus mirabilis de 1905, Einstein aplicó 
la hipótesis cuántica al estudio de la luz: las ondas lumínicas 
están compuestas de pequeñísimas partículas ( que solo poste­
riormente recibirían el nombre de fotones), como quedaría tes­
tado en el efecto fotoeléctrico. Hasta bien entrado el siglo x1x, 
la visión corpuscular de la materia, heredada de Newton, había 
dominado sobre la visión ondulatoria. Hacia 1900 existía una con­
cepción híbrida: los sólidos y los fluidos (líquidos y gases) eran 
vistos como compuestos de partículas, pero la radiación electro­
magnética se concebía como ondas. Y ahora resultaba que los 
físicos tenían que rechazar la concepción clásica de la materia 
(onda o partícula) en pos de una nueva concepción: onda y par­
tícula (como en el caso de la luz). 

Por su parte, en 1913, Bohr, un becario -gracias a una cono­
cida marca de cerveza- en el laboratorio de Ernest Rutherford 
(1871-1937), cuantizó el átomo a fin de explicar los espectros 
atómicos. Las rayas discontinuas de los espectros eran conse­
cuencia de la cuantización de la energía de los electrones dentro 
del átomo. Desgraciadamente, el modelo atómico de Bohr fra­
casó al aplicarse a átomos multielectrónicos, y los físicos fue­
ron convenciéndose de que era necesario un cambio radical en 
los fundamentos de la física: una nueva clase de mecánica -que 
Max Born (1882-1970) denominó mecánica cuántica- que pre-
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sentase una axiomática coherente independiente de las teorías 
clásicas y que, por añadidura, superase ese confuso batiburrillo 
de principios, leyes y recetas de cálculo en que consistía la teoría 
cuántica antigua. 

«El optimismo lo aprendí de Sommerfeld, la física 
de Bohr y las matemáticas en Gotinga.» 

- WERNER ÜEISENBERG . 

En 1925, un joven físico llamado Werner Heisenberg (1901-
1976), privatdozent en Gotinga, sentó las bases de la mecánica 
cuántica mientras se recuperaba de un severo ataque de alergia 
retirado en una isla. Heisenberg insistió en que el conjunto de 
todas las frecuencias y amplitudes de la radiación emitida por un 
átomo puede considerarse una descripción completa del sistema 
del átomo, aunque no sea posible interpretarlo en el sentido de 
una trayectoria electrónica que provoca la radiación, puesto que 
las órbitas de los electrones dentro del átomo son inobservables. 
Además, comprobó que estos conjuntos de números ( que, mate­
máticamente, correspondían a los coeficientes de Fourier de la 
expresión clásica del movimiento del electrón) no conmutaban. 
Con otros términos: a diferencia de las clásicas, las cantidades 
cuánticas cumplen, en general, que QP~PQ. Meses después, dos 
colegas de Gotinga, el físico Max Born y el matemático Pascual 
Jordan (1902-1980), reconocieron que estos conjuntos de núme­
ros Q y P se comportaban como matrices matemáticas, pese a 
que el propio Heisenberg no sabía siquiera lo que era una matriz 
(según confesó). La mecánica cuántica matricial creció en el jar­
dín al cuidado de Hilbert. No obstante, Gotinga estaba dividida en 
dos grupos. Hilbert y los suyos hablaban del gran éxito alcanzado 
mediante la introducción del cálculo de matrices en física, mien­
tras que otros abominaban del tedioso espíritu matematicoide que 
inundaba la física atómica. 

En la Navidad de 1925-1926, Erwin Schrodinger (1887-1961) 
alumbró la mecánica cuántica ondulatoria, mientras disfrutaba 
de un «período tardío erótico» con su última amante ( en pala-
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bras de Hermann Weyl, su colega en Zúrich). A diferencia de 
los imberbes físicos y matemáticos de Gotinga, pero al igual que 
gran parte de la vieja escuela, Schrodinger no se sentía especial­
mente cómodo con la «mecánica cuántica de los Tres Hombres» 
(Heisenberg-Born-Jordan). Buscando una teoría más intuitiva, 

UN PROBLEMA, DOS SOLUCIONES 

Atrevámonos a bucear un poco más profundo para averiguar cómo resolvía 
cada mecánica cuántica el problema de hallar los diferentes niveles energéti­
cos del electrón del átomo de hidrógeno. En la mecánica matricial había que 
«diagonalizar» la matriz hamiltoniana H, que mide la energía total del sistema, 
esto es, determinar una matriz 5 de manera que la matriz W= s-1HS sea una 
matriz diagonal; puesto que así los elementos diagonales En son los valores 
energéticos del electrón: 

Por su parte, en la mecánica ondulatoria, se trataba de resolver la ecuación de 
ondas de Schródinger, esto es, la siguiente ecuación en derivadas parciales: 

-tn¡,+ V\j! = Etj,, 

donde \jJ es la función de onda (independiente del tiempo), V el potencial y 
E la energía. Si definimos el operador hamiltoniano como H=-t,.+V (es decir, 
la energía cinética más la energía potencial), la ecuación anterior puede es­
cribirse, equivalentemente, Hlj!=Elj!, que determina lo que se conoce como 
problema de autovalores o problema de Sturm-Liouville -porque preocupó 
a los matemáticos franceses Jacques Charles Francois Sturm (1803-1855) y 
Joseph Liouville (1809-1882)-. Se llama así porque esta última ecuación solo 
admite solución para ciertos valores de \jJ y de E, que reciben el nombre de 
autofunciones y autovalores, respectivamente. 

Autovalores 
En la física clásica, los autovalores determinaban, por ejemplo, las frecuencias 
características de vibración de una membrana elástica, de modo que cualquier 
vibración pudiera expresarse como superposición de estos modos básicos de 
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que solo empleara herramientas matemáticas clásicas, descubrió 
su celebrada ecuación de ondas. La chispa surgió al estudiar el 
movimiento del electrón como si se tratara de un movimiento on­
dulatorio, cuya función de onda W sería la encargada de describir 
el estado del sistema. Su trabajo tuvo una acogida excepcional, 

oscilación. En física cuántica, los autovalores En son, precisamente, los posibles 
niveles de energía del electrón del átomo de hidrógeno. Las diferencias entre 
estos autovalores dan las frecuencias de los cuantos de luz (fotones) emitidos, 
describiendo así la estructura del espectro de radiación del átomo. Por su 
parte, los diferentes estados del electrón vienen dados por las autofunciones 
'lj!n asociadas a los autovalores. En matemáticas, al conjunto de autovalores En 

de una matriz o de un operador se le denomina espectro. A resultas de una 
maravillosa coincidencia, el espectro matemático (un nombre que Hilbert eligió 
por casualidad) acabó siendo central para explicar los espectros físicos de los 
átomos. Con sus propias palabras: «Desarrollé mi teoría de infinitas variables 
e incluso la llamé análisis espectral sin ningún presentimiento de que más 
tarde encontraría una aplicación para el espectro real de la física». Fue una 
casualidad especialmente afortunada. 

Jacques Charles Francois Sturm (izquierda) y Joseph Liouville. 
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porque resolver una ecuación diferencial, una cosa que los físicos 
habían hecho durante siglos, parecía mucho más sencillo que en­
contrar la solución de ciertas ecuaciones matriciales. 

Así pues, el panorama que se les presentaba a los físicos a 
comienzos de la primavera de 1926 difícilmente podía resultar 
más paradójico: disponían de dos mecánicas que explicaban y 
predecían los mismos fenómenos, pese a que cada una de ellas 
utilizaba un enfoque muy diferente y proyectaba una concepción 
muy distinta del microcosmos. Si Schrodinger calificaba la mecá­
nica de matrices de «contraintuitiva», Heisenberg no se quedaba 
atrás y calificaba la mecánica de ondas de «repulsiva». Varios físi­
cos -el propio Schrodinger, Carl Eckart (1902-1973) y Wolfgang 
Pauli (1900-1958)- se lanzaron a esclarecer la relación formal 
entre ambas mecánicas. Su conclusión fue que ambos formalis­
mos eran matemáticamente equivalentes, aunque su demostra­
ción de que se podían construir las matrices Q y P a partir de las 
funciones de onda '1', así como recíprocan1ente, no fue del todo 
correcta. 

De hecho, fue mérito de Hilbert reconocer la profunda simili­
tud entre ambos formalismos. Hilbert se rió mucho de Born y Hei­
senberg porque, cuando descubrieron la mecánica matricial, se 
encontraron con el mismo tipo de dificultades que, por supuesto, 
todos los matemáticos encuentran al manipular matrices infinitas. 
Cuando fueron a pedirle ayuda, les dijo -recordando sus trabajos 
sobre ecuaciones integrales de veinte años antes- que las úni­
cas veces que había tenido que ver con matrices fue cuando estas 
aparecían como subproducto del estudio de autovalores de una 
ecuación diferencial con condiciones de contorno ( en otros térmi­
nos, cuando una ecuación integral se transformaba en un sistema 
de infinitas ecuaciones lineales). Les sugirió que si encontraban 
la ecuación diferencial que originaba esas matrices, probable­
mente obtendrían más información. Heisenberg y Born pensaron 
que era un comentario para salir del paso, y que Hilbert no sabía 
realmente de lo que estaba hablando. Así que más tarde Hilbert 
se divirtió mucho indicándoles que podían haber descubierto la 
mecánica ondulatoria de Schrodinger seis meses antes que este, 
si le hubieran hecho caso, claro. Esta fue la senda que, de facto , 
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Schrodinger, Eckart y Pauli siguieron para mostrar la identidad de 
las dos teorías desde un punto de vista matemático. 

«El único objetivo de la física teórica es calcular resultados que 
se puedan comparar con la experiencia [ ... ]. Es totalmente 

innecesario que deba darse una descripción satisfactoria del 
curso completo de los fenómenos.» 

En el otoño de 1926, Pascual jordan y el físico británico Paul 
Adrien Maurice Dirac (1902-1984) comenzaron a elaborar por se­
parado la teoría de las transformaciones, a fin de unificar de una 
vez por todas ambas mecánicas cuánticas. Como las cantidades 
cuánticas introducidas por Heisenberg definían un nuevo tipo de 
álgebra para el que la multiplicación no era conmutativa, Dirac de­
cidió llamar q-números a las cantidades que así se comportaban 
( aunque la «q» no era por quantum, en inglés, sino por queer, que 
significa «extraño», «poco usual»). Pues bien, el álgebra abstracta 
de los q-números admitía diversas representaciones o imágenes 
( a la manera que un mismo sistema de axiomas puede admitir 
varios modelos), siendo dos de ellas las mecánicas matricial y 
ondulatoria. El problema es que para asegurar que todas las trans­
formaciones entre imágenes de la mecánica cuántica funcionaban 
correctamente, Dirac tuvo que recurrir al empleo de un ente ma­
temático ficticio: la función delta. Una función que, en verdad, no 
era una función. Para los f'ISicos se trataba de una idealización útil, 
que los matemáticos se encargarían de rigorizar. Para los mate­
máticos, en cambio, era una noción sospechosa, sin realidad ma­
temática, cuyo uso solo se justificaba por las aplicaciones físicas. 
A la función delta de Dirac le aguardaba un triste sino, pues hubo 
de esperar hasta 1950 para encontrar su acomodo dentro de la 
teoría de distribuciones creada por Laurent Schwartz (1915-2002). 
Mientras tanto, su falta de rigor dejó helados a los matemáticos 
de Gotinga. 

Y en estas, un joven llamado John von Neumann llegó a Go­
tinga como ayudante de Hilbert. Tras haberse doctorado con una 

- PAUL D1RAC. 

AXIOMATIZAR LA FÍSICA 103 



104 

brillante tesis sobre teoría de conjuntos, había tomado lecciones 
de análisis funcional con Erhard Schmidt en Berlín. Por entonces, 
Hilbert estaba tratando de encontrar un modelo matemático razo­
nable para la mecánica cuántica; pero su tratamiento axiomático 
iba retrasado porque sufría una anemia perniciosa ( una enferme­
dad mortal en esos años, de la que solo se recuperó .gracias a un 
insólito tratamiento experin1ental a base de extracto de hígado). 
A caballo entre 1926 y 1927, solicitó a su asistente en física, Lothar 
W. Nordheim, que desmenuzara para él el contenido de las últi-

LA FUNCIÓN DEL TA DE DIRAC 

En la mecánica matricial. se trataba de hallar una matriz 5 de manera que la 
matriz W=s-1HS fuese diagonal. Si se despeja HS en esta ecuación, queda 
HS=SW. Y, si empleando la regla de multiplicación de matrices se escribe lo 
que significa esta última ecuación para los elementos de cada matriz, se ob­
tiene un sistema de infinitas ecuaciones lineales (que recuerda al que aparecía 
al transformar una ecuación integral): 

® 

2 h pqSqn = E nspn· [l] 
q-1 

Por su parte, en la mecánica ondulatoria se trataba de resolver la ecuación de 
ondas de Schródinger H\j!=E\j!, determinando los autovalores solución. Si en 
la ecuación se introduce la autofunción ,vn asociada al autovalor En, se llega a: 

[2] 

Tanto Hilbert como Dirac, una vez que reformularon ambos problemas de esta 
forma, procedieron a compararlos y observaron que [l] y [2] presentan una 
estructura semejante: Hamiltoniano x XYZ= Energía x XYZ. En consecuencia, 
la pregunta que se hicieron fue: ¿qué condiciones hay que asumir para po­
der igualar término a término la ecuación [l] de la mecánica matricial con la 
ecuación [2] de la mecánica ondulatoria? Como «integrar» es en el reino de lo 
continuo lo análogo a «sumar» en el reino de lo discreto (el símbolo f provie­
ne, de hecho, de una sucesiva estilización de la letra s larga), pensaron que 
lo que debería sustituir -en el paso de lo discreto a lo continuo- al primer 
miembro de [l] debía ser:f h(x,y) \j!n(y)dy. Por consiguiente, la unificación entre 
ambas mecánicas cuánticas se lograría si esta última expresión coincidiese 
con el primer miembro de [2]. resultando: 
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mas investigaciones, con el propósito de impartir un curso sobre 
mecánica cuántica empleando su querido método axiomático. La 
llegada de Von Neun1ann dio alas al proyecto. Capitaneados por 
Hilbert, los tres se embarcaron en la búsqueda de un marco mate­
mático adecuado, completamente riguroso. Así, alo largo de 1927, 
escribieron juntos un artículo titulado Sobre los fundamentos de 
la mecánica cuántica. Hilbert quería explotar la formulación in­
tegral de los problemas físicos, que le parecía más versátil que la 
variante diferencial expresada mediante la ecuación de ondas o 

H'4Jn(x) = f h(x,y)1vn(y)dy, 1,2 

1,0 --.-

·-·- - --t. 
- --- .. _! __ 

0,8 --+- r------- - ·--1-- 1--

0 ,6 -

o,4 -r 

0,2 

es decir, si todo operador hamil­
toniano pudiera escribirse como 
un operador integral. Pero, iesto 
no era siquiera posible para un 
operador sencillo como la iden­
tidad (definida por H1j)='4J para 
toda función de onda)! Dirac no 
se amilanó ante las dificultades 

- r 
0,0 ------- -------"-

1 

y, para salvarlas, recurrió a la -o,2_2 _1 0 2 
función o. Esta función singular x 
está definida por o (z)=O para 
todo z,. O [3] y, paradójicamen- Diagrama esquemático de la delta de Dirac: una 

«función» que vale O en todos sus puntos menos 
te, fo(z)dz = 1 [ 4 J. ¿cómo imagi- en el origen, donde vale infinito, para así integrar 1. 
nar una función que vale O en 
todos los puntos menos uno y, 
sorprendentemente, integra l? Ahora bien, aceptando esta ficción y tomando 
h(x,y) = o (x-y) como núcleo de la ecuación integral de arriba, puede expre­
sarse la identidad, por ejemplo, como operador integral sin más que aplicar 
las propiedades mágicas de o: 

[3] [4] 

H'lj)(X) = f h(X,Y)1V(Y)dy = f ó(x - y)lj,(y)dy = 'lj)(X) f ó(x - y)dy = 1p(x)· l=1j!(X). 

Y, mediante cálculos similares, puede demostrarse que cua lquier operador 
puede representarse como operador integral, de modo que ambas mecánicas 
cuánticas resultan a fortiori unificadas. 
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la versión discreta en términos de matrices. Al igual que hiciera el 
físico húngaro Comel Lanczos (1893-1974) en 1926 (un mes antes, 
curiosamente, de que Schrodinger publicara su famosa ecuación), 
Hilbert, Nordheim y Von Neumann desarrollaron la mecánica 
cuántica utilizando ecuaciones integrales. Sin embargo, el resul­
tado de este primer acercamiento no fue muy satisfactorio, ya 
que no pudieron esquivar el callejón sin salida de la delta de Dirac 
para pasar de una formulación a otra. 

Sería Von N eumann en solitario quien concluyese la tarea de 
fundar axiomáticamente la mecánica cuántica. Lo haría entre 1928 
y 1932, publicando una serie de cinco artículos y un monumental 
tratado, Fundamentos matemáticos de la mecánica cuántica. 
A fin de dar un soporte matemático firme a la teoría cuántica, 
rechazó tanto el uso de las funciones delta de Dirac como la pre­
dilección por las ecuaciones integrales de Hilbert. Su arma fue 
otra: el análisis funcional. Creó un marco axiomático abstracto, 
el espacio de Hilbert (llamado así en honor de su maestro), que 
englobaba los casos particulares matricial y ondulatorio. 

Los espacios matemáticos sobre los que se construyeron la 
mecánica matricial y la mecánica ondulatoria eran muy diferen­
tes: uno era discreto y algebraico; el otro, continuo y analítico. En 
consecuencia, como se percató Von N eumann, no era de extrañar 
que la unificación entre ambos no se pudiera lograr sin cierta vio­
lencia sobre el fom1alismo y la matemática. Sin embargo, observó 
que los espacios de funciones definidos sobre ellos eran, esencial­
mente, idénticos. En efecto, los estados del átomo se representa­
ban en la mecánica matricial mediante sucesiones de números de 
cuadrado sumable, de modo que el espacio funcional que estaba 
detrás era C

2
, esto es, el espacio de Hilbert por antonomasia. Más 

aún, las funciones de onda de la mecánica ondulatoria eran siem­
pre de cuadrado integrable o, lo que es lo mismo, pertenecían al 
espacio funcional L2. Y para estos dos espacios era válido el teo­
rema de Fischer-Riesz, bien conocido por los matemáticos desde 
1907, que establecía que ambos espacios eran isomorfos. En resu­
men, Von Neumann resolvió el rompecabezas de la equivalencia 
matemática entre mecánicas cuánticas al mostrar que la mecánica 
de Heisenberg -centrada en matrices y sumas- y la mecánica de 
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LOS ESPACIOS «EQUIPADOS» DE HILBERT 

La mecánica cuántica de Von Neumann, impecable para los matemáticos, 
tropezó con el hecho de que los físicos preferían la mecánica cuántica de Di­
rac, por cuanto resultaba más útil pese a su carencia de rigor. Con el paso del 
tiempo, gracias a los trabajos de Laurent Schwartz y Alexander Grothendieck 
en análisis funcional allá por los años cincuenta y sesenta, las funciones delta 
adquirieron carta de naturaleza matemática al ser formalizadas como fun­
ciones general izadas o distribuciones. Así, el formalismo de Dirac dejó de ser 
sospechoso matemáticamente, al englobarse dentro de los espacios de Hilbe_rt 
«equipados» (o tripletes de Gelfand). La idea es ligar lo mejor del formalismo 
de Von Neumann (el riguroso espacio de Hilbert) y lo mejor del formalismo de 
Dirac (la útil función delta) dentro de una estructura matemática consistente. 
Con este fin, se procura ir más allá del espacio de Hilbert de cara a incorporar 
objetos tan singulares como la función delta, pero sin perder al mismo tiempo 
la buena geometría del espacio de Hilbert. La solución consiste en conside­
rar una estructura alrededor del espacio siguiendo el espíritu de la teoría de 
distribuciones: se toma el espacio de Hilbert usual y se equipa con otros dos 
espacios, uno más pequeño y otro más grande, que contienen respectiva­
mente todas las funciones buenas (funciones test) y todas las funciones malas 
(funciones singulares, como la o de Dirac). Al conjunto de estos tres espacios 
es a lo que se denomina espacio «equipado» de Hilbert o triplete de Gelfand. 

Schrodinger -centrada en funciones e integrales- eran mate­
máticamente equivalentes al no ser más que cálculos sobre dos 
espacios de Hilbert isomorfos, idénticos. 

Pero Von Neumann hizo mucho más. Hasta entonces se en­
tendía por espacio de Hilbert uno de los dos espacios concretos .e2 

o L
2

• Él fue pionero en concebir un espacio de Hilbert abstracto, 
en el sentido actual. Abandonando cualquier representación con­
creta, trabajó intrínsecamente con las nociones obtenidas direc­
tamente de los axiomas, logrando extender la teoría espectral de 
Hilbert de acuerdo a las necesidades cuánticas. 

Hilbert había asentado a principios de siglo las bases del es­
pacio infinito-dimensional. Pero fue un favor de la fortuna que 
esta teoría matemática tan abstracta, gestada con veinte años de 
antelación, le viniera como anillo al dedo a la mecánica cuántica. 
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Desde entonces, la estructura matemática de la física cuántica es 
solidaria del espacio de Hilbert. La descripción del estado de un 
sistema cuántico se hace por medio de un vector de ese espacio. 
Y magnitudes físicas tales como la energía se estudian mediante 
operadores defuúdos sobre el espacio de Hilbert. A resultas de la 
aparición de la mecánica cuántica, la teoría de los espacios de Hil­
bert quedó fundada axiomáticamente, con el propio Hilbert como 
testigo de excepción. 
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CAPÍTULO 4 

La crisis de fundamentos 

Con la ef eivescencia de la lógica 
matemática y de la teoría de conjuntos se consiguió 

tratar un concepto que hasta entonces se había mostrado 
intratable: el infinito. Pero con ello se profundizó la fractura 
que recorría la base de las matemáticas. La proliferación de 
paradojas mostró que la matemática estaba edificada sobre 
arena. Los matemáticos se lanzaron entonces a una carrera 

para refundar su ciencia. Algunos matemáticos tomaron 
partido por el logicismo de Frege y Russell; el resto 

se escindió en dos bandos irreconciliables: los 
intuicionistas, abanderados por Brouwer, 

yJos formalistas, dirigidos por Hilbert. 





Hacia 1920, Hilbert viró sus intereses hacia el inquietante territo­
rio de los fundamentos de la matemática. Un campo que cultivó 
en exclusiva durante los últimos años de su vida como investiga­
dor. En cierta manera reanudó con fuerzas redobladas su examen 
de las bases de la matemática, aunque ahora con unos objetivos 
mucho más ambiciosos que veinte años antes. No se enfrascó en 
la tarea en solitario. Lo hizo acompañado por dos fieles escude­
ros: Paul Bernays (1888-1977), uno de sus asistentes en Gotinga, y 
Wilhelm Ackermann (1896-1962), un profesor de secundaria que 
había sido alumno suyo (y a quien rehusó dar un puesto universi­
tario cuando se enteró de que iba a casarse y tener familia, lo que 
a su juicio le distraería de la investigación). Como parte de esta 
actividad, el matemático alemán y sus más íntimos colaboradores 
se vieron envueltos durante el período de entreguerras en una 
serie de vívidas discusiones con importantes matemáticos euro­
peos que mantenían visiones opuestas a la suya. 

Es costumbre anclar el inicio histórico de las reflexiones en 
torno al quehacer matemático allá por el último cuarto del siglo 
xrx. Sin embargo, la curiosidad por la naturaleza del conocimiento 
matemático no es nueva. Es bimilenaria. Así, la primera crisis 
de fundamentos se produjo en la antigua Grecia, cuando la arit­
mética pitagórica se resquebrajó. Los pitagóricos pensaban que 
todos los números eran racionales, como casaba con su cosmovi-
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sión, pero pronto descubrieron que también había números irra­
cionales ( como .J2 ). El descubrimiento de los inconmensurables 
hizo añicos su matemática. Los números racionales no agotaban 
la realidad. El continuo real ( una recta, por ejemplo) no está for­
mado por una colección discreta de átomos individuales. Los tra­
bajos en fundamentos de Eudoxo (siglo rv a.C.) alejaron el horror 
al infinito irracional y pusieron los cimientos sobre los que se 
edificó la geometría euclídea. 

Por su parte, como vamos a comprobar, los trabajos llevados 
a cabo a propósito de la segunda crisis de fundamentación, ya en 
el siglo xx, sirvieron para clarificar en qué consiste el método, el 
rigor y la verdad de la nueva matemática, más axiomática que in­
tuitiva, antes existencial que constructiva. A continuación, como 
paso previo a conocer la aportación de Hilbert, necesitamos pre­
sentar los escollos a que tuvo que hacer frente. Entre ellos, una 
serie de concepciones de la matemática antagónicas, que no apa­
recieron de la nada sino que - al igual que la que defendió nues­
tro protagonista- están enraizadas en la propia evolución de la 
más segura de las ciencias. La expansión del análisis matemático 
desde principios del siglo XIX es, en conjunción con el arraigo de la 
teoría de conjuntos y la lógica matemática, el hilo conductor de 
una disciplina que se ha dado en llamar filosofía o fundamentos 
de las matemáticas. Pero volvamos por un momento la mirada a 
los orígenes ... 

¿es DIOS UN MATEMÁTICO? 

El platonismo es, históricamente, la filosofía originaria de las 
matemáticas. Platónicos han sido Platón, Cantor, Godel... entre 
otros grandes matemáticos. Pero, curiosamente, el primer pla­
tónico no fue Platón, sino Pitágoras, que creía ciegamente que 
todo es número y que los objetos matemáticos están dotados de 
existencia real. Tanto los números como los triángulos o las cir­
cunferencias existirían por sí mismos, independientemente de 
sus instancias y de nuestras mentes. Los neoplatónicos, con san 
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Agustín (siglo rv d.C.) a la cabeza, aseveraban que la totalidad 
infinita de los números existía en acto en el intelecto divino, pues 
¿quién sería tan necio para afirmar que Dios detiene su cuenta en 
un cierto número por grande que sea? 

El préstamo del término platonismo del campo filosófico 
al campo matemático quedó sellado en una conferencia que la 
mano derecha de Hilbert, Paul Bernays, impartió en 1934. Bernays 
quería bautizar con un nombre sugerente el modo de razonar de 
las matemáticas modernas, en que los objetos matemáticos no 
se construyen, sino que se toman como dados. Para Cantor, por 
ejemplo, la realidad de los números era mucho mayor que la reali­
dad del mundo sensorial, ya que los números existían en forma de 
ideas eternas en el intelecto divino. Godel iba todavía más lejos y 
tomaba los conjuntos matemáticos como objetos tan reales como 
los cuerpos físicos. Para los matemáticos platónicos, que han sido 
y son legión, los teoremas matemáticos no se inventan sino que 
se descubren. 

El talón de Aquiles del platonismo es que sobrepuebla los 
cielos. · El platonismo funciona bastante bien cuando se trata de 
defender que realmente existen entes matemáticos sencillos ( el 
triángulo en general, el cuadrado en general o, quizá también, la 
totalidad de los números naturales). Pero se viene abajo en cuanto 
abandonamos los objetos de la matemática antigua y pasamos a 
considerar los artificiosos objetos de las matemáticas contempo­
ráneas: las clases, los conjuntos, las funciones y las complejas 
estructuras abstractas que fueron saliendo al paso a lo largo del 
siglo XIX. 

EL LABERINTO DEL CÁLCULO 

Los griegos fundaron la geometría y subordinaron a ella la arit­
mética. Pero la aritmética fue independizándose de la geometría 
gracias al concurso del álgebra, lo que posibilitó, dos mil años 
después, la reducción inversa. La geometría encontró asiento en 
el álgebra, que descansaba a su vez sobre la aritmética, reforzada 
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con el nuevo cálculo de Newton y Leibniz. Pero la aritmetización 
de las matemáticas que se llevó a la práctica entre los siglos xvrr y 
xvm precisaba de una vuelta al rigor griego, que renunciara a los 
juegos de manos del cálculo con infinitésimos. 

A principios del siglo XIX, la oscuridad del análisis matemático 
era casi absoluta. Augustin-Louis Cauchy (1789-1857) rompió con 
la tradición infinitesimal y refundó el análisis sobre las nociones 
de límite y función. El refinamiento del concepto de función fue 
simultáneo al desarrollo de las teorías de derivación e integración. 
Pero el Curso de análisis de Cauchy, que vio la luz en 1821, se 
apoyaba a su vez en la noción de continuidad. Tanto el cálculo 
de límites como el manejo de funciones precisaban de una defini­
ción cuidadosa del continuo de números sobre el que se operaba. 
Pero ¿qué era exactamente el continuo? Las demostraciones de 
los teoremas fundamentales del análisis necesitaban de una de­
mostración previa de la continuidad de la recta de números rea­
les. Los que enseñaban el cálculo no conocían las demostraciones 
correctas de los teoremas e intentaban que las mistificaciones ofi­
ciales se aceptasen como un acto de fe. Esto ocurría hasta con un 
teorema tan básico con el de Bolzano (1781-1848), que afirma que 
si una función continua toma valores de signos opuestos en los 
extremos de un intervalo, entonces existe un cero de la función 
en el interior del intervalo. Algo similar sucedía por la misma 
época con la geometría, y correspondió a Hilbert, según vimos en 
el capítulo 1, aclarar la noción de continuidad. · 

Mediado el siglo XIX, el problema fundamental residía, por 
tanto, en construir los números reales ( el continuo) a partir de los 
números racionales, ya que se sabía cómo construir estos a par­
tir de los enteros, así como los enteros a partir de los naturales. 
Naturales, enteros, racionales, reales .. : el total de la matemática. 
En 1872 se sucedieron las construcciones de los números reales. 
En primer lugar, la teoría de los números reales que pudo recons­
truirse a partir de los apuntes de clase de W eierstrass, que identi­
ficaba cada número real con una suma infinita de racionales. En 
segundo lugar, la teoría de Cantor, análoga a la de Charles Meray 
(1835-1911), en la que cada número real era el límite de una suce­
sión de racionales. Y, por último, la teoría de Dedekind, en que 
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un número real no es sino una cortadura, esto es, una partición 
de todos los puntos de la recta en dos clases, los que están a la 
izquierda y los que quedan a la derecha del corte. Mientras que los 
números racionales son porosos, los números reales no lo son: para 
cualquier corte que hagamos en la recta siempre existe un número 
real que produce la división de la recta en dos trozos. Si Platón 
mantenía que Dios geometriza eternamente, Dedekind proponía el 
lema de que el hombre aritmetiza eternamente. Todos los números 
se habían reducido, en el fondo, a números naturales. Toda una 
hazaña intelectual. Pero, ¿qué eran los números naturales? 

LA LÓGICA COMO LLAVE MAESTRA 
DE LAS MATEMÁTICAS 

Es dentro de este panorama donde la aritmética asemejaba un 
árbol que crecía hacia arriba sin cesar, al tiempo que sus raíces se 
hundían en las profundidades, donde hizo acto de presencia la pri­
mera corriente fundacional: el logicismo. Para conocerla hay que 
acercarse a su primer defensor: Gottlob Frege (1848-1925). Este 
matemático alemán reparó en que toda la matemática descansaba 
sobre los números naturales; pero, ¿cómo construirlos? La clave 
estaba, a su juicio, al amparo de la lógica. 

Frege pasó su vida como un huraño profesor de la Universidad 
de Jena. Tenía tan pocos alumnos que durante algún curso solo 
asistieron regularmente a clase dos, un filósofo y un comandante 
retirado que estudiaba por hobby. Era incapaz de conversar de otra 
cosa que no fueran la lógica y las matemáticas, y siempre recondu­
cía cortésmente cualquier conversación hacia ellas. Fruto de esta 
peculiar obsesión fue su Conceptografía, publicada en 1879 y que 
llevaba por subtítulo Un lenguaje de fórmulas similar al aritmé-

. tico para el pensamiento puro. Frege vertió nuevos vinos en los 
viejos odres de la lógica, creando la «lógica matemática». 

La lógica tradicional venía gozando de una mala salud de 
hierro, pese a que, según todas las apariencias, se hallaba defini­
tivamente concluida desde Aristóteles. Pero la lógica comenzó a 
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bizquear ante la matemática. Tanto Ramon Llull (1232-1315) en 
Ars Magna como Juan Caramuel (1606-1682) enMathesis Audax 
habían concebido una suerte de álgebra lógica en la que todas las 
verdades de razón quedarían comprendidas dentro de una suerte 
de cálculo en una escritura universal, que Leibniz bautizó como 
calculus ratiocinator. No habría necesidad de más controversias 
entre filósofos, pues estos las solucionarían como si fueran con­
tables. Se sentarían en sus mesas, cogerían sus plumas y se dirían 
mutuamente: ¡calculemos! Estas semillas germinarían en el álge­
bra de la lógica que George Boole (1815-1864) planteó en Las 
leyes del pensamiento, de 1854. 

Pero Frege estaba más interesado en una lógica del álgebra 
que en un álgebra de la lógica, y en la Conceptografía formalizó 
la lógica de proposiciones y la lógica de predicados o de primer 
orden, es decir, de los razonamientos que hablan de ciertos obje­
tos y de las propiedades que satisfacen estos objetos, pero no de 
las propiedades que a su vez verifican estas propiedades (lo que 
pertenecería a la lógica de segundo orden). Posteriormente, en 
Fundamentos de la aritmética (1884) sentó las bases del pro­
grama logicista, que desarrollaría en los sucesivos volúmenes de 
Las leyes fundamentales de la aritmética, deducidas concepto­
gráficamente (1893-1903). Frege sostenía que la lógica era ante­
rior a la matemática y que, por tanto, los conceptos matemáticos 
debían ser reducidos a conceptos lógicos. La matemática no era 
sino un apéndice de la lógica. 

Por consiguiente, la aritmética era, en última instancia, ló­
gica, y las nociones aritméticas tenían que ser analizadas en tér­
minos puramente lógicos: «calcular es deducir». Con sus propias 
palabras: «todo teorema aritmético es una ley lógica, aunque de­
rivada». Simplificando el rigor mortis de los escritos fregeanos, en 
los que la pedantería y la precisión se reparten por igual, puede 
decirse que Frege vino esencialmente a definir los números me­
diante clases, es decir, mediante conjuntos o colecciones. A cada 
número natural le correspondía la clase de todas las clases que 
eran similares ( equinumerables) con una dada. Por ejemplo, el 
número 3 es lo que tienen en común todas las clases siguientes: 
las hojas de un trébol normal, los colores de un semáforo, etc. 
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AXIOMAS DE PEANO 

, En 1888, Richard Dedekind publicó ¿Qué 
son y para qué sirven los números?, un 
influyente libro con sabor logicista del 
que Hilbert bebió de joven. Sin embargo, 
Dedekind definió los números naturales 
de un modo esencialmente diferente a 
Frege. En 1889, dentro de un libro titula­
do Principios de la aritmética, expuestos 
según un nuevo método, el matemático 
italiano Giuseppe Peano recogió el tes­
tigo de Dedekind, aunque era descono­
cedor de su obra, y definió los números 
naturales por medio de tres conceptos 
primitivos (el cero, la función sucesor y 
la igualdad) y cinco axiomas: 

l. Cero es un número natural. 

2. Cada número natural tiene un sucesor. 

Giuseppe Peano hacia 1910. 

3. Cero no es el sucesor de ningún número natural. 

4. Dos números distintos tienen distintos sucesores. 

5. Si un conjunto A contiene el cero y cada vez que contiene un número 
contiene también el siguiente, entonces A contiene todos los naturales. 

El quinto axioma recibe el nombre de principio de inducción y desempeña 
un papel fundamental para probar teoremas sobre los números naturales sin 
tener que comprobarlos para cada uno de ellos, de uno en uno. Este principio 
formaliza esa intuición de que cuando se tienen todas las fichas del dominó 
colocadas en hilera, la caída de la primera de ellas (el cero) implica la caída de 
todas las demás (todos los naturales). A partir de estos axiomas, puede defi­
nirse la suma y la multiplicación de números naturales, así como ordenarlos. 
El resultado es conocido como aritmética de Peano. 

De este modo, el número 3 puede identificarse con la clase de 
todas estas clases. En general, Frege identificó el número O con 
la clase de todas las clases vacías, el 1 con la clase de todas las 
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clases unitarias, etc. Y, puesto que solo hay una clase vacía ( que 
se denota como 0), O = 0. El número 1 se definía entonces como 
la clase de todas las clases equiriumerables con la clase {0} que 
posee un único elemento. De una manera análoga se definía el 
resto de números. 

Desgraciadamente, el audaz programa fregeano sería puesto 
en entredicho por la proliferación de paradojas lógicas. En sus 
obras, Frege siempre partía de un principio: el principio de com­
prehensión, que postula que a cada concepto es posible asignarle 
su extensión, es decir, empleando términos más actuales, que 
toda propiedad determina la clase de los elementos que satisfacen 
esa propiedad. Este axioma de existencia de clases era la «Ley 
Básica V» de Las leyes fundamentales de la aritmética, y fue 
responsable de la colosal defunción del logicismo fregeano. En 
una carta del 16 de junio de 1902, un joven matemático llamado 
Bertrand Russell (1872-1970) informaba al profesor Frege de que 
era posible deducir una contradicción dentro de su sistema a 
partir de esa maldita ley. La paradoja de la clase de Russell, que 
explicaremos más adelante, mostraba que hacer corresponder a 
cada propiedad su clase asociada era, por más natural que pare­
ciera, jugar con fuego. Al conocer la antinomia, Frege añadió un 
apéndice al segundo volumen de Las leyes fundamentales de la 
aritmética en el que pretendía salvar el grueso de su trabajo res­
tringiendo la aplicación del principio de comprehensión. Pronto 
se percató de que servía de poco, y paralizó la publicación del 
tercer volumen de su obra cumbre. Jamás se repondría del golpe. 
Impregnado de melancolía, reconocería sin esperanza pero sin 
miedo el desastre: 

Un científico no puede encontrar nada menos deseable que hallar 
que todo el fundamento de su obra cae precisamente en el momen­
to que le da fin. He sido puesto en esta posición por una carta de 
Mr. Russell cuando este trabajo se hallaba casi terminado en la im­

prenta. 

Tras esta muestra de integridad intelectual, que Russell ad­
miraría toda su vida, Frege le contestó a vuelta de correo comu-
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nicándole que la aritmética, y con ella toda la matemática, volvía 
a tambalearse. El sentido común no era un faro lo bastante pode­
roso para mantener a los matemáticos a salvo del riesgo de zozo­
brar contra los escarpados salientes de la lógica. 

LA PROLIFERACIÓN DE PARADOJAS 

Hasta la primavera de 1901, cuando Russell tropezó con su pro­
pia paradoja, se consideraba, de acuerdo con Frege, que a cada 
propiedad le corresponde una clase: la clase conformada por las 
entidades que poseen esa propiedad. Russell estaba estudiando el 
comportanliento de las clases propias, esto es, aquellas que son 
miembros de sí mismas. Pongamos por caso, la clase de todas las 
clases ( que, como es otra clase, se autopertenece) o la clase de 
todos los conceptos ( que, como resulta ser otro concepto, tam­
bién se autopertenece). El vicio lógico es irremediable: si en una 
biblioteca se coloca un catálogo con tapas negras de todos los 
libros de la biblioteca que tengan tapas negras, dicho catálogo se 
autocatalogará. 

Tomemos, ahora, con Russell, la clase R de todas las clases 
que poseen la propiedad de no ser miembros de sí mismas, for­
malmente: R = { x : x f/:. x ), donde E es el símbolo de pertenencia. 
Y preguntémonos si Res miembro de sí nlisma, si RE R es el caso. 
Vamos a comprobar cómo cualquier respuesta implica inmediata­
mente la contraria. Si lo es, no lo es. Si no lo es, lo es. En efecto, 
si R ER, es decir, si R se pertenece a sí misma, entonces, por defi­
nición, R f/:. R, esto es, R no se pertenece a sí misma, ya que es la 
clase de todas las clases con esa propiedad. Pero, recíprocamente, 
si Rf/:.R, entonces RER, puesto que cumple la propiedad que de­
fine la clase de todas las clases que no son miembros de sí mismas. 
En sun1a, se obtiene la contradicción: RER si y solo si Rf/:.R. La 
clase R se pertenece a sí misma si y solo si no se pertenece a 
sí misma. Russell quedó perplejo ante el absurdo que había des­
cubierto. Una contradicción que posteriormente popularizó con 
el nombre de paradoja del barbero: el barbero de un pueblecillo 
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presume de que afeita a todos los hombres que no se afeitan a sí 
mismos y a nadie más. Entonces, un buen día, al despertar, se 
pregunta quién le afeita a él y descubre consternado que se afeita 
a sí mismo si y solo si no se afeita a sí mismo. El pobre barbero se 
encuentra sumido en un verdadero atolladero lógico. 

El matemático francés Henri Poincaré fue el primero en in­
dicar que la fuente de las paradojas que asaltaban la lógica era la 
circularidad, en forma de autorreferencia o autopertenencia. Las 
paradojas se sustentaban en el uso de definiciones impredicati­
vas, de definiciones en que lo definido entra en la definición. Es 
lo que, más tarde, Russell denominó principio de círculo vicioso. 
No es de extrañar, pues, que la violación de este principio con­
duzca a paradojas, antinomias y contradicciones, muchas de ellas 
reconocibles incluso fuera de los lenguajes formales, en los len­
guajes naturales. Sirva corno ilustración la archiconocida paradoja 
del mentiroso, atribuida a Epin1énides de Creta (y a la que incluso 
san Pablo se refiere en sus cartas). En el verso de un poema, Epi­
rnénides censura a los cretenses tildándolos de mentirosos. Pero, 
siendo él cretense, su afirmación, dicha sobre sí mismo, se trans­
forma en «estoy mintiendo». En este caso, lo que dice no puede ser 
verdad, por lo que los cretenses no mienten. Pero si no mienten, 
Epiménides tampoco, por lo que los cretenses por fuerza mien­
ten, y vuelta a empezar. 

La lógica matemática, como comenzó a llan1arse gracias a 
Peano, solo daba disgustos. Y Poincaré, que la consideraba inútil, 
se burlaba: «Ya no es estéril; engendra contradicciones». Pese a 
todo, el programa logicista pergeñado por Frege iba a tener conti­
nuación gracias al desparpajo de Bertrand Russell y Alfred North 
Whitehead (1861-1947). 

En 1900, en un congreso internacional de filosofía celebrado 
en París, Russell se topó con la reforma simbólica de Peano. En 
1889, Peano había presentado sus Principios de la aritmética, en 
los que ofrecía sus famosos cinco axiomas - incluyendo el princi­
pio de inducción- para los números naturales, usando un nuevo 
simbolismo que había diseñado. El simbolismo unidimensional 
de Peano fue mejor acogido que el simbolismo bidimensional de 
Frege en la comunidad de lógicos y matemáticos (no así entre 
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EL HOTEL INFINITO DE HILBERT 

El catedrático de Gotinga inventó una metáfora que explica de manera simple 
y clara algunas de las paradojas relacionadas con el infinito que los matemá­
ticos descubrieron al mismo tiempo que las paradojas lógicas. Pese a que 
parezca increíble, en un hotel con infinitas habitaciones siempre hay sitio para 
nuevos huéspedes, aunque el hotel las tenga todas ocupadas. En efecto, si 
cambiamos al huésped que se encuentra en la primera habitación a la segunda; 
al de la segunda, a la cuarta; al de la tercera, a la sexta; y así sucesivamente, 
liberamos todas las habitaciones impares. De modo que, como hay infinitos 
números impares, no solo hay sitio para un nuevo viajero que llegara a la re­
cepción del hotel, sino también para alojar a una cantidad infinita de viajeros 
en la misma situación. En el mismo hotel de Hilbert podríamos establecer más 
conclusiones sorprendentes: 

- El hotel tiene todas las habitaciones ocupadas y se marcha un huésped. 
Entonces, el número de ocupantes sigue siendo el mismo (infinito). 

- Si se marchan todos los huéspedes que ocupan habitaciones pares, en ­
tonces el número de ocupantes sigue siendo el mismo (infin ito). 

- Sin embargo, si se marchan del hotel todos los huéspedes que ocupan las 
habitaciones, por ejemplo, de la quinta en adelante, entonces no queda el 
mismo número de ocupantes (ya solo habría una cantidad finita). 

Todo esto nos advierte de la gran flexibilidad del infinito matemático y del 
cuidado que hay que poner al realizar afirmaciones sobre él. 

sus alumnos, que estallaron en rebeldía y ni siquiera se calmaron 
cuando Peano les ofertó el aprobado general a cambio de que le 
permitieran continuar dando clase empleando su notación). En 
1902, fiel al logicismo de Frege y al simbolismo de Peano, Rus­
sell publicó Los principios de la matemática. Pero la luna de 
miel con la lógica duraría poco, pues poco antes de darlos a la 
imprenta descubrió la paradoja que lleva su nombre. Hasta 1910, 
Russell trabajó codo con codo con Whitehead. Ambos matemáti­
cos sudaron tinta para salvar las contradicciones que las parado­
jas habían puesto al descubierto. Con los Principia mathematica 
(1911-1913) sondearon más que nadie hasta la fecha los funda-
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mentas de las matemáticas. Esta obra deslumbrante significó, en 
palabras de Hilbert, «la coronación de la axiomatización». 

Para soslayar las paradojas, Russell y Whitehead fabricaron 
una teoría de tipos, que exige que para que X E Y sea una fórmula 
bien formada, los valores de Y han de ser del tipo inmediatamente 
superior al tipo de valores de X. De esta manera, la proposición 
«la clase de todas las sillas no es una silla» no es verdadera ni 
falsa, sino carente de sentido, porque sillas solo pueden ser los 
objetos, no las clases de objetos. En otras palabras: se está come­
tiendo el error de predicar una propiedad de un tipo a otro tipo. 
Aplicando esta alambicada teoría, los autores certificaron que las 
formulaciones que conducen a la paradoja de Russell dejan de 
tener sentido: R E R es, ahora, una fórmula mal formada, al no 
haber más que un tipo implicado. 

«Las matemáticas poseen no solo la verdad, sino la suprema 
belleza, una belleza fría y austera, corno la de una escultura.» 
- BERTRAND RusSELL. 

i22 

Én los Principia, evitadas las paradojas, Whitehead y Russell 
pasaron a deducir la matemática de la lógica, pues a su entender 
no era posible trazar una raya entre ambas. Desde un punto de 
vista técnico, el proyecto de logificación de los teoremas matemá­
ticos se topó con numerosas dificultades. Es así que necesitaron 
de un desarrollo más que concienzudo para lograr demostrar-¡en 
la página 379!- que 1 + 1 = 2. Toda una locura. Además, tuvieron 
que ampliar la lógica a una teoría generalísima de relaciones que 
absorbía en su seno axiomas tan poco satisfactorios, tan ad hoc, 
como los de reducibilidad e infinitud. El ortopédico axioma de 
reducibilidad funcionaba como una suerte de deus ex machina, 
que los autores justificaban pragmáticamente para torear las an­
tinomias y logificar las matemáticas: cuando una fórmula era de­
masiado complicada, se asumía que siempre podía simplificarse a 
otra de un tipo inferior. 

El axioma de infinitud era, por su parte, necesario para definir 
los números naturales al completo. Siguiendo a Frege, definieron 
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el 2 como la clase de todos los pares, el 3 como la clase de todos 
los tríos ... Pero se vieron obligados a introducir un axioma que 
postulara que para todo número existe otro mayor, y cuya justifi­
cación no podía descansar en ninguna clase de intuición lógica o 
matemática (lo que sería una petición de principio: la lógica o la 
matemática fundándose a sí misma) sino en la propia estructura 
del mundo, al que se le prescribía que había de contener infinitos 
objetos. Si no existieran infinitas cosas en el mundo y este tuviera 
un máximo de n cosas, Russell y Whitehead serían incapaces de 
definir el número n+ 1, ya que la clase de todas las (n+ 1)-tuplas 
sería vacía al no haber n+ 1 objetos en el mundo. Hermann Weyl, 
discípulo de Hilbert, lo denunció con toda claridad: los Principia 
ponían a prueba la fe apenas algo menos que los primeros Padres 
de la Iglesia. 

El balance fue que, en el mejor de los casos, Russell y White­
head lograron reducir la matemática a una especie de megalógica, 
de paraíso de los lógicos. Para decirlo contundentemente: la tesis 
logicista, o bien es falsa, si la lógica no incluye una teoría de clases 
(lo que en el próximo parágrafo llamaremos teoría de conjuntos), 
o bien es trivial, si la incluye. A día de hoy, algunos lógicos tratan 
de resucitar esta tesis poniendo todo su empeño en traducir las 
matemáticas a una lógica de segundo orden adecuada (ya que la 
lógica de primer orden se mostró insuficiente); pero, como mu­
chos matemáticos han objetado, la lógica de segundo orden no 
es más que una matemática de cor\juntos disfrazada con piel de 
cordero. Como en la lógica de segundo orden se puede predicar 
no solo de objetos sino también de propiedades, pueden definirse 
múltiples nociones típicamente conjuntistas. Cuantificar sobre 
propiedades es, en último término, cuantificar sobre conjuntos, 
sobre el conjunto de objetos que verifican la propiedad. Se trata, 
entonces, de una lógica subyacente a la propia teoría de conjun­
tos. Su mayor potencia expresiva, que permite caracterizar la in­
finitud o formalizar el principio de inducción en un único axioma 
( en lugar de en un esquema de axioma que resume infinitos), es un 
arma de doble filo. Estamos donde estábamos: si la lógica incluye 
la teoría de conjuntos, la tesis logicista es verdadera pero trivial; 
si la lógica no la incluye, es radicalmente falsa. 
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EL NACIMIENTO DE LA TEORÍA DE CONJUNTOS 

Los lógicos hacían auténticos malabarismos para resolver el pro­
blema de las paradojas, pero ¿qué solución daban los matemáti­
cos? Si los lógicos querían logijicar la aritmética, los matemáticos 
querían conjuntivizarla. Pero la conjuntivización de la matemá­
tica venía de lejos. La teoría abstracta de conjuntos fue creada por 
Cantor, pero el enfoque conjuntista en matemáticas era anterior. 
Estaba en Riemann, pero sobre todo en Dedekind. Riemann había 
propuesto la noción de variedad, en un sentido colindante con el 
de conjunto, como fundamento de toda la matemática pura. Y De­
dekind había ofrecido un planteamiento conjuntista del" álgebra al 
introducir nociones tales como las de grupo, cuerpo e ideal (solo 
la noción de anillo se le escapó de las manos, y sería introducida 
por Hilbert). 

La época heroica de la teoría de conjuntos arranca en 1872. 
Ese año, cuando publicaron sus respectivas construcciones de 
los reales, Dedekind y Cantor iniciaron su tormentosa relación 
personal. En 187 4, Cantor demostró que hay dos tipos de infinito: 
numerable (como el conjunto de los números naturales) y no nu­
merable (como los números reales, esto es, como el continuo). 
Además, publicó que el conjunto de números algebraicos es nu­
merable, y lo demostró empleando una prueba que Dedekind le 
había hecho llegar por carta, aunque sin reconocerle mérito al­
guno ( esta puñalada por la espalda fue la causa más probable de 
la ruptura de su amistad). En 1879, Cantor presentó la noción 
de cardinal de un conjunto, que generaliza, por así decirlo, el 
concepto de número de elementos de un conjunto al campo de los 
conjuntos infinitos. Una forma de averiguar si dos conjuntos fini­
tos poseen el mismo número de elementos consiste en extraer a la 
vez un elemento de cada uno de ellos tantas veces como sea posi­
ble. Si an1bos conjuntos se acaban a la vez, sabemos con certeza 
que tienen el mismo número de elementos o cardinal. Como esta 
idea no recurre a contar con números, es perfectamente extensi­
ble a conjuntos infinitos: dos conjuntos A y B se dice que tienen el 
mismo cardinal, y se escribe I Al= 1 BI, si puede establecerse entre 
ellos una biyección, esto es, una correspondencia uno-a-uno. 
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ARGUMENTO «DIAGONAL» DE CANTOR 

Uno de los grandes descubrimientos de 
Georg Cantor fue la existencia de con­
juntos no numerables, que no pueden 
ponerse en biyección con los números 
naturales. Uno de ellos es el continuo. 
Mientras que los números enteros y ra­
cionales son numerables, los números 
reales ya no lo son. No pueden empa­
rejarse uno a uno con los números na­
turales, es decir, no pueden enumerarse, 
ponerse en una lista, uno detrás de otro. 
Consideremos la recta real y tomemos el 
intervalo entre O y 1. Expresemos todos 
los números comprendidos en código bi­
nario, es decir, mediante sucesiones de 
O y 1. Por ejemplo: 101001000 ... (prescin­
diendo del O y de la coma decimal que 
precedería a la expresión). Vamos a de-
mostrar que la suposición de que se trata Georg cantor. 
de un conjunto numerable conduce a una 
contradicción. En efecto, si lo fuera podríamos escribir todos sus elementos 
en una lista como la siguiente: 

l. º -+ QlOO .. . 
2. 0 

-+ 0110 .. . 
3. 0 -+ 11Ql .. . 

Fijémonos ahora en los elementos de la diagonal principal, que hemos su­
brayado. Vamos a construir un elemento que, a pesar de ser una sucesión 
de O y 1, no está en la lista. Para ello, formemos la sucesión compuesta por 
los siguientes números: como el primer término destacado era un O, ponga­
mos un 1; como el segundo era un 1, un O; como el tercero era un O, un 1; etc. 
El elemento resultante empieza por 101 .. . y no coincide con ninguno de los 
elementos de la lista. En efecto, no puede ser la primera sucesión, porque 
el primer término es distinto; tampoco la segunda, porque hemos var iado el 
segundo término; ni la tercera, etc. Esto contradice el supuesto de que se 
trataba de un conjunto numerable y, por tanto, expresable en forma de lista. 
El método de demostración empleado recibe el nombre de diagonalización 
e influyó en otras demostraciones posteriores relevantes en la historia de los 
fundamentos de la matemática. 
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Mientras tanto, Dedekind dio con una definición de conjunto 
infinito más acertada que la de Cantor. Pasado el tiempo y limpias 
de errores, ambas definiciones se demostraron equivalentes ( en 
virtud del axioma de elección, del que tendremos ocasión de ha­
blar más adelante). Para Cantor, un conjunto es infinito si no es 
finito, esto es, si no puede ponerse en biyección con algún número 
natural. Por contra, para Dedekind, retomando sugerencias de Ga­
Weo y Bolzano, un conjunto es infinito si y solo si puede ponerse 
en biyección con una parte propia suya. Por ejemplo, los números 
naturales son infinitos porque son biyectables con los números 
pares, haciendo corresponder al O el O; al 1, el 2; al 2, el 4; y, en 
general, a cada número n, su doble 2n. 

«Es el más fino producto del genio matemático y uno de los 
logros supremos de la actividad intelectual humana pura. Nadie 
nos expulsará del paraíso que Cantor ha creado para nosotros.» 
- 0AV1D HILBERT SOBRE EL TRABAJO MATEMÁTICO DE GEORG CANTOR, 

EN SOBRE EL INFINITO (1925), 
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Para finales de 1882, Cantor terúa elaborada su aritmética de 
cardinales y ordinales (transfinitos), así como planteada la hipóte­
sis del continuo. Los números naturales forman el conjunto infinito 
más pequeño que nos es dado imaginar. En consecuencia, su car­
dinal, que es el primer cardinal infinito, se denota con la letra alef 
del alfabeto hebreo y el subíndice O: X 

0
• Este ·cardinal corresponde 

a todos los conjuntos numerables y se trata del primer jalón en la 
carrera hacia el infinito. El cardinal del continuo, de los números 
reales, es -por razones que aquí no podemos explicar- 2110

• En 
estas condiciones, la hipótesis del continuo establece que no hay 
ningún infinito distinto entre los naturales y los reales, o dicho de 
otra manera, que 2x0 = K1. La secuencia de cardinales X

0
, X 

1
, X21 . .. 

funciona como una suerte de metro patrón para medir el tamaño 
en el universo de los conjuntos, donde hay infinitos infinitos. Los 
esfuerzos infructuosos orientados a demostrar la hipótesis del con­
tinuo y los persistentes ataques de Kronecker a la teoría de conjun­
tos transfinitos perturbaron considerablemente a Cantor, provocán-
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dole una crisis depresiva que le distanció de la matemática y le em­
pujó a la teología ( aunque también se dedicó a defender con ahínco 
que Bacon era el verdadero autor de las obras de Shakespeare). 

A partir de 1900, la teoría cantoriana se convirtió, al igual que 
la lógica, en un puente sobre aguas turbulentas. Paralelamente 
a las paradojas lógicas, surgieron las antinomias de la teoría de 
conjuntos. De hecho, la mayoría de paradojas que hablaban 
de clases encontraron su reformulación mediante conjuntos ( así, 
por ejemplo, la paradoja de Russell). Pero aparecieron también 
algunas nuevas: las paradojas del infinito. Mientras que las para­
dojas lógicas tenían que ver con la circularidad en la definición de 
ciertas clases, las paradojas conjuntistas lo hacían más bien con el 
infinito. La principal de todas ellas es la paradoja de Cantor acerca 
de la colección de todos los conjuntos. Sea V el «conjunto» de 
todos los conjuntos. Como, según demostró Cantor, el cardinal 
de cualquier conjunto es estrictamente menor que el cardinal de 
su conjunto potencia ( que se denota por p (A) y comprende todos 
los subconjuntos o partes de A), se tiene que !VI< IP(V)I. Pero, por 
otra parte, por la definición de V, se tiene que el conjunto potencia 
de V ha de estar contenido en V, porque V es el conjunto total, el 
más grande, el que engloba a todos los demás, y nada hay más 
allá de él. En consecuencia, !VI ~ IP(V)I. Lo que es un absurdo, una 
contradicción, con el resultado anterior. 

Ernst Zermelo (1871-1953) fue el primer matemático en vis­
lumbrar una salida no logicista al laberinto ( no en vano había des­
cubierto una paradoja similar a la de Russell): había que pasar 
de una teoría intuitiva a una teoría axiomática de conjuntos. Zer­
melo, que desde 1897 se encontraba en Gotinga, siguió fielmente 
las instrucciones de Hilbert, quien le animó a formular un sistema 
de axiomas para la teoría cantoriana. Su aplicación del método 
axiomático a la teoría de conjuntos es comparable a la de Hilbert 
en geometría. En 1908, Zermelo presentó la primera axiomatiza­
ción de la teoría de conjuntos, ligeramente pulida por Abraham 
Fraenkel (1891-1965) en 1922 (y por Von Neumann en 1925, al 
incorporar el axioma de regularidad o fundamentación). Desde 
entonces se conoce por sus iniciales, como axiomática ZF para la 
teoría de conjuntos. 
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Pues bien, en ZF, la paradoja de la clase de Russell se trans­
forma en la demostración de que esa clase no es un coitjunto, con 
otras palabras, de que no existe dentro de la teoría, con lo que la 
antinomia se evapora en el aire. En efecto, si suponemos que R es 
un coitjunto y llegamos a un absurdo, es que R no es un coitjunto. 
Análogamente, la paradoja de Cantor se transforma en la demos-

CLASES Y CONJUNTOS 

La teoría de conjuntos de Zermelo-Fraenkel parte de la lógica de primer orden 
con igualdad y toma la relación de pertenencia E como primitiva. Los axiomas 
de ZF, enunciados verbalmente, son los siguientes: 

l. Dos conjuntos son idénticos si tienen los mismos elementos (axioma de 
extensión). 

2. Existe el conjunto vacío 0 . 

3. Dado un conjunto x y una propiedad formali zable en el lenguaje de primer 
orden de la teoría de conjuntos, existe el conjunto de todos los elementos 
de x que satisfacen la propiedad (a xioma de extracción o comprehen­
sión). 

4. Si x e y son conjuntos, entonces el par no ordenado {x, y } es un conjunto. 

5. La unión de un conjunto de conjuntos es un conjunto. 

6. Se puede formar el conjunto potencia de cualquier conjunto, esto es, la 
colección de todos los subconjuntos o partes de cualquier conjunto es 
otro conjunto. 

7. Existe al menos un conjunto infinito (axioma de infinitud). 

8. La imagen de un conjunto por una función es un conjunto (axioma de 
reemplazo). 

9. x no pertenece a x (axioma de fundamentación o regularidad). 

Si a estos axiomas se les añade el llamado ax ioma de elección, se tiene el sis­
tema ZFC ( la «C» por choice, elección en inglés). En los años treinta la teoría 
de conjuntos ZFC fue ampliada por la teoría de clases y conjuntos de Von 
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tración de que el «conjunto» de todos los conjuntos V no es un 
conjunto, por lo que tampoco existe dentro de la teoría. En ZF, 
un acertijo corno el del barbero evidencia, por así decir, la inexis­
tencia de w1 individuo con esas características. Aún más: los axio­
mas de ZF bloquean la circularidad que precipita mediante diver­
sas estrategias en la inconsistencia de las paradojas. Las fórmulas 

Neumann-Bernays-Godel (conocida entre los matemáticos por el acrónimo 
NBG). Von Neumann propuso una construcción jerárquica y acumulativa del 
universo de los conjuntos, que suele representarse esquemáticamente como 
un cono invertido (ver figura). A partir del conjunto vacío e iterando -mediante 
una recursión transfinita- las operaciones «partes de» y «unión de», construyó 
todos los pisos en que habitan estratificadamente los conjuntos, desde los 
más pequeños hasta los más grandes: 0=0, 1={0}={0}, 2={0,1}={0,{0}}, etc. 
En esta teoría, las paradojas de Russell y Cantor demuestran que R y V no son 
conjuntos sino clases, que sí son admitidas dentro de la teoría. Los elementos 
cofinales con la jerarquía no son miembros de ningún otro conjunto, porque 
son demasiado grandes, y corresponden a las clases. 

V, la clase universal de todos los conjuntos 

Conjuntos 
no numerables 

Conjuntos 
numerables 

Conjunto vacío 0 

Una clase 
(porque no 
está acotada, 
es cofinal) 

Un conjunto 
(porque está 
acotado) 

Conjuntos 
f initos 

Construcción jerárquica del universo de los conjuntos elaborada por Von Neumann. 
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del estilo R ER están prohibidas en ZF, puesto que el axioma de 
fundamentación o regularidad establece que ningún conjunto se 
pertenece a sí mismo. Simbólicamente: 'vx(x$.x) . Con este axio­
ma, los conjuntos peligrosos simplemente no existen. 

En el haber de ZFhay que consignar que, además de desactivar 
las paradojas de la teoría informal de conjuntos, permitió prose­
guir la conjuntivización de la matemática: con la defuúción de una 
función como un conjunto de pares ordenados, ofrecida por Felix 
Hausdorff (1868-1942) y Kazimierz Kuratowski (1896-1980) algo 
más tarde, esta noción -pilar de todo el análisis- quedó conjun­
tivizada, lo que afianzó la fundamentación conjuntista de las mate­
máticas. Toda la vertiginosa variedad de estructuras matemáticas 
quedó reducida a sus componentes más básicos, los conjuntos. 

Sin embargo, los trabajos de Zermelo levantaron un gran re­
vuelo y causaron reacciones muy adversas entre los especialistas. 
Buscando probar la hipótesis del continuo, Zermelo había dado 
forma en 1904 al axioma de elección. Este axioma establece que 
es posible seleccionar simultáneamente un elemento de cada con­
junto de una colección infuúta de conjuntos no vacíos. Formal­
mente, si S = {A, B, C, ... } es una colección de conjuntos no vacíos, 
existe un conjunto Z que consta precisamente de un elemento 
de A, uno de B, uno de C, etc. Bertrand Russell lo explicaba con 
la siguiente imagen: imaginemos un millonario que, cada vez que 
compra una caja de zapatos, compra una caja de medias. Supon­
gamos, además, que ya posee una colección infuúta de cajas de 
zapatos y otra igual de cajas de medias. Si desease comprobar que 
efectivamente tiene igual número de cajas de zapatos y medias, 
podría ir sacando el zapato derecho de cada caja de zapatos y em­
parejándolo con una media de una caja de medias recién abierta 
(si las cajas de zapatos y de medias sin abrir se agotasen al tiempo, 
sabría que posee igual cantidad). Pues bien, esto último no puede 
llevarlo a cabo sin emplear el axioma de elección, porque este 
axioma es lo que posibilita realizar infinitas elecciones arbitra­
rias en la colección de cajas de medias (pues, mientras que en 
cada caja de zapatos siempre puede seleccionar el derecho, no 
hay diferencia alguna entre las medias al no existir una media 
derecha distinta de una media izquierda). 
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A pesar de su aparente inocencia, el axioma de elección tiene 
algunas sorprendentes y contraintuitivas consecuencias. Una de 
ellas es, como ejemplificó Zermelo, el teorema del buen orden, 
que asegura que todo coajunto por raro que sea puede ser bien 
ordenado, es decir, ordenado linealmente a la manera de los nú­
meros naturales, donde cualquier subcoajunto posee siempre un 
primer elemento. Pero hay más: el axioma de elección pronto se 
mostró necesario para probar que la aritmética de cardinales fun­
ciona correctamente ( que dos cardinales cualesquiera siempre 
son comparables), así como pata.demostrar, a través del lema de 
Zom, múltiples resultados básicos del álgebra y del análisis. Esto 
dio pie a una disputa internacional entre partidarios y detracto­
res del axioma de elección ( que incluso encontró su reflejo en 
un número especial de Mathematische Annalen, revista editada 
por Klein y Hilbert). Por un lado, defendiendo esta potente herra­
mienta, Zermelo, Russell y Hilbert. Por otro, combatiendo su uso 
indiscriminado, un joven matemático neerlandés llamado Luitzen 
Egbertus Jan Brouwer (1881-1966), que contaba con el respaldo 
de importantes matemáticos franceses: René-Louis Baire (1874-
1932), Émil Borel (1871-1956) y Henri Lebesgue. Si las Islas eran 
de los logicistas, el Continente se lo repartieron entre los forma­
listas, conducidos por Hilbert, y los intuicionistas, encabezados 
por Brouwer. 

BROUWER, LA NÉMESIS DE HILBERT 

Brouwer cuestionaba que las «cabriolas zermelianas» sirvieran 
para fundamentar las matemáticas con seguridad, de una vez por 
todas. Su preocupación no era otra que los castillos en el aire que 
venían construyéndose en las matemáticas abstractas de los últi­
mos veinticinco años. Nó le faltaba razón respecto a los riesgos 
del axioma de elección. Gracias a él saldrían a la luz múltiples 
monstruos matemáticos. Entre ellos, algunos años más tarde ( en 
1926), la paradoja de Banach-Tarski. El teorema oculto tras ella, 
que hace uso indispensable del controvertido axioma, produce la 
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siguiente descomposición paradójica de coajuntos en el espacio 
tridimensional: una esfera sólida puede descomponerse en un nú­
mero finito de partes disjuntas, de tal modo que a partir de ellas 
pueden reconstruirse dos esferas idénticas a la original. Se trata, 
por recrearlo irónicamente, de la contrapartida matemática del 
milagro bíblico de los panes y los peces (lo único que asegura 
la cordura es que las dos esferas idénticas a la original no son 
medibles en el sentido de Lebesgue, con lo que la paradoja nunca 
aparece a la hora de calcular volúmenes). 

En 1907, en la Universidad de Ámsterdam, Brouwer obtuvo 
el grado de doctor con la disertación «De los fundamentos de las 
matemáticas», en la que apuntaba maneras intuicionistas. Cinco 
años más tarde, convertido en un matemático consagrado, con un 
enorme bagaje científico a su espalda, dictó la lección inaugural 
del curso académico 1912-1913, que tituló «lntuicionismo y forma­
lismo». Esta conferencia, pronunciada el 14 de octubre de 1912, 
marcó el inicio de su plan de fundamentación de la matemática y 
fue, de hecho, la primera vez en que aparecieron los rótulos «in­
tuicionismo» y «formalismo». En ella, Brouwer reivindicó a Kant, 
Kronecker y al recientemente fallecido Poincaré - un rosario de 
estrellas- como antecedentes de su posición. 

Con las aportaciones de Gauss, Riemann y, finalmente, Hil­
bert, la geometría había conseguido liberarse definitivamente del 
yugo euclídeo kantiano (pese a la protesta de Frege). Brouwer · 
propuso abandonar el apriorismo kantiano del espacio, pero 
adhiriéndose más resueltamente al apriorismo del tiempo. Las 
matemáticas se ocupaban del conocimiento de las propiedades 
del tiempo, puesto que el discurrir temporal se plasmaba en la 
sucesión aritmética O, 1, 2, 3, 4 ... El 1 después del O, pero antes 
del 2. Y así sucesivan1ente. 

Para Brouwer había que recuperar la visión constructivista 
de las matemáticas de Poincaré. Pese a traducir y adaptar los 
trabajos de Cantor al francés, Poincaré había tenido que hacer 
frente a los epigramas en su contra de Russell o Zermelo, quie­
nes le habían tachado de retrógrado e ignorante del nuevo hacer 
matemático. Pero Poincaré no se había quedado callado y había 
contestado mofándose de la corriente logicista: «la lógica no es 
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LA CURVA DE HILBERT 

En 1877, Cantor construyó una biyección entre un segmento y un cuadrado. 
En el segmento había tantos puntos como en el cuadrado. La posibilidad de 
establecer una correspondencia uno-a-uno entre la recta unidimensional y 
el plano bidimensional le hizo exclamar: «i Lo veo pero no lo creo!». Yendo 
más lejos, Du Boys-Reymond dijo que «repugnaba al sentido común». Entre 
1890 y 1891, Peano y Hilbert imaginaron sendas curvas continuas capaces de 
recorrer cada punto de un cuadrado. Las curvas de Peano o Hilbert ( líneas 
unidimensionales capaces de re llenar cuadrados bidimensionales) no hicieron 
sino ahondar el problema de la dimensión. ¿cómo distinguir entre una y dos 
«dimensiones»? Poincaré apuntó la necesidad de una definición adecuada 
de dimensión. 

Brouwer y la topología 
Entre 1908 y 1911, Brouwer se tomó una pausa en su defensa a ultranza del 
intuicionismo y sentó los pilares de una nueva disciplina matemática: la topolo­
gía, una especie de geometría sobre hojas de caucho (por emplear la feliz ex­
presión de Poincaré). Primeramente se dedicó a ofrecer varios contraejemplos 
que echaban por tierra la mayor parte de los resultados que Arthur Schoenflies 
(1853-1928), amigo de Hilbert, creía haber encontrado. Y, ya en 1911, presentó 
el teorema de invariancia de la dimensión bajo aplicaciones bicontinuas, esto 
es, homeomorfismos, lo que ponía fin a las dudas que habían sembrado Can­
tor, Peano y Hilbert: el espacio m-dimensional y el espacio n-dimensional no 
son homeomorfos si m es distinto de n. Podrán ser biyectables, pero jamás 
homeomorfos, porque esa biyección no será continua. La topología daba la 
razón al sentido común. 

Tras cada iteración 
la curva de Hilbert 
serpentea más 
y más, llegando 
-en el limite-
a recubrir el 
cuadrado por 
completo. 
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estéril, engendra contradicciones», había escrito con regocijo. 
Además, había apuntado que si todas las matemáticas pudieran 
ser derivadas empleando solo las reglas de la lógica, resultaría 
que la matemática no sería más que una gigantesca tautología, 
una verdad lógica del estilo de A = A. Desde su punto de vista, la 
lógica recordaba a una máquina de fabricar salchichas, a cuya 
entrada se mete el cerdo y sale una ristra bien ordenada. Pero 
las matemáticas no funcionaban como una pianola. La demostra­
ción matemática constituía un mecanismo genuinamente creador, 
gracias a esa intuición que nos permite probar infuútos silogismos 
en un número finito de pasos: el principio de inducción. Este salto 
de lo finito a lo infinito es lo que posibilitaba, ajuicio de Poincaré, 
la maravilla de las matemáticas. La intuición es ese relámpago que 
ilumina al matemático en mitad de la noche y fecunda la invención 
matemática. Es la mente humana la que crea, por vía de la intui­
ción, los objetos matemáticos. 

«El arte de hacer matemáticas consiste en encontrar ese caso 
especial que contiene todos los gérmenes de la generalidad.» 
- DAVID ÜILBERT. 

134 

Brouwer retomó la pintoresca filosofía de las matemáticas de 
Poincaré, a quien había conocido personalmente en 1909. Frente 
al platonismo y al logicismo, que defienden que las verdades mate­
máticas se descubren, el intuicionismo mantiene que son, en reali­
dad, inventadas ( una respuesta que comparte con el formalismo). 
Sin embargo, a la pregunta sobre dónde reside la exactitud mate­
mática, el intuicionismo brouweriano apunta a la mente, mientras 
que el formalismo hilbertiano señala al papel. 

Dos fueron los puntos de fricción entre Brouwer y Hilbert, 
quienes se conocieron en persona durante unas vacaciones en 

· 1909. Por una parte, la naturaleza de las matemáticas: como libre 
construcción del entendimiento humano o como teoría axiomá­
tica. Por otra, el papel del principio de tercio excluso en matemá­
ticas. El nervio del intuicionismo es, precisamente, la negación 
de este principio lógico que está en Aristóteles y que afirma que 
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la disyunción de una proposición y su negación es una verdad 
lógica, es decir, es siempre verdadera, en cualquier modelo o uni­
verso de interpretación. Formalmente: I= A v--,A. De otra manera: 
o bien A es verdadera, o bien la negación de A lo es, porque cual­
quier tercera opción queda sistemáticamente excluida (por esto, 
precisamente, se habla de «tercio excluso»). Junto al principio 
de no contradicción (l= -,(A /\ -.A)) y al principio de identidad 
(I= \fx(x = x)), este principio formaba las tres leyes clásicas del 
razonamiento. 

Sin embargo, para Brouwer esto no tenía por qué ser así. Por 
ejemplo, como no sabemos si la expansión decimal de rt contiene 
veinte ceros seguidos, la proposición «la expansión decimal de n 
contiene veinte ceros seguidos» no es -en clave intuicionista­
ni verdadera ni falsa. Su valor de verdad no puede ser zanjado a 
día de hoy. Un correligionario de Brouwer afirmaba que el princi­
pio de tercio excluso para este tipo de proposiciones podía ser vá­
lido para Dios, que conoce toda la secuencia infinita de decimales 
tal como es y de un solo vistazo, pero no podía serlo para la lógica 
humana. Una lógica que, dando un giro de ciento ochenta grados 
al dogma logicista, los intuicionistas consideraban como una rama 
de la matemática y no al revés. 

Esta forma de pensar inauguró lo que se conoce desde en­
tonces como «lógica intuicionista», formalizada por un aplicado 
estudiante de Brouwer: Arend Heyting (1898-1980). En la lógica 
clásica, la doble negación de una proposición es equivalente a 
la proposición, es decir, -,-,A H A. Pero la lógica intuicionista 
rechaza que de la doble negación de una proposición pueda de­
ducirse la proposición de partida. No se acepta, por tanto, que 
-,-,A • A. Esta revisión intuicionista de la lógica clásica responde 
a que Brouwer rechazaba los razonamientos por reducción al 
absurdo ( que, según comentamos en el primer capítulo, Hilbert 
empleaba con frecuencia). No por demostrar la falsedad de la ne­
gación de A se seguía que A era verdadera, puesto que se había 
abandonado el principio de tercio excluso. 

El matemático neerlandés solamente aceptaba como válidas 
las demostraciones constructivas. Demostrar que la negación 
de un teorema es contradictoria no equivalía a demostrar que el 
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teorema es verdadero, porque para probar esto último había que 
construir explícitamente su contenido. Para los matemáticos in­
tuicionistas, las demostraciones de existencia no constructivas 
-por reducción al absurdo- informan de que en el mundo hay 
un tesoro escondido, pero no descubren su localización, razón 
por la cual gozan únicamente de un valor heurístico. Para que un 
objeto matemático exista no basta con que no engendre ninguna 
contradicción, es necesario aportar un procedimiento efectivo 
de construcción. 

Las paradojas descubiertas en el contexto de la teoría de con­
juntos ofrecían evidencia tajante, en opinión de Brouwer, de los 
peligros de la matemática meramente existencial. No en vano, 
Kronecker siempre había argüido enconadamente frente a Cantor 
que, si no constnúa los conjuntos de que hablaba (y no podía ha­
cerlo, dado que la gran mayoría de ellos eran infinitos), los teore­
mas de la teoría de conjuntos se evaporarían en el aire. Era obliga­
do regresar a la senda de la matemática griega, que era en esencia 
intuicionista; porque era constructiva y el infinito solo hacía acto 
de presencia en un sentido potencial, nunca actual. Gauss ya había 
expresado una opinión similar con anterioridad: «Protesto contra 
el uso de una cantidad infinita como si se tratase de una entidad 
real, lo cual nunca es lícito en matemáticas; lo infinito es solo una 
fa<;on de parler (una manera de hablar)». Para los intuicionistas 
todas las dificultades en los fundamentos de la matemática nacían 
del uso del infinito como algo acabado y perfecto. Un abuso que se 
comete cuando se define un número real como, por ejemplo, el nú­
mero n: = 3, 141592 ... Estos puntos suspensivos colocados después 
de las primeras cifras decimales nos transmiten la falsa sensación 
de que estamos ante un objeto cerrado. 

En resumen, se trataba de reconstruir la matemática clásica 
hasta donde fuera posible, sin apelar al principio del tercio excluso 
y a la reducción al absurdo. En 1918, Brouwer comenzó su plan, 
que denominó «segundo acto de intuicionismo» ( el «primero» 
era el énfasis en la fundamentación intuitiva de la matemática), 
con el artículo «Fundamentación de la teoría de conjuntos inde­
pendientemente del principio del tercio excluso». Agarrándose al 
intuicionismo kantiano del tiempo, Brouwer se asentó en la enu-
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merabilidad temporal y solo reconoció la posibilidad de conjun­
tos numerables, considerando los conjuntos no numerables como 
contraintuitivos. Como dijera Kronecker: «Dios creó los números 
naturales, todo lo demás es obra del hombre». Los conjuntos no 
numerables no debían manejarse, a riesgo de incurrir en graves 
paradojas. En la teoría de conjuntos intuicionista, los conjuntos 
reciben el nombre de especies, y las únicas colecciones de núme­
ros permitidas son las finitas: {O), {O, 1), {O, 1, 2) ... En ningún caso 
está permitido formar de golpe la colección de todos los números 
naturales {O, 1, 2, ... }. En consecuencia, los alefs cantorianos desa­
parecen en la niebla. 

«¡El infinito! Ninguna otra cuestión ha inspirado tan 
profundamente al espíritu del hombre; ninguna otra idea ha 

estimulado tan fructíferamente su intelecto; pero ningún otro 
concepto necesita mayor clarificación.» 

- DAVID HILBERT. 

Por su parte, Arend Heyting se encaró con la aritmética. La 
aritmética intuicionista comprende los mismos axiomas matemá­
ticos que la aritmética clásica, pero acepta únicamente las leyes 
lógicas que satisfacen a los intuicionistas. A diferencia de la teoría 
de conjuntos intuicionista, que sacrificaba gran parte de la teo­
ría de conjuntos clásica, la aritmética intuicionista deparaba una 
sorpresa: una estrecha relación con la aritmética clásica. Kurt 
Gódel probó, en 1933, que para cada fórmula demostrable en la 
aritmética de Peana existe una fórmula equivalente que es demos­
trable en la aritmética de Heyting, así como recíprocamente. La 
aritmética intuicionista solo aparentemente era más débil que 
la aritmética clásica. 

Finalmente, Hermann W eyl intentó reconstruir desde postula­
dos intuicionistas el análisis en su obra El continuo (1918). Weyl 
se negaba a admitir conjuntos arbitrarios de naturales, tomando 
en cuenta únicamente aquellos conjuntos infinitos que eran de­
finibles, construibles. Consiguientemente, solo alcanzó a definir 
aquellos números reales que corresponden a una ley aritmética. 
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Es decir, solo reconstruyó una cantidad numerable de los innume­
rables números que comprende el continuo. Para un matemático 
clásico, la recta real contiene todas las posibles sucesiones de 
Cauchy o cortaduras de Dedekind, no solo aquellas que son defi­
nibles, especificables mediante una regla constructiva, y que al ser 
una cantidad numerable dejan la recta real llena de agujeros, un 
continuo atomizado. De lo que se desprende que el análisis intui­
cionista difiere sobremanera del análisis clásico. Los matemáticos 
intuicionistas no aceptan, por ejemplo, el teorema de Bolzano. 
Y viceversa: los matemáticos clásicos no aceptan muchos resul­
tados intuicionistas (para los intuicionistas, por ejemplo, no hay 
funciones discontinuas). 

La reconstrucción intuicionista de la lógica y de la matemá­
tica no fue muy halagüeña, aunque gozó de mucha repercusión. 
Más que una reconstrucción fue una demolición. La matemática 
intuicionista mutiló la matemática clásica. El intuicionismo, con 
su machacona apelación a la constructibilidad fundada en la 
enumerabilidad temporal y en el rechazo al tertium non datur, 
arrojó por la borda más de la mitad de los logros clásicos. Con 
Brouwer, las matemáticas ganaron en claridad, pero los matemá­
ticos contemplaron cómo la mayor parte de sus teorías punteras, 
que creían sólidas como rocas, se disolvían en humo. Aunque el 
matemático neerlandés aceptó sin titubear la ruina del análisis, 
gran parte de la comunidad matemática la halló insufrible. Algu­
nos matemáticos comenzaron a referirse a la «amenaza bolchevi­
que» que Brouwer suponía. Y Hilbert tuvo que tomar cartas en el 
asunto. 

«ALEA IACT A EST» 

La polémica formalismo-intuicionismo dominó todo el debate fun­
dacional durante los años veinte, teniendo a Hilbert y Brouwer 
como sus máximos exponentes. El debate, bien sea por el carácter 
difícil de Brouwer o bien por la gran influencia de Hilbert, tras­
pasó los ámbitos puramente académicos para convertirse en un 
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juego de enfrentamientos personales entre sus protagonistas. La 
confrontación se inició en 1921, con lo que Hilbert consideró una 
deserción: la de su brillante alumno Hermann W eyl, que publicó 
en ese año un panfleto titulado «Sobre la nueva crisis de funda­
mentos en las matemáticas», donde defendía las drásticas tesis de 
Brouwer y se autoproclamaba apóstol del intuicionismo, profeti­
zando el advenimiento de una revolución matemática. 

El debate tocaba puntos importantísimos en la concepción 
de las matemáticas de Hilbert, pero la ferocidad con que el mate­
mático alemán reaccionó en ocasiones se debió en parte a cues­
tiones de prestigio personal. Si el más prominente de sus discípu­
los había cruzado las líneas para unirse al enemigo, ¿por qué no 
podía hacerlo el resto? 

A lo largo de los felices años veinte, coincidiendo con su úl­
tima etapa investigadora, ya a una edad avanzada, Hilbert se de­
dicó en cuerpo y alma a la disputa sobre los fundamentos de la 
matemática. Y lo hizo con una intervención rotunda, que dio un 
giro realmente novedoso al tema. Propuso un programa, «el pro­
grama de Hilbert» ( en parte esbozado en su célebre conferencia 
de París en 1900), para asentar firmemente, y de una vez para 
siempre, las bases de la matemática. 

Para Hilbert, la ciencia era una suerte de organismo que crece 
y se desarrolla simultáneamente en múltiples direcciones. La cla­
rificación de los fundamentos con ayuda del método axiomático 
era una de las fases de ese crecimiento y, a pesar de su importan­
cia, no era necesariamente prioritaria. Hilbert utilizaba una metá­
fora muy a su gusto para describir esta concepción: 

El edificio de la ciencia no se construye como una vivienda, donde 
se asientan firmemente los cimientos antes de proceder a edificar y 
agrandar las habitaciones. La ciencia prefiere echar mano lo antes 
posible de amplios espacios donde poder moverse libremente. Y solo 
después de esto, cuando aquí y allá surgen las primeras señales de 
que los endebles cimientos no son capaces de soportar la expansión 
de las habitaciones, se emprende la tarea de fortificarlos y reafirmar­
los. No es esto un signo de debilidad de la ciencia sino todo lo con­
trario. Es el correcto y sano camino para su desarrollo. 
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En matemáticas, la hora de examinar los fundamentos ha­
bía llegado. Desde 1900, pertrechado en la seguridad del método 
axiomático, que tan bien había funcionado en geometría, Hilbert 
impulsó el tratamiento axiomático del resto de disciplinas mate­
máticas, en particular, de la teoría de conjuntos, así como dio los 
primeros pasos para fundar una teoría matemática de la demos­
tración. Mientras que el platonismo y el logicismo mantenían que 
la exactitud de la matemática descansaba en un reino celestial, y 
el intuicionismo en la mente humana, el formalismo hilbertiano la 
anclaba al papel escrito. La matemática podía verse, desde cierto 
punto de vista, como un juego de notaciones carente de signifi­
cado, como una hilera de signos sobre el papel, vacíos de sen­
tido, pero consistentes con ciertas reglas, como las del ajedrez, 
para manipularlos. La posición formalista que Hilbert y sus co­
laboradores (Bernays y Ackermann) desarrollaron proponía una 
solución basada -como explicaremos con detalle en el próximo 
capítulo- en dos puntos: en primer lugar, una axiomatización 
conjunta de la matemática y de la lógica; y, en segundo lugar, una 
prueba de la consistencia de este sistema formal. La prueba de 
que no se podía deducir ninguna contradicción dentro del sistema 
era la piedra clave del edificio formalista. 

No obstante, había un paso previo ineludible: plantar cara al 
auge del intuicionismo entre los matemáticos europeos. Tras la 
Primera Guerra Mundial, las críticas a la matemática clásica plan­
teadas por Brouwer y W eyl arreciaron y motivaron a Hilbert a 
intentar eliminar de raíz todas las dudas escépticas. Hilbert era 
consciente de que la posición de Brouwer y W eyl no era totalmen­
te infundada y que era necesario, efectivamente, tomar precaucio­
nes para no caer en las paradojas de la teoría de cortjuntos. Pero, 
por otro lado, no estaba dispuesto a renunciar a la teoría canto­
riana - no en vano el primer problema de la lista de 1900 era el 
del continuo de Cantor- ni a los logros de la matemática clásica 
(incluyendo aquí los conseguidos empleando el más atacado de 
los axiomas, el axioma de elección). Gran parte de sus conquistas 
como matemático se habían debido a demostraciones de existen­
cia precisan1ente del tipo al que Brouwer -como antaño Kronec­
ker o Gordan- se oponía frontalmente. 
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Buscando contrarrestar su influjo, Hilbert se preguntó qué se 
podía hacer para no renunciar al principio del tercio excluso. A su 
juicio, quitarle este principio al matemático era lo mismo que pro­
hibirle al astrónomo emplear el telescopio o al boxeador usar sus 
puños. El catedrático de Gotinga manifestaba su asombro y gran 
disgusto porque todo un círculo entero de matemáticos hubiera 
renunciado sin más a él, con las consecuencias tan dramáticas que 
se desprendían de esta acción para la matemática. El continuo o 
los números transfinitos de Cantor eran ejemplos de objetos ma­
temáticos condenados. Y el teorema que demuestra que existen 
infinitos números primos era, por su parte, un ejemplo estrella 
del modo de razonar prohibido. En efecto, la aceptación de que 
toda proposición significativa es verdadera o falsa es fundamental 
para el método de demostración indirecto. Euclides, según expli­
camos en el primer capítulo, demostró la existencia de infinitos 
números primos probando que la tesis contraria era falsa, es decir, 
haciendo uso indispensable del principio del tercio excluso. Como 
su demostración no era constructiva, no permite determinar el 
n-ésimo primo, no era válida para los intuicionistas. 

Comparada con la matemática clásica, la matemática intui­
cionista suponía un resto lamentable, una serie de resultados 
aislados e inconexos. El miedo recurrente de Hilbert era que el in­
tuicionismo consiguiese desmembrar la matemática, corriéndose 
el riesgo de perder valiosas adquisiciones. Una muestra de lo aba­
tido que se hallaba por el tema es que combatía el intuicionismo 
incluso argumentando ad hominen, con aires poco académicos: 

El programa de Brouwer no es una revolución sino solamente una 
repetición con viejos métodos [en referencia a Kronecker] de un 
golpe de mano inútil que, aun cuando ha sido emprendido con mayor 
fuerza, ha fallado totalmente. Hoy el Estado está bien armado gracias 
a los trabajos de Frege, Dedekind y Cantor. Los esfuerzos de Brouwer 
y Weyl están de antemano condenados al fracaso. 

Hacia finales de la década, cuando la pugna entre ambas fac­
ciones estaba en su punto álgido, Hilbert se sintió morir a causa de 
la anemia perniciosa. En ese momento, temió que Brouwer se vol-
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viera demasiado influyente a su muerte e inclinara la prestigiosa 
revista de la que era editor-jefe, Mathematische Annalen, hacia 
el intuicionismo. En consecuencia, en 1928 inició una maniobra 
poco limpia para expulsar a Brouwer del consejo de redacción. 
Pese a la oposición de Einstein, la mayoría de los miembros del 
consejo se plegaron a los deseos de Hilbert, y Brouwer salió por 
la puerta de atrás. A resultas del enfrentamiento, el matemático 
neerlandés quedó mentalmente destrozado y se sumió más que 
nunca en el solipsismo. Einstein calificó el episodio de «guerra 
entre sapos y ratones». Hilbert había ganado una batalla, pero no 
la guerra. 
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CAPÍTULO 5 

El fracaso del programa 
de Hilbert 

Hilbert soñaba con fundar 
las matemáticas sobre una base axiomática. Por 

desgracia, los teoremas de Godel acabaron con el sueño del 
por entonces mejor matemático vivo. En una matemática 

concebida como un sistema formal siempre habrá hipótesis 
cuya verdad o falsedad no se pueda demostrar. Y lo que es 

mucho peor: nunca podrá demostrarse que no puede 
deducirse una contradicción. Justo cuando el edificio 

estaba a punto de terminarse, los cimientos 
volvieron a hundirse. 





Hacia finales de la década de los años veinte, el ángel del forma­
lismo y el demonio del intuicionismo aún luchaban por el alma 
de cada matemático. Pero, por suerte para Hilbert, el formalismo 
navegaba a toda vela. El cumplimiento del «programa de Hilbert» 
parecía estar al alcance de la mano. Nadie, ni los matemáticos más 
reaccionarios, ni los más revolucionarios, expulsaría a los mate­
máticos de esa suerte de fantasmagórica catedral barroca que era 
la construcción cantoriana de los infinitos. Nadie les forzaría a 
dejar de escuchar la sinfonía del infinito que era el análisis clásico. 

Después de 1900, el año en el que impartió la renombrada 
conferencia de París, Hilbert presentó sus puntos de vista so­
bre la crisis de fundamentos en el III Congreso Internacional de 
Matemáticos de 1904, celebrado en Heidelberg, pero no volvió 
sobre el tema durante los siguientes quince años, en los que el 
análisis y la física le absorbieron por completo. Al final, movido 
por el deseo de dar respuesta a las críticas intuicionistas, regre­
só a la cuestión de las bases de la matemática, puntualmente en 
1917 y de forma continuada desde 1922. Para Hilbert y la escuela 
formalista, los objetos del pensamiento matemático son los sím­
bolos mismos; y el problema fundamental, el de la consistencia o 
no-contradictoriedad de las matemáticas. Para fundamentar de­
finitivamente las matemáticas no necesitaba de Dios, como Kro­
necker, ni de la suposición de una capacidad especial de nuestro 
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entendimiento acorde al principio de inducción, corno Poincaré, 
ni de una intuición originaria, corno Brouwer, ni tampoco, final­
mente, de un axioma de infinitud o de un axioma de reducibi­
lidad, corno Russell y Whitehead. La eliminación definitiva del 
problema de los fundamentos de la matemática corno tal sobre­
vendría tras la prueba de la consistencia del sistema axiomático 
de las matemáticas. 

LOS PUNTOS FUERTES DEL PROGRAMA 

No es difícil rastrear los orígenes de las ideas de Hilbert. En 1900 
publicó una conferencia, dictada el año anterior ante la asan1blea 
anu·al de la Sociedad Matemática Alemana, bajo el título «Sobre 
el concepto de número». Fuera de su libro sobre los fundamentos 
de la geometría, este trabajo constituyó su segunda publicación 
concerniente al método axiomático. En ella discutió dos posibles 
maneras en que los conceptos matemáticos pueden ser tratados: 
la genética y la axiomática. El ejemplo clásico de aplicación del 
método genético aparece en la aritmética. Los números naturales 
emergen de la intuición básica de contar y, con el fin de crear 
la posibilidad de restar dos números naturales cualesquiera, se 
amplía el sistema para incluir los números enteros. La necesidad 
de poder dividir dos números enteros cualesquiera lleva a su vez 
a introducir los números racionales y, finalmente, para poder cal­
cular raíces, se añaden los números irracionales, definiéndose 
los números reales. Del otro lado, apostilló Hilbert, tenernos el 
método axiomático, típicamente usado en la geometría (aunque 
también en análisis, ya que Hilbert mostró cómo axiomatizar los 
números reales). A pesar del alto valor pedagógico del método ge­
nético, el método axiomático tiene la ventaja de proveer plena se­
guridad lógica. En este trabajo temprano Hilbert planteó de forma 
explícita y por vez primera la necesidad de abordar el problema 
de la consistencia absoluta de la aritmética corno problema here­
dado de la geometría ( cuya consistencia relativa él mismo había 
demostrado). Esta cuestión encontraría su hueco dentro de la lis-
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ta de veintitrés problemas abiertos de 1900, copando el segundo 
puesto (solo por detrás de la hipótesis del continuo), y Hilbert 
regresaría a ella en el congreso de 1904, aunque subestimando 
la dificultad de la empresa. No se trataba de buscar modelos más 
básicos en los que apoyarse para deducir la consistencia de la 
aritmética, a la manera que se había hecho con los axiomas de 
la geometría, ya que con esto solo se probaría la consistencia re­
lativa. Había que elaborar una demostración de la consistencia 
absoluta, basándose en la sintaxis y no en la semántica, es decir, 
estudiando si un sistema formal que expresara la aritmética per­
mitía o no derivar contradicciones. 

No obstante, no fue hasta la difusión de las paradojas, en 
torno a 1904, cuando Hilbert se convenció de dedicar mayores es­
fuerzos al análisis axiomático como parte de la tarea más amplia 
de establecer la consistencia de la aritmética (ya que, como vimos, 
tanto la geometría como el análisis se habían reducido a ella). 
Según acostumbraba, Hilbert escogió a un colaborador, en este 
caso Zermelo, como la persona sobre la que recaería la misión de 
desarrollar la axiomatización de la teoría de cortjuntos en detalle. 
Fue de esta manera como los dos puntos fundamentales del pro­
grama hilbertiano comenzaron a perfilarse. Primero, la axiomati­
zación. Después, la consistencia. 

Era necesario, como primera etapa, formalizar la teoría de 
cortjuntos, pero también la lógica y la aritmética. Las definiciones 
ingenuas no permitían un razonamiento riguroso exento de para­
dojas. Había que formalizar completamente las matemáticas cono­
cidas, traduciendo todo su contenido dentro de un sistema formal 
expresado mediante el nuevo lenguaje simbólico: O ( el número 
cero), s (la función sucesor), -, (no), v (o), A (y), • (implica­
ción), :3 (cuantificador existencial), V (cuantificador universal), 
= (igualdad), x (variable), etc. Exactamente en 1928, cincuenta 
años después de la aportación pionera de Frege, Hilbert y Acker­
mann publicaron Fundamentos de lógica teórica, el primer libro 
de texto de lo que actualmente se reconoce como lógica de primer 
orden. Su formalización alcanzó el rango de canónica y hoy es uni­
versalmente conocida como sistema de Hilbert-Ackermann. Esta­
blecieron la sintaxis formal, así como proporcionaron los axiomas 
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y las reglas de inferencia de esta lógica, lo que permite deducir 
nuevas fórmulas. La lógica de primer orden se convirtió en un 
verdadero cálculo. 

«En el principio fue el signo.» 
- DAVID HILBERT, LA NUEVA FUNDAJfENTACIÓN DE LAS MATEMÁTICAS (1922) . 

En el manual Hilbert y Ackermann se plantearon ciertas pre­
guntas metalógicas sobre las propiedades del cálculo que habían 
desarrollado. Se hacían eco, en particular, de la prueba que Ber­
nays había ofrecido en 1926 de que la lógica elemental o lógica de 
proposiciones era correcta (toda fórmula demostrable era verda­
dera) y completa (toda verdad lógica era, a su vez, demostrable), 
un resultado al que había llegado independientemente Emil Post 
(1897-1954) en 1922. Y se planteaban si la lógica de primer orden 
lo era, aunque reconocían no haber encontrado la respuesta. 
Justo un año después, en 1929, un joven lógico austriaco llamado 
Kurt Godel demostró la completitud de la lógica de primer orden 
dentro de su tesis doctoral, dirigida por Hans Hahn (1879-1934), 
aunque no publicada hasta 1930. Esta lógica era correcta (todas 
las fórmulas demostrables son verdaderas) y completa (todas las 
verdades lógicas, todas las tautologías, son demostrables). En el 
cálculo de predicados de primer orden la noción sintáctica de 
deducción y la noción semántica de verdad coinciden, tienen la 
misma extensión. 

El programa de Hilbert obtenía un éxito inesperado y espe­
ranzador: toda fórmula lógicamente válida, en el sentido de verda­
dera en cualquier interpretación posible, era deducible mediante 
el cálculo descrito. Ahora bien, ¿qué pasaba si a este cálculo de 
predicados puro se le añadían axiomas y reglas que hicieran refe­
rencia a la aritmética o a la teoría de coajuntos? ¿Seguía siendo 
correcto y consistente? ¿Y completo? 

Como segunda etapa, había que convertir el concepto mismo 
de demostración en un objeto de estudio matemático para, por 
medio de ello, probar la consistencia de la aritmética y, de este 
modo, erradicar todas las incertidumbres. En matemáticas no 
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debían tener cabida las verdades a medias. Para Hilbert, el ma­
temático se ocupaba del concepto de prueba matemática de la 
misma manera que el físico repasaba el funcionamiento de sus 
aparatos o el filósofo criticaba la propia razón. El desarrollo de 
una «teoría de la demostración» permitiría considerar las demos­
traciones como resultado de meras combinaciones de símbolos 
según reglas formales prescritas. En estas condiciones, bastaría 
demostrar que ninguna derivación formal, ninguna combinación 
de símbolos podía conducir a la fórmula O,. O ( que es una con­
tradicción). Con ello quedaría establecida la consistencia de la 
aritmética. En efecto, bastaba probar que había una fórmula que 
no podía demostrarse, ya que si todas las fórmulas pudiesen de­
mostrarse podríamos deducir una contradicción (probando una 
proposición y su contraria), con lo que el sistema sería inconsis­
tente. Recíprocamente, si el sistema fuese inconsistente, como 
de una contradicción se sigue cualquier cosa ( ex contradictione 
sequitur quodlibet, según acuñaron con acierto los escolásticos), 
podríamos demostrar cualquier fórmula (la fórmula «si O.- O, en­
tonces P» es siempre verdadera, válida, porque el antecedente 
nunca es el caso). 

A lo largo de los años veinte, Hilbert introdujo la idea de que 
su «teoría de la demostración» abordaría la cuestión de la consis­
tencia mediante dos niveles de consideración. Por un lado, el nivel 
matemático, tal y como queda representado dentro del sistema 
formal. Por otro lado, el nivel metamatemático, un nivel de dis­
curso en el que se habla de las matemáticas axiomatizadas. En este 
nivel se procedería a probar la consistencia mediante una serie de 
técnicas que estudiarían el sistema formal desde fuera, desconec­
tándolo de cualquier significado numérico o relacionado con el 
infinito, simplemente como cadenas finitas de signos primitivos a 
partir de las cuales se pueden generar fórmulas y demostraciones 
de acuerdo a ciertas reglas predefinidas. Las proposiciones que se 
refieren a este esqueleto formal, a esta aritmética vaciada de signi­
ficado, son las proposiciones metamatemáticas, que no se formu­
lan en el lenguaje objeto sino en el metalenguaje. Es algo así como 
el español cuando se usa en una clase de inglés para enseñar los 
matices de uso de alguna palabra anglosajona. La pregunta por la 
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consistencia en matemáticas o, equivalentemente, la pregunta de 
si la fórmula O .- O es demostrable era, en suma, como preguntar si 
una determinada posición de ajedrez es legal, es decir, si es posi­
ble llegar a ella partiendo de la situación inicial de la partida y de 
las reglas del movimiento de piezas. Para responder, uno no juega 
al ajedrez sino que reflexiona sobre el propio ajedrez. 

«Duda de los datos hasta que los datos no dejen lugar a dudas.» 
- HENRI POINCARÉ, 

)52 

Pero Hilbert insistía en que la demostración metamatemática 
de la consistencia de la aritmética terúa que satisfacer tanto a los 
matemáticos clásicos como a los intuicionistas, es decir, debía 
hacerse mediante métodos finitarios, constructivos, que no re­
quiriesen la intervención del infinito. En efecto, como subrayó 
Poincaré poco antes de morir, si para probar la consistencia de la 
aritmética se usaba el principio de inducción, es decir, el quinto 
axioma de Peano, aunque fuera en el plano metamatemático, se 
caía en un círculo vicioso: se quería demostrar la coherencia de 
la aritmética empleando precisamente un principio aritmético. Se 
trataba de demostrar con razonamientos autoevidentes que los 
propios métodos matemáticos, aun cuando implican la presencia 
del infinito actual, son válidos, es decir, que no dan lugar a deducir 
una contradicción. Aún más: Hilbert aspiraba a demostrar no solo 
la consistencia de la matemática, sino también su completitud. 
Esta era la otra cuestión pendiente en la base de su conferencia 
del año 1900: la posibilidad de resolución de cualquier cuestión 
matemática. 

Hilbert y sus colaboradores lograron demostrar la consisten­
cia de algunos sistemas formales sencillos. Así, en 1922, Hilbert 
se fijó en una parte muy elemental de la aritmética y, estudiando 
el aspecto de las fórmulas demostrables, concluyó que la fórmula 
O.- O no era una de ellas. Esta prueba fue posteriormente exten­
dida por Ackermann en su tesis doctoral (fechada en 1925 y rea­
lizada bajo la supervisión de Hilbert), así como simplificada con 
elegancia por Von Neumann en 1927. Pero se trataba de avances 
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parciales: los sistemas formales aritméticos de los que probaban 
la consistencia no incluían el principio de inducción. En 1929, el 
matemático polaco Mojzesz Presburger (1904-1943) logró demos­
trar la consistencia de una aritmética que incluía el principio de 
inducción y la suma, pero no la multiplicación. Estos resultados 
cristalizarían en dos volúmenes escritos por Bernays en nombre 
de Hilbert bajo el título Fundamentos de las matemáticas, que 
se publicarían en 1934 y 1939. Sin embargo, la consistencia de los 
sistemas que describían una porción lo suficientemente grande de 
la aritmética con números naturales seguía resistiéndose. 

GÓDEL: DESASTRES Y TEMPESTADES 

Hacia 1930, el primer punto del programa de Hilbert se había 
esencialmente cumplido: la lógica, la teoría de cortjuntos y la 
aritmética estaban axiomatizadas. Quedaba todavía pendiente el 
asunto de la consistencia y de la completitud de estas dos últimas. 

Ese año Hilbert se jubiló tras cumplir sesenta y ocho años. 
Con motivo del nombramiento como ciudadano honorífico de Ko­
nigsberg, el catedrático emérito de Gotinga pronunció un discurso 
en su ciudad natal. En él, volvió a defender la idea de que no hay 
problemas irresolubles en matemáticas. Al terminar, se dirigió a la 
radio local, donde declamó con igual intensidad la frase final de su 
discurso: «Debemos saber, sabremos». Después, sonrió. Todavía 
se conserva la grabación y, si se escucha muy cuidadosamente, 
puede oírse la risa final de Hilbert. Era el 8 de septiembre de 1930. 

Paradójicamente, como si se tratase de una broma del desti­
no, durante los tres días previos se había celebrado precisamente 
en Konigsberg un congreso sobre epistemología de las ciencias 
exactas. La meta del encuentro era decidir hasta qué punto se ha­
bía solventado la crisis de fundamentos de las matemáticas. In­
tervinieron conferenciantes dentro de cada una de las corrientes 
fundacionales. Por el logicismo, el lógico Rudolf Carnap (1891-· 
1970), que expuso la concepción de las matemáticas que había 
hecho suya el Círculo de Viena: los teoremas matemáticos como 
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tautologías, verdades lógicas. Por el intuicionismo, Arend Heyting, 
pretendiendo expulsar el infinito de las matemáticas. Y, por el for­
malismo, John von Neurnann, que estaba a la zaga de Hilbert. El 
día 6, el joven lógico austriaco Kurt Godel, de veinticuatro años, 
había intervenido para comunicar un par de resultados que recien­
temente había obtenido: «Puedo dar ejemplos de proposiciones 
aritméticas verdaderas pero indemostrables en el sistema formal 
de las matemáticas clásicas». A pesar de su importancia, el anun­
cio pasó desapercibido para todos los asistentes, a excepción de 
Von Neurnann, que quedó perplejo. Pese a soñar reiteradamente 
que lograba demostrar la consistencia de la matemática mediante 
métodos finitarios, Von Neurnann había comenzado a sospechar 
que no era realmente posible y la breve comunicación de ese joven 
tímido de gafas circulares pronto se le apareció como un hito que 
siempre se divisaría desde remotas distancias en el espacio y en 
el tiempo. Era la sentencia.de muerte de la hermosa frase final de 
Hilbert. La esperanza que el matemático alemán había mantenido 
viva durante más de treinta años iba a apagarse definitivamente. 
Las matemáticas no volverían a ser seguras. Con la publicación en 
1931 de los teoremas de incompletitud de Godel, el programa de 
Hilbert fue cortocircuitado. Pero para explicar por qué, necesita­
mos unas gotas de lógica matemática. 

Desde Aristóteles, sin olvidar las aportaciones escolásticas, 
la lógica ha sido concebida como el estudio del razonamiento, 
que nunca se da en el vacío sino siempre dentro de un lenguaje. 
Con el paso del tiempo, los matemáticos fueron prestando mayor 
atención a la lógica de los lenguajes en que se expresan, con el 
fin de determinar sus virtualidades. La lógica les enseñó que hay 
dos nociones fundamentales a estudiar en un lenguaje: una de 
carácter semántico, la noción de verdad; otra de carácter sin­
táctico, la noción de demostración. Así, la dificultad estribaba 
en determinar su alcance respectivo: si estas dos nociones, muy 
distintas intensionalmente, coinciden extensionalmente. Con 
otras palabras, si todo lo demostrable es verdad (corrección) y si 
todo lo verdadero es demostrable (completitud). Generalmente, 
a un lenguaje rico en capacidad de expresión, corresponde una 
lógica pobre en propiedades interesantes. Por ejemplo, la lógica 
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de los lenguajes de primer orden es correcta y completa, pero 
al matemático suele quedársele corta en su faena de cada día 
( cuando precisa cuantificar sobre propiedades y no solo sobre 
individuos). Pero no cabe esperar que la lógica de los lenguajes 
de segundo orden o superior sea completa. Así que una de dos: o 
bien hacemos matemáticas en un lenguaje poco expresivo pero 
cuya lógica es correcta y completa; o bien formalizamos nuestros 
razonamientos matemáticos en un lenguaje expresivo pero cuya 
lógica subyacente es, en el mejor de los casos, correcta (solo po­
demos demostrar verdades) pero incompleta (no podemos de­
mostrar todas las verdades). 

«Godel es el lógico más grande de todos, después 
de Aristóteles.» 

- JOHN VON NEUMANN SOBRE GóDEL. 

Restringiéndonos al lenguaje de primer orden ( donde solo 
se puede cuantificar sobre individuos), si interpretamos los indi­
viduos como números, difícilmente iremos más allá de una arit­
mética elemental (por ejemplo, el teorema que afirma que todo 
conjunto de números naturales posee un elemento mínimo es 
inexpresable, ya que tendríamos que cuantificar sobre conjuntos 
de números), y jamás nos elevaremos hasta el análisis. El pro­
blema reside en que las funciones o las relaciones numéricas no 
son, a su vez, números. Sin embargo, esta dificultad se esfuma 
si consideramos conjuntos, porque las funciones y las relaciones 
entre conjuntos son, a su vez, otros conjuntos: las n-tuplas de 
conjuntos son conjuntos. Esto plantea la importante cuestión 
de si toda la matemática es reducible a teoría de conjuntos. Si 
interpretamos los individuos de nuestro lenguaje de primer orden 
como conjuntos, se comprueba empíricamente cómo la mayoría 
de entes matemáticos son definibles a partir de conjuntos. Este 
programa de investigación sedimentó en la mencionada teoría de 
conjuntos ZF: partiendo de unos pocos axiomas formulables en 
primer orden, esta teoría de conjuntos fue capaz de tragarse una 
parte ingente de la matemática de su tiempo. 
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De nuevo, como al cabo comprendió Godel, el precio que hay 
que pagar por esta riqueza teórica ( expresividad) es la pobreza 
metateórica, que se manifiesta en varios resultados de limitación: 
los teoremas de incompletitud. El primer teorema prueba que 
existe una fórmula verdadera que no es demostrable en ZF ( aun­
que el trabajo de Godel tomaba los Principia mathematica como 
sistema formal de referencia, sus resultados son válidos para ZF y 
otros sistemas afines). Y el segundo, que es imposible demostrar 
la consistencia de ZF en ZF. Más aún: una demostración en ZF 
de la ausencia de contradicción en ZFy, por ende, en las matemá­
ticas, únicamente demostraría que ZF y las matemáticas son, de 
hecho, contradictorias. Godel acabó con las esperanzas del forma­
lismo hilbertiano. Todos los esfuerzos por probar la consistencia 
de la matemática están condenados al fracaso. Con más precisión: 
es imposible demostrar mediante métodos finitarios la ausencia 
de contradicciones de cualquier sistema formal que contenga la 
aritmética de Peano - si se permite el empleo de artillería pesada, 
sí es posible probar la consistencia, como lo logró Gerhard Gent­
zen (1909-1945), un alumno de Hilbert, en 1936, aunque mediante 
métodos transfinitos cuya evidencia es muy discutible- . 

«¿ Quién de nosotros no se alegraría si pudiera levantar 
el velo tras el que se oculta el porvenir, dejando caer su mirada 
sobre los futuros avances de nuestra ciencia y los secretos 
de su desarrollo?» 
- DAVID HILBERT, INTRODUCCIÓN DE SU INTERVENCIÓN EN EL II CONGRESO INTERNACIONAL 

DE MATEMÁTICOS EN PARÍS . 

156 

La paradoja del mentiroso fue para Godel uno de los moto­
res de la demostración de los teoremas de incompletitud. El que 
la prueba esté a un paso de caer en la circularidad provocó 
que más de un matemático - caso del sexagenario Zermelo­
no comprendiese su valor. Godel ideó una hábil traducción del 
metalenguaje dentro del lenguaje: una aritmetización de la meta­
matemática. Mediante una audaz codificación numérica basada 
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en los números primos (llamada godelización desde entonces), 
asignó números a los signos, de manera que fuera factible asociar 
a cada fórmula - y también a cada demostración- un número 
que codificara toda su estructura. Las proposiciones que habla­
ban de las propiedades del sistema formal eran a su vez expre­
sables dentro del sistema por medio de fórmulas aritméticas. La 
demostrabilidad, por ejemplo, quedaba representada como una 
relación numérica. 

En estas condiciones, Godel se las ingenió para construir una 
fórmula G que afirma de sí misma lo siguiente: «soy indemostra­
ble». Esta fórmula era un ejemplo de sentencia indecidible dentro 
del sistema formal: ni ella ni su negación son teoremas, es decir, 
demostrables. En efecto, Godel consiguió demostrar que G es de­
mostrable si y solo si , G es demostrable. Por lo que, si deseamos 
que el sistema formal sea consistente, ni G ni , G pueden serlo. 
Si G lo fuese, como , G afirma en términos metamatemáticos que 
Ges demostrable (niega que sea indemostrable como ella misma 
afirrna), sería posible demostrar también , G y deducir una con­
tradicción (G,... , G). Recíprocamente, si ,G fuese demostrable, 
podríamos por la misma razón demostrar G y llegar a la misma 
contradicción. En suma, la demostración de cualquiera de las dos 
fórmulas implicaría ipso facto la inconsistencia del sistema. Pero 
hay más: si asumimos que el sistema formal es consistente, enton­
ces G es indemostrable pero verdadera. Si G fuera falsa, como lo 
que dice Ges «no soy demostrable», entonces G sería demostra­
ble, lo que es imposible. En consecuencia, tenemos una sentencia 
G que, aunque no demostrable, es verdadera. 

La existencia de una sentencia indecidible implica que los 
axiomas de la teoría no contienen la respuesta a todas las pregun­
tas formulables en el lenguaje formal, porque ni la sentencia ni su 
negación son teoremas. Y como ella o su negación han de ser ver­
daderas, tenemos una fórmula verdadera indemostrable. Lo peor 
es que si uno añade la sentencia indecidible como axioma, apa­
recen otras nuevas. Los matemáticos despertaron de golpe del 
sueño hilbertiano de la completitud, en que los sistemas axiomá­
ticos no contienen fórmulas indecidibles y lo verdadero coincide 
siempre con lo demostrable. Resumiendo: «consistente» implica 
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«incompleto»; y, recíprocamente, «completo» implica «inconsis­
tente». Ningún sistema formal que contenga la aritmética usual es 
simultáneamente ambas cosas. Si suponernos que es consistente, 
siempre será incompleto, es decir, contendrá verdades no demos­
trables. Existirán algunas propiedades ciertas sobre los números 
formalmente indecidibles, es decir, que no podremos demostrar 
ni refutar a partir de los axiomas. 

Pero al primer teorema de incornpletitud le sigue un segundo 
teorema: corno, según vimos, la consistencia es equivalente a afir­
mar que la fórmula O .. O no es demostrable, Godel transformó esta 
última propiedad rnetarnaternática en una fórmula aritmética, que 
llamaremos C, y observó que lo que el primer teorema establece 
es, en el fondo, «C-G». La consistencia implica que existe una 
sentencia indecidible y, por tanto, la incornpletitud. De modo que 
una prueba de C permitiría descargar G en la implicación «C- G» 
mediante el modus ponens y, por tanto, demostrar G, lo que es 
imposible, ya que G es por construcción indemostrable. Por consi­
guiente, C es también indemostrable. Este corolario sorprendente 
asegura que la consistencia de un sistema formal que incluya la 
aritmética no es demostrable dentro del sistema formal. En reali­
dad, Godel no demostró propiamente este segundo teorema, solo 
argumentó a favor de su plausibilidad, sin llegar nunca a escribir la 
demostración prometida. La primera prueba completa, muy labo­
riosa, apareció curiosamente en 1939, en el segundo volumen de 
los Fundamentos de las matemáticas de Bemays y Hilbert. 

Para rizar el rizo, a las limitaciones sintácticas que descu­
briera Godel, se unió otra limitación semántica de los sistemas 
formales de primer orden: el teorema formulado por Leopold 
Lowenheim (1878-1957) y Thoralf Skolern (1887-1963) hacia 1920, 
sobre el que este último volvió en 1933. En 1930, dentro de su 
prueba de la completitud de la lógica de primer orden, Godel de­
mostró de pasada que toda teoría de primer orden consistente 
tiene un modelo en el que los axiomas se verifican, aunque nada 
dijo sobre qué características tiene ese modelo o cómo construir­
lo. Lo que Lowenheim y Skolern percibieron con anterioridad es 
que cualquier sistema formal de primer orden consistente tiene, 
de hecho, un modelo numerable. Esto da lugar a la paradoja de 
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EL TEOREMA DE INDEFINIBILIDAD DE LA VERDAD DE TARSKI 

Alfred Tarski (1902-1983) se preciaba 
de ser el mejor de los lógicos matemáti­
cos vivos y cuerdos (con lo que evitaba 
compararse con el maniático y obsesi­
vo Godel). Este lógico polaco, que lo­
gró embarcarse para Estados Unidos en 
1939 y convertir la Universidad de Ber­
keley en la capital mundial de la lógica 
matemática durante decenios, era noc­
támbulo y aficionado a las anfetaminas, 
a fin de mantenerse despierto trabajan­
do incansablemente. Hizo suyo el aforis­
mo hilbertiano de que el mejor descan­
so de un matemático se encuentra en 
la esposa de un colega, una reputación 
de Casanova a la que tampoco fueron 
indiferentes sus doctorandas (en algún 

Alfred Tarski en 1968. 

momento, amante y esposa llegaron a convivir bajo el mismo techo): una de 
ellas, que logró resistirse, fue la matemática estadounidense Julia Robinson. 
Tarski es célebre porque en 1933 publicó un extenso artículo en el que daba 
una definición formal de verdad, inaugurando con ello la teoría de modelos. 
Si Hilbert, con su teoría de la prueba o de la demostración, esclareció la no­
ción sintáctica de demostración formal, Tarski hizo lo propio con la noción 
semántica de verdad. 

Otro teorema de limitación 
En 1933, dos años después de que Godel diera a conocer sus dos resultados de 
incompletitud, Tarski extrajo otro teorema de limitación, aunque este teorema 
ya fue enunciado y probado por Godel en una carta a Zermelo fechada en 1931. 
Expresado en términos de límite expresivo, este teorema establece que toda 
teoría formal de primer orden que contenga la aritmética básica es incapaz, 
si es consistente, de expresar su propio concepto de verdad. Las teorías inte­
resantes no contrad ictorias no pueden contener una expresión «ser verdad» 
dentro de su lenguaje, porque de ser así caerían en la paradoja del mentiroso. 
Usando la godelización, podría reproducirse una fórmula T que afirmara de 
sí misma que es falsa. A continuación, se compondría con la expresión «ser 
verdad» que presuponemos que existe dentro del lenguaje, y llegaríamos a la 
siguiente contradicción: Tes verdad si y solo si es falsa, puesto que es lo que 
T afirma. Como el mentiroso: digo la verdad si miento. Desde luego, los lógicos 
matemáticos han sido capaces de emplear la circularidad que precipita en las 
paradojas con gran provecho. 
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Skolem: si ZF es consistente, posee entonces un modelo nume­
rable. Es decir, ¡el continuo no-numerable que creemos manejar 
dentro de ZF puede referir a un cor\junto numerable fuera de ZF". 
La teoría de los números reales, de la qtie esperamos y queremos 
que tengan el familiar modelo no numerable (los números reales 
«reales»), tiene también un modelo numerable. Esto quiere decir 
que las teorías de primer orden no pueden controlar la cardina­
lidad de sus modelos. Así, por ejemplo, si los axiomas de Peana 
de la aritmética se formulan en la lógica (incompleta) de segundo 
orden, son categóricos ( es decir, todos sus posibles modelos son 
isomorfos, tienen el mismo cardinal); pero si los formulamos en 

EL «ENTSCHEIDUNGSPROBLEM» O PROBLEMA DE LA DECISIÓN 

En el IV Congreso Internacional de Matemáticos, celebrado en Bolonia en 
1928, Hilbert aprovechó la ocasión para -aparte de contar de nuevo su plan 
de salvación de la matemática- plantear la siguiente cuestión: ¿existe un 
procedimiento mecánico que resuelva todos y cada uno de los problemas 
de la matemática, un algoritmo capaz de decidir en principio todas las cues­
tiones matemáticas, que dada una proposición matemática nos diga si es o 
no un teorema? ¿Es, en otras palabras, decidible la matemática? Al igual que 
las cuestiones de la consistencia y de la completitud, recibiría una respuesta 
negativa. Tras los teoremas de Gódel, se entrevió que la respuesta al problema 
era un no rotundo al ser incompleta la matemática: el supuesto algoritmo se 
quedaría tiempo infinito pensando en la sentencia indecidible, ya que ni ella 
ni su negación son un teorema. En consecuencia, el problema de la decisión 
solo quedó pendiente para la lógica de primer orden, que es, recordemos, 
completa. Sin embargo, en 1936, Alan Turing (1912-19S4) e independiente­
mente Alonzo Church (1903-1995) demostraron que la lóg ica de primer orden 
tampoco es decidible. 

La tesis de Church-Turing 
Turing comenzó por plantearse qué quería de'cir pensar como una máquina, 
mecánicamente. Su primer triunfo consístió en ~ifinir el concepto de función 
computable: una función computable es aquella que una máquina de Turing, 
una suerte de computadora sin limitaciones de espacio o tiempo, es capaz 
de calcular. Simultáneamente, al otro lado del Atiántico, Church llegó a idén­
ticas conclusiones mediante el desarrollo de un sistema formal que llamó 
cálculo lambda. Desde entonces, se conoce como tesis de Church-Turing el 
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la lógica (completa) de primer orden, pagamos el precio de per­
der la categoricidad. Habrá modelos estándar y no estándar de 
los números naturales. La avaricia del lógico tiene un coste. 

Además, Godel conjeturó muy pronto que la hipótesis del 
continuo de Cantor, que en 1925 Hilbert creía estar cerca de pro­
bar empleando técnicas muy refinadas entresacadas de su teoría 
de la demostración, era un ejemplo de.sentencia indecidible en la 
teoría de conjuntos habitual. En 1938, restringiéndose al subuni­
verso de los conjuntos constructibles, Godel probó que no puede 
demostrarse que sea falsa en ZFC. Inversamente, en 1963, Paul 
Cohen (1934-2007) probó, empleando el método delforcing, que 

postulado que afirma que cualquier 
definición alternativa de computabi­
lidad es equivalente a la definición 
dada por Turing en términos de sus 
máquinas. Recurriendo a una varian­
te ingeniosa del argumento diagonal 
de Cantor, Turing probó que hay mu­
chas más funciones que máquinas de 
Turing. O, expresado de otro modo, 
que hay funciones no computables. 
Las funciones computables, como las 
máquinas de Turing, son una canti­
dad numerable, esto es, agujas en el 
pajar de todas las funciones. Final­
mente, considerando el problema 
de la parada, ofreció una respuesta 
negativa a la pregunta de Hilbert, al 
Entscheidungsproblem: si exist iera 
ese procedimiento, también seria 
capaz de decidir en tiempo finito si 
una máquina de Turing cualquiera se 
para tras un número finito de pasos 

Estatua en pizarra y retrato de Alan Turing en 
el Museo de Bletchley Park. 

o entra en un bucle inf inito cuando se le introduce cierto dato como entrada. 
Pero esto último era, según demostró, imposible. No existe un algoritmo capaz 
de recibir como input un enunciado lógico o matemático y devolver como 
output «teorema» o «no-teorema» (aunque la propiedad de deducibilidad sí 
es decidible en la restringida lógica de proposiciones) . 
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tampoco puede demostrarse que sea verdadera en ZFC. Godel 
y Cohen construyeron sendos modelos donde la hipótesis era, 
respectivamente, verdadera y falsa. Así que ni la afirmación ni la 
negación de la hipótesis del continuo son demostrables. Exacta­
mente lo mismo ocurre con el axioma de elección, cuya consis­
tencia e independencia con respecto al resto de axiomas también 
probaron ambos matemáticos. El estatus del axioma de elección 
y de la hipótesis del continuo dentro de la teoría de cortjuntos es, 
por tanto, análogo al del axioma de paralelas en geometría. El de 
Cantor no es el único paraíso cortjuntista disponible. 

El programa de Hilbert quedó fuera de combate por culpa 
de los derechazos infligidos por Godel. Tanto el primer como el 
segundo problema de la famosa lista de veintitrés problemas de 
Hilbert quedaron al fin resueltos, aunque de una manera inimagi­
nable en 1900. En matemáticas, lo verdadero no coincide con lo 
demostrable. Los axiomas y las reglas de inferencia que Hilbert 
había puesto en cabeza no eran suficientes, no bastaban para de­
ducir todos los teoremas matemáticos, siendo posible imaginar 
proposiciones verdaderas pero no derivables en el sistema formal 
de las matemáticas clásicas. De hecho, «la aritmética es consis­
tente» era un ejemplo de este tipo de proposiciones indecidibles. 
Hilbert, que conoció a los pocos días los teoremas de Godel (gra­
cias a Bernays), intentó salvar parte de su programa permitiendo 
el uso de métodos no finitarios para demostrar la consistencia de 
la matemática. Pero, como ya dijimos, estos métodos son cual­
quier cosa menos autoevidentes. Hilbert y sus pastores matemá­
ticos habían construido un recinto para proteger de los lobos al 
rebaño, pero desconocían si habían dejado algún lobo dentro. 

BALANCE: LAS GRIETAS DEL FORMALISMO 

Pese a que las dudas escépticas nunca fueron exorcizadas del 
todo, la matemática clásica siguió gozando de la mejor salud. La 
firmeza y el entusiasmo de Hilbert lograron mantener el rumbo 
del gran barco de las matemáticas. El formalismo, en cuanto fun-
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damentación de la matemática, besó la lona; pero, en cuanto filo­
sofía de las matemáticas, ganó a los puntos. 

Frecuentemente se dice que la posición platónica es la que 
mejor caracteriza la actitud del matemático hacia la esencia de 
su disciplina. El matemático en activo cree en la realidad de los 
objetos matemáticos. Pero claro, cuando los filósofos empiezan a 
acosarle con sus preguntas, corre a esconderse bajo las faldas del 
formalismo y afirma: «la matemática no es más que una combina­
ción de signos faltos de significado, un bonito juego con fórmulas, 
más divertido aún que el ajedrez». Aunque con ello la relación que 
tiene con la realidad, con su significado real, quede entre tinie­
blas. Si se quiere certeza, hay que eliminar todo significado; pero 
si se quiere que las matemáticas tengan sentido, se ha de abando­
nar la certeza. Para el formalista estricto, toda teoría matemática 
no es sino una combinación de signos sin significado, como un 
jeroglífico desprovisto de ulterior sentido. En verdad, la mayoría 
de matemáticos son platónicos los días laborables, mientras fae­
nan entre teoremas, proposiciones y corolarios, y solo se vuelven 
formalistas los fines de semana, cuando abandonan sus trabajos y 
charlan con los filósofos. 

Si bien es cierto que Hilbert fue un formalista circunscrito al 
campo de los fundamentos de las matemáticas, no puede decirse 
sin ambigüedad que lo fuese en su concepción general de la ma­
temática. Para el matemático alemán la matemática no tenía nada 
que ver con la arbitrariedad de un juego. Se trataba más bien de 
un sistema conceptual cerrado, dotado de una necesidad interna, 
donde se cun1plía que a nuevas ideas correspondían siempre nue­
vos signos y manipulaciones. 

A lo largo de los dos últimos capítulos hemos comprobado 
cómo cada una de las concepciones de la matemática (plato­
nismo, logicismo, intuicionismo, formalismo) presenta dos caras: 
por un lado, un plan de fundamentación de las matemáticas (la 
conjuntivización del platonismo, la logificación del logicismo, 
el constructivismo del intuicionismo, el axiomatismo del forma­
lismo); por otro lado, una visión de la matemática ( el realismo pla­
tónico y logicista, el conceptualismo intuicionista, el nominalismo 
formalista). A la postre, el formalismo demostró ser la corriente 

EL FRACASO DEL PROGRAMA DE HILBERT 163 



más fuerte, aunque en su persecución de una matemática segura, 
entendida como ciencia de los sistemas formales, se dio de bruces 
con los teoremas de Godel. Ahora bien, el error que comete esta 
corriente, al igual que las otras, es presuponer que las ciencias se 
fundan sobre sus propias fundamentaciones. 

Durante la crisis de fundamentos no hubo ninguna an1enaza 
de derrumbe del edificio secular de las matemáticas. Es un mito 
bastante extendido pensar que las soluciones lógico-formales 
apuntalaron un presunto edificio en ruinas. Porque en realidad 
la matemática siguió su curso sin apercibirse de esas supuestas 
grietas. No en vano se estaba viviendo una edad dorada, con es­
pléndidos y fértiles avances (teoría de la medida, análisis funcio­
nal, topología ... ). La mal llamada crisis de fundamentos, que solo 
se dibujó en el terreno de la lógica y la teoría de conjuntos, fue 
mucho más una crisis de métodos, que renovó la forma de hacer 
matemáticas. 

Hilbert fue el campeón de la axiomática, un firme partidario 
del método axiomático no solo para la matemática sino para la 
ciencia. Bajo su patronazgo se expandió desde las raíces a todas 
las ramas del árbol matemático. Pero, dejando de lado la brecha 
abierta por Godel, hay que decir que el axiomatismo hilbertiano 
no encaja con el quehacer cotidiano del matemático, con su día 
adía. 

Si observamos a un matemático en acción, porque los artí­
culos no son más que los productos acabados de ese hacer, nos 
asombraremos de la gran cantidad de razonamientos no formales 
que hace. ¿Qué demuestran los teoremas de limitación de Godel o 
Tarski para el matemático en activo? Que la matemática es un co­
nejo demasiado grande para sacarlo de una chistera tan pequeña 
como es un sistema axiomático, por hábil que sea ese prestidigita­
dor llamado Hilbert. Es más, como patentiza la historia de los nú­
meros, la axiomática solo es posible si previamente ha habido una 
fase de manejo operacional del modelo, es decir, solo se pueden 
listar los axiomas de los números si ya se posee una ligera idea 
del constructo que se tiene entre manos. El método genético pre­
cede al método axiomático, y permutarlos ofrece la misma ven­
taja que el robo sobre el trabajo honrado (la axiomática se arroga 
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FOTO SUPERIOR: 

Fotografía de la 
tumba de Hilbert 
en Gotinga. Al pie 
de la lápida puede 
leerse la célebre 
frase que 
pronunció en 
el discurso tras 
ser nombrado 
ciudadano 
honorifico de 
KOnigsberg: 
«Debemos saber. 
sabremos». 

FOTO INFERIOR 
IZQUIERDA: 
Alfred Tarski y 
Kurt GOdel en 
Viena, en 1935. 
Ambos 
propiciaron el 
derrumbe del 
edificio hilbertiano 
con sus teoremas 
de limitación. 

FOTO INFERIOR 
DERECHA: 
David Hilbert 
a finales de la 
década de 1930. 
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BOURBAKI 

La concepción ultraformalista de las matemáticas repuntó durante los años de 
posguerra de la Segunda Guerra Mundia l con el bourbakismo. Este grupo de 
jóvenes matemáticos franceses (André Weil, Henri Cartan y Jean Dieudonné, 
entre otros), surgido en 1935, se bautizó con el nombre del fracasado general 
francés Bourbaki porque, cursando sus estudios, un jocoso estudiante más 
avanzado les propuso teoremas formulados erróneamente con nombres de 
famosos generales. El colectivo Bourbaki actuó como firmante de múltiples 
memorias y monografías, y se presentó a sí mismo como el verdadero herede­
ro intelectual de Hilbert. Con la consigna de «iabajo Euclides!», Bourbaki pre­
sentaba las matemáticas de un modo muy abstracto y aséptico, que cristalizó 
en unos Elementos de matemática altamente axiomatizados. Esta tendencia a 
presentar las matemáticas como serafines, purificados de toda incertidumbre 
terrena, fue la responsable de la enseñanza de la teoría abstracta de los con­
juntos desde la más t ierna infancia en las escuelas de media Europa durante 
los años setenta y ochenta del siglo pasado. 

El congreso Bourbaki de 1938 (de izquierda a derecha): S. Weil, C. Pisot, A. Weil , J . Dieudonné, 
C. Chabauty, C. Ehresmann y J . Delsarte. 
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de inmediato todo lo construido). Incluso los axiomas lógicos y 
los de la teoría de conjuntos se han obtenido corno resultado del 
análisis de las demostraciones no formales. Además, cuando el 
matemático corriente razona sobre el continuo de números reales, 
jamás piensa en modelos no estándar (numerables) del continuo 
( que existen si se trabaja axiornáticamente dentro de ZFC y que, 
para un irredento formalista, son tan válidos corno el modelo es­
tándar). Desde el punto de vista del analista o del topólogo, para 
el cual el continuo es una realidad operacional, la existencia de 
modelos numerables significa simplemente pobreza del lenguaje 
formal corno medio de imitación de los razonamientos no forma­
les. Pese a la luminosidad de la rnetáf ora acuñada por Hilbert, la 
matemática no es un edificio, un templo, sino que se asemeja más 
a una ciudad, con sus avenidas, sus barrios, sus zonas nuevas en 
construcción y sus zonas deshabitadas, cerradas por derribo. 

LA CAÍDA DE LOS DIOSES 

Con la llegada de Hitler al poder en el año 1933, Ludwig Bieber­
bach -afiliado al Partido Nazi- se aupó a la cabeza de las mate­
máticas alemanas, promoviendo una matemática «aria o alemana» 
(la Deustche Mathematik). La teoría de la relatividad fue denun­
ciada corno un fraude judío. El mismo destino corrió la teoría 
de conjuntos, quizá a causa de que empleara el alfabeto hebreo 
para los cardinales transfinitos ( aunque aquí también pesó que 
Bieberbach fuera el aliado de Brouwer en Berlín). A los profeso­
res judíos se les prohibió impartir clases y, uno tras otro, fueron 
relevados de sus cargos. 

El Instituto Matemático de Gotinga fue rápidamente desman­
telado y su prestigio internacional se hundió para gran pena de Hil­
bert. Hern1ann W eyl, su alumno predilecto y quien finalmente había 
sido elegido para sucederle, aunque era ario, hubo de emigrar, ya 
que su mujer era de ascendencia judía, y terminó aceptando un 
puesto en el Instituto de Estudios Avanzados de Princeton, donde 
se unió a Albert Einstein y Kurt Godel. Richard Courant fue apar-
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tacto de la enseñanza y acabó instalado en la Universidad de Nueva 
York. Bernays, por su parte, regresó a Suiza. 

Hilbert quedó desconcertado por la nueva situación política 
en Alemania. En una ocasión le preguntó a Blumenthal, su primer 
alumno de doctorado, qué curso estaba impartiendo. Este le res­
pondió que ya no se le permitía dar clases, y el anciano reaccionó 
con indignación. Cuando en un banquete le sentaron al lado del 
nuevo ministro nazi de Educación, este le preguntó: «¿Cómo va la 
matemática en Gotinga ahora que ha sido purgada de la influencia 
judía?». A lo que Hilbert contestó: «¿La matemática en Gotinga? 
¡Pero si ya no hay!». 

Con el advenimiento de la Segunda Guerra Mundial, los tiem­
pos se volvieron aún más oscuros. Blumenthal emigró a los países 
Bajos, con tan mala suerte que, cuando los alemanes invadieron 
aquel país en 1940, se encontró atrapado. Murió ese mismo año 
en el tristemente famoso gueto de Theresiendstadt, en la actual 
República Checa. Felix Hausdorff, que había escrito el primer ma­
nual de teoría de conjuntos, se suicidó cuando se enteró de que él 
y su familia iban a ser deportados a un campo de concentración. 
Otros, como Banach, sobrevivieron alimentando piojos con su 
sangre en un instituto bacteriológico bajo dominio alemán que 
investigaba el control del tifus, pero sufrieron una degradación 
física irreparable. 

David Hilbert murió en Gotinga el 14 de febrero de 1943, 
mientras las armas rugían con toda su fuerza. Al funeral de Hil­
bert asistió menos de una docena de personas. Y, sin embargo, 
aún resuenan las palabras grabadas en su tumba como epitafio: 
Wir müssen wissen. Wir werden wissen ( «Debemos saber, sa­
bremos»). 

EL FRACASO DEL PROGRAMA DE HILBERT 
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