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quiso conducir a los matemdticas del caos mefodoldgico que las
caracterizaba o finales del siglo i o un orden basado en el axioma que las fundomento-
ra sélida y completamente. Este monumental proyecto acabé fracasando, pero el proceso
en si cambid por siempre la foz de lu disciplina. En su bisqueda de unos matemdticas
«ideales», sin confradicciones, las explord casi por entero, e incluso se adentrd en o fisi
a, para dotar a la mecdnica cudntica de lo estructura que lleva su nombre: el espacio
de Hilbert. Figura de enorme carisma entre sus colegas, sus famosos veinfitrés problemas
abiertos, presentados en 1900, marcaron el paso de la disciplina durante décados.
Hizo de lo alemana Gotinga la capital mundial de las matemdticas, pero fuvo que verla
asolada por los purgas nazis. Su famosa frase «Debemos saber, sabremos», grabada en
su tumba, refleja el ansia de conocimiento del ltimo gran matemdtico universal.
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Introduccion

Adelante, entremos en una biblioteca cualquiera y echemos un
somero vistazo a los libros que guarda. Comprobaremos sin di-
ficultad que las obras de Euclides, Newton o Einstein figuran en
los anaqueles al lado de las obras de Platén, Aristételes o Kant,
por no mencionar las de Cervantes o Shakespeare. Lo verdadero
junto a lo bueno y lo bello. Pero, alto ahi, un momento, ;jpor qué
esta disposicién? ;jAcaso se debe a la mano de algin descuidado
bibliotecario o, mas bien, dando de lado al azar, hay alguna razén
de fondo? Quiza debamos comenzar preguntdndonos por qué las
obras de Euclides, y quien dice Euclides otro tanto podria decir
de Arquimedes, Leibniz, Euler o Gauss, siguen inmersas en nues-
tro presente, siguen vigentes. No en vano, durante siglos los Ele-
mentos de geometria de Euclides han constituido el manual con
que multiples generaciones de estudiantes se han iniciado en las
verdades de la ciencia. ;Cudl ha sido el papel de la geometria y,
en general, de la matematica en el conjunto del saber? Para unos,
la matematica fue el pértico y la llave de la ciencia; para otros,
ademas, el alfabeto de la filosofia.

Sin embargo, la pregunta por el fundamento y la naturaleza
de las matemiticas ha tenido demasiadas respuestas. Casi tantas
como matematicos en el mundo han sido, desde los agrimenso-
res a la sombra de las piramides hasta los matematicos actuales,
pasando por los geémetras griegos. Ahora bien, desde la noche



de los tiempos, quien dice matematicas dice demostraciéon. La
demostracién es el pegamento que mantiene unidas las matema-
ticas. Pero, ;qué es una demostracién? Este es uno de los interro-
gantes a los que nuestro protagonista, David Hilbert (1862-1943),
dedic6 buena parte de su vida cientifica. ;En qué consiste la de-
mostracién de un teorema matematico? Mas aun: ;json demostra-
bles todas las verdades matematicas? Estos y otros misterios, en
la frontera entre la ciencia y la filosofia, rodean las bases de la
matemaética. Una honda preocupacién que consumié gran parte
del amor de Hilbert por esta ciencia.

David Hilbert es probablemente uno de los matematicos mas
importantes que ha conocido el siglo xx. Su obra en algebra, geo-
metria, analisis, fisica, l6gica y fundamentos de la matematica le
ha valido el calificativo de «Matematico del siglo». Este sobre-
nombre tiene, naturalmente, su justificacién. Su trabajo —tanto
en calidad como en cantidad— posee un valor incalculable y ape-
nas tiene precedentes en la historia de las matematicas. Esta a la
altura de Gauss o Poincaré. Pero, ;se habria convertido en un mito
si no hubiera sido Hilbert? A las continuas innovaciones y los es-
pectaculares resultados a que acostumbré a sus contemporaneos
se tiene que anadir un carisma personal que cautivé y fasciné a
los matematicos de la época. El camino que ha seguido la mate-
matica del siglo xx no puede explicarse sin su huella. Su influencia
se deja notar sobre varias generaciones que han trabajado en los
celebérrimos problemas que marcé en la agenda del siglo. Fue, en
suma, un matematico de matematicos.

Mientras que su vida personal se caracterizé por una enco-
miable tranquilidad, su vida intelectual representé una aventura
constante. Una vida que quizd no entre en la imagen del héroe,
pero si en la del creador. Una historia que estd esperando ser con-
tada. Hilbert tuvo la suerte de vivir en una época en la que tanto
las matematicas como la fisica progresaron enormemente, aunque
al mismo tiempo experimentaron convulsiones muy profundas,
que culminaron en una nueva forma de hacer matematicas y, en
fisica, en la plasmacion de toda una revolucién. Un periodo que
registré una extraordinaria eclosién de creatividad, y del que Hil-
bert no solo fue espectador.
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Nuestro recorrido por la vida y la obra cientifica de David
Hilbert se articula en varias etapas que coinciden con los intereses
matematicos —élgebra, geometria, andlisis, fisica teérica y fun-
damentos de la mateméatica— que fue desarrollando a lo largo de
los afios y que forjaron su reputacién legendaria. Pero a lo largo
del libro no solo trabaremos contacto con los conceptos que ided
o contribuyé a alumbrar, sino que también conoceremos a algu-
nos de los personajes mas importantes para la ciencia de comien-
zos del siglo xx. Minkowski, Poincaré, Einstein, Von Neumann o
Godel, entre muchos otros, desfilaran por estas paginas. El lector
disfrutara de conocer o reencontrar a estas personalidades, cuyos
nombres todo estudiante de ciencias ha conocido a través de los
objetos y teoremas que los honran.

Hilbert pasé su infancia y su juventud en Konigsberg, su ciu-
dad natal, para trasladarse, entrado ya en la madurez, a Gotinga,
donde residiria hasta el final de sus dias. Desde su plaza de ca-
tedratico en la universidad promovié la creacién de un instituto
matematico que aglutiné a las mejores cabezas pensantes del mo-
mento. En torno a él medré la vanguardia de la matematica ale-
mana y, en general, europea. Hasta que la llegada al poder de los
nazis convirtié Gotinga en un erial.

La carrera del joven Hilbert comenzé a despuntar cuando
resolvid, para asombro de sus colegas, un peliagudo problema
algebraico que parecia inabordable. Pero poco después dejé el al-
gebra y comenzo a estudiar los fundamentos de la geometria, con
la inestimable ayuda del método axiomatico. Su trabajo aposté
por el triunfo de este método. El, mis que cualquier otro, ensefié
a los matematicos a pensar axiométicamente, y convirtié el nuevo
enfoque en la guia mas segura en el universo matematico.

La conferencia que pronuncié el 8 de agosto de 1900, un dia
de sofocante calor, durante el Congreso Internacional de Matema-
ticos de Paris mostré a la comunidad matematica la perspicacia
del que pasaba por ser el hombre del futuro en matematicas. La
l6gica es la higiene del matemaético, pero no es su fuente de ali-
mento. Son los grandes problemas los que le proporcionan el pan
de cada dia. Asi, el abanico de veintitrés problemas que Hilbert
planteé se tradujo en otros tantos retos que concitaron las ener-
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gias de muchos de los mejores matemaéticos de los siguientes cien
afnos. De resultas, la matemaética saldria expandida en multiples
direcciones. Algunos de estos problemas galvanizantes han sido
definitivamente resueltos (caso, por ejemplo, de la hipdtesis del
continuo), aunque otros (como la hipdtesis de Riemann) siguen
esperando una solucién.

Pero Hilbert no es solo un nombre mitico de la matematica.
También lo es de la fisica, que transformé el mundo durante el si-
glo xx. Las ecuaciones de la relatividad general estan parcialmente
en deuda con su genialidad creativa, que estuvo a la par de la de
Einstein. Por su parte, la mecanica cuintica se encuentra intima-
mente ligada a una estructura matemaética que lleva su nombre: el
«espacio de Hilbert». Y es que el nuevo siglo encontré al matema-
tico aleman perfilando —sin ser muy consciente de ello— lo que
seria una nueva rama del analisis matemaético: el analisis funcional.

No obstante, son los fundamentos de la matematica el tema
que mas paginas reclama. Las paradojas de la 16gica y de la teoria
de conjuntos, asi como la pléyade de cuestiones abiertas sobre
la propia seguridad de la matematica clasica, habian provocado
profundas divisiones en la comunidad cientifica y generado un
debate creciente sobre los fundamentos de la disciplina. Hacia
1920, nuestro protagonista, entonces en la cima de su carrera, se
embarcé resueltamente en un ambicioso programa de fundamen-
tacion, por cuya defensa hubo de medirse a algunos de los prime-
ros espadas en matematicas del resto de Europa. Cual arquitecto
que explorara los cimientos de un antiguo palacio que amenaza
con derrumbarse, Hilbert recorri6 las bases de la matematica bus-
cando reparar sus grietas y asegurarla firmemente por los siglos
de los siglos. Queria borrar la fea mancha de las paradojas del
edificio por otra parte tan perfecto de la matematica. Le animaba
a ello una confianza ciega en que era posible probar que la ma-
tematica, debidamente axiomatizada, no contenia contradiccién
alguna, era consistente. Una cuestiéon que Hilbert habia fijado
como uno de los primeros problemas de las matemaéticas en la
conferencia de 1900.

Siguiendo la pista a sus aportaciones, reviviremos una aven-
tura épica y apasionante en pos de la certeza, en donde conflu-
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yeron grandes logicos y matematicos de finales del siglo xix y
principios del xx, como Frege, Russell, Cantor, Poincaré, Brouwer
o Godel. Movidos por la riqueza de las matematicas finiseculares,
este puiiado de matematicos se pusieron a reflexionar sobre la
naturaleza y el alcance de su quehacer. Tres tendencias se dejaron
sentir especialmente: el logicismo, surgido con Frege y revitali-
- zado por Russell, que defendia que todos los principios matemati-
cos podian reducirse a leyes légicas; el intuicionismo, creacién de
Poincaré y Brouwer, que rechazaba los métodos de la matematica
clésica que habian conducido a las paradojas; y, finalmente, el for-
malismo, identificable con el pensamiento de Hilbert, que buscaba
axiomatizar la matemaética al completo, demostrando rigurosa-
mente que los axiomas no conducian nunca a una contradiccién.
Hilbert lider6 la escuela formalista, que en esencia defendia
que los razonamientos matematicos podian ser presentados axio-
maticamente, dentro de un sistema formal, sin mencién alguna al
significado de los simbolos. Por medio de esta idea crucial, toda
referencia al escurridizo y paradéjico infinito podria soslayarse.
Y, mediante la manipulacién simbélica de un reducido niimero de
axiomas de acuerdo a una o més reglas de inferencia, Hilbert pen-
saba que podrian deducirse en un niimero finito de pasos todos los
teoremas de las matematicas. Uno podria ver entonces la matema-
tica como un mero juego de férmulas y el problema de demostrar la
no-contradictoriedad de los axiomas como una cuestién de combi-
natoria finita, de un andlisis cuidadoso de las férmulas que podian
demostrarse dentro del sistema formal, de las secuencias de sim-
bolos que producia el sistema. Pero los tenaces intentos de Hilbert
por resolver este punto, poniendo las bases de la matematica mas
alla de toda duda razonable, se saldaron con un rotundo fracaso.
Un légico austriaco de nombre Kurt Godel salté a la fama
cuando anuncié en 1931 que los métodos de Hilbert eran insufi-
cientes para demostrar la consistencia de las matematicas. Los
teoremas de incompletitud de Godel cayeron como un jarro de
agua fria sobre Hilbert y sus seguidores; y, a la postre, significaron
la quiebra de su programa. No era posible probar la certeza incon-
trovertible de las matemaéticas. El insobornable convencimiento
de que la matematica era la mas segura de las ciencias acabé para

INTRODUCCION



12

algunos en una frustracién colectiva e histérica. Las matemati-
cas tienen una condicién incierta, contingente y desfundada, pero
que, aun a trancas y barrancas, progresa.

Hilbert personificé el ideal del matemético para la generacién
de entreguerras. Su patronazgo impulso definitivamente la matemé-
tica moderna, que se configur6 como una ciencia axiomética que
estudia estructuras abstractas, lo que supuso una ruptura con la
matematica del pasado, centrada en nimeros, férmulas y figuras
en principio construibles.

David Hilbert fue, en definitiva, un matemaético universal,
pues tuvo un conocimiento casi total de todas las ramas de las
matematicas de su tiempo. Fue el iltimo ejemplar de una especie
ya extinguida.
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1862

1880

1888

1892

1895

1897

1899

1900

1904

1912

David Hilbert nace en la ciudad
de Konigsberg, Prusia.

Comienza sus estudios de matematicas
en la Universidad de Kénigsberg, donde
entabla amistad con Adolf Hurwitz y,
en especial, con Hermann Minkowski.

Se anota su primer gran triunfo
matemitico al resolver el problema
de Gordan de la teoria de invariantes.

Es nombrado profesor titular de la
Universidad de Koénigsberg. Se casa
con Kiithe Jerosch.

Es nombrado catedritico de la
Universidad de Gotinga gracias
al buen hacer de Felix Klein.

Publica El informe, una sintesis
magistral de los conocimientos de
la época en el campo de la teoria
algebraica de nimeros.

Publica Fundamentos de la geometria,
en el que presenta todas las posibles
geometrias con la tinica ayuda del
método axiomatico.

Hilbert imparte la célebre conferencia
titulada «Problemas matematicos»

en el I Congreso Internacional de
Matematicos en Paris.

Rehabilita el principio de Dirichlet
para el calculo de variaciones.

Compendia todos sus articulos
sobre ecuaciones integrales en una

1915

1922

1928

1930

1934

1943

monografia que incluye aplicaciones
a la fisica del momento, asi como
una coleccion de herramientas
imprescindibles para desarrollar la
mecanica cudntica a partir de 1925.

Compite con Albert Einstein en la
bisqueda de las ecuaciones de campo
de la teoria de la relatividad general.

Retoma casi en exclusiva el interés por
los fundamentos de las matematicas,
queriendo probar la consistencia de

la matematica clasica para erradicar
las dudas escépticas sobre su validez
sembradas por los intuicionistas.

Publica, en colaboracién con Wilhelm
Ackermann, Fundamentos de légica
tedrica, el primer manual en sentido
moderno de l6gica matematica.

Hilbert se retira de su puesto en
Gotinga. Da una conferencia muy
optimista tras ser nombrado ciudadano
de honor de Kénigsberg, que remata
con el lema «Debemos saber,
sabremos». Kurt Gédel pone limites al
formalismo auspiciado por Hilbert en
un congreso celebrado en paralelo.

Publica, junto con Paul Bernays, el
primer volumen de Fundamentos
de las matemdticas, que recoge los
avances parciales en la materia.

Muere en Gotinga (Alemania) mientras
la Segunda Guerra Mundial se
desarrolla con toda su crudeza.
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CAPITULO 1

Los fundamentos de la geometria

La carrera del joven Hilbert comenz6 a despuntar
cuando resolvio el esquivo problema de Gordan. No
obstante, aparcé el dlgebra y la teoria de nimeros y

se sumergio de lleno en el estudio de los fundamentos
de la geometria. El descubrimiento de las geometrias no
euclideas habia puesto en jaque a la venerable geometria
griega, con casi dos mil afios de existencia. Una

reformulacion del método axiomatico permitio a

Hilbert poner orden en la materia, subrayando
que no hay una tnica geometria valida sino
muchas, cada una con un conjunto
diferente de axiomas.






Konigsberg, afio 1862. Se cumplian cincuenta y ocho afios de la
muerte de Immanuel Kant. Y ciento veintiséis desde que Leonhard
Euler (1707-1783) solucionara el célebre problema de los siete
puentes. David Hilbert vino al mundo un 23 de enero. Lo hizo en
el seno de una familia protestante de clase media afincada desde
hacia dos generaciones en la capital de la Prusia Oriental. Una
Prusia que en esos momentos comenzaba a liderar la unificacién
alemana, guiada con mano de hierro por el kiiser Guillermo I y
su canciller Otto von Bismarck. El padre era juez de la ciudad
y educé a su hijo en los severos valores prusianos: puntualidad,
disciplina y sentido del deber. La madre, en cambio, era aficionada
ala filosofia, la astronomia y, segiin cuentan, los niimeros primos.

Ya en sus afios escolares Hilbert manifest6 una personalidad
tenaz, enérgica y decidida, aunque sufrié mucho en el instituto a
causa de la obligacién del aprendizaje meramente memoristico.
No obstante, desarrollé una gran aficién artistica y literaria, que
compartia con su gusto por las matematicas, aunque sin llegar a
ser un matematico precoz. En 1880, se examiné para el ingreso
en la universidad, matriculindose en matematicas, pese a que la
familia queria que orientase su carrera hacia las leyes.

Si bien es cierto que Konigsberg no era Berlin, donde ejercian
profesores de la talla de Karl Weierstrass (1815-1897) o Leopold
Kronecker (1823-1891), contaba con una sélida tradicién mate-
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matica. Allf habia dado clases Carl Jacobi (1804-1851), conside-
rado el segundo mejor matematico aleman en tiempos de Gauss.
El telén de fondo de la educacién que Hilbert recibié en la Univer-
sidad de Konigsberg es el siguiente. Los matemaéticos del iltimo
cuarto del siglo xix solian considerar que su disciplina se dividia
en tres: andlisis, dlgebra y geometria. El andlisis incluia estudios
sobre el uso cada vez mas riguroso del cdlculo infinitesimal, la
resolucién de ecuaciones diferenciales y, en general, la teoria de
funciones. El dlgebra estaba poco a poco dejando de parecerse a
la que todos hemos estudiado en el instituto, para estudiar objetos
cada vez mas abstractos, aunque sin descuidar la teoria de nime-
ros. Y, por ultimo, la geometria englobaba en realidad una familia
de geometrias diferentes y mal avenidas: la geometria euclidea y
las no euclideas (incluyendo aqui la geometria proyectiva), pero
también la geometria diferencial y la geometria algebraica, que
empleaban herramientas prestadas del andlisis y del algebra.

«Toda disciplina matematica atraviesa tres etapas en su
desarrollo: la ingenua, la formal y la critica.»

— Davip HILBERT.

Hilbert siguié con aprovechamiento cursos de algebra, ana-
lisis y geometria; y en ellos conocié al que desde entonces seria
su mejor amigo: Hermann Minkowski (1864-1909). Este condisci-
pulo era dos anos mds joven, pero iba un trimestre por delante.
Con poco mds de diecinueve afios habia ganado el Gran Premio
de Matematicas, concedido por la Academia de Ciencias de Paris
(aunque la concesién no estuvo exenta de polémica, ya que hubo
quien hablé de plagio). Ambos amigos solian caminar juntos y dis-
cutir embelesados sobre matematicas. Paseando exploraron cada
rincén del saber matematico. Un habito peripatético de los afios
de estudiante que Hilbert conservaria el resto de su vida.

Con el titulo de doctor en el bolsillo, Hilbert pensé en ha-
bilitarse a fin de ganar la condicién de privatdozent, que le per-
mitiria dar clases en la universidad (aunque sin sueldo por parte
de la institucién, cobrando solo la matricula a los estudiantes).

LOS FUNDAMENTOS DE LA GEOMETRIA



Este proyecto pasaba por la presentacién de alguna aportacién
original. A tal fin, Hilbert viajé para encontrarse con Felix Klein
(1849-1925), uno de los popes de la matemética del momento.
Pasados los afios, Klein diria que supo inmediatamente que este
joven era el hombre del porvenir en matematicas. Siguiendo su
consejo, Hilbert prolongé su viaje hasta Paris, donde conocié a
Henri Poincaré (1854-1912). El cientifico francés era solo ocho
afios mayor que Hilbert, pero se trataba ya de un matematico con-
sagrado. Era el maximo exponente de la matemaética francesa,
que buscaba tomar el relevo de la sobresaliente matematica ale-
mana. A resultas de esto, Poincaré y Hilbert no congeniaron, y
este distanciamiento se convirtié con el paso del tiempo en una
acendrada rivalidad cuyo trasfondo seria la toma del timén de la
matematica del futuro (de hecho, las relaciones entre Poincaré y
Klein tampoco eran buenas: la competencia entre ambos se habia
saldado con una crisis depresiva por parte del tltimo). Durante el
viaje de regreso a Konigsberg, Hilbert hizo un alto en la Univer-
sidad de Gotinga para visitar a un recién instalado Klein. Gracias
a su mediacién, entré en contacto con Paul Gordan (1837-1912),
uno de los mayores expertos en teoria de invariantes, un campo
en el que Hilbert se apuntaria su primer gran éxito.

DEL ALGEBRA A LA TEORIA DE NUMEROS

La teoria de invariantes era una rama del algebra del siglo xix que
estudiaba qué cantidades no cambian (permanecen invariantes)
cuando transformamos un polinomio en otro de acuerdo a ciertas
reglas. Uno de los problemas abiertos mas estimulantes habia sido
bautizado como el problema de Gordan. En 1888, Hilbert dejé bo-
quiabiertos a sus contemporaneos ofreciendo una solucién revolu-
cionaria del problema, que Gordan, el rey de los invariantes, tildé
de «teolégica». Hilbert consiguié demostrar el resultado que todos
los expertos en invariantes llevaban afos persiguiendo: el llamado
teorema fundamental de la teoria de invariantes, que afirma que
cualquier sistema de invariantes estd finitamente generado (es
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decir, simplificando, que cualquier invariante del sistema puede
representarse como una combinaciéon de unos pocos invariantes,
que forman una base). Un bello teorema, en absoluto trivial.

Lo que aqui nos interesa no es explicar su contenido, sino la
forma en que Hilbert lo demostrd, ya que nos dard muchas pistas
del camino que tomé su carrera como investigador. Al igual que
hizo en otras ramas de la matematica, Hilbert avanzé muchos de
los elementos que constituirian un nuevo enfoque. En este caso,
el enfoque estructural del dlgebra, que se fija en las estructuras
que satisfacen los objetos matematicos més que en los objetos
matematicos en si mismos; en los grupos, ideales, anillos y cuer-
pos (las estructuras algebraicas) mas que en los propios niimeros
o polinomios concretos que contienen. Sin ser muy consciente de
ello, Hilbert estaba preparando el 4dlgebra abstracta del siglo xx y,
de paso, defendiendo una nueva manera de hacer matematicas,
que €l abanderaria.

El tratamiento de Hilbert era muy diferente al habitual: en
vez de buscar explicitamente la solucién del problema, demostré
que el problema no podia no tener solucién. Su prueba no era
constructiva. Era existencial. No ofrecia directamente la solucién
(«aqui estd, esta es la base de invariantes»), sino que demostraba
que necesariamente tenia que haberla («si no hubiera una base
de invariantes, llegariamos a una contradiccién»). La demostra-
cién del teorema fundamental se basaba, por tanto, en un razona-
miento por reduccién al absurdo. Una argumentacion que no era
aceptada unanimemente por la comunidad matematica.

Kronecker, una de las grandes figuras de la matematica ale-
mana del momento, arremetié duramente. La demostraciéon era
(supuestamente) «siniestra». Para Kronecker, una demostracién
de existencia pasaba forzosamente por la construccién del objeto
cuya existencia se queria demostrar. En este caso, por la cons-
truccién de la base de invariantes que Hilbert afirmaba que existia.
No aceptaba la argumentacién de que la no existencia de la base
implicaba una contradiccién y, por tanto, la base en cuestién tenia
obligatoriamente que existir, aunque no fuera factible calcularla.

No obstante, Hilbert pudo publicar su articulo en 1890 en los
Mathematische Annalen que editaba Klein. Gordan fue el arbitro
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DEMOSTRACIONES CONSTRUCTIVAS Y DEMOSTRACIONES EXISTENCIALES

Pongamos un ejemplo para comprender la diferencia entre ambas. Si la pre-
gunta es, pongamos por caso, si la ecuacion x?-1=0 tiene solucion, uno tiene
dos alternativas. O bien, de forma obvia, determina explicitamente las solu-
ciones mediante calculos y manipulaciones algebraicas: x=1y x=-1. O bien, de
otra manera, intenta responder indirectamente: garantiza recurriendo a algun
teorema que la ecuacién tiene solucion, aunque no sepa hallarla. Naturalmente,
esta segunda via resulta de mayor utilidad cuando el matematico se enfrenta
a problemas mucho mas complicados gque resolver una sencilla ecuacion de
segundo grado. Muchas veces, con ecuaciones de grado superior, es mas facil
demostrar la existencia de solucién que dar con ella.

Una via ya utilizada en la Antiglledad

Esta caracteristica es comun a muchos problemas matematicos. En la Antiglie-
dad, Euclides demostré que existen infinitos nimeros primos sin necesidad de
enumerarlos todos. Para ello, razend por reduccién al absurdo. El primer paso
en una demostracion por reduccion al absurdo consiste en negar el enuncia-
do que se quiere probar. Euclides, para probar que existen infinitos niumeros
primos, supuso que solo habia una cantidad finita: p,, p,, ... p,. A partir de
esta suposicion, comenzo a hacer deducciones hasta llegar a una afirmacion
absurda. En efecto, si suponemos gue solo hay esos n nimeros primos, enton-
ces, una de dos: el numero p, - p, - ... - p,+1 (formado multiplicandolos todos y
sumando uno) es primo, o no lo es. En el primer caso, existe una contradiccion,
pues este nuevo numero primo no es ninguno de los de partida. En el segundo
caso, si no es primo, debe ser divisible por un numero primo, pero claramente
ninguno de los p,, p,, .., P, lo divide (la division no es exacta, da 1 de resto).
Y llegamos de nuevo a una contradiccion. Por consiguiente, la hipotesis
de que solo hay una cantidad finita de numeros primos ha de ser falsa, y tiene
que haber una cantidad infinita de ellos (aungue no sepamos determinarlos
uno a uno). La reduccidén al absurdo, que Euclides y Hilbert tanto amaban, es
una de las mejores armas de la matematica.

del articulo y, aunque al principio exigié cambios sustanciales,
terminé apreciando la aproximacién revolucionaria de Hilbert.
Los trabajos anteriores de Gordan, repletos de paginas con cal-
culos enormemente largos y complicados, contrastaban con el de
Hilbert, que procedia de manera breve, elegante y sucinta, por
medio de una reduccioén al absurdo. Pero la intervencién de Klein
fue decisiva para limar asperezas entre ambos, dado que Hilbert
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se habia negado a cambiar ni una coma del articulo. Al final, Gor-
dan acabo reconociendo que hasta la teologia tenia sus usos.
Hilbert habia desafiado y ganado a quienes insistian en que las
demostraciones matematicas debian proporcionar un método que
mostrara explicitamente las entidades cuya existencia se queria
demostrar. Habia probado que la suposicién de que la hipétesis
de Gordan («existe una base de invariantes») era falsa conducia
a una contradiccién. Con eso bastaba. Muchos aiios después, Hil-
bert explicaria a sus alumnos la diferencia entre las demostracio-
nes constructivas y las que no lo son (las existenciales) sefialando
que entre sus estudiantes (ninguno de los cuales era completa-
mente calvo), habia uno que tenia menos pelos en la cabeza, aun-
que no contaba con ningtin medio de identificar a ese alumno.

«jEsto no son matematicas! jEs teologia!»

— GORDAN, TRAS CONOCER LA PRUEBA DE HILBERT.

22

Lo que estaba en juego no era solamente el futuro de la teoria
de invariantes (un drea de investigacién que Hilbert dejé practi-
camente cerrada), sino algo mas, mucho mas en realidad: 1a lucha
entre dos visiones muy distintas del hacer matematico. Por un
lado, la constructiva, tipica del siglo xix. Por otro, la existencial,
una tendencia que caracterizaria el siglo xx, y donde la palabra
existir no tendria més que un significado: estar exento de contra-
diccion. El enfoque existencial hilbertiano iba a ser, como tendre-
mos ocasion de averiguar, la fuente de muchos de sus éxitos y de
muchas controversias posteriores.

Por fin, en 1892, Hilbert vio coronado su esfuerzo y fue nom-
brado profesor titular de la Universidad de Kénigsberg. Pese a que
llegé a ser un profesor muy bueno, apenas atrajo estudiantes en
sus inicios. Lejos de desanimarse, se tomé este periodo como un
proceso de lenta pero continua maduracién. Ese mismo afio se
caso con Khite Jerosch, a quien conocia desde la infancia (era su
pareja de baile favorita) y con quien tuvo un tnico hijo, Franz, que
nacié6 al afio siguiente, pero que desde pequeiio sufrié una grave
enfermedad mental. Cuando al muchacho le diagnosticaron esqui-
zofrenia, su padre lo interné en un manicomio, donde pasé buena
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EL ALGEBRA MODERNA Y EL NULLSTELLENSATZ

Babilonios, egipcios y griegos resolvian
ecuaciones de primer y segundo grado
mediante diversas técnicas algebraicas.
La influencia del algebra geométrica
griega se percibe aun en la conserva-
cion de expresiones como «cuadrado» y
«cubo» para la segunda y tercera poten-
cias: «a al cuadrado» es un cuadrado de
lado a y «a al cubo» es un cubo de arista
a. La introduccién de un nuevo aparato
simbdlico (Dicfanto, Al-Juarismi, Vieta)
produjo una verdadera inflexion en el
desarrollo del dlgebra que posibilité su
despegue. En el Renacimiento, Tartaglia
(llamado asi por su tartamudez) dio con
la férmula para resolver ecuaciones de
tercer grado, pero decidid mantenerla  Gauss a la edad de cincuenta afios.
en secreto. El astrélogo y matematico  Litografia aparecida en Astronomische
i Nachrichten (1828).
Gerolamo Cardano consiguid que se la
confiara, pero le traiciond y la publicé
haciéndola pasar por suya. Finalmente, Ludovico Ferrari, antiguo secretario
de Cardano, dio con otra formula para resolver ecuaciones de cuarto grado.
Sin embargo, la resolucién por radicales de la ecuacion polinémica de quin-
to grado se les resistio. Trescientos afios después, Abel demostraria que es
imposible.

Gauss y el teorema fundamental del dlgebra

Pero para asistir al nacimiento del dlgebra moderna hemos de asomarnos a la
lectura de la tesis doctoral de Gauss, presentada en 1797. El genial Gauss hallé
lo que se conoce como teorema fundamental del algebra, que prueba que
cualquier ecuacion polindomica de grado n posee exactamente n soluciones
en el cuerpo de los numeros complejos. Aungue este resultado ya habia sido
conjeturado, entre otros, por Descartes (distinguiendo entre raices reales
e imaginarias), asi como demostrado en falso por D'Alembert (su prueba
contenia varios gazapos), solo con Gauss fue probado de forma completa.
Su trabajo cambi¢ dramaticamente el aspecto del algebra. Precisamente, el
largo camino de Hilbert a través de la teoria de invariantes sirvié para que
demostrara lo que se conoce como Nullstellensatz o teorema de los ceros: un
potente resultado que generaliza el teorema fundamental del dlgebra para
el caso en que, en vez de una ecuacion, tenemos un sistema de ecuaciones
algebraicas.
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parte del resto de su vida. Desde ese momento Hilbert decidié
comportarse como si nunca hubiera tenido un hijo.

En 1895 tuvo lugar un cambio decisivo en su vida. En una
carta confidencial se le anunciaba el nombramiento, a propuesta
de Klein, como catedratico de la prestigiosa Universidad de Go-
tinga, donde habian ejercido dos grandes de las matematicas
como Gauss y Riemann. Su marcha no se hizo esperar. No aban-
donaria Gotinga jamas.

Entre tanto, Hilbert habia pasado de la teoria de invariantes
a la teoria de niimeros, una disciplina tipicamente alemana desde
que Gauss publicara sus Disquisitiones arithmeticae (1801) y
se refiriera a ella como «la reina de las matemadticas». La Socie-
dad Matematica Alemana (fundada en 1890 bajo la presidencia de
Georg Cantor [1845-1918]) encargé a Hilbert y Minkowski la elabo-
racion de un informe sobre el estado de la cuestion. Minkowski no
tardé en retirarse, porque estaba demasiado ocupado. Y Hilbert, en
solitario, hizo mucho mas de lo que le pedian y esperaban. Escribié
una joya de la literatura matematica, un clasico de obligada par-
tida para todos los investigadores del area. Der Zahlbericht (El in-
Jforme) esta fechado el 10 de abril de 1897. En él recopil6 todos los
conocimientos relevantes, reorganizados bajo un nuevo punto de
vista, rehaciendo formulaciones y demostraciones. No solo reor-
denod las piezas del rompecabezas que era la teoria algebraica de
nimeros, sino que rellené los huecos con investigaciones origina-
les. Con sus propias palabras, entresacadas del prélogo al informe:

La teoria de niimeros es un edificio de rara belleza y armonia. [...] El
objetivo del presente informe es describir los resultados de la teoria
de nimeros, con sus demostraciones, con un desarrollo logico y des-
de un punto de vista unificado, y asi contribuir a acercar el momento
en que los logros de nuestros grandes autores clasicos de teoria de
nimeros pasen a ser propiedad comun de todos los matematicos.

El informe colocé a Hilbert a la vanguardia de la matemaética
europea. Desde luego, esta primera ojeada a su actividad matema-
tica en estos afios clave de formacién puede dar la impresién de
que se trataba de un investigador muy bueno, pero muy especiali-
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LA PRIMERA REVOLUCION CIENTIFICA

Las antiguas civilizaciones babilénica y
egipcia lograron apreciables conocimien-
tos geomeétricos. Pero sus «matematicas»,
si pueden llamarse asi, no sobrepasaban
un estadio técnico, ya que radicaban en
colecciones de recetas indicadas para re-
solver problemas cotidianos, que tenian
que ver con la practica de los agrimenso-
res y en las que la nocién de demostracion
apenas se atisbaba. Los enunciados de los
teoremas geomeétricos de Tales de Mileto
(ca. 624 a.C.-ca. 546 a.C.) harian sonreir
a los agrimensores egipcios por su sim-
plicidad y falta de utilidad (por ejemplo,
el diametro de la circunferencia divide el
circulo en dos partes iguales); pero se tra-
taba de los primeros teoremas, probados
por puesta en evidencia, y que siguen sien-
do verdad mas de dos mil afios después.
Con el tiempo, Tales logré medir la altura
de la Gran Piramide mediante una simple
regla de tres. Otro que entabld contacto
con babilonios y egipcios fue Pitdgoras.  Imagen idealizada de Euclides, pintada
Bajo la direccion de Platon, la Academia ~ POrJustusvan Gent en 1474.

de Atenas sistematizé las matematicas

pitagdricas, destacando Teeteto (ca. 417

a.C.-ca. 369 a.C.) y Eudoxo (ca. 390 a.C.-ca. 337 a.C.); al primero se le atri-
buye el teorema que establece que solo existen cinco poliedros regulares,
los cinco solidos platénicos. Simultdneamente, los tres problemas clasicos
(triseccion del angulo, cuadratura del circulo, duplicacién del cubo) sirvieron
de cuestiones fascinantes de la geometria del momento (imposibles de zanjar
empleando regla y compas). Pero hay que saltar de la Academia al Museo de
Alejandria para encontrarnos con Euclides, cuya obra —junto a la de Apolonio
y Arquimedes— cierra la época dorada de la geometria griega.

zado. No era facil prever lo que iba a venir: el ascenso de Hilbert
a la cumbre del mundo matematico y la conviccién general de que
fue —al igual que Poincaré— uno de los tltimos matemaéticos uni-
versales, que dominé todos los campos de su ciencia, incluyendo
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aqui su siguiente conquista: 1a geometria. Pero, para poder valorar
la aportacién fundamental de Hilbert en este terreno, es necesario
decir antes algunas palabras sobre el trasfondo histérico, sobre el
fuerte impulso que el siglo xix dio a la geometria, y contar como
el descubrimiento de las geometrias no euclideas cambi6 de for-
ma radical el método axiomético.

LAS GEOMETRIAS NO EUCLIDEAS

La geometria griega fue la piedra angular de las matematicas
durante siglos. En los Elementos, un tratado que se remonta al
300 a.C., Euclides ofrecié una presentacién axiomatica, extrema-
damente ordenada y estructurada, del corpus de conocimiento
transmitido por los matematicos pitagéricos y platénicos. Su pre-
sentacién, influida por las reflexiones aristotélicas sobre la l6gica,
poseia una caracteristica muy destacable: un enorme rigor a la
hora de demostrar cada teorema.

Los Elementos se dividen en 13 libros y contienen 465 propo-
siciones geométricas, desde los principios mas basicos a las con-
secuencias més elaboradas. Euclides comienza el Libro I con una
lista de 23 definiciones, de manera que el lector sepa precisamente
qué significan los términos geométricos fundamentales (punto,
recta, tridngulo, circunferencia, etc.). Por ejemplo: «Un punto es
lo que no tiene partes». A continuacién, definidos los términos,
Euclides presenta cinco postulados que sirven de fundamento a
toda su geometria. Estos postulados se presentan sin demostra-
cidn o justificacion. Sencillamente deben aceptarse. Son premisas
de todo lo demas. Por ejemplo: «Es posible trazar una linea recta
entre dos puntos cualesquiera». Finalmente, tras las definiciones
y los postulados geométricos, especifica una serie de nociones
comunes o verdades indiscutibles. Por ejemplo: «El todo es mayor
que la parte» o «Dos cosas iguales a una tercera son iguales entre
si». A partir de aqui, Euclides comienza a meterse en honduras.
Asi, la primera proposicién de los Elementos muestra c6mo cons-
truir un tridngulo equildtero sobre un segmento lineal dado.
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Mientras que las nociones comunes son de raigambre pura-
mente 16gica, los postulados o axiomas son de naturaleza ne-
tamente geométrica. Especifican, por asi decir, las reglas de
acuerdo con las cuales se manipulan los objetos matematicos que
Euclides ha definido previamente. Estos cinco postulados o axio-
mas son los siguientes:

1. Dados dos puntos A y B hay una recta que pasa por ambos.
2. Todo segmento puede prolongarse indefinidamente.

3. Dado un punto A y un segmento 7, puede construirse una
circunferencia de centro A y de radio 7.

4. Todos los dngulos rectos son iguales entre si.

5. Si una recta corta a otras dos de modo que la suma de los
angulos internos a y f es menor que dos rectos, entonces
las dos rectas se cortaran en un punto que estara del mismo
lado que los dngulos (véase la figura).

A diferencia del resto, el quinto postulado de Euclides tiene
un enunciado bastante poco intuitivo, lo que llevé a que nume-
rosos matematicos —Ptolomeo (siglo 1 d.C.), John Wallis (1616-
1703) y Jerénimo Saccheri (1667-1733), entre otros— intentaran
demostrarlo infructuosamente a partir del resto de postulados.

Esquema que
ilustra el quinto
postulado de
Euclides.

(>
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Esquema que
ilustra el axioma
de paralelas.
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Cada uno superé en sutileza e in-
genio al anterior en su intento de
probarlo. Pero en el curso de sus
demostraciones lo tinico que lo-
graron fue dar con formulaciones
equivalentes del quinto postulado.
Una de ellas es el célebre axioma
de paralelas: «Por un punto exte-
rior a una recta cabe trazar una
Unica paralela» (véase la figura).
Otra version equivalente establece que «la suma de los angulos
de un tridngulo es exactamente la de dos rectos». No obstante, la
historia del quinto postulado o axioma de paralelas guardaba un
final sorprendente.

;Coémo lograron los matematicos liberarse de las cadenas de
la geometria euclidea? Durante més de dos mil afios estuvieron
convencidos de que era la tinica geometria posible, la tinica des-
cripcién convincente del mundo, puesto que solo habia un espacio
fisico. Pero, a lo largo del siglo xix el descubrimiento de geome-
trias distintas (que no satisfacian el axioma de paralelas) aliment6
la ansiedad que sentian y les hizo pensar que habian estado equi-
vocados demasiado tiempo. Aclarar esta cuestién palpitante era
en cierto modo esclarecer qué forma tenia el mundo (si es que
tenia alguna).

La primera geometria no euclidea con la que se familiarizaron
era, aunque parezca mentira, una vieja conocida: la geometria pro-
yectiva. Esta geometria comenzoé su andadura en el Renacimiento,
cuando los pintores se interesaron por la proyeccién del espacio
en el plano del lienzo. Descubrieron entonces una de las propie-
dades distintivas de la geometria proyectiva (y que la diferencia
radicalmente de la euclidea): dos rectas que en el espacio tridi-
mensional aparecen como paralelas, se transforman en el lienzo
bidimensional en un par de rectas secantes que se cortan en el
horizonte, en el infinito. A la manera como las vias del tren, que
siempre son paralelas, aparecen en las fotografias como cortan-
dose en el punto de fuga. De modo que en la geometria proyectiva
dos rectas cualesquiera siempre se intersecan: o bien en un punto
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propio, o bien en el infinito. En consecuencia, la geometria pro-
yectiva contradice el axioma de paralelas, ya que por un punto
exterior a una recta no pasa ninguna otra recta paralela.

A comienzos del siglo x1x, la geometria proyectiva recibié un
gran impulso de manos del matematico francés Victor Poncelet
(1788-1867), un oficial napoleénico que aproveché su cautiverio
en Rusia para perfeccionar sus ideas al respecto. A su regreso pu-
blicé el Tratado sobre las propiedades proyectivas de las figuras
(1822), donde acuiié precisamente el término geomelria proyec-
tiva para referirse al estudio de las propiedades de las figuras que
se conservan al proyectarlas, o de otra forma, las propiedades
que las figuras tienen en comiin con sus sombras, con sus proyec-
ciones. Estas propiedades incluyen relaciones de incidencia, pero
no de distancia o tamafio. Asi, si tres puntos estdn alineados, al
proyectarlos siguen alineados, pero es muy posible que la distan-
cia entre ellos haya variado. Del mismo modo, la sombra que cada
uno de nosotros proyecta no tiene exactamente nuestro mismo
tamaio. Avanzado el siglo, el matematico aleman Julius Pliicker
(1801-1868) introdujo coordenadas en la geometria proyectiva, lo
que permitio algebrizarla y probar miiltiples resultados desde una
perspectiva analitica.

Ahora bien, la geometria proyectiva constituia un caso muy
especial de geometria no euclidea. Estaba claro que el axioma
de paralelas no se verificaba (puesto que en el plano proyectivo
no existen rectas paralelas), pero la geometria proyectiva no solo
renunciaba al axioma de paralelas, sino también a medir dngulos
y distancias (ya que las proyecciones no los conservan). En suma,
no solo no se verificaba el quinto postulado de Euclides, tampoco
lo hacia, por ejemplo, el cuarto (que habla de dngulos). Este hecho
hizo que los matematicos no consideraran la geometria proyectiva
como una verdadera geometria no euclidea.

La meta que parecia inalcanzable era construir desde cero una
nueva geometria que satisficiera todos los axiomas euclideos a ex-
cepcién del axioma de paralelas. Si este tltimo se negaba, habia
dos opciones: o bien se negaba la existencia de rectas paralelas
(«no hay paralelas»), o bien se negaba la unicidad de la recta para-
lela a una dada por un punto exterior («hay mas de una paralela»).
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EL PROGRAMA DE ERLANGEN

Felix Klein (1849-1925), maestro de Hil-
bert, difundio una vision muy articulada
de la geometria. Cualquier geometria
consistia en un espacio y un grupo de
transformaciones. Asi pues, para Klein,
la geometria era el estudio de las pro-
piedades de los objetos que quedan
invariantes a través de cierto grupo de
transformaciones o movimientos que se
han fijado de antemano. Obsesionado
con el papel de la geometria proyectiva
como unificador de las distintas geome-
trias, demostré que esta, al venir dada
por el grupo de las proyecciones, que
era el grupo mayor, se constituia como
la geometria mas fundamental, la que
descansaba sobre el minimo numero de
hipétesis iniciales. Todas las demas geo-
metrias se derivaban de ella afladiendo
hipétesis adicionales. En concreto, lo hacia la geometria euclidea, que here-
daba todas las propiedades proyectivas. Esta es la tesis que difundico en la
leccion inaugural de su toma de posesion en 1872 de la catedra en la Univer-
sidad de Erlangen.

Felix Klein,

Tanto Carl Friedrich Gauss (1777-1855) como Janos Bol-
yai (1802-1860) y Nikolai Lobachevski (1792-1856) aceptaron la
existencia de paralelas negando su unicidad: por un punto ex-
terior a una recta pasaba mas de una recta paralela. Estos tres
matematicos lograron deducir una buena racién de teoremas de
su geometria imaginaria sin llegar a ningin absurdo, a ninguna
contradiccion. Pero, ;jno estaria esperandolos a la vuelta de la es-
quina? ;Quién les aseguraba que si no hubieran llevado un poco
mas lejos sus deducciones no habrian llegado a alguna contra-
diccién? A mediados de siglo se hacia cada vez més necesario
ofrecer un modelo de esta nueva geometria dentro de la geometria
euclidea, de modo que si encerraba una contradiccién, también
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seria parte de la venerable geometria euclidea (lo que parecia im-
posible). Mediante este subterfugio se probaba de una vez por
todas que la validez de la nueva geometria descansaba, precisa-
mente, sobre la de la geometria euclidea, que se tenia por segura.
Este cometido le correspondi6 en parte a Eugenio Beltrami (1835-
1900), que ofrecié un modelo local en 1868: la pseudoesfera. Dos
afios después, en 1870, Klein descubrié el primer modelo global
de geometria no euclidea.

«Por amor de Dios, te lo ruego, olvidalo. Témelo como a las
pasiones sensuales, porque lo mismo que ellas, puede llegar
a absorber todo tu tiempo y privarte de tu salud, de la paz
de espiritu y de la felicidad en la vida.»

— Carta DE FARKAS BOLYAI A SU HLJO JANOS, AL SABER QUE ESTABA TRABAJANDO
EN EL QUINTO POSTULADO DE EUCLIDES.

Conozcamos el modelo de Klein. Imaginemos que nuestro es-
pacio se ha reducido al interior de un circulo (sin incluir su borde)
y construyamos una especie de diccionario haciendo correspon-
der, uno a uno, una serie de términos, de la misma manera que
lo hace un diccionario corriente con las palabras de dos lenguas
cuyo significado es el mismo. Cuando Euclides dice «punto», no-
sotros pensaremos en los puntos del interior del circulo; y cuando
dice «recta», interpretaremos los segmentos que empiezan y ter-
minan en el borde del circulo. Con esta traduccién hemos cons-
truido un modelo de geometria no euclidea dentro del propio
espacio euclideo. Veamos qué ocurre con el axioma de paralelas.
Dada una recta r y un punto exterior A, hay mas de una recta
paralela a r que pasa por A. En efecto, las rectas s y ¢ son paralelas
a larecta r, ya que no se cortan nunca en nuestro espacio, dentro
del circulo (véase la figura 1, en la pagina siguiente). De la nada
se habia creado un nuevo y extraiio universo. Definitivamente,
Euclides estaba herido de muerte.

Las dudas sobre la geometria no euclidea se disiparon ain
mas cuando se difundieron las ideas que Bernhard Riemann (1826-
1866) habia presentado en su disertacién Sobre las hipdtesis en
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que se basa la geometria, leida en
1854 (ante un Gauss casi octoge-
nario que no pudo disimular su en-
tusiasmo ante lo que escuchaba),
pero no publicada hasta después
de su muerte. Basidndose en los es-
tudios de este 1iltimo en geometria
diferencial, Riemann plante6 que
en cada espacio puede definirse
r / una forma distinta de medir la dis-

tancia, de modo que una recta en

7 ese espacio (que, por definicién,

es «el camino més corto entre dos

puntos») no coincida con la idea

preconcebida que tenemos de ella.

La curva especial resultante, denominada geodésica, jugaria en

ese espacio el papel que la linea recta hace en la geometria eucli-

dea. Segin Riemann, el espacio euclideo se caracteriza por tener

curvatura constante cero, donde hay una tnica paralela (véase

la figura 2 [1]). Pero, si cambiamos el valor de la curvatura, obte-

nemos otro tipo de espacio, que serd modelo de una geometria no

euclidea. Si la curvatura es negativa, obtenemos la geometria

hiperbélica de Gauss-Bolyai-Lobachevski, donde por un punto ex-

terior a una recta pasa mas de una paralela [2]. Por el contrario, si

la curvatura es positiva, obtenemos la geometria eliptica, donde
no hay paralelas [3].

Riemann contribuyé a aclarar cémo interpretar la esfera
como un modelo de geometria eliptica y, por tanto, de geometria
no euclidea, donde el axioma de paralelas es falso en el sentido
de que no hay rectas paralelas (como ocurre en la geometria pro-
yectiva). En la esfera, el papel de las rectas lo juegan los circulos
méaximos. Entonces, si llamamos rectas a los circulos maximos,
obtenemos un modelo euclideo de la geometria eliptica. Y dos
circulos maximos cualesquiera siempre se intersecan entre si. Es
el caso de los meridianos terrestres, que siempre se cortan en los
polos. Al no cumplirse el axioma de paralelas, la suma de los dn-
gulos de un tridngulo no tiene por qué ser 180° como se muestra
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en el tridngulo esférico de la figura 3, cuyos angulos suman 230°.
Sin embargo, localmente, a pequeiia escala, la geometria eucli-
dea parece cumplirse (véase la figura 4, en la que los dngulos del
triangulo suman 180°). Ademas, el resultado de realizar otras iden-
tificaciones permitié contemplar el plano proyectivo, a su vez, en
términos de geometria esférica.

En resumen, los modelos de geometrias no euclideas que los
matematicos del siglo xix fueron sacando a la luz no hicieron sino
devolver la pelota al tejado de 1a geometria euclidea. En efecto, si
antes esta tltima era la tinica que aparecia como valida y ahora re-
sultaba que la validez de las extrafnas geometrias no euclideas era
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exactamente la misma que la de la geometria euclidea (puesto que
los distintos modelos estaban contenidos dentro de ella), cabia
hacerse la siguiente pregunta candente: ;cual era, entonces, la va-
lidez de la geometria euclidea? ;Podia demostrarse fuera de toda
duda que no engendraba ninguna contradicci6én?

La consecuencia mas importante del nacimiento de las geo-
metrias no euclideas fue, en el orden de los fundamentos, sacar a
laluz el problema de la validez de la geometria y de la matemaética
toda. Hasta entonces, la coherencia de la geometria euclidea se
habia asegurado basandose en que se correspondia con el espacio
fisico, donde no hay contradicciones. Ademas de los interesan-
tes resultados que se iban agregando continuamente, la atencién
se dirigi6é hacia estas preguntas fundacionales. El enfoque axio-
madtico del 1ltimo tercio del siglo xix —capitaneado por Moritz
Pasch (1843-1930) y Giuseppe Peano (1858-1930)— se las plante6
vigorosamente, pero solo con Hilbert encontraron una respuesta
definitiva. El paso previo a responderlas era buscar una axioma-
tica adecuada de la geometria euclidea, que cerrase las brechas
légicas que se habian ido descubriendo gradualmente.

EL ENFOQUE AXIOMATICO DE HILBERT

Al igual que hiciera con la teoria de invariantes, llegé un dia en que
Hilbert se cansé y abandond la teoria de niimeros, pasindose al
estudio de los fundamentos de la geometria. Nadie podia sospe-
charlo, aunque hubiera dictado un par de cursos sobre la materia
en Konigsberg. Este cambio de rumbo pillé por sorpresa a todos
sus nuevos colegas de Gotinga. No obstante, en El informe Zahl-
bericht, Hilbert enfatizaba que el desarrollo moderno de la mate-
matica habia sucedido ante todo bajo el signo del niimero y, acto
seguido, animaba a una aritmetizacién de la geometria, orientada
a un andlisis puramente logico del tema. Puede verse aqui la pro-
mesa de escribir los célebres Grundlagen der Geometrie (Funda-
mentos de la geometria), que aparecieron en 1899 con ocasién
de la inauguracién en Gotinga de una estatua dedicada a Gauss y
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Wilhelm Weber que conmemoraba su invencion del telégrafo. La
obra se convirtié enseguida en un paradigma esencial para la in-
vestigacion de fundamentos y ha hecho por promover la practica
axiomatica en el siglo xx lo mismo que los Elementos hicieron en
los siglos anteriores.

El libro contenia una axiomatica para la geometria que su-
peraba con creces no solo a la de Euclides, sino a las propuestas
por Pasch o Peano. Hilbert habia percibido con claridad que la
labor de establecer el minimo nimero de suposiciones del cual
pudiera derivarse toda la geometria no habia sido atn comple-
tamente realizada. Es asi que propuso un total de veintitin axio-
mas, que Hilbert no se sacé de la chistera, sino que venian siendo
empleados implicita o explicitamente desde antiguo y que, en
todo caso, no eran solo fruto del pensamiento puro, sino también
de la intuicién sensorial (lo que justifica que el libro arranque
con una cita de Kant). La geometria, segin la concebia Hilbert,
estaba mds cerca de la mecdnica y de la fisica que del algebra y
la teoria de niimeros.

Hilbert formulé sus axiomas para tres sistemas de objetos
indefinidos. A los objetos del primer sistema los denominé por
conveniencia puntos; alos del segundo, rectas; y, a los del tercero,
planos. Pero, a diferencia de Euclides, en ningiin momento entré a
definir los entes geométricos primitivos. Son los axiomas los que
los definen implicitamente, ya que establecen qué relaciones hay
entre ellos. Determinan lo que se puede afirmar y hacer con pun-
tos, rectas y planos. Para Hilbert habia que purgar el significado
que los objetos elementales colaban de matute. Son los axiomas, y
solo los axiomas (sin ninguna idea preconcebida o dibujo alguno),
los que definen los objetos elementales a través de sus relaciones
mutuas. «Uno deberia poder decir siempre, en lugar de “puntos,
rectas y planos”, “mesas, sillas y jarras de cerveza”», escribi6. Los
axiomas admiten interpretaciones miiltiples, siendo esta caracte-
ristica la principal diferencia entre la axiomatica material de
Euclides y la nueva axiomatica formal de Hilbert.

Pero hay més. Hilbert desplegé toda su habilidad matematica
y organizé sus veintitin axiomas para la geometria euclidea en
cinco grupos:
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— Axiomas de incidencia o enlace, que conectan entre si los
diferentes objetos y, por ejemplo, permiten afirmar que
«este punto yace en esta recta» o «esta recta yace en este
plano».

— Axiomas de orden, que permiten decir, por ejemplo, «este
punto esté entre estos dos» (como notara Pasch, esta clase
de axiomas estaba completamente ausente de la lista de
postulados euclideos).

— Axiomas de congruencia, que sirven para comparar e igua-
lar segmentos.

— Axiomas de paralelismo, un grupo de axiomas que solo
contiene el célebre axioma de paralelas.

— Axiomas de continuidad, que son dos axiomas en realidad.
Por un lado, el llamado axioma de Arquimedes, que esta-
blece que dados dos segmentos arbitrarios, si repetimos
sucesivas veces cualquiera de ellos, podemos lograr cons-
truir un segmento mayor que el otro en un nimero finito
de pasos; y, por otro, el axioma de plenitud lineal o de
continuidad de la recta: los puntos de una recta forman un
sistema que no es susceptible de ampliacién alguna bajo la
condicién de conservar la ordenacion lineal, los axiomas
de congruencia y el axioma de Arquimedes.

Este 1ltimo axioma brillaba por su ausencia en los Elementos,
pese a que su uso es indispensable incluso para demostrar la Pro-
posicién I del Libro I. Constituye una de las grandes aportaciones
de Hilbert el haberlo sacado a la luz. Sin él, Q? (esto es, el plano
en el que nos hemos quedado solo con los puntos que tienen coor-
denadas racionales) seria un modelo de la geometria euclidea,
ya que satisfaria todos los axiomas anteriores. Y, sin embargo,
como subrayara Richard Dedekind (1831-1916), en este plano agu-
jereado dos circunferencias, cada una pasando por el centro de
la otra, no tendrian por qué cortarse (algo que se presuponia en la
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Proposicién I), porque pueden hacerlo en un punto con coorde-
nadas irracionales (en un agujero). El axioma de plenitud lineal o
de continuidad de la recta permite identificar cualquier recta con
los niimeros reales R y, de este modo, el plano con R? (esto es,
con el plano al completo, con todos los puntos con coordenadas
racionales e irracionales), donde esta garantizado que las dos cir-
cunferencias anteriores se cortan (véase la figura). Es el puente
entre la geometria sintética, basada en diagramas y dibujos, y la
geometria analitica, que solo recurre a razonamientos numéricos.

Pero ademas de enunciar los axiomas, Hilbert fue pionero
en ascender del nivel puramente matemético en que se estudia
la geometria al nivel metamatematico o metageométrico, que
se preocupa por las propiedades que debe cumplir todo sistema
axiomaético, en particular el que €l estaba prescribiendo para la
geometria. ;Qué se puede pedir a los axiomas? Hilbert sefial6 tres
propiedades: independencia, consistencia y completitud.

Un sistema de axiomas es independiente si ningiin axioma
puede deducirse de los otros, es decir, si el sistema de axiomas
es el més econémico posible porque no contiene redundancia al-
guna. Aunque no todos los axiomas que formulé eran indepen-
dientes entre si (como se descubrié més tarde), Hilbert demostré
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Sin el axioma de
continuidad no se
puede asegurar
que las dos
circunferencias
del dibujo se
corten en el punto
Cy, por tanto,
que sea posible
construir

el tridngulo
equildtero de lado
AB (tal y como

se afirma en la
Proposicién | del
Libro | de los
Elementos).

37



38

AXIOMAS, DEMOSTRACIONES, TEOREMAS Y TEORIAS

Desde una perspectiva axiomatica, un axioma no es mas que un enunciado que
se coloca, por una u otra razén (en general, por su fertilidad), en la base de
una teoria matematica para poder deducir teoremas a partir de él. Pero para
poder deducir teoremas necesitamos una serie de reglas de deduccidén o de
inferencia que nos digan cémo hacerlo. Los matematicos usan habitualmente
dos reglas clasicas. Una es el modus ponens, que consiste en deducir de la
implicacién «Si P, entonces Q» y de la verificacién de P, que se da Q. Y otra
es el modus tollens, que consiste en deducir de la implicacion «Si P, entonces
Q@» y del hecho de que Q no se verifica, qgue tampoco lo hace P. De este modo,
formalmente, una demostracion o prueba es una cadena de razonamientos
que permite obtener nuevos resultados aplicando los axiomas vy las reglas de
inferencia. Al resultado final de una demostracion se le denomina teorema.
Si a partir de un conjunto de axiomas S hemos podido deducir el teorema
T, suele escribirse S T («T es demostrable a partir de S»), donde el signo
representa la relacién sintactica de deducciéon o demostracién. Finalmente, se
llama teoria al conjunto de todos los teoremas que se pueden demostrar. Y
se llama modelo de una teoria a una estructura matematica en que los axiomas
son verdaderos, se satisfacen. Si M es un modelo del conjunto de axiomas S,
se escribe M E S («M satisface S», es decir, «los axiomas S son verdad en M»).
El signo F representa la relacion semantica de verdad o satisfaccion. Una de
las preguntas fundacionales que se hara Hilbert es qué relacién hay en mate-
maticas entre la relacién de demostracion y la relacién de verdad (entre -y
E): des verdadero todo lo demostrable?, ées demostrable todo lo verdadero?

la independencia entre los distintos grupos de axiomas. En con-
creto, demostré que el axioma de paralelas era independiente del
resto de axiomas, es decir, que no podia deducirse a partir de
ellos, con lo que cerré definitivamente una cuestion abierta desde
hacia siglos. Esto lo logré empleando un método que muy pronto
se volvié estandar: construyendo modelos de geometrias que sa-
tisfacen todos los axiomas deseados excepto aquel del cual se
investiga su independencia, en cuyo caso este ultimo no puede
ser consecuencia de los otros (ya que si lo fuera, obtendriamos
una contradiccion: el axioma y su negacién). Para demostrar la
independencia del axioma de paralelas, construy6é un modelo de
geometria no euclidea. Y para demostrar la independencia del
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axioma de Arquimedes, construyé un modelo de geometria no
arquimediana, donde existen magnitudes infinitesimales. De esta
forma, Hilbert, al igual que Giuseppe Veronese (1845-1917), abri6
las puertas del pensamiento a la exploracién de otra nueva clase
de geometria.

La segunda demanda que Hilbert hizo a su sistema axiomatico
es la consistencia. Un sistema de axiomas es consistente si no
genera contradicciones, si no puede deducirse ninguna contradic-
cién a partir de ellos. También se dice que el sistema de axiomas
es, entonces, coherente o compatible. Los modelos de Beltrami,
Klein, Poincaré y Riemann habian probado la consistencia rela-
tiva de las geometrias no euclideas respecto de la euclidea, ya
que estos modelos no euclideos estaban contenidos dentro del
propio espacio euclideo. Pero, ;era consistente la geometria eucli-
dea? Hilbert demostro la consistencia de la geometria euclidea en
relacién a la aritmética, ofreciendo por vez primera un modelo
puramente numérico. Construyo un conjunto de nimeros que
satisface todos los axiomas geométricos, donde los puntos son
ciertos pares de niimeros algebraicos; las rectas, ciertas ternas
de esos niimeros; donde la incidencia de una recta en un punto
quiere decir que se verifica cierta ecuaciéon numérica, etc. De este
modo, cualquier inconsistencia en su sistema axiomadtico de la
geometria desembocaria en una inconsistencia en la aritmética.
Cualquier contradiccion en las deducciones hechas a partir de los
axiomas geométricos seria reconocida como una contradiccion
aritmética (por ejemplo, 0=1).

En consecuencia, Hilbert redujo la consistencia de la geome-
tria euclidea a la de la aritmética, que por aquel entonces daba
por supuesta, aunque no tardé en reconocer que se trataba de
un problema abierto al que inmediatamente asigné una alta prio-
ridad (como tendremos ocasién de ver en el préximo capitulo).
Era natural. Las geometrias no euclideas descansaban sobre la
euclidea, y esta ultima se apoyaba a su vez sobre la aritmética de
los niimeros reales. A la manera como en el suefio del sabio indio
el mundo descansaba sobre un elefante, y el elefante sobre una
tortuga. Pero, ;y la tortuga? La pregunta por la consistencia de la
aritmética se planteé enseguida en toda su agudeza. Hilbert no
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LA INFLUENCIA DEL MALOGRADO HERTZ

Es muy probable que Hilbert no conocie-
ra bien los trabajos axiomaticos de la es-
cuela italiana de Peano, aunque si los de
la escuela alemana, tanto en la corriente
que se intereso por la geometria (Pasch)
como en la que lo hizo por la mecanica.
Heinrich Rudolf Hertz (1857-1894) mu-
rio cuando solo contaba treinta y siete
afnos. Pero en ese breve lapso de tiempo
deslumbro a sus contemporaneos como
fisico experimental (descubrid las ondas
electromagnéticas y el efecto fotoeléc-
trico) vy, al final de sus dias, como fisico
tedrico. En 1894 publicd Los principios de
la mecdnica presentados de una forma
nueva, donde exponia axiomaticamente
dicha ciencia. A su sistema axiomatico
le pedia dos requisitos: permisibilidad vy

correccion. La permisibilidad coincide Heinrich Rudolf Hertz alrededor de 1893.

con la consistencia, con la ausencia de

contradiccién. Y la correccion lo hace con la completitud, con que podamos
demostrar dentro de la teoria todo lo que es verdadero en el mundo. Dos
conceptos, como puede comprobarse, en estrecho paralelismo con los que

introdujo David Hilbert.

la abordé en el libro, pero a estas alturas creia que la compatibi-
lidad de los axiomas de la aritmética podria probarse de manera
relativamente sencilla (jcuan equivocado estabal).

Por 1iltimo, un tercer requerimiento que al cabo de pocos
afios Hilbert observé que debia pedirse, a ser posible, es la com-
pletitud (aunque apenas aparece esbozada en los Grundlagen).
Un sistema axiomatico es completo si podemos demostrar den-
tro del sistema todas las proposiciones que son verdad respecto
de los objetos del sistema, es decir, si ninguna verdad escapa al
poder de la demostracion, si todas las verdades son demostrables.
Mientras que la consistencia nos asegura que todo lo demostrable
es cierto («todos los teoremas son verdad»), la completitud nos
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garantiza lo reciproco: todo lo verdadero es demostrable («todas
las verdades son teorema»). Si el sistema de axiomas que propuso
para la geometria euclidea era completo, permitiria deducir todos
los resultados conocidos y por conocer de la geometria euclidea.

No queremos adelantar acontecimientos, pero responder a esta
cuestion no era baladi. Como explicaremos en el dltimo capitulo,
Hilbert acabaria descubriendo que cualquier sistema axiomatico
minimamente interesante es incompleto. En él lo verdadero no
coincide con lo demostrable. Hay proposiciones verdaderas que
no pueden ser demostradas. Una situacién paradéjica que recuerda
ala del detective de policia que sabe con certeza quién es el asesino
pero no es capaz de probarlo. Por suerte, en 1951, el 16gico polaco
Alfred Tarski (1902-1983) demostré que una versién muy elemental
de la geometria euclidea es completa —obviamente, esta versién no
contiene a la aritmética, por lo que no viola los famosos teoremas
de incompletitud de la aritmética de Kurt Godel (1906-1978)—.

Recapitulemos. Tres son los requerimientos que Hilbert esta-
blece para su sistema de axiomas de la geometria: independencia,
consistencia y completitud. El matematico aleman se plante6 con
acierto si su axiomatica era minimal, demostrando en particular
que el axioma de paralelas y el axioma de Arquimedes eran in-
dependientes del resto. Ademads, resolvié parcialmente la cues-
tion de la consistencia, probando la consistencia relativa de la
geometria con respecto a la aritmética. En suma, sent6 las bases
sobre las cuales estudiar axiomaticamente cualquier geometria,
euclidea o no euclidea, arquimediana o no arquimediana; y mos-
tré cémo es posible derivar los resultados geométricos conocidos
dependiendo de qué grupos de axiomas se admitan.

EL GRITERIO DE LOS BEOCIOS

En una carta escrita a un colega matematico en 1829, Gauss mani-
festaba que no pensaba publicar nada en vida sobre geometria no
euclidea por temor al «griterio de los beocios». Con esta expresion
el matematico aleméan aludia, sin duda alguna, a los filésofos kan-
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tianos, para quienes la geometria euclidea era la tinica posible, dado
que la unicidad del espacio implicaba la unicidad de la geometria.
Un espacio fisico, una geometria matematica. Gauss se guardé de
publicar sus resultados por miedo al escandalo, ya que el descu-
brimiento de las geometrias no euclideas constituia un motivo muy
serio para poner en cuestién toda la filosofia kantiana. Si habia
mas de una geometria l6gicamente concebible, preguntar por la
verdad de una en concreto era como preguntar si el sistema de nu-
meracién decimal es mas verdadero que el binario, o si el sistema
de coordenadas cartesiano lo es mas que el polar. La relatividad de
la geometria apuntaba, contra las ideas de Kant, a que el espacio
era amorfo y carece de sentido preguntar qué geometria es la verda-
dera. No fue Gauss el tinico matemaético que sintié cierta antipatia
por Kant, el gran filésofo paisano de Hilbert. Georg Cantor confe-
saba que su lectura le ponia enfermo y se referia al sabio prusiano
como «aquel sofistico filisteo que sabia tan poco de matematicas».

Al igual que Gauss, Hilbert tuvo sus mas y sus menos con un
filésofo, como consecuencia de las ideas expuestas en los Fun-
damentos de la geometria. En este caso, con el légico y filésofo
Gottlob Frege (1848-1925). Este oscuro profesor de la Universidad
de Jena fue (como veremos en el capitulo 4) el padre de la 16gica
moderna, pero también uno de los més conspicuos defensores del
enfoque axiomatico de los antiguos. La reaccion de Frege tras una
atenta lectura del libro de Hilbert no se hizo esperar. Dio inicio a
una correspondencia y a un sinfin de malentendidos.

En su primera carta, fechada a finales de 1899, Frege sometia
el libro a una critica dura y algo pedante. Irritado, pero armando-
se de paciencia, Hilbert respondié con otra prolija misiva. Sin em-
bargo, a partir de ese momento, se limit6 a hacerlo escuetamente,
y cuando Frege le propuso publicar el intercambio epistolar, se
negé en redondo. No obstante, la polémica encierra gran interés,
por cuanto muestra el choque frontal entre dos concepciones del
método axiomatico: la antigua o tradicional, representada por
Frege, y la nueva iniciada por Hilbert.

Frege jamds cuestioné el andlisis kantiano de la geometria, y
no concebia méas método axiomatico que el que Aristételes des-
cribiera en los Analiticos posteriores y Euclides ejercitara en los
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Elementos. Los axiomas eran verdades evidentes entresacadas de
la realidad. En consecuencia, el axioma de paralelas era verdad o
no lo era. Pero no podia ser ambas cosas a la vez. En una de sus
cartas, el filésofo aleman escribia:

Nadie puede servir a la vez a dos sefiores: si la geometria euclidea es
verdadera, entonces hay que echar a la geometria no euclidea fuera
de lalista de las ciencias y colocarla junto a la alquimia y la astrologia.

Su postura retrégrada le impidié comprender que para Hil-
bert los axiomas no eran mas que esquemas abstractos que se
situaban pragmaticamente como principios de la teoria matema-
tica. Y no eran, ni mucho menos, inamovibles.

Pero el disgusto de Frege fue aiin mayor cuando leyé que Hil-
bert estaba dispuesto a llamar «puntos», «rectas» y «planos» a
cualesquiera tres conjuntos arbitrarios que satisficieran sus axio-
mas, aunque fueran mesas, sillas y jarras de cerveza. Para Frege
los axiomas hablaban de cosas reales y, por tanto, dificilmente
podian tener mas de una interpretacion posible. Hilbert volvié a
reiterarle su posicién por carta:

Cada teoria no es sino un tinglado de conceptos junto con ciertas re-
laciones necesarias entre ellos, y sus elementos bésicos pueden ser
pensados arbitrariamente. Si entiendo por puntos, etc., cualquier sis-
tema de cosas, por ejemplo el sistema formado por amor, ley, desho-
llinador, etc., y considero que todos mis axiomas son validos para esas
cosas, entonces resultan vilidos para esas cosas mis teoremas, como,
por ejemplo, el de Pitdgoras. Con otras palabras: cada teoria puede
ser aplicada a una infinidad de sistemas de elementos bésicos.

Para cuando Frege publicé un par de largos articulos tildan-
dole de Doctor Matasanos, Hilbert replicé por mano de Alwin
Korselt (1864-1947), mostrando de nuevo su concepcién de la
matematica: «Podemos, pues, llamarla también “juego de signos
vacio, carente de significado” y cosas por el estilo; como precisa
asociacién legal de proposiciones no precisa de ninguna otra dig-
nidad especial».

LOS FUNDAMENTOS DE LA GEOMETRIA



Curiosamente, otro que tampoco se encontraba cémodo con
este uso de los términos que aparecen en los axiomas como pa-
labras vacias que expresan generalidad fue Henri Poincaré. El
matematico francés se sumé al carro de las criticas al libro de Hil-
bert, ya que detestaba a quienes querian reducir las matematicas
a meras relaciones formales entre simbolos. Escribié una larga
resefia en la que acusaba al matematico aleman de tramposo, por-
que el método axiomatico nunca es creador. No es un instrumento
conceptualizador original, pues disfraza y oculta lo que se quiere
axiomatizar. Segin Poincaré, Hilbert tenia siempre presente la
geometria euclidea en sus Fundamentos de la geometria, aunque
lo negara. Su axiomadtica, aunque pretenda ser enfocada como una
serie de definiciones implicitas, parte ya de una teoria existente y
se limita meramente a reorganizarla. El titAn francés sali6 al paso,
una vez mas, del titdn alemén.

Mucho menos comprendi6 Frege el interés de Hilbert por el
axioma de plenitud lineal o de continuidad de la recta, que es-
tablecia que no existia otro sistema mayor de objetos que tam-
bién obedeciera a los axiomas. El filésofo se quejoé con rudeza al
matematico de que era como hacer teologia con un axioma que
dijera: «Axioma 3. Existe al menos un Dios». No deja de ser ir6-
nico que fuera la segunda vez que el enfoque hilbertiano recibia la
acusacion de teoldgico. Pero mas que un teélogo, Hilbert era un
mistico, capaz de adivinar el futuro y otear el rumbo que tomarian
las matematicas.

La polaridad entre Frege y Hilbert, como entre Gordan y él,
es crucial para entender en qué se diferencian las matematicas del
siglo xix de las del siglo xx. Para Frege la existencia matematica
tenia que ver con qué objetos materiales o ideales existen en el
mundo. Asi, como hay solo un mundo, tiene que haber una tnica
geometria. Los sistemas axiomaéticos venian, en principio, vacios.
En cambio, Hilbert mantenia la opinién radicalmente opuesta. Los
axiomas no solo codifican el comportamiento de los objetos mate-
maticos, sino que también pueden crear objetos matematicos nue-
vos si no incurren en contradiccién. En consecuencia, uno tiene
mas de una geometria en matematicas, dado que cada una de ellas
es consistente (en relacion a la aritmética).
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Los Grundlagen fueron el broche perfecto a la edad heroica
de la geometria, abriendo el camino a toda una panoplia de geo-
metrias (las no euclideas, las no arquimedianas, etc.). Fueron,
ademas, el primer hito en la corriente axiomatizadora moderna.
Desde 1900, pertrechado con su nuevo método, Hilbert impulsaria
la axiomatizacion del resto de disciplinas cientificas. Si la axio-
mitica habia funcionado tan bien en geometria, ;por qué no iba a
hacerlo en la aritmética, el analisis o la fisica?
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CAPITULO 2

El desafio de Hilbert

La sombra de Hilbert es alargada
y se proyecta sobre gran parte del hacer
matematico del siglo xx. Cuando el 8 de agosto
de 1900 subié a la tribuna y tom¢ la palabra en el
II Congreso Internacional de Matematicos, Hilbert
condenso los retos futuros a los que debia enfrentarse
la matematica en veintitrés problemas, influyendo
decisivamente en la evolucién de la disciplina.
Estaba levantando el velo tras el que se
ocultaba el futuro de las matematicas.






Corria el ano de 1900. Un nuevo siglo comenzaba. Mientras cien-
tos de parisinos se debatian entre recorrer los pabellones de la
Exposicién Universal o asistir a las competiciones de los Juegos
Olimpicos, David Hilbert tomaba la palabra en la Universidad de
la Sorbona, con ocasién del II Congreso Internacional de Mate-
maticos. No iba a hablar de lo que habia demostrado, sino de lo
que quedaba por demostrar. Lo hacia en calidad de ser uno de los
mejores matematicos de su generacién y lider de la escuela mate-
matica radicada en Gotinga. Y aunque su charla no era una con-
ferencia plenaria, ya que Hilbert se habia demorado demasiado a
la hora de enviar un titulo y los organizadores habian tenido que
excluirla del programa, estaba llamada a ser la ponencia mas re-
cordada del congreso.

A sus treinta y ocho afios, David Hilbert habia ya demostrado
el brio de sus ideas. Tras revolucionar la teoria de invariantes con
un inédito salto de abstraccién, habia incursionado en la teoria de
nimeros y en la geometria axiomaética, dejando a su paso obras
que se convertirian en clasicos de ambas disciplinas. Consciente
de ser uno de los matematicos mas destacados, queria demostrar
su penetrante visién de conjunto de las matematicas. Podemos
imaginar a nuestro matematico ese caluroso 8 de agosto de 1900.
Alto, enjuto, con la barba recortada, y acompafiado de sus incon-
fundibles anteojos, se dirigi6 al estrado y tomé la palabra. Lo hizo
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para subrayar que el motor del progreso en matematicas era la
resolucion de problemas y para emplazar a los matemaéticos del
siglo xx a resolver veintitrés cuestiones escogidas.

HILBERT FRENTE A POINCARE

El I Congreso Internacional de Matematicos se habia celebrado
en Zirich tres anos antes, en 1897. El matematico francés Henri
Poincaré habia sido la estrella del encuentro, con su conferencia
«Sobre las relaciones entre el andlisis puro y la fisica matema-
tica». A resultas de ello, ahora era el presidente del comité orga-
nizador. En Paris Hilbert queria demostrar su valia rivalizando con
el patrén de la matematica francesa. Al igual que Klein, ansiaba
recuperar el predominio, el prestigio para los matematicos ale-
manes. Pero albergaba serias dudas acerca de cé6mo lograrlo. En
consecuencia, tardé mas de la cuenta en elegir un tema para la
conferencia.

En su discurso, Poincaré habia expuesto un programa marco
para el desarrollo de las matematicas. Esta ciencia posee un tri-
ple fin. Un fin fisico, consistente en proporcionar un instrumento
adecuado para el estudio de la naturaleza. Un fin filoséfico, ayu-
dar al filésofo a profundizar en las nociones de niimero, espacio
y tiempo. Y, finalmente, un fin estético, comparable a la misica
o la pintura. Las matematicas, afiadia, merecen ser cultivadas en
si mismas, no solo por sus aplicaciones, puesto que sin teoria la
investigacién practica y el progreso se estancan. Pero la mejor
opcién se da cuando los fines fisico y estético son solidarios. A lo
largo de su charla, Poincaré se esforzé por mostrar en detalle la
relacién entre la ciencia pura y sus aplicaciones, entre el analisis
y la fisica.

Este entorno programatico encontraria una respuesta frontal
en los veintitrés problemas futuros de las matematicas dados a
conocer por Hilbert. Ambos matematicos se conocian y se admi-
raban, pero su concepcién de las matematicas era muy distinta. El
matematico alemén defendi6 el valor de la matemaética pura en si
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misma, sin contaminacién. Aunque buena parte de su carrera en
los siguientes veinte afios permaneceria ligada a la fisica, queria
rebatir algunas de las ideas de su homélogo francés. Segin era su
costumbre consulté con su amigo Minkowski, quien le escribi6 a
pocos meses de su participacién en el congreso:

He releido la conferencia de Poincaré y encuentro que todas sus
afirmaciones estin expresadas de un modo tan vago que no se pue-
den contradecir [...]. Més atractivo seria que intentes mirar hacia el
futuro, enumerando los problemas a los cuales deberian dedicarse
los matematicos en adelante. Asi podrias crear las circunstancias
para que se siga hablando de tu charla en las décadas venideras. Eso
si, debes tener en cuenta que la profecia tiene sus dificultades.

Siguiendo su consejo, las primeras palabras que pronunci6
Hilbert en Paris componian una hermosa bateria de preguntas al
respecto:

¢ Cudles seran los objetivos concretos por los que se esforzaran las
mejores mentes matemdticas de las préximas generaciones? ;Qué
nuevos métodos y nuevos hechos nos depararin las centurias por
venir en el amplio y rico campo del pensamiento matematico?

El leitmotiv de su discurso fue revalorizar la matematica pura
a través de los problemas que ella misma se propone. A su enten-
der, mientras las matemaéticas ofrezcan abundancia de problemas,
estaran vivas y efervescentes. Es la falta de problemas lo que pro-
nostica la extincion o desaparicién de una rama de la ciencia. Las
ciencias avanzan resolviendo problemas. Pero, ;qué caracteristi-
cas deberia reunir un buen problema matemaético? Para empezar,
deberia ser facil de enunciar y explicar, y, ademas, dificil de resol-
ver, aunque no imposible, para no frustrar los esfuerzos.

Pero hay mas, Hilbert aproveché esta oportunidad inigua-
lable para divulgar su fe en la centralidad del método axioma-
tico como vehiculo de definicién de los conceptos matematicos.
Mientras que para Poincaré la intuicién y las analogias fisicas
jugaban un papel esencial, para Hilbert lo hacia la 16gica més es-
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tricta: el rigor y la simplicidad. Como explicamos en el capitulo
anterior, el tltimo tercio del siglo xix asistié a la constitucién de
un nuevo modo de hacer en matematicas, con una inversion radi-
cal respecto al hacer matemadtico anterior. La nocién de estruc-
tura abstracta, incluyendo aqui la de conjunto, se convirtié en un
nuevo punto de partida, ligado a una nueva forma de definicién,
como la implicita por axiomas. Asimismo, aparecieron nuevos
métodos de demostracién, como los indirectos o existenciales,
y nuevos modos de expresion, que requerian el uso de lenguajes
formales. Una revolucion que se fue imponiendo entre los mate-
maticos, aunque no sin vueltas del revés, y que debe mucho al
matematico aleman.

A lo largo de la charla, Hilbert reiteré su concepcién de la
existencia matematica: si puede demostrarse que los atributos
asignados a un concepto no conducen nunca a una contradic-
cién, entonces el concepto en cuestion existe mateméaticamente.
Una afirmacién tajante que tuvo que resultar chocante a oidos de
muchos de sus colegas. También afirmé que al investigar los fun-
damentos de una ciencia debia postularse un sistema de axiomas
que contuviera una descripcién exacta de las relaciones basicas
entre las ideas elementales de esa ciencia. Los axiomas asi postu-
lados serian a la vez las definiciones de dichas ideas elementales,
y ninguna proposicion de la ciencia bajo examen seria conside-
rada verdadera a menos que fuera derivable de los axiomas en un
nimero finito de pasos légicos.

Ademas, en el preambulo filosdfico a su lista de problemas,
Hilbert se opuso —al igual que ya hiciera Poincaré— a la corriente
escéptica, iniciada por el fisiélogo Emil du Bois-Reymond (1818-
1896) y secundada por el fisico Pierre Duhem (1861-1916), que tan
en boga estaba en la época. Para estos autores, la ciencia estaba
llegando a su limite, de modo que habia cierto tipo de cuestiones
que, segin la maxima acufiada por Du Bois-Reymond en 1872,
«ignoramos e ignoraremos» («Ignoramus, ignorabimus!»). Por
contra, Hilbert apuntaba con optimismo que todo problema ma-
tematico era resoluble, en el sentido de admitir una respuesta po-
sitiva o negativa. Esta era una de sus convicciones mds intimas y
un poderoso acicate en su trabajo diario:
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En nuestro interior escuchamos la perpetua llamada: he ahi un pro-
blema. Busca su solucién. Puedes hallarla por medio de la razén
porque en mateméticas no existe el ignorabimus.

Desafortunadamente, no seria asi. Como es sabido esa es una
de las ideas que en los afos treinta recibié un fuerte golpe.

EL RETO DE HILBERT

La lista de problemas matemaéticos que Hilbert propuso contenia
un total de veintitrés, aunque por limitaciones de tiempo solo
mencioné diez de ellos en su charla. No obstante, facilité a los
asistentes una copia impresa del texto completo, que enseguida
fue publicado tanto en Alemania como en Francia, lo que ampli6é
su conocimiento y difusién. A continuacién vamos a enunciar los
veintitrés problemas, aunque solo vamos a describir algunos
(los més simples y menos técnicos), ya que una exposicion deta-
llada de cada uno nos llevaria demasiado lejos.

Los problemas pueden agruparse en varios bloques, depen-
diendo de la materia que tratan: fundamentos de las matematicas
(asaber, los problemas 1, 2, 3, 4 y 5) y de la fisica matematica (pro-
blema 6), teoria de niimeros (problemas 7, 8, 9, 10 y 11), dlgebra
(12, 13, 14 y 17), geometria (15, 16 y 18) y analisis (19, 20, 21, 22 y
23). Los fundamentos de la matemaética, la geometria y el dlgebra
desde distintos angulos, la teoria de nimeros y el andlisis estan
representados en la lista, junto con otros asuntos de mas esquiva
clasificacién.

Dentro del primer bloque nos encontramos con los problemas
de fundamentos de la matematica y de la fisica:

1. El problema del continuo (cuya explicacién posponemos al
capitulo 4). Baste por ahora contar que se trataba de probar
la verdad o la falsedad de la famosa hipdtesis del continuo
de Cantor, que afirmaba que no existe un subconjunto de la
recta real cuyo cardinal (su tamano, para entendernos de
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momento) esté estrictamente entre el de los nimeros ra-
cionales y el de los niimeros reales. Al proponer esta cues-
tiébn como primer problema matemético del futuro, Hilbert
estaba tomando partido y apostando decididamente por la
teoria abstracta de conjuntos frente a sus opositores, que
no eran pocos.

. El problema de la consistencia de los axiomas de la arit-

mética. Esta cuestién, como vimos en el capitulo anterior,
era fundamental, porque una respuesta positiva probaria
de forma indirecta la consistencia de toda la matematica.
En los Fundamentos de la geometria, Hilbert habia dejado
aparcado este problema, pero volvié a €l en sus ultimos
anos como investigador, a partir de 1920, como explicare-
mos en el dltimo capitulo. Por desgracia, el 16gico austriaco
Kurt Godel demostré en 1931 que este problema era formal-
mente indecidible. No es posible probar la consistencia de
los axiomas de la aritmética.

. La igualdad de los volimenes de dos tetraedros de igual

base y altura. En su libro, Hilbert se habia preocupado por
definir el concepto de area en geometria plana sin recurrir
al calculo infinitesimal (a las integrales) y lo habia logrado
caracterizando los poligonos de igual area como aquellos
que son equicomplementables (esto es, simplificando, que
se descomponen en el mismo nimero de tridngulos igua-
les). ;Era posible hacer lo mismo para el concepto de volu-
men en geometria espacial? ;Seria posible caracterizar los
poliedros de igual volumen como aquellos que pueden des-
componerse en el mismo nimero de tetraedros iguales?
En 1902, Max Dehn (1878-19562) respondié negativamente:
existen dos tetraedros de igual base y altura (por tanto,
de igual volumen) que, sin embargo, no son equicomple-
mentables. No es posible cortar el primero en una can-
tidad finita de piezas poliédricas que puedan ensamblarse
de modo que quede armado el segundo. Mientras que en
dos dimensiones era posible evitar un complicado proceso
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de paso al limite conocido como la escalera del demonio
y de ese modo definir el drea sin emplear el cdlculo, en
tres dimensiones este proceso se mostr6 imprescindible,
lo que impedia definir la nocién de volumen sin recurrir al
andlisis.

. El problema de la linea recta como la distancia mds corta

entre dos puntos. Hilbert propone que se continie la inves-
tigacion de las distintas geometrias axiomaticas posibles,
prestando atencién a qué grupo de axiomas permite dedu-
cir el resultado que afirma que en un tridngulo cualquiera la
suma de dos de sus lados es siempre mayor que el tercero
¥, por consiguiente, la linea recta es el camino mas corto
entre dos puntos. Aunque este problema tiene una formu-
lacién un poco vaga, adquirié una mas precisa en el ambito
de la geometria riemanniana, donde se trataba de construir
todas las distancias posibles de forma que las lineas rectas
ordinarias fuesen geodésicas (los caminos mas cortos).

. Anélisis del concepto introducido por Sophus Lie (1842-

1899) de grupo de transformaciones sin incluir la hipéte-
sis de diferenciabilidad de las funciones que componen el

grupo.

. Tratamiento matematico de los axiomas de la fisica. Hil-

bert estaba realmente interesado en la axiomatizacién de
las distintas ramas de la fisica (en especial, de la mecénica
y del célculo de probabilidades, que en la época pasaba por
ser la herramienta mas potente de la termodindmica) a fin
de conferirles un formato similar al de la geometria, a la que
consideraba una suerte de ciencia casi empirica. Era un
problema en cuya resolucién ya se habia avanzado gracias
al trabajo de fisicos como E. Mach (1838-1916) y H. Hertz,
pero en el que los matematicos atin no habian colaborado.
Este programa de axiomatizacién de la fisica obtendria
(como veremos en el préximo capitulo) algunas victorias
parciales en las primeras décadas del siglo xx.
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Por su parte, dentro del bloque de teoria de nimeros, Hilbert
apunto cinco problemas:

7. Irracionalidad y trascendencia de ciertos niimeros. Un nu-
mero trascendente es un tipo de nimero irracional, aquel
que no es raiz de ningin polinomio con coeficientes ente-
ros. Por el contrario, un nimero algebraico es cualquier
nimero que es solucién de una ecuacién polinémica con
coeficientes enteros. Como todavia no se conocian muchos
nimeros trascendentes (aparte de n y €), Hilbert plante6
una cuestion muy concreta: si a es un nimero algebraico
(distinto de 0 y 1) y b es un nimero algebraico irracional,
;es a’ un nimero trascendente? Para Hilbert este era uno de
los problemas mas dificiles de la lista. No obstante, en 1934,
A.O. Gelfond (1906-1968) y T. Schneider (1911-1988) demos-
traron que asf era. En particular, /2 * es trascendente.

8. Estudio de los niimeros primos. Aqui Hilbert planteé una
serie de cuestiones enlazadas con la distribucién de los ni-
meros primos. La principal es, desde luego, la célebre hip6-
tesis de Riemann, que establece que una cierta funcién rela-
cionada con estos nimeros, y denominada funcién zeta de
Riemann €(2), tiene todos sus ceros en la recta Re(2)=1/2
del plano complejo, es decir, todos sus ceros son nimeros
complejos con parte real igual a 1/2. A dia de hoy sigue sin
demostracién, aunque mediante ordenador se ha probado
que los primeros 1,5 billones de ceros cumplen la hipétesis.
Pero también mencioné la conjetura de Goldbach (segiin la
cual todo nimero par puede expresarse como suma de dos
nimeros primos), la existencia de infinitos primos gemelos
(es decir, de primos cuya diferencia es 2), etcétera.

9. Demostracién de la ley de reciprocidad mas general en
cualquier cuerpo de niimeros.

10. Determinacién de la resolubilidad de las ecuaciones dio-
fanticas.
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EL DECIMO PROBLEMA DE HILBERT

Este es uno de los grandes problemas. Parece engafiosamente simple, pero
no lo es. Se trata de buscar algun procedimiento general que permita averi-
guar si una ecuacion diofantica tiene o no soluciones enteras, sin necesidad
de calcularlas. Una ecuacién diofantica es una ecuacién en la que solo inter-
viene un polinomio con coeficientes enteros y se desean conocer todas las
soluciones enteras. Recibe su nombre por el matematico griego Diofanto
(siglo m d.C.), que se interesé por ellas. En particular, la famosa ecuacion
x"+y"=z" del ultimo teorema de Fermat es una ecuacion diofantica —en 1995,
Andrew Wiles (n. 1953) logré demostrar que la ecuacion no tiene soluciones
enteras diferentes de cero cuando n es mayor que 2—. El problema perma-
necié abierto durante setenta afos, hasta que en 1970 la teoria de numeros
y la légica matematica se dieron la mano: el matematico soviético Yuri Mati-
jasevich (n. 1947), siguiendo ideas desarrolladas por Martin Davis (n. 1928),
Hilary Putnam (n. 1926) y Julia Robinson (1919-1985), logré demostrar que no
existe tal algoritmo. Esta ultima, convaleciente de una afeccién cardiaca,
solia pedir en sus cumpleafios el siguiente deseo: «Que alguien resuelva el
décimo problema de Hilbert. No podré descansar hasta que alguien dé con
la respuestan. Curiosamente, su hermana mayor, Constance Reid (1918-2010),
escribid la que pasa por ser la mejor biografia de David Hilbert.

11. Estudio de las formas cuadraticas con coeficientes alge-
braicos cualesquiera.

En el bloque de dlgebra:

12. Extension del teorema de Kronecker sobre cuerpos abe-
lianos a cualquier dominio de racionalidad algebraico.

13. Imposibilidad de resolver la ecuacién general de séptimo
grado por medio de funciones de solo dos argumentos.

14. Demostracion de la finitud de ciertos sistemas completos
de funciones.

17. Expresion de formas definidas por sumas de cuadrados.
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En el bloque de geometria:

15.

16.

18.

Fundamentacién rigurosa del céalculo enumerativo de H.
Schubert (1848-1911).

Estudio de la topologia de curvas y superficies algebrai-
cas, incluyendo aqui —en lo que significaba un guifio a la
obra de Poincaré— el estudio del ntimero y la forma de los
ciclos limite solucién de ciertas ecuaciones diferenciales.

Construccién del espacio a partir de poliedros congruentes.
Este problema es uno de los clasicos de la matematica. Co-
nocido como el problema del teselado o del friso, consiste
en determinar de cudntas formas diferentes puede relle-
narse por completo el plano con figuras geométricas idénti-
cas. Hilbert lo ampli6 al considerar la posibilidad de rellenar
el espacio con poliedros congruentes (véase la figura). Se
trataba, por tanto, de generalizar el estudio ya hecho de los
grupos de simetria y las teselaciones —muchas de ellas re-
presentadas en los mosaicos de La Alhambra— del plano
bidimensional al caso del espacio tridimensional. Avan-
ces intermedios en esta materia se produjeron en 1910 de
manos de Ludwig Bieberbach (1886-1982), un matematico
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que terminaria afiliAndose al Partido Nazi y tomando el
relevo de Hilbert. Ademés, dentro de este apartado, Hilbert
incluy6 la famosa conjetura de Kepler: ;qué disposicién de
esferas del mismo radio deja menos hueco libre en el espa-
cio? Kepler conjeturé que la manera en que el frutero co-
loca las naranjas es la solucién correcta —como de hecho
muy recientemente se ha demostrado gracias a Thomas C.
Hales (n. 19568)—.

Y, finalmente, dentro del bloque dedicado al andlisis, se en-
contraban los ultimos cinco problemas:

19.

20.

21.

22.

23.

Estudio de la analiticidad de las soluciones de los proble-
mas regulares del cdlculo de variaciones.

Estudio de la existencia de soluciones de los problemas
del célculo de variaciones con valores de contorno.

Demostracién de la existencia de ecuaciones diferenciales
lineales con grupo de monodromia prefijado.

Uniformizacién de relaciones analiticas por medio de fun-
ciones automorfas (un problema cuyo origen estaba en
los trabajos de Klein y Poincaré al respecto).

Extension de los métodos del cdlculo de variaciones. Como
veremos en el préximo capitulo, Hilbert contribuyé nota-
blemente al progreso de esta drea del andlisis (que estaba
directamente relacionada con los problemas 19 y 20, que
se interesan por la existencia, la unicidad y las propiedades
de las soluciones del cdlculo de variaciones). Un tema que
ha tenido una vitalidad extraordinaria en el siglo xx, lo que
demuestra el buen olfato de Hilbert al terminar la lista de
problemas con una cuestién general acerca de este campo.

En Paris, por limitaciones de tiempo, Hilbert solo pudo dis-
cutir diez de sus veintitrés problemas: la hipétesis del continuo
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(problema 1); la consistencia de la aritmética (2); la axiomatiza-
cién de teorias fisicas (6); varios problemas de teoria de niimeros,
incluyendo la hipétesis de Riemann (7 y 8); la imposibilidad de
resolucion de la ecuaciéon de séptimo grado (13); una cuestién
sobre curvas y superficies definidas por ecuaciones polinémicas
(16); las soluciones analiticas de los problemas regulares en el cil-
culo de variaciones (19); la existencia de ecuaciones diferenciales
ordinarias que correspondan a grupos monodrémicos dados (21),
y una cuestion de Poincaré sobre la parametrizacién de curvas
algebraicas por medio de funciones automorfas (22).

«Si despertara después de haber dormido durante mil afios,
la primera pregunta que haria seria: ;se ha demostrado la
hipétesis de Riemann?»

— Davip HiLBERT.

Muy recientemente, el historiador de la matematica Thiele
Rudiger ha descubierto en un cuaderno de notas que Hilbert tenia
la intencién de afiadir un nuevo problema, es decir, el niimero
24, que finalmente descartd. El problema iba a consistir en lo si-
guiente: determinar criterios para la simplicidad o la demostra-
cién de la maxima simplicidad de ciertas demostraciones. Hilbert
buscaba desarrollar una teoria general sobre los métodos de de-
mostraciéon en matematicas. Paradéjicamente, algunos afios des-
pués, él mismo fundaria (como estudiaremos en el capitulo 5) una
teoria de la demostracion.

Hubo, sin embargo, algunos olvidos importantes en la lista.
Varios caminos no seguidos. El dlgebra matricial, la estadistica,
la l6gica o la matematica aplicada, que habian sufrido un intenso
desarrollo a finales del siglo, junto a una topologia, una teoria
de la medida y un analisis funcional en gestacién, fueron margi-
nados por Hilbert en su presentacién. Exactamente igual que el
problema de los tres cuerpos o el iltimo teorema de Fermat, que
fueron mencionados pero no propuestos como problemas abier-
tos de la matematica del futuro.

La siguiente tabla recoge el estado actual de los veintitrés
problemas de Hilbert:
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Problema Descripcién Estado
Kurt Gédel (1938) y Paul
Cohen (1963) demostraron
1 La hipétesis del continuo I8 'mpo.s'b”'dad ae pmbaf'a
como cierta o falsa a partir
de los axiomas estandar de
la teoria de conjuntos.
Kurt Gédel (1931) demostrd
que establecer la consistencia
2 Consistencia de la aritmética | de la aritmética es un
problema formalmente
indecidible.
Definicién de la nocién de 3
: Resuelto negativamente
3 volumen sin emplear el
por Dehn (1902).
calculo
Construccion de todas las Bt
{ Resuelto positivamente
4 métricas cuyas rectas sean or Pogorelov (1975)
geodésicas ¥ g :
éSon los grupos continuos 7 s
5 difsrancisbios d forma Resuelto en sentido positivo
. por Andrew Gleason (1952).
automatica?
Parcialmente resuelto:
— Mecanica: Hamel (1909).
— Termodinamica:
Carathéodory (1909).
] . . — Relatividad especial: Robb
6 Axiomatizacion de la fisica (1914) y Carathéodory (1923).
— Mecanica cuantica: Von
Neumann (1932).
— Teoria de la probabilidad:
Kolmogdrov (1933).
¢Es a” trascendental, siendo | Resuelto de forma
7 a=0,] algebraicoy b independiente por Gelfond
irracional algebraico? y Schneider (1934).
La hipdtesis de Riemann .
8 y la conjetura de Goldbach Ablerto.
Encontrar la ley de
9 reciprocidad mas general en | Resuelto por Emil Artin (1923).
cualquier cuerpo numérico
Encontrar un algoritmo que
10 determine si una ecuacion Resuelto en sentido negativo
diofantica tiene soluciones por Matijasevich (1970).
enteras
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Problema

Descripcion

Estado

n

Resolver las formas
cuadréticas con coeficientes
numeéricos algebraicos

Parcialmente resuelto: Hasse
(1923) y Siegel (1930).

Extension del teorema

L de Kronecker Abierto.
Resolucion de la ecuacion
13 general de séptimo grado Resuelto negativamente por
por medio de funciones de | Arnold y Kolmogdrov (1957).
dos argumentos
Demostracion de la Resuelto en sentido negativo,
14 finitud de ciertos sistemas mediante un contraejemplo,
completos de funciones por Nagata (1959).
Fundsmentacion rlgu_rosa Resuelto por Van der Waerden
15 del calculo enumerativo de (1930)
Schubert !
6 Topolog_ia_ de las curyas Ablerio:
y superficies algebraicas
Eioreiitn de foimas Resuelto en sentido positivo
¥ degnidas or cuadrados por Emil Artin (1927) y Georg
P Kreisel (1957).
18 Conjetura de Kepler Resuelto por Hales (2005).
{Son siempre analiticas las
19 soluciones de los problemas | Resuelto afirmativamente por
regulares del célculo de Bernstein (1904).
variaciones?
¢Tienen solucion todos
20 las prpblemas Va,r',ac'onales Resuelto a lo largo del siglo xx.
con ciertas condiciones
de contorno?
Probar la existencia de
21 ecuaciones diferenciales Resuelto de forma negativa
lineales que tengan un grupo | por Anosov y Bolibruch (1989).
monodrémico prescrito
22 ;J:;Ez:;n:ag?:nzgige?:mnes Resuelto independientemente
: P por Koebe y Poincaré (1907).
funciones automorfas
23 Extansion de los métodos Resuelto a lo largo del siglo xx.

del célculo de variaciones
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LOS DIECIOCHO PROBLEMAS DE SMALE Y LOS SIETE PROBLEMAS
DEL MILENIO

En 1992 la Union Matematica Internacional tomo la iniciativa de adaptar la con-
ferencia de Hilbert de 1900 al desarrollo actual de las matematicas. A pesar de
los tremendos logros de las matematicas del siglo xx, docenas de problemas
notables aun esperan solucion. Stephen Smale (n. 1930, ganador de la Medalla
Fields, el equivalente al premio Nobel para matematicos) planteé en el afio
2000 una lista con dieciocho problemas para el siglo xxi. Los tres primeros
son la hipdtesis de Riemann, la conjetura de Poincaré (una famosa cuestion
topoldgica planteada en 1904) y el problema P=NP (étiene todo problema
resoluble en tiempo exponencial, no polindmico, una resolucién alternativa en
tiempo polinémico?). Simultdneamente, el Instituto Clay instaurd siete premios
de un millén de délares para cada uno de los denominados problemas del
milenio. Algunos son nuevos, otros viejos conocidos, que llevan mas de cien
afios esperando una solucion. Entre estos desafios estan, como es natural,
los tres ya citados, asi como el problema de la existencia de soluciones en las
ecuaciones de Navier-Stokes (que describen el movimiento de los fluidos). En
2002 el matematico ruso Grigori Perelman (n. 1966) demostré uno de ellos,
la conjetura de Poincaré; pero, sorprendentemente, rehusé recoger el premio
alegando que no queria ser expuesto como un animal en el zoologico.

EL MAESTRO Y LOS DISCIPULOS

Hoy, mas de cien afios después, el balance es altamente positivo:
mas de la mitad de los problemas han sido resueltos, aunque al-
gunos no de la forma esperada. Otros, los menos, siguen abiertos
(caso del problema 8: la hipétesis de Riemann, la estrella de la
lista) o parcialmente abiertos (caso de los problemas 11, 12 y 16).
Los problemas que Hilbert encomendé al nuevo siglo no cayeron
en saco roto, sino que fascinaron a varias generaciones de mate-
maticos, generando un verdadero aluvién de articulos de investi-
gacién. Resolver un problema de Hilbert era una tarea digna de
respeto, que ayudaba a forjar una carrera. Cualquier matematico
que resolviera uno solo de los problemas ingresaba con ello en
«la clase de honor de la comunidad matematica», por decirlo con
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la expresién que acuiié6 Hermann Weyl (1885-1955) en su escrito
necrolégico sobre Hilbert.

Fue un bello caso de profecia autocumplida. Pese a que la
conferencia de Hilbert no logré arrastrar a muchos asistentes (de
hecho, no se sabe a ciencia cierta si ni siquiera Poincaré, implici-
tamente aludido, acudié) ni generé un debate animado (apenas un
rifirrafe con Peano, que recordé a Hilbert los trabajos de los mate-
maticos italianos en relacién al segundo problema), la reputacién
de su autor y la del claustro de Gotinga que tenia detrés hicieron el
resto. Los problemas matemaéticos del futuro fueron precisamente
los que Hilbert marcé en la agenda porque su aura legendaria in-
fluy6 para que fuera asi. De todos modos, las propuestas de Poin-
caré también se cumplieron: a modo de ejemplo, el desarrollo del
analisis funcional, que tanto debe a Hilbert, se produjo en paralelo
al de la mecéanica cuantica. Y, pasada la tendencia de principios
del siglo xx hacia la abstraccién y las estructuras axiomaticas, se
ha vivido un despegue de la matematica aplicada (investigacion
operativa, teoria del caos, etc.) que ha devuelto parte de la razén
al matematico francés.

Hilbert imprimié su sello sobre toda una era de las matemati-
cas. Y, sin embargo, no basta su investigacién para explicar el brillo
que irradiaba. Gauss y Riemann, por mencionar otros dos hombres
de Gotinga, fueron matematicos de mais talla que Hilbert, pero su
impacto inmediato sobre sus contemporaneos fue indudablemente
menor. Hilbert, cual Flautista de Hamelin, sedujo a miiltiples ma-
tematicos a seguirle al profundo rio de las matemaéticas puras. El
éxito de los problemas de Hilbert como programa de investigacion
radica también en el circulo que logré crear a su alrededor. Con
otras palabras, no es posible hacer un balance serio de su influencia
si no se toma en cuenta que siempre destacé por ser un profesor
de lo mas laborioso. Hilbert destilaba un entusiasmo contagioso
por intercambiar ideas cientificas, a través de conversaciones o en
largas caminatas. La piedra angular de su actividad matematica fue
combinar investigacién y ensefianza. Otto Blumenthal (1876-1944),
el primero de los sesenta y nueve alumnos que acabaron una tesis
doctoral bajo su direccién, rememoraba cuarenta afios después la
impresiéon que Hilbert causé cuando llegé a Gotinga:

EL DESAFIO DE HILBERT

65



66

Comparado con los demas profesores, aquel hombre 4gil con su
poblada barba pelirroja y un atuendo bastante normal tenia un aire
poco académico. Sus clases eran muy concisas. Las daba de una
forma un poco aburrida, pero el rico contenido y la claridad de su
presentacion hacian que uno se olvidara de la forma. A menudo pre-
sentaba cosas nuevas que él mismo habia descubierto, pero se to-
maba la molestia de comprobar que todo el mundo le seguia. Daba
las clases para los alumnos, no para si mismo.

RETRATO DE HILBERT CON SOMBRERO

Esta fotografia, tomada en 1912, ha pasa-
do al imaginario colectivo de los mate-
maticos. Sombrero panama, ojos brillan-
tes tras los anteojos, barba puntiaguda,
voz que se adivina firme. Pero hay algo
que este celebérrimo retrato no trasluce:
la personalidad cautivadora de su prota-
gonista. Una pasion inquebrantable por
las matematicas que se palpa en la flo-
rida retorica de sus discursos. Y muchas
de esas excentricidades que habitual-
mente identificamos con los matemati-
cos. Uno de sus discipulos contaba que
un dia tras otro se veia a Hilbert con los
mismos pantalones rotos, lo cual era un
poco embarazoso. La tarea de informarle
con delicadeza recayo en su ayudante,
Richard Courant (1888-1972). Una tar-
de, aprovechando que atravesaban una
zona de arbustos espinosos, Courant le
dijo que se habia roto los pantalones.
«iAh! No», replicd Hilbert, «llevan semanas asi, pero nadie se ha dado cuen-
ta». Aun mds, este matematico, que solia montar en bicicleta por las calles de
Gotinga, nunca se canso de flirtear. En una fiesta de cumpleafios se improvi-
saron versos sobre sus galanteos con nombres de chica para cada una de las
letras del abecedario. Pero cuando se llego a la letra K nadie sabia qué decir.
En ese momento Kéthe, su sensata e inteligente mujer, sefialé: «Por lo menos
podiais pensar en mi una vez».
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Naturalmente, también pesaron las circunstancias, esto es, el
tiempo y el lugar: la pequefia pero poderosa Universidad de Go-
tinga. La muerte del anciano Kronecker y el retiro de Weierstrass
descongelaron el mundo académico aleman, desembocando en
un baile de catedras académicas del cual salieron muy benefi-
ciados Klein y Hilbert, quienes, como vimos, pudieron asentarse
definitivamente en Gotinga. Una vez alli, ese gran politico cien-
tifico que fue Felix Klein orquest6é que Gotinga se convirtiera en
el centro matematico mas importante del mundo, con un impre-
sionante grupo de profesores, entre los que descollaban Hilbert y
Minkowski (quien se incorporé a la institucién en 1902), asi como
con numerosos discipulos de alto nivel y visitantes extranjeros.

Los treinta y cinco afios como docente en Gotinga dieron
para mucho. La néomina de discipulos de Hilbert es impresionante:
Otto Blumenthal, Max Dehn, Erhard Schmidt (1876-1959), Richard
Courant, Ernst Zermelo (1871-1953), el famoso campeén mundial
de ajedrez Emanuel Lasker (1868-1941), etc. Entre todos ellos so-
bresale Hermann Weyl, quien se doctoré con Hilbert en 1908 y
le sucedi6 cuando se retiré en 1930. Hilbert siempre actué con
ellos como maestro, ayudandoles en la medida de lo posible. Asi,
por ejemplo, cuando broté la oposicién a la propuesta de que una
joven y eminente matematica, Emmy Noether (1882-1935), fuese
nombrada profesora en Gotinga, Hilbert se enfrent6 a sus colegas
mas reaccionarios, declarando con ironia: «No veo que el sexo de
un candidato sea una razén en contra de su admisién. Después
de todo, esto es una universidad y no un establecimiento de baios
ptblicos». Otra muestra de la libertad de su pensamiento.
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CAPITULO 3

Axiomatizar la fisica

Los primeros anos del nuevo
siglo encontraron a Hilbert trabajando en el
campo del calculo de variaciones y de las ecuaciones
integrales. Sus aportaciones dieron forma a una nueva rama
del andlisis: el analisis funcional. Y, ademas, fueron claves
en la formulacién matematica de la relatividad general y de
la mecénica cuantica. Hilbert compitié de igual a igual con
Einstein en la bisqueda de unas ecuaciones que incluyeran
la gravedad en el marco relativista. Pero hay mas:
el denominado espacio de Hilbert ha terminado
siendo la estructura matematica que
guarda la llave de entrada al
universo cuantico.






Uno de los descubrimientos mas recientes de los historiadores
de las matematicas ha sido el alto grado de interés que Hilbert
manifestd por la fisica de su tiempo. La amistad de Minkowski y
la lectura de Hertz supusieron dos importantes catalizadores de
este interés en su juventud; y la tradicién matematica de Gotinga
hizo, indudablemente, el resto (Gauss, Riemann y Klein compar-
tieron el gusto por la fisica). Aiin mas: el hecho de que su activi-
dad cientifica coincidiera con el nacimiento de las grandes teorias
de la fisica del siglo xx, la teoria cuantica (1900) y la relatividad
(1905), intensific6 esta aficién durante las dos primeras décadas
del nuevo siglo.

Desde su llegada a Gotinga en 1895, Hilbert impartié nume-
rosos cursos y seminarios dedicados a la fisica matematica. No
es de extranar, por tanto, que en la conferencia de Paris de 1900,
dentro del epigrafe dedicado al sexto problema, sefialase que las
investigaciones sobre los fundamentos de la geometria sugerian
tratar de la misma manera, por medio de axiomas, aquellas cien-
cias fisicas en que las matematicas jugaban un papel destacado.
La mecénica, la éptica, pero también la termodinamica o la teoria
de la electricidad, debian seguir el pulcro modelo preconizado por
la geometria. El rigor no era una propiedad exclusiva de la mate-
matica. La fisica podia hacerse completamente rigurosa segiin los
estdndares del método axiomatico.

AXIOMATIZAR LA FISICA

n



72

En 1905, avanzando en esta direccion, el matemético alemén
ofrecié una exposicién axiomatica de la mecénica, describiendo
el concepto de fuerza a través de varios axiomas sobre vecto-
res. A continuacién, axiomatiz6 la teoria de probabilidades, tal
y como esta aparecia dentro de la teoria cinética de los gases.
Varios licenciados de Gotinga, relacionados con el insigne cate-
dritico, realizaron aportaciones significativas. En 1909, Georg
Hamel (1877-1954) axiomatizé la mecanica clasica y Constantin
Carathéodory (1873-1950) hizo lo propio con la termodinamica.
Y, segiin veremos, Hilbert dio otro paso de gigante cuando en 1915
formulé sus propias ecuaciones para la teoria de la relatividad
general. Finalmente, a finales de los felices aiios veinte, intento,
en colaboracién con Lothar W. Nordheim (1899-1985) y John von
Neumann (1903-1957), anclar la mecénica cudntica en un sistema
axiomatico.

Pero su interés por la fisica no puede desconectarse de sus
aportaciones al analisis. Sus saltos del analisis a la fisica, y de la
fisica al andlisis, durante las dos primeras décadas del siglo, son
una constante a tener muy en cuenta. Hilbert centré su atencién
en dos ramas bastante préximas del andlisis: el cdlculo de varia-
ciones y las ecuaciones integrales. De hecho, tres de los veinti-
trés problemas que Hilbert present6 en Paris trataban del calculo
de variaciones y, en particular, del desarrollo de la teoria de las
ecuaciones en derivadas parciales. El hilo, precisamente, del que
vamos a comenzar a tirar.

LAS ECUACIONES EN DERIVADAS PARCIALES

Las ecuaciones de toda la vida (las ecuaciones algebraicas) res-
ponden a la necesidad de calcular nimeros desconocidos, como
por ejemplo las raices de un polinomio. Pero en las aplicaciones
de las matematicas surgen a menudo problemas cualitativamente
distintos: problemas en los que la inc6gnita no es un nimero sino
una funcion, que expresa la relacién entre varias variables (por
ejemplo, en el caso del movimiento de un planeta, la dependencia

AXIOMATIZAR LA FISICA



de las coordenadas espaciales respecto del tiempo). Una clase
especial de estas ecuaciones son las llamadas ecuaciones diferen-
ciales, en las que se trata de determinar la funcién desconocida a
partir de una o varias ecuaciones en que intervienen las derivadas
de la funcioén.

Tras fundar el célculo (diferencial e integral), Newton for-
mulé las leyes de la fisica de una forma que relacionaba entre si
las magnitudes fisicas y sus ritmos de cambio. Es decir, por ejem-
plo, el espacio recorrido por un mévil con su velocidad, y la velo-
cidad del mévil con su aceleracion. Las leyes fisicas quedaron, por
tanto, expresadas por medio de ecuaciones diferenciales, siendo
los diferenciales y las derivadas medidas de los ritmos de cambio.
La derivada de una funcién representa cémo varia el valor de la
funcién, si aumenta, disminuye o permanece constante. La acele-
racién, por seguir con el ejemplo, mide los cambios en la veloci-
dad del mévil, la variacién de la velocidad en el tiempo, porque
es el cociente de los diferenciales de la velocidad y del tiempo;
en otros términos, es la derivada de la velocidad con respecto al
tiempo:

dv
a=—.
di
Sin embargo, la resolucién de ecuaciones diferenciales, como
de ecuaciones algebraicas, no siempre es facil. Es més, casi nunca
lo es. Cuando la funcién incégnita depende de una tinica variable,
se llaman ecuaciones diferenciales ordinarias. Por ejemplo, la
derivada de la funcién seno y=senx es y'= cosx, donde y' denota
la derivada primera. Esta tltima funcién puede derivarse, a su
vez, para dar " =-sen x, de lo que podemos deducir la ecuacién
diferencial y'" =-y. Esta ecuacién es una ecuacién diferencial de
segundo orden, ya que aparece una derivada segunda.
Otro ejemplo de ecuacién diferencial de segundo orden es la
segunda ley de Newton: F'=m -a («fuerza igual a masa por acele-
racién»), donde

_dv_d’x

a= ST
dt dt
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la aceleracién es la derivada primera de la velocidad, pero tam-
bién la derivada segunda de la posicién, si x () denota la posicién
del mévil en funcién del tiempo.

En cambio, si la funcién desconocida depende de més de una
variable y aparecen derivadas con respecto a estas variables, se
llaman ecuaciones en derivadas parciales. Para citar un ejemplo
muy sencillo, el volumen V de un gas es una funcién de su tempe-
ratura T'y de la presion P sobre él; o sea, V(T,P). Cuando T o P
varian, V varia. La derivada de V(T,P) con respecto a T se llama
derivada parcial respecto a T, y se escribe:

oV(T,P)
or
De igual modo,

aV(T,P)
oP

es la derivada parcial respecto a P. Como en el caso de las deri-
vadas ordinarias, hay derivadas parciales segunda, tercera, etc.;
asi, como ilustracién,

3*V(T,P)
9P’

es la segunda derivada parcial respecto a P. Pero las ecuaciones
diferenciales en que intervienen derivadas parciales presentan
rasgos peculiares que las diferencian esencialmente de las ordina-
rias. En el estudio de los fenémenos naturales, las ecuaciones en
derivadas parciales aparecen con tanta frecuencia como las ecua-
ciones diferenciales ordinarias, pero normalmente son mucho
més dificiles de resolver.

A lo largo del siglo xvmi, estudiar un fenémeno fisico y ha-
llar la ecuacién diferencial que lo gobierna se hicieron sinénimos.
Asi, tras el hallazgo por Newton de la célebre ecuacion diferen-
cial «fuerza igual a masa por aceleracién», que rige el movimiento
de los sistemas de puntos y de los sélidos rigidos, el matematico
suizo Leonhard Euler (1707-1783) formulé un sistema de ecuacio-
nes en derivadas parciales que describia el movimiento de me-
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dios continuos como el agua, el aire u otros fluidos sin viscosi-
dad. Poco después, el matematico francés Joseph-Louis Lagrange
(1736-1813) enfoc6 su atencién en la misica, en la ecuacién en de-
rivadas parciales que representa la propagacion de las ondas del
sonido. Y, més tarde, Jean-Baptiste Fourier (1768-1830) se centré
en el flujo de calor, proponiendo otra ecuacién en derivadas par-
ciales que describe su difusién. Entrado el siglo x1x, las ecuaciones
de Navier-Stokes describieron el movimiento de los fluidos vis-
cosos, y las ecuaciones de Maxwell, el electromagnetismo. Toda
la naturaleza —sdélidos, fluidos, sonido, calor, luz, electricidad—
quedé modelada mediante ecuaciones en derivadas parciales.
Ahora bien, una cosa era dar con las ecuaciones del fenémeno en
cuestion y otra, bien distinta, resolverlas.

«La fisica se estd haciendo demasiado complicada
para dejarsela a los fisicos.»

— Davip HiLBERT.

Las ecuaciones en derivadas parciales paradigmaticas son, de
hecho, tres ecuaciones gestadas en el ambito de la fisica matema-
tica: la ecuacion de ondas, la ecuacion del calor y la ecuacién de
Laplace. Antes de ocuparnos de esta ultima, conviene introducir
una notacién que simplifica extraordinariamente su escritura: se
llama laplaciano de una funcién u=u(x, y, 2, t) de las coordena-
das espaciales y del tiempo a la suma de las segundas derivadas
respecto de z, y, 2

’Fu Fu u
Au= — + e + —z
dxr® dy- 9z

Este grupo de parciales recibié el nombre de laplaciano de
manos de James Clerk Maxwell (1831-1879), aunque su represen-
tacion mediante la letra griega delta maytscula se remonta a un
tratado de 1833.

En estas condiciones, Au =0 es la ecuacion de Laplace o ecua-
cion de continuidad, que expresa que un fluido perfecto en el que
no hay remolinos es indestructible. Esta ecuacién codifica mate-
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LA ECUACION DE ONDAS Y LA ECUACION DEL CALOR

La ecuaciéon de ondas, que describe la propagacion de las ondas del sonido
o de la luz, pero también de las ondas fisicas producidas sobre una cuerda o
una membrana vibrantes, es la siguiente:
2

au

— =c’Au.

at
Por su parte, la ecuacion del calor, que rige como se difunde el calor, es decir,
como circula desde las zonas donde la temperatura es mas alta a las zonas
donde es mas baja, responde a la siguiente forma:

o = kAu.
at

Ambas ecuaciones parecen enganosamente similares, salvo porgue en la pri-
mera aparece la derivada segunda respecto al tiempo en vez de la derivada
primera. Esta sutil diferencia matematica tiene drasticas implicaciones fisicas:
la ecuacion de ondas es reversible, en el sentido de que permanece invariante
si cambiamos el sentido del paso del tiempo. Matematicamente: si cambiamos
t por -t, la ecuacion no cambia, ya que al derivar dos veces los signos nega-
tivos se cancelan. En consecuencia, la ecuacion no regulariza las soluciones
con el paso del tiempo, con lo que se puede recuperar informacion del pasado
(por esta razdn los seres humanos empleamos senales luminicas o sonoras
para comunicarnos). Por el contrario, la ecuacion del calor no es reversible
(al cambiar t por -t, no obtenemos la misma ecuacién). La difusién del calor
esta orientada temporalmente, depende de la flecha del tiempo. Esta irre-
versibilidad se manifiesta en que la ecuacién regulariza las soluciones con el
paso del tiempo, con lo que en general no puede recuperarse informacion del
pasado (la solucion correspondiente a un pico de calor termina por suavizarse
de tal modo que, pasado el tiempo, resulta imposible saber dénde y como
se produjo la explosién o el encendido, dado que el calor se ha difundido por
todo el espacio).

maticamente una perogrullada: si el fluido es incompresible, debe
salir tanto fluido de cualquier pequefio volumen en un instante
de tiempo como fluye dentro de él. No obstante, al matemaético y
fisico francés Pierre-Simon Laplace (1749-1827) se le aparecio6 en
mecanica celeste estudiando el potencial gravitatorio, esto es, la
funcién que mide la fuerza gravitatoria con que un cuerpo, tenga
la forma que tenga, atrae a una masa puntual exterior. A resultas
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de esto, la ecuacion de Laplace también recibe el nombre de ecua-
cion del potencial. Pues bien, podemos ya anticipar que una de
las aportaciones geniales de Hilbert al analisis tiene que ver con
1a resolucion rigurosa de esta ecuacion en derivadas parciales.

DEL PROBLEMA AL PRINCIPIO DE DIRICHLET

Uno de los problemas relacionados con la ecuacién de Laplace
que trajo de cabeza a los matematicos y los fisicos del siglo xix fue
el denominado problema de Dirichlet, llamado asi en honor del
matematico aleman Peter Gustav Lejeune Dirichlet (1805-1859).
Consiste en encontrar una funcion armoénica en un dominio del
espacio, es decir, una funcién w que satisface la ecuacién de La-
place Au=0 en ese dominio del espacio, cumpliendo, en la fron-
tera del dominio (figura 1), que toma unos valores prefijados (por
ejemplo, u=f en la frontera). Formalmente, si denotamos por Q2
al dominio y por y a la frontera del dominio:

En el problema de
Dirichlet se busca
una funcién v que
tome unos valores
determinados

Au=0enQ en la frontera y
1 cuyo laplaciano se
U= f eny anule en el interior
de la region.
Este problema matematico estaba
relacionado con multitud de proble-
3 s FIG. 1
mas fisicos. Uno de ellos proporcio- Condicién de frontera, definida
naba una idea sobre c6mo resolverlo. a lo largo del borde de la region

Imaginemos una membrana elastica
uniformemente estirada sobre una re-
gién del plano Q, delimitada por una
curvay. Supongamos, ahora, que se de-
forma el contorno de manera que cada
punto de y pasa a ocupar un punto de
una cierta altura dada por la funcién f.
Como es natural, al haber deformado
su contorno, la membrana se combara

la ecuacion diferencial

Q

Regién donde esta definida

y comenzard a oscilar. Si la dejamos
que oscile libremente, transcurrido
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Posible posicién
de equilibrio de la
membrana pasado
el tiempo.
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FIG. 2

cierto tiempo alcanzara el equilibrio, adoptando cierta posicién
(figura 2). Y nos gustaria calcular la magnitud de la deformacién
de cada punto del interior de la membrana respecto al plano, es
decir, la altura que ahora ocupa, lo que se ha desplazado. La fun-
cién u(x,y), que mide estas cantidades, satisface el problema de
Dirichlet (en dos dimensiones).

Fisicamente, parece claro que tiene que existir una funcién
u solucién del problema y que, ademads, ha de ser tnica, puesto
que antes o después la membrana terminara pardndose, y lo hara
de una tinica manera. Sin embargo, matematicamente la cuestion
no es tan evidente. En sus lecciones sobre la materia, Dirichlet
—al igual que Gauss, G. Green (1793-1841) o W. Thompson (1824-
1907)— ide6 un método para resolver el problema y hallar la fun-
cién desconocida u. Este método fue bautizado, posteriormente,
como principio de Dirichlet por Riemann.

Dirichlet conjeturé que en la posicién de equilibrio estable la
funcién solucién u debe tener la minima energia, es decir, debe dar
el menor valor para la siguiente integral (la energia de Dirichlet):
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2 2
dx oy

Con otras palabras, la funcién que buscamos ha de dar, en
comparaciéon con todas las posibles funciones que verifican la
misma condicién de contorno, el minimo valor posible para la
energia. Sobre bases fisicas se torna muy plausible que, dada cual-
quier curva cerrada en el espacio, existe una superficie de minima
energia que la llena, porque cualquier superficie 0o membrana ten-
dera a adoptar una configuracién que requiera la minima energia.

Como el integrando de J(u) es siempre positivo (es una suma
de cuadrados), la integral J(u) siempre es mayor o igual que cero.
Por lo que a Dirichlet le parecié razonable que tenia que existir
una funcién u que dé el valor mas pequefio. Notese que si no es-
tuviese esa cota inferior que supone el cero, podria ser que los
valores que obtuviéramos fuesen cada vez més pequeiios (0, -1,
-2, -3...) sin que hubiera necesariamente un valor minimo. Su-
poniendo la existencia de esta funcién v minimizadora de J(u),
Dirichlet demostré que la funcién u es arménica y, por tanto, sa-
tisface el problema inicial que se queria resolver.

Ahora bien, lo que no estaba nada claro es si existia efecti-
vamente ese minimo, esa funcién z donde la integral de Dirichlet
alcanzaba su menor valor. Piénsese, por ejemplo, en el conjunto
de todos los niimeros reales positivos: todos son mayores o iguales
que cero, pero no hay ninguno que sea el mas pequeiio (para cual-
quier nimero que seleccionemos siempre habra uno mas pequefio).
El infimo del conjunto (el cero) no se alcanza dentro del propio
conjunto (los nimeros positivos), por lo que no hay minimo. Los
esfuerzos de Weierstrass y su escuela de matematicos por funda-
mentar rigurosamente la existencia de u se dieron de bruces con la
cuestion. No obstante, los fisicos seguian creyendo que el llamado
principio de Dirichlet garantizaba, precisamente, la resolucién del
problema de Dirichlet. Solo Hilbert, alrededor de 1904, logré reha-
bilitar el principio y demostrar fuera de toda duda la existencia del
minimo. Pero, para explicar su prueba, tenemos que sumergirnos
en el campo limitrofe del cdlculo de variaciones, que busca deter-
minar qué funciones hacen minima una integral.

J('u)=J;f
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EL CALCULO DE VARIACIONES

El problema de la braquistécrona, o curva de descenso més ra-
pido, fue histéricamente el primer problema en el desarrollo del
cédlculo de variaciones. Entre todas las curvas que unen dos pun-
tos, se desea hallar aquella a lo largo de la cual una particula,
moviéndose bajo la fuerza de la gravedad, cae en menos tiempo.
Considerando todas las posibles curvas que unen el punto A con
el punto B, se busca aquella que minimiza el tiempo de caida, que
puede expresarse en forma de integral. Por consiguiente, se trata
de buscar la curva o funcién que hace menor el valor de esa inte-
gral. Este problema fue propuesto en 1696 por Johann Bernoulli
(1667-1748) a sus colegas europeos, y fue resuelto independiente-
mente por Newton, Leibniz, Johann y Jakob Bernoulli: la solucién
no era la linea recta ni un arco de circunferencia, sino un arco de
una curva denominada cicloide (figura 3).

Las nociones basicas de esta nueva rama del andlisis llevan
la firma de Euler y Lagrange. El primero fue, de hecho, quien la
bautiz6é como cdlculo de variaciones; y el segundo, el creador
del «método de variaciones» que permite resolver muchos de
los problemas encuadrados dentro de la disciplina. La base de los
problemas variacionales es la siguiente: se supone un conjunto
C de elementos cualesquiera (niimeros, puntos geométricos, fun-
ciones, etc.), a los que denotamos por u, y a cada elemento u le
asociamos un nimero F(u). Si C es un conjunto numérico, F(u)
es una funcién de una variable; si C es un conjunto de puntos del
plano, F(u) es una funcién de dos variables; etc. Pero si C es un
conjunto de funciones, F(u) es lo que se llama un funcional, que
en alguna de las diversas funciones que componen el conjunto
puede tomar un valor extremo (maximo o minimo).

Para resolver un problema de célculo de variaciones se com-
paraba una funcién u de prueba con todas las funciones préximas,
esto es, con aquellas que se obtienen variando ligeramente la fun-
cién u de prueba (de aqui precisamente el nombre de «célculo de
variaciones»), y se calculaba el funcional F' a lo largo de cada fun-
cién. La funcién solucién tiene la propiedad de que el funcional
a lo largo de todas las funciones préximas es siempre mayor (si
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estamos buscando un minimo). Este es, en esencia, el nicleo del
«método de variaciones». Es més, Euler y Lagrange encontraron
que para que una funcién u de C proporcione un valor extremo
(maximo o minimo) al funcional, F(u) tiene que satisfacer una
cierta ecuacion diferencial (las ecuaciones de Euler-Lagrange).
Pero la satisfaccién de esta ecuacién era una condicion necesaria
aunque no suficiente.

Una medida del éxito de esta constelacién de ideas es que muil-
tiples matematicos de los siglos xvin y x1x se esforzaron por inter-
pretar las ecuaciones diferenciales que aparecian en la fisica como
condiciones extremas de determinados funcionales. Las leyes fisi-
cas podian reescribirse en términos de principios de minimo, ya
que la naturaleza se conducia siempre de la manera mas econé-
mica. Una meta que ya habia acariciado Pierre de Fermat (1601-
1665) para la Optica: 1a trayectoria que sigue un rayo de luz cuando
pasa de un punto A a otro punto B de un medio distinto es aquella
que requiere el menor tiempo, asi como Pierre Louis de Maupertuis
(1698-1759) para la mecénica, con
su principio de minima accién (fi-
gura 4). Los libros de fisica de fina-
les del siglo xix estaban llenos de .
principios similares, que afirma- :
ban que determinados procesos fi- L5
sicos sucedian siempre de manera
que se minimizaba cierta cantidad.

Eran los denominados principios

FIG. 3

variacionales. H o

En suma, esta venerable rama
del anailisis era una suerte de ex-
tension del calculo infinitesimal. g

Mientras que el cédlculo tradicio- o~
nal ensenaba coémo hallar los / e

maximos o los minimos de una I 5 ;
funcién, el cilculo de variaciones (
ensenaba como determinar la fun- o \/
cién que maximiza o minimiza un R Wy
determinado funcional, que nor-
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FIGURA 3:
Un arco
de cicloide
entre A y B.

FIGURA 4:

De las tres
trayectorias
posibles, écudl
elegiria una
particula para
pasar de A a B?
El principio de
minima accién
establece que
aquelia que
minimice una
cantidad
denominada
accidn.
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malmente venia expresado en forma de una integral. No obstante,
este problema era mucho mas dificil y a finales del siglo xix atin no
habia podido especificarse una serie de criterios que garantizaran
la existencia del extremo (del méaximo o del minimo). No es de
extranar, por tanto, que el calculo de variaciones copara tres
de los veintitrés problemas de Hilbert.

Mientras que en el problema 23 Hilbert planteaba una posible
generalizacion de los métodos variacionales, en los problemas
19 y 20 se preocupaba, respectivamente, por las propiedades y
la existencia de las soluciones de los problemas del calculo de
variaciones. En efecto, habia dos cuestiones abiertas. Una era la
existencia o no de solucién (problema 20). Y otra, las propiedades
que esta solucién, caso de existir, satisfacia. Desnudado de su
ropaje técnico, lo que Hilbert estaba preguntando en el problema
19 era si el tipo de problemas fisicos que solian plantearse como
problemas de cédlculo de variaciones —el problema de Dirichlet,
por ejemplo— debian tener siempre soluciones con el mejor com-
portamiento: ;las soluciones eran siempre tan suaves y regulares
como las funciones analiticas (que son derivables infinitas veces)?
Este problema fue resuelto en 1904 por el matematico ruso Sergei
Bernstein (1880-1968), como parte de su tesis doctoral (codiri-
gida por Hilbert). Bernstein demostré que las soluciones de las
ecuaciones en derivadas parciales que interesaban a Hilbert —in-
cluyendo aqui las de la ecuacién del potencial de Laplace— eran,
caso de existir, regulares, con un comportamiento inmejorable
si satisfacian ciertas condiciones bastante simples sobre sus tres
primeras derivadas. Ahora era evidente que, por ejemplo, la inte-
gral de Dirichlet, si alcanzaba su minimo, lo hacia necesariamente
en una funcién admisible.

Pero fue en ese mismo ano de 1904 cuando Hilbert dejé
asombrado al mundo matematico al rescatar el principio de Di-
richlet del descrédito en que habia caido después de las criticas
de Weierstrass. Antes de Weierstrass se habia supuesto que en el
célculo de variaciones todo funcional tenia un minimo. Hilbert
demostré que en el caso concreto de la energia de Dirichlet J(u)
habia, efectivamente, un minimo. Construyé una sucesién mini-
mizante de funciones, cuyos valores para la integral eran cada vez
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mas pequefios y convergian al valor infimo. Y a partir de ella ob-
tuvo el minimo, es decir, 1a funcién « que alcanzaba de facto ese
valor infimo. Fisicos y matematicos podian respirar tranquilos.

LA CIENCIA EN LA ENCRUCIJADA

A finales del siglo xix, la fisica funcionaba correctamente den-
tro del dominio de la experiencia comun. La mecénica clasica
(creada por Newton) y la electrodindmica clésica (finalizada por
Maxwell) proporcionaban un marco totalmente satisfactorio para
la comprensién del mundo que nos rodea. Con el aumento de pre-
cisién en los instrumentos de medida y la posibilidad de realizar
experimentos mas y mas complejos, los fisicos empezaron a estu-
diar fenémenos en condiciones poco usuales: a velocidades muy
altas (préximas a la de la luz) y a escala macrocésmica o micros-
copica. Fue entonces cuando comenzaron a surgir discrepancias
con las predicciones suministradas por la fisica cldsica, lo que
motivo una profunda revision de sus fundamentos y dio origen
a las dos grandes teorias fisicas del siglo pasado: la teoria de la
relatividad y la teoria cudntica. La primera trataba de explicar
los fenémenos que ocurren a altas velocidades (relatividad espe-
cial) y a escalas césmicas (relatividad general), mientras que la
segunda se enfrentaba con los que tienen lugar a escala atémica
(mecénica cuantica).

Hacia 1900, la claridad de la fisica clasica solo estaba oscu-
recida por cuatro nubarrones, por cuatro problemas que inexpli-
cablemente se resistian: la radiacién del cuerpo negro, el efecto
fotoeléctrico, los espectros de los elementos quimicos y el viento
de éter. Mientras que los tres primeros abrieron las puertas a la fi-
sica cudntica, el Gltimo lo hizo con la fisica relativista. El principio
clasico de relatividad, debido a Galileo, no era capaz de explicar
ciertos fenémenos electromagnéticos medidos sobre un interfe-
rometro (el experimento de Michelson-Morley). En 1905, Albert
Einstein (1879-1955) sentd las bases de la teoria especial de la
relatividad con su articulo «Sobre la electrodinamica de cuerpos
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en movimiento». Para resolver la aparente contradiccién que sur-
gia al estudiar el comportamiento de las ecuaciones de Maxwell
bajo las transformaciones de Galileo (sin recurrir a un hipotético
viento de éter), Einstein propuso mantener la teoria de Maxwell
modificando la mecanica de Newton. Habia que abandonar las
transformaciones de Galileo, sustituyéndolas por las transforma-
ciones de Lorentz, y adoptar —como es bien sabido— una hipé-
tesis revolucionaria: la invariancia de la velocidad de la luz. Entre
sus consecuencias se contaban las siguientes: el rechazo del éter,
la relatividad de la simultaneidad, la contraccién del espacio, la
dilatacién del tiempo, etc. La teoria de la relatividad especial eli-
miné de un plumazo la ilusién del espacio y el tiempo absolutos
de la fisica clésica.

La relatividad especial, aunque tremendamente atrevida en
sus postulados fisicos, no requeria matematicas desconocidas
hasta entonces por los fisicos —estaba, de hecho, en germen en
la obra de Poincaré y de H. Lorentz (1853-1928)—. En su alum-
bramiento Einstein emple6 matemadticas poco exigentes. No obs-
tante, algunos fisicos y matematicos opinaban que una coleccién
de ideas fisicas y filos6ficas tan radicales debia aderezarse con un
nuevo planteamiento matematico. Y aqui entré en juego un viejo
conocido de Hilbert: su amigo Hermann Minkowski.

Ambos amigos habfan vuelto a reunirse en 1902. El prusiano
rechazé el ofrecimiento de una catedra en Berlin y, a cambio de
su permanencia en Gotinga, negocié la dotacién de otra catedra
para el judio de origen ruso. Gotinga se convirtié de la noche a la
maiiana en la meca de las matemaéticas teutonas. Allf vivian tres
profetas: Klein, Hilbert y Minkowski. Muestra de lo mucho que los
dos tltimos congeniaron fue que entre 1902 y 1909 impartieron
al alimén varios cursos de fisica matematica, en particular sobre
la electrodindmica de los cuerpos en movimiento (lo que hoy se
conoce por el nombre de relatividad). Minkowski, que habia per-
manecido muy atento a las teorias pre-relativistas de Poincaré y
Lorentz, se hizo eco enseguida del enfoque preconizado por Ein-
stein. Constituyé toda una sorpresa que este enfoque revoluciona-
rio proviniera de un antiguo alumno suyo en Zirich, sobre cuyos
conocimientos matematicos albergaba alguna duda.
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LA CONJETURA DE WARING

Tanto para Minkowski como para Hilbert
la teoria de nimeros era la creacién mas
maravillosa de la mente humana. En 1908,
aprovechando una tregua en su crisis de
salud, Hilbert demostré la conjetura pro-
puesta por el matematico britanico Ed-
ward Waring (1734-1798): «Todo nimero
natural es igual a la suma de como mu-
cho 9 cubos, de no mas de 19 potencias
cuartas, y asi sucesivamente». En otras
palabras, se afirmaba, sin prueba algu-
na, que para cualquier potencia k hay un
cierto numero minimo de tales potencias
—llamémoslo g (k), dado que depende de
la potencia k seleccionada— que permite
expresar cualquier numero n como suma
de exactamente g (k) potencias k-ésimas:

Edward Waring.

T k
=Xy + X5 +.t Xgeey:

A titulo de ejemplo, Joseph-Louis Lagrange habia probado en 1770 que todo
numero es la suma de cuatro cuadrados, es decir, que g(2)=4. Pero hasta
Hilbert muy pocos avances se habian conseguido. Para algunos valores con-
cretos de k (k=3, 4, 5, 6, 7 vy 8), se habia logrado acotar el valor de g(k); por
ejemplo, se habia probado que g(4)=53, pero aln quedaba lejos demostrar
que bastaban solo 19 potencias cuartas para escribir cualquier numero, esto
es, que g(4)=19.

Un premio bien merecido

Hilbert, fiel a su estilo, no estimé directamente los valores de g (k) (cuyo cal-
culo exacto se obtendria a lo largo del siglo xx), sino que demostrd indirecta-
mente que la funcidn g (k) esta bien definida, es decir, que para cada k toma
un valor finito (nunca toma valores infinitos, de lo que se deduce que siem-
pre existe un minimo numero de potencias necesarias para escribir cualquier
numero). Este hito le reporté el premio Janos Bolyai en su edicion de 1910.
En calidad de miembro del jurado internacional, Poincaré ensalzo la obra del
matematico aleman, no solo por lo que se referia a la teoria de nimeros, sino
también por el amplio espectro de temas tratados: los invariantes, los funda-
mentos axiomaticos de la geometria, el principio de Dirichlet, etc. Asimismo,
resaltaba el rigor y la simplicidad de los métodos empleados, ponderando el
influjo de Hilbert como profesor.
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Para Minkowski, habia que considerar el tiempo como una
cuarta dimensién. Habia una ligazén ineludible entre el espacio y
el tiempo en virtud de la cual existia una tinica entidad: el espacio-
tiempo. Todo lo que en Einstein era confuso aparecia claro en
el mundo seudoeuclideo de cuatro dimensiones que imaginaba
Minkowski. Este marco geométrico hizo mucho por la difusiéon
de la teoria de la relatividad especial. Su impacto fue tremendo,
aunque tardé en asimilarse (parecia desconcertante que para
hacer fisica hubiera que recurrir a una geometria en que los vec-
tores pueden tener longitud negativa). A Einstein le pareci6é una
erudicion superflua, en una actitud que encontré la oposicién de
Hilbert, quien llegé a afirmar: «cualquier muchacho en las calles
de Gotinga comprende mejor que Einstein la geometria cuadridi-
mensional». Minkowski presentd su formalismo en varias confe-
rencias pronunciadas a lo largo de 1908, pero no vivié lo suficiente
para verlas publicadas y disfrutar del éxito que cosecharon: en
1909 murié como consecuencia de las complicaciones surgidas
en una operacion de apendicitis. Esta pérdida irreparable agravé
la profunda depresién que Hilbert sufria desde el afio anterior
como consecuencia de un agotamiento nervioso.

EINSTEIN, HILBERT Y LAS ECUACIONES
DE LA RELATIVIDAD GENERAL

A partir de 1911, Einstein dirigié sus esfuerzos a integrar la gravi-
tacion en su teoria especial de la relatividad. Buscaba una teoria
general. Pese a su reticencia inicial, Einstein acab6 admitiendo la
utilidad del formalismo de Minkowski, puesto que le puso sobre
la pista de que la clave estaba en la geometria. Se trataba de re-
presentar los efectos de la gravitacién por medio de la estructura
geométrica del espacio-tiempo, que obligaria a los objetos a des-
plazarse en la forma prevista. Habia que geometrizar la gravedad.

En los primeros intentos el formalismo matemético em-
pleado por Einstein fue bastante elemental y los resultados no
fueron nada prometedores. Si la geometria del espacio-tiempo
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debia depender de su contenido energético-material, es decir, si
la gravedad tenia que curvar el espacio-tiempo, se precisaba una
geometria variable, no prefijada de antemano y muy distinta de la
usual. Un matematico conocido suyo llamé su atencién sobre los
trabajos cldsicos de Gauss, Riemann y, en especial, los publicados
por Gregorio Ricci (1853-1925) y Tullio Levi-Civita (1873-1941) en
1901. A la postre, estos tltimos contuvieron la mayor parte de
los elementos de la geometria riemanniana necesarios para la
relatividad general. Con la ayuda de su amigo Marcel Grossmann
(1878-1936), Einstein comenz6 a estudiar dichos trabajos y des-
cubrié que constituian el aparato matemaético que precisaba y
desconocia. Juntos, fisico y matematico publicaron a finales de
1913 un folleto de veintiocho paginas titulado Esbozo de una teo-
ria general de la relatividad y de una teoria de la gravitacion.
Su meta era modelizar el universo como una variedad geométrica
tetradimensional, dotada de una métrica o distancia riemanniana
dada por el tensor:

4
di* = ;,_4241 gydxdx;.

Este tensor métrico, que determinaba las propiedades geomé-
tricas (claramente, no euclideas), caracterizaba también el campo
gravitatorio (véase la figura). No obstante, las ecuaciones del
campo gravitacional contenidas en el articulo no eran correctas y
no tardaron en abandonarlas. Comenzé entonces un largo y fati-
goso periodo para Einstein, que solo vislumbraria la luz a finales
de noviembre de 1915. Einstein pugnaba con el calculo tensorial
para dar con las ecuaciones correctas. Se estaba adentrando en
un océano que solo los matema-
ticos, en realidad algunos ma-
tematicos, se atrevian a surcar.
Uno de ellos era nuestro prota-
gonista: David Hilbert.

Desde 1909, y hasta prac-
ticamente 1920, Hilbert mostré
una gran inclinacién por la fisica
tedrica, aplicando los métodos
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De la misma forma
que una sabana
sujetada por dos
personas se
deforma cuando
se deja caer en
ella un objeto, un
cuerpo de masa
tan grande como
la Tierra curva el
espacio-tiempo
a su alrededor,

y esta curvatura
es la causa de

los movimientos
de atraccion
gravitatoria que
experimentamos
en su superficie.
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del calculo de variaciones a ella. Fruto de todos estos afios seria
el libro publicado en 1924 en colaboracién con Richard Courant:
Métodos de la fisica matemdtica, un manual de éxito durante
decenios. Hilbert dedicé su atencién a problemas fisicos canden-
tes, como los del dtomo y la relatividad. Gracias al legado de
Paul Wolkskehl, un rico industrial alemén aficionado a las mate-
maticas, pudo organizar periédicamente en Gotinga una serie de
conferencias y estancias de académicos extranjeros de prestigio
(Hilbert ironizaba a menudo con que la tnica razén por la que
se reprimia de probar el wltimo teorema de Fermat era para no
hacerse con los 100000 marcos que el legado establecia como
premio y acabar de golpe con la gallina de los huevos de oro).
Entre los primeros invitados con cargo a estos fondos estuvie-
ron Poincaré y Lorentz, cuyas charlas trataron sobre cuestiones
relacionadas con la mecanica relativista. Pero, posiblemente, la
visita més famosa fue la de Einstein a comienzos del verano de
1915. Era la primera vez que el fisico y el matematico coincidian.
Einstein impartié una serie de seis conferencias en Gotinga y se
hospedé con la familia Hilbert. Tras varios dias en su compaiiia,
Hilbert estaba ansioso por poner su capacidad matematica al ser-
vicio de las nuevas ideas sobre la gravitacién. Durante los meses
siguientes ambos entraron en una fase de trabajo febril, con fre-
cuentes intercambios epistolares. Perseguian un mismo objetivo:
dar con las ecuaciones de la relatividad general.

En algiin momento, a Einstein comenzé a preocuparle que
Hilbert estuviese tan implicado. Asi, a finales de noviembre de
1915, Hilbert escribié a Einstein ofreciéndole sus ecuaciones y
este, que acababa de descubrir las ecuaciones finales de la relativi-
dad general, le respondié inmediatamente, intentando establecer
su prioridad. Hilbert no pudo hacer otra cosa que mandar una
nota de felicitacién.

Tradicionalmente se ha afirmado que Hilbert descubrié las
ecuaciones relativistas del campo gravitatorio antes que Ein-
stein, aunque nunca reclamé la prioridad. Hilbert envié su arti-
culo a publicar el 20 de noviembre de 1915, cinco dias antes de
que lo hiciera Einstein. Sirviéndose de sus amplios conocimien-
tos matemadticos, formulé6 un principio variacional del que se de-
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LAS ECUACIONES DE CAMPO DE LA RELATIVIDAD GENERAL

El espacio-tiempo de Minkowski es un espacio de cuatro dimensiones. La ma-
teria retuerce el espacio-tiempo de Minkowski, de modo que los objetos dejan
de moverse en lineas rectas para hacerlo en curvas, en geodésicas, bajo la
accion de la gravedad o, equivalentemente, de cierta aceleracion. Cuanto mas
masa o energia inyectemos, mas se curvara el espacio-tiempo de Minkowski.
La relacién entre la presencia de masa-energia y la forma del espacio-tiempo
cuadridimensional viene dada por las ecuaciones de campo de Einstein:

G _BuG

v 7]
c

-

v

En el primer miembro de la ecuacion aparece G, que es el tensor de curvatura
de Einstein: mide la deformacion del espacio y depende, a su vez, del tensor
meétrico, de los g.. de la distancia. En el segundo miembro aparece, aparte del
numero =, la constante de gravitacion universal G y la velocidad de la luz c, el
tensor de energia-momento T, que encarna la materia. Resumiendo: el es-
pacio le dice a la materia como debe moverse, y la materia le dice al espacio
como debe curvarse. Anoternos, como curiosidad, que Hilbert fue el encarga-
do de demostrar en 1917 que la geometria euclidea era la verdadera geometria
del universo si y solo si el tensor de energia-momento era idénticamente nulo,
esto es, en ausencia de materia. De todos modos, que la geometria euclidea
haya sido destronada globalmente no quiere decir, ni mucho menos, que no
sea util localmente, en nuestro entorno.

ducian las ecuaciones de la gravitacion y del electromagnetismo
(Einstein, en cambio, se limité a la interaccién gravitacional).
Postulaba, por un lado, que las leyes de la fisica estdn determi-
nadas de manera que cierta integral alcanza su minimo. Por otro,
que cierta funcién que depende de la métrica riemanniana se
mantiene invariante bajo transformaciones arbitrarias de coor-
denadas. Queria hacer con la gravitacion y el electromagnetismo
lo mismo que habia hecho para la geometria: establecer con cla-
ridad sus fundamentos y deducir los principales resultados a
partir de un nimero minimo de axiomas o principios bésicos.
Estructura axiomatica, método deductivo y célculo de variacio-
nes son los tres ingredientes fundamentales de todas las aporta-
ciones de Hilbert a la fisica.

AXIOMATIZAR LA FISICA
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Ahora bien, si el articulo de Hilbert contenia las ecuaciones
de la relatividad general en su version mas general (geometri-
zando no solo la gravedad, sino también el electromagnetismo),
y si el articulo fue entregado por Hilbert cinco dias antes que el
de Einstein, ;no deberia recaer el mérito del descubrimiento de la
teoria de la relatividad general en Hilbert, por mucho que se reco-
nozca que Einstein allané el camino? La respuesta a esta pregunta
es negativa, por dos razones. La primera es porque la teoria hilber-
tiana no era idéntica a la einsteiniana. Formalmente eran equiva-
lentes, pero diferian en la interpretacién fisica. Para Einstein, el
método axiomatico era de poca utilidad en la materia; y, ademaés,
a diferencia de la mayoria de sus colegas, tampoco era partidario
de que toda teoria fisica hubiera de expresarse mediante un prin-
cipio variacional. Aunque a dia de hoy asociamos el nombre de
Einstein con el de un fisico teérico ensimismado en cuestiones
muy abstractas, conviene no perder de vista que tanto durante su
educacién como durante su periodo de mayor creatividad siempre
se mantuvo muy apegado a la realidad fisica y experimental. Era
mas inductivo que deductivo.

«Ha habido algo de malos sentimientos entre nosotros, la causa
de los cuales no quiero analizar. [...] Objetivamente es una
lastima que dos colegas que se las han arreglado para sacar algo
de este mezquino mundo no se lleven bien el uno con el otro.»

— ALBERT EINSTEIN, EN UNA CARTA DIRIGIDA A HiLBERT (20 DE pICIEMBRE DE 1915).

La segunda razoén, tanto mas importante, es que muy recien-
temente se ha conocido —gracias al historiador de la matematica
Leo Corry— que el contenido presentado por el catedratico de
Gotinga en la Academia de Ciencias el 20 de noviembre no coin-
cide con el finalmente publicado. Hilbert introdujo enmiendas
y correcciones en su articulo el dia 6 de diciembre teniendo en
cuenta el presentado por Einstein el 25 de noviembre. Parece que
Hilbert alteré sus ecuaciones para acomodarlas a las de Einstein.
A pesar de la breve disputa entre ambos, el episodio no llevé a una
animosidad a largo plazo.
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LA CIENCIA Y LA GRAN GUERRA

En 1914, gran parte de los europeos cele-
bré el desencadenamiento de la Primera
Guerra Mundial con una euforia desenfre-
nada. Hilbert, por el contrario, dejo claro
desde el primer momento que la guerra
le parecia absurda. En agosto de ese ano,
noventa y tres famosos intelectuales ale-
manes dirigieron un manifiesto al «mun-
do civilizado» en respuesta a la indig-
nacién creciente por las acciones del
ejército aleman. Inmerso en esa atmosfe-
ra claramente nacionalista, Felix Klein
firmé la declaracion que secundaba la
politica del kaiser. A Hilbert le pidieron
que firmara, pero se negd insistiendo en
qgue simplemente no sabia si las acusacio-
nes vertidas contra Alemania eran falsas
o no. Una conducta que lo equipard a
Einstein, que, fiel a su pacifismo militante, .., Gaston Darboux.

tampoco se avino a firmar el manifiesto.

Aun mas, en mitad de la contienda, en 1917,

Hilbert publicé un obituario laudatorio de Jean Gaston Darboux (1842-1917),
un distinguido matematico francés recientemente fallecido. Cuando los estu-
diantes rodearon su casa pidiendo que rectificara esta conmemoracion de un
matematico enemigo, Hilbert respondi¢ exigiendo una disculpa formal (y la
obtuvo). Por todo esto, el resto de colegas europeos lo vio como un espiritu
libre, desdefioso de tradiciones y convenciones. De modo que al acabar la
guerra, con la derrota sin paliativos de Alemania, mantuvo intacta su reputa-
cién. Y en el primer congreso internacional de matematicos celebrado duran-
te el periodo de entreguerras (Bolonia, 1928, el VIll Congreso Internacional de
Matematicos), no dudé en insistir en el caracter universal de las matematicas,
poniendo de relieve que todas las fronteras eran contrarias a la naturaleza.

LAS ECUACIONES INTEGRALES
Si la etapa investigadora de Hilbert en el calculo de variaciones le

puso en condiciones de participar en la elaboracién de la teoria
de la relatividad general, la etapa que dedicé entre 1904 y 1910 a
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las ecuaciones integrales le permitié lo propio con la mecanica
cuantica. Se trata, desde luego, de su contribucién mas impor-
tante al analisis matematico e, indirectamente, a la fisica: una
serie de articulos que posteriormente recopilé en una monografia,
Fundamentos de una teoria general de las ecuaciones integrales
lineales (1912), que contenia no solo una teoria matemaética rigu-
rosa, sino también una gran variedad de aplicaciones fisicas que
van desde la teoria cinética de los gases a la teoria de la radiacién.

Pero comencemos por el principio. Una ecuacién integral se
caracteriza porque la funcién desconocida aparece también den-
tro de una integral. Por ejemplo:

2(0)+ | K(t,5)a(s)ds = (1),

donde la funcién K(t,s) recibe el nombre de niicleo o kernel (de
la raiz alemana kern, «nicleo, hueso») de la ecuacién integral.
Dado el niicleo K(t,s) y la funcién f(¢) (que se suponen funciones
continuas), se trata de hallar la funcién desconocida x(¢).

A lo largo del siglo xix se habian planteado algunas ecua-
ciones integrales en relacién con cuestiones fisicas, como el
problema de la braquistécrona o el problema de Dirichlet. Pero
fue en 1888 cuando Paul du Bois-Reymond (1831-1889) acuiié
el nombre de ecuaciones integrales para designarlas y propuso
que se desarrollara una teoria general de estas ecuaciones como
método alternativo para resolver problemas de ecuaciones dife-
renciales.

En 1900, el matematico sueco Ivar Fredholm (1866-1927)
recogié una observacién aparentemente inocua del matematico
italiano Vito Volterra (1860-1940) y la emple6 con gran maestria
para ofrecer una nueva forma de resolver el problema de Dirichlet
utilizando ecuaciones integrales. En su estudio de la ecuacion del
potencial o ecuacién de Laplace con condiciones de contorno,
Fredholm transformé el problema en una ecuacién integral como
la de arriba, y explot6 al maximo la semejanza entre esta ecuacion
integral y un sistema de infinitas ecuaciones lineales cuando se
sustituye la integral por sus sumas de Riemann. Como es sabido,
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una integral no es mas que un pro-
cedimiento para calcular el 4rea fo0
encerrada por una curva. Pues
bien, basicamente, una suma de
Riemann no es méas que una forma
equivalente de calcular el valor
de la integral: se traza un nimero
finito de rectangulos dentro del
area encerrada por la curva y se

aproxima esta drea por la suma de
las dreas de cada uno de los rec-
tangulos (véase la figura). Cuando
el niimero de rectangulos se hace tender a infinito, las sumas de
Riemann convergen al valor exacto de la integral. Mediante esta
técnica, la ecuacion integral se desdoblaba en un sistema de in-
finitas ecuaciones lineales. Resolver la ecuacion integral de par-
tida era, por tanto, equivalente a resolver este sistema de infinitas
ecuaciones lineales.

La noticia de los sensacionales resultados de Fredholm se ex-
tendié como la pélvora. En el invierno de 1900-1901, un profesor
visitante expuso la analogia entre las ecuaciones integrales y los
sistemas de ecuaciones lineales dentro del seminario de Hilbert
en Gotinga, lo que hizo que se interesara vivamente por el tema y
disparé su productividad en esta nueva direcciéon (llevado por el
entusiasmo, auguré que la nueva herramienta permitiria incluso
probar finalmente la hipétesis de Riemann). Sus seis trabajos al
respecto, publicados entre 1904 y 1910, contenian los rudimentos
de una nueva rama del andlisis (el andlisis funcional) y conduje-
ron al concepto de espacio de Hilbert, base de toda la mecénica
cuantica.

iY SE HIZO EL ANALISIS FUNCIONAL!
El andlisis funcional estudia las funciones colectivamente, es

decir, los espacios de funciones. Probablemente, los antecedentes
més claros se encuentran en las ecuaciones integrales, que sugi-
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Una suma de
Riemann es la
suma de las dreas
de los rectangulos
de la figura, lo
que sirve para
aproximar el drea
encerrada por la
curva, es decir,

la integral de la
funcién f{x) entre
ayb.
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rieron algebrizar el andlisis (un enfoque tipico del anélisis funcio-
nal), pero también en el célculo de variaciones, donde aparecen
por vez primera las ideas de conjunto de funciones admisibles
para resolver un problema y de distancia entre funciones (a través
del funcional). El aparato matematico que cristalizé con el anilisis
funcional se convirtié a finales de los afios veinte en el pilar de
toda una disciplina fisica: la mecéanica cuantica. Este hecho cru-
cial determiné que se beneficiara continuamente de renovados y
vigorosos planteamientos ligados a la extensién del formalismo
cuantico.

El andlisis funcional generaliza las nociones geométricas del
espacio n-dimensional (distancia, teorema de Pitdgoras, etc.) a
los espacios funcionales de dimensién infinita. Entre estos es-
pacios infinito-dimensionales destaca con nombre propio el
llamado espacio de Hilbert, construido en el &mbito de las ecua-
ciones integrales por el propio Hilbert, pero axiomatizado en
conexién con la mecanica cuantica por su aventajado discipulo
John von Neumann, que le dio este nombre en honor a su maes-
tro hacia 1930.

El espacio de Hilbert aparece en germen en un articulo de
1906 (el cuarto de la serie de seis sobre ecuaciones integrales y el’
primer articulo genuino sobre andlisis funcional). Podria decirse,
simplificando, que las funciones solucién de las ecuaciones inte-
grales formaban el espacio de Hilbert. En efecto, mientras estu-
diaba una ecuacién integral, Hilbert tuvo la idea de considerar un
sistema especial de funciones que cumpliera ciertas propiedades
(por ejemplo, el sistema trigonométrico, para que fuera una base
del espacio funcional) y reducir la resolucién de la ecuacién a la
determinacién de los coeficientes de la funcién incégnita respecto
a ese sistema (para entendernos, las coordenadas de la funcién in-
cégnita con respecto a esa base del espacio). Tomando el sistema
trigonométrico, se trataba de hallar la funcién desconocida por
medio de su representacién mediante los coeficientes de Fourier
(una sucesion infinita de nimeros que permiten expresar una fun-
cién de cuadrado integrable en forma de una suma de funciones
trigonométricas multiplicadas por esos niimeros). Los coeficien-
tes, segiin observd, satisfacian la condicién de que la suma de sus
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cuadrados era finita. Sustituyendo estas identificaciones (o desa-
rrollos) en la ecuacién integral, el problema se transformoé en el de
resolver un sistema de infinitas ecuaciones lineales con infinitas
incégnitas (los coeficientes de la funcién, que eran de cuadrado
sumable). Siguiendo con el ejemplo: si en la ecuacién

2(t)+ [ K(t,5)2 (s)ds = (1)

se representan las funciones x(f), f(?) y K(t,s) por sus coeficien-
tes de Fourier, entonces esta ecuacion se escribe en términos del
sistema infinito de ecuaciones:

xp"'):ikqu:fp »=128..

q:

bajo la condicién de que la suma de los diferentes coeficientes al
cuadrado es finita, esto es, por ejemplo, que

= 9

" [+ #]
>, <,
p=l

De esta manera, al pasar del reino de lo continuo al reino de
lo discreto, la integral se transforma en una suma (la operacién
analoga).

El espacio de todas las sucesiones de niimeros reales de
cuadrado sumable (hoy designado £,), donde habia que buscar
la solucién, era el espacio de Hilbert. En este espacio de sucesio-
nes numéricas Hilbert definié, en analogia con el espacio eucli-
deo usual, una distancia, y extendié las nociones clédsicas de
limite, continuidad, etc. Tanto Hilbert como sus mejores disci-
pulos (en especial, Erhard Schmidt, dentro de su tesis doctoral)
explotaron al miximo esta semejanza geométrica del espacio
funcional £, con el espacio geométrico usual R". Toda la teoria
de espacios de Hilbert hizo la entrada en escena en su versién
canénica sobre £, el primer espacio con un nimero infinito de
dimensiones conocido.

Estos afios fueron decisivos para que cuajase la posibilidad
de un andlisis general de los espacios de funciones. En 1906 apa-
reci6 la tesis doctoral de Maurice Fréchet (1878-1973), que tuvo
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una influencia tremenda, ya que introdujo de modo abstracto la
nocién de distancia en un conjunto de funciones, asi como el resto
de nociones geométricas asociadas.

Poco después, en 1907, dos jévenes matematicos, Ernst Fis-
cher (1875-1954), antiguo alumno de Minkowski, y Frigyes Riesz
(1880-1956), a la sazén profesor de ensefianza media en una pe-
queiia ciudad hiingara, descubrieron independientemente una co-
nexion inesperada entre el floreciente andlisis funcional y otro de
los grandes descubrimientos matematicos de la época: la teoria
de la integracién de Henri Lebesgue (1875-1941), que venia a sutu-
rar las fisuras mostradas por las teorias de la integracién clésicas
de Cauchy y Riemann. El teorema de Fischer-Riesz establece que
existe una correspondencia, un isomorfismo, entre el espacio de
Hilbert £, y el espacio de las funciones de cuadrado integrable
(que hoy llamamos L,). De la noche a la mafiana habia nacido un
segundo modelo del espacio de Hilbert. Estos trabajos abrieron
la puerta a la introduccién de nuevos espacios funcionales como
generalizacion de los ya conocidos: los espacios £ y L con p>1
(por ejemplo, si p = 3, de sucesiones/funciones de cubo sumable/
integrable, etc.).

El bautismo oficial del anilisis funcional como tal se pro-
dujo en 1922, con la publicacién del libro Lecciones de andlisis
Suncional, de Paul Lévy (1886-1971). Ese mismo afio aparecio
publicada la tesis doctoral del polaco Stefan Banach (1892-
1945), que buscaba demostrar una retahila de teoremas validos
para diversos espacios funcionales sin fijarse en la naturaleza
concreta de estos espacios (en las funciones particulares que
los componian).

Curiosamente, muchas de las contribuciones de Banach al
andlisis funcional se fraguaron en la ruidosa atmésfera de un
café, el Café Escocés de Ledpolis (bajo jurisdiccion polaca en la
época), donde al tiempo que demostraba su fama de buen bebe-
dor, garabateaba notas sobre el marmol de la mesa o en una ser-
villeta. Fruto de estas notas escritas por Banach y otros insignes
matematicos que lo acompaiaban fue lo que después se ha dado
en llamar el Cuaderno escocés, uno de los documentos matemati-
cos mas importantes del siglo xx.
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maestro.
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CUANTOS, MATRICES Y ONDAS

Tras mil y un intentos fallidos de explicar la radiacién del cuerpo
negro (esto es, dentro de una cavidad cerrada), el fisico aleman
Max Planck (1858-1947) lo consiguié al postular que la emisién y
la absorcién de energia se realizan siempre en paquetes, de forma
discontinua o «cuantizada». La energia, como el dinero, no toma
valores dentro de un rango continuo, sino solo en unidades dis-
cretas. La «discretizacién» dictada por Plank fue un acto desespe-
rado en toda regla. El origen heroico de la teoria de los quanta se
remonta, por tanto, al 14 de diciembre de 1900, cuando present6
publicamente su ley de radiacién del cuerpo negro.

Pero el dramatis personae de la teoria cuintica antigua in-
cluye, amén de Planck, los nombres de Albert Einstein y Niels
Bohr (1885-1962). En el annus mirabilis de 1905, Einstein aplicé
la hipétesis cudntica al estudio de la luz: las ondas luminicas
estdn compuestas de pequeiiisimas particulas (que solo poste-
riormente recibirian el nombre de fotones), como quedaria tes-
tado en el efecto fotoeléctrico. Hasta bien entrado el siglo xix,
la visién corpuscular de la materia, heredada de Newton, habia
dominado sobre la visién ondulatoria. Hacia 1900 existia una con-
cepcion hibrida: los sélidos y los fluidos (liquidos y gases) eran
vistos como compuestos de particulas, pero la radiacién electro-
magnética se concebia como ondas. Y ahora resultaba que los
fisicos tenfan que rechazar la concepcién clasica de la materia
(onda o particula) en pos de una nueva concepcién: onda y par-
ticula (como en el caso de la luz). .

Por su parte, en 1913, Bohr, un becario —gracias a una cono-
cida marca de cerveza— en el laboratorio de Ernest Rutherford
(1871-1937), cuantizd el atomo a fin de explicar los espectros
atémicos. Las rayas discontinuas de los espectros eran conse-
cuencia de la cuantizacién de la energia de los electrones dentro
del atomo. Desgraciadamente, el modelo atémico de Bohr fra-
caso al aplicarse a 4tomos multielectrénicos, y los fisicos fue-
ron convenciéndose de que era necesario un cambio radical en
los fundamentos de la fisica: una nueva clase de mecanica —que
Max Born (1882-1970) denominé mecdnica cudntica— que pre-
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sentase una axiomatica coherente independiente de las teorias
clasicas y que, por afadidura, superase ese confuso batiburrillo
de principios, leyes y recetas de célculo en que consistia la teoria
cudntica antigua.

«El optimismo lo aprendi de Sommerfeld, la fisica
de Bohr y las matematicas en Gotinga.»

— WERNER HEISENBERG.

En 1925, un joven fisico llamado Werner Heisenberg (1901-
1976), privatdozent en Gotinga, sentd las bases de la mecénica
cudntica mientras se recuperaba de un severo ataque de alergia
retirado en una isla. Heisenberg insistié en que el conjunto de
todas las frecuencias y amplitudes de la radiacién emitida por un
atomo puede considerarse una descripciéon completa del sistema
del 4tomo, aunque no sea posible interpretarlo en el sentido de
una trayectoria electrénica que provoca la radiacién, puesto que
las 6rbitas de los electrones dentro del 4tomo son inobservables.
Ademas, comprobé que estos conjuntos de niimeros (que, mate-
méticamente, correspondian a los coeficientes de Fourier de la
expresién clasica del movimiento del electrén) no conmutaban.
Con otros términos: a diferencia de las clasicas, las cantidades
cudnticas cumplen, en general, que QP=PQ. Meses después, dos
colegas de Gotinga, el fisico Max Born y el matemético Pascual
Jordan (1902-1980), reconocieron que estos conjuntos de nmime-
ros @ y P se comportaban como matrices matematicas, pese a
que el propio Heisenberg no sabia siquiera lo que era una matriz
(segilin confeso). La mecanica cudntica matricial creci6 en el jar-
din al cuidado de Hilbert. No obstante, Gotinga estaba dividida en
dos grupos. Hilbert y los suyos hablaban del gran éxito alcanzado
mediante la introduccién del calculo de matrices en fisica, mien-
tras que otros abominaban del tedioso espiritu matematicoide que
inundaba la fisica atémica.

En la Navidad de 1925-1926, Erwin Schrodinger (1887-1961)
alumbré la mecéanica cuédntica ondulatoria, mientras disfrutaba
de un «periodo tardio erético» con su ltima amante (en pala-
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bras de Hermann Weyl, su colega en Zirich). A diferencia de
los imberbes fisicos y matematicos de Gotinga, pero al igual que
gran parte de la vieja escuela, Schrédinger no se sentia especial-
mente cémodo con la «mecéanica cudntica de los Tres Hombres»
(Heisenberg-Born-Jordan). Buscando una teoria mas intuitiva,

UN PROBLEMA, DOS SOLUCIONES

Atrevamonos a bucear un poco mas profundo para averiguar como resolvia
cada mecanica cuantica el problema de hallar los diferentes niveles energéti-
cos del electron del atomo de hidrogeno. En la mecanica matricial habia que
«diagonalizar» la matriz hamiltoniana H, que mide la energia total del sistema,
esto es, determinar una matriz S de manera que la matriz W=5"HS sea una
matriz diagonal; puesto que asi los elementos diagonales £, son los valores
energeéticos del electrén:

Por su parte, en la mecanica ondulatoria, se trataba de resolver la ecuacién de
ondas de Schrédinger, esto es, la siguiente ecuacion en derivadas parciales:

-Ay+ V= Evp,

donde v es la funcién de onda (independiente del tiempo), V el potencial y
E la energia. Si definimos el operador hamiltoniano como H=-A+V (es decir,
la energia cinética mas la energia potencial), la ecuacion anterior puede es-
cribirse, equivalentemente, Hy = Evy, que determina lo que se conoce como
problema de autovalores o problema de Sturm-Liouville —porque preocupo
a los matematicos franceses Jacques Charles Francois Sturm (1803-1855) y
Joseph Liouville (1809-1882)—. Se llama asi porque esta ultima ecuacion solo
admite solucion para ciertos valores de vy y de E, que reciben el nombre de
autofunciones y autovalores, respectivamente.

Autovalores

En la fisica clasica, los autovalores determinaban, por ejemplo, las frecuencias
caracteristicas de vibracién de una membrana elastica, de modo que cualquier
vibracion pudiera expresarse como superposicion de estos modos basicos de

AXIOMATIZAR LA FISICA



que solo empleara herramientas matematicas clasicas, descubri6
su celebrada ecuacién de ondas. La chispa surgi6 al estudiar el
movimiento del electrén como si se tratara de un movimiento on-
dulatorio, cuya funcién de onda W seria la encargada de describir
el estado del sistema. Su trabajo tuvo una acogida excepcional,

oscilacion. En fisica cuantica, los autovalores £, son, precisamente, los posibles
niveles de energia del electrén del &tomo de hidrogeno. Las diferencias entre
estos autovalores dan las frecuencias de los cuantos de luz (fotones) emitidos,
describiendo asi la estructura del espectro de radiacion del atomo. Por su
parte, los diferentes estados del electron vienen dados por las autofunciones
\}, asociadas a los autovalores. En matematicas, al conjunto de autovalores £
de una matriz o de un operador se le denomina espectro. A resultas de una
maravillosa coincidencia, el espectro matematico (un nombre que Hilbert eligié
por casualidad) acabé siendo central para explicar los espectros fisicos de los
atomos. Con sus propias palabras: «Desarrollé mi teoria de infinitas variables
e incluso la llamé anélisis espectral sin ningun presentimiento de que mas
tarde encontraria una aplicacion para el espectro real de la fisican. Fue una
casualidad especialmente afortunada.

Jacques Charles Frangois Sturm (izquierda) y Joseph Liouville.
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porque resolver una ecuacion diferencial, una cosa que los fisicos
habian hecho durante siglos, parecia mucho mas sencillo que en-
contrar la solucién de ciertas ecuaciones matriciales.

Asi pues, el panorama que se les presentaba a los fisicos a
comienzos de la primavera de 1926 dificilmente podia resultar
mas paraddjico: disponian de dos mecanicas que explicaban y
predecian los mismos fenémenos, pese a que cada una de ellas
utilizaba un enfoque muy diferente y proyectaba una concepcién
muy distinta del microcosmos. Si Schrodinger calificaba la meca-
nica de matrices de «contraintuitiva», Heisenberg no se quedaba
atras y calificaba la mecénica de ondas de «repulsiva». Varios fisi-
cos —el propio Schrédinger, Carl Eckart (1902-1973) y Wolfgang
Pauli (1900-1958)— se lanzaron a esclarecer la relaciéon formal
entre ambas mecédnicas. Su conclusion fue que ambos formalis-
mos eran matematicamente equivalentes, aunque su demostra-
cién de que se podian construir las matrices @ y P a partir de las
funciones de onda ¥, asi como reciprocamente, no fue del todo
correcta.

De hecho, fue mérito de Hilbert reconocer la profunda simili-
tud entre ambos formalismos. Hilbert se rié mucho de Born y Hei-
senberg porque, cuando descubrieron la mecénica matricial, se
encontraron con el mismo tipo de dificultades que, por supuesto,
todos los matematicos encuentran al manipular matrices infinitas.
Cuando fueron a pedirle ayuda, les dijo —recordando sus trabajos
sobre ecuaciones integrales de veinte afios antes— que las tini-
cas veces que habia tenido que ver con matrices fue cuando estas
aparecian como subproducto del estudio de autovalores de una
ecuacion diferencial con condiciones de contorno (en otros térmi-
nos, cuando una ecuacién integral se transformaba en un sistema
de infinitas ecuaciones lineales). Les sugiri6é que si encontraban
la ecuacién diferencial que originaba esas matrices, probable-
mente obtendrian més informacién. Heisenberg y Born pensaron
que era un comentario para salir del paso, y que Hilbert no sabia
realmente de lo que estaba hablando. Asi que més tarde Hilbert
se divirtié mucho indicaAndoles que podian haber descubierto la
mecénica ondulatoria de Schrédinger seis meses antes que este,
si le hubieran hecho caso, claro. Esta fue la senda que, de facto,
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Schrodinger, Eckart y Pauli siguieron para mostrar la identidad de
las dos teorias desde un punto de vista matematico.

«El tinico objetivo de la fisica teérica es calcular resultados que
se puedan comparar con la experiencia [...]. Es totalmente
innecesario que deba darse una descripcion satisfactoria del
curso completo de los fenémenos.»

En el otofio de 1926, Pascual Jordan y el fisico britdnico Paul
Adrien Maurice Dirac (1902-1984) comenzaron a elaborar por se-
parado la teoria de las transformaciones, a fin de unificar de una
vez por todas ambas mecénicas cudnticas. Como las cantidades
cudnticas introducidas por Heisenberg definian un nuevo tipo de
dlgebra para el que la multiplicacién no era conmutativa, Dirac de-
cidié llamar g-niimeros a las cantidades que asi se comportaban
(aunque la «g» no era por quantum, en inglés, sino por queer, que
significa «extrafio», «poco usual»). Pues bien, el dlgebra abstracta
de los g-nimeros admitia diversas representaciones o imigenes
(a la manera que un mismo sistema de axiomas puede admitir
varios modelos), siendo dos de ellas las mecanicas matricial y
ondulatoria. El problema es que para asegurar que todas las trans-
formaciones entre imdgenes de la mecénica cudntica funcionaban
correctamente, Dirac tuvo que recurrir al empleo de un ente ma-
temaético ficticio: la funcién delta. Una funcién que, en verdad, no
era una funcién. Para los fisicos se trataba de una idealizacién qtil,
que los matematicos se encargarfan de rigorizar, Para los mate-
méticos, en cambio, era una nocién sospechosa, sin realidad ma-
tematica, cuyo uso solo se justificaba por las aplicaciones fisicas.
A la funcién delta de Dirac le aguardaba un triste sino, pues hubo
de esperar hasta 1950 para encontrar su acomodo dentro de la
teoria de distribuciones creada por Laurent Schwartz (1915-2002).
Mientras tanto, su falta de rigor dej6 helados a los matemaéticos
de Gotinga.

Y en estas, un joven llamado John von Neumann llegé a Go-
tinga como ayudante de Hilbert. Tras haberse doctorado con una
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brillante tesis sobre teoria de conjuntos, habia tomado lecciones
de andlisis funcional con Erhard Schmidt en Berlin. Por entonces,
Hilbert estaba tratando de encontrar un modelo matematico razo-
nable para la mecénica cudntica; pero su tratamiento axiomatico
iba retrasado porque sufria una anemia perniciosa (una enferme-
dad mortal en esos arios, de la que solo se recuperé gracias a un
insélito tratamiento experimental a base de extracto de higado).
A caballo entre 1926 y 1927, solicito a su asistente en fisica, Lothar
W. Nordheim, que desmenuzara para él el contenido de las lti-

LA FUNCION DELTA DE DIRAC

En la mecanica matricial, se trataba de hallar una matriz S de manera que la
matriz W=S5"HS fuese diagonal. Si se despeja HS en esta ecuacién, queda
HS=SW. Y, si empleando la regla de multiplicacion de matrices se escribe lo
que significa esta ultima ecuacion para los elementos de cada matriz, se ob-
tiene un sistema de infinitas ecuaciones lineales (que recuerda al que aparecia
al transformar una ecuacion integral):

¥ Bt st )]

g=1
Por su parte, en la mecanica ondulatoria se trataba de resolver la ecuacién de
ondas de Schrédinger Hy = £y, determinando los autovalores solucion. Si en
la ecuacién se introduce la autofuncién vy, asociada al autovalor £, se llega a:

Hlpn =LEay, [2]

Tanto Hilbert como Dirac, una vez que reformularon ambos problemas de esta
forma, procedieron a compararlos y observaron que [1] y [2] presentan una
estructura semejante: Hamiltoniano x XYZ=Energia x XYZ. En consecuencia,
la pregunta que se hicieron fue: équé condiciones hay que asumir para po-
der igualar término a término la ecuacion [1] de la mecanica matricial con la
ecuacion [2] de la mecanica ondulatoria? Como «integrar» es en el reino de lo
continuo lo analogo a «sumar» en el reino de lo discreto (el simbolo [ provie-
ne, de hecho, de una sucesiva estilizacién de la letra s larga), pensaron que
lo que deberia sustituir —en el paso de lo discreto a lo continuo— al primer
miembro de [1] debia ser: [ h(x,y) ¥, () dy. Por consiguiente, la unificacion entre
ambas mecanicas cuanticas se lograria si esta ultima expresién coincidiese
con el primer miembro de [2], resultando:
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mas investigaciones, con el propésito de impartir un curso sobre
mecdnica cudntica empleando su querido método axiomatico. La
llegada de Von Neumann dio alas al proyecto. Capitaneados por
Hilbert, los tres se embarcaron en la bisqueda de un marco mate-
matico adecuado, completamente riguroso. Asf, a lo largo de 1927,
escribieron juntos un articulo titulado Sobre los fundamentos de
la mecdnica cudntica. Hilbert queria explotar la formulacién in-
tegral de los problemas fisicos, que le parecia mas versatil que la
variante diferencial expresada mediante la ecuacién de ondas o

Hy,(x) = [ h(x, y 2, (v)dy, L

10

es decir, si todo operador hamil-

toniano pudiera escribirse como

un operador integral. Pero, iesto 06

no era siquiera posible para un 0.4
operador sencillo como la iden-

tidad (definida por Hy =1y para 0.2

o8

toda funcion de onda)! Dirac no 00

se amiland ante las dificultades

y, para salvarlas, recurrié a la 023 3 pr 1
funcién &. Esta funcion singular X

estd definida por 8(z2)=0 para

todo z=0 [3] y, paraddjicamen- Diagrama esquemadtico de la delta de Dirac: una
t 5(2)dz=1[4]. éC6 P i «funcién» que vale O en todos sus puntos menos
e, [8(2)dz=1[4]. ¢éComo imagi- .\ origen, donde vale infinito, para asi integrar 1.

nar una funcién gue vale O en
todos los puntos menos uno vy,

sorprendentemente, integra 1? Ahora bien, aceptando esta ficcion y tomando
h(x,y) =8 (x-y) como nucleo de la ecuacion integral de arriba, puede expre-
sarse la identidad, por ejemplo, como operador integral sin mas que aplicar

las propiedades magicas de é&:

[3] 4]
HY(X) = [,y )dy = [80x = y Ky dy = w(x) [ 8(x - y)dy = px)- T=4(x).

Y, mediante célculos similares, puede demostrarse que cualquier operador
puede representarse como operador integral, de modo que ambas mecanicas

cuanticas resultan a fortiori unificadas.
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la version discreta en términos de matrices. Al igual que hiciera el
fisico hiingaro Cornel Lanczos (1893-1974) en 1926 (un mes antes,
curiosamente, de que Schrodinger publicara su famosa ecuacién),
Hilbert, Nordheim y Von Neumann desarrollaron la mecénica
cuantica utilizando ecuaciones integrales. Sin embargo, el resul-
tado de este primer acercamiento no fue muy satisfactorio, ya
que no pudieron esquivar el callején sin salida de la delta de Dirac
para pasar de una formulacion a otra.

Seria Von Neumann en solitario quien concluyese la tarea de
fundar axiomaticamente la mecénica cuantica. Lo haria entre 1928
y 1932, publicando una serie de cinco articulos y un monumental
tratado, Fundamentos matemdticos de la mecdnica cudntica.
A fin de dar un soporte matematico firme a la teoria cuantica,
rechazé tanto el uso de las funciones delta de Dirac como la pre-
dileccién por las ecuaciones integrales de Hilbert. Su arma fue
otra: el andlisis funcional. Cre6 un marco axiomatico abstracto,
el espacio de Hilbert (llamado asi en honor de su maestro), que
englobaba los casos particulares matricial y ondulatorio.

Los espacios matematicos sobre los que se construyeron la
mecénica matricial y la mecanica ondulatoria eran muy diferen-
tes: uno era discreto y algebraico; el otro, continuo y analitico. En
consecuencia, como se percaté Von Neumann, no era de extranar
que la unificacién entre ambos no se pudiera lograr sin cierta vio-
lencia sobre el formalismo y la matematica. Sin embargo, observé
que los espacios de funciones definidos sobre ellos eran, esencial-
mente, idénticos. En efecto, los estados del atomo se representa-
ban en la mecénica matricial mediante sucesiones de nimeros de
cuadrado sumable, de modo que el espacio funcional que estaba
detréas era (,, esto es, el espacio de Hilbert por antonomasia. Mas
atin, las funciones de onda de la mecénica ondulatoria eran siem-
pre de cuadrado integrable o, lo que es lo mismo, pertenecian al
espacio funcional L,. Y para estos dos espacios era vilido el teo-
rema de Fischer-Riesz, bien conocido por los matematicos desde
1907, que establecia que ambos espacios eran isomorfos. En resu-
men, Von Neumann resolvié el rompecabezas de la equivalencia
matematica entre mecanicas cuanticas al mostrar que la mecénica
de Heisenberg —centrada en matrices y sumas— y la mecénica de
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LOS ESPACIOS «<EQUIPADOS» DE HILBERT

La mecanica cuantica de Von Neumann, impecable para los matematicos,
tropezo con el hecho de que los fisicos preferian la mecéanica cuantica de Di-
rac, por cuanto resultaba mas Util pese a su carencia de rigor. Con el paso del
tiempo, gracias a los trabajos de Laurent Schwartz y Alexander Grothendieck
en analisis funcional alla por los afios cincuenta y sesenta, las funciones delta
adquirieron carta de naturaleza matematica al ser formalizadas como fun-
ciones generalizadas o distribuciones. Asi, el formalismo de Dirac dejo de ser
sospechoso matematicamente, al englobarse dentro de los espacios de Hilbert
wequipados» (o tripletes de Gelfand). La idea es ligar lo mejor del formalismo
de Von Neumann (el riguroso espacio de Hilbert) y lo mejor del formalismo de
Dirac (la util funcién delta) dentro de una estructura matematica consistente.
Con este fin, se procura ir mas alla del espacio de Hilbert de cara a incorporar
objetos tan singulares como la funcion delta, pero sin perder al mismo tiempo
la buena geometria del espacio de Hilbert. La solucion consiste en conside-
rar una estructura alrededor del espacio siguiendo el espiritu de la teoria de
distribuciones; se toma el espacio de Hilbert usual y se equipa con otros dos
espacios, uno mas pequefio y otro mas grande, que contienen respectiva-
mente todas las funciones buenas (funciones test) y todas las funciones malas
(funciones singulares, como la & de Dirac). Al conjunto de estos tres espacios
es a lo que se denomina espacio «equipado» de Hilbert o triplete de Gelfand.

Schrodinger —centrada en funciones e integrales— eran mate-
maticamente equivalentes al no ser mas que célculos sobre dos
espacios de Hilbert isomorfos, idénticos.

Pero Von Neumann hizo mucho mas. Hasta entonces se en-
tendia: por espacio de Hilbert uno de los dos espacios concretos £,
o L,. El fue pionero en concebir un espacio de Hilbert abstracto,
en el sentido actual. Abandonando cualquier representacién con-
creta, trabajo intrinsecamente con las nociones obtenidas direc-
tamente de los axiomas, logrando extender la teoria espectral de
Hilbert de acuerdo a las necesidades cuénticas.

Hilbert habia asentado a principios de siglo las bases del es-
pacio infinito-dimensional. Pero fue un favor de la fortuna que
esta teorfa matemadtica tan abstracta, gestada con veinte afios de
antelacién, le viniera como anillo al dedo a la mecanica cuéntica.

AXIOMATIZAR LA FISICA

107



108

Desde entonces, la estructura matematica de la fisica cuantica es
solidaria del espacio de Hilbert. La descripcién del estado de un
sistema cuéntico se hace por medio de un vector de ese espacio.
Y magnitudes fisicas tales como la energia se estudian mediante
operadores definidos sobre el espacio de Hilbert. A resultas de la
aparicién de la mecénica cudntica, la teoria de los espacios de Hil-
bert quedé fundada axioméaticamente, con el propio Hilbert como
testigo de excepcion.
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CAPITULO 4

La crisis de fundamentos

Con la efervescencia de la 16gica
matematica y de la teoria de conjuntos se consigui6
tratar un concepto que hasta entonces se habia mostrado
intratable: el infinito. Pero con ello se profundizé la fractura
que recorria la base de las matematicas. La proliferacion de
paradojas mostré que la matematica estaba edificada sobre
arena. Los matematicos se lanzaron entonces a una carrera
para refundar su ciencia. Algunos matematicos tomaron
partido por el logicismo de Frege y Russell; el resto
se escindi6 en dos bandos irreconciliables: los
intuicionistas, abanderados por Brouwer,
y los formalistas, dirigidos por Hilbert.






Hacia 1920, Hilbert viré sus intereses hacia el inquietante territo-
rio de los fundamentos de la matematica. Un campo que cultivé
en exclusiva durante los 1ltimos afios de su vida como investiga-
dor. En cierta manera reanudé con fuerzas redobladas su examen
de las bases de la matematica, aunque ahora con unos objetivos
mucho més ambiciosos que veinte afios antes. No se enfrascé en
la tarea en solitario. Lo hizo acompainado por dos fieles escude-
ros: Paul Bernays (1888-1977), uno de sus asistentes en Gotinga, y
Wilhelm Ackermann (1896-1962), un profesor de secundaria que
habia sido alumno suyo (y a quien rehusé dar un puesto universi-
tario cuando se enteré de que iba a casarse y tener familia, lo que
a su juicio le distraeria de la investigacién). Como parte de esta
actividad, el matematico aleméan y sus mas intimos colaboradores
se vieron envueltos durante el periodo de entreguerras en una
serie de vividas discusiones con importantes matematicos euro-
peos que mantenian visiones opuestas a la suya.

Es costumbre anclar el inicio histérico de las reflexiones en
torno al quehacer matemético alld por el tltimo cuarto del siglo
XIX. Sin embargo, la curiosidad por la naturaleza del conocimiento
matematico no es nueva. Es bimilenaria. Asf, la primera crisis
de fundamentos se produjo en la antigua Grecia, cuando la arit-
mética pitagorica se resquebrajé. Los pitagéricos pensaban que
todos los niimeros eran racionales, como casaba con su cosmovi-
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sién, pero pronto descubrieron que también habia nimeros irra-
cionales (como /2 ). El descubrimiento de los inconmensurables
hizo aficos su matematica. Los niimeros racionales no agotaban
la realidad. El continuo real (una recta, por ejemplo) no est4 for-
mado por una coleccién discreta de atomos individuales. Los tra-
bajos en fundamentos de Eudoxo (siglo v a.C.) alejaron el horror
al infinito irracional y pusieron los cimientos sobre los que se
edifico la geometria euclidea.

Por su parte, como vamos a comprobar, los trabajos llevados
a cabo a propdsito de la segunda crisis de fundamentacién, ya en
el siglo xx, sirvieron para clarificar en qué consiste el método, el
rigor y la verdad de la nueva matematica, mis axiomatica que in-
tuitiva, antes existencial que constructiva. A continuacién, como
paso previo a conocer la aportacién de Hilbert, necesitamos pre-
sentar los escollos a que tuvo que hacer frente. Entre ellos, una
serie de concepciones de la matemética antagénicas, que no apa-
recieron de la nada sino que —al igual que la que defendié nues-
tro protagonista— estdn enraizadas en la propia evolucién de la
mas segura de las ciencias. La expansion del andlisis matematico
desde principios del siglo xix es, en conjuncion con el arraigo de la
teoria de conjuntos y la l6gica matematica, el hilo conductor de
una disciplina que se ha dado en llamar filosofia o fundamentos
de las matemdticas. Pero volvamos por un momento la mirada a
los origenes...

¢ES DIOS UN MATEMATICO?

El platonismo es, histéricamente, la filosofia originaria de las
matematicas. Platénicos han sido Platén, Cantor, Gédel... entre
otros grandes matematicos. Pero, curiosamente, el primer pla-
ténico no fue Platén, sino Pitdgoras, que creia ciegamente que
todo es nimero y que los objetos matematicos estan dotados de
existencia real. Tanto los nimeros como los tridngulos o las cir-
cunferencias existirian por si mismos, independientemente de
sus instancias y de nuestras mentes. Los neoplaténicos, con san
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Agustin (siglo v d.C.) a la cabeza, aseveraban que la totalidad
infinita de los nimeros existia en acto en el intelecto divino, pues
;quién seria tan necio para afirmar que Dios detiene su cuenta en
un cierto niimero por grande que sea?

El préstamo del término platonismo del campo filosdéfico
al campo matematico quedé sellado en una conferencia que la
mano derecha de Hilbert, Paul Bernays, impartié en 1934. Bernays
queria bautizar con un nombre sugerente el modo de razonar de
las matemadticas modernas, en que los objetos mateméticos no
se construyen, sino que se toman como dados. Para Cantor, por
ejemplo, la realidad de los niimeros era mucho mayor que la reali-
dad del mundo sensorial, ya que los niimeros existian en forma de
ideas eternas en el intelecto divino. Godel iba todavia mas lejos y
tomaba los conjuntos matematicos como objetos tan reales como
los cuerpos fisicos. Para los matematicos platénicos, que han sido
y son legion, los teoremas matemaéticos no se inventan sino que
se descubren.

El talén de Aquiles del platonismo es que sobrepuebla los
cielos. El platonismo funciona bastante bien cuando se trata de
defender que realmente existen entes matematicos sencillos (el
tridngulo en general, el cuadrado en general o, quizd también, la
totalidad de los niimeros naturales). Pero se viene abajo en cuanto
abandonamos los objetos de la matematica antigua y pasamos a
considerar los artificiosos objetos de las matemaéticas contempo-
raneas: las clases, los conjuntos, las funciones y las complejas
estructuras abstractas que fueron saliendo al paso a lo largo del
siglo xIx.

EL LABERINTO DEL CALCULO

Los griegos fundaron la geometria y subordinaron a ella la arit-
mética. Pero la aritmética fue independizandose de la geometria
gracias al concurso del algebra, lo que posibilité, dos mil afios
después, la reduccién inversa. La geometria encontré asiento en
el dlgebra, que descansaba a su vez sobre la aritmética, reforzada
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con el nuevo cidlculo de Newton y Leibniz. Pero la aritmetizacion
de las matematicas que se llevé a la practica entre los siglos xvi y
xvin precisaba de una vuelta al rigor griego, que renunciara a los
juegos de manos del cdlculo con infinitésimos.

A principios del siglo x1x, 1a oscuridad del analisis matematico
era casi absoluta. Augustin-Louis Cauchy (1789-1857) rompi6 con
la tradicién infinitesimal y refundé el analisis sobre las nociones
de limite y funcién. El refinamiento del concepto de funcién fue
simultdneo al desarrollo de las teorias de derivacion e integracion.
Pero el Curso de andlisis de Cauchy, que vio la luz en 1821, se
apoyaba a su vez en la nocién de continuidad. Tanto el célculo
de limites como el manejo de funciones precisaban de una defini-
cion cuidadosa del continuo de niimeros sobre el que se operaba.
Pero ;qué era exactamente el continuo? Las demostraciones de
los teoremas fundamentales del anilisis necesitaban de una de-
mostracion previa de la continuidad de la recta de nimeros rea-
les. Los que ensefiaban el calculo no conocian las demostraciones
correctas de los teoremas e intentaban que las mistificaciones ofi-
ciales se aceptasen como un acto de fe. Esto ocurria hasta con un
teorema tan basico con el de Bolzano (1781-1848), que afirma que
si una funcién continua toma valores de signos opuestos en los
extremos de un intervalo, entonces existe un cero de la funcién
en el interior del intervalo. Algo similar sucedia por la misma
época con la geometria, y correspondié a Hilbert, segiin vimos en
el capitulo 1, aclarar la nocién de continuidad.

Mediado el siglo xix, el problema fundamental residia, por
tanto, en construir los niimeros reales (el continuo) a partir de los
nimeros racionales, ya que se sabia como construir estos a par-
tir de los enteros, asi como los enteros a partir de los naturales.
Naturales, enteros, racionales, reales... el total de la matemaética.
En 1872 se sucedieron las construcciones de los niimeros reales.
En primer lugar, la teoria de los niimeros reales que pudo recons-
truirse a partir de los apuntes de clase de Weierstrass, que identi-
ficaba cada nimero real con una suma infinita de racionales. En
segundo lugar, la teoria de Cantor, andloga a la de Charles Meray
(1835-1911), en la que cada nimero real era el limite de una suce-
sién de racionales. Y, por iltimo, la teoria de Dedekind, en que
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un nimero real no es sino una cortadura, esto es, una particion
de todos los puntos de la recta en dos clases, los que estén a la
izquierda y los que quedan a la derecha del corte. Mientras que los
numeros racionales son porosos, los niimeros reales no lo son: para
cualquier corte que hagamos en la recta siempre existe un nimero
real que produce la divisién de la recta en dos trozos. Si Platén
mantenia que Dios geometriza eternamente, Dedekind proponia el
lema de que el hombre aritmetiza eternamente. Todos los niimeros
se habian reducido, en el fondo, a nimeros naturales. Toda una
hazafia intelectual. Pero, ;jqué eran los niimeros naturales?

LA LOGICA COMO LLAVE MAESTRA
DE LAS MATEMATICAS

Es dentro de este panorama donde la aritmética asemejaba un
arbol que crecia hacia arriba sin cesar, al tiempo que sus raices se
hundian en las profundidades, donde hizo acto de presencia la pri-
mera corriente fundacional: el logicismo. Para conocerla hay que
acercarse a su primer defensor: Gottlob Frege (1848-1925). Este
matemadtico aleméan reparé en que toda la matematica descansaba
sobre los niimeros naturales; pero, ;como construirlos? La clave
estaba, a su juicio, al amparo de la logica.

Frege pasé su vida como un huraiio profesor de la Universidad
de Jena. Tenia tan pocos alumnos que durante algin curso solo
asistieron regularmente a clase dos, un filésofo y un comandante
retirado que estudiaba por hobby. Era incapaz de conversar de otra
cosa que no fueran la l6gica y las matematicas, y siempre recondu-
cia cortésmente cualquier conversacién hacia ellas. Fruto de esta
peculiar obsesion fue su Conceptografia, publicada en 1879 y que
llevaba por subtitulo Un lenguagje de formulas similar al aritmé-
tico para el pensamiento puro. Frege vertié nuevos vinos en los
viejos odres de la 16gica, creando la «légica matematica».

La légica tradicional venia gozando de una mala salud de
hierro, pese a que, segin todas las apariencias, se hallaba defini-
tivamente concluida desde Aristé6teles. Pero la l6gica comenzé a
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bizquear ante la matematica. Tanto Ramon Llull (1232-1315) en
Ars Magna como Juan Caramuel (1606-1682) en Mathesis Audax
habian concebido una suerte de dlgebra ldgica en la que todas las
verdades de razén quedarian comprendidas dentro de una suerte
de cédlculo en una escritura universal, que Leibniz bautizé como
calculus ratiocinator. No habria necesidad de més controversias
entre filésofos, pues estos las solucionarian como si fueran con-
tables. Se sentarian en sus mesas, cogerian sus plumas y se dirian
mutuamente: jcalculemos! Estas semillas germinarian en el dlge-
bra de la légica que George Boole (1815-1864) plante6 en Las
leyes del pensamiento, de 1854.

Pero Frege estaba més interesado en una ldgica del dlgebra
que en un dlgebra de la logica, y en la Conceptografia formalizo
la l6gica de proposiciones y la l6gica de predicados o de primer
orden, es decir, de los razonamientos que hablan de ciertos obje-
tos y de las propiedades que satisfacen estos objetos, pero no de
las propiedades que a su vez verifican estas propiedades (lo que
perteneceria a la l6gica de segundo orden). Posteriormente, en
Fundamentos de la aritmética (1884) sentd las bases del pro-
grama logicista, que desarrollaria en los sucesivos voliimenes de
Las leyes fundamentales de la aritmética, deducidas concepto-
grdficamente (1893-1903). Frege sostenia que la 16gica era ante-
rior a la matematica y que, por tanto, los conceptos matematicos
debian ser reducidos a conceptos légicos. La matematica no era
sino un apéndice de la l6gica.

Por consiguiente, la aritmética era, en ultima instancia, 16-
gica, y las nociones aritméticas tenian que ser analizadas en tér-
minos puramente légicos: «calcular es deducir». Con sus propias
palabras: «todo teorema aritmético es una ley légica, aunque de-
rivada». Simplificando el rigor mortis de los escritos fregeanos, en
los que la pedanteria y la precision se reparten por igual, puede
decirse que Frege vino esencialmente a definir los niimeros me-
diante clases, es decir, mediante conjuntos o colecciones. A cada
numero natural le correspondia la clase de todas las clases que
eran similares (equinumerables) con una dada. Por ejemplo, el
numero 3 es lo que tienen en comiin todas las clases siguientes:
las hojas de un trébol normal, los colores de un semaforo, etc.
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AXIOMAS DE PEANO

En 1888, Richard Dedekind publicé éQué
son y para qué sirven los numeros?, un
influyente libro con sabor logicista del
que Hilbert bebié de joven. Sin embargo,
Dedekind definio los numeros naturales
de un modo esencialmente diferente a
Frege. En 1889, dentro de un libro titula-
do Principios de la aritmética, expuestos
segun un nuevo método, el matematico
italiano Giuseppe Peano recogio el tes-
tigo de Dedekind, aunque era descono-
cedor de su obra, y definié los numeros
naturales por medio de tres conceptos
primitivos (el cero, la funcién sucesor y
la igualdad) y cinco axiomas:

Giuseppe Peano hacia 1910.
1. Cero es un numero natural.

2. Cada numero natural tiene un sucesor.
3. Cero no es el sucesor de ningun numero natural.
4. Dos numeros distintos tienen distintos sucesores.

5. Si un conjunto A contiene el cero y cada vez que contiene un nimero
contiene también el siguiente, entonces A contiene todos los naturales.

El quinto axioma recibe el nombre de principio de induccién y desempena
un papel fundamental para probar teoremas sobre los numeros naturales sin
tener que comprobarlos para cada uno de ellos, de uno en uno. Este principio
formaliza esa intuicion de que cuando se tienen todas las fichas del dominé
colocadas en hilera, la caida de la primera de ellas (el cero) implica la caida de
todas las demas (todos los naturales). A partir de estos axiomas, puede defi-
nirse la suma y la multiplicacion de numeros naturales, asi como ordenarlos.
El resultado es conocido como aritmética de Peano.

De este modo, el nimero 3 puede identificarse con la clase de
todas estas clases. En general, Frege identificé el nimero 0 con
la clase de todas las clases vacias, el 1 con la clase de todas las
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clases unitarias, etc. Y, puesto que solo hay una clase vacia (que
se denota como &), 0 = &. El niimero 1 se definia entonces como
la clase de todas las clases equinumerables con la clase {J} que
posee un unico elemento. De una manera andloga se definia el
resto de nimeros.

Desgraciadamente, el audaz programa fregeano seria puesto
en entredicho por la proliferacién de paradojas légicas. En sus
obras, Frege siempre partia de un principio: el principio de com-
prehension, que postula que a cada concepto es posible asignarle
su extension, es decir, empleando términos maés actuales, que
toda propiedad determina la clase de los elementos que satisfacen
esa propiedad. Este axioma de existencia de clases era la «Ley
Bésica V» de Las leyes fundamentales de la aritmética, y fue
responsable de la colosal defuncién del logicismo fregeano. En
una carta del 16 de junio de 1902, un joven matematico llamado
Bertrand Russell (1872-1970) informaba al profesor Frege de que
era posible deducir una contradiccién dentro de su sistema a
partir de esa maldita ley. La paradoja de la clase de Russell, que
explicaremos mas adelante, mostraba que hacer corresponder a
cada propiedad su clase asociada era, por mas natural que pare-
ciera, jugar con fuego. Al conocer la antinomia, Frege afiadié un
apéndice al segundo volumen de Las leyes fundamentales de la
aritmética en el que pretendia salvar el grueso de su trabajo res-
tringiendo la aplicacion del principio de comprehensién. Pronto
se percatd de que servia de poco, y paralizé la publicacién del
tercer volumen de su obra cumbre. Jamas se repondria del golpe.
Impregnado de melancolia, reconoceria sin esperanza pero sin
miedo el desastre:

Un cientifico no puede encontrar nada menos deseable que hallar
que todo el fundamento de su obra cae precisamente en el momen-
to que le da fin. He sido puesto en esta posiciéon por una carta de
Mr. Russell cuando este trabajo se hallaba casi terminado en la im-
prenta.

Tras esta muestra de integridad intelectual, que Russell ad-
miraria toda su vida, Frege le contest6 a vuelta de correo comu-
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nicandole que la aritmética, y con ella toda la matematica, volvia
a tambalearse. El sentido comiin no era un faro lo bastante pode-
roso para mantener a los matematicos a salvo del riesgo de zozo-
brar contra los escarpados salientes de la l6gica.

LA PROLIFERACION DE PARADOJAS

Hasta la primavera de 1901, cuando Russell tropez6 con su pro-
pia paradoja, se consideraba, de acuerdo con Frege, que a cada
propiedad le corresponde una clase: la clase conformada por las
entidades que poseen esa propiedad. Russell estaba estudiando el
comportamiento de las clases propias, esto es, aquellas que son
miembros de si mismas. Pongamos por caso, la clase de todas las
clases (que, como es otra clase, se autopertenece) o la clase de
todos los conceptos (que, como resulta ser otro concepto, tam-
bién se autopertenece). El vicio 16gico es irremediable: si en una
biblioteca se coloca un catdlogo con tapas negras de todos los
libros de la biblioteca que tengan tapas negras, dicho catalogo se
autocatalogara.

Tomemos, ahora, con Russell, la clase R de todas las clases
que poseen la propiedad de no ser miembros de si mismas, for-
malmente: R={x : x & x}, donde € es el simbolo de pertenencia.
Y preguntémonos si R es miembro de si misma, si R € R es el caso.
Vamos a comprobar cémo cualquier respuesta implica inmediata-
mente la contraria. Si lo es, no lo es. Sino lo es, lo es. En efecto,
si RER, es decir, si R se pertenece a si misma, entonces, por defi-
nicién, R & R, esto es, R no se pertenece a si misma, ya que es la
clase de todas las clases con esa propiedad. Pero, reciprocamente,
si RER, entonces RER, puesto que cumple la propiedad que de-
fine la clase de todas las clases que no son miembros de si mismas.
En suma, se obtiene la contradiccién: RER si y solo si R&R. La
clase R se pertenece a si misma si y solo si no se pertenece a
si misma. Russell quedé perplejo ante el absurdo que habia des-
cubierto. Una contradiccién que posteriormente popularizé con
el nombre de paradoja del barbero: el barbero de un pueblecillo
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presume de que afeita a todos los hombres que no se afeitan a si
mismos y a nadie mas. Entonces, un buen dia, al despertar, se
pregunta quién le afeita a él y descubre consternado que se afeita
a si mismo si y solo si no se afeita a si mismo. El pobre barbero se
encuentra sumido en un verdadero atolladero 16gico.

El matematico francés Henri Poincaré fue el primero en in-
dicar que la fuente de las paradojas que asaltaban la légica era la
circularidad, en forma de autorreferencia o autopertenencia. Las
paradojas se sustentaban en el uso de definiciones impredicati-
vas, de definiciones en que lo definido entra en la definicién. Es
lo que, més tarde, Russell denominé principio de circulo vicioso.
No es de extrafiar, pues, que la violacién de este principio con-
duzca a paradojas, antinomias y contradicciones, muchas de ellas
reconocibles incluso fuera de los lenguajes formales, en los len-
guajes naturales. Sirva como ilustracion la archiconocida paradoja
del mentiroso, atribuida a Epiménides de Creta (y a la que incluso
san Pablo se refiere en sus cartas). En el verso de un poema, Epi-
ménides censura a los cretenses tildandolos de mentirosos. Pero,
siendo €l cretense, su afirmacion, dicha sobre si mismo, se trans-
forma en «estoy mintiendo». En este caso, lo que dice no puede ser
verdad, por lo que los cretenses no mienten. Pero si no mienten,
Epiménides tampoco, por lo que los cretenses por fuerza mien-
ten, y vuelta a empezar.

La légica matemdtica, como comenzo a llamarse gracias a
Peano, solo daba disgustos. Y Poincaré, que la consideraba iniitil,
se burlaba: «Ya no es estéril; engendra contradicciones». Pese a
todo, el programa logicista pergefiado por Frege iba a tener conti-
nuacién gracias al desparpajo de Bertrand Russell y Alfred North
Whitehead (1861-1947).

En 1900, en un congreso internacional de filosofia celebrado
en Paris, Russell se top6 con la reforma simbdélica de Peano. En
1889, Peano habia presentado sus Principios de la aritmética, en
los que ofrecia sus famosos cinco axiomas —incluyendo el princi-
pio de induccién— para los niimeros naturales, usando un nuevo
simbolismo que habia disefiado. El simbolismo unidimensional
de Peano fue mejor acogido que el simbolismo bidimensional de
Frege en la comunidad de 16gicos y matematicos (no asi entre
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EL HOTEL INFINITO DE HILBERT

El catedratico de Gotinga inventd una metéfora que explica de manera simple
y clara algunas de las paradojas relacionadas con el infinito que los matema-
ticos descubrieron al mismo tiempo que las paradojas logicas. Pese a que
parezca increible, en un hotel con infinitas habitaciones siempre hay sitio para
nuevos huéspedes, aungue el hotel las tenga todas ocupadas. En efecto, si
cambiamos al huésped que se encuentra en la primera habitacion a la segunda;
al de la segunda, a la cuarta; al de la tercera, a la sexta; y asi sucesivamente,
liberamos todas las habitaciones impares. De modo que, como hay infinitos
numeros impares, no solo hay sitio para un nuevo viajero que llegara a la re-
cepcion del hotel, sino también para alojar a una cantidad infinita de viajeros
en la misma situacion. En el mismo hotel de Hilbert podriamos establecer mas
conclusiones sorprendentes:

— El hotel tiene todas las habitaciones ocupadas y se marcha un huésped.
Entonces, el niumero de ocupantes sigue siendo el mismo (infinito).

— Si se marchan todos los huéspedes que ocupan habitaciones pares, en-
tonces el numero de ocupantes sigue siendo el mismo (infinito).

— Sin embargo, si se marchan del hotel todos los huéspedes que ocupan las
habitaciones, por ejemplo, de la quinta en adelante, entonces no queda el
mismo numero de ocupantes (ya solo habria una cantidad finita).

Todo esto nos advierte de la gran flexibilidad del infinito matematico y del
cuidado que hay que poner al realizar afirmaciones sobre él.

sus alumnos, que estallaron en rebeldia y ni siquiera se calmaron
cuando Peano les oferté el aprobado general a cambio de que le
permitieran continuar dando clase empleando su notacién). En
1902, fiel al logicismo de Frege y al simbolismo de Peano, Rus-
sell publicé Los principios de la matemdtica. Pero la luna de
miel con la légica duraria poco, pues poco antes de darlos a la
imprenta descubri6 la paradoja que lleva su nombre. Hasta 1910,
Russell trabajé codo con codo con Whitehead. Ambos matemati-
cos sudaron tinta para salvar las contradicciones que las parado-
jas habian puesto al descubierto. Con los Principia mathematica
(1911-1913) sondearon méas que nadie hasta la fecha los funda-
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mentos de las matemadticas. Esta obra deslumbrante significé, en
palabras de Hilbert, «la coronacién de la axiomatizacién».

Para soslayar las paradojas, Russell y Whitehead fabricaron
una teorfa de tipos, que exige que para que X € Y sea una férmula
bien formada, los valores de ¥ han de ser del tipo inmediatamente
superior al tipo de valores de X. De esta manera, la proposicién
«la clase de todas las sillas no es una silla» no es verdadera ni
falsa, sino carente de sentido, porque sillas solo pueden ser los
objetos, no las clases de objetos. En otras palabras: se estd come-
tiendo el error de predicar una propiedad de un tipo a otro tipo.
Aplicando esta alambicada teoria, los autores certificaron que las
formulaciones que conducen a la paradoja de Russell dejan de
tener sentido: R € R es, ahora, una férmula mal formada, al no
haber mas que un tipo implicado.

«Las matematicas poseen no solo la verdad, sino la suprema
belleza, una belleza fria y austera, como la de una escultura.»

— BERTRAND RUSSELL.

122

En los Principia, evitadas las paradojas, Whitehead y Russell
pasaron a deducir la matematica de la 16gica, pues a su entender
no era posible trazar una raya entre ambas. Desde un punto de
vista técnico, el proyecto de logificacién de los teoremas matema-
ticos se topé con numerosas dificultades. Es asi que necesitaron
de un desarrollo més que concienzudo para lograr demostrar —jen
la pagina 379!— que 1+ 1=2. Toda una locura. Ademas, tuvieron
que ampliar la légica a una teorfa generalisima de relaciones que
absorbia en su seno axiomas tan poco satisfactorios, tan ad hoc,
como los de reducibilidad e infinitud. El ortopédico axioma de
reducibilidad funcionaba como una suerte de deus ex machina,
que los autores justificaban pragméiticamente para torear las an-
tinomias y logificar las matemaéticas: cuando una férmula era de-
masiado complicada, se asumia que siempre podia simplificarse a
otra de un tipo inferior.

El axioma de infinitud era, por su parte, necesario para definir
los niimeros naturales al completo. Siguiendo a Frege, definieron
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el 2 como la clase de todos los pares, el 3 como la clase de todos
los trios... Pero se vieron obligados a introducir un axioma que
postulara que para todo nimero existe otro mayor, y cuya justifi-
cacién no podia descansar en ninguna clase de intuicién légica o
matemética (lo que seria una peticién de principio: la légica o la
matemadtica fundidndose a si misma) sino en la propia estructura
del mundo, al que se le prescribia que habia de contener infinitos
objetos. Si no existieran infinitas cosas en el mundo y este tuviera
un maximo de n cosas, Russell y Whitehead serian incapaces de
definir el niimero n+ 1, ya que la clase de todas las (n+ 1)-tuplas
seria vacia al no haber n+ 1 objetos en el mundo. Hermann Weyl,
discipulo de Hilbert, lo denuncié con toda claridad: los Principia
ponian a prueba la fe apenas algo menos que los primeros Padres
de la Iglesia.

El balance fue que, en el mejor de los casos, Russell y White-
head lograron reducir la matematica a una especie de megaldgica,
de paraiso de los légicos. Para decirlo contundentemente: la tesis
logicista, o bien es falsa, si la 16gica no incluye una teoria de clases
(lo que en el préximo paragrafo llamaremos teoria de conjuntos),
o bien es trivial, si la incluye. A dia de hoy, algunos légicos tratan
de resucitar esta tesis poniendo todo su empeifio en traducir las
matemadticas a una légica de segundo orden adecuada (ya que la
légica de primer orden se mostré insuficiente); pero, como mu-
chos matemaéticos han objetado, la l6gica de segundo orden no
es mas que una matematica de conjuntos disfrazada con piel de
cordero. Como en la l6gica de segundo orden se puede predicar
no solo de objetos sino también de propiedades, pueden definirse
muiltiples nociones tipicamente conjuntistas. Cuantificar sobre
propiedades es, en dltimo término, cuantificar sobre conjuntos,
sobre el conjunto de objetos que verifican la propiedad. Se trata,
entonces, de una légica subyacente a la propia teoria de conjun-
tos. Su mayor potencia expresiva, que permite caracterizar la in-
finitud o formalizar el principio de induccién en un tnico axioma
(en lugar de en un esquema de axioma que resume infinitos), es un
arma de doble filo. Estamos donde estdbamos: si la 16gica incluye
la teorfa de conjuntos, la tesis logicista es verdadera pero trivial;
si la l16gica no la incluye, es radicalmente falsa.
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EL NACIMIENTO DE LA TEORIA DE CONJUNTOS

Los légicos hacian auténticos malabarismos para resolver el pro-
blema de las paradojas, pero ;qué solucién daban los matemati-
cos? Silos l6gicos querian logificar la aritmética, los matematicos
querian conjuntivizarla. Pero la conjuntivizacién de la matema-
tica venia de lejos. La teoria abstracta de conjuntos fue creada por
Cantor, pero el enfoque conjuntista en mateméticas era anterior.
Estaba en Riemann, pero sobre todo en Dedekind. Riemann habia
propuesto la nocién de variedad, en un sentido colindante con el
de conjunto, como fundamento de toda la matematica pura. Y De-
dekind habia ofrecido un planteamiento conjuntista del algebra al
introducir nociones tales como las de grupo, cuerpo e ideal (solo
la nocién de anillo se le escapé de las manos, y seria introducida
por Hilbert).

La época heroica de la teorfa de conjuntos arranca en 1872.
Ese afio, cuando publicaron sus respectivas construcciones de
los reales, Dedekind y Cantor iniciaron su tormentosa relacion
personal. En 1874, Cantor demostré que hay dos tipos de infinito:
numerable (como el conjunto de los niimeros naturales) y no nu-
merable (como los niimeros reales, esto es, como el continuo).
Ademas, publicé que el conjunto de niimeros algebraicos es nu-
merable, y lo demostré empleando una prueba que Dedekind le
habia hecho llegar por carta, aunque sin reconocerle mérito al-
guno (esta puiialada por la espalda fue la causa mas probable de
la ruptura de su amistad). En 1879, Cantor presento la nocién
de cardinal de un conjunto, que generaliza, por asi decirlo, el
concepto de niimero de elementos de un conjunto al campo de los
conjuntos infinitos. Una forma de averiguar si dos conjuntos fini-
tos poseen el mismo nimero de elementos consiste en extraer ala
vez un elemento de cada uno de ellos tantas veces como sea posi-
ble. Si ambos conjuntos se acaban a la vez, sabemos con certeza
que tienen el mismo nimero de elementos o cardinal. Como esta
idea no recurre a contar con nimeros, es perfectamente extensi-
ble a conjuntos infinitos: dos conjuntos A y B se dice que tienen el
mismo cardinal, y se escribe | A| =| B|, si puede establecerse entre
ellos una biyeccién, esto es, una correspondencia uno-a-uno.
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ARGUMENTO «DIAGONAL» DE CANTOR

Uno de los grandes descubrimientos de
Georg Cantor fue la existencia de con-
juntos no numerables, que no pueden
ponerse en biyeccion con los nimeros
naturales. Uno de ellos es el continuo.
Mientras que los numeros enteros y ra-
cionales son numerables, los numeros
reales ya no lo son. No pueden empa-
rejarse uno a uno con los numeros na-
turales, es decir, no pueden enumerarse,
ponerse en una lista, uno detras de otro.
Consideremos la recta real y tomemos el
intervalo entre O y 1. Expresemos todos
los numeros comprendidos en codigo bi-
nario, es decir, mediante sucesiones de
0 y 1. Por ejemplo: 101001000... (prescin-
diendo del O y de la coma decimal que
precederia a la expresion). Vamos a de-
mostrar que la suposicion de que se trata  Georg Cantor.

de un conjunto numerable conduce a una

contradiccion. En efecto, si lo fuera podriamos escribir todos sus elementos
en una lista como la siguiente:

1.° — 0100...
2.° — 0Ono..
3.° = MOl.

Fijémonos ahora en los elementos de la diagonal principal, que hemos su-
brayado. Vamos a construir un elemento que, a pesar de ser una sucesion
de O y 1, no esta en la lista. Para ello, formemos la sucesion compuesta por
los siguientes numeros: como el primer término destacado era un O, ponga-
mos un 1; como el segundo era un 1, un O; como el tercero era un 0, un 1; etc.
El elemento resultante empieza por 101... y no coincide con ninguno de los
elementos de la lista. En efecto, no puede ser la primera sucesion, porque
el primer término es distinto; tampoco la segunda, porque hemos variado el
segundo término; ni la tercera, etc. Esto contradice el supuesto de que se
trataba de un conjunto numerable y, por tanto, expresable en forma de lista.
El método de demostracién empleado recibe el nombre de diagonalizacién
e influyo en otras demostraciones posteriores relevantes en la historia de los
fundamentos de la matematica.
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Mientras tanto, Dedekind dio con una definicién de conjunto
infinito més acertada que la de Cantor. Pasado el tiempo y limpias
de errores, ambas definiciones se demostraron equivalentes (en
virtud del axioma de eleccion, del que tendremos ocasién de ha-
blar més adelante). Para Cantor, un conjunto es infinito si no es
finito, esto es, si no puede ponerse en biyeccién con algin nimero
natural. Por contra, para Dedekind, retomando sugerencias de Ga-
lileo y Bolzano, un conjunto es infinito si y solo si puede ponerse
en biyeccion con una parte propia suya. Por ejemplo, los niimeros
naturales son infinitos porque son biyectables con los nimeros
pares, haciendo corresponder al 0 el 0; al 1, el 2; al 2, el 4; y, en
general, a cada niimero n, su doble 2n.

«Es el mas fino producto del genio matemaético y uno de los
logros supremos de la actividad intelectual humana pura. Nadie
nos expulsara del paraiso que Cantor ha creado para nosotros.»

— Davip HILBERT SOBRE EL TRABAJO MATEMATICO DE GEORG CANTOR,

126

EN SoBre EL INFINITO (1925).

Para finales de 1882, Cantor tenia elaborada su aritmética de
cardinales y ordinales (transfinitos), asi como planteada la hipote-
sis del continuo. Los niimeros naturales forman el conjunto infinito
mas pequeiio que nos es dado imaginar. En consecuencia, su car-
dinal, que es el primer cardinal infinito, se denota con la letra alef
del alfabeto hebreo y el subindice 0: X . Este cardinal corresponde
a todos los conjuntos numerables y se trata del primer jalén en la
carrera hacia el infinito. El cardinal del continuo, de los nimeros
reales, es —por razones que aqui no podemos explicar— 2%, En
estas condiciones, la hip6tesis del continuo establece que no hay
ningin infinito distinto entre los naturales y los reales, o dicho de
otra manera, que 2" = X . La secuencia de cardinales R R K.
funciona como una suerte de metro patrén para medir el tamafo
en el universo de los conjuntos, donde hay infinitos infinitos. Los
esfuerzos infructuosos orientados a demostrar la hipétesis del con-
tinuo y los persistentes ataques de Kronecker a la teoria de conjun-
tos transfinitos perturbaron considerablemente a Cantor, provocan-
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dole una crisis depresiva que le distancié de la matematica y le em-
pujoé a la teologia (aunque también se dedicé a defender con ahinco
que Bacon era el verdadero autor de las obras de Shakespeare).

A partir de 1900, la teoria cantoriana se convirtid, al igual que
la l6gica, en un puente sobre aguas turbulentas. Paralelamente
a las paradojas légicas, surgieron las antinomias de la teoria de
conjuntos. De hecho, la mayoria de paradojas que hablaban
de clases encontraron su reformulacion mediante conjuntos (asi,
por ejemplo, la paradoja de Russell). Pero aparecieron también
algunas nuevas: las paradojas del infinito. Mientras que las para-
dojas légicas tenian que ver con la circularidad en la definicién de
ciertas clases, las paradojas conjuntistas lo hacian mas bien con el
infinito. La principal de todas ellas es la paradoja de Cantor acerca
de la coleccién de todos los conjuntos. Sea V el «conjunto» de
todos los conjuntos. Como, segiin demostré Cantor, el cardinal
de cualquier conjunto es estrictamente menor que el cardinal de
su conjunto potencia (que se denota por @ (A) y comprende todos
los subconjuntos o partes de A), se tiene que |V| <|g(V)|. Pero, por
otra parte, por la definicién de V, se tiene que el conjunto potencia
de V ha de estar contenido en V, porque V es el conjunto total, el
mas grande, el que engloba a todos los demds, y nada hay més
alla de él. En consecuencia, [V| 2|g(V)|. Lo que es un absurdo, una
contradiccién, con el resultado anterior.

Ernst Zermelo (1871-1953) fue el primer matemaético en vis-
lumbrar una salida no logicista al laberinto (no en vano habia des-
cubierto una paradoja similar a la de Russell): habia que pasar
de una teoria intuitiva a una teoria axiomatica de conjuntos. Zer-
melo, que desde 1897 se encontraba en Gotinga, sigui6 fielmente
las instrucciones de Hilbert, quien le animé a formular un sistema
de axiomas para la teoria cantoriana. Su aplicacién del método
axiomadtico a la teorfa de conjuntos es comparable a la de Hilbert
en geometria. En 1908, Zermelo present6 la primera axiomatiza-
cién de la teoria de conjuntos, ligeramente pulida por Abraham
Fraenkel (1891-1965) en 1922 (y por Von Neumann en 1925, al
incorporar el axioma de regularidad o fundamentacion). Desde
entonces se conoce por sus iniciales, como axiomatica ZF para la
teoria de conjuntos.
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Pues bien, en ZF, la paradoja de la clase de Russell se trans-
forma en la demostracién de que esa clase no es un conjunto, con
otras palabras, de que no existe dentro de la teoria, con lo que la
antinomia se evapora en el aire. En efecto, si suponemos que R es
un conjunto y llegamos a un absurdo, es que R no es un conjunto.
Anilogamente, la paradoja de Cantor se transforma en la demos-

CLASES Y CONJUNTOS

La teoria de conjuntos de Zermelo-Fraenkel parte de la légica de primer orden
con igualdad y toma la relacién de pertenencia € como primitiva. Los axiomas
de ZF, enunciados verbalmente, son los siguientes:

1. Dos conjuntos son idénticos si tienen los mismos elementos (axioma de
extension).

2. Existe el conjunto vacio @.

3. Dado un conjunto x y una propiedad formalizable en el lenguaje de primer
orden de la teoria de conjuntos, existe el conjunto de todos los elementos
de x que satisfacen la propiedad (axioma de extraccién o comprehen-
sion).

4. Si x e y son conjuntos, entonces el par no ordenado {x, y} es un conjunto.

5. La unidén de un conjunto de conjuntos es un conjunto.

6. Se puede formar el conjunto potencia de cualquier conjunto, esto es, la
coleccion de todos los subconjuntos o partes de cualquier conjunto es
otro conjunto.

7. Existe al menos un conjunto infinito (axioma de infinitud).

8. La imagen de un conjunto por una funcién es un conjunto (axioma de
reemplazo).

9. x no pertenece a x (axioma de fundamentacién o regularidad).
Si a estos axiomas se les afade el llamado axioma de eleccicn, se tiene el sis-

tema ZFC (la «C» por choice, eleccion en inglés). En los afios treinta la teoria
de conjuntos ZFC fue ampliada por la teoria de clases y conjuntos de Von
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traciéon de que el «conjunto» de todos los conjuntos V no es un
conjunto, por lo que tampoco existe dentro de la teoria. En ZF,
un acertijo como el del barbero evidencia, por asi decir, la inexis-
tencia de un individuo con esas caracteristicas. Atin mas: los axio-
mas de ZF bloquean la circularidad que precipita mediante diver-
sas estrategias en la inconsistencia de las paradojas. Las férmulas

Neumann-Bernays-Gd&del (conocida entre los matematicos por el acréonimo
NBG). Von Neumann propuso una construccion jerarquica y acumulativa del
universo de los conjuntos, que suele representarse esquematicamente como
un cono invertido (ver figura). A partir del conjunto vacio e iterando -mediante
una recursion transfinita— las operaciones «partes de» y «unién de», construyo
todos los pisos en que habitan estratificadamente los conjuntos, desde los
mas pequenos hasta los mas grandes: 0=0, 1={0}={@}, 2={0,1}={0,{@}}, etc.
En esta teoria, las paradojas de Russell y Cantor demuestran que Ry V no son
conjuntos sino clases, que si son admitidas dentro de la teoria. Los elementos
cofinales con la jerarquia no son miembros de ningun otro conjunto, porque

son demasiado grandes, y corresponden a las clases.

V, la clase universal de todos los conjuntos

\-. /
\
A\
Conjuntos X
no numerables \ Una clase
/ / (porqueno
\ ' &> / esta acotada,
\ es cofinal)
% ..f
] Un conjunto
S (porque esta
A\ / acotado)
. \ R /
Conjuntos 7
numerables ) \ [ /
\ !
\ /
\ | Conjuntos
\ / finitos
\ o——2
\\amk

Conjunto vacio @

Construccion jerdrquica del universo de los conjuntos elaborada por Von Neumann.
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del estilo RER estan prohibidas en ZF, puesto que el axioma de
fundamentacién o regularidad establece que ningin conjunto se
pertenece a si mismo. Simbélicamente: Vx (x¢€x). Con este axio-
ma, los conjuntos peligrosos simplemente no existen.

En el haber de ZF' hay que consignar que, ademas de desactivar
las paradojas de la teoria informal de conjuntos, permitié prose-
guir la conjuntivizacién de la matemadtica: con la definicién de una
funcién como un conjunto de pares ordenados, ofrecida por Felix
Hausdorff (1868-1942) y Kazimierz Kuratowski (1896-1980) algo
mas tarde, esta nocién —pilar de todo el andlisis— quedé conjun-
tivizada, lo que afianzé la fundamentacién conjuntista de las mate-
maticas. Toda la vertiginosa variedad de estructuras matematicas
quedé reducida a sus componentes mas basicos, los conjuntos.

Sin embargo, los trabajos de Zermelo levantaron un gran re-
vuelo y causaron reacciones muy adversas entre los especialistas.
Buscando probar la hipétesis del continuo, Zermelo habia dado
forma en 1904 al axioma de eleccion. Este axioma establece que
es posible seleccionar simultdneamente un elemento de cada con-
junto de una coleccioén infinita de conjuntos no vacios. Formal-
mente, siS={A, B, C, ...} es una coleccién de conjuntos no vacios,
existe un conjunto Z que consta precisamente de un elemento
de A, uno de B, uno de C, etc. Bertrand Russell lo explicaba con
la siguiente imagen: imaginemos un millonario que, cada vez que
compra una caja de zapatos, compra una caja de medias. Supon-
gamos, ademds, que ya posee una coleccion infinita de cajas de
zapatos y otra igual de cajas de medias. Si desease comprobar que
efectivamente tiene igual nimero de cajas de zapatos y medias,
podria ir sacando el zapato derecho de cada caja de zapatos y em-
parejandolo con una media de una caja de medias recién abierta
(si las cajas de zapatos y de medias sin abrir se agotasen al tiempo,
sabria que posee igual cantidad). Pues bien, esto ltimo no puede
llevarlo a cabo sin emplear el axioma de eleccidn, porque este
axioma es lo que posibilita realizar infinitas elecciones arbitra-
rias en la coleccién de cajas de medias (pues, mientras que en
cada caja de zapatos siempre puede seleccionar el derecho, no
hay diferencia alguna entre las medias al no existir una media
derecha distinta de una media izquierda).
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A pesar de su aparente inocencia, el axioma de eleccidn tiene
algunas sorprendentes y contraintuitivas consecuencias. Una de
ellas es, como ejemplific6 Zermelo, el teorema del buen orden,
que asegura que todo conjunto por raro que sea puede ser bien
ordenado, es decir, ordenado linealmente a la manera de los ni-
meros naturales, donde cualquier subconjunto posee siempre un
primer elemento. Pero hay mas: el axioma de eleccién pronto se
mostrd necesario para probar que la aritmética de cardinales fun-
ciona correctamente (que dos cardinales cualesquiera siempre
son comparables), asi como para,demostrar, a través del lema de
Zorn, multiples resultados bésicos del dlgebra y del anilisis. Esto
dio pie a una disputa internacional entre partidarios y detracto-
res del axioma de eleccién (que incluso encontrd su reflejo en
un nimero especial de Mathematische Annalen, revista editada
por Klein y Hilbert). Por un lado, defendiendo esta potente herra-
mienta, Zermelo, Russell y Hilbert. Por otro, combatiendo su uso
indiscriminado, un joven matematico neerlandés llamado Luitzen
Egbertus Jan Brouwer (1881-1966), que contaba con el respaldo
de importantes matematicos franceses: René-Louis Baire (1874-
1932), Emil Borel (1871-1956) y Henri Lebesgue. Si las Islas eran
de los logicistas, el Continente se lo repartieron entre los forma-
listas, conducidos por Hilbert, y los intuicionistas, encabezados
por Brouwer.

BROUWER, LA NEMESIS DE HILBERT

Brouwer cuestionaba que las «cabriolas zermelianas» sirvieran
para fundamentar las matemaéticas con seguridad, de una vez por
todas. Su preocupacién no era otra que los castillos en el aire que
venian construyéndose en las matemaéticas abstractas de los tlti-
mos veinticinco afios. No le faltaba razén respecto a los riesgos
del axioma de eleccién. Gracias a él saldrian a la luz multiples
monstruos matemdticos. Entre ellos, algunos afios més tarde (en
1926), la paradoja de Banach-Tarski. El teorema oculto tras ella,
que hace uso indispensable del controvertido axioma, produce la
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siguiente descomposicién paraddjica de conjuntos en el espacio
tridimensional: una esfera sélida puede descomponerse en un ni-
mero finito de partes disjuntas, de tal modo que a partir de ellas
pueden reconstruirse dos esferas idénticas a la original. Se trata,
por recrearlo irénicamente, de la contrapartida matematica del
milagro biblico de los panes y los peces (lo tinico que asegura
la cordura es que las dos esferas idénticas a la original no son
medibles en el sentido de Lebesgue, con lo que la paradoja nunca
aparece a la hora de calcular volimenes).

En 1907, en la Universidad de Amsterdam, Brouwer obtuvo
el grado de doctor con la disertacién «De los fundamentos de las
matemadticas», en la que apuntaba maneras intuicionistas. Cinco
afnos mas tarde, convertido en un matemaético consagrado, con un
enorme bagaje cientifico a su espalda, dict6 la leccién inaugural
del curso académico 1912-1913, que titulé «Intuicionismo y forma-
lismo». Esta conferencia, pronunciada el 14 de octubre de 1912,
marcé el inicio de su plan de fundamentacién de la matematica y
fue, de hecho, la primera vez en que aparecieron los rétulos «in-
tuicionismo» y «formalismo». En ella, Brouwer reivindicé a Kant,
Kronecker y al recientemente fallecido Poincaré —un rosario de
estrellas— como antecedentes de su posicion.

Con las aportaciones de Gauss, Riemann y, finalmente, Hil-
bert, la geometria habia conseguido liberarse definitivamente del
yugo euclideo kantiano (pese a la protesta de Frege). Brouwer
propuso abandonar el apriorismo kantiano del espacio, pero
adhiriéndose mas resueltamente al apriorismo del tiempo. Las
matematicas se ocupaban del conocimiento de las propiedades
del tiempo, puesto que el discurrir temporal se plasmaba en la
sucesion aritmética 0, 1, 2, 3, 4... El1 1 después del 0, pero antes
del 2. Y asf sucesivamente.

Para Brouwer habia que recuperar la visién constructivista
de las matematicas de Poincaré. Pese a traducir y adaptar los
trabajos de Cantor al francés, Poincaré habia tenido que hacer
frente a los epigramas en su contra de Russell o Zermelo, quie-
nes le habian tachado de retrégrado e ignorante del nuevo hacer
matemadtico. Pero Poincaré no se habia quedado callado y habia
contestado mofandose de la corriente logicista: «la l6gica no es
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LA CURVA DE HILBERT

En 1877, Cantor construyo una biyeccion entre un segmento y un cuadrado.
En el segmento habia tantos puntos como en el cuadrado. La posibilidad de
establecer una correspondencia uno-a-uno entre la recta unidimensional y
el plano bidimensional le hizo exclamar: «iLo veo pero no lo creol». Yendo
mas lejos, Du Boys-Reymond dijo que «repugnaba al sentido comdn». Entre
1890 y 1891, Peano y Hilbert imaginaron sendas curvas continuas capaces de
recorrer cada punto de un cuadrado. Las curvas de Peano o Hilbert (lineas
unidimensionales capaces de rellenar cuadrados bidimensionales) no hicieron
sino ahondar el problema de la dimension. éCémeo distinguir entre una y dos
«dimensiones»? Poincaré apunto la necesidad de una definicion adecuada
de dimension.

Brouwer y la topologia

Entre 1908 y 1911, Brouwer se tomd una pausa en su defensa a ultranza del
intuicionismo y sento los pilares de una nueva disciplina matematica: la topolo-
gia, una especie de geometria sobre hojas de caucho (por emplear la feliz ex-
presion de Poincaré). Primeramente se dedico a ofrecer varios contraejemplos
que echaban por tierra la mayor parte de los resultados que Arthur Schoenflies
(1853-1928), amigo de Hilbert, creia haber encontrado. Y, ya en 1911, presentd
el teorema de invariancia de la dimension bajo aplicaciones bicontinuas, esto
es, homeomorfismos, lo que ponia fin a las dudas que habian sembrado Can-
tor, Peano y Hilbert: el espacio m-dimensional y el espacio n-dimensional no
son homeomorfos si m es distinto de n. Podréan ser biyectables, pero jamas
homeomorfos, porque esa biyeccidon no serd continua. La topologia daba la
razon al sentido comun.

Tras cada iteracién
la curva de Hilbert
serpentea mas

y mas, llegando
—en el limite—

a recubrir el
cuadrado por
completo.

il d
Satenatesia:
T
Desleaaas
Suatug

16
S
ateet

-

LA CRISIS DE FUNDAMENTOS

133



estéril, engendra contradicciones», habfa escrito con regocijo.
Ademis, habia apuntado que si todas las matematicas pudieran
ser derivadas empleando solo las reglas de la légica, resultaria
que la matemaética no seria mis que una gigantesca tautologia,
una verdad 16gica del estilo de A=A. Desde su punto de vista, la
légica recordaba a una maquina de fabricar salchichas, a cuya
entrada se mete el cerdo y sale una ristra bien ordenada. Pero
las matematicas no funcionaban como una pianola. La demostra-
cién matematica constituia un mecanismo genuinamente creador,
gracias a esa intuicién que nos permite probar infinitos silogismos
en un numero finito de pasos: el principio de induccién. Este salto
de lo finito a lo infinito es lo que posibilitaba, a juicio de Poincaré,
la maravilla de las matematicas. La intuicion es ese reldimpago que
ilumina al matematico en mitad de la noche y fecunda la invencién
matematica. Es la mente humana la que crea, por via de la intui-
cién, los objetos matematicos.

«El arte de hacer matematicas consiste en encontrar ese caso
especial que contiene todos los gérmenes de la generalidad.»

— Davip HILBERT.
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Brouwer retomo la pintoresca filosofia de las matemaéticas de
Poincaré, a quien habia conocido personalmente en 1909. Frente
al platonismo y al logicismo, que defienden que las verdades mate-
madticas se descubren, el intuicionismo mantiene que son, en reali-
dad, inventadas (una respuesta que comparte con el formalismo).
Sin embargo, a la pregunta sobre dénde reside la exactitud mate-
matica, el intuicionismo brouweriano apunta a la mente, mientras
que el formalismo hilbertiano sefiala al papel.

Dos fueron los puntos de friccién entre Brouwer y Hilbert,
quienes se conocieron en persona durante unas vacaciones en
1909. Por una parte, la naturaleza de las matematicas: como libre
construccion del entendimiento humano o como teoria axioma-
tica. Por otra, el papel del principio de tercio excluso en matema-
ticas. El nervio del intuicionismo es, precisamente, la negacién
de este principio légico que estd en Aristételes y que afirma que
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la disyuncién de una proposicién y su negacién es una verdad
légica, es decir, es siempre verdadera, en cualquier modelo o uni-
verso de interpretacion. Formalmente: FA v —A. De otra manera:
o bien A es verdadera, o bien la negacién de A lo es, porque cual-
quier tercera opcién queda sistemdaticamente excluida (por esto,
precisamente, se habla de «tercio excluso»). Junto al principio
de no contradicciéon (F—(A A—-A)) y al principio de identidad
(FVx(x = x)), este principio formaba las tres leyes clasicas del
razonamiento.

Sin embargo, para Brouwer esto no tenia por qué ser asi. Por
ejemplo, como no sabemos si la expansién decimal de  contiene
veinte ceros seguidos, la proposicion «la expansién decimal de n
contiene veinte ceros seguidos» no es —en clave intuicionista—
ni verdadera ni falsa. Su valor de verdad no puede ser zanjado a
dia de hoy. Un correligionario de Brouwer afirmaba que el princi-
pio de tercio excluso para este tipo de proposiciones podia ser véa-
lido para Dios, que conoce toda la secuencia infinita de decimales
tal como es y de un solo vistazo, pero no podia serlo para la 16gica
humana. Una légica que, dando un giro de ciento ochenta grados
al dogma logicista, los intuicionistas consideraban como una rama
de la matematica y no al revés.

Esta forma de pensar inauguré lo que se conoce desde en-
tonces como «légica intuicionista», formalizada por un aplicado
estudiante de Brouwer: Arend Heyting (1898-1980). En la légica
clasica, la doble negacién de una proposicién es equivalente a
la proposicién, es decir, —A < A. Pero la l6gica intuicionista
rechaza que de la doble negacién de una proposicién pueda de-
ducirse la proposicién de partida. No se acepta, por tanto, que
—A — A. Esta revision intuicionista de la 16gica clasica responde
a que Brouwer rechazaba los razonamientos por reduccién al
absurdo (que, segiin comentamos en el primer capitulo, Hilbert
empleaba con frecuencia). No por demostrar la falsedad de la ne-
gacion de A se seguia que A era verdadera, puesto que se habia
abandonado el principio de tercio excluso.

El matematico neerlandés solamente aceptaba como validas
las demostraciones constructivas. Demostrar que la negacién
de un teorema es contradictoria no equivalia a demostrar que el
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teorema es verdadero, porque para probar esto tltimo habia que
construir explicitamente su contenido. Para los matematicos in-
tuicionistas, las demostraciones de existencia no constructivas
—por reduccion al absurdo— informan de que en el mundo hay
un tesoro escondido, pero no descubren su localizacion, razén
por la cual gozan tnicamente de un valor heuristico. Para que un
objeto matematico exista no basta con que no engendre ninguna
contradiccién, es necesario aportar un procedimiento efectivo
de construccion.

Las paradojas descubiertas en el contexto de la teoria de con-
juntos ofrecian evidencia tajante, en opiniéon de Brouwer, de los
peligros de la matemética meramente existencial. No en vano,
Kronecker siempre habia argiiido enconadamente frente a Cantor
que, si no construia los conjuntos de que hablaba (y no podia ha-
cerlo, dado que la gran mayoria de ellos eran infinitos), los teore-
mas de la teoria de conjuntos se evaporarian en el aire. Era obliga-
do regresar a la senda de la matematica griega, que era en esencia
intuicionista; porque era constructiva y el infinito solo hacia acto
de presencia en un sentido potencial, nunca actual. Gauss ya habia
expresado una opinién similar con anterioridad: «Protesto contra
el uso de una cantidad infinita como si se tratase de una entidad
real, lo cual nunca es licito en matematicas; lo infinito es solo una
Jagon de parler (una manera de hablar)». Para los intuicionistas
todas las dificultades en los fundamentos de la matematica nacian
del uso del infinito como algo acabado y perfecto. Un abuso que se
comete cuando se define un niimero real como, por ejemplo, el ni-
mero nt=3,141592... Estos puntos suspensivos colocados después
de las primeras cifras decimales nos transmiten la falsa sensacién
de que estamos ante un objeto cerrado.

En resumen, se trataba de reconstruir la matematica clasica
hasta donde fuera posible, sin apelar al principio del tercio excluso
y ala reduccién al absurdo. En 1918, Brouwer comenz6 su plan,
que denominé «segundo acto de intuicionismo» (el «primero»
era el énfasis en la fundamentacién intuitiva de la matematica),
con el articulo «Fundamentacién de la teoria de conjuntos inde-
pendientemente del principio del tercio excluso». Agarrandose al
intuicionismo kantiano del tiempo, Brouwer se asent6 en la enu-
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merabilidad temporal y solo reconocié la posibilidad de conjun-
tos numerables, considerando los conjuntos no numerables como
contraintuitivos. Como dijera Kronecker: «Dios creé los nimeros
naturales, todo lo demas es obra del hombre». Los conjuntos no
numerables no debian manejarse, a riesgo de incurrir en graves
paradojas. En la teoria de conjuntos intuicionista, los conjuntos
reciben el nombre de especies, y las tnicas colecciones de niime-
ros permitidas son las finitas: {0}, {0, 1}, {0, 1, 2}... En ningin caso
estd permitido formar de golpe la coleccién de todos los niimeros
naturales {0, 1, 2, ...}. En consecuencia, los alefs cantorianos desa-
parecen en la niebla.

«iEl infinito! Ninguna otra cuestién ha inspirado tan

profundamente al espiritu del hombre; ninguna otra idea ha

estimulado tan fructiferamente su intelecto; pero ningin otro
concepto necesita mayor clarificaciéon.»

— Davip HILBERT.

Por su parte, Arend Heyting se encaré con la aritmética. La
aritmética intuicionista comprende los mismos axiomas matemé-
ticos que la aritmética clasica, pero acepta tinicamente las leyes
l6gicas que satisfacen a los intuicionistas. A diferencia de la teoria
de conjuntos intuicionista, que sacrificaba gran parte de la teo-
ria de conjuntos clédsica, la aritmética intuicionista deparaba una
sorpresa: una estrecha relacién con la aritmética clasica. Kurt
Godel probé, en 1933, que para cada férmula demostrable en la
aritmética de Peano existe una férmula equivalente que es demos-
trable en la aritmética de Heyting, asi como reciprocamente. La
aritmética intuicionista solo aparentemente era mas débil que
la aritmética clasica.

Finalmente, Hermann Weyl intenté reconstruir desde postula-
dos intuicionistas el andlisis en su obra El continuo (1918). Weyl
se negaba a admitir conjuntos arbitrarios de naturales, tomando
en cuenta Unicamente aquellos conjuntos infinitos que eran de-
finibles, construibles. Consiguientemente, solo alcanzé a definir
aquellos numeros reales que corresponden a una ley aritmética.
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Es decir, solo reconstruyé una cantidad numerable de los innume-
rables niimeros que comprende el continuo. Para un matematico
clasico, la recta real contiene todas las posibles sucesiones de
Cauchy o cortaduras de Dedekind, no solo aquellas que son defi-
nibles, especificables mediante una regla constructiva, y que al ser
una cantidad numerable dejan la recta real llena de agujeros, un
continuo atomizado. De lo que se desprende que el andlisis intui-
cionista difiere sobremanera del andlisis cldsico. Los matematicos
intuicionistas no aceptan, por ejemplo, el teorema de Bolzano.
Y viceversa: los matematicos clasicos no aceptan muchos resul-
tados intuicionistas (para los intuicionistas, por ejemplo, no hay
funciones discontinuas).

La reconstruccién intuicionista de la 16gica y de la matema-
tica no fue muy halagiiefia, aunque goz6 de mucha repercusion.
Mas que una reconstruccion fue una demolicion. La matematica
intuicionista mutil6é la matematica clasica. El intuicionismo, con
su machacona apelacién a la constructibilidad fundada en la
enumerabilidad temporal y en el rechazo al tertium non datur,
arrojé por la borda mas de la mitad de los logros clasicos. Con
Brouwer, las matematicas ganaron en claridad, pero los matema-
ticos contemplaron como la mayor parte de sus teorias punteras,
que creian sélidas como rocas, se disolvian en humo. Aunque el
matemadtico neerlandés acept6 sin titubear la ruina del anélisis,
gran parte de la comunidad matematica la hallé insufrible. Algu-
nos matematicos comenzaron a referirse a la «<amenaza bolchevi-
que» que Brouwer suponia. Y Hilbert tuvo que tomar cartas en el
asunto.

«ALEA IACTA EST»

La polémica formalismo-intuicionismo dominé todo el debate fun-
dacional durante los afos veinte, teniendo a Hilbert y Brouwer
como sus maximos exponentes. El debate, bien sea por el caracter
dificil de Brouwer o bien por la gran influencia de Hilbert, tras-
pasoé los ambitos puramente académicos para convertirse en un
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juego de enfrentamientos personales entre sus protagonistas. La
confrontacién se inici6 en 1921, con lo que Hilbert considerd una
desercién: la de su brillante alumno Hermann Weyl, que publicé
en ese afio un panfleto titulado «Sobre la nueva crisis de funda-
mentos en las matematicas», donde defendia las drasticas tesis de
Brouwer y se autoproclamaba apéstol del intuicionismo, profeti-
zando el advenimiento de una revolucién matemaética.

El debate tocaba puntos importantisimos en la concepcién
de las matematicas de Hilbert, pero la ferocidad con que el mate-
matico aleman reaccioné en ocasiones se debié en parte a cues-
tiones de prestigio personal. Si el mis prominente de sus discipu-
los habia cruzado las lineas para unirse al enemigo, ;por qué no
podia hacerlo el resto?

A lo largo de los felices afios veinte, coincidiendo con su 1l-
tima etapa investigadora, ya a una edad avanzada, Hilbert se de-
dicé en cuerpo y alma a la disputa sobre los fundamentos de la
matemaética. Y lo hizo con una intervencién rotunda, que dio un
giro realmente novedoso al tema. Propuso un programa, «el pro-
grama de Hilbert» (en parte esbozado en su célebre conferencia
de Paris en 1900), para asentar firmemente, y de una vez para
siempre, las bases de la matematica.

Para Hilbert, la ciencia era una suerte de organismo que crece
y se desarrolla simultaneamente en multiples direcciones. La cla-
rificacién de los fundamentos con ayuda del método axiomatico
era una de las fases de ese crecimiento y, a pesar de su importan-
cia, no era necesariamente prioritaria. Hilbert utilizaba una meta-
fora muy a su gusto para describir esta concepcion:

El edificio de la ciencia no se construye como una vivienda, donde
se asientan firmemente los cimientos antes de proceder a edificar y
agrandar las habitaciones. La ciencia prefiere echar mano lo antes
posible de amplios espacios donde poder moverse libremente. Y solo
después de esto, cuando aqui y alla surgen las primeras sefales de
que los endebles cimientos no son capaces de soportar la expansion
de las habitaciones, se emprende la tarea de fortificarlos y reafirmar-
los. No es esto un signo de debilidad de la ciencia sino todo lo con-
trario. Es el correcto y sano camino para su desarrollo.
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En matematicas, la hora de examinar los fundamentos ha-
bia llegado. Desde 1900, pertrechado en la seguridad del método
axiomatico, que tan bien habia funcionado en geometria, Hilbert
impulsé el tratamiento axiomatico del resto de disciplinas mate-
maticas, en particular, de la teoria de conjuntos, asi como dio los
primeros pasos para fundar una teoria matematica de la demos-
tracién. Mientras que el platonismo y el logicismo mantenian que
la exactitud de la matematica descansaba en un reino celestial, y
el intuicionismo en la mente humana, el formalismo hilbertiano la
anclaba al papel escrito. La matemdtica podia verse, desde cierto
punto de vista, como un juego de notaciones carente de signifi-
cado, como una hilera de signos sobre el papel, vacios de sen-
tido, pero consistentes con ciertas reglas, como las del ajedrez,
para manipularlos. La posicién formalista que Hilbert y sus co-
laboradores (Bernays y Ackermann) desarrollaron proponia una
solucién basada —como explicaremos con detalle en el préximo
capitulo— en dos puntos: en primer lugar, una axiomatizacién
conjunta de la matematica y de la l6gica; y, en segundo lugar, una
prueba de la consistencia de este sistema formal. La prueba de
que no se podia deducir ninguna contradiccién dentro del sistema
era la piedra clave del edificio formalista.

No obstante, habia un paso previo ineludible: plantar cara al
auge del intuicionismo entre los matematicos europeos. Tras la
Primera Guerra Mundial, las criticas a la matematica clasica plan-
teadas por Brouwer y Weyl arreciaron y motivaron a Hilbert a
intentar eliminar de raiz todas las dudas escépticas. Hilbert era
consciente de que la posicién de Brouwer y Weyl no era totalmen-
te infundada y que era necesario, efectivamente, tomar precaucio-
nes para no caer en las paradojas de la teoria de conjuntos. Pero,
por otro lado, no estaba dispuesto a renunciar a la teoria canto-
riana —no en vano el primer problema de la lista de 1900 era el
del continuo de Cantor— ni a los logros de la matematica clasica
(incluyendo aqui los conseguidos empleando el més atacado de
los axiomas, el axioma de eleccién). Gran parte de sus conquistas
como matemadtico se habian debido a demostraciones de existen-
cia precisamente del tipo al que Brouwer —como antafio Kronec-
ker o Gordan— se oponia frontalmente.

LA CRISIS DE FUNDAMENTOS

141



142

Buscando contrarrestar su influjo, Hilbert se pregunté qué se
podia hacer para no renunciar al principio del tercio excluso. A su
juicio, quitarle este principio al matematico era lo mismo que pro-
hibirle al astrénomo emplear el telescopio o al boxeador usar sus
puiios. El catedratico de Gotinga manifestaba su asombro y gran
disgusto porque todo un circulo entero de matematicos hubiera
renunciado sin mas a él, con las consecuencias tan draméticas que
se desprendian de esta accién para la matematica. El continuo o
los nimeros transfinitos de Cantor eran ejemplos de objetos ma-
tematicos condenados. Y el teorema que demuestra que existen
infinitos niimeros primos era, por su parte, un ejemplo estrella
del modo de razonar prohibido. En efecto, la aceptacién de que
toda proposicion significativa es verdadera o falsa es fundamental
para el método de demostracién indirecto. Euclides, segiin expli-
camos en el primer capitulo, demostré la existencia de infinitos
niameros primos probando que la tesis contraria era falsa, es decir,
haciendo uso indispensable del principio del tercio excluso. Como
su demostracién no era constructiva, no permite determinar el
n-ésimo primo, no era valida para los intuicionistas.

Comparada con la matematica clisica, la matematica intui-
cionista suponia un resto lamentable, una serie de resultados
aislados e inconexos. El miedo recurrente de Hilbert era que el in-
tuicionismo consiguiese desmembrar la matematica, corriéndose
el riesgo de perder valiosas adquisiciones. Una muestra de lo aba-
tido que se hallaba por el tema es que combatia el intuicionismo
incluso argumentando ad hominen, con aires poco académicos:

El programa de Brouwer no es una revolucién sino solamente una
repeticién con viejos métodos [en referencia a Kronecker] de un
golpe de mano initil que, aun cuando ha sido emprendido con mayor
fuerza, ha fallado totalmente. Hoy el Estado esta bien armado gracias
alos trabajos de Frege, Dedekind y Cantor. Los esfuerzos de Brouwer
y Weyl estan de antemano condenados al fracaso.

Hacia finales de la década, cuando la pugna entre ambas fac-

ciones estaba en su punto algido, Hilbert se sintié morir a causa de
la anemia perniciosa. En ese momento, temié que Brouwer se vol-
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viera demasiado influyente a su muerte e inclinara la prestigiosa
revista de la que era editor-jefe, Mathematische Annalen, hacia
el intuicionismo. En consecuencia, en 1928 inicié una maniobra
poco limpia para expulsar a Brouwer del consejo de redaccién.
Pese a la oposicion de Einstein, la mayoria de los miembros del
consejo se plegaron a los deseos de Hilbert, y Brouwer salié por
la puerta de atrés. A resultas del enfrentamiento, el matematico
neerlandés quedé mentalmente destrozado y se sumié mas que
nunca en el solipsismo. Einstein calificé el episodio de «guerra
entre sapos y ratones». Hilbert habia ganado una batalla, pero no
la guerra.
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CAPITULO 5

El fracaso del programa
de Hilbert

Hilbert sofiaba con fundar
las matematicas sobre una base axiomatica. Por
desgracia, los teoremas de Godel acabaron con el sueno del
por entonces mejor matematico vivo. En una matemética
concebida como un sistema formal siempre habra hip6tesis
cuya verdad o falsedad no se pueda demostrar. Y lo que es
mucho peor: nunca podra demostrarse que no puede
deducirse una contradicciéon. Justo cuando el edificio
estaba a punto de terminarse, los cimientos
volvieron a hundirse.






Hacia finales de la década de los afios veinte, el dngel del forma-
lismo y el demonio del intuicionismo atin luchaban por el alma
de cada matematico. Pero, por suerte para Hilbert, el formalismo
navegaba a toda vela. El cumplimiento del «programa de Hilbert»
parecia estar al alcance de la mano. Nadie, ni los matematicos mas
reaccionarios, ni los mas revolucionarios, expulsaria a los mate-
maticos de esa suerte de fantasmagérica catedral barroca que era
la construccién cantoriana de los infinitos. Nadie les forzaria a
dejar de escuchar la sinfonia del infinito que era el analisis clasico.

Después de 1900, el afio en el que impartié la renombrada
conferencia de Paris, Hilbert presenté sus puntos de vista so-
bre la crisis de fundamentos en el III Congreso Internacional de
Matematicos de 1904, celebrado en Heidelberg, pero no volvié
sobre el tema durante los siguientes quince afios, en los que el
analisis y la fisica le absorbieron por completo. Al final, movido
por el deseo de dar respuesta a las criticas intuicionistas, regre-
s6 a la cuestion de las bases de la matematica, puntualmente en
1917 y de forma continuada desde 1922. Para Hilbert y la escuela
formalista, los objetos del pensamiento matematico son los sim-
bolos mismos; y el problema fundamental, el de la consistencia o
no-contradictoriedad de las matematicas. Para fundamentar de-
finitivamente las matemaéticas no necesitaba de Dios, como Kro-
necker, ni de la suposicién de una capacidad especial de nuestro
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entendimiento acorde al principio de induccién, como Poincaré,
ni de una intuicién originaria, como Brouwer, ni tampoco, final-
mente, de un axioma de infinitud o de un axioma de reducibi-
lidad, como Russell y Whitehead. La eliminacién definitiva del
problema de los fundamentos de la matemética como tal sobre-
vendria tras la prueba de la consistencia del sistema axiomatico
de las matematicas.

LOS PUNTOS FUERTES DEL PROGRAMA

No es dificil rastrear los origenes de las ideas de Hilbert. En 1900
publicé una conferencia, dictada el afio anterior ante la asamblea
anual de la Sociedad Matematica Alemana, bajo el titulo «Sobre
el concepto de mimero». Fuera de su libro sobre los fundamentos
de la geometria, este trabajo constituyé su segunda publicacién
concerniente al método axiomatico. En ella discutioé dos posibles
maneras en que los conceptos matemadticos pueden ser tratados:
la genética y la axiomatica. El ejemplo clasico de aplicacién del
método genético aparece en la aritmética. Los nimeros naturales
emergen de la intuicién basica de contar y, con el fin de crear
la posibilidad de restar dos niimeros naturales cualesquiera, se
amplia el sistema para incluir los nimeros enteros. La necesidad
de poder dividir dos nimeros enteros cualesquiera lleva a su vez
a introducir los niimeros racionales y, finalmente, para poder cal-
cular raices, se anaden los nimeros irracionales, definiéndose
los nimeros reales. Del otro lado, apostillé6 Hilbert, tenemos el
método axiomético, tipicamente usado en la geometria (aunque
también en analisis, ya que Hilbert mostré cémo axiomatizar los
nimeros reales). A pesar del alto valor pedagdgico del método ge-
nético, el método axiomatico tiene la ventaja de proveer plena se-
guridad l6gica. En este trabajo temprano Hilbert plante6 de forma
explicita y por vez primera la necesidad de abordar el problema
de la consistencia absoluta de la aritmética como problema here-
dado de la geometria (cuya consistencia relativa él mismo habia
demostrado). Esta cuestién encontraria su hueco dentro de la lis-
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ta de veintitrés problemas abiertos de 1900, copando el segundo
puesto (solo por detras de la hipétesis del continuo), y Hilbert
regresaria a ella en el congreso de 1904, aunque subestimando
la dificultad de la empresa. No se trataba de buscar modelos mas
basicos en los que apoyarse para deducir la consistencia de la
aritmética, a la manera que se habia hecho con los axiomas de
la geometria, ya que con esto solo se probaria la consistencia re-
lativa. Habia que elaborar una demostracion de la consistencia
absoluta, basandose en la sintaxis y no en la semaéntica, es decir,
estudiando si un sistema formal que expresara la aritmética per-
mitia o no derivar contradicciones.

No obstante, no fue hasta la difusion de las paradojas, en
torno a 1904, cuando Hilbert se convencié de dedicar mayores es-
fuerzos al andlisis axiomatico como parte de la tarea mds amplia
de establecer la consistencia de la aritmética (va que, como vimos,
tanto la geometria como el andlisis se habian reducido a ella).
Segin acostumbraba, Hilbert escogié a un colaborador, en este
caso Zermelo, como la persona sobre la que recaeria la mision de
desarrollar la axiomatizacién de la teoria de conjuntos en detalle.
Fue de esta manera como los dos puntos fundamentales del pro-
grama hilbertiano comenzaron a perfilarse. Primero, la axiomati-
zacion. Después, la consistencia.

Era necesario, como primera etapa, formalizar la teoria de
conjuntos, pero también la l6gica y la aritmética. Las definiciones
ingenuas no permitian un razonamiento riguroso exento de para-
dojas. Hab{a que formalizar completamente las matematicas cono-
cidas, traduciendo todo su contenido dentro de un sistema formal
expresado mediante el nuevo lenguaje simbdlico: 0 (el nimero
cero), s (la funcién sucesor), —(no), v (0), A(y), — (implica-
cién), 3 (cuantificador existencial), V (cuantificador universal),
= (igualdad), ¥ (variable), etc. Exactamente en 1928, cincuenta
afos después de la aportacién pionera de Frege, Hilbert y Acker-
mann publicaron Fundamentos de légica tedrica, el primer libro
de texto de lo que actualmente se reconoce como légica de primer
orden. Su formalizacion alcanzé el rango de canénica y hoy es uni-
versalmente conocida como sistema de Hilbert-Ackermann. Esta-
blecieron la sintaxis formal, asi como proporcionaron los axiomas
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y las reglas de inferencia de esta légica, lo que permite deducir
nuevas férmulas. La légica de primer orden se convirtié en un
verdadero cilculo.

«En el principio fue el signo.»

— Davip HiLBERT, LA NUEVA FUNDAMENTACION DE LAS MATEMATICAS (1922).

150

En el manual Hilbert y Ackermann se plantearon ciertas pre-
guntas metalégicas sobre las propiedades del calculo que habian
desarrollado. Se hacian eco, en particular, de la prueba que Ber-
nays habfa ofrecido en 1926 de que la l6gica elemental o l6gica de
proposiciones era correcta (toda féormula demostrable era verda-
dera) y completa (toda verdad l6gica era, a su vez, demostrable),
un resultado al que habia llegado independientemente Emil Post
(1897-1954) en 1922. Y se planteaban si la 16gica de primer orden
lo era, aunque reconocian no haber encontrado la respuesta.
Justo un afio después, en 1929, un joven l6gico austriaco llamado
Kurt Godel demostré la completitud de la 16gica de primer orden
dentro de su tesis doctoral, dirigida por Hans Hahn (1879-1934),
aunque no publicada hasta 1930. Esta l6gica era correcta (todas
las férmulas demostrables son verdaderas) y completa (todas las
verdades logicas, todas las tautologias, son demostrables). En el
cdlculo de predicados de primer orden la nocién sintdctica de
deduccién y la nocién semantica de verdad coinciden, tienen la
misma extension.

El programa de Hilbert obtenia un éxito inesperado y espe-
ranzador: toda férmula l6gicamente véalida, en el sentido de verda-
dera en cualquier interpretacién posible, era deducible mediante
el calculo descrito. Ahora bien, ;jqué pasaba si a este calculo de
predicados puro se le anadian axiomas y reglas que hicieran refe-
rencia a la aritmética o a la teoria de conjuntos? ;Seguia siendo
correcto y consistente? ;Y completo?

Como segunda etapa, habia que convertir el concepto mismo
de demostracién en un objeto de estudio matematico para, por
medio de ello, probar la consistencia de la aritmética y, de este
modo, erradicar todas las incertidumbres. En matematicas no
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debian tener cabida las verdades a medias. Para Hilbert, el ma-
temdtico se ocupaba del concepto de prueba matematica de la
misma manera que el fisico repasaba el funcionamiento de sus
aparatos o el filésofo criticaba la propia razén. El desarrollo de
una «teoria de la demostracién» permitiria considerar las demos-
traciones como resultado de meras combinaciones de simbolos
segin reglas formales prescritas. En estas condiciones, bastaria
demostrar que ninguna derivacién formal, ninguna combinacién
de simbolos podia conducir a la férmula 0=0 (que es una con-
tradiccion). Con ello quedaria establecida la consistencia de la
aritmética. En efecto, bastaba probar que habia una férmula que
no podia demostrarse, ya que si todas las férmulas pudiesen de-
mostrarse podriamos deducir una contradiccion (probando una
proposicién y su contraria), con lo que el sistema seria inconsis-
tente. Reciprocamente, si el sistema fuese inconsistente, como
de una contradiccién se sigue cualquier cosa (ex contradictione
sequitur quodlibet, segin acuiiaron con acierto los escoldsticos),
podriamos demostrar cualquier férmula (la férmula «si 0=0, en-
tonces P» es siempre verdadera, valida, porque el antecedente
nunca es el caso).

A lo largo de los afios veinte, Hilbert introdujo la idea de que
su «teoria de la demostracién» abordaria la cuestion de la consis-
tencia mediante dos niveles de consideracién. Por un lado, el nivel
matematico, tal y como queda representado dentro del sistema
formal. Por otro lado, el nivel metamatemdtico, un nivel de dis-
curso en el que se habla de las matemaéticas axiomatizadas. En este
nivel se procederia a probar la consistencia mediante una serie de
técnicas que estudiarian el sistema formal desde fuera, desconec-
tandolo de cualquier significado numérico o relacionado con el
infinito, simplemente como cadenas finitas de signos primitivos a
partir de las cuales se pueden generar férmulas y demostraciones
de acuerdo a ciertas reglas predefinidas. Las proposiciones que se
refieren a este esqueleto formal, a esta aritmética vaciada de signi-
ficado, son las proposiciones metamatematicas, que no se formu-
lan en el lenguaje objeto sino en el metalenguaje. Es algo asi como
el espaiiol cuando se usa en una clase de inglés para ensefar los
matices de uso de alguna palabra anglosajona. La pregunta por la
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consistencia en matemaéticas o, equivalentemente, la pregunta de
sila férmula 0 = 0 es demostrable era, en suma, como preguntar si
una determinada posicion de ajedrez es legal, es decir, si es posi-
ble llegar a ella partiendo de la situacién inicial de la partida y de
las reglas del movimiento de piezas. Para responder, uno no juega
al ajedrez sino que reflexiona sobre el propio ajedrez.

«Duda de los datos hasta que los datos no dejen lugar a dudas.»

— HENRI POINCARE.

152

Pero Hilbert insistia en que la demostracion metamatematica
de la consistencia de la aritmética tenia que satisfacer tanto a los
matematicos cldsicos como a los intuicionistas, es decir, debia
hacerse mediante métodos finitarios, constructivos, que no re-
quiriesen la intervencién del infinito. En efecto, como subrayé
Poincaré poco antes de morir, si para probar la consistencia de la
aritmética se usaba el principio de induccion, es decir, el quinto
axioma de Peano, aunque fuera en el plano metamatemético, se
caia en un circulo vicioso: se queria demostrar la coherencia de
la aritmética empleando precisamente un principio aritmético. Se
trataba de demostrar con razonamientos autoevidentes que los
propios métodos mateméticos, aun cuando implican la presencia
del infinito actual, son validos, es decir, que no dan lugar a deducir
una contradiccién. Alin méas: Hilbert aspiraba a demostrar no solo
la consistencia de la matematica, sino también su completitud.
Esta era la otra cuestién pendiente en la base de su conferencia
del afio 1900: la posibilidad de resolucién de cualquier cuestién
matemaética.

Hilbert y sus colaboradores lograron demostrar la consisten-
cia de algunos sistemas formales sencillos. Asi, en 1922, Hilbert
se fij6 en una parte muy elemental de la aritmética y, estudiando
el aspecto de las féormulas demostrables, concluyé que la férmula
0=0 no era una de ellas. Esta prueba fue posteriormente exten-
dida por Ackermann en su tesis doctoral (fechada en 1925 y rea-
lizada bajo la supervisioén de Hilbert), asi como simplificada con
elegancia por Von Neumann en 1927. Pero se trataba de avances
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parciales: los sistemas formales aritméticos de los que probaban
la consistencia no incluian el principio de induccién. En 1929, el
matemadtico polaco Mojzesz Presburger (1904-1943) logré demos-
trar la consistencia de una aritmética que incluia el principio de
induccién y la suma, pero no la multiplicacién. Estos resultados
cristalizarian en dos volimenes escritos por Bernays en nombre
de Hilbert bajo el titulo Fundamentos de las matemdticas, que
se publicarian en 1934 y 1939. Sin embargo, la consistencia de los
sistemas que describian una porcién lo suficientemente grande de
la aritmética con niimeros naturales seguia resistiéndose.

GODEL: DESASTRES Y TEMPESTADES

Hacia 1930, el primer punto del programa de Hilbert se habia
esencialmente cumplido: la l6gica, la teoria de conjuntos y la
aritmética estaban axiomatizadas. Quedaba todavia pendiente el
asunto de la consistencia y de la completitud de estas dos tiltimas.

Ese afio Hilbert se jubilé tras cumplir sesenta y ocho afios.
Con motivo del nombramiento como ciudadano honorifico de Ko-
nigsberg, el catedratico emérito de Gotinga pronunci6 un discurso
en su ciudad natal. En él, volvié a defender la idea de que no hay
problemas irresolubles en matematicas. Al terminar, se dirigi6 a la
radio local, donde declamé con igual intensidad la frase final de su
discurso: «Debemos saber, sabremos». Después, sonrié. Todavia
se conserva la grabacion y, si se escucha muy cuidadosamente,
puede oirse la risa final de Hilbert. Era el 8 de septiembre de 1930.

Paradéjicamente, como si se tratase de una broma del desti-
no, durante los tres dias previos se habia celebrado precisamente
en Konigsberg un congreso sobre epistemologia de las ciencias
exactas. La meta del encuentro era decidir hasta qué punto se ha-
bia solventado la crisis de fundamentos de las matematicas. In-
tervinieron conferenciantes dentro de cada una de las corrientes
fundacionales. Por el logicismo, el 16gico Rudolf Carnap (1891-
1970), que expuso la concepcién de las matematicas que habia
hecho suya el Circulo de Viena: los teoremas matematicos como
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tautologias, verdades légicas. Por el intuicionismo, Arend Heyting,
pretendiendo expulsar el infinito de las matematicas. Y, por el for-
malismo, John von Neumann, que estaba a la zaga de Hilbert. El
dia 6, el joven logico austriaco Kurt Godel, de veinticuatro afios,
habfa intervenido para comunicar un par de resultados que recien-
temente habia obtenido: «Puedo dar ejemplos de proposiciones
aritméticas verdaderas pero indemostrables en el sistema formal
de las matematicas clasicas». A pesar de su importancia, el anun-
cio pasé desapercibido para todos los asistentes, a excepcién de
Von Neumann, que quedé perplejo. Pese a sonar reiteradamente
que lograba demostrar la consistencia de la matematica mediante
métodos finitarios, Von Neumann habia comenzado a sospechar
que no era realmente posible y la breve comunicacion de ese joven
timido de gafas circulares pronto se le aparecié como un hito que
siempre se divisaria desde remotas distancias en el espacio y en
el tiempo. Era la sentencia de muerte de la hermosa frase final de
Hilbert. La esperanza que el matemético aleman habia mantenido
viva durante mas de treinta afos iba a apagarse definitivamente.
Las matemaéticas no volverian a ser seguras. Con la publicacién en
1931 de los teoremas de incompletitud de Godel, el programa de
Hilbert fue cortocircuitado. Pero para explicar por qué, necesita-
mos unas gotas de l6gica matematica.

Desde Aristételes, sin olvidar las aportaciones escolasticas,
la l6gica ha sido concebida como el estudio del razonamiento,
que nunca se da en el vacio sino siempre dentro de un lenguaje.
Con el paso del tiempo, los matematicos fueron prestando mayor
atencién a la légica de los lenguajes en que se expresan, con el
fin de determinar sus virtualidades. La légica les enseii6 que hay
dos nociones fundamentales a estudiar en un lenguaje: una de
caracter semantico, la nocién de verdad; otra de caracter sin-
tactico, la nocién de demostracion. Asi, la dificultad estribaba
en determinar su alcance respectivo: si estas dos nociones, muy
distintas intensionalmente, coinciden extensionalmente. Con
otras palabras, si todo lo demostrable es verdad (correccion) y si
todo lo verdadero es demostrable (completitud). Generalmente,
a un lenguaje rico en capacidad de expresién, corresponde una
légica pobre en propiedades interesantes. Por ejemplo, la 16gica

EL FRACASO DEL PROGRAMA DE HILBERT



de los lenguajes de primer orden es correcta y completa, pero
al matematico suele quedarsele corta en su faena de cada dia
(cuando precisa cuantificar sobre propiedades y no solo sobre
individuos). Pero no cabe esperar que la légica de los lenguajes
de segundo orden o superior sea completa. Asi que una de dos: o
bien hacemos matematicas en un lenguaje poco expresivo pero
cuya légica es correcta y completa; o bien formalizamos nuestros
razonamientos mateméticos en un lenguaje expresivo pero cuya
légica subyacente es, en el mejor de los casos, correcta (solo po-
demos demostrar verdades) pero incompleta (no podemos de-
mostrar todas las verdades).

«Godel es el 16gico mas grande de todos, después
de Aristoételes.»

— Jonn voN NEUMANN SOBRE GODEL.

Restringiéndonos al lenguaje de primer orden (donde solo
se puede cuantificar sobre individuos), si interpretamos los indi-
viduos como numeros, dificilmente iremos més alld de una arit-
mética elemental (por ejemplo, el teorema que afirma que todo
conjunto de nimeros naturales posee un elemento minimo es
inexpresable, ya que tendriamos que cuantificar sobre conjuntos
de nimeros), y jamas nos elevaremos hasta el andlisis. El pro-
blema reside en que las funciones o las relaciones numéricas no
son, a su vez, numeros. Sin embargo, esta dificultad se esfuma
si consideramos conjuntos, porque las funciones y las relaciones
entre conjuntos son, a su vez, otros conjuntos: las n-tuplas de
conjuntos son conjuntos. Esto plantea la importante cuestion
de si toda la matematica es reducible a teoria de conjuntos. Si
interpretamos los individuos de nuestro lenguaje de primer orden
como conjuntos, se comprueba empiricamente cémo la mayoria
de entes matematicos son definibles a partir de conjuntos. Este
programa de investigacion sediment6 en la mencionada teoria de
conjuntos ZF: partiendo de unos pocos axiomas formulables en
primer orden, esta teoria de conjuntos fue capaz de tragarse una
parte ingente de la matematica de su tiempo.
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De nuevo, como al cabo comprendié Gddel, el precio que hay
que pagar por esta riqueza tedrica (expresividad) es la pobreza
metatedrica, que se manifiesta en varios resultados de limitacién:
los teoremas de incompletitud. El primer teorema prueba que
existe una férmula verdadera que no es demostrable en ZF' (aun-
que el trabajo de Godel tomaba los Principia mathematica como
sistema formal de referencia, sus resultados son véilidos para ZF'y
otros sistemas afines). Y el segundo, que es imposible demostrar
la consistencia de ZF en ZF. Mas ain: una demostracion en ZF'
de la ausencia de contradiccién en ZF'y, por ende, en las matema-
ticas, inicamente demostraria que ZF' y las matematicas son, de
hecho, contradictorias. Godel acabé con las esperanzas del forma-
lismo hilbertiano. Todos los esfuerzos por probar la consistencia
de la matematica estdn condenados al fracaso. Con mas precisién:
es imposible demostrar mediante métodos finitarios la ausencia
de contradicciones de cualquier sistema formal que contenga la
aritmética de Peano —si se permite el empleo de artilleria pesada,
si es posible probar la consistencia, como lo logré Gerhard Gent-
zen (1909-1945), un alumno de Hilbert, en 1936, aunque mediante
métodos transfinitos cuya evidencia es muy discutible—.

«;,Quién de nosotros no se alegraria si pudiera levantar

el velo tras el que se oculta el porvenir, dejando caer su mirada
sobre los futuros avances de nuestra ciencia y los secretos

de su desarrollo?»

— Davip HILBERT, INTRODUCCION DE SU INTERVENCION EN EL II CoNGRESO INTERNACIONAL
DE MATEMATICOS EN PARIS.

La paradoja del mentiroso fue para Goédel uno de los moto-
res de la demostracion de los teoremas de incompletitud. El que
la prueba esté a un paso de caer en la circularidad provocé
que mas de un matemdtico —caso del sexagenario Zermelo—
no comprendiese su valor. Gédel ide6 una habil traduccion del
metalenguaje dentro del lenguaje: una aritmetizacién de la meta-
matematica. Mediante una audaz codificacién numérica basada
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en los nimeros primos (llamada gddelizacion desde entonces),
asigné nimeros a los signos, de manera que fuera factible asociar
a cada féormula —y también a cada demostracion— un nimero
que codificara toda su estructura. Las proposiciones que habla-
ban de las propiedades del sistema formal eran a su vez expre-
sables dentro del sistema por medio de férmulas aritméticas. La
demostrabilidad, por ejemplo, quedaba representada como una
relacién numérica.

En estas condiciones, Godel se las ingeni6 para construir una
férmula G que afirma de si misma lo siguiente: «soy indemostra-
ble». Esta férmula era un ejemplo de sentencia indecidible dentro
del sistema formal: ni ella ni su negacién son teoremas, es decir,
demostrables. En efecto, Godel consiguié demostrar que G es de-
mostrable si y solo si -G es demostrable. Por lo que, si deseamos
que el sistema formal sea consistente, ni G ni -G pueden serlo.
Si G lo fuese, como -G afirma en términos metamatematicos que
G es demostrable (niega que sea indemostrable como ella misma
afirma), seria posible demostrar también -G y deducir una con-
tradiccién (Ga-G). Reciprocamente, si =G fuese demostrable,
podriamos por la misma razén demostrar G y llegar a la misma
contradiccion. En suma, la demostracién de cualquiera de las dos
férmulas implicaria ipso facto la inconsistencia del sistema. Pero
hay mas: si asumimos que el sistema formal es consistente, enton-
ces (¢ es indemostrable pero verdadera. Si G fuera falsa, como lo
que dice GG es «no soy demostrable», entonces G seria demostra-
ble, lo que es imposible. En consecuencia, tenemos una sentencia
G que, aunque no demostrable, es verdadera.

La existencia de una sentencia indecidible implica que los
axiomas de la teoria no contienen la respuesta a todas las pregun-
tas formulables en el lenguaje formal, porque ni la sentencia ni su
negacion son teoremas. Y como ella o su negacién han de ser ver-
daderas, tenemos una férmula verdadera indemostrable. Lo peor
es que si uno afiade la sentencia indecidible como axioma, apa-
recen otras nuevas. Los mateméticos despertaron de golpe del
sueno hilbertiano de la completitud, en que los sistemas axioma-
ticos no contienen férmulas indecidibles y 1o verdadero coincide
siempre con lo demostrable. Resumiendo: «consistente» implica
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«incompleto»; y, reciprocamente, «completo» implica «inconsis-
tente». Ningun sistema formal que contenga la aritmética usual es
simultdneamente ambas cosas. Si suponemos que es consistente,
siempre serd incompleto, es decir, contendra verdades no demos-
trables. Existirdn algunas propiedades ciertas sobre los nimeros
formalmente indecidibles, es decir, que no podremos demostrar
ni refutar a partir de los axiomas.

Pero al primer teorema de incompletitud le sigue un segundo
teorema: como, segiin vimos, la consistencia es equivalente a afir-
mar que la férmula 0=0 no es demostrable, Godel transformo esta
ultima propiedad metamatemaética en una férmula aritmética, que
llamaremos C, y observé que lo que el primer teorema establece
es, en el fondo, «C— G». La consistencia implica que existe una
sentencia indecidible y, por tanto, la incompletitud. De modo que
una prueba de C permitiria descargar G en la implicacién «C—G»
mediante el modus ponens y, por tanto, demostrar G, lo que es
imposible, ya que G es por construccion indemostrable. Por consi-
guiente, C es también indemostrable. Este corolario sorprendente
asegura que la consistencia de un sistema formal que incluya la
aritmética no es demostrable dentro del sistema formal. En reali-
dad, Godel no demostré propiamente este segundo teorema, solo
argumenté a favor de su plausibilidad, sin llegar nunca a escribir la
demostracion prometida, La primera prueba completa, muy labo-
riosa, aparecié curiosamente en 1939, en el segundo volumen de
los Fundamentos de las matemdticas de Bernays y Hilbert.

Para rizar el rizo, a las limitaciones sinltdcticas que descu-
briera Gddel, se uni6 otra limitacién semdntica de los sistemas
formales de primer orden: el teorema formulado por Leopold
Lowenheim (1878-1957) y Thoralf Skolem (1887-1963) hacia 1920,
sobre el que este 1dltimo volvié en 1933. En 1930, dentro de su
prueba de la completitud de la légica de primer orden, Godel de-
mostré de pasada que toda teoria de primer orden consistente
tiene un modelo en el que los axiomas se verifican, aunque nada
dijo sobre qué caracteristicas tiene ese modelo o cémo construir-
lo. Lo que Lowenheim y Skolem percibieron con anterioridad es
que cualquier sistema formal de primer orden consistente tiene,
de hecho, un modelo numerable. Esto da lugar a la paradoja de
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EL TEOREMA DE INDEFINIBILIDAD DE LA VERDAD DE TARSKI

Alfred Tarski (1902-1983) se preciaba
de ser el mejor de los I6gicos matemati-
cos vivos y cuerdos (con lo que evitaba
compararse con el maniatico y obsesi-
vo Gdédel). Este légico polaco, que lo-
grd embarcarse para Estados Unidos en
1939 y convertir la Universidad de Ber-
keley en la capital mundial de la logica
matematica durante decenios, era noc-
tambulo y aficionado a las anfetaminas,
a fin de mantenerse despierto trabajan-
do incansablemente. Hizo suyo el aforis-
mo hilbertiano de que el mejor descan-
so de un matematico se encuentra en
la esposa de un colega, una reputacion
de Casanova a la que tampoco fueron
indiferentes sus doctorandas (en algun
momento, amante y esposa llegaron a convivir bajo el mismo techo): una de
ellas, que logré resistirse, fue la matematica estadounidense Julia Robinson.
Tarski es célebre porque en 1933 publicd un extenso articulo en el que daba
una definicién formal de verdad, inaugurando con ello la teoria de modelos.
Si Hilbert, con su teoria de la prueba o de la demostracién, esclarecid la no-
cidn sintactica de demostracion formal, Tarski hizo lo propio con la nocién
semantica de verdad.

Alfred Tarski en 1968.

Otro teorema de limitacién

En 1933, dos afios después de que Godel diera a conocer sus dos resultados de
incompletitud, Tarski extrajo otro teorema de limitacién, aunque este teorema
ya fue enunciado y probado por Gédel en una carta a Zermelo fechada en 1931.
Expresado en términos de limite expresivo, este teorema establece que toda
teoria formal de primer orden que contenga la aritmética basica es incapaz,
si es consistente, de expresar su propio concepto de verdad. Las teorias inte-
resantes no contradictorias no pueden contener una expresion «ser verdad»
dentro de su lenguaje, porque de ser asi caerian en la paradoja del mentiroso.
Usando la gédelizacién, podria reproducirse una férmula T que afirmara de
si misma que es falsa. A continuacién, se compondria con la expresion «ser
verdad» que presuponemos que existe dentro del lenguaje, v llegariamos a la
siguiente contradiccion: T es verdad si y solo si es falsa, puesto que es lo que
T afirma. Como el mentiroso: digo la verdad si miento. Desde luego, los légicos
matematicos han sido capaces de emplear la circularidad gue precipita en las
paradojas con gran provecho.
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Skolem: si ZF es consistente, posee entonces un modelo nume-
rable. Es decir, jel continuo no-numerable que creemos manejar
dentro de ZF puede referir a un conjunto numerable fuera de ZF'
La teoria de los niimeros reales, de la que esperamos y queremos
que tengan el familiar modelo no numerable (los niimeros reales
«reales»), tiene también un modelo numerable. Esto quiere decir
que las teorias de primer orden no pueden controlar la cardina-
lidad de sus modelos. Asi, por ejemplo, si los axiomas de Peano
de la aritmética se formulan en la légica (incompleta) de segundo
orden, son categdricos (es decir, todos sus posibles modelos son
isomorfos, tienen el mismo cardinal); pero si los formulamos en

EL «ENTSCHEIDUNGSPROBLEM» O PROBLEMA DE LA DECISION

En el IV Congreso Internacional de Matematicos, celebrado en Bolonia en
1928, Hilbert aprovechd la ocasion para —aparte de contar de nuevo su plan
de salvacion de la matematica— plantear la siguiente cuestion: éexiste un
procedimiento mecanico que resuelva todos y cada uno de los problemas
de la matematica, un algoritmo capaz de decidir en principio todas las cues-
tiones matematicas, que dada una proposicion matematica nos diga si es o
no un teorema? {Es, en otras palabras, decidible |la matematica? Al igual que
las cuestiones de la consistencia y de la completitud, recibiria una respuesta
negativa. Tras los teoremas de Godel, se entrevié que la respuesta al problema
era un no rotundo al ser incompleta la matematica: el supuesto algoritmo se
quedaria tiempo infinito pensando en la sentencia indecidible, ya que ni ella
ni su negacién son un teorema. En consecuencia, el problema de la decision
solo quedd pendiente para la ldgica de primer orden, que es, recordemos,
completa. Sin embargo, en 1936, Alan Turing (1912-1954) e independiente-
mente Alonzo Church (1903-1995) demostraron que la légica de primer orden
tampoco es decidible.

La tesis de Church-Turing o

Turing comenzo por plantearse qué queria decir pensar como una maquina,
mecanicamente. Su primer triunfo consistié en definir el concepto de funcién
computable: una funciéon computable es aguella gue una médquina de Turing,
una suerte de computadora sin limitaciones de espacio o tiempo, es capaz
de calcular. Simultdneamente, al otro lado del Atlantico, Church llegé a idén-
ticas conclusiones mediante el desarrollo de un sistema formal que llamoé
cdlculo lambda. Desde entonces, se conoce como tesis de Church-Turing el
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la l6gica (completa) de primer orden, pagamos el precio de per-
der la categoricidad. Habrda modelos estdndar y no estandar de
los niimeros naturales. La avaricia del l6gico tiene un coste.
Ademas, Godel conjeturé muy pronto que la hipétesis del
continuo de Cantor, que en 1925 Hilbert creia estar cerca de pro-
bar empleando técnicas muy refinadas entresacadas de su teoria
de la demostracion, era un ejemplo de sentencia indecidible en la
teoria de conjuntos habitual. En 1938, restringiéndose al subuni-
verso de los conjuntos constructibles, Godel probé que no puede
demostrarse que sea falsa en ZFC. Inversamente, en 1963, Paul
Cohen (1934-2007) probé, empleando el método del forcing, que

postulado que afirma que cualquier
definicion alternativa de computabi-
lidad es equivalente a la definicién
dada por Turing en términos de sus
maquinas. Recurriendo a una varian-
te ingeniosa del argumento diagonal
de Cantor, Turing probé que hay mu-
chas mas funciones que maquinas de
Turing. O, expresado de otro modo,
que hay funciones no computables.
Las funciones computables, como las
magquinas de Turing, son una canti-
dad numerable, esto es, agujas en el
pajar de todas las funciones. Final-
mente, considerando el problema
de la parada, ofrecié una respuesta
negativa a la pregunta de Hilbert, al
Entscheidungsproblem: si existiera
ese procedimiento, también seria
capaz de decidir en tiempo finito Si el Museo de Bletchley Park.
una maquina de Turing cualguiera se

para tras un numero finito de pasos

o entra en un bucle infinito cuando se le introduce cierto dato como entrada.
Pero esto Ultimo era, segun demostrd, imposible. No existe un algoritmo capaz
de recibir como input un enunciado légico o matematico y devolver como
output «teorema» o «no-teorema» (aunque la propiedad de deducibilidad si

es decidible en la restringida légica de proposiciones).
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tampoco puede demostrarse que sea verdadera en ZFC. Godel
y Cohen construyeron sendos modelos donde la hipé6tesis era,
respectivamente, verdadera y falsa. Asi que ni la afirmacién ni la
negacion de la hipétesis del continuo son demostrables. Exacta-
mente lo mismo ocurre con el axioma de eleccién, cuya consis-
tencia e independencia con respecto al resto de axiomas también
probaron ambos matematicos. El estatus del axioma de eleccién
y de la hipétesis del continuo dentro de la teoria de conjuntos es,
por tanto, andlogo al del axioma de paralelas en geometria. El de
Cantor no es el Uinico paraiso conjuntista disponible.

El programa de Hilbert quedé fuera de combate por culpa
de los derechazos infligidos por Gédel. Tanto el primer como el
segundo problema de la famosa lista de veintitrés problemas de
Hilbert quedaron al fin resueltos, aunque de una manera inimagi-
nable en 1900. En matematicas, lo verdadero no coincide con lo
demostrable. Los axiomas y las reglas de inferencia que Hilbert
habia puesto en cabeza no eran suficientes, no bastaban para de-
ducir todos los teoremas matematicos, siendo posible imaginar
proposiciones verdaderas pero no derivables en el sistema formal
de las matematicas clisicas. De hecho, «la aritmética es consis-
tente» era un ejemplo de este tipo de proposiciones indecidibles.
Hilbert, que conocié a los pocos dias los teoremas de Gédel (gra-
cias a Bernays), intent6 salvar parte de su programa permitiendo
el uso de métodos no finitarios para demostrar la consistencia de
la matematica. Pero, como ya dijimos, estos métodos son cual-
quier cosa menos autoevidentes. Hilbert y sus pastores matema-
ticos habian construido un recinto para proteger de los lobos al
rebaifio, pero desconocian si habian dejado algin lobo dentro.

BALANCE: LAS GRIETAS DEL FORMALISMO

Pese a que las dudas escépticas nunca fueron exorcizadas del
todo, la matematica clasica siguié gozando de la mejor salud. La
firmeza y el entusiasmo de Hilbert lograron mantener el rumbo
del gran barco de las matematicas. El formalismo, en cuanto fun-
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damentacién de la matematica, besé la lona; pero, en cuanto filo-
sofia de las matematicas, gané a los puntos.

Frecuentemente se dice que la posicién platénica es la que
mejor caracteriza la actitud del matematico hacia la esencia de
su disciplina. El matematico en activo cree en la realidad de los
objetos matematicos. Pero claro, cuando los filésofos empiezan a
acosarle con sus preguntas, corre a esconderse bajo las faldas del
formalismo y afirma: «la matematica no es mas que una combina-
cién de signos faltos de significado, un bonito juego con férmulas,
mas divertido atin que el ajedrez». Aunque con ello la relacién que
tiene con la realidad, con su significado real, quede entre tinie-
blas. Si se quiere certeza, hay que eliminar todo significado; pero
si se quiere que las matematicas tengan sentido, se ha de abando-
nar la certeza. Para el formalista estricto, toda teoria matematica
no es sino una combinacién de signos sin significado, como un
jeroglifico desprovisto de ulterior sentido. En verdad, la mayoria
de matematicos son platénicos los dias laborables, mientras fae-
nan entre teoremas, proposiciones y corolarios, y solo se vuelven
formalistas los fines de semana, cuando abandonan sus trabajos y
charlan con los fil6sofos.

Si bien es cierto que Hilbert fue un formalista circunsecrito al
campo de los fundamentos de las matematicas, no puede decirse
sin ambigiiedad que lo fuese en su concepcién general de la ma-
temética. Para el matematico aleman la matematica no tenia nada
que ver con la arbitrariedad de un juego. Se trataba mas bien de
un sistema conceptual cerrado, dotado de una necesidad interna,
donde se cumplia que a nuevas ideas correspondian siempre nue-
vos signos y manipulaciones.

A lo largo de los dos iltimos capitulos hemos comprobado
como cada una de las concepciones de la matemadtica (plato-
nismo, logicismo, intuicionismo, formalismo) presenta dos caras:
por un lado, un plan de fundamentacién de las matematicas (la
conjuntivizacién del platonismo, la logificacién del logicismo,
el constructivismo del intuicionismo, el axiomatismo del forma-
lismo); por otro lado, una visién de la matematica (el realismo pla-
ténico y logicista, el conceptualismo intuicionista, el nominalismo
formalista). A la postre, el formalismo demostré ser la corriente
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mis fuerte, aunque en su persecucion de una matemética segura,
entendida como ciencia de los sistemas formales, se dio de bruces
con los teoremas de Godel. Ahora bien, el error que comete esta
corriente, al igual que las otras, es presuponer que las ciencias se
fundan sobre sus propias fundamentaciones.

Durante la crisis de fundamentos no hubo ninguna amenaza
de derrumbe del edificio secular de las mateméticas. Es un mito
bastante extendido pensar que las soluciones légico-formales
apuntalaron un presunto edificio en ruinas. Porque en realidad
la matematica siguié su curso sin apercibirse de esas supuestas
grietas. No en vano se estaba viviendo una edad dorada, con es-
pléndidos y fértiles avances (teoria de la medida, analisis funcio-
nal, topologia...). La mal llamada crisis de fundamentos, que solo
se dibujo en el terreno de la légica y la teoria de conjuntos, fue
mucho mas una crisis de métodos, que renovo la forma de hacer
matematicas.

Hilbert fue el campedn de la axiomadtica, un firme partidario
del método axiomatico no solo para la matematica sino para la
ciencia. Bajo su patronazgo se expandié desde las raices a todas
las ramas del arbol matematico. Pero, dejando de lado la brecha
abierta por Gédel, hay que decir que el axiomatismo hilbertiano
no encaja con el quehacer cotidiano del matematico, con su dia
a dia.

Si observamos a un matematico en accién, porque los arti-
culos no son méas que los productos acabados de ese hacer, nos
asombraremos de la gran cantidad de razonamientos no formales
que hace. ;Qué demuestran los teoremas de limitacion de Gédel o
Tarski para el matemadtico en activo? Que la matematica es un co-
nejo demasiado grande para sacarlo de una chistera tan pequena
como es un sistema axiomatico, por habil que sea ese prestidigita-
dor llamado Hilbert. Es mas, como patentiza la historia de los nu-
meros, la axiomatica solo es posible si previamente ha habido una
fase de manejo operacional del modelo, es decir, solo se pueden
listar los axiomas de los niimeros si ya se posee una ligera idea
del constructo que se tiene entre manos. El método genético pre-
cede al método axiomatico, y permutarlos ofrece la misma ven-
taja que el robo sobre el trabajo honrado (la axiomatica se arroga

EL FRACASO DEL PROGRAMA DE HILBERT



(o
L

- WIRMOSSEN WISSEN
RWERDEN WISSEN,

EL FRACASO DEL PROGRAMA DE HILBERT

FOTO SUPERIOR
Fotografia de la
tumba de Hilbert
en Gotinga. Al pie
de la lapida puede
leerse la célebre
frase que
pronuncié en

el discurso tras
ser nombrado
ciudadano
henerifico de
Kénigsberg:
«Debemos saber,
sabremos».

FOTO INFERIOR
IZQUIERDA:

Alfred Tarski y
Kurt Gédel en
Viena, en 1935.
Ambos
propiciaron el
derrumbe del
edificio hilbertiano
con sus teoremas
de limitacién.

FOTO INFERIOR
DERECHA

David Hilbert

a finales de la
década de 1930.

165



166

BOURBAKI

La concepcion ultraformalista de las matematicas repunto durante los afios de
posguerra de la Segunda Guerra Mundial con el bourbakismo. Este grupo de
jovenes matematicos franceses (André Weil, Henri Cartan y Jean Dieudonné,
entre otros), surgido en 1935, se bautizé con el nombre del fracasado general
francés Bourbaki porque, cursando sus estudios, un jocoso estudiante mas
avanzado les propuso teoremas formulados erréneamente con nombres de
famosos generales. El colectivo Bourbaki actué como firmante de multiples
memorias y monografias, y se presenté a si mismo como el verdadero herede-
ro intelectual de Hilbert. Con la consigna de «iabajo Euclides!», Bourbaki pre-
sentaba las matematicas de un modo muy abstracto y aséptico, que cristalizé
en unos Elementos de matemadtica altamente axiomatizados. Esta tendencia a
presentar las matematicas como serafines, purificados de toda incertidumbre
terrena, fue la responsable de la ensefianza de la teoria abstracta de los con-
juntos desde la mas tierna infancia en las escuelas de media Europa durante
los afios setenta y ochenta del siglo pasado.

El congreso Bourbaki de 1938 (de izquierda a derecha): 5. Weil, C. Pisot, A. Weil, J. Dieudonné,
C. Chabauty, C. Ehresmann y J. Delsarte.
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de inmediato todo lo construido). Incluso los axiomas légicos y
los de la teoria de conjuntos se han obtenido como resultado del
analisis de las demostraciones no formales. Ademas, cuando el
matematico corriente razona sobre el continuo de niimeros reales,
jamas piensa en modelos no estdndar (numerables) del continuo
(que existen si se trabaja axioméaticamente dentro de ZFC y que,
para un irredento formalista, son tan vélidos como el modelo es-
tandar). Desde el punto de vista del analista o del top6logo, para
el cual el continuo es una realidad operacional, la existencia de
modelos numerables significa simplemente pobreza del lenguaje
formal como medio de imitacion de los razonamientos no forma-
les. Pese a la luminosidad de la metafora acuiiada por Hilbert, la
matematica no es un edificio, un templo, sino que se asemeja mas
a una ciudad, con sus avenidas, sus barrios, sus zonas nuevas en
construccién y sus zonas deshabitadas, cerradas por derribo.

LA CAIDA DE LOS DIOSES

Con la llegada de Hitler al poder en el afio 1933, Ludwig Bieber-
bach —afiliado al Partido Nazi— se aup6 a la cabeza de las mate-
maticas alemanas, promoviendo una matematica «aria o alemana»
(la Deustche Mathematik). La teoria de la relatividad fue denun-
ciada como un fraude judio. El mismo destino corrié la teoria
de conjuntos, quiza a causa de que empleara el alfabeto hebreo
para los cardinales transfinitos (aunque aqui también pesé que
Bieberbach fuera el aliado de Brouwer en Berlin). A los profeso-
res judios se les prohibi6 impartir clases y, uno tras otro, fueron
relevados de sus cargos.

El Instituto Matematico de Gotinga fue rapidamente desman-
telado y su prestigio internacional se hundié para gran pena de Hil-
bert. Hermann Weyl, su alumno predilecto y quien finalmente habia
sido elegido para sucederle, aunque era ario, hubo de emigrar, ya
que su mujer era de ascendencia judia, y terminé aceptando un
puesto en el Instituto de Estudios Avanzados de Princeton, donde
se unio6 a Albert Einstein y Kurt Gidel. Richard Courant fue apar-
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tado de la ensefianza y acabé instalado en la Universidad de Nueva
York. Bernays, por su parte, regresé a Suiza.

Hilbert quedé desconcertado por la nueva situacién politica
en Alemania. En una ocasién le pregunt6 a Blumenthal, su primer
alumno de doctorado, qué curso estaba impartiendo. Este le res-
pondié que ya no se le permitia dar clases, y el anciano reaccioné
con indignacién. Cuando en un banquete le sentaron al lado del
nuevo ministro nazi de Educacion, este le pregunté: «;Cémo va la
matematica en Gotinga ahora que ha sido purgada de la influencia
judia?». A lo que Hilbert contesté: «;La matematica en Gotinga?
iPero si ya no hay!».

Con el advenimiento de la Segunda Guerra Mundial, los tiem-
pos se volvieron atin més oscuros. Blumenthal emigré a los paises
Bajos, con tan mala suerte que, cuando los alemanes invadieron
aquel pais en 1940, se encontré atrapado. Muri6 ese mismo afio
en el tristemente famoso gueto de Theresiendstadt, en la actual
Repiiblica Checa. Felix Hausdorff, que habia escrito el primer ma-
nual de teoria de conjuntos, se suicidé cuando se enteré de que €l
y su familia iban a ser deportados a un campo de concentracién.
Otros, como Banach, sobrevivieron alimentando piojos con su
sangre en un instituto bacterioldgico bajo dominio aleman que
investigaba el control del tifus, pero sufrieron una degradacién
fisica irreparable.

David Hilbert muri6 en Gotinga el 14 de febrero de 1943,
mientras las armas rugian con toda su fuerza. Al funeral de Hil-
bert asistié menos de una docena de personas. Y, sin embargo,
aln resuenan las palabras grabadas en su tumba como epitafio:
Wir miissen wissen. Wir werden wissen («Debemos saber, sa-
bremos»).
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