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Introducción 

¿Quién era John von Newnann? Si para responder a esta pregunta 
nos remitimos a la certificación académica, podemos afirmar que 
Von Neumann era matemático, pues consta que el 12 de marzo de 
1926 se doctoró en dicha ciencia en la Universidad de Budapest 
con la calificación de summa cum laude. También podríamos 
decir que era químico, dado que en 1925 obtuvo la titulación de 
ingeniero químico en la Escuela Politécnica Federal de Zúrich. 
Hay un dicho popular que dice «por sus obras lo conoceréis». Si 
aplicamos esta máxima a las obras de Von Neumann, el abanico 
de posibilidades se abre notablemente, ya que entre sus- obras hay 
que contar con una diversidad importante de campos científicos. 
Sus aportaciones al álgebra, la topología y el análisis funcional 
le definen como un matemático puro, y el establecimiento de las 
bases matemáticas de lo que hoy se conoce como «teoría de jue­
gos», lo distinguen como uno de los mayores impulsores de lo que 
actualmente llamamos «matemática aplicada». Como matemáti­
co, nadie duda en calificarlo como uno de los más importantes del 
siglo xx. Es más, se dice de él que probablemente fue el últin10 de 
los matemáticos que alcanzó a tener una visión completa de todas 
las matemáticas. 

Sin embargo, si nos atenemos a considerar a Von Neumann 
como el creador de los espacios de Hilbert, que proporciona­
ron a la mecánica cuántica un formalismo riguroso, incluyendo 
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como casos particulares en una sola teoría las dos tendencias que 
existían en la década de 1920 - la interpretación ondulatoria de 
Schrodinger y la matricial de Heisenberg- , estamos ante un emi­
nente físico teórico. Buena muestra de ello es que su libro Fun­
damentos matemáticos de la mecánica cuántica es uno de los 
grandes pilares en los que se apoya la física cuántica. 

Si le preguntáramos a un economista si sabe quién era Von 
Neumann, la respuesta sería rotundamente afirmativa enlama­
yoría de los casos, pues se pueden contar por miles los econo­
mistas que trabajan cada día en teoría de juegos después de la 
publicación de Teoría de juegos y comportamiento económico, 
que escribió Von Neumann en colaboración con el matemático y 
economista alemán Oskar Morgenstern. Además, Von Neumann 
marcó un hito en la historia de la economía cuando en 1937 pu­
blicó The Model of General Economic Equilibrium, considerado 
como el artículo más importante sobre economía matemática que 
se había escrito hasta entonces. 

«¿Von Neumann? Es el padre de la computación actual», nos 
respondería un informático. «Tuvo una idea genial», continuaría 
diciendo. En las primeras computadoras que se construyeron, 
cambiar de programa significaba cambiar físicamente los com­
ponentes electrónicos para distribuirlos de otra forma. Von Neu­
mann ideó una arquitectura especial gracias a la cual cualquier 
programa podía ser rediseñado en la misma memoria de la má­
quina. Actualmente, todos los ordenadores funcionan según la ar­
quitectura de Von Neumann, y también fue el primero en diseñar 
la computación en paralelo. 

¿Pero Von Neumann no era un experto en cibernética? Sí, 
cierto, fue pionero en aplicar la combinatoria, la lógica matemáti­
ca y la teoría de la información al diseño de autómatas artificiales, 
asentando bases firmes para el desarrollo de la IA (Inteligencia 
Artificial). Y de paso, también creó los primeros modelos de má­
quinas autorreplicantes, es decir, capaces de generar por sí mis­
mas máquinas cada vez más complejas. 

También es obligado incluir en esta larga lista de titulaciones 
y logros al Von Neumann estratega militar, pues colaboró intensa­
mente con el Departamento de Defensa de Estados Unidos, esta-
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bleciendo matemáticamente las estrategias básicas de la Guerra 
Fría, aportando ideas que, actualmente, son ya de manual en este 
tipo de operaciones. 

Podríamos concluir que Von Neumann tenía una «mente re­
nacentista», que define el perfil de un científico, así, sin más. Pero 
esto no sería del todo cierto, ya que en física, en economía, en 
cibernética o en estrategia militar, Von Neumann actuó siempre 
como matemático, buscando las estructuras básicas en las que se 
fundamentaban cada una de estas disciplinas y dejando en ellas 
la impronta matemática que les permitiría alcanzar el rango de 
ciencia, transformando así las matemáticas puras en matemáticas 
aplicadas. 

En la mayoría de las fotografías que se conservan de Von 
Neumann lo vemos casi siempre de pie, hablando con alguien, 
escribiendo en una pizarra, junto a una computadora .. . Los pies 
de foto refuerzan la idea de que en el momento en que el fotógra­
fo captó la imagen, Von Neumann estaba de paso. Siempre ha­
bía alguien que le estaba esperando. Se dirigía caminando a otro 
departamento del edificio, iba en coche a otra ciudad, en avión 
a otro estado e incluso a otro continente. Von Neumann estaba 
siempre en constante movimiento. Esta es quizá la característica 
que define mejor su personalidad. Su deambular por el mundo era 
reflejo de su viaje interior. Los departamentos, los edificios, las 
personas, eran escenarios en los que había algún problema que 
resolver, y a los que volvía una y otra vez. En este sentido, para 
Von Neumann las matemáticas no fueron un fin en sí mismas, sino 
la llave que le daba acceso a los múltiples parajes de la ciencia. 

En la biografía de Von Neumann se puede establecer una lí­
nea divisoria, tanto en la manera de vivir, como en el tipo de acti- · 
vidad científica que llevó a cabo. Se trata de una línea imaginaria 
que cruza el Atlántico y que separa Europa de Estados Unidos. 
Aun sabiendo que es una simplificación excesiva, se podría decir 
que Europa fue el escenario en el que Von Neumann se dedicó a 
las matemáticas puras, mientras que en Estados Unidos sus es­
fuerzos estuvieron dirigidos a las matemáticas aplicadas. 

A principios del siglo xx, la ciencia había sufrido una transfor­
mación profunda que supuso un cambio de paradigma. La teoría 
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de la relatividad y el nacimiento de la física cuántica abrieron las 
puertas al universo de las partículas elementales. Romper un áto­
mo, fisionar su núcleo, aparecía como una posibilidad real. Pero 
esto, a su vez, trajo consigo un nuevo concepto de lo que era la 
investigación científica. Ya no se trataba de un reducido número 
de personas trabajando en un pequeño laboratorio con un pre­
supuesto relativamente bajo. Ahora había que construir grandes 
edificios capaces de albergar un acelerador de partículas o un 
reactor nuclear, contar con el concurso de cientos de científicos 
y técnicos llevando a cabo conjuntamente un mismo proyecto. 
Además, por primera vez en la historia, se hacía necesario contar 
con inversiones millonarias para desarrollar un experimento de 
física fundamental. 

Sin embargo, por desgracia, también se dio la circunstancia 
de que este experimento de fisión, sin duda el más ambicioso que 
se había propuesto nunca la comunidad científica, acontecía en 
un escenario bélico, en el que estaban en juego no solo la validez 
de hipótesis científicas, sino tan1bién la vida de las personas. Y 
esta es una de las facetas más criticadas de la actividad científica 
de Von Neumann, que se corresponde con el período de su es­
tancia en Estados Unidos. El gran matemático húngaro puso sus 
conocimientos al servicio de la fabricación de la primera bom­
ba atómica, e hizo realidad la bomba termonuclear de fusión, el 
dispositivo con mayor capacidad de destrucción jamás fabricado 
por el hombre. 

Es indudable que las dramáticas circunstancias en que se vio 
inmersa la sociedad civil a causa de la Segunda Guerra Mundial 
ejercieron una clara influencia, no solo en Von Neumann, sino 
también en la mayoría de los científicos que se vieron implicados, 
voluntaria o involuntariamente, en la aplicación de sus conoci­
mientos a la industria bélica 

Siempre ha sido un tema controvertido el calibrar la respon­
sabilidad de un científico frente a las posibles consecuencias 
sociales y políticas que sus investigaciones puedan traer, conse­
cuencias que solo inciden en nuestra realidad cotidiana en el mo­
mento en que la ciencia se convierte en tecnología. Pero también 
es cierto que en la investigación atómica en la que Von Neumann 
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estuvo tan implicado, la barrera que separa ciencia y tecnología 
era realmente difusa. En este sentido, Von Neumann declaró en 
una ocasión que una persona no tenía por qué sentirse responsa­
ble de la época y de la sociedad que le habían tocado vivir. 

También se ha dicho de Von Neumann que tenía una tenden­
cia política de extrema derecha, dada su manifiesta oposición a la 
Unión Soviética y al expansionismo de las ideologías comunistas, 
una animadversión que probablemente se forjó en sus años de ju­
ventud, en la Hungría convulsionada por la época del político co­
munista húngaro Béla Kun y por el hecho de ser judío y haber he­
redado el temor de generaciones perseguidas por el antisemitismo 
ruso. Lo que sí parece cierto es que fue proclive a alinearse en el 
bando de los «halcones», implicándose plenamente en el estamen­
to militar, y también lo es que en circunstancias críticas podía de­
jar a un lado sus favoritismos políticos y dar la cara por un amigo, 
como quedó de manifiesto cuando, en plena caza de brajas, Robert 
Oppenheimer, el director científico del Proyecto Manhattan, fue 
llevado ante el Comité de Actividades Antiamericanas. Von Neu­
mann, poniendo en riesgo su reputación, acudió voluntariamente 
para testificar en favor de su inocencia y de su lealtad. 

La personalidad de los grandes genios suele ser motivo de 
controversias. Sus relaciones con el entorno, en especial con los 
seres más próximos, no se ajustan a los patrones habituales. Von 
Neumann aborrecía algunos sentimentalismos, a los que consi­
deraba como una pérdida de tiempo. Esto no significa que fuera 
ajeno a las circunstancias que le rodeaban, ni mucho menos in­
sensible a aquello que pudiera afectar a sus seres queridos. No 
disponía de demasiado tiempo para su familia y probablemente 
no manifestaba hacia ellos, ni hacia nadie, lo que se podría enten­
der como un afecto «normal». No obstante, fue atento y, asuma­
nera, cariñoso con sus seres allegados. Incluso se puede hablar 
de una vertiente romántica. La lectura de la correspondencia que 
Von Neumann mantuvo con Klara Dan, su segunda mujer, denota 
una naturaleza apasionada y turbulenta. Si leyéramos esas cartas 
sin conocer nada de la biografía de su autor, pensaríamos que 
fueron escritas por un músico, un pintor o un poeta, enamorado 
de una mujer a la que cabría calificar cuanto menos de difícil. 
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Von Neurnann era un genio, y los genios suelen marcar un 
hito, pero en este caso fueron varios los hitos: en matemáticas, 
en física, en teoria de juegos, en estrategias militares, en teoria de 
autómatas, en lógica, en informática. En este sentido fue un caza­
dor nato: allí donde olía la presa se lanzaba con todo su arsenal, 
y si las armas de las que disponía no eran las adecuadas, creaba 
otras nuevas. Pero de toda esa frenética actividad acabó destilan­
do un perfil científico, que iba más allá del físico, del informático 
o del estratega, ya que la presa era siempre un problema sin resol­
ver, e ir a la caza de problemas sin resolver es lo que caracteriza 
la naturaleza de un matemático puro. 
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1903 Nace en Budapest, Hungría, el 28 de 1943 Es contratado en el Laboratorio 
diciembre, Margitta Neumann János Científico de Los Álamos. 
(John von Neumann), primer hijo de 
Miksa Neumann y Margaret Kann. 1944 Se publica la primera edición· de su 

libro Theory of Games and Economic 
1911 Inicia los estudios de secundaria Behavior ( «Teoría de juegos y 

en el Instituto Luterano de Budapest. conducta económica»). 

1922 Junto con su tutor, Michael Fekete, 1947 El presidente Trun1an le concede la 
publica su primer artículo matemático. medalla al Mérito y la Fuerza Naval 

la medalla a los Servicios Civiles 
1925 Obtiene el título de ingeniero químico Distinguidos. 

en Zúrich. Realiza una tesis doctoral 
sobre la axiomatización de la teoría 1948 Entra a formar parte como asesor 
de coajuntos. en la corporación RAND (Research 

ANd Development). 
1926 Ingresa en la Universidad de Gotinga, 

donde colabora con David Hilbert. 1951 Se publica la «Teoría general y lógica 
de los autómatas». Es nombrado 

1928 Publica «Sobre la teoría de los juegos presidente de la Sociedad Matemática 
de sociedad», el prin1er artículo sobre Americana (AMS). 
teoría de juegos. 

1952 Jura el cargo en la Comisión de Energía 
1929 Se casa con Mariette Koevesi. Atómica de Estados Unidos. 

1930 Trabaja como profesor visitante 1955 Se le diagnostica un cáncer de huesos 
en la Universidad de Princeton. que al año siguiente provoca su 

incapacidad. 
1933 Es nombrado profesor del Instituto 

de Estudios Avanzados de Princeton 1956 El presidente Eisenhower le impone 
y contratado como Privatdozent 1aMedal of Freedom (medalla de la 
en la Universidad de Viena. Libertad). Recibe el premio Enrico 

Fermi de Ciencia. Es internado 
1935 Nace su hija Marina. en el hospital militar Walter Reed 

de Washington. 
1937 Adquiere la nacionalidad estadounidense 

y se divorcia de Mariette. Al año 1957 Muere en Washington, el 8 de febrero, 
siguiente se casa con Klara Dan. a la edad de cincuenta y tres años. 
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CAPÍTULO 1 

Hungría: el nacimiento 
de un matemático 

A edades muy tempranas Von Neumann 
puso de manifiesto las cualidades que caracterizan 

a un niño prodigio, como la facilidad para los idiomas 
o la memoria fotográfica. Y nada más alcanzar la edad 

adulta, en sus primeros años como universitario, publicó 
su primer trabajo matemático, un resultado que le valió 

la admiración y el reconocimiento académico y que 
sería el inicio de un prestigio internacional 

en constante aumento. 





En 1867, Francisco José I fue coronado emperador de Austria y 
rey de Hungría. Ese mismo año firmó con los húngaros un tratado 
en el que les garantizaba un razonable nivel de autonomía. Hun­
gría tenía un pasado histórico con la suficiente entidad política y 
cultural como para suponer una clara amenaza a la unidad nacio­
nal austriaca, por lo que en el tratado quedaron excluidos los mi­
nisterios del Ejército y el de Asuntos Exteriores, dos importantes 
órganos de poder que quedaban fuera del control húngaro y que 
sin duda mermaban su independencia como estado. Aun así, los 
húngaros no pusieron objeciones a una alianza con Austria que 
les garantizaba la necesaria protección frente al expansionismo 
ruso, por el que siempre se habían visto amenazados. 

Por aquel entonces, los círculos de influencia del poder del 
Imperio austrohúngaro se concentraban en la corte de Viena, una 
corte que intentaba hacer prevalecer la unidad nacional basándo­
la en la cultura magiar, algo que era complicado frente a la profu­
sión de etnias que no tenían como idioma el magiar y entre las que 
se encontraban croatas, serbios, rusos, eslovacos. La población 
era mayoritariamente de origen judío. 

A finales del siglo XIX, Hungría todavía no se había desprendi­
do de sus estructuras feudales y se sustentaba en una economía 
básicamente agrícola. La llegada de la industrialización trajo con­
sigo la inevitable concentración de recursos en las grandes capita-
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les. Gran parte del campesinado hacía todo lo posible para poder 
emigrar a la capital, Budapest, siempre con la esperanza de mejo­
rar su nivel de vida y, sobre todo, de proporcionar a sus hijos una 
educación, acorde con los tiempos, que les permitiera alcanzar 
una posición social que a ellos les había sido vedada. El avance 
tecnológico y cultural fueron determinantes para modificar la es­
tructura social. En las viejas costumbres heredadas del feudalis­
mo, detentar una posición social ventajosa era algo que solo podía 
obtenerse a través de las herencias. En cambio, los estudios, ya 
fueran en el campo de la ciencia o de la tecnología, posibilitaban 
alcanzar un estatus social razonable por méritos propios. En este 
sentido, la población que se mostraba más activa era la judía, que, 
en Budapest, superaba ampliamente a la magiar. 

La construcción de fábricas en las afueras de Budapest creó 
un cinturón industrial que atrajo así a un campesinado muy empo­
brecido que acabaría por convertirse en la clase obrera, una clase 
también empobrecida, pero con una diferencia sustancial impor­
tante: hasta entonces, el campesino había sido siempre un vasallo 
de la corte feudal vienesa, pero ahora el obrero era un ciudadano 
que, aunque perteneciera a un bajo estrato social, podía empezar 
a reivindicar unos derechos en los que antes ni siquiera se le hu­
biera ocurrido pensar. Por otro lado, la aparición de profesiones 
liberales, inevitable en todo desarrollo industrial, también cola­
boró a transformar profundamente el tejido social. Ingenieros, 
arquitectos, médicos, abogados, periodistas, presionaron para 
que el conjunto de la sociedad fuera abandonando las viejas es­
tructuras que frenaban su desarrollo. La corte de Viena, que se­
guía anclada en sus fiestas y en su boato, empezó a mirar con 
cierto recelo todas estas transformaciones, un recelo que pronto 
dejaría paso al miedo, ya que la vieja aristocracia vienesa no solo 
era incapaz de cambiar su estructura social, sino que además veía 
cómo se empobrecía día a día debido a la creciente falta de recur­
sos económicos. Todo esto acabó por generar un caldo de cultivo 
en el que nacieron tensiones sociales difíciles de gestionar y en el 
que una ideología socialista incipiente acabaría abriéndose paso, 
alterando de forma convulsa la relativa paz en la que hasta enton­
ces Hungría había avanzado política y culturalmente. 
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LA FAMILIA NEUMANN 

Buda, Óbuda y Pest fueron las tres ciudades que acabaron convir­
tiéndose en la capital de Hungría. Buda significa «agua», y segura­
mente la ciudad adoptó este nombre debido a la majestuosa pre­
sencia del Danubio. Pest significa «horno», y lo más probable es 
que hiciera referencia a las numerosas fuentes termales que hay 
en esa ciudad. La unificación oficial de las tres ciudades tuvo lu­
gar por real decreto en 1873, y fue a partir de entonces que la ca­
pital de Hungría pasó a llamarse Budapest. 

«En matemáticas no entiendes las cosas, simplemente te acabas 
acostumbrando a ellas.» 

- JOHN YON NEUMANN. 

Aun así, los habitantes de la capital seguían refiriéndose indis­
tintamente a Buda y a Pest, si bien no como ciudades distintas, sí 
como barrios claramente diferenciados. Buda, situada sobre una 
altiplanicie en la orilla izquierda del Danubio, con un gran castillo 
y multitud de construcciones renacentistas y barrocas, acabó con­
figurándose como la parte antigua de la ciudad, la zona señorial en 
la que la gente adinerada construía sus residencias de verano. Pest 
era la otra cara de la moneda, una ciudad moderna en rápido de­
sarrollo, presidida por el gran edificio del Parlamento, sede de la 
burocracia húngara, en la que se habían afincado bancos y comer­
cios y con una oferta cultural en constante crecimiento. 

A finales del siglo xrx, la región en la que se encontraba Pest se 
había convertido en uno de los centros molineros más importan­
tes de toda Europa. Jakab Kann, descendiente de una familia judía 
que había emigrado a Hungría procedente de Bohemia, vio una 
oportunidad de negocio en abastecer de útiles a esta industria mo­
linera y an1asó una pequeña fortuna fapricando ruedas de molino, 
lo que le permitió comprar una casa en Pest, en la ribera del Danu­
bio, y otra en Buda, para pasar la época estival. La casa que hizo 
construir en Pest, en el número 62 de la calle Vaci-Korut, era una 
finca de cuatro plantas. En la planta baja estableció las oficinas de 
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su floreciente negocio y habilitó la primera para vivir con su fami­
lia. Las dos plantas superiores las reseivó como dote para sus dos 
hijas. Jakab Kann era un patriarcajudío en el sentido más tradicio­
nal y quería a toda la familia unida bajo el mismo techo. 

Margaret Kann, la hija mayor de Jakab Kann, se prometió 
con Miksa Neumann, un prominente abogado judío que se trans­
formó en banquero y que cuando se casó ya ostentaba el cargo de 
director del Jelzáloghitel Hitelbank, una entidad financiera ubi­
cada en Pest. Jakab Kann le regaló al joven matrimonio el cuarto 
piso de la casa. El tercero ya había sido ocupado por la familia de 
su hermana, de manera que, tal y como había planeado el abuelo 
Jakab, vivían todos juntos en una misma casa formando, según 
los testimonios de sus diferentes miembros, una familia muy 
bien avenida. 

Y fue en este país, en esta ciudad y en este cálido ambiente de 
una familia judía, que nació János, el primogénito de la familia 
Neumann, el 28 de diciembre de 1903. Cuatro años más tarde na­
ció su hermano Mihály y en 1911, Nicholas, su otro hermano. El 
nombre completo de János era Margitta Neumann János -era 
costun1bre anteponer los apellidos al nombre de pila- , nombre 
que sufriría algunos cambios hasta adquirir la forma en que lo 
conocemos actualmente. 

El boom cultural que sacudió a Hungría a finales del siglo XIX 

trajo como consecuencia la aparición de una «meritocracia». Un 
sector significativo de la población empezó a reivindicar los méri­
tos alcanzados por el esfuerzo en el trabajo y la adquisición de 
elementos culturales progresistas, lo que hizo que la aristocracia 
vienesa se sintiera amenazada por un incipiente radicalismo al 
que solo podía oponerse aumentando su poder económico. Una 
de las pocas maneras que tenía de conseguir.lo era poner a la ven­
ta títulos nobiliarios, algo que consiguió pese a la fuerte oposición 
de la vieja aristocracia, que no veía con buenos ojos que sus no­
bles apellidos se convirtieran en objetos de compra y venta. Así 
las cosas, a principios del siglo xx las opciones para la alta bur­
guesía húngara eras dos: o se unía a los movimientos radicales 
que pugnaban por las reformas sociales, o bien buscaba cobijo en 
la aristocracia vienesa para utilizar los privilegios de los que toda-
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«EL ARTE DE LA FUGA» 

El abuelo de John Von Neumann era un gran aficionado a la música y una de 
las pocas personas que en aquella época poseía un gramófono. Era costumbre 
en las familias burguesas de la época formar, en la medida de lo posible, una 
pequeña orquesta de cámara familiar. El joven János aprendió a tocar el vio­
lín y aunque con los años abandonó este instrumento, nunca perdió su afición 
por la música. Una de las obras musicales que más interesó a Von Neumann 
fue El arte de la fuga, un conjunto de catorce fugas y cuatro cánones com­
puestos por Johann Sebastian Bach con el ánimo de ejemplificar las técnicas 
del contrapunto. Originalmente, fueron creadas sin responder a un orden par­
ticular y sin la asignación de un instrumento concreto. Esto, al parecer, impre­
sionó vivamente al joven János, que debió ver en esta obra un proceso de 
abstracción dentro de la misma música. Según testimonia su hermano Nicho­
las, El arte de la fuga de Bach fue la fuente de inspiración para que años más 
tarde Von Neumann pensara en la posibilidad de que un ordenador no tuvie­
ra un programa previo asignado, lo que le llevó a diseñar la arquitectura de 
ordenadores que lleva su nombre. 

'r\J ,, ~~ 1 ....., ·- .,,, 
\, ,J , J. · ,✓ \ ' \A "'1. ..,_ -,.1,,W 1 .Al ..._. .J-~{- .f,S.- 1 ..._ ll_ A-,,...,.. 
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Manuscrito de una partitura de El arte de la fuga, de Johann Sebastian Bach. 

vía gozaba. Poseer uno de esos títulos nobiliarios conllevaba un 
desembolso económico importante, ya que eran muy caros, pero 
tan1bién suponían una buena inversión, especialmente para aque­
llos que se movían en sectores de influencia, como era el caso del 
padre de Von N eumann, Miksa N eumann. De esta manera, a partir 
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de 1913, Miksa Neumann adquirió el título nobiliario de «von» 
(«de»), que se ponía de manifiesto al añadir una «i» al final del 
apellido, con lo que Margitta pasó a ser Margittai. Así, el nombre 
completo de su primogénito era ya por entonces Margittai Neu­
mann János. John fue el nombre de pila que Von Neumann adoptó 
cuando adquirió la nacionalidad estadounidense, y así fue cómo 
Margitta Neumann János acabó llamándose John von Neumann. 

LA INFANCIA DE JÁNOS 

János pasó su infancia rodeado de niños, todos ellos hermanos o 
primos hermanos, que vivían en el mismo edificio, compartiendo 
comidas, juegos y celebraciones. Es probable que de no ser así, 
János, como tantos niños superdotados, hubiera desarrollado un 
carácter taciturno y excesivamente hermético. La vertiente ex­
traordinariamente sociable que Von Neumann manifestó de adul­
to se forjó sin duda en este ambiente familiar tan próximo, lo que 
no quiere decir que la suya fuera una personalidad abierta y co­
municativa. En la mente de János, siempre activa, quedaba poco 
espacio para las manifestaciones efusivas, lo que hizo que fuera 
considerado como un niño un tanto altivo y distante. Su sociabili­
dad era aprendida y resultado de un proceso de adaptación del 
que siempre solía salir airoso. Su madre cuenta la anécdota de 
que en una ocasión en que ella estaba sentada junto a una venta­
na, con la mirada perdida y el ceño fruncido, János se acercó a 
ella y en lugar de intentar averiguar cuál era su motivo de preocu­
pación, le preguntó: «¿Qué estás calculando?». 

En aquella casa se hablaban varios idiomas. Todas las gober­
nantas que habían tenido hablaban francés o inglés. El conoci­
miento de idiomas ha sido siempre un requisito importante en la 
comunidad judía, ya que en cualquier momento se podían ver 
obligados a emigrar a otro país, pero incluso en circunstancias 
normales, idiomas como el alemán se consideraban imprescindi­
bles, ya que, para determinados sectores de la sociedad húngara, 
Alemania era uno de los destinos prioritarios si se pretendían al-
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canzar determinados niveles profesionales y sociales. Esto sin 
olvidar las lenguas muertas, por las que Miksa Neumann sentía 
una especial devoción. En aquella época, el latín era asignatura 
obligatoria en la enseñanza secundaria, así como el griego, que se 
empezaba a estudiar a la edad de catorce años, pero gracias a las 
enseñanzas de su padre, János era capaz de hacer chistes en grie­
go clásico con tan solo seis años. De esta manera, no es sorpren­
dente que, con una mente privilegiada como la suya y estando en 
un ambiente tan favorable, Von Neumann mostrara una gran faci­
lidad para los idiomas: de mayor hablaba húngaro, que era su len­
gua materna, alemán, inglés, francés y, por supuesto, latín y grie­
go. En más de una ocasión, Von Neumann hizo referencia a la 
importancia de haber aprendido estas lenguas muertas, que le 
ayudaron a comprender mejor cuál debía ser la estructura interna 
del lenguaje de las computadoras. 

«No tiene sentido ser preciso cuando no sabes 
ni siquiera de lo que hablas.» 

- JOHN YON NEUMANN. 

Lo que sí podría parecer sorprendente es que en las fiestas 
navideñas se cantaran canciones populares alemanas junto a un 
árbol de Navidad. Sorprendente, porque se trataba de una fiesta 
pagana en la que la comunidad judía no participaba. Aunque el 
abuelo Jakab Kann era un hombre devoto que cun1plía religiosa­
mente con los ritos del judaísmo, el espíritu religioso se había ido 
debilitando en las sucesivas generaciones. János no tuvo una edu­
cación religiosa en el sentido estricto que confiere el judaísmo, 
pero creció en un ambiente en el que los rituales judíos se mante­
nían aunque fuera por pura tradición, lo que incluía el asistir a 
clases con un rabino para que le iniciara en el «Libro». Del poco 
calado que las creencias religiosas del judaísmo tuvieron en Von 
N eun1ann da fe el que no tuviera el más mínimo reparo en hacerse 
católico cuando las circunstancias lo requirieron, para poder for­
malizar su primer matrimonio. Von Neumann manifestó siempre 
un agnosticismo sin fisuras, a excepción de un breve lapso de 
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tiempo, justo antes de su muerte, en el que reclamó la presencia 
de un sacerdote católico. 

Hay dos cualidades que es muy frecuente encontrar entre las 
biografías de los grandes genios de las matemáticas. Una es la 
facilidad para los idiomas, y la otra, la memoria fotográfica. Es 
posible que ambas guarden una estrecha relación. János no fue 
una excepción. Era capaz de memorizar una página del listín de 
teléfonos con tan solo leerla un par o tres de veces. Cuando la 
familia se reunía con amigos, le pedían que hiciera alguna demos­
tración, y entonces comprobaban que János podía recitar los 
nombres, apellidos, direcciones y números de teléfono siguiendo 
el orden de las columnas, o en orden inverso, o bien respondien­
do preguntas de forma aleatoria. En una ocasión, su padre com-

KRIEGSSPIEL, JUEGOS DE GUERRA 

Cuando era el pequeño János, Von Neumann jugaba con sus hermanos, es­
pecialmente con Mihály, a juegos de guerra, pero no lo hacía como la mayoría 
de los niños -él no solía hacer nada como la mayoría de la gente-, montando 
paradas militares o batallas en las que soldados de plomo caían abatidos por 
el impacto de pequeños objetos contundentes. Jugaban a una variante de un 
antiguo juego de guerra llamado «Kriegsspiel», que en alemán quiere decir 
literalmente «juego de guerra». En 1824, George von Reisswitz, teniente de 
artillería del ejército prusiano, ideó un juego de mesa que representaba un 
campo de batalla en el que podían recrearse diferentes estrategias de guerra. 
Muy pronto los altos mandos del ejército se dieron cuenta de que aquello iba 
mucho más allá de ser un mero juego y que podía ser utilizado para adiestrar 
a sus oficiales en las artes de la guerra. El éxito de esta iniciativa quedó pro­
bado en 1866 en la campaña contra Austria y, años más tarde, en las victorias 
obtenidas contra los ejércitos de Napoléon 111. Con el tiempo, se difundieron 
diferentes versiones del Kriegsspiel en inglés, alemán y francés que fueron 
adaptadas por la mayoría de los ejércitos para la instrucción de los oficiales 
en las técnicas de estrategia militar. El Kriegsspiel al que János jugaba con 
sus hermanos era una versión recreada por ellos mismos a base de dibujar 
en un papel los campos de batalla con sus fortalezas, montañas, ríos y demás 
elementos necesarios para desarrollar las batallas. Durante la Primera Guerra 
Mundial, János siguió con detalle todos los informes sobre los avances y re­
tiradas de tropas de los ejércitos para reflejarlos de la manera más fidedigna 
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pró una voluminosa enciclopedia; era tan grande que se vio obli­
gado a destinar una de las habitaciones de la casa para poderla 
albergar. El pequeño János pasaba en aquella estancia varias ho­
ras cada día. Entre otras cosas, leyó de cabo a rabo una historia 
mundial. Empezó por el primer volumen y, sin saltarse una pági­
na, fue recorriendo cronológicamente la historia hasta que termi­
nó en la última página del último tomo. En total, la enciclopedia 
histórica constaba de veinte gruesos volúmenes. Pero su mente 
no se dedicaba solamente a archivar datos, cosa a la que ayudaba 
su portentosa memoria fotográfica, sino que también se dedicó a 
gestionar la infom1ación. Ya de pequeño mostró un interés espe­
cial por las relaciones entre los diferentes países y especialmente 
por los conflictos bélicos y las distintas estrategias que se plantea-

posible en su Kriegsspiel particular. Años más tarde, durante su estancia en 
Estados Unidos, seguiría practicando este juego en sus frecuentes visitas a 
la corporación RAND (Research ANd Development), un laboratorio de ideas 
que forma a las fuerzas armadas norteamericanas. 

Un grupo de oficia les prusianos discutiendo estrategias militares frente a un tablero 
de Kriegsspiel. Grabado de Adalbert von Roessler, hacia 1884. 
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ban. János intentaba establecer relaciones que no aparecían ex­
plícitas en los textos. Su interés por las estrategias militares se 
manifestó a edades muy tempranas. Había aprendido a jugar al 
ajedrez de la mano de su padre, que casi siempre le ganaba, lo que 
le permitió comprobar que su hijo era un mal perdedor. Sin em­
bargo, si buscamos al niño que juega con soldados de plomo, vol­
veremos a encontrar al estratega. Su hermano Mihály decía que 
sus juegos no consistían en organizar desfiles o derribar soldados, 
sino que sus formaciones militares obedecían a tácticas previa­
mente establecidas, en las que mostraba mucho más interés en el 
desarrollo de la batalla y en los movimientos de tropas, que en los 
enfrentamientos bélicos en sí. 

EL MILAGRO HÚNGARO 

A mediados del siglo XIX tuvo lugar en Europa una profunda refor­
ma de los sistemas educativos. La revolución industrial trajo con­
sigo numerosas innovaciones tecnológicas que requerían procesos 
de fabricación en los que eran necesarios dispositivos y mecanis­
mos que hasta entonces nunca se habían utilizado. Las nacientes 
ingenierías técnicas se veían obligadas a incorporar en sus progra­
mas de enseñanza nuevas asignaturas, la mayoría de las cuales re­
querían conocinuentos matemáticos más avanzados que los que 
proporcionaban los acostumbrados programas de enseñanza. 

El aprendizaje de las matemáticas es largo y se establece pa­
so a paso. Es un edificio de varias plantas cuya construcción re­
quiere de unos cimientos sólidos, que son los que se crean a lo 
largo de la enseñanza secundaria. Hungría inició una reforma a 
mediados del siglo XIX que ya se había consolidado a principios del 
xx, que tuvo como resultado lo que se conoce como el «milagro 
húngaro», un fenómeno que ha sido objeto de estudio por parte de 
muchos historiadores de la ciencia, y que dio nombres como el de 
los físicos Dennis Gabor (1900-1979), Leó Szilárd (1898-1964), Ed­
ward Teller (1908-2003) o el físico y matemático Eugene Paul Wig­
ner (1902-1995), varios de ellos compañeros de Von Neumann en 
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EL ROJO Y EL BLANCO 

Después de la Primera Guerra Mundial, Hungría vivió un breve pero sangriento 
período político bajo el régimen de Béla Kun, militar que en la Gran Guerra 
formaba parte del ejército austrohúngaro y que fue apresado por los rusos. 
En aquella época, se hablaba de los famosos lavados de cerebro de los sovié­
ticos a sus prisioneros. Cierto o no, el caso es que Kun volvió a su país como 
comunista convencido. En marzo de 1919 tomó el poder y llevó a la práctica 
las teorías de Marx y Lenin al pie de la letra. Esto significó el traspaso de poder 
a la clase proletaria, gran parte de la cual pertenecía todavía al campesinado, 
la repartición de los bienes y una forma de terror político sistematizada y 
practicada por comisarios políticos designados directamente por el propio 
Kun. El vandalismo y las tropelías llevadas a cabo por las hordas de su partido 
convirtieron a Budapest en una ciudad peligrosa. La familia Neumann se exilió 
a Austria. János tenía entonces quince años. El partido de Kun duró apenas 
cinco meses y en agosto de 1919 fue derrocado por el almirante Miklós Horthy, 
que instauró un régimen de extrema derecha más violento que el anterior, 
pasando sin transición del terror rojo al terror blanco, durante el cual fueron 
asesinadas más de cinco mil personas y cerca de cien mil se vieron obligadas 
a abandonar Hungría. Los judíos habían formado parte activa del anterior 
régimen -ocho de los once comisarios políticos de Kun habían sido judíos-, 
y Miksa Neumann se salvó de la quema, ya que había mantenido una clara 
oposición al régimen de Kun. Además, seguía formando parte de la clase aris­
tocrática y de los banqueros del régimen anterior. La seguridad de su familia 
estaba de momento garantizada, pero los judíos eran mal vistos en la mayoría 
de círculos sociales. Fue entonces cuando un gran número de intelectuales 
judíos decidieron emigrar a Alemania. 

Discurso de Béla Kun en Kassa (actual Kosice, en Eslovaquia). 
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su época de estudiante. El lema por el que se ligió la nueva refor­
ma era «innovar o morir», una máxima que se siguió al pie de la 
letra. Fue la época en la que la matemática discreta se abría paso 
a través de la herencia continuista que todavía se arrastraba desde 
la época de Isaac Newton (1643-1727), en la que se habían consti­
tuido los fundamentos del análisis matemático. Un movimiento 
aperturista que tendría uno de sus máximos exponentes en David 
Hilbert (1862-1943), el gran matemático alemán que años más tar­
de sería uno de los mentores que tuvo mayor influencia sobre Von 
Neumann. László Rátz (1863-1930), matemático húngaro dedica­
do a la enseñanza secundalia, fue uno de los máximos responsa­
bles en la refonna de la enseñanza de las matemáticas en la edu­
cación media, iniciada en 1909. Una de las iniciativas que mejor 
impulsaron esta reforma fue la creación en 1894 de la Kozépisko­
lai Matematikai Lapok -revista matemática para la escuela se­
cundalia- , cuya dirección recayó en Rátz. Se trataba de una pu­
blicación en la que participaban tanto profesores como alumnos y 
en la que básicamente se proponían problemas de matemáticas 
elementales. Esta revista, así como la instauración de concursos 
matemáticos, como el Eéitvéis, tuvieron una influencia decisiva en 
la apalición de nuevos matemáticos en Hungría. 

EL INSTITUTO LUTERANO 

Como era costumbre entre las familias acomodadas de la época, 
János fue educado en su hogar por tutores hasta la edad de diez 
años. Sus estudios de secundalia los cursó en el Budapest-Fasoli 
Evangélikus Gimnázium, un colegio muy elitista que a pesar de 
pertenecer a la iglesia luterana - todos los colegios plivados es­
taban sufragados por algunas iglesias, ya fuera clistiana, copta o 
luterana- , era una institución muy abierta en cuanto a las creen­
cias religiosas, de manera que, además de las asignaturas lectivas 
correspondientes, János también recibió las enseñanzas de un ra­
bino con el que se inició en la lengua hebrea y en la cultura judía 
contenida en la Torá. 
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Margare! Kan, 
esposa de Miksa 
Neumann y madre 
de Von Neumann. 

FOTO SUPERIOR 

DERECHA: 

Miksa Neumann 
junto a su hijo, el 
pequeño Margitta 
Neumann János. 
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Gimnázium, donde 
a partir de 1911 
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cursó sus estudios 
de escuela 
secundaria. 
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LAS OLIMPIADAS MATEMÁTICAS 

Las Olimpiadas Matemáticas son, según 
reza su reglamento, «concursos entre 
jóvenes estudiantes, cuyo objetivo pri­
mordial es e stimular el e studio de las 

matemáticas y el desarrollo de jóvenes 
talentos en esta ciencia». Sus orígenes se 
remontan a las competiciones matemá­
ticas nacionales Eotvos de Hungría. En 
1894, se le pidió servir al barón Loránd 
Eotvos (1848-1919) como ministro de 
Educación en el Gobierno húngaro, para 
ayudar a la aceptación de los derechos 
civiles y la libertad religiosa en el Parla­
mento. Para conmemorar ese aconteci­
miento, a partir de ese año la Sociedad 
Húngara de Matemáticas y Física decidió 
organizar concursos anuales para gra­
duados de la escuela secundaria. El ac­
tual nombre de Olimpiadas data de 1958, 
año de celebración de las primeras Olim- El físico y político húngaro Loránd 

piadas Internacionales de Matemáticas ~~~::~: c:u:;e:~c!en~: ~;1::~~~c~:. las 
por iniciativa de Rumanía . En la primera nacidas en Hungría en 1894. 

edición participaron siete países, y en la 
actualidad, la participación se ha exten-
dido a ochenta países de los cinco continentes. A Van Neumann, que obtuvo 
el premio nacional Eotvos, se le puede considerar un ganador preolímpico. 

János pasó ocho años en este colegio. A pesar de ser un niño 
prodigio, nunca adelantó un curso, algo que podía haberle aislado 
de los demás y que de hecho iba en contra de los criterios pedagó­
gicos del mismo László Rátz, al que tuvo como profesor de Mate­
máticas. En el instituto se fomentaba el trabajo en grupo y los 
compañeros de János se debatían entre la envidia y el respeto que 
despertaban sus extraordinarias capacidades intelectuales. Fue 
en este colegio donde hizo amistad con Eugene Wigner, premio 
Nobel de Física en 1963, que iba un curso por delante. Wigner 
cuenta que a János le gustaba mucho hablar, aunque fuera solo de 
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matemáticas, y que daban largos paseos durante los cuales János 
procuraba llevar siempre la conversación a la teoría de conjuntos, 
por la que ya entonces parecía estar especialmente fascinado. 

Rátz se dio cuenta muy pronto de que estaba ante un genio y 
fue a hablar con el padre de János para recomendarle una educa­
ción personalizada que le ayudara a ampliar sus conocimientos 
de matemáticas, a lo que este accedió sin dudarlo un momento. 
Rátz habló con J. Kuerschak, un distinguido matemático de la 
Universidad de Budapest, que eligió como profesor particular a 
Michael Fekete (1886-1957), un joven matemático con el que Já­
nos estuvo trabajando hasta que acabó los estudios de secunda­
ria. En el último año de colegio, ambos hicieron un trabajo con­
junto sobre un teorema de análisis que fue publicado en la revista 
Jahresbericht der Deutsche Mathematiker-Vereinigung («Infor­
me anual de la Sociedad Matemática Alemana»). 

János obtuvo el prenúo nacional Eotvós, un concurso a nivel 
nacional que se hacía entre todos los colegios de enseñanza se­
cundaria y que exigía un nivel muy alto en la comprensión de con­
ceptos matemáticos y en la resolución de problemas. Fue enton­
ces cuando János pudo demostrar que era el mejor, algo de lo 
que, al parecer, tomó conciencia para el resto de su vida. 

ESTUDIOS UNIVERSITARIOS 

A más de una persona le puede sorprender saber que uno de los 
más ilustres matemáticos del siglo x:x fuera también licenciado en 
química. Esta no fue una carrera elegida por vocación, sino una 
solución de compronúso entre los intereses encontrados de pa­
dre e hijo. En Europa, una fanúlia judía, fuera cual fuera la posi­
ción social o económica que ocupara, se veía obligada a vivir con 
las maletas preparadas para emprender en cualquier momento un 
viaje que podía ser solo de ida. Esto significaba la posibilidad de 
encontrarse de la noche a la mañana en un país extranjero con 
muy escasos recursos. En estas circunstancias, cualquier miem­
bro de la comunidad judía era muy consciente de que el equipaje 
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más valioso no era el que llevaba en su maleta, sino el que trans­
portaba en su cerebro, aquel que nadie le podía quitar mientras 
conservara la vida. Esto suponía que debía dominar uno o varios 
idiomas y tener los conocimientos necesarios para poder ejercer 
una profesión corno medio de vida. Ambas cosas dependían en 
gran medida del entorno geográfico en el que se estuviera movien­
do. En relación a los idiomas, Miksa Neumann ya se había ocupa­
do de que sus hijos se desenvolvieran perfectamente en alemán y 
tuvieran conocimientos suficientes de inglés y de francés, con lo 
que ya tenían cubierto el acceso a los entornos culturales que en 
aquel entonces dominaban el escenario político mundial. En 
cuanto a conocimientos, el padre de János siempre vio con bue­
nos ojos que su hijo tuviera una formación en matemáticas, ya 
que, dadas las cualidades innatas que había mostrado en ese 
terreno, sabía que acabaria destacando en el restringido círculo 
de los matemáticos profesionales. Pero eso era algo que podía 
quedar exclusivamente circunscrito al ámbito del prestigio inte­
lectual, sin que necesariamente le proporcionara una holgada po­
sición económica. Fue entonces cuando pidió ayuda a un ingenie­
ro y físico amigo suyo, Theodore van Kárrnán (1881-1963), para 
que tratara de convencer a su hijo de elegir una carrera con un 
futuro más rentable. Entre los tres llegaron a un acuerdo: János 
estudiaria ingeniería química, pero sin abandonar las matemáti­
cas, lo que le llevó durante los siguientes cinco años a una intensa 
actividad académica que solo alguien con sus extraordinarias do­
tes podía llevar a cabo. 

El acceso a una universidad húngara estaba muy restringido y 
más todavía para los judíos, pero el currículum de János podía 
derribar con facilidad las puertas de cualquier universidad euro­
pea. En 1921, se matriculó para estudiar matemáticas en la Univer­
sidad de Budapest. En realidad, para obtener el título, ya que no 
asistió a ninguna clase y solo hizo acto de presencia para exami­
narse, eso sí, obteniendo siempre las máximas calificaciones. Si­
rnultánean1ente, hizo dos cursos de ingeniería química en la Uni­
versidad de Berlín, de 1921 a 1923, y otros dos en el Instituto Fede­
ral de Tecnología de Zúrich, de 1923 a 1925, en el que obtuvo la li­
cenciatura en química. Finalizó sus estudios académicos cuando 
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recibió el doctorado en matemáticas por la Universidad de Buda­
pest en 1926, con una tesis sobre teoría de conjuntos. Cuando te­
nía veinte años, ya había publicado una definición de los números 
ordinales, que es la que todavía se utiliza en la actualidad. 

A partir de ese momento, Von Neumann emprendió una ca­
rrera meteórica que le llevó a convertirse en uno de los matemáti­
cos de mayor reconocimiento internacional. Fue conferenciante 
en Berlín de 1926 a 1929 y en Hamburgo de 1929 a 1930. 

En 1927 recibió una beca Rockefeller para realizar estudios 
posdoctorales en la Universidad de Gotinga. Esta es una fecha 
remarcable en la biografía de Von Neumann, ya que aquella uni­
versidad era el centro neurálgico de las matemáticas del momen­
to, y también porque allí conocería a David Hilbert, uno de los 
más insignes matemáticos del siglo xx y una de las personas que 
mayor influencia tendría en su carrera científica. 
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CAPÍTULO 2 

Alemania: la matemática pura 

Los trabajos más importantes 
que Von N eumann llevó a cabo en Gotinga 

bajo la dirección de Hilbert fueron básicamente sobre 
cuestiones de axiomatización. Para comprender el alcance 
de sus aportaciones, es interesante tener una visión clara 

del papel que los axiomas han desempeñado en las 
matemáticas a lo largo de toda su historia, pero sobre 

todo de las profundas crisis a las que dicha 
axiomática se vio sometida a principios del 

siglo xx y que pusieron en entredicho los 
fundamentos de las matemáticas. 





En el último cuarto del siglo XIX, la matemática europea tenía 
como referencia a la Universidad de Berlín, caracterizada cada 
vez más por un pensamiento purista que se ponía de manifiesto 
en el tratamiento geométrico de los problemas en su vertiente 
sintética, oponiéndose a la utilización de elementos del análisis 
cartesiano y el álgebra, aduciendo que esta última era un enfoque 
que alejaba a las matemáticas de su faceta más intuitiva, que era 
la que proporcionaba la geometría clásica. 

Para los puristas, un punto, una recta o un plano eran concep­
tos intuitivos que podían visualizarse y que permitían enunciar y 
demostrar teoremas por medio de las leyes de la lógica, basándo­
se en el conjunto de axiomas que habían sido establecidos por el 
matemático y geómetra griego Euclides (ca. 325-ca. 265 a.C). En 
cambio, bajo el punto de vista analítico, una recta era un conjunto 
de puntos definidos en coordenadas cartesianas cuyas reglas del 
juego estaban dictadas por el álgebra abstracta. Ya por entonces, 
el análisis matemático se había desarrollado lo suficiente como 
para poder trabajar con rectas, planos y curvas con un elevado 
nivel de complejidad sin necesidad de «ver» nada de lo que se 
estaba haciendo. 

La universidad de la ciudad alemana de Gotinga acabaría 
siendo el buque insignia de esta nueva forma de plantear las ma­
temáticas. 
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GOTINGA 

La Urúversidad de Gotinga fue fundada en 1734 por Jorge 11, prín­
cipe elector de Hanóver. En 1866, Prusia se anexionó dicho reino, 
lo que supuso un cambio importante, ya que el Gobierno prusiano 
consideraba que la universidad era una institución clave para el 
progreso de la nación. Este mismo año, el matemático alemán 
Felix Klein (1849-1925) fue nombrado rector de la universidad, 
institución a la que siempre permaneció fiel, rechazando todo tipo 
de of e1tas, incluida la de una cátedra en Berlín, y en la que traba­
jó hasta su jubilación en 1930, aunque siguió impartiendo cursos 
hasta 1934. Klein tenía un proyecto, conocido como el Programa 
de Erlangen, que llevó a la práctica a lo largo de un periodo de 
diez años y con el que se proponía establecer nuevas relaciones 

FELIX KLEIN 

El matemático alemán Felix Klein nació el 25 de abril de 1849 en Dusseldorf, 
hijo de un alto funcionario del Estado prusiano. En los primeros años de su 
infancia fue educado por su madre. Tras estudiar durante dos años en una 
escuela elemental privada, en 1857 ingresó en el Instituto de Dusseldorf, en el 
que permaneció durante ocho años cursando el bachillerato. A los dieciséis 
años entró en la Universidad de Bonn. A pesar del interés que despertaban en 
él las matemáticas, se matriculó en muy pocas asignaturas de esta disciplina, 
dedicando la mayor parte de su activ idad a la botánica. Al año siguiente de su 
acceso a la universidad, se encargó de las prácticas de física que se llevaban 
a cabo bajo la dirección de Julius Plücker, un físico matemático que estaba 
trabajando en su libro Nueva geometría del espacio. Klein profundizó en el 
tema hasta el punto de que a la muerte de Plücker, se encargó de la redacción 
de la segunda parte del libro. 

Una formación a medida 
Consciente de su falta de preparación en algunas áreas de las matemáticas, 
especialmente en el cá lculo integral, en 1869 se tras ladó a Gotinga, donde 
asistió durante un año a los cursos de A lfred Clebsch. Klein no sigu ió nunca 
un programa académico convencional, él mismo se marcó el camino a seguir 
según sus propios intereses. En su estancia en Berlín, en 1870, no asistió prác­
ticamente a clases de matemáticas, pero sí mantuvo una intensa actividad de 
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entre las diferentes áreas que habían ido apareciendo en el mismo 
seno de las matemáticas, pero sobre todo hacerlas más cercanas 
a la física. En el desarrollo de este proyecto tuvo como firme alia­
do a David Hilbert, uno de los científicos más destacados del cam­
bio de siglo, considerado como el matemático que más ha influido 
en la geometría después de Euclides. 

El impulso que Hilbert dio a Gotinga a partir de 1895 provoca­
ría un giro que acabaría convirtiendo al Instituto de Matemáticas 
de Gotinga en un referente mundial. Coincidió con Klein en abrir 
las puertas a la comunidad internacional y en abandonar las ten­
dencias puristas y especializadas para conseguir una mayor uni­
ficación entre las diferentes áreas de las matemáticas, evitando 
siempre cualquier enfrentamiento abierto con la Universidad de 
Berlín. En este sentido, Gotinga destacó por ser una universidad 

«café» con dos matemáticos importan­
tes, el austriaco Otto Stolz (1842-1905) 
-que ya era catedrático, pero que había 
asistido a Berlín para ampliar estudios- y 
el noruego Sophus Lie (1842-1899), con 
quien llevó a cabo una actividad de tra­
bajo extraord inariamente productiva, ya 
que fue quien le descubrió la importancia 
de una nueva teoría desarrollada por Éva­
riste Galois (1811-1832), que tendría un pa­
pel trascendental en los futuros trabajos 
de Klein: la teoría de grupos. A instancias 
de Clebsch, Klein recibió el nombramien­
to de catedrático numerario de mate­
máticas de la Universidad de Erlangen, 
donde al expl icar su programa docente, 
tuvo lugar por primera vez la lectura de 
su famoso Programa de Erlangen. A lo 
largo de su actividad docente, Klein enseñó matemáticas en Múnich (1875-
1880), Leipzig (1880-1886) y Gotinga (1886-1913), ciudad esta última en la que 
fundó un instituto de matemáticas aplicadas. En 1882, Klein sufrió un derrumbe 
psíquico como consecuencia de una grave enfermedad nerviosa que terminó 
con su actividad como investigador. Murió en Gotinga el 22 de junio de 1925. 
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muy abierta que aceptaba científicos y pensadores innovadores 
con independencia de su origen, creencias o posición social. 

Hilbert manterúa una postura muy clara en cuanto al papel 
que las matemáticas debían tener en relación a la física, incluso 
llegando a decir que la física era demasiado difícil para los físicos. 
Junto con el tan1bién matemático alemán Richard Courant (1888-
1972), publicó un libro titulado Los métodos de la física matemá­
tica (1924), de inestimable ayuda para los físicos, que todavía se 
publica y que es conocido como el «Courant-Hilbert». 

AXIOMÁTICA 

Los conceptos más elementales de punto, recta y plano, y las rela­
ciones que se establecen entre ellos, desde las más sencillas hasta 
las más complejas, fueron sistematizados y ordenados, entre los 
años 330 y 275 a.C., en uno de los libros más difundidos de la his­
toria de la humanidad: los Elementos (Stoikheia) de Euclides, en 
los que todo el saber geométrico de la época se condensó en tre­
ce libros. Euclides construyó la geometría utilizando tres herra­
mientas conceptuales claves: los axiomas, los postulados y los 
teoremas. Los teoremas hacen referencia a proposiciones que no 
son evidentes y que se demuestran, mediante un proceso lógico de 
razonamiento, a partir de los axiomas y los postulados. Para ello, 
Euclides parte de veintitrés axiomas y cinco postulados, a partir de 
los cuales demuestra todos los teoremas. La diferencia que existe 
entre un axioma y un postulado es importante para comprender la 
naturaleza de la geometría que se describe en los Elementos. Un 
axioma no necesita demostración, ya que se trata de una propo­
sición clara y evidente. Por ejemplo, el primer axioma de los Ele­
mentos dice: «un punto es lo que no tiene partes». En cambio, un 
postulado es una proposición que, no siendo tan evidente como un 
axioma, se admite como verdadera sin necesidad de demostrarla. 

De esta forma, el edificio matemático se construye paso a 
paso sobre un sistema de axiomas y unas reglas de juego basadas 
en la lógica que permitan la creación de teoremas. Hasta la apari-
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EL QUINTO POSTULADO 

El quinto postulado de los Elementos 
de Euclides, que no tiene la nitidez de 
los otros cuatro, afirma: 

Si una recta, al incidir sobre dos 
rectas, hace los ángulos internos 
del mismo lado menores que dos 
rectos, las dos rectas prolongadas 
indefinidamente se encontrarán en 
el lado en el que están los [ángulos] 
menores que dos rectos. 

Supongamos una recta R
3 

que corta 
a otras dos, R, y R

2 
(véase la figura). 

Los ángulos internos, menores que 
dos rectos, a los que hace referen­
cia el postulado, serían los señalados 
como a y b. El quinto postulado afir- R2 

ma que si prolongamos las rectas R, 
y R

2
, estas se encontrarán en la parte 

derecha de la figura. Desde siempre 
llamó la atención de los geómetras que el quinto postulado no tuviera la 
simplicidad y, sobre todo, el carácter de evidencia de los cuatro anteriores. 
Hasta el mismo Euclides, consciente de ello, trató de evitarlo y, de hecho, no 
lo utilizó hasta la demostración de la proposición 29 del Libro l. Este intento 
de construir toda su geometría tratando de evitar el uso del quinto postula­
do ha conducido a que, en ocasiones, se afirmara que Euclides fue el primer 
geómetra no euclídeo. El caso es que, desde su mismo nacimiento, el quinto 
postulado de Euclides planteó algunos interrogantes. lEra cierto? Y en caso 
afirmativo, lera realmente un postulado independiente o se trataba de un teo­
rema que podía ser demostrado a partir de los cuatro postulados anteriores? 

ción de las geometrías no euclídeas el edificio parecía ser lo sufi­
cientemente sólido como para poder confiar en él. Pero los pos­
tulados sobre los que se basaba la geometría de Euclides habían 
tenido siempre un punto débil, el quinto postulado, que al final 
acabó creando una fisura en todo el sistema. Así, el quinto postu­
lado de Euclides acabó convirtiéndose en una de las cuestiones 
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más controvertidas de la historia de las matemáticas, siendo obje­
to de polémicas investigaciones que duraron más de dos mil años. 

GEOMETRÍAS NO EUCLÍDEAS 

La geometría no euclídea aparece cuando se niega la validez del 
quinto postulado. Si tenemos en cuenta que durante dos mil años 
con la geometría euclídea se ha medido el mundo en el que vivi-

EL PROGRAMA DE ERLANGEN 

En la geometría euclídea estamos habituados a manejar una serie de ele­
mentos, que son los objetos propios de esta geometría, como puntos, rectas, 
planos, ángu los, etc.; y una serie de transformaciones que actúan sobre dichos 
objetos. Podemos trasladarlos de un sitio a otro, hacerlos girar, alargarlos o en­
cogerlos o aplicarles determinadas simetrías. Algunas de estas transformacio­
nes pueden ser de «ida y vuelta», en el sentido de que si una transformación 
lleva un punto A hasta otro punto B, exista otra que lleve a B hasta A. También 
puede suceder que al aplicar dos transformaciones consecutivas, el resultado 
sea otra transformación. Cuando un conjunto de transformaciones cumple es­
tas propiedades -además de algunos detalles adiciona les que ahora no vienen 
al caso-, se dice que se tiene un «grupo de transformaciones». A lgunas de 
las propiedades de los objetos con los que trabajamos en geometría pueden 
ser más o menos inmunes a dichas transformaciones. 

Un ejemplo 
Supongamos que a una circunferencia le aplicamos una traslación. El que el 
centro de la circunferencia esté en un determinado punto es una propiedad 
que cambia con la traslación. Si lo que hacemos es reducir el tamaño de la 
circunferenc ia, el radio variará. Sin embargo, frente a todas estas transfor­
maciones hay una propiedad que permanece invariante, que es la relación 
entre la longitud de la c ircunferencia y su diámetro. Felix Kle in observó que 
el estudio de estas propiedades invariantes era lo que en realidad definía un 
determinado tipo de geometría, ya que permitía comparar figuras con pro­
piedades idénticas. Propuso entonces una definición de geometría -la más 
genera l y la más abstracta- consistente en una pareja (X; G) formada por un 
conjunto X de objetos y un grupo G de transformaciones que pueden apli­
carse a estos objetos. Todas las geometrías conocidas -euclídea, proyectiva, 
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rnos, queda claro que se trata de un acto no exento de audacia in­
telectual. Ante esta perspectiva, podria parecer que la creación de 
geometrías no euclídeas no pudiera ir más allá de un puro juego 
matemático, de un superfluo diletantismo intelectual. De hecho, 
en un principio pareció que las cosas serían así, pero, con el tiem­
po, esas geometrías se revelaron corno una herramienta podero­
sa, no solo en el ámbito matemático, en el que materias corno 
los sistemas dinámicos, las funciones autornorfas o la teoría de 
números se beneficiaron de ellas, sino que resultó ser una vara 

hiperbólica, etc. - quedaban clasificadas por este sistema, además de abrir 
el camino a nuevas geometrías, ya que el conjunto de objetos geométricos 
X podía estar formado por cua lquier tipo de objeto. Todas estas ideas fueron 
expuestas por Klein en 1872 en la cátedra de matemáticas de la ciudad de 
Erlangen bajo el t ítu lo de «Panorama comparativo de las novísimas investiga­
ciones geométricas». Con el tiempo, sería conocido en el ámbito matemático 
como el Programa de Erlangen de Felix Klei n. 

Postal de 1916 en la que se representa la calle de la Universidad de Erlangen. 
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de medir imprescindible en muchos campos de la física moderna. 
Para distancias relativamente pequeñas, la geometría euclídea y 
las no euclídeas son prácticamente equivalentes. Sin embargo, 
cuando se trata de distancias astronómicas o en ciertos ámbitos 
de la física moderna, como la relatividad o la teoría de propaga­
ción de ondas, las geometrías no euclídeas resultan ser una herra­
mienta más precisa. 

Ante este panorama, se llegó a la conclusión de que la geo­
metría hiperbólica - un tipo de geometría no euclídea- era tan 
consistente como lo pudiera ser la geometría euclídea; es decir, 
si la geometría hiperbólica lleva a alguna contradicción, entonces, 
la geometría euclídea tan1bién. Los sucesivos avances en física 
teórica llegaron incluso a poner en evidencia que la geometría de 
Euclides no es necesariamente la más «realista». 

La aparición de las geometrías no euclídeas había planteado 
una cuestión que iba mucho más allá de la misma geometría. Se 
trataba de abandonar el recinto sagrado de las verdades inmuta­
bles que nos mostraban los axiomas para focalizar el interés en 
la consistencia interna de dichos axiomas. Pero la geometría no 
había sido más que el detonador de una crisis mucho más profun­
da que acabaría por afectar a uno de los pilares básicos de toda la 
matemática, los conjuntos. 

TEORÍA DE CONJUNTOS 

En matemáticas, la teoría de conjuntos reviste una especial im­
portancia porque es una teoría muy simple y sencilla, a partir de 
la cual se pueden definir los siguientes conceptos: par ordenado, 
relación, función, partición, orden, los números naturales, los en­
teros, los racionales, los reales, los complejos, la estructura de 
grupo, el anillo, el cuerpo, el espacio vectorial ... La lista es muy, 
muy larga. Así pues, el concepto de conjunto es uno de los más 
fundamentales de las matemáticas. Es difícil encontrar alguna de 
sus ramas que no esté, implícita o explícitamente, basada en di­
cho concepto. Se podría afirmar que todo el edificio matemático 
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se sostiene sobre la piedra angular de la teoría de conjuntos, una 
teoría de la que solo se valen los matemáticos, los lógicos y, en 
menor medida, todos aquellos que se dedican a tareas de progra­
mación informática. 

El primer escollo con el que se encuentra la teoría de con­
juntos es la propia definición de conjunto; una vez salvado este 
trance, las cosas funcionan de maravilla. Es muy difícil definir lo 
que es un conjunto sin utilizar la misma palabra «conjunto» o al­
guno de sus sinónimos: agrupación, reunión, montón, etc. Una de 
las mejores definiciones, que no utiliza sinónimos - por lo menos 
de forma aparente- es la que dio el británico Bertrand Russell 
(1872-1970): 

Un conjunto es una consideración simultánea de entes. 

Esta es una definición interesante, porque plantea el concep­
to como una actitud mental, lo que es síntoma de que se trata de 
un concepto muy primitivo. Podríamos, por ejemplo, estar en una 
reunión social en la que no conocemos a nadie y al borde del abu­
rrimiento. Si, para pasar el rato, empezamos a fijarnos en los za­
patos que llevan todos los asistentes a la reunión y hacemos luego 
una clasificación, aunque sea muy simple, como «me gustan o no 
me gustan», habremos empezado a establecer una relación en un 
conjunto muy bien definido: «el de todos los zapatos que hay en 
la reunión» . El cambio en la actitud mental consiste precisamen­
te en hacer de manera repentina esa consideración simultánea 
de objetos, «restringir nuestra atención a ... », «fijarnos solo en .. . », 
que es la que ha definido al conjunto de zapatos. 

Hay dos conjuntos especiales, y teóricamente imprescindi­
bles: el conjunto vacío y el conjunto universal. El primero se sim­
boliza con el signo 0 y se define como el conjunto que carece 
de elementos. Es un conjunto que puede considerarse filosófica­
mente conflictivo y que, en su momento, tuvo sus detractores, 
ya que si carece de elementos, es que está formado por nada; la 

· nada no existe y, por tanto, el conjunto vacío no puede tener una 
identidad real. El conjunto universal, en cambio, plantea el pro­
blema de que tiene demasiadas existencias o, si se quiere, de que 
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es demasiado grande. En la mayoría de textos se simboliza con la 
letra U. Su definición es algo más imprecisa que la del coajunto 
vacío, ya que lo que se pretende es que sea un coajunto que abar­
que a todos los coajuntos con los que estarnos tratando. Ya que 
al vacío se le ha negado todo, sería tentador dárselo todo a U, 
pero esto sería tanto corno afirmar que U es el coajunto de todos 
los conjuntos posibles, algo muy poco recomendable, no por una 
cuestión metafísica -que los matemáticos suelen obviar sin pes­
tañear- , sino porque afecta a la lógica interna de la misma defi­
nición de coajunto. Por ello, al coajunto universal se le imponen 
unos ciertos límites convencionales. En el ejemplo que utilizan1os 
al inicio, el del invitado abunido que observaba los zapatos de los 
concurrentes a una fiesta, podríamos considerar corno coajunto 
universal U el de «todos los zapatos que hay en la reunión». Pero 
se podría dar el caso de que nos conviniera ampliar el coajunto 
universal a los zapatos fabricados en el ámbito nacional si, por 
ejemplo, estarnos haciendo referencia a deternúnadas marcas. 
Tampoco habría inconveniente en que tornáramos corno con­
junto universal al formado por «todos los zapatos del mundo». 
Lo importante es que sea lo suficientemente grande corno para 
movernos en su interior a nuestras anchas. Es fácil que, siguien­
do este tipo de procesos, nuestros coajuntos universales acaben 
teniendo infinitos elementos, por lo que no es de extrañar que la 
historia de la teoría de coajuntos esté íntimamente relacionada 
con la del infinito, y más en concreto, con el concepto de infinito 
actual y con la necesidad de crear objetos matemáticos con un 
número infinito de elementos con los que se pudiera operar. 

A pesar de que las primeras nociones de coajunto fueron es­
tablecidas por Bernard Bolzano (1781-1848), la creación de dicha 
teoría se atribuye de forma indiscutible a Georg Cantor (1845-
1918). Se podría decir que esta nació en 1874 en una memoria pu­
blicada en la prestigiosa revista Journal de Crelle con el título de 
Über eine Eigenschaft des Ibegriffes aller reellen algebraischen 
Zahlen ( «Sobre una propiedad característica de la totalidad de 
los números reales algebraicos»). 

El matemático y lógico alemán Gottlob Frege (1848-1925) 
fue el primero en establecer una serie de axiomas para dotar a 
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la teoría de conjuntos de una estructura lógica. Los axiomas no 
solo pretenden garantizar que las operaciones realizadas entre 
conjuntos son correctas, sino que de alguna forma muestran de 
forma implícita o explícita la misma definición de coajunto. Sin 
embargo, este sistema axiomático tuvo una vida corta debido a la 
aparición de una insidiosa paradoja. 

LA PARADOJA DE RUSSELL 

En 1903, Bertrand Russell demostró que la teoría de coajuntos 
de Cantor era inconsistente, cuestionando la misma definición de 
conjunto, algo de lo que Cantor ya fue consciente al plantearse la 
imposibilidad de que existiera el coajunto de todos los conjuntos, 
ya que un coajunto no debería pertenecerse a sí mismo. 

Supongamos que existen dos clases de conjuntos, los que 
pertenecen a sí mismos y los que no. Llamemos, por ejemplo, M 
al coajunto de todas las mesas que existen. Sea m una mesa cual­
quiera; entonces, m pertenece al coajunto M: 

mEM. 

Está claro que el conjunto de todas las mesas no es una mesa, 
por lo que podemos afirmar que: 

Mfl_M. 

Por tanto, este es un ejemplo de un conjunto que no se perte­
nece a sí mismo. 

Consideremos ahora el coajunto T formado por todos aque­
llos coajuntos que tienen más de tres elementos. Si pensamos en 
el conjunto p, formado por una pareja de mellizos, tendremos que: 

pfl. T. 

Por otro lado, el conjunto T tiene seguro más de tres elemen­
tos -de hecho, tiene infinitos-, por lo que: 

ALEMANIA: LA MATEMÁTICA PURA 47 



48 

TET, 

con lo que tenemos un ejemplo de conjunto que pertenece a sí 
mismo. 

Russell plantea entonces el siguiente conjunto R: 

«R está formado por conjuntos que tienen la propiedad de no 
ser elementos de sí mismos.» 

Según los ejemplos anteriores, se tiene que: 

M ERy T$.R. 

En estas condiciones, la pregunta que se plantea Russell es 
la siguiente: 

¿R E R? 

Si la respuesta es sí, entonces R no puede ser un elemento de 
R, ya que se contiene a sí mismo y, por lo tanto, no pertenece aR. 
Si la respuesta es no, entonces R es un conjunto que no pertenece 
a sí mismo, de manera que es un elemento de R. Así, sea cual sea 
la respuesta, nos encontramos con un elemento que pertenece y 
no pertenece a un conjunto, lo que constituye una paradoja o, en 
términos lógicos, una contradicción. 

El problema que subyace bajo esta contradicción es que en 
el marco teórico de Cantor, nada impide que se puedan cons­
truir conjuntos como el de Russell, por lo que había que intentar 
definir una axiomática en la que este tipo de conjuntos no tuvie­
ran cabida. 

EL MODELO DE VO N NEUMANN 

El lógico y matemático alemán Ernst Zermelo (1871-1953) esta­
bleció un total de siete axiomas con los que no solo pretendía 
hacer consistente la teoría de conjuntos, sino también evitar 
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conjuntos conflictivos como el que Russell había creado para 
establecer su paradoja. Para ello, definió conceptos fundamen­
tales y relaciones entre ellos. Estaban implícitas la definiciones 
de conjunto, la de conjunto vacío, la unión y la intersección, y 
también el conjunto de las partes. Con esto se garantizaba la 
existencia de conjuntos «seguros», aquellos en los que se po­
día confiar y que permitían demostrar teoremas que eran fun­
damentales para el análisis, a la vez que dejaba fuera de juego 
a los conjuntos poco fiables que pudieran dar lugar a parado­
jas. Más tarde, la teoría de conjuntos de Zermelo fue mejora­
da y ampliada por Abraham Adolf Fraenkel (1891-1965), dando 
lugar al conjunto de axiomas que se conoce como axiomática 
de Zermelo-Fraenkel. Siguiendo un símil empleado por Henri 
Poincaré (1854-1912), se habían encerrado a las ovejas en un 
corral para resguardarlas de los lobos que estaban fuera, pero 
todavía no había garantías de que al cerrar la cerca no hubiera 
quedado dentro algún lobo camuflado. Y es que la axiomática de 
Zermelo-Fraenkel permitía la creación de todos los conjuntos 
que son necesarios en la teoría matemática, pero no excluía la 
posibilidad de que existieran conjuntos que pertenecieran a sí 
mismos, como los lobos que habían quedado dentro. 

«Existe un conjunto infinito A que no es demasiado grande.» 
- JOHN VON NEUMANN. 
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Von Neumann resolvió el problema de dos formas diferentes 
que se complementaban la una a la otra: el axioma de la fundación 
y el concepto de clase. Ambos modelos aparecieron en 1928 en su 
tesis doctoral por la Universidad de Budapest bajo el título de Die 
Axiomatisierung der Mengenlehere («La axiomatización de la 
teoría de coajuntos» ). 

Mediante el axioma de la fundación, Von Neumann construía 
los coajuntos de abajo hacia arriba, siguiendo los axiomas de Zer­
melo, de modo que si un coajunto pertenece a otro, forzosamente 
tiene que ser el primero en la sucesión. De esta manera, se evitaba 
la posibilidad de que un conjunto pudiera pertenecer a sí mismo. 
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Es importante destacar que el método que utilizó para demostrar 
este resultado; al que bautizó con el nombre de «método de los 
modelos internos», es una herramienta que se convirtió en fun­
damental en muchas demostraciones de la teoría de conjuntos 
y que se sigue utilizando actualmente. Por otro lado, el método 
del concepto de clase lo basó en la utilización de funciones para 
definir conjuntos. 

LA FUNCIÓN CARACTERÍSTICA 

Una función característica aplicada sobre un conjunto es aque­
lla que solo toma dos valores 1 y O, según un criterio definido 
previamente. Dicho criterio se establece de forma que todos los 
elementos que toman el valor 1 sean precisamente los que forman 
el conjunto que queremos definir. Consideremos, por ejemplo, el 
conjunto de todos los números pares. Una manera de caracterizar 
a este conjunto mediante una función e sería la siguiente: e( 4) = l; 
c(7) = O; e (31) = O; c(220) = l. Es decir, lo que hacemos es que la 
función e tome el valor 1 cuando es aplicada a un número par y 
el valor O cuando se aplica a un número impar (véase la figura). 
Según este criterio, el conjunto de todos los números pares es­
taría formado por todos aquellos números que toman valor 1 en 
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esta función característica. De esta manera, se observa que los 
conjuntos pueden ser definidos mediante funciones. 

Una correspondencia definida entre dos conjuntos es una 
manera de definir una relación entre los elementos del primer 
conjunto y los del segundo. Por ejemplo, si el primer conjunto 
está formado por camisetas y el segundo por pantalones, pode­
mos establecer una correspondencia entre an1bos que diga: a 
cada camiseta del primer conjunto le corresponde un pantalón 
del segundo que tenga la misma talla. Diremos que el pantalón es 
la imagen de una determinada camiseta. Podria suceder que una 
camiseta tuviera una talla XXL y que entre los pantalones no hu­
biera ninguno de esa talla, por lo que dinamos que la camiseta en 
cuestión no tiene ninguna imagen. También podria suceder que 
hubiera una talla de camiseta a la que le correspondieran varios 
pantalones de la misma talla. En este caso, lo que diremos es que 
la camiseta tiene varias imágenes. Cuando se da la circunstancia 
de que eh una correspondencia todos los elementos tienen una 
- y solo una- imagen, decimos que se trata de una aplicación o 
función definida entre ambos conjuntos. Un ejemplo de función 
es el siguiente: se define una aplicación del conjunto de los nú­
meros enteros de manera que a cada número le corresponda di­
cho número multiplicado por dos. Si llamamos a esta función! se 
tiene, por ejemplo, que f(2) = 4; f(5) = 10; f(l4) = 28 .. . Si en lugar 
de escribir la función como lo hemos hecho, indicando a dónde 
va a parar cada elemento mediante la letra efe y una igualdad, lo 
hubiéramos hecho mediante pares de elementos encerrados en 
un paréntesis: 

(2, 4) (5, 10) (14, 28), 

el resultado hubiera sido el mismo. La diferencia está en que aho­
ra la función se define mediante un conjunto cuyos elementos 
están formados por pares. Así, resumiendo, una función puede 
venir representada como un conjunto de pares y un conjunto se 
puede expresar como una función característica. 

La idea es que el conjunto, tal y como lQ trata la axiomática 
de Zermelo-Fraenkel, se fundamenta en el concepto de pertenen-
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cia. En cambio, la de Von Neurnann-el matemático húngaro te­
rúa veintidós años cuando estableció la axiomática de la temia de 
conjuntos- está basada en el concepto de función. Esta diferen­
cia formal tiene, entre otras, una consecuencia importante, y es 
que el número de axiomas que requiere la axiomática de Zermelo­
Fraenkel no está determinado a priori - potencialmente, puede 
haber una infinidad de ellos- . En cambio, en la idea de Von Neu­
mann bastan dieciocho axiomas; además, la primera puede estar 
incluida en la segunda como modelo. 

La otra gran ventaja del modelo de Von Neurnann es que el 
modelo de conjunto no está basado en el concepto de pertenen­
cia, sino en el de clases de funciones, distinguiendo entre conjun­
tos y clases propias. Estas últimas son tan grandes que no cabe la 
posibilidad de que estén contenidas en ninguna otra. En cambio, 
los conjuntos, que obedecen a condiciones más restringidas, sí 
pueden ser elementos que pertenezcan a otras clases. De esta ma­
nera, en el recinto quedaban encerradas solamente las ovejas, de­
jando a los lobos fuera, ya que lo que conducía a contradicciones 
no era el considerar las clases propias, sino la posibilidad de que 
pertenecieran a otras clases. La axiomática de Zermelo-Fraenkel­
Von Neurnann se sigue utilizando en la actualidad. 

MECÁNICA CUÁNTICA 

Desde sus orígenes, la física ha sido una ciencia experimental. 
En numerosas ocasiones una teoría surge de un experimento y 
se consagra mediante otro experimento. En el interludio se cons­
truyen hipótesis de trabajo, se definen términos y, sobre todo, se 
establecen fórmulas, siendo el momento en el que la física y las 
matemáticas caminan de la mano. La formulación es importante 
porque, entre otras cosas, posee una capacidad predictiva y unas 
grandes dosis de generalización, consecuencia del carácter abs­
tracto de las matemáticas. Si tenemos un depósito con un líquido 
cuyas características conocernos, y el recipiente tiene un orificio 
de salida, podemos hacer una medición que refleje el tiempo que 
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tarda el depósito en vaciarse. Si disponemos de una teoría adecua­
da sobre las leyes físicas que rigen el vaciado de depósitos -lo 
que invariablemente supone disponer de unas cuantas fórmulas 
matemáticas-, estaremos en condiciones de hacer predicciones 
del tiempo que tardan en vaciarse otros depósitos con formas di­
ferentes y que contengan distintos líquidos y volúmenes. 

En este sentido, que las matemáticas y la física vayan de la 
mano no presupone en absoluto que lo hayan hecho en su desa­
rrollo histórico, ya que la mayoría de las veces han evolucionado 
recorriendo caminos separados, aunque al final acaben siempre 
encontrándose. Tarde o temprano, la física necesita de las mate­
máticas para consolidarse como ciencia exacta. La aparición de 
nuevas teorías como la relatividad y la naciente mecánica cuán­
tica a principios del siglo XIX obligó a desarrollar unas matemáti­
cas que se adaptaran a los nuevos paradigmas. Y es así como lo 
que se conoce por física teórica o física matemática adquirió un 
gran protagonismo, especialmente en entornos favorables , corno 
sin duda lo era el que Hilbert había creado en la Universidad de 
Gotinga. 

DOS TEORÍAS COMPLEMENTARIAS 

Había datos experimentales que no podían ser explicados den­
tro del marco teórico de la física newtoniana. Especialmente 
dos fenómenos. El primero de ellos era la emisión de radiación 
por un cuerpo negro para el que no se había encontrado ninguna 
explicación satisfactoria. El segundo era que si un electrón gira­
ba en una órbita alrededor de un núcleo debía ir perdiendo ener­
gía paulatinamente para finalmente acabar estrellándose contra 
el núcleo, cosa que no sucedía. Además, resultados experimen­
tales también corroboraban que las partículas tenían una doble 
naturaleza, como onda y como corpúsculo, lo que se ponía de 
manifiesto en algunos experimentos realizados con fotones , en 
los que, como en el caso del efecto fotoeléctrico, se comporta­
ban como si fueran partículas, y en otros manifestaban su natu­
raleza ondulatoria, como en el experimento de la doble rendija. 
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Aparecieron entonces dos teorías capaces de dar una expli­
cación a estos fenómenos. La primera de ellas debida a Wer­
ner Heisemberg (1901-1976), y la segunda a Erwin Schrodinger 
(1887-1961). Así como la mecánica que planteó Heisemberg era 
una mecánica matricial, la de Schrodinger era una mecánica 
ondulat01ia, y las herramientas matemáticas de las que se valía 
cada una de ellas eran lógicamente diferentes. En el esquema de 
Schrodinger, la ecuación de onda asociada a una partícula era 
una ecuación diferencial, cuya resolución para el electrón en el 
átomo de hidrógeno dio un resultado que coincidía con el obte­
nido experimentalmente, lo que sirvió para consolidar la teoría 
ondulatoria. 

«Es más fácil viajar en un avión, incluso pilotarlo, 
que entender por qué puede volar.» 

- JOHN YON NEUMANN. 

Todo esto sucedía en Gotinga entre los años 1925 y 1926. Se 
hacía urgente la necesídad de encontrar una herramienta mate­
mática que pudiera ser utilizada indistintamente por ambas teo­
rías. En estas circunstancias volvió a darse la situación, tantas 
veces repetida a lo largo de la historia de la ciencia, de que una 
teoría matemática, completamente abstracta, en el sentido de que 
nada tenía que ver con alguna realidad física concreta, vino como 
anillo al dedo para unificar matemáticamente ambas teorías, y fue 
precisamente Hilbe1t el que la había creado con la teoría de los 
espacios funcionales. No obstante, la unificación, en un sentido 
más general, de ambas teorías, se conseguiría si se era capaz de 
establecer un sistema axiomático de naturaleza abstracta que fue­
ra capaz de englobarlas. 

LA AXIOMATI ZACIÓN DE LA FÍS ICA 

¿Se puede axiomatizar la física? Esta fue la cuestión abierta que 
Hilbert planteó en Gotinga y que figura en sexto lugar en su fa-
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mosa lista de los veintitrés problemas planteados en París en el 
Segundo Congreso Internacional de Matemáticas. 

En el texto original, Hilbert pedía textualmente: 

[ ... ][investigarlos fundamentos de) aquellas ciencias físicas en las 
que la matemática tiene un papel importante; en el primer nivel están 
la teoría de probabilidades y la mecánica 

En cuanto a las probabilidades, en 1933, el matemático ruso 
Andréi Nikoláyevich Kolmogórov fue el primero en establecer 
una axiomática para las probabilidades. En relación a la física, 
diferentes científicos -entre ellos Von Neumann- hicieron 
avances muy importantes, pero hay objeciones a que pueda ser 
definitivamente resuelto debido a la enorme complejidad de los 
resultados experimentales que pueden hacer inestable el sistema 

DAVID HILBERT 

El matemático alemán David Hilbert nació el 23 de enero de 1862 en Kónigs­
berg -actual Kaliningrado, Rusia-, capital de la antigua Prusia Oriental. Su 
padre, funcionario del Estado, había sido destinado a esta ciudad para ejercer 
las funciones de juez. El ambiente familiar en el que creció Hilbert era propicio 
al desarrollo intelectual, en gran parte gracias a la influencia de su madre, una 
mujer extraordinariamente culta que cultivaba la filosofía, la astronomía y las 
matemáticas. A los dieciocho años, una vez terminado el bachillerato, Hilbert 
inició en la Universidad de Kón igsberg sus estudios de matemáticas. Tuvo 
maestros de privilegio, ya que entre ellos se encontraban personalidades como 
H. Weber o F. Lindemann. Este fue el período en el que Hilbert se in ició en la 
teoría de invariantes y también cuando tuvo ocasión de conocer a Hermann 
Minkowski (1864-1909), matemático ruso con el que mantuvo una estrecha 
amistad durante toda su vida. En 1892, Hilbert obtuvo una plaza como cate­
drático extraordinario en la Universidad de Kónigsberg. Este cargo, además del 
prestigio académico, le permitía una estabilidad económica suficiente como 
para poder formar una familia, de manera que en 1892 se casó entonces con 
Kathe Jerosch. Uno de los momentos cruciales en la carrera profesional de 
Hilbert fue cuando, en 1895, Felix Klein, en contra de la opinión de la mayoría 
de académicos, le propuso para ocupar el puesto de profesor ordinario en la 
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axiomático; de hecho, este sigue siendo uno de los veintitrés pro­
blemas de la lista que todavía permanece abierto. 

LA AXIOMÁTICA DE VON NEUMANN 

Von N eumann axiomatizó la mecánica cuántica de manera que 
los parámetros que definían el estado de una partícula pudieran 
ser establecidos mediante los cinco axiomas que había determi­
nado para el espacio de Hilbert. De esta manera, la formulación 
matemática era lo suficientemente abstracta como para perma­
necer separada por completo de la experimentación física. Es­
tos resultados fueron publicados en diversos artículos que apa­
recieron en la revista Mathematische Annalen entre los años 
1929 y 1930. 

Universidad de Gotinga. A finales de la 
primavera de 1920, Hilbert cayó grave­
mente enfermo a causa de una anemia. 
En aquellos tiempos, se trataba de una 
larga enfermedad para la que no existían 
remedios eficaces. A pesar de la gran 
fatiga física y anímica en que se encon­
traba sumido, encontró fuerzas para de­
dicarse plenamente a investigar en los 
fundamentos de las matemáticas. Hilbert 
fue uno de los primeros pacientes en el 
mundo en probar un preparado hepático 
que desarrolló la medicina en 1927 y que 
afortunadamente le salvó la vida en aque-
lla ocasión. Los diez últimos años de su Retrato de David Hilbert en los últimos 

existencia los pasó parcialmente aislado anos de su vida. 

a causa de los acontecimientos políticos 
de la Alemania nazi. David Hi lbert murió el 14 de febrero de 1943 en Gotinga, 
Alemania. A su entierro pudieron acudir muy pocas personas, entre ellas su 
esposa, que ya estaba medio ciega, y el físico Arnold Sommerfeld (1868-1951), 
que a duras penas pudo desplazarse desde Múnich para acudir al sepelio. 
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Von Neumann se ocupó también de otro asunto que estaba 
incomodando sobremanera a los físicos y que iba a significar un 
avance importante en las teorías de la medida. En buena parte de 
los experimentos de física siempre se realiza algún tipo de medi­
ción, y las mediciones comportan errores. Por muy preciso que 
sea el instrumento utilizado, el error es inevitable, por lo que es 
importante conocer la magnitud del error o, por lo menos, tenerlo 
acotado entre ciertos márgenes. En física clásica, la teoría de la 
medición y de los errores se había desarrollado lo suficiente corno 
para poder confiar de manera razonable en los resultados de los 
experimentos. Pero la física cuántica introdujo un nuevo concep­
to del error que dio al traste con las teorías anteriores. Debido a 
la propia naturaleza de la observación, no es posible obtener me­
diciones precisas, corno mucho se puede aspirar a resultados de 
tipo estadístico. La explicación está en que lo que pretendernos 
medir tiene las dimensiones microscópicas de un átomo o de un 
electrón, y el aparato de medición interfiere inevitablemente con 
el objeto a medir. La situación es parecida a la que tendríamos si 
con una regla quisiéramos determinar la posición que tiene una 
caja de cerillas que está encima de una mesa con respecto a los 
bordes de la misma, y cada vez que acercarnos la regla a la caja, 
movernos «sin querer» la posición de esta. Algo similar es lo que 
sucede en física cuántica. 

El sistema axiomático establecido por Von N eumann era en sí 
mismo una teoría de la medida que permitía describir el proceso 
de observación y el objeto observado corno elementos lógicos a 
tratar en el sistema de axiomas. Para ello, tuvo la brillante idea 
de considerar que la observación no transcurría a lo largo de un 
determinado período de tiempo, sino que tenía lugar en un instan­
te, con lo que consiguió que tuviera un carácter atemporal. To­
dos estos resultados se encuentran contenidos en Mathematische 
Grundlangen der Quantenmechanik (Fundamentos matemáti­
cos de la mecánica cuántica), publicado en Berlín en 1932, uno 
de sus libros que mayor popularidad llegó a alcanzar. En 1936, este 
trabajo fue completado por Von Neumann en colaboración con el 
matemático estadounidense Garrett Birkhoff (1911-1996) con un 
estudio detallado de la lógica de la mecánica cuántica. 
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Von Neumann era consciente de que la lógica que describía 
los fenómenos cuánticos se apartaba sensiblemente de la lógica a 
la que estamos habituados en el marco clásico. En lógica de enun­
ciados existe una conectiva que se representa con el signo 11, que 
es equivalente a la conjunción copulativa «y» en el lenguaje ordi­
nario. Dos enunciados A y B unidos por esta conectiva se repre­
sentan como A II B. Por ejemplo, el enunciado A podría ser «Luis 
tiene treinta y cuatro años», y el B «Luis es moreno», de manera 
que A 11 B se leería «Luis tiene treinta y cuatro años y es moreno». 
La afirmación solo es verdad si ambos enunciados son verdaderos. 
Una de las propiedades de esta conectiva es su carácter conmuta­
tivo: B II A; es decir, el que sea verdadero o falso no depende del 
orden en que consideremos los enunciados. Da lo mismo afirmar 
que «Luis tiene treinta y cuatro años y es moreno» que decir que 
«Luis es moreno y tiene treinta y cuatro años». Pero en física cuán­
tica las cosas no funcionan de esta manera. 

La luz es una onda electromagnética transversal que tiene dos 
planos de vibración perpendiculares. Cuando se coloca un filtro 
polarizado --es el material con el que se construyen los cristales 
para las gafas de sol polarizadas- en la trayectoria de un rayo 
luminoso, se impide el paso de uno de los dos planos de vibración, 
de manera que si se colocan dos filtros polarizados perpendicula­
res, la luz no puede pasar. Tomemos ahora un tercer filtro que esté 
polarizado en diagonal. Se comprueba experimentalmente que si 
este tercer filtro se coloca entre los dos anteriores, la luz sí puede 
pasar a través de los tres. Es obvio que, en cambio, si lo colocamos 
después del segundo, la luz no pasará porque los dos primeros no 
le dejan. Podemos llamar A al segundo filtro y B al tercero, y poner 
una pantalla detrás de los filtros. Podemos convenir en que «ver­
dadero» es cuando la pantalla se ilumina y «falso» cuando queda 
a oscuras. Según esto, A 11B daría como resultado «verdadero», ya 
que la pantalla con esta disposición de filtros se ilumina. En can1-
bio, B 11 A sería «falso», dado que la luz no puede pasar; de manera 
que A 11 B,. B 11 A. 

Von N eumann compiló todos sus resultados sobre la lógica que 
debía regir los fenómenos cuánticos en una reedición de laMathe­
matische Grundlangen der Quantenmechanik publicada en 1936. 
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EL DERRUMBE DE LOS FUNDAMENTOS 

Un sistema lógico como el que acabamos de describir sugiere una 
cierta «mecanicidad», en el sentido de que todas .las operaciones 
que se llevan a cabo con los enunciados siguen unas reglas fijas. 
Dicho de una forma un tanto incorrecta, pero sencilla, es impor­
tante «tener cuidado» con lo que se hace, pero no es necesario 
«pensar» en lo que se hace. Entonces, parece que se podrian crear 
teoremas de geometría de una forma puramente lógica, sin necesi­
dad de pensar en rectas o planos, ni imaginar cómo estos se cruzan 
o cortan en el espacio. Es más, podriamos pensar en la posibilidad 
de «darle vueltas a la manivela» y que se crearan de manera auto­
mática todos los teoremas geométricos posibles. Una posibilidad 
así haría que las matemáticas no solo fueran una ciencia exacta, 
sino también una ciencia perfecta, la ciencia de todas las ciencias. 

Durante más de dos mil años, el método axiomático de la geo­
metría había dado muy buenos resultados. Fundamentándose en 
unos pocos axiomas, se podían demostrar una infinidad de teore­
mas. Parecía razonable pensar que este mismo método pudiera 
aplicarse a otras ran1as. A finales del siglo xrx, la aritmética ya ha­
bía sido dotada de un sistema axiomático que parecía susceptible 
de entrar en el juego; una vez aceptados los axiomas, de ellos se 
podria derivar toda una serie de proposiciones que adquirirían el 
rango de teoremas. Ese era el objetivo que perseguía David Hil­
bert, pero el teorema de Godel actuó en el proyecto corno un tor­
pedo en la línea de flotación. 

Godel se doctoró en 1930 con un trabajo dirigido por su direc­
tor de tesis, el matemático austriaco Hans Halm (1879-1934), titu­
lado «La completitud de los axiomas del cálculo lógico de primer 
orden», un terna estrechamente relacionado con el programa for­
malista de Hilbert. A primeros de septiembre de ese mismo año 
asistió a un congreso sobre Epistemología de las Ciencias Exactas 
en Konigsberg -actual Kaliningrado, en Rusia-, al que acudie­
ron Rudolf Carnap, Arend Heyting, John von Neumann y Friedrich 
Waisrnann. En él manifestó de manera clara sus dudas sobre la 
posibilidad de llevar a cabo el programa formalista de Hilbert y 
anunció algunos de sus resultados sobre la incompletitud de la 
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KURT GODEL 

El matemático, lógico y filósofo austria­
co-estadounidense Kurt Godel (1906-
1978) fue el menor de los dos hijos de 
Rudolf y Marianne Godel, expatriados 
alemanes dedicados a la industria textil. 
Tras graduarse en el Realgymnasium de 
Brno, Kurt abandonó su país natal para 
matricularse en 1924 en la Universidad de 
Viena. Godel había ingresado en dicha 
universidad con la clara intención de es­
tudiar física, pero la influencia de dos de 
sus profesores, Philipp Furtwangler y 
Hans Hahn, le llevó a decantarse por las 
matemáticas. Por aquel entonces, ya ha­
bía padecido unas fiebres reumáticas 
que le dejaron ciertas secuelas psicoló­
gicas que marcarían para siempre su ca­
rácter y que se traducían en una preo­
cupación hipocondríaca por su salud y 
especialmente por todo lo que tuviera 

Kurt GOdel durante su estancia en el 
Instituto de Estudios Avanzados de 
Princeton (Nueva Jersey, Estados 
Unidos), en la década de 1940. 

relación con la alimentación. En la década de 1920, a pesar de estar sumida en 
una fuerte depresión económica, la Universidad de Viena se había convertido 
en un centro cultural de referencia obligada. En 1926, Godel fue invitado a un 
seminario de filosofía del círculo de Moritz Schlick, frecuentado por filósofos, 
físicos y matemáticos, como Rudolf Carnap (1891-1970), Hans Hahn (1879-1934), 
Moritz Schlick (1882-1936), Friedrich Waismann (1896-1959), Otto Neurath 
(1882-1945), y que acabaría por constituir el famoso Círculo de Viena. Carnap 
como filósofo y Karl Menger como matemático, fueron los que introdujeron a 
Godel en la lógica matemática. En aquella época, el Círculo de V iena seguía 
muy de cerca los trabajos de Ludwig Wittgenstein (1889-1951) sobre el lengua­
je del lenguaje -metalenguaje-, algo que Godel ya se había propuesto apl icar 
a las matemáticas. A pesar de ello, Godel no se adhirió a las corrientes de 
pensamiento del Círculo de Viena, en las que imperaba el positiv ismo lógico. 
Más bien mantuvo una postura contraria y marcada por un platonismo de­
clarado. Godel creía que las verdades existían con independencia de que se 
conocieran o no. En el terreno de las matemáticas, esto significaba que los 
teoremas no se creaban, sino que se descubrían. En más de una ocasión ma­
nifestó que los resultados a los que _había llegado habían sido inspirados por 
esta metafísica plátonista. Cuando en 1952 la Universidad de Harvard concedió 
a Godel el título de Doctor Honorario en Ciencias, le distinguió como «el des­
cubridor de la verdad matemática más significativa de este siglo». 
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aritmética. Poco tiempo después, en 1931, y con tan solo veinticin­
co años, publicó su famoso teorema de incompletitud, que iba a 
socavar los firmes cimientos en los que se apoyaban las matemáti­
cas. A pesar de que el contenido del teorema versaba sobre temas 
muy especializados, obtuvo un eco internacional asombrosamen­
te rápido y amplio, que en 1933 le permitió el cargo de docente ad 
honórem (Privatdozent, en alemán) en la Universidad de Viena. 

LOS TEOREMAS DE GÓDEL 

Una teoría es un cuerpo formado por un conjunto de axiomas 
y unas reglas de inferencia lógica que permiten establecer una 
serie de conclusiones o teoremas a partir de dichos axiomas. Una 
teoría es «contradictoria» cuando, dentro de su cuerpo teórico, se 
puede demostrar una afirmación y también su contraria. Cuando 
una teoría no es contradictoria, se dice que es «consistente». Por 
otro lado, dentro del marco teórico debe existir la posibilidad de 
demostrar cualquier afirmación que sea cierta. En este caso, se 
dice que el sistema es «completo». 

El primer teorema establecido por Godel afirma que en todo 
sistema axiomático capaz de albergar la aritmética de los núme­
ros enteros, existen proposiciones que son ciertas, pero indemos­
trables dentro del mismo sistema; es decir, si la teoría aritmética 
es consistente, entonces es incompleta. Esto es tanto como afir­
mar que no puede existir un sistema de axiomas que comprenda 
a la aritmética de los números naturales que sea perfecto, ya que 
o bien es inconsistente o bien es incompleto. 

Cuando Von Neumann acudió al célebre congreso de Konigs­
berg, se interesó inmediatamente por los resultados que Godel 
había expuesto. No es de extrañar este súbito interés si se tiene 
en cuenta que Von Neumann había establecido un sistema axio­
mático para la teoría de conjuntos que le llevaba a considerarlo 
como un tema prácticamente cerrado. Sin embargo, en ese mo­
mento Von Neumann debía aceptar que el sistema quedaba in­
completo, no porque el sistema axiomático contuviera defectos, 
sino porque cualquier sistema de esa naturaleza era incompleto 
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por definición. Von Neumann no solo aceptó el resultado, sino 
que en el tiempo récord de un mes le presentó a Godel una con­
secuencia de su teorema, que Godel acabó demostrando como un 
segundo teorema. 

El segundo teorema de Godel afirmaba que si una teoría arit­
mética es consistente, no existe en su seno demostración alguna 
de que, efectivamente, lo es. Este segundo teorema es algo más 
intrincado y tiene como consecuencia que una teoría que com­
prenda en su seno a la aritmética de los números naturales no 
puede justificarse a sí misma, en el sentido de hacer una afirma­
ción del tipo «la teoría Tes consistente». Dicha teoría estará do­
tada de un cierto simbolismo formal, en el cual se pueda incluir 
la afirmación «la teoría T es consistente» mediante un símbolo 
que podría ser, por ejemplo, C (1). El segundo teorema de Godel 
afirma entonces que, si T es consistente, C (1) no puede ser de­
mostrado a partir de T. 

Este segundo teorema, al que Godel no pareció darle más im­
portancia que la de ser una mera consecuencia del primero, re­
sultó ser el que más repercusión acabó teniendo en la comunidad 
matemática, que lo ha conocido siempre como «segundo teorema 
de Godel», sin que casi nunca se haga mención a la crucial inter­
vención que Von Neumann tuvo en él. 

Actualmente, las teorías de Godel se han generalizado y apli­
cado a campos muy diversos. Uno de los terrenos en los que tiene 
una aplicación más directa es el de las ciencias computacionales, 
especialmente en la imposibilidad de resolver el «problema de la 
detención», que consiste en encontrar la manera de poder decidir 
si un ordenador cualquiera, con programas y datos de entrada 
arbitrarios, puede llegar a detenerse o a quedar atrapado en un 
bucle infinito. Otra de las consecuencias del teorema de Godel en 
este terreno es la de los virus, ya que se demuestra que «ningún 
programa que no altere el sistema operativo de un ordenador será 
capaz de detectar todos los programas que sí lo hagan». 

Hilbert valoró las consecuencias del teorema de Godel con 
un cierto pesimismo, ya que había depositado grandes esperanzas 
en la posibilidad de que se pudieran establecer los fundamentos 
de las matemáticas de manera que dieran lugar a un proceso auto-
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constructivo, del que podrían surgir resultados complejos a partir 
de suposiciones sencillas implantadas en un sistema lógico con­
sistente. Godel no compartía ese pesimismo, ya que no creía que 
su teorema de incompletitud implicara que el método axiomático 
no era el adecuado para el desarrollo teórico de las matemáticas, 
sino que simplemente afectaba al quehacer de las mismas, devol­
viendo a la intuición el papel protagonista que siempre había creí­
do que debía tener. Este era un punto de vista totalmente acorde 
con sus concepciones filosóficas, más cercanas al platonismo que 
al po:'litivi:,~o lógico. En cierta forma, se podría afirmar que la ac­
ción demoledora de sus teoremas relegaba el aspecto mecánico y 
«exacto» de las matemáticas a un segundo término, priorizando 
el valor de la imaginación y de la intuición, devolviéndolas así al 
lugar que les correspondía como ciencias del espíritu, junto a la 
música y a la filosofía. 

CONCLUSIONES 

El programa de Hilbert había acabado en fracaso, pero Von Neu­
mann tampoco compartía el pesimismo de Hilbert respecto al fu­
turo de las matemáticas. A efectos prácticos, consideraba corno 
un éxito la axiomatización de cor\juntos que había liberado a esta 
de «objetos extraños» y también la posterior axiomatización que 
llevó a cabo en la mecánica cuántica. Van Neurnann nunca re­
nunció a establecer modelos lógicos y abstraer lo máximo posi­
ble determinados problemas, incluso en áreas muy apartadas de 
las matemáticas, corno haría luego con la teoría de juegos. En su 
sentido más amplio, el plan podía haber fracasado, pero si bien 
la axiomatización no le ofrecía la posibilidad de eliminar desde 
sus orígenes las contradicciones y otros elementos extraños, sí 
le permitía poder tener un conocimiento y, hasta cierto punto, un 
control sobre ellos. 

Las matemáticas se habían hecho siempre de la misma ma­
nera y los resultados habían sido satisfactorios. Van N eurnann no 
veía motivos para que las cosas no pudieran seguir así. A pesar de 
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que era cierto que la validez interna del sistema lógico había que­
dado cuestionada, la historia de las matemáticas desde sus inicios 
proporcionaba garantías más que sobradas de su gran eficacia 
como herramienta, de la que se habían visto muy beneficiadas 
otras ciencias, especialmente la física. Von Neumann afirmaba 
que las matemáticas clásicas proporcionaban resultados que eran 
a la vez elegantes y útiles, y que se basaban en unos fundamentos 
tan sólidos como lo pudieran ser la existencia del electrón. Ade­
más, en su opinión, de la misma manera que alguien estaba dis­
puesto a aceptar la validez de una ciencia como la física, también 
podía aceptar la validez de las matemáticas clásicas. 
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CAPÍTULO 3 

Teoría de juegos 

Von N eumann dio paso a la creación de una 
nueva teoría matemática conocida hoy como «teoría de 
juegos». A partir de ese momento, los juegos pasaron a 
ser algo más que un mero pasatiempo para convertirse 
en el escenario en el que dos o varias personas podían 

desarrollar estrategias racionales para influir en el 
resultado final de la partida. Los escenarios podían 

ser muy diversos, e implicaban un tema tan 
fundamental y complejo como 

la toma de decisiones. 





El juego es una actividad inherente no solo a la especie humana, 
sino también a la mayoría de las especies evolucionadas. Es un 
hecho comprobado que el juego, como tal, es imprescindible en la 
mayoría de procesos de aprendizaje y desarrollo de las facultades 
que consideramos superiores. Es a través del juego que muchos 
animales aprenden a coordinar movimientos para acechar, ata­
car, defenderse y es también por medio del juego que el hombre 
aprende un gran número de destrezas utilizando una serie de ele­
mentos con los cuales simular una situación real. En un juego hay 
tres conceptos claves: el escenario, el azar y la apuesta. 

El escenario en el que se desarrolla el juego es el primer paso 
para reconocer su estructura, ya que permite crear modelos mate­
máticos en situaciones tan simples como una partida de dados, o tan 
complejas como pueden ser los posibles desenlaces de una batalla 

El azar interviene siempre en mayor o menor medida en cual­
quier tipo de juego y decide el grado de iniciativa de los jugadores a la 
hora de definir sus estrategias. En aquellos juegos en los que el azar es 
poco relevante, como el ajedrez, la iniciativa del jugador es decisiva 
En cambio, en un juego de puro azar, como puede ser el lanzamiento 
de una moneda, la iniciativa de los jugadores se limita a la apuesta 

La apuesta es aquello que «se pone en juego». Puede ser algo 
inmaterial, como la habilidad del jugador o el honor, o puede ser 
algo que revista tintes tan dramáticos como jugarse la vida en 
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la ruleta rusa. En cualquier caso, todo juego lleva implícita una 
apuesta, incluso cuando nadie se juega nada, ya que un juego, 
como tal, no puede existir sin decidir si alguno de los jugadores 
ha ganado o ha perdido la partida. Lo importante de la apuesta es 
que se le puede asignar números. En el caso más simple, como 
es ganar o perder, sin más, los números podrían ser respectiva­
mente 1 y O; y cuando a algo se le pueden asignar números existe 
la posibilidad de darle un tratamiento matemático. 

El cálculo de probabilidades y la estadística son teorías que 
surgieron a raíz del estudio sistemático de los juegos, pero más en 
el ánimo de la predicción que de la propia naturaleza del juego. Con 
los primeros trabajos de Von N eumann se adoptó una óptica distin­
ta, muy lejos de los cálculos estadísticos, en los que el juego reveló 
una naturaleza diferente, no tanto como un suceso básicamente 
dependiente de las reglas del azar, sino más bien como un conflicto 
de intereses. En este sentido, hay que considerar las investigacio­
nes de Von Neumann como un trabajo pionero en lo que acabaría 
siendo una nueva rama de las matemáticas: la teoría de juegos. 

Es difícil llegar a saber con seguridad cuándo y dónde Von N eu­
mann se interesó por el aspecto matemático de los juegos, ya que 
no hay constancia de ello ni en escritos ni en charlas informales. A 
finales de 1926, cuando todavía era becario en la Universidad de Go­
tinga, sorprendió con una conferencia sobre teoría de juegos en la 
sede de la Sociedad Matemática de dicha universidad. A raíz de esa 
conferencia, escribió un artículo que envió a la revistaMathematis­
che Annolen y que fue publicado al año siguiente bajo el título «Zur 
Theorie der GeseUschaftsspiele» ( «Sobre, la teoría de los juegos de 
sociedad»). Durante los años que siguieron a esta publicación no 
pareció interesarse por el tema, lo que no quiere decir que no lo 
hiciera, ya que dieciocho años más tarde publicó - junto con el eco­
nomista Oskar Morgenstem- un libro sobre la teoría de juegos que 
figura entre las obras de mayor relevancia de Von Neumann. 

En su trabajo inicial, Von Neumann formalizó matemática­
mente los juegos competitivos en los que intervienen dos perso­
nas, mostrando un interés especial en las posibles estrategias que 
pueden desarrollar los jugadores en aquellos juegos que se carac­
terizan por lo que Von Neumann denominó «de suma cero». 
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OSKAR MORGENSTERN 

El matemático y economista alemán Os­
kar Morgenstern nació el 24 de enero de 
1902 en Górlitz, Alemania. Hasta cierto 
punto, se podría decir que era de cuna 
aristocrática, ya que su madre fue hija 
ilegítima del emperador Federico 111. En 
1925 se graduó en ciencias políticas y 
económicas en la Universidad de Viena. 
Gracias a una beca Rockefeller, pasó los 
siguientes cuatro años en Princeton para 
cursar estudios de posgrado. En 1929 
volvió a Austria, donde entró a formar 
parte del Mathematische Kolloquium, un 
grupo de matemáticos liderado por Karl 
Menger (1902-1985), quien era especial­
mente crítico con el renombrado Círculo 
de Viena. En 1938, Morgenstern fue expulsado de su cátedra de Viena ' por las 
autoridades nazis y se vio obligado a emigrar a Estados Unidos, país en el que 
se nacionalizó. Ya en 1970, accedió a la cátedra de Economía en Princeton, 
cargo que ocupó hasta su muerte, el 26 de julio de 1977. Junto con Menger, 
Morgenstern defendió una clara postura a favor de la axiomatización de la teo­
ría económica, rechazando las corrientes defendidas en parte por el Círculo de 
Viena, que optaban por el uso de herramientas matemáticas que habían sido 
uti lizadas con éxito en la física, como el cálculo infinitesimal, para aplicarlas 
a la teoría del equilibrio económico. Por tanto, antes de que Von Neumann 
y Morgenstern se encontraran en Princeton ya había una concordancia casi 
absoluta de la forma en cómo había que abordar la economía si se pretendía 
que alcanzara el rango de ciencia. 

JUGADORES 

La teoría de juegos es de largo alcance porque sus posibles apli­
caciones pueden ir más allá de lo que entendemos por «juego» y 
aplicarse a otros escenarios. De hecho, de lo que se trata es de 
definir estrategias y de formalizar la toma de decisiones. Exis­
te un ejemplo que, por su extraordinaria simpleza, se utiliza con 
frecuencia para entender cuáles son los objetivos que persigue la 
teoría de juegos: el reparto de un pastel. 

TEORÍA DE JUEGOS 71 



72 

Supongamos que dos personas tienen que repartirse un pastel. 
Normalmente, en este ejemplo los protagonistas son dos niños. Se 
supone que facilita la comprensión el que se trate de jugadores a 
los que les gustan mucho los pasteles, y cuyo único objetivo es ga­
nar y llevarse el pedazo más grande. En este sentido, la naturaleza 
egoísta de los niños define muy bien el perfil ideal del jugador. El 
reparto se plantea en los siguientes términos: el niño A cortará la 
tarta y el niño B será el primero en elegir su pedazo. Lo primero 
que hace el niño A es tener en cuenta al niño B y pensar que lo que 
este hará una vez la tarta esté cortada será coger el pedazo más 
grande. Este pensamiento es fundamental para decidirse por la 
mejor estrategia, que sin duda es cortar la tarta en dos pedazos 
iguales. Cualquier otra consideración es peligrosa. Si, por ejemplo, 
A piensa que, como Bes un niño bueno y muy bien educado, coge­
rá siempre el trozo más pequeño, puede decidir un corte asimétri­
co que le favorezca. Esta es una opción mucho más arriesgada que 
la primera y se basa en todo caso en la intuición o en información 
privilegiada que poco o nada tiene que ver con el juego. 

Esta exposición puede parecer excesivamente simple, pero 
contiene los elementos claves para determinar el escenario ele­
gido I)Or la teoría de juegos para que sus resultados sean válidos. 
Cualquier situación del tipo «solo juego para pasar el rato y no 
me in1porta perder y dejar ganar a mi contrincante», puede estar 
plenamente justificada en muchos escenarios, pero no en el de 
la teoría de juegos, en la que se considera que los jugadores son 
todos seres racionales y que actúan como tales, que su objetivo 
en el juego es ganar y que para ello adoptan una posición egoísta. 

El requisito de que los jugadores deben ser perfectamente ra­
cionales va bastante más allá de que se comporten como tales. Su­
pone una situación ideal, ya que nadie es capaz de tener en cuenta 
todas las jugadas posibles y tomar la decisión adecuada para ga­
nar a toda costa. Juegos de estructma sencilla, como el nim o el 
tres en raya, pemúten alcanzar ese nivel sin demasiado esfuerzo, 
ya que se trata de juegos en los que el árbol de decisiones tiene 
pocas ramas y que, si ambos jugadores son perfectamente racio­
nales en el sentido antes indicado, terminan inexorablemente en 
tablas o bien la partida se decide en función de cuál es el jugador 
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que corrúenza. Otros juegos, como el go o el ajedrez, tienen estas 
mismas características, pero con un nivel de complejidad mucho 
más alto que hace casi imposible la infalibilidad de la jugada. En 
la actualidad, todavía no se sabe si en este tipo de juegos con 
jugadores idealmente racionales habría un ganador o necesaria­
mente la partida finalizaría en tablas. 

JUEGO BIPERSONAL DE SUMA CERO 

En líneas muy generales, un juego es una dinámica en la que in­
tervienen dos o más jugadores y que se desarrolla en un marco de 
reglas bien definidas. Los participantes pueden tomar decisiones 
que configuren un tipo particular de estrategia capaz de interferir 
en el desarrollo del juego. El objetivo del juego es obtener algún 
tipo de beneficio, por lo que el pago es uno de los conceptos fun­
damentales. El pago, una noción algo más general que la de la 
apuesta, es una forma de premio que puede ser externa al juego y 
a repartir entre los distintos jugadores, o bien tener forma de pe­
nalización. Este es el caso de una apuesta entre dos jugadores, en 
la que uno gana (pago positivo) y el otro pierde (pago negativo). 

El concepto de pago perrrúte establecer una primera clasifi­
cación de los juegos en dos grandes grupos: los juegos de suma 
cero y los de suma no-cero. Los primeros son aquellos en los que 
los jugadores compiten por un único prerrúo o pago y se rigen 
por la sencilla fórmula de que el total de ganancias es igual al de 
pérdidas. En cambio, aquellos juegos en los que se puede optar 
simultáneamente por varios prerrúos son juegos de sun1a no-cero. 

El abanico de juegos de suma cero es muy amplio. Hay que 
tener en cuenta que juegos como las damas o el ajedrez entran en 
esta categoría, ya que basta con considerar que el vencedor obtie­
ne un punto y el otro jugador lo pierde. También podemos decir 
que el primero tiene un punto positivo y el segundo un punto ne~ 
gativo. Este es el escenario que Von Neumann denominó «juego 
bipersonal de suma cero», que, como esquema, abarca una gran 
variedad de juegos competitivos. 
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Los juegos bipersonales de suma cero son a todo o nada, a 
muerte, de manera que el juego termina cuando uno de los ju­
gadores gana y el otro pierde. Dicho de otra forma, no existe la 
posibilidad de que los jugadores colaboren entre sí. 

MATRIZ DE PAGOS 

Una disposición que resulta ser muy útil para analizar un juego 
es la llamada «matriz de pagos» (Pay-Off Matrix), que consiste en 
una tabla de doble entrada, en la cual las estrategias posibles del 
jugador A figuran en la izquierda y las del jugador B en la parte 
superior. Por estrategias se entienden las posibles opciones que 
plantea el juego. En cada una de las casillas de la tabla están re­
presentadas las ganancias o pérdidas que obtiene cada jugador 
según la estrategia elegida. Dos números, separados por una barra 
o una coma, representan las ganancias y las pérdidas para el pri­
mero y el segundo jugador, respectivamente. Por ejemplo: 

Jugador B 

1 2 

1 

1 1 10/2 - 3/5 
Jugador A 

1 1/-6 4/8 2 

Esta matriz de pagos nos dice que si el jugador A opta por la 
estrategia 2 y el jugador B por la 1, el resultado será que el pri­
mero ganará 1 y el segundo perderá 6. En cambio, si el jugador 
A opta por la 1 y el B por la 2, el primero perderá 3 y el segundo 
ganará 5. Otra manera más sencilla de representar la matriz de 
pagos, que tiene la misma lectura que la anterior, es la siguiente: 

B1 B2 

1 
Al 10,2 -3,5 

1 
A2 1,- 6 4,8 
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En el caso de que se trate de un juego de suma cero, basta 
con poner un solo número en cada casilla, ya que lo que gana un 
jugador, lo pierde el otro. Por ejemplo: 

81 82 

Al 9 - 3 

A2 - 2 14 

Esta matriz indica que si el jugador A opta por la primera 
estrategia y el B por la segunda, el primero pierde 3 y el segundo 
gana 3, y así con las demás casillas. 

Esta forma de plantear un juego bipersonal de suma cero me­
diante una tabla de doble entrada es la que Von Neumann llamó 
reducción a laforma normal del juego. 

Está claro que las tablas utilizadas en el ejemplo anterior se 
corresponderían con juegos muy sencillos, lo que no quiere decir 
que no puedan ser utilizadas para juegos tan complejos como el 
ajedrez, en el que la tabla de la matriz de pagos sería descomunal­
mente grande. Lo importante no es el tamaño de la tabla, sino el 
hecho de que el juego en cuestión pueda ser reducido a su forma 
normal. 

Esta forma de modelizar un juego tiene un antecedente claro 
en el matemático francés Émile Borel (1871-1956), quien entre los 
años 1921 y 1927 publicó una serie de trabajos sobre teoría de 
juegos que tenían como objetivo fundamental el poder determi­
nar estrategias ganadoras con independencia del factor suerte o 
de la condición psicológica de los jugadores a la hora de tomar 
decisiones. A pesar de las similitudes en los planteamientos, Von 
Neun1ann siempre reivindicó que sus investigaciones las había 
llevado a cabo con total independencia, de los trabajos de Borel. 
Es cierto que los resultados matemáticos de Von Neumann tienen 
mayor generalidad e incluso responden a cuestiones claves que 
ni siquiera están planteadas en los escritos de Borel, pero aun 
así, hay autores que reivindican las aportaciones de Borel y que 
cuando se refieren a este esquema lo hacen como la teoría de 
Borel-Neumann. 
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PRIMER TEOREMA DEL MINIMAX 

Para poder definir una estrategia ganadora como objetivo funda­
mental del juego, es necesario presuponer que los jugadores cum­
plen con los dos requisitos siguientes: 

l. Ambos son racionales. 
2. Ambos eligen sus estrategias solamente para promover su 

propio beneficio. 

Supongamos ahora que dos jugadores A y B intervienen en un 
juego cuya matriz de pagos es la siguiente: 

B1 B2 B3 

Al -5 o -2 

A2 1 -3 -2 

A3 3 8 - 1 

En esta matriz están reflejadas tres posibles opciones para 
cada uno de los jugadores; podemos pensar que los números 
representan ganancias o pérdidas en euros. Se trata pues de un 
juego bipersonal de suma cero planteado en su forma normal. 
Analicemos las posibles estrategias de cada uno de los jugado­
res. Supongamos que B elige la primera estrategia. Está claro que 
la mejor opción para A es la tercera estrategia, ya que gana tres 
euros, mientras que con la primera pierde cinco y con la segunda 
solo gana uno. En el caso de que B elija la segunda, A debería 
seguir manteniendo la tercera estrategia, ya que le proporciona 
la mayor ganancia. Y en la última opción, en la que B opta por 
la tercera estrategia, A pierde en las tres opciones, pero es en la 
tercera en la que pierde menos, solo un euro. De manera que la 
mejor estrategia a seguir por A es, sin duda, la tercera, indepen­
dientemente de lo que decida hacer B. 

Para el jugador B, el planteamiento es algo diferente. En el 
caso en que el jugador A opte por la primera, Bl es su mejor op­
ción. En el caso A2, obviamente la opción es B2, y en caso A3, 
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B debe elegir la tercera, ya que representa la menor de las tres 
pérdidas. El caso es que B no tiene ni idea de qué es lo que va a 
hacer A y debe tomar una decisión; es entonces cuando se hace la 
siguiente conjetura: «A es un jugador racional y su mejor opción 
es A3, en cuyo caso B3 representa para mí la mejor opción, luego 
esta es la estrategia que voy a seguir» . El jugador B sabe que, de 
otra manera, lo más probable es que pierda, y lo que hace es mi­
nimizar esa opción. 

Siguiendo este esquema, Von Neumann hizo el siguiente plan­
teamiento: en cada una de las filas aparece siempre un número 
que es el más pequeño de los tres, al que llama el valor mínimo. 
Por ejemplo, en la tabla anterior tenemos en la primera fila los nú­
meros - 5, O, -2. El menor de los tres es, por tanto, -5. Siguiendo el 
mismo criterio, se tiene que para la segunda fila, el valor mínimo 
es -3, y para la tercera, -1. Ahora, lo que hizo Von N eumann fue 
tomar el número más grande de estos tres, que es -1 ( que es en 
realidad, en las tres estrategias, el que representa la menor de las 
pérdidas). A este número lo llamó mayor mínimo. 

Con las columnas hizo lo mismo, pero al revés. Buscamos 
en cada columna cuál es el número más grande, es decir el valor 
máximo. Para la primera columna, tenemos que es el número 3, 
para la segunda el 8 y para la tercera el -1. Ahora buscamos entre 
estos tres números cuál es el más pequeño, al que Von Neumann 
llamó el menor máximo, que en este caso será-1. 

En este juego, el mayor mínimo y el menor máximo coinci­
den en el valor -1. Y esto no es casual, pues es precisamente lo 
que afirma el teorema de Von Neumann: «en la mayoría de jue­
gos bipersonales de suma cero el mayor mínimo de todas las filas 
coincide siempre con el menor máximo de las columnas», núme­
ro que representa un valor de juego único de la mejor estrategia a 
seguir por ambos jugadores. 

Este resultado, que se conoce como «primer teorema del mi­
nimax», se publicó en 1928 en el artículo «Sobre la teoría de los 
juegos de sociedad». En él, además de proporcionar una primera 
demostración del teorema del minimax, Von Neumann estable­
ció las que serían las bases generales para la futura teoría de 
juegos. 
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LA BATALLA DEL MAR DE BISMARCK 

La teoría de juegos ha tenido y sigue teniendo una estrecha relación con los 
llamados «juegos de guerra». Una de las primeras aplicaciones de esta teoría 
a la estrategia militar fue la que se llevó a cabo en la batalla del mar de Bis­
marck, el 23 de diciembre de 1942, que enfrentó las estrategias del general 
estadounidense George Kenney y del contraalmirante Masatomi Kimura. Al final 
de la batalla habían sido hundidos la totalidad de los buques de transporte y 
la mitad de la escolta japonesa. El criterio minimax proporcionó en esta batalla 
una estrategia ganadora a las fuerzas norteamericanas y asentó una nueva 
doctrina en lo referente a los vuelos de reconocimiento. 

Los aviones de las tropas aliadas atacan a un buque japonés en la batalla del mar de Bismarck. 

La flota japonesa debía salir del puerto de Rabaul, al noreste de la isla de 
Nueva Bretaña, con destino al puerto de Lae para servir como refuerzo. El 
contraalmirante Masatomi Kimura tenía dos opciones: elegir la ruta norte, que 
era la que pasaba por el mar de Bismarck, en la que solía haber condiciones 
meteorológicas adversas, o bien optar por la ruta sur, por el mar de Salomón, 
con condiciones climatológicas más favorables. El general Kenney debía con­
centrar todos los aviones de reconocimiento en una de las dos rutas, teniendo 
en cuenta el coste que suponía los días de que dispondría para el bombardeo 
una vez avistado el convoy. Al aplicar el criterio minimax a la matriz de pagos, 
se vio que la ruta norte tenía en ambos casos un coste estimado de dos días, 
por lo que se optó por esta estrategia: 

Kimura 

Ruta norte Ruta sur 

1 

1 Ruta norte 2 2 
Kenney 

1 Ruta sur 1 3 
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Es importante insistir una vez más en que para que el teore­
ma del minimax se cumpla, deben darse las condiciones de que 
ambos jugadores ~ean racionales, que velen únicamente por sus 
propios intereses y que analicen con todo rigor cada una de las 
posibles estrategias a seguir. No en todos los juegos se cumplen 
estos requisitos. Cuando, por ejemplo, uno de los oponentes es 
la naturaleza, intervienen factores que deben ser considerados 
como aleatorios y, en este sentido, se trata claramente de un opo­
nente que no lleva a cabo ningún tipo de análisis. 

«Cualquiera que considere métodos aritméticos para producir 
dígitos aleatorios está, por supuesto, en pecado mortal.» 
- JOHN VON NEUMANN. 
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Seria de esperar que alguien que ha decidido estudiar los en­
tresijos teóricos que se esconden detrás de los juegos eligiera corno 
modelo juegos de la categoria de las damas o el ajedrez. Por supues­
to, Von Neumann conocía bien estos juegos que practicaban con 
asiduidad sus padres y sus hermanos en el ámbito hogareño. Sin 
embargo, en el artículo de 1928 en el que demostraba el teorema del 
rninimax, aparece un análisis exhaustivo sobre el juego del póquer. 
Se sabe que Von N eumann era muy aficionado a este juego, aunque 
parece ser que no se le daba demasiado bien. Lo que consideraba 
más interesante del póquer era la posible jugada de «farol», que a la 
hora de defuúr estrategias añadía al análisis una gran complejidad. 
El poder establecer matemáticamente en el póquer una estrategia 
adecuada es mucho más complicado que en el caso de los juegos bi­
personales de suma cero. Aun así, Von N eumann inventó una varian­
te simplificada del póquer que le permitió incluirlo en sus estudios. 

PUNTOS DE SILLA 

Supongamos que dos jugadores A y B se enfrentan a un juego con 
la siguiente matriz de pagos: 
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Bl B2 B3 

Al - 3 -1 4 

A2 3 o 1 

A3 3 -1 -4 

Cuando el jugador A elige la estrategia 1, la máxima pérdida 
ocurre cuando el jugador B elige también la estrategia 1, y que 
para A supone una pérdida de - 3, anotada en negrita en la siguien­
te tabla: 

Bl B2 B3 

Al - 3 -1 4 -3 

A2 3 o 1 o 
A3 3 -1 - 4 -4 

3 o 4 

Siguiendo este sistema, se van anotando las máximas pér­
didas en cada una de las estrategias. Vemos entonces que para 
el jugador A, el mínimo de todos estos valores es el cero, que 
corresponde a la estrategia 2. A este valor Von N eumann lo llamó 
el valor del juego. Cuando este valor es O, como en este ejem­
plo, se dice que se trata de un juego justo. Para el jugador B, el 
mínimo valor también es en este caso O, y se corresponde con la 
estrategia 2. 

Observemos que las dos estrategias minimax coinciden en 
un punto de la tabla (A2-B2) que tiene la característica de ser el 
mínimo de la fila y máximo de la columna. A este punto se le llama 
ensilladura o punto de silla. Esto no tiene por qué suceder siem­
pre, pero cuando sucede, condiciona la estrategia de ambos juga­
dores. En la tabla anterior es fácil comprobar que a ninguno de 
los dos jugadores le interesa cambiar la estrategia. Se trata de una 
situación de equilibrio, en la que el juego alcanza un resultado óp­
timo, ya que la estrategia minimax de un jugador coincide con la 
del otro. Cuando en un juego hay un punto de silla, se puede afir­
mar que este representa la estrategia estable. Es el fin del juego. 
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Visualizar un punto de silla es fácil si nos imaginamos una 
silla de montar con dos direcciones perpendiculares, una que po­
demos llamar A que es la que uniría los estribos y otra B la que 
va de la cabeza a la cola del caballo. El jinete se sienta precisa­
mente en el punto de silla. El jugador que sigue la dirección A 
tiene que subir hasta alcanzar el «máximo» en el punto de silla. 
En cambio, el jugador B debe bajar hasta alcanzar su «mínimo» 
en dicho punto. 

«Debemos predecir todos los procesos estables. Debemos 
controlar todos los procesos inestables.» 
- JoHN VON NEUMANN. 
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Según esto, Van Neumann definió el punto de silla como un 
punto de una matriz que cumple que: 

l. Es el mínimo de su fila. 

2. Es el mayor de su columna. 

Cuando en el desarrollo de una partida, el jugador A supone 
que B no va a cambiar de estrategia y, en consecuencia, opta 
por no cambiar la suya y, a su vez, el jugador B cree que A no 
cambiará y decide también no cambiar la suya, se dice que el 
juego ha alcanzado un «equilibrio de Nash» - por el matemático 
estadounidense John Forbes Nash (1928)-. En un juego dado, 
puede no existir ningún equilibrio de N ash o incluso existir uno 
o varios. 

No todos los juegos bipersonales de suma cero tienen un 
punto de silla. Van Neumann puso un ejemplo muy sencillo para 
este caso, consistente en el lanzamiento simultáneo de dos mone­
das. Cada jugador apuesta un euro. El primer jugador lanza al aire 
simultáneamente ambas monedas. Si las dos coinciden en cara o 
cruz, se queda las monedas. En caso contrario, si en una sale cara 
y en la otra cruz, se las lleva el otro jugador. La matriz de pagos de 
este juego sería la siguiente: 
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JOHN FORBES NASH 

Nacido el 13 de junio de 1928 en Blue­
field, Virginia, Estados Unidos, John For­
bes Nash destacó a muy temprana edad 
por su talento para las matemáticas y fue 
uno de los diez alumnos de su promo­
ción que fueron premiados con una beca 
para estudiar en el Instituto de Tecnolo­
gía de Carnegie, donde se inició en los 
estudios de ingeniería y de química, antes 
de decidirse por lo que habría de ser su 
verdadera vocación: las matemáticas. Su 
sigu iente destino fue la prestigiosa Uni­
versidad de Princeton, donde se ganaría 
la admiración entre sus compañeros con 
un juego de mesa que años más tarde se 
comercializaría con el nombre de Hex. La 
afición de Nash por los juegos formaba parte de sus investigaciones matemáti­
cas. En la década de 1950, la teoría de juegos se había convertido en uno de los 
campos más apasionantes de las matemáticas. Nash tuvo un papel crucial en 
el primer estudio experimental que se hizo del «dilema del prisionero» -véase 
el capítulo 5-, para luego centrarse en los juegos de suma cero o juegos 
no cooperativos, en los que los intereses de los jugadores son estrictamente 
opuestos. Una de sus aportaciones más importantes ha sido el concepto del 
llamado «equilibrio de Nash», pilar en el que se basaría una nueva teoría eco­
nómica que en 1994 le va ldría la concesión del premio Nobel de Economía. 
La noción de «equilibrio de Nash» corresponde a una situación en la que las 
dos partes rivales están de acuerdo con determinada situación del juego o 
negociación, cuya alteración ofrece desventajas a ambas partes. Es una fase 
del juego en la que ninguno de los jugadores, si considera que las acciones de 
su oponente están determinadas, deseará cambiar su propia opción. 

Cara Cruz 

1 Cara 1 -1 

1 Cruz -1 1 

Es fácil comprobar que existe una diferencia de dos euros 
entre el mínimo valor máximo y el máximo valor mínimo. Este 
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tipo de situaciones llevó a Von Neumann a afinar todavía más su 
teoría de juegos al distinguir entre lo que se llamó estrategias pu­
ras y estrategias mixtas. Las primeras son aquellas en las que un 
jugador elige la 'misma estrategia en todas las partidas. Cuando 
ambos jugadores eligen ese mismo camino, todas las partidas son 
iguales. Por el contrario, las estrategias mixtas responden al he­
cho de que un jugador cambie su estrategia de una partida a otra 
siguiendo una secuencia aleatoria. Por ejemplo, puede decidir su 
estrategia en función del lanzamiento de una moneda o de unos 
dados. En el artículo publicado en 1928, John von Neumann de­
mostró matemáticamente que en todo juego bipersonal de suma 
cero en el que sea posible jugar estrategias mixtas, además de las 
puras, las estrategias minimax de cada jugador coincidirían siem­
pre en una solución estable, un punto de silla. La teoría general de 
juegos pivota sobre este resultado. 

En conclusión, el teorema del minimax afirma que en todo 
juego finito de dos jugadores racionales, con suma cero y con 
estrategia pura o estrategia mixta, siempre existe una solución. 
Este teorema fue considerado por Von N eumann como la clave 
de bóveda sobre la que se sustentaba todo el edificio de la teoría 
de juegos. 

INFORMACIÓN INCOMPLETA 

El primer teorema del minimax que Von Neumann demostró en 
1928 se puede aplicar a la mayoría de juegos bipersonales de 
suma cero, pero no a todos, ya que el planteamiento requiere que, 
en todo momento, cada uno de los jugadores conozca sin ambi­
güedades cuál es la situación que se ha alcanzado en el juego. A 
este tipo de juegos Von Neumann los clasificó como «juegos con 
información completa». En una partida de ajedrez, de damas o de 
tres en raya, cada uno de los jugadores puede comprobar cuál es 
la situación de las fichas después de la última jugada. Pero si, por 
ejemplo, uno de los jugadores ocultara una parte del tablero, esta 
condición ya no se daría y el teorema no podría aplicarse. 
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Von N eumann demostró un segundo teorema del minimax que 
podía aplicarse a juegos bipersonales de suma cero con «informa­
ción incompleta». Según dicho teorema, no se puede conseguir 
una estrategia ganadora para una única partida, pero sí es posible 
establecer una media ganadora cuando se juegan varias partidas. 

Un juego muy sencillo que sirve para ilustrar estas condicio­
nes es el clásico «piedra, papel o tijera». La matriz de pagos de 
un juego en el que los contendientes se jugaran un euro en cada 
partida sería: 

B 

Piedra Papel Tijera 

Piedra o -1 1 

A Papel 1 o -1 

Tijera -1 1 o 

En el caso, por ejemplo, en que el jugador A saque papel y 
el jugador B piedra, el jugador A gana un euro, perdido por el ju­
gador B. Los empates, en los que nadie gana ni pierde, tienen un 
cero en cada casilla. 

Es fácil comprobar que en este ejemplo el primer teorema del 
mininax no se cumple, ya que el mayor mínimo de cualquier fila 
es - 1, mientras que el menor máximo de cualquier columna es l. 
Esto es debido a que la información del juego en incompleta. En 
una sola partida no existe un criterio para decidirse por alguna de 
las tres estrategias. Sin embargo, en el caso de jugar varias parti­
das puede que uno de los jugadores elija una cierta pauta. Según 
Von Neumann, la mejor será la que esté dictada por las leyes de 
azar, ya que al jugador contrario le impedirá identificar un patrón 
de juego. Además, si en este caso el jugador contrario adopta la 
misma estrategia, no tiene garantizada la victoria, pero al menos 
sí una probabilidad razonable de quedar empatados, lo que tam­
bién es una manera de minimizar las pérdidas. 

En estas condiciones, el segundo teorema del minimax afir­
ma que el mayor mínimo del resultado medio para A coincide 
con el menor máximo del resultado medio de B. Este teorema es 
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de carácter más general que el primero, ya que puede aplicarse a 
juegos bipersonales de suma cero, ya sean con información com­
pleta o no. 

TEORÍA DE JUEGOS Y TOPOLOGÍA 

El enunciado del teorema del minimax es elemental y se puede 
entender empleando un lenguaje coloquial que no incluya tecnicis­
mos, pero la demostración está muy lejos de ser sencilla En un pri­
mer momento, Von Neumann intentó demostrar el teorema valién­
dose únicamente de técnicas algebraicas, pero no consiguió llegar 
a un resultado satisfactorio, por lo que recurrió a la topología. 

La topología es la rama de las matemáticas que estudia las 
propiedades de las figuras que permanecen invariantes frente a 
determinado tipo de transformaciones consistentes en dilatar, 
contraer o estirar, siempre que en dicha transformación no se 
hagan coincidir puntos diferentes ni se hagan aparecer otros nue­
vos. Se dice que dos figuras son topológicamente equivalentes 
cuando se pueden obtener la una de la otra mediante transfor­
maciones de este tipo. La mejor manera de hacerse una idea de 
lo que son este tipo de transformaciones es imaginar que tienen 
lugar en una superficie elástica, en algún tipo de goma o plastilina 
que podamos deformar con cierta facilidad y sobre la que haya 
un dibujo, por ejemplo un cuadrado. Estirando convenientemen­
te la superficie elástica, llegaremos a conseguir que el cuadrado 
se convierta en un círculo o en un hexágono o en un polígono 
cualquiera. Lo importante es que, durante la transformación, la 
superficie no se rompa y que no superpongamos unos puntos so­
bre otros. Este tipo de transformaciones que se pueden llevar a 
cabo sin cortar, agujerear o pegar, es decir, manipulando a base 
de modelar estirando, apretando o alisando, es lo que se denomi­
na una transformación continua. 

Un tipo particular de este tipo de transformaciones son 
aquellas que dejan un punto fijo. Concretamente, de los espacios 
que tienen esta propiedad para cualquier tipo de transformación 
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continua se dice que poseen la propiedad del punto fijo, y son 
importantes porque constituye un invariante topológico que per­
mite la clasificación de diferentes tipos de superficie. Entre los 
varios teoremas que hay referentes a puntos fijos, cabe destacar 
uno que reviste especial importancia, el teorema del punto fijo 
de Brouwer, debido al matemático alemán L.E.J. Brouwer (1881-
1966). El enunciado matemático es algo complicado, pero se pue­
de comprender fácilmente de la siguiente manera. Imaginemos 
que tenemos una taza de café y que revolvemos el líquido sua­
vemente con una cucharilla. El teorema afirma que, una vez que 
el café haya vuelto a su estado de reposo, hay un punto que se 
encontrará exactamente en la misma posición que estaba antes 
de revolverlo. De las muchas maneras que hay de revolver el café, 
una de ellas es un caso particular en el que el teorema es eviden­
te, que es aquella en la que el movimiento de la cucharilla sigue 
un círculo alrededor del borde. En este movimiento circular, el 
punto que está en el centro de la taza permanece siempre inmóvil 
-es el ojo del huracán-, y ese es precisamente el punto fijo de 
Brouwer. 

Von Neumann encontró una estrecha relación entre el teore­
ma del minimax y la teoría de los puntos fijos. Esto no solo le ayu­
dó a demostrar el teorema en cuestión, sino que años más tarde 
le permitió llevar a cabo una importante ampliación del teorema 
del punto fijo de Brouwer. 

LA GUERRA DE LOS SEXOS 

A pesar de su nombre, quizá poco afortunado, la guerra de los 
sexos es un ejemplo clásico en la teoría de juegos aplicada a 
situaciones de la vida cotidiana que nos permite entender con­
ceptos básicos y sacar conclusiones de tipo social. El esquema 
original fue planteado por Robert Duncan Luce y Howard Raiffa 
en Games and Decisions ( «Juegos y decisiones»). El juego está 
formado por una pareja hombre-mujer que debe decidir cómo pa­
sar la tarde del domingo. Las alternativas que se plantean son «ir 
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al fútbol» o «ir al cine». Las preferencias de él y de ella son un 
tópico y, por lo tanto, muy claras. Lo que ocurre es que a esta 
preferencia se añade otra, que priva sobre la anterior y que es la 
de ir juntos donde sea, antes que separarse, ya que es una de las 
pocas tardes de las que disponen para ello. Según esto, el orden 
de preferencias de él sería: 

l. Los dos van juntos al fútbol. 

2. Los dos van juntos al cine. 

3. Él va al fútbol y ella al cine. 

4. Él va al cine y ella al fútbol. 

En función de estas preferencias, podemos establecer la si­
guiente matriz de pagos, de manera que 1 signifique el mejor pago 
y 4 el peor: 

Ella fútbol Ella cine 

/ Él fútbol 1,2 3,3 

1 Él cine 4,4 2,1 

La lectura de esta tabla de pagos es sencilla Si los dos van 
al fútbol, él va donde quiere y está con ella (1 de preferencia); sin 
embargo, ella no va donde quiere, pero está con él, lo que ocupa el 
segundo lugar de sus preferencias. Si él va al fútbol y ella al cine, 
cada cual va donde quiere, pero están separados, lo que ocupa para 
cada uno de ellos el tercer lugar en su orden de preferencias (3,3). 

Nos encontramos ante un juego sin repetición, es decir, que 
se juega una sola vez y no se pueden tomar decisiones en función 
de las que ya se han tomado en juegos anteriores. Además, se 
trata de un juego sin transferencia de utilidad, no cooperativo, 
ya que suponemos que no pueden establecerse acuerdos previos, 
como serían los del tipo que ella le propusiera a él: «si vienes con­
migo al cine, te pago la entrada». 
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La estrategia minimax nos llevaría a la siguiente situación: 

Ella fútbol Ella cine 

1 Él fútbol 1,2 3,3 3 

1 Él cine 4,4 2,1 4 

4 3 

Las mayores pérdidas que sufre él son 3 y 4; por tanto, su 
minimax es 3. Las de ella son 4 y 3; su minimax también es 3. Esta 
situación ocurre cuando él va al fútbol y ella al cine, con un pago 
de 3,3, que no es ni mucho menos el mejor para cada uno de ellos. 
Nos encontramos ante una situación en la que la estrategia mi­
nimax no representa un punto de equilibrio de Nash, ya que uno 
de los jugadores podría cambiar la estrategia para obtener una 
mayor ganancia. Cuando él se dirige solo hacia el estadio, podría 
cambiar de opinión e ir al cine, con lo que obtendría una mayor 
ganancia -aun a riesgo de que ambos tomaran la misma decisión 
y se encontraran con la pérdida máxima-. 

Haciendo un pequeño esfuerzo de imaginación, podríamos 
pensar en un mundo en el que a las mujeres les apasionara el 
fútbol y a los hombres el cine. El juego sería exactamente igual 
que el descrito con anterioridad. Esto quiere decir que se trata de 
un juego simétrico. V amos a realizar ahora una pequeña modifica­
ción que lo convertirá en un juego asimétrico. Alteremos el orden 
de valores de él: 

l. Los dos van juntos al fútbol. 

2. Él va al fútbol y ella al cine. 

3. Los dos van juntos al cine. 

4. Él va al cine y ella al fútbol. 

Es decir, él prefiere ir solo al fútbol que juntos al cine. Enton­
ces, la matriz de pagos es la siguiente: 
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Ella fútbol Ella cine 

Él fútbol 1,2 2,3 

Él cine 4,4 3,1 

Ante esta perspectiva, está claro que, independientemente de 
lo que elija ella, él siempre elegirá ir al fútbol, ya que sale ganando 
en cualquiera de las dos opciones que tome ella. Y para ella, dadas 
las circunstancias y sabiendo que él elegirá siempre ir al fútbol, 
la jugada más ventajosa es acompañarle al paitido. Este sí es un 
punto de silla, un punto de equilibrio de Nash, una estrategia a la 
que siempre acudirán an1bos jugadores. En este caso, se dice que 
existe una dominancia de opciones o que un jugador posee una 
estrategia dominante, que es preferida a cualquier otra estrategia 
a su disposición. Se pueden dar casos en los que cada uno de los 
dos jugadores tenga una estrategia dominante. 

Lo paradójico de la situación anterior es que la posición 
egoísta y de dominación «voy a ir al fútbol contigo o sin ti» con­
duce, en este caso, a un resultado mejor que el del caso anterior. 

TRANSFERENCIA DE UTILIDAD 

En su artículo «Sobre la teoría de los juegos de sociedad», apare­
cido en 1928, Von Neurnaim se planteó una variante para los jue­
gos de suma cero, considerando aquellos en los que intervenían 
más de dos jugadores, un escenario con una nueva variable: las 
posibles alianzas entre jugadores. En el caso, por ejemplo, de tres 
jugadores A, B y C se puede dar la circunstancia de que dos de 
ellos, A y B, se alíen para contar como un solo jugador mediante 
algún tipo de pacto, como podría ser el ir a medias en los benefi­
cios. En los juegos que se han analizado hasta ahora, los conten­
dientes no podían comunicarse entre sí para establecer acuerdos 
previos. En esos casos, se habla de juegos sin transferencia de 
utilidad, a diferencia de aquellos en que los jugadores pueden co­
municarse entre sí y establecer determinados pactos antes de em-
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pezar a jugar y que reciben el nombre de juegos con transferen­
cia de utilidad, también conocidos como juegos cooperativos. 

Por ejemplo, imaginemos un grupo de tres amigos A, B y C 
que deben repartirse entre ellos 100 euros. La decisión de cómo va 
a ser el reparto se hará por votación y mayoría simple. Las posi­
bles coaliciones son AB, AC, BC y una cuarta ABC. Con estas pre­
misas, las distintas formas de establecer los pagos son infinitas: 

A = 33; B = 33; C = 34 
A = 70; B = 30; C = O 
A = 25; B= 70; C = 5 

etc. 

Así, ninguna coalición es estable. El análisis en este tipo de 
juegos es muy diferente -y bastante más complicado- del que 
se lleva a cabo en los juegos no cooperativos. Aquí se trata de ave­
riguar qué posibilidades hay de formar coaliciones estables en las 
que el reparto de ganancias se haga de tal manera que ninguno de 
los miembros cooperantes esté interesado en romper la coalición. 
En la vida práctica, este tipo de análisis lleva a la propuesta de un 
arbitraje que haga factible la coalición óptima. Una situación real 
que requiere este tipo de técnicas es, por ejemplo, la que se da en 
el Parlamento Europeo cuando hay que asignar un presupuesto a 
repartir entre todos los miembros de la Comunidad, teniendo en 
cuenta que cada país tiene asignado un número determinado de 
parlamentarios con derecho a voto. 

Las posibles coaliciones entre jugadores introducen un fac­
tor de inestabilidad difícil de gestionar. En cualquier caso, la 
única forma de aplicar los resultados obtenidos para los juegos 
bipersonales de suma cero es considerar el cor\junto formado por 
una alianza como la identidad unitaria de un nuevo jugador. Si en 
un escenario en el que hay, por ejemplo, cuatro jugadores A, B, C 
y D, se forma una alianza entre A, By C, y a este terceto de juga­
dores se le considera corno un jugador enfrentado a D; entonces 
se puede aplicar el esquema de juego bipersonal de suma cero. 

El teorema del minimax, y en general los resultados de la 
teoría de juegos, tienen sus limitaciones. Obviamente, no son un 
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método infalible para ganar en cualquier juego que se nos pre­
sente, incluso aunque se trate de dos jugadores racionales. Lo 
que la teoría propone es la mejor forma de tomar decisiones, es 
decir, cuál es la mejor manera de jugar. Es posible que un juga­
dor racional enfrentado a otro que no lo sea, pueda desarrollar 
técnicas de juego ganadoras que poco o nada tengan que ver con 
la teoría de juegos. Lo realmente importante de la cuestión es el 
hecho de haber podido desarrollar una teoría matemática capaz 
de modelizar un escenario, de abstraer una situación para some­
terla a las leyes de la lógica matemática y obtener unos resulta­
dos. Bajo este punto de vista, la teoría de juegos guarda muchas 
similitudes con la axiomatización de la teoría de conjuntos o la 
de la mecánica cuántica. Este es el verdadero centro de interés de 
Von Neumann y el motivo por el que su obra se dispersa en áreas 
científicas tan heterogéneas, llegando incluso a dar un fom1ato 
científico a disciplinas que carecían de él, como es el caso de la 
teoría económica. 

TEORÍA ECONÓMICA 

El primer estadio de una ciencia es desarrollar técnicas de ob­
servación que le permitan llevar a cabo una precisa descripción 
del objeto estudiado. El siguiente paso es establecer leyes, casi 
siempre empíricas, que sean un fiel reflejo del comportamiento 
de dicho objeto. A partir de este punto, la teoría debe ser capaz de 
predecir el comportamiento del sistema a lo largo del tiempo. 
La descripción científica de un sistema planetario tan comple­
jo como el nuestro perdería gran parte de su valor si no fuera 
capaz de determinar, por ejemplo, la fecha, la hora exacta y la 
localización geográfica en que tendrá lugar un eclipse de Sol. 
Sin embargo, para que dicha predicción no sea un arte adivina­
toria, sino una ciencia exacta, es necesario que el cuerpo teórico 
que la sustenta esté «matematizado», que es casi tanto como 
decir que sus leyes respondan sin ambigüedades a un conjunto 
de ecuaciones. En este sentido, cuando se afirma que la física 

TEORÍA DE JUEGOS 



dejó el ámbito de la filosofía natural para convertirse en ciencia, 
se está afirmando implícitamente que las recién nacidas técni­
cas del cálculo infinitesimal habían convertido en fórmulas las 
leyes de la mecánica establecidas por Newton. Galileo realizó 
una descripción detallada de la caída libre de cuerpos, pero ha­
bría que esperar hasta la aparición del cálculo infinitesimal que 
matematizó las leyes de la mecánica para conocer con un alto 
grado de precisión cuánto tarda la piedra en llegar al suelo y con 
qué velocidad lo hace. 

CIENCIA Y ECONOMÍA 

A principios del siglo xx, algunas ciencias naturales, como la quí­
mica o la biología ya habían introducido en su teoría técnicas ma­
temáticas de cálculo. Pero en las llamadas ciencias sociales, este 
proceso resultaba ser - y todavía lo es- mucho más difícil, ya 
que interviene siempre lo que llamamos el factor humano y todo 
lo que conlleva de impredecibilidad. Aun así, entre las ciencias so­
ciales, la economía era la que en principio tenía más puntos para 
convertirse en ciencia, ya que en última instancia trataba con nú­
meros, pero ese era a su vez uno de los motivos por el que mucha 
gente no veía con buenos ojos el que algo tan sensible como el 
comportamiento humano se tratara frían1ente · con la ciencia de 
los números. 

En el terreno de la predicción, uno de los aspectos en los que 
la teoría económica se ha mostrado siempre más interesada, es 
donde a su vez se muestra más débil. En este sentido, siempre 
ha guardado grandes semejanzas con otra disciplina, también de 
gran complejidad, como es la meteorología, con la diferencia de 
que, a hechos pasados, la segunda tiene herramientas de análisis 
muy superiores a los de la primera. Es posible que la meteorología 
no sea capaz de predecir un determinado fenómeno atmosférico, 
pero sí puede, una vez acontecido, explicar con detalle las cau­
sas que lo han producido, cosa que la teoría económica no puede 
hacer la mayoría de las veces frente a muchas crisis que se pro­
ducen de forma inesperada. Parece lógico que las cosas sean de 
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CARL MENGER Y LA COMPUTACIÓN DE LA MORAL 

El factor humano siempre ha tenido un 
peso importante a la hora de establecer 
una teoría económica, pero no solo por 
lo que tiene de impredecible, sino tam­
bién porque obliga a la intervención de 
factores de índole estrictamente moral. 
En este sentido, es interesante recalcar la 
influencia que tuvieron en Morgenstern, y 
consecuentemente en Von Neumann, las 
tesis sostenidas por Carl Menger (1840-
1921), conocido por su obra Principios de 
economía política . Menger, influenciado 
filosóficamente por la obra de Wittgen­
stein, se p lanteaba el código moral como 
un conjunto de reglas de juego que rigen, 
ordenan y estructuran las relaciones hu­
manas en el conjunto de individuos que 
conforman una determinada sociedad, 
de manera que deben considerarse tan­
tas «morales» como diferentes grupos 
sociales entren en consideración. Para 
analizar estos diferentes códigos mora- El economista austriaco car! Menger fue 
les, Menger proponía la utilización de la el padre de Karl Menger, matemático que 
lógica y la combinatoria, descartando así alcanzó un gran renombre internacional. 

la utilización tan en boga del análisis in-
finitesimal, que tan pobres resu ltados había dado en su apl icación a la teoría 
económica. Precisamente en esta concepción era donde Morgenstern veía 
grandes posibilidades de mejorar el tratamiento de la teoría económica, ex­
pectativa que se vio en parte cumplida con la adopción de la teoría de juegos 
y muy espec ialmente con el teorema del minimax aplicado al análisis de los 
equilibrios del mercado. 

esta forma si tenemos en cuenta que la meteorológía está mucho 
más cerca de las ciencias físicas que la economía y que, por tanto, · 
es mucho más susceptible de ser matematizada. No en vano, Von 
Neumann dijo en una ocasión que la economía llevaba un retraso 
de un millón de millas respecto al estado de una ciencia avanzada 
como la física. 
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EL PLANTEAMIENTO DE VON NEUMANN 

A pesar de que no había publicado ningún trabajo sobre teoría 
económica antes de 1937, el interés de Von Neumann por los te­
mas de economía se despertó ya en las conversaciones que su 
padre, banquero, traía con frecuencia a colación en las reunio­
nes familiares. Desde un buen principio, su idea era abandonar 
las herramientas propias del cálculo infinitesimal, a pesar de los 
buenos resultados que se habían obtenido en su aplicación a la 
mecánica newtoniana. Von Neumann creía incluso que eran téc­
nicas sobrevaloradas a las que poco partido iba a poder sacar la 
teoría económica. 

Su planteamiento estaba más en el área de lo que hoy llama­
mos «matemática discreta». Siguiendo técnicas muy parecidas a 
las que empleó en la teoría de juegos y aprovechando la generali­
zación que él mismo había llevado a cabo del teorema del punto 
fijo de Brouwer, Von Neumann publicó en 1937 un trabajo titula­
do «Sobre un sistema de ecuaciones económicas y una generali­
zación del teorema del punto fijo de Brouwer», en el que demos­
tró la existencia de un parámetro matemático que representara 
el equilibrio de precios. Quizá lo más relevante de este trabajo 
fue que la teoría se basaba en un sistema de axiomas que había 
creado con independencia de su justificación económica. En este 
sentido, su metodología guardaba muchas similitudes con la ma­
nera en como había tratado la axiomatización de la teoría de con­
juntos o la de la mecánica cuántica. Se trataba siempre de partir 
de cero y de definir con precisión los elementos que iban a entrar 
en juego. 

La teoría de juegos había sido desarrollada en un ámbito 
puramente matemático, pero Von Neumann quería darle una di­
mensión más allá de esas fronteras y eligió la economía como 
nuevo destino. Antes de Von Neumann, la economía se valía de 
analogías con la mecánica clásica, utilizando, como ya se ha co­
mentado, herramientas propias del análisis matemático como el 
cálculo de variaciones. El cambio fue utilizar la teoría de juegos y 
herramientas como la combinatoria y la convexidad. También ha­
bría que añadir que los trabajos de Von Neumann significaron el 
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inicio de lo que hoy se conoce com9 «matemática aplicada». Para 
este proyecto, el gran matemático húngaro tuvo un compañero de 
viaje. Esta vez no se trataba de un matemático o un físico, si no 
de un economista un tanto especial. 

LA TEORÍA DE JUEGOS Y LA ECONOMÍA 

En 1934, Van Neumann conoció en Princeton a Oskar Morgens­
tem (1902-1977), un economista alemán que había alcanzado una 
gran reputación en el Círculo de Viena. Morgenstem, que terúa 
una clara tendencia a rodearse más de matemáticos que de eco­
nomistas, se interesó de inmediato en el nuevo enfoque que Van 
Neumann proporúa. Ambos coincidían en sus críticas a la manera 
en como hasta entonces se había enfocado la teoría económica 
y se pusieron a trabajar juntos para preparar un texto que terúa 
como finalidad servir de prólogo a un conjunto de conferencias 
sobre teoría económica que Von Neumann iba a impartir en Prin­
ceton. Sin embargo, Morgenstem primero iba a tener que ponerse 
al día para alcanzar el nivel matemático que requerían las circuns­
tancias. Van N eumann le recomendó una serie de lecturas que le 
habrían de facilitar el trabajo. En este punto, hay que reconocer 
el mérito y el talento de Morgenstem, ya que alcanzar el nivel 
requerido para trabajar codo a codo con Van Neumann no debía 
ser una tarea nada fácil . 

Lo que empezó siendo un texto introductorio para un ciclo de 
conferencias acabó convirtiéndose en uno de los libros de teoría 
económica más importantes que se habían escrito hasta la fecha y 
que sirvió de base no solo para el desarrollo posterior de la teoría 
económica, sino también para la recién nacida teoría de juegos. El 
libro que Van Neumann escribió conjuntamente con Morgenstem 
apareció en 1944 bajo el título Theory of Games and Economic 
Behavior ( «Teoría de juegos y conducta económica»), y está con­
siderada como una de las obras más importantes de Von Neun1ann 
y en la que la teoría de juegos aparece completamente desarrolla­
da, hasta el punto de que se la considera como punto de partida de 
una nueva rama de las matemáticas. 
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En esta obra, Von Neumann y Morgenstern demostraron que 
un juego cualquiera con n jugadores y suma no nula se puede re­
ducir a un juego con n + I jugadores y suma nula. El hecho de que 
en la teoría de juegos se estudien básicamente los juegos de dos 
jugadores con suma nula se debe a que estos son más sencillos de 
analizar y en cierto sentido generalizan el caso de n + I jugadores 
con suma nula. Es obvio que la complejidad aumenta exponen­
cialmente con el número de jugadores. Para resolver esta com­
plejidad, Von Neumann y Morgenstern trabajaron con matrices 
n-dimensionales y funciones de n variables. 

«La característica vital más importante de las matemáticas es, 
en mi opinión, su particular relación con las ciencias naturales, 

o más generalmente, con cualquier ciencia que interpreta la 
experiencia a un nivel más que el meramente descriptivo.» 

- JOHN VON NEUMANN. 

Las aplicaciones de la teoría de juegos al comportamiento de 
los agentes económicos surgieron de forma natural al considerar 
a estos como sujetos de un juego competitivo en el que el objeti­
vo era conseguir un beneficio minimizando los riesgos. Se trata­
ba, por tanto, de juegos competitivos en los que cabían posibles 
alianzas entre los participantes. 

Puede parecer paradigmático, pero es frecuente que muchos 
de los libros que mayor influencia han tenido en la evolución de 
una deternlinada disciplina sean comparativan1ente los menos 
leídos. Tiene su lógica si pensamos que su lectura -que en ge­
neral requiere de conocimientos previos muy avanzados- está 
reservada a un estrecho círculo de especialistas. Pero, por otro 
lado, estos mismos especialistas suelen gozar de un reconocido 
prestigio que acaba popularizando la obra más allá de entornos 
puramente profesionales, hasta el punto en que los medios de co­
municación se interesen por el tema y lo pongan de moda. Algo 
así sucedió con The Theory of Games and Economic Behavior, 
un libro plagado de fórn1ulas y de lectura difícil, claramente enca­
minado a especialistas, al que The New York Times le dedicó un 
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GODEL Y LA CONSTITUCIÓN 

Una noche, Oskar Morgenstern recibió una llamada telefónica de Kurt Gódel 
en la que le comunicaba, con cierta excitación, que había descubierto inconsis­
tencias en la Constitución de Estados Unidos. El caso es que, al día siguiente, 
Gódel debía presentarse ante el juez Philip Forman para formalizar, en lo que 
había de ser un puro trámite, su nacionalización como ciudadano norteameri­
cano. Estaba claro que Gódel se había leído a fondo la Constitución y que no 
estaba dispuesto a dejar pasar ni una. Entonces, Morgenstern decidió llamar a 
Einstein -que ya por aquel entonces gozaba de una extraordinaria populari­
dad- para que le acompañara en la visita al juez. De forma que al día siguiente 
se presentaron los tres en el juzgado. Como era de esperar, Gódel inició una 
disertación sobre un fallo en la redacción del artículo quinto de la Constitución 
que hacía peligrar la consistencia de todo el sistema. Por suerte, Morgenstern 
y Einstein pudieron convencer al juez de las buenas intenciones de Gódel y 
este pudo jurar la Constitución sin mayores problemas. Sin duda, tuvo suerte 
de ir muy bien acompañado y de encontrarse con un juez inteligente. 

Einstein disfrutaba de la compañia de Gódel y solían dar juntos largos paseos por el campus 
de Princeton. 
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largo artículo en el que ponía de manifiesto la revolución que el 
nuevo enfoque significaba. Al poco tiempo, todos los especialis­
tas -y, como sucede con frecuencia en estos casos, muchos que 
no lo eran- coincidieron en que la aparición de este libro supuso 
un antes y un después en la historia de la teoría económica. A 
pesar de ello, apenas llegaron a venderse cuatro mil ejemplares 
en cinco años. Muchas de las suscripciones no fueron de mate­
máticos ni de economistas, sino de jugadores profesionales que 
debieron quedar muy frustrados al abrir el libro y encontrarse con 
165 páginas repletas de fórmulas matemáticas. 

Von N eumann y Morgenstem comparaban el nivel científico 
de la teoría económica con el que tenía la física antes de las teo­
rías de Newton o de Keppler. Consideraban que los enfoques in­
tuicionistas, exentos de una teoría sólida en la que apoyarse y en 
la que los autores basaban sus explicaciones en una terminología 
vaga que carecía de definiciones precisas, apenas tenían validez. 
No obstante, también eran conscientes, y así lo manifestaban, 
de que el desarrollo futuro de la economía exigiría la creación de 
unas nuevas matemáticas que todavía estaban por inventar. 
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CAPÍTULO 4 

Estados Unidos: la matemática 
aplicada 

Hasta 1940, el trabajo de investigación de Von 
N eurnann se había centrado en las ciencias puras. 

A partir de entonces, la mayor parte de sus trabajos fueron 
encaminados a las matemáticas aplicadas y, debido a los 

violentos acontecimientos de esas fechas, muchos de 
ellos aplicados al escenario bélico, y otros, como 

la nueva arquitectura de ordenadores, fueron 
herramientas fundamentales para construir 

el nuevo tejido social de la posguerra. 





A finales del siglo XIX, el nivel de las matemáticas que se enseña­
ban en Estados Unidos era muy bajo comparado con el europeo. 
La materia impartida en los primeros cursos universitarios era el 
equivalente en Alemania a las materias de enseñanza secundaria, 
algo que afectaba no solo a los propios cursos de matemáticas, sino 
también a la mayoría de carreras técnicas que tenían que utilizarlas 
como herramienta básica Además, en la mayoría de las universida­
des norteamericanas, al profesorado se le pagaba para enseñar, no 
para investigar, de manera que a dicho estamento se le hacía nece­
sario recurrir a otras fuentes de financiación si quería dedicarse a 
tareas de investigación. 

Así las cosas, se imponía una reforma global que, entre otras 
cosas, considerara la creación de revistas especializadas y asocia­
ciones matemáticas que sirvieran de escaparate para conseguir la 
financiación necesaria para crear becas de investigación. El centro 
educativo pionero en dar estos primeros pasos fue la Universidad 
Johns Hopkins de Baltimore, que estableció cursos de posgrado y 
fomentó la investigación matemática, creando en 1878 la Ameri- . 
can Journal of Mathematics, la primera revista de matemáticas 
que hubo en Estados Unidos. Diez años más tarde se fundó la So­
ciedad Matemática de Nueva York, que además de acoger a cual­
quier docente que se dedicara a las matemáticas, también hacía lo 
propio con ingenieros, estudiantes y cualquiera que estuviera inte-
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resado en esta ciencia. El número de asociados fue rápidamente en 
aumento y se extendió por todo el país, por lo que en 1894 pasó a 
llamarse Sociedad Matemática Americana (American Mathemati­
cal Society, más conocida por su sigla, AMS). 

En 1861 fue creado el Instituto Tecnológico de Massachu­
setts (Massachusetts Institute of Technology, o MIT), que muy 
pronto se convertiría en uno de los grandes centros de enseñanza 
de Estados Unidos, pero como su propio nombre indicaba, fue 
creado con el ánimo de acumular entre sus estudiantes conoci­
mientos de tipo técnico antes que científico. En aquel tiempo, la 
política educativa imperante seguía priorizando la tecnología, de 
la que esperaba resultados prácticos, relegando a un segundo pla­
no la investigación en ciencias básicas. Sin embargo, la necesidad 
creciente de una buena preparación en física y en matemáticas 

GOTINGA Y EL NAZISMO 

Uno de los muchísimos errores que cometieron los alemanes fue el de eliminar 
de su comun idad c ientífica a cualquiera que fuera judío, lo que incluyó a un 
buen número de físicos y matemáticos que hipotéticamente podían haber 
colaborado en la fabricación de una bomba nuclear. Aparte de algunas ex­
cepciones como Werner Heisenberg o Wernher Von Braun, ya antes de la 
guerra la Alemania nazi comenzó a llevar a cabo un vaciado alarmante de 
científicos bajo la premisa de que la ciencia judía no podía ser fiable. Frente 
a esta política, cabe destacar la postura que David Hilbert mantuvo siempre 
frente a las ideologías políticas que, para tratar de justificar sus fechorías, in­
tentaban involucrar a c ientíficos e intelectuales en sus panegíricos. Ya había 
tomado un part ido claro en el comienzo de la Primera Guerra Mundial, cuando 
se negó a firmar un manifiesto en el que el Gobierno alemán pretendía justi­
ficar intelectualmente sus acciones de guerra. Cuando el nazismo impuso sus 
criterios selectivos, básicamente racistas, para decidir quién tenia derecho a 
ejercer determinados cargos públicos, Hilbert movió c ielo y tierra, amparán­
dose incluso en la Constitución de Weimar, para que los matemáticos más 
emblemáticos no fueran expulsados de Gotinga. Sin embargo, fue una batalla 
perdida, de la que da testimonio la respuesta que dio al ministro nazi de Edu­
cación, cuando le preguntó qué tal progresaban las matemáticas en Gotinga, 
una vez se la había limpiado de judíos. La respuesta fue muy breve: «Ya no 
hay matemáticas en Gotinga». 
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para las mismas carreras técnicas, junto con la información que 
llegaba de Europa de la recién nacida mecánica cuántica, sensibi­
lizó a un sector importante de científicos que veían la necesidad 
de crear facultades en las que se impartieran áreas tan novedosas 
como la física teórica. Los recursos económicos para este tipo de 
iniciativas recayó en el sector privado, que empezó a financiar al­
gunos proyectos universitarios mediante fundaciones y donacio­
nes. Una de las más destacadas fue la fundación Rockefeller, que 
se convirtió en uno de los buques insignia en promover la intro­
ducción de los más modernos avances científicos en las universi­
dades. Su director, Abraham Flexner (1866-1959), fue el promotor 
para la creación de un centro de investigación que se inauguró 
en el área de las matemáticas y que se construyó en las inmedia­
ciones de Princeton, dando lugar al nacimiento del Instituto de 

Berlín, 1933. Quema de libros de autores judíos y de otros considerados antigermanos. 
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Estudios Avanzados de Princeton (Institute for Advanced Study, 
IAS), que acabaría siendo uno de los centros de investigación en 
meitomá.tic= mó.e uuportantes del mundo. Uno de sus miembros 
más destacados fue Oswald Veblen (1880-1960), un matemático 
estadounidense de prestigio internacional que sabía coordinar 
con eficacia su actividad como científico y como. organizador y 
que asumió, entre otras, la tarea de organizar el centro e intentar 
reclutar a matemáticos de prestigio para que trabajaran en él. 

Se inició así una nueva época en la que por primera vez el 
fhtjo de científicos que cruzaban el Atlántico se invirtió. Ya no 
serían los norteamericanos los que irían a ampliar conocimientos 
a Alemania, sino los alemanes los que cruzarían el Atlántico para 
investigar en Estados Unidos, una inmigración que se vio favore­
cida por el advenimiento de la Alemania nazi. 

«Podría parecer que hemos llegado al límite de lo que es posible 
lograr con la tecnología informática, aunque hay que tener 
cuidado con tales declaraciones, ya que tienden a sonar 
bastante tontas en cinco años.» 
- JouN VON NEUMANN. 

A principios del siglo xx, Gotinga seguía siendo el referente 
mundial de la investigación matemática, pero en Estados Unidos 
había surgido un centro capaz de emularlo y de alcanzar su mis­
mo nivel de reconocimiento: Princeton. 

Oswald Veblen y Von N eumann se conocieron en el Congreso 
Internacional de Matemáticas que se celebró en Bolonia en 1928. 
No sería arriesgado decir que el futuro de Von Neumann se deci­
dió en aquel encuentro. Además del intercambio de conocimien­
tos científicos, propio de un congreso de esa naturaleza, Veblen le 
hizo partícipe en su proyecto de crear en Princeton un centro de 
investigación dedicado a las matemáticas puras y también a otra 
área, en la que Von Neumann había mostrado un especial interés, 
que era la física matemática. Estados Unidos ya se había configu­
rado como el país de las oportunidades, como la tierra prometida. 
Von Neumann era consciente de ello y Veblen le estaba abriendo 
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una puerta. El empujón final se lo daría la dramática situación en 
la que se vería comprometida Europa en los años anteriores a la 
Segunda Guerra Mundial. 

PRIMEROS CONTACTOS 

Desde el comienzo, Von Neumann fue especialmente crítico con 
el nazismo. De todas maneras, no se puede decir que como cientí­
fico judío, sus emigraciones a Alemania y posteriormente a Esta­
dos Unidos fueran motivadas por las persecuciones antisemitas, 
ya que en ambas ocasiones los motivos fueron encontrar mejores 
oportunidades de trabajo. 

Von Neumann se casó en diciembre de 1929 con Mariette 
Koevesi, una novia de la adolescencia, hija de un médico de Buda­
pest. Para poder formalizar la boda, Von N eumann se vio obligado 
a convertirse al catolicismo, a lo que no puso ninguna objeción, a 
pesar de haber nacido en el seno de una familia judía tradicional. 
El fruto de dicha unión fue Marina, su única hija, nacida en 1935. 
Al año siguiente de la boda, Von Neumann fue aceptado como 
profesor visitante en la Universidad de Princeton y en 1933 fue 
nombrado profesor titular en el Instituto de Estudios Avanzados 
de Princeton. Por aquel entonces tenía veintinueve años y era el 
profesor más joven de una prestigiosa institución que albergaba 
despachos de personalidades del mundo de la ciencia como Ein­
stein, Dirac, Turing o Godel. 

El acceso escalonado a los diferentes puestos de trabajo a los 
que Von Neumann se vio obligado a ocupar no estuvo determi­
nado por motivos académicos en los que se cuestionara su valía 
profesional, sino que era debido a la situación política y económi­
ca de Estados Unidos que, en aquellas fechas, afectaba a las leyes 
de inmigración. Cuando las depuraciones nazis se hicieron ex­
tensivas más allá de las fronteras alemanas, implicando a países 
como Checoslovaquia, Hungría, Polonia o Italia, los científicos de 
origen judío se vieron obligados a emigrar, siendo muy pocos los 
países a los que podían optar. Sin duda, Estados Unidos era el 
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destino preferido, pero ser admitido en ese país no era una tarea 
fácil. La crisis económica había obligado a prescindir de muchos 
puestos de trabajo y el sector académico no se salvó de la criba. 
Los profesores que habían mantenido su plaza se veían obliga­
dos a emplear casi la totalidad de su jornada laboral en impartir 
clases. Estar en posesión de un contrato académico que permi­
tiera dedicarse en exclusiva a la investigación era todo un lujo y 
la llegada masiva de científicos de Europa se percibió como una 
amenaza ante la escasez de puestos de trabajo. 

A pesar de estas condiciones adversas, gracias a su ya conso­
lidado prestigio internacional, Von Neumann consiguió ascender 
rápidamente en el escalafón administrativo para consolidar su 
posición académica en Estados Unidos. De hecho, obtuvo la na­
cionalidad estadounidense en 1937, el mismo año en que iniciaría 
sus actividades como colaborador del Laboratorio de Investiga­
ción Balística (Ballistics Research Laboratory). 

Como profesor, es decir, impartiendo clases, estuvo un pe­
ríodo relativamente corto, de 1930 a 1933, algo que el alumnado 
corriente agradeció, ya que Von N eumann no se distinguía por sus 
cualidades docentes. Lo hacía todo deprisa, sin entretenerse en 
explicaciones y sin que sus alumnos tuvieran apenas tiempo de 
tomar apuntes. 

Von Neumann dedicó los años anteriores a la guerra a la in­
vestigación básica. En colaboración con Garrett Birkhoff, en 1936 
publicó «La lógica de la mecánica cuántica», y entre 1936 y 1937, 
en el Instituto de Estudios Avanzados de Princeton, las «Leccio­
nes sobre geometría continua», que asentaría las bases para el 
posterior desarrollo de la teoría de retículos. 

Aquellos fueron años agitados, de constantes viajes a Europa 
y también por el interior de Estados Unidos; fueron agitados no 
solo profesionalmente, sino también en su vida privada. A los dos 
años de su matrimonio, su mujer se enamoró del físico J.B. Kuper, 
y abandonó a Von Neumann llevándose con ella a su hija Marina, 
para fijar su residencia provisional en Nevada, estado en el que 
los trámites para conseguir el divorcio eran más fáciles. Los mo­
tivos que Mariette adujo para ello fueron en términos de «abuso 
y crueldad». Esto ha sido utilizado en ocasiones para denunciar 
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serios defectos en la personalidad y la estabilidad emocional de 
Von N eumann, para poner de manifiesto el tópico de la incompa­
tibilidad del genio con su capacidad para relacionarse con los de­
más. Sin embargo, esto último no es cierto, ya que hay constancia 
de que esas fueron razones de mutuo acuerdo que tenían como 
único objetivo acelerar los trámites necesarios. Posteriormente 
al divorcio, Von Neumann y Mariette siempre mantuvieron una 
relación cordial. Pactaron que su hija permaneciera con su madre 
hasta los doce años, para luego pasar la adolescencia viviendo 
con su padre. Mariette consideró que era un privilegio que su hija 
pudiera vivir ese importante período de la vida junto a un hombre 
del talante de Von Neumann. 

«Si la gente no piensa que las matemáticas son simples, es solo 
porque no se dan cuenta de lo complicada que es la vida.» 

- JOHN VON NEUMANN. 

Hasta 1936, Von Neumann pasó todos los veranos en Europa, 
hasta que el nazismo hizo imposible la vida de los científicos y 
de la mayoría de la gente, tanto en Alemania como en los países 
ocupados. En el otoño de 1938, Von Neumann solicitó un permiso 
en la Universidad de Princeton para hacer un viaje en el que debía 
resolver ciertos asuntos personales. Iba a casarse de nuevo, esta 
vez con Klara Dan, una antigua novia de la que volvió a enamo­
rarse en uno de los muchos viajes que hizo a Europa antes de la 
guerra. Klara estaba casada, y a pesar de proceder de una familia 
de la alta burguesía de Budapest, consiguió el divorcio con cier­
ta facilidad. Aquel mismo otoño, Klara le había escrito una carta 
comunicándole su angustia por la situación política y la necesi­
dad de emigrar a un país como Estados Unidos. Von Neumann 
no se lo pensó dos veces y fue a su ciudad natal para casarse por 
segunda vez. En aquel viaje, el último que realizó a Europa, Von 
Neumann no quiso renunciar a ninguna de las visitas que tenía 
programadas, especialmente la del físico danés Niels Bohr (1885-
1962) en Copenhage. No hay que olvidar que por aquellas fechas 
todos estos desplazamientos comportaban ciertos riesgos, ya que 
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transcmTÍan en una Alemania cada vez más controlada por los 
nazis. El 17 de noviembre, Von Neurnann y Klara Dan se casaron 
y al cabo de pocos días cruzaron Europa para embarcarse en el 
Queen Mary, que les llevaría a Estados Unidos para establecer su 
residencia definitiva. Con el tiempo, toda la familia de Von Neu­
mann acabaría residiendo en Estados Unidos. 

COMPUTACIÓN 

La física nace de la observación de fenómenos que se repiten y 
que inducen al científico a diseñar un escenario en el que sea ca­
paz de recrear dichos fenómenos, de reproducirlos con la mayor 
fidelidad posible o de hacer mediciones precisas en el caso de que 
se trate de fenómenos naturales imposibles de recrear a escalas 
razonables. El objetivo final suele ser el de poder encontrar una 
ley que, aunque no sea capaz de explicar totalmente la naturaleza 
del fenómeno, sí pueda predecir lo que sucederá en el futuro. En 
este sentido, se podría decir que la física es la ciencia de la pre­
dicción. Por ejemplo, en el caso de la gravitación, se observa que 
los cuerpos son atraídos por la Tierra. Se pueden llevar a cabo 
experimentos dejando caer diferentes objetos desde diferentes 
alturas y hacer mediciones, que es lo que en su momento hizo 
Galileo. Todos los datos obtenidos figuran en el escenario de lo 
que se denomina física experimental y, en el mejor de los casos, 
acaban conduciendo al establecimiento de una ley, que es lo que 
hizo Newton al definir la ley de la gravitación universal mediante 
una fórmula que describía con precisión cómo dos masas cua­
lesquiera se atraen entre sí. Hasta ahora, nadie ha sido capaz de 
explicar «por qué» dos masas se atraen, pero sí sabemos «cómo» 
lo hacen, lo que nos permite hacer predicciones precisas sobre el 
comportamiento de una masa que está sometida a los efectos de 
un campo gravitatorio. 

El resultado final de un proceso de estas características es 
una o varias fórmulas matemáticas. El advenimiento del cálculo 
infinitesimal dio lugar a que esta y otras leyes pudieran ser trata-
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das con herramientas matemáticas, lo que casi siempre da lugar 
al nacimiento de nuevas fórmulas que, a su vez, tienen nuevas 
interpretaciones físicas. 

Cuando hablamos de la física en estos términos, lo hacemos_ 
refiriéndonos a ella como a una ciencia básica. Pero, siguiendo 
con el ejemplo, la ley de la gravitación puede ayudamos a calcu­
lar cuál es el comportamiento de una masa que es proyectada al 
espacio con una velocidad y una inclinación determinadas. Se 
sabe que su trayectoria seguirá una parábola, de la que conoce­
mos su ecuación, gracias a la cual podemos determinar la altu­
ra y el alcance máximo que tendrá, el tiempo que empleará en 
realizar todo el recorrido y la velocidad que tendrá en cualquier 
punto de su trayectoria. Todos estos datos son vitales para el 
lanzamiento de proyectiles. Esto es física aplicada, aquella rama 
de la física en la que se abandona el escenario de las ciencias bá­
sicas, para acabar adentrándonos en el campo de la tecnología. 
El esquema es aparentemente simple: observación, medición, 
hipótesis, leyes que tengan reflejo en ecuaciones matemáticas, 
aplicaciones prácticas y diseño de dispositivos tecnológicos. 
Pero, como sucede en cualquier explicación esquemática, esta 
ruta adolece de un exceso de simplificación. Las cosas no suelen 
ser tan sencillas, ni los procesos evolucionan en una sola direc­
ción. Lo que acaba pasando es que hay que caminar hacia delante 
y hacia atrás varias veces. El dispositivo final -que podría ser 
un cañón o un cohete intercontinental- no funciona nunca a la 
primera, lo que obliga a replantearse la teoría y a reformularse 
las ecuaciones. 

Habitualmente, entre los especialistas que trabajan en los 
grandes proyectos científicos o tecnológicos hay matemáticos, fí­
sicos y tecnólogos en diferentes áreas. Entre los matemáticos, 
los hay que se dedican más a las matemáticas teóricas y otros a 
las matemáticas aplicadas. En la actualidad, esta distinción está 
clara, pero cuando Von Neumann empezó a trabajar en Estados 
Unidos, dicha distinción apenas existía. Si ha habido un matemá­
tico capaz de reunir en una sola mente una visión completa de las 
matemáticas puras y de las aplicadas, ha sido precisamente Von 
Neumann. 
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ECUACIONES 

No siempre, pero la mayoría de las veces, el nexo que une las ma­
temáticas puras y las aplicadas son las ecuaciones. 

Una ecuación puede ser planteada, pero eso no quiere decir 
que pueda ser resuelta. A lo largo de su historia, las matemáticas 
han dedicado siglos a la resolución de ecuaciones. Siempre ha 
sido uno de sus temas prioritarios, lo que tiene una clara razón 
de ser. Si tenemos una ecuación que nos permite calcular todos 
los elementos de la trayectoria de un proyectil, pero no sabemos 
cómo resolverla, de poco nos servirá. 

Resolver una ecuación es encontrar las soluciones. Por ejem­
plo, la ecuación 

x +3 = 5 

tiene como solución x = 2. 
Sin embargo, una ecuación como 

no tiene una solución tan obvia. Podríamos ir probando solucio­
nes para ver si acabamos acertando con la correcta, pero sucede 
que este tipo de ecuaciones sí saben resolverse. Se trata de una 
ecuación de segundo grado cuyo método de resolución se enseña 
en los colegios y que suele aprenderse más o menos a los catorce 
años. Esta ecuación tiene un algoritmo de resolución que nos pro­
porciona dos números 1 y 2, que son las soluciones de la ecuación. 
Si no conociéramos el algoritmo, no nos quedaría más remedio 
que ir probando soluciones. En este caso concreto las hallaríamos 
rápidamente, pero en una ecuación como 

2,34x4 + 23,56x3-0,65x 2 + 11,370x-36,62 = O 

el tanteo supone una tarea ingente con pocas probabilidades de 
éxito. Una alternativa sería encargarle el trabajo a una máquina. 
Actualmente, la velocidad de cálculo de los procesadores hace 
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que un planteamiento de estas características parezca razonable. 
El trabajo de un matemático en estas lides puede resultar muy 
útil, no solo para la determinación de las ecuaciones, sino también 
para acotar el rango de las soluciones. Por ejemplo, saber que los 
números que estamos buscando se encuentran entre O y 10, sin 
duda facilitará la búsqueda de soluciones por tanteo. 

Durante el primer período de su estancia en Estados Unidos, 
cuando empezó a trabajar para el Laboratorio de Investigación Ba­
lística, Von Neumann estuvo investigando el problema que plan­
teaba la turbulencia hidrodinámica, lo que se entiende por «mecá­
nica de medios continuos», una herramienta esencial en el terreno 
de la balística y en la que intervienen ecuaciones diferenciales en 
derivadas parciales no lineales de una gran complejidad analítica. 
Su enfoque se dirigió entonces hacia la resolución de dichos siste­
mas por métodos numéricos, de ahí que estuviera tan interesado 
en las posibilidades que para ello ofrecían las nuevas máquinas de 
computación electrónica. Von Neumann ya sabía que los cálculos 
iban a suponer un escollo importante. Obviamente, no se trataba 
de ecuaciones de segundo grado, sino de ecuaciones para las que 
no se disporua de un algmitrno de resolución. Todo ello iba a re­
querir de horas de cálculo manual o, expresado con otro término, 
de cómputos. Así, se les llamaba precisamente computadores al 
equipo de personas que trabajaba realizando todos estos cálculos 
-o computadoras, si se tiene en cuenta que, por el motivo que fue­
re, siempre había más mujeres que hombres realizando cálculos-. 

LAS PRIMERAS COMPUTADORAS 

Uno de los significados de la palabra inglesa computm· es «cal­
culador», «el que computa». Según esto, la historia de la com­
putación debería hacer referencia a objetos capaces de hacer un 
cálculo, en el sentido de hacer cuentas ( operaciones aiitméticas) 
de forma automática. De esta manera, en un sentido genérico, el 
término «computadora» se emplea para designar un dispositivo al 
que se le dan unos datos de entrada (input) y del que esperarnos 
un resultado, o sea, unos datos de salida ( output). 
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El nivel de automatismo y la complejidad de las operaciones 
efectuadas son dos factores determinantes en el desarrollo de la 
computación. La diferencia entre tener que mover las fichas de un 
ábaco con la mano, o que esta acción la lleven a cabo dispositivos 
electromecánicos, señala un avance tecnológico. Que el dispositivo 
en cuestión esté diseñado para efectuar sumas en las que intervienen 
números de varios dígitos o que sea capaz de resolver ecuaciones 
diferenciales, también es una cuestión técnica, aunque de otra natu­
raleza. En cualquier caso, los dispositivos de cálculo surgen ante la 
necesidad de aliviamos del penoso trabajo de tener que realizar ta­
reas de cálculo totalmente mecánicas en las que no se exige pensar, 
sino llevar a cabo un proceso absolutamente rutinario y susceptible, 
por tanto, de responder a las instrucciones de un programa 

A diferencia de las ciencias básicas, en las que la aportación 
de una sola persona puede producir un resultado sorprendente, en 
tecnología, el desarrollo suele ser más lento y se produce de for­
ma escalonada. Fabricar mecanismos de ruedas dentadas, ejes y 
acoplamientos no solo requiere un diseño adecuado, sino también 
de una industria capaz de fabricar las piezas. Esta es la razón por 
la que las famosas máquinas - analítica y diferencial- del cientí­
fico de la computación británico Charles Babbage (1791-1871) es­
tuvieron condenadas al fracaso. Buena prueba de ello es que en la 
actualidad se han construido, con ánimo museístico, máquinas de 
Babbage que funcionan perfectamente. Aun así, a estas máquinas 
se las considera como el gran hito de la era mecánica de la compu­
tación, especialmente si se contemplan junto a la presencia de la 
matemática británica Ada Augusta Byron (1815-1852), condesa de 
Lovelace, responsable del primer lenguaje de programación de la 
historia, que significó la aparición de un elemento decisivo a tener 
en cuenta en la evolución de la computación, lo que actualmente 
entendemos por software, el programa. A partir de entonces, la 
computadora pasó a tener «cuerpo y alma», es decir, hardware 
y software. En este aspecto, cabe destacar la publicación en 1854 
de Las leyes del pensamiento del matemático británico George 
Boole (1815-1864), obra en la que tiene lugar el nacimiento de las 
llamadas «álgebras booleanas», una nueva álgebra de la lógica en 
la que las variables solo pueden tomar dos valores, O y 1, y en la 
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que operan tres funciones elementales: AND (y), OR (o) y NOT 
(no), en base a las que se construirían las futuras puertas lógicas 
de las modernas computadoras. En esta época precedente a las 
diferentes generaciones de computadoras, también hay que hacer 
una especial mención al año 1801, fecha en la que aparece el telar 
automático del comerciante francés Joseph Jacquard (1752-1834), 
basado en una serie de tarjetas perforadas capaz de conservar una 
determinada información de procesos repetitivos. 

El inicio de la nueva generación de computadoras se suele 
datar en 1890, coincidiendo con el censo de la población que el 
Gobierno de Estados Unidos quería llevar a cabo y para el cual 
tenía prevista una duración de diez años. Con el dispositivo de 
Herman Hollerith (1860-1929), basado en las tarjetas perforadas 
de Jacquard para el hardware y en las álgebras de Boole para el 
software, el censo se llevó a cabo en un tiempo récord de dos 
años. A raíz de este trabajo, en 1924 se fundó la primera empresa 
dedicada a la fabricación de este tipo de máquinas calculadoras, 
la International Business Machines Corporation (lBM). 

Van Neumann introdujo el uso de tarjetas perforadas en los 
primeros cálculos matemáticos con computadoras. Su hermano 
Nicholas afirmaba que esta idea le surgió en una conversación 
que tuvieron en una sobremesa, cuando todavía vivían en Buda­
pest, en casa de sus padres. En aquellas conversaciones familia­
res era frecuente que el padre, siempre interesado en atraer a sus 
rujas al mundo de los negocios, explicara con cierto detalle las 
implicaciones sociales y culturales a las que llevaba la economía. 
Hacía poco que la entidad bancaria que Miksa Neumann dirigía 
había invertido en una innovadora empresa textil para la adquisi­
ción de los telares Jacquard. 

Van Neumann sabía de la importancia de relacionar muy es­
trechamente la teoría y la práctica mediante los resultados expe­
rimentales; el feedback que se obtenía de los experimentos per­
mitía hacer ajustes en la teoría. Sin embargo, era necesario que 
los resultados obtenidos en los cálculos fueran lo más ajustados 
posible. La introducción de nuevos métodos de cálculo había su­
puesto un gran avance en la historia de la ciencia y Von N eumann 
creía firmemente que la introducción de las computadoras iba a 
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tener en ese sentido un papel similar. Pero, para ello, era nece­
sario introducir nuevas técnicas en el cálculo numérico. En este 
campo destacan sus aportaciones en las técnicas de estabilidad 
numérica en el cálculo de matrices inversas y en el de aproxima­
ción de funciones que presentan discontinuidades de salto. 

Los trabajos realizados por Von Neumann en trayectorias ba­
lísticas y ondas de expansión le convirtieron en un experto recla­
mado por los estamentos militares. No obstante, esto rio era más 
que la antesala de un experimento que significaria uno de los gran­
des logros de la investigación científica y, desgraciadan1ente, tam­
bién uno de los mayores hitos de la historia por lo que respecta a la 
capacidad de destrucción del ser humano. Von Neumann acabaria 
siendo uno de los científicos más implicados en el proyecto. 

LA BOMBA ATÓMICA 

Año 1944. Los aliados empezaban a creer que tenían probabilida­
des de ganar la guerra, pero todavía no estaban del todo conven­
cidos. Rommel había perdido la batalla en el norte de África, los 
italianos ya no quedan seguir en el bando de Hitler y las fuerzas 
norteamericanas habían conquistado Sicilia, un enclave estratégico 
para dominar el Mediterráneo. La gran apuesta de Stalingrado la 
ganaron los rusos, que por primera vez avanzaban en lugar de retro­
ceder, aunque fuera ralentizados por el mal estado del terreno que 
había dejado uno de los inviernos más crudos en el este de Europa. 
Pero la guerra todavía está lejos de terminar. El ejército alemán se 
mantienía blindado en los países ocupados y ni un solo soldado de 
las fuerzas aliadas podía poner los pies en ellos. En septiembre de 
ese mismo año, la Wehrmacht lanzaba el V2 - sucesor de la bom­
ba Vl- , el primer cohete con objetivos militares, que había sido 
construido en la planta secreta de Peenemünde bajo la dirección 
del ingeniero espacial W emher von Braun. Se trataba de un arma 
que generaba el pánico sobre las poblaciones a las que iba dirigida, 
entre otras cosas porque era muy difícil de interceptar y porque ni 
siquiera se la oía llegar, ya que viajaba a una velocidad superior a la 
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Explosivo Masas subcriticas 

__ J 

del sonido. Era un dispositivo bélico de efectos psicológicos, pero 
como arma militar terúa una eficacia muy cuestionable. De hecho, 
murieron más personas en su proceso de fabricación que por los 
efectos destrnctivos de sus explosiones al alcanzar el blanco. Sus 
mayores defectos pivotaban sobre dos factores; el primero era la 
escasa precisión en los dispositivos de navegación, y el segundo, la 
relativa poca potencia de su ojiva explosiva, 975 kg de amatol, que 
dirigidos con precisión hacia un objetivo concreto podían ser leta­
les, pero que en el caso de caer en campos próximos a áreas urba­
nas --como sucedió en la mayoría de las ocasiones-, sus efectos 
se limitaban a producir un cráter de dimensiones moderadas. 

Los alemanes se jactaban de poseer un arma secreta que podía 
dar un vuelco a la contienda y hacer que pudieran ganar la guerra. 
Obviamente, no se trataba de mejorar los sistemas de navegación, 
sino de sustituir la carga explosiva por otra cuyos efectos fueran 
tan devastadores que la precisión en el impacto se convirtiera en 
un asunto menor. Los alemanes se habían propuesto construir la 
primera bomba atómica de la historia. Terúan a su alcance todos 
los medios necesarios para ello, ya que disporúan de toda el agua 
pesada que se producía en la planta nornega Norsk Hydro y de la 
mayor reserva mundial de uranio procedente del Congo Belga En 
ese sentido llevaban una cl~a ventaja, pero habían perdido la oca­
sión de contar con un auténtico monopolio de mentes privilegiadas. 

La primera bomba atómica se basaba en un proceso de fisión 
nuclear del uranio enriquecido que comportaba una disminución 
de masa (véase la figura). La teoría de la relatividad de Einstein 
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había dejado establecido mediante su conocida ecuación E = m-c2 
que la disminución de masa comporta el aumento en la energía 
- ya que e, la velocidad de la luz, es un factor constante-. El pri­
mero en darse cuenta de que con los conocimientos disponibles 
era posible construir una bomba de fisión fue el físico húngaro 
Leó Szilárd (1898-1964); de hecho, él la diseñó y la patentó en 
1933 con el ánimo de que nadie pudiera utilizarla. En 1939, Szilárd 
se trasladó a Nueva York, donde estuvo trabajando con el físico 
italiano Enrico Fermi (1901-1954) en el primer reactor nuclear de 
la historia. Fue entonces cuando se decidió que el uranio era un 
elemento apto para provocar una reacción en cadena. 

Frente a la alarma que causó el saber que los alemanes estaban 
ya trabajando en la construcción de la primera bomba de fisión, el 
propio Leó Szilárd, junto con Edward Teller (1908-2003) y Eugene 
Wigner (1902-1995) -los tres húngaros y también judíos- conven­
cieron a Einstein para que, valiéndose de su prestigio, escribiera 
una carta dirigida al presidente Roosevelt advirtiéndole del peligro. 
Y fue así como nació el Proyecto Manhattan. 

EL PROYECTO MANHATTAN 

El 7 de diciembre de 1941, el presidente de Estados Unidos, Franklin 
Delano Roosevelt, autorizó la fabricación de una bomba atómica. 

Se formó un equipo interdisciplinar con la colaboración de di­
ferentes departamentos de las universidades de Columbia, Califor­
nia y Chicago. El objetivo era fabricar la primera bomba de fisión 
nuclear. El cargo de director científico del proyecto recayó en el 
físico Robert Oppenheimer (1904-1967), siendo el responsable mi­
litar el general Leslie Groves (1896-1970). En total, en el Proyecto 
Manhattan participaron más de 125000 personas. Quizá uno de sus 
mayores méritos fuera del ámbito científico, si no el único, fue que 
acabara siendo uno de los secretos mejor guardados de la histo­
ria. En él participaron científicos de gran renombre internacional, 
como Richard Feynman, Edward Teller, Enrico Fermi, Richard 
Wilkins, Stanislaw Ulam, Louis Slotkin o Klaus Fuchs; y también 
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Von Neumann, que fue quien diseñó prácticamente la totalidad del 
mecanismo de ignición. 

Von Neumann, que llevaba tiempo trabajando en hidrodiná­
mica de fluidos, diseñó un dispositivo que mediante una detona-

OAK RIDGE 

En 1942, el Gobierno de Estados Unidos construyó en Oak Ridge (Tennessee) 
unas instalaciones secretas que ocuparon más de 24 000 hectáreas con el 
fin de albergar las instalaciones del Proyecto Manhattan y a todos los traba­
jadores, incluyendo técnicos y científicos, que formaron una comunidad de 
decenas de miles de personas. Todo el recinto estaba vigilado por tropas del 
ejército. Muy pocos, entre ellos Von Neumann, podían entrar o salir del recin­
to, que tenía un cartel en la entrada en el que podía leerse el siguiente aviso: 
«Lo que veas, hagas u oigas aquí, cuando salgas de aquí, debe quedar aquí». 

Cartel situado en la entrada de la planta de Oak Ridge, apelando al secretismo de las operaciones 
que se llevaban a cabo en su interior. 
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EL MÉTODO MONTECARLO 

El método Montecarlo es un mé­
todo numérico que se utiliza en 
estadística para conseguir aproxi­
maciones precisas a expresiones 

matemáticas complejas para las 
que no existe un algoritmo de cál­
culo. Consiste fundamenta lmente 
en la simulación de variables alea­
torias. Una de las máquinas más 
sencillas que se conocen para la 
generación de números aleatorios 
es la típica ruleta de un casino, de 
ahí que al método se le pusiera el 
nombre de uno de los lugares mí-
ticos en lo que a juegos de azar 
se refiere. Muchos profanos en el 
tema creen que se trata de un mé-

• • 

todo para ganar en el juego de la ruleta, pero este método estadístico no tiene 
nada que ver con los juegos de casino. Hay una manera sencilla de ilustrar la 
idea básica que sustenta el método Montecarlo. Imaginemos que tenemos 
un recinto cuadrado de lado uno, en cuyo interior hay una figura geométrica 
de forma caprichosa de la que queremos calcular el área (véase la figura). 

ción provocara una onda de choque que produjera una súbita re­
ducción del núcleo de plutonio. El volun1en de dicho núcleo era 
lo suficientemente grande corno para que la masa de plutonio fue­
ra inferior a la masa crítica. Al producirse una reducción homo­
génea del volumen, el núcleo pasaba a tener masa supercrítica. 
El modelo matemático sobre el que se sustentaba el dispositivo 
requería la solución de un sistema de ecuaciones en diferencias 
finitas, para cuya resolución necesitaba el concurso de un orde­
nador capaz de ejecutar una enorme cantidad de complejas ope­
raciones en el menor tiempo posible. Von Neumann estableció los 
algoritmos necesarios para la resolución de las ecuaciones, pero 
es muy probable que sin la ayuda de las computadoras la propues­
ta no hubiera sido viable. 

ESTADOS UNIDOS: LA MATEMÁTICA APLICADA 



También podríamos haber elegido como ejemplo cualquier figura de lados 
curvos y, por supuesto, cualquiera que estuviera definida por una función 
matemática. Se colocan ahora N puntos de forma aleatoria . Un escenario 
aleatorio podría ser el número de bolas de granizo que han caído dentro 
del recinto cuadrado después de una granizada. Contamos luego el número 
de puntos N ' que hay dentro de la figura cuya área queremos calcular. -Su­
pongamos que N= 40 y N' = 13. El cociente N/N' = 0,32 es una aproximación 
al área que estamos buscando. Es fácil demostrar que el error cometido es 
proporcional a una cierta magnitud, de forma que para cada nueva cifra de­
cimal que queramos obtener será necesario aumentar el volumen de cálculo 
en cien veces; de esta manera, aunque el método responda a un algoritmo 
sencillo, requiere del uso de herramientas computacionales. El método fue de­
sarrollado por Von Neumann a raíz de una idea que le propuso el matemático 
polaco-estadounidense Stanislaw Ulam (1909-1984), que fue invitado por Von 
Neumann para participar en el Proyecto Manhattan. Ulam reconoció que la 
idea surgió en una ocasión en que estaba jugando a un complicado solitario en 
el transcurso de una enfermedad. Pensó que, en lugar de realizar un cómputo 
detallado de cada una de las posibilidades de resolución del juego, era más 
interesante llevar a cabo pruebas aleatorias contando el número de cartas 
que habían intervenido en la solución. Von Neumann aplicó el método para 
detectar neutrones generados por un material radiactivo a lo largo del radio 
de una esfera. En 1947 envió una propuesta formal al Laboratorio Nacional de 
Los Álamos en un documento que constituye el primer testimonio escrito que 
se tiene de una descripción formal del método Montecarlo. 

El Proyecto Manhattan duró 2 años, 3 meses y 16 días. La 
primera bomba atómica de la historia fue detonada en el desierto 
de Alarnogordo ·el 16 de julio de 1945. 

EL ENIAC 

En julio de 1943 empezó a construirse un nuevo ordenador en la 
escuela Moore de Ingeniería Eléctrica de la Universidad de Pensil­
vania, situada en Filadelfia, que marcaría un hito en la historia de 
la computación; se le dio el nombre de ENIAC (Electronic Nurneri­
cal Integrator and Computer). Se trataba de un proyecto de máxi-
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rno secreto cuyo nombre en clave era PX. El ENIAC está consi­
derado corno el primer ordenador de la historia, aunque algunos 
piensan que la progenitura se le debería dar a la Colossus, puesta 
en funcionamiento a mediados de febrero de 1944 en Bletchley 
Park, una instalación militar localizada en Buckingharnshire, In­
glaterra. La Colossus, inspirada por el científico de la computación 
Alan Turing (1912-1954) y diseñada por el matemático Max New­
rnan (1897-1984), fue utilizada para descürar la máquina Enigma. 

El ENIAC costó cerca de 8 000 dólares y fue financiado por el 
ejército. Medía 30 metros de largo y pesaba 32 toneladas. Funcio­
naba con 17 468 válvulas de vacío que disipaban tanto calor que la 
temperatura de la habitación en la que estaba ubicado podía subir 

LA EDVAC, UN PASO ADELANTE 

A pesar de los avances que Von 
Neumann había introducido, el 
ENIAC adolecía de serias limita­
ciones. Después de la guerra, Von 
Neumann colaboró en el diseño y 
la construcción de una nueva com­
putadora que corrigiera los errores 
y mejorara las prestaciones del 
ENIAC. La nueva máquina, la ED­
V AC (Electronic Discrete Variable 
Automatic Computer), mejoraba 
mucho la velocidad de la anterior 
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(el EN IAC realizaba 333 operacio- John von Neumann (izquierda) y Robert 

nes por segundo, mientras que la Oppenheimer junto a la EDVAC. 

EDVAC hacía 20 000) y además 
incorporaba totalmente la arquitec-
tura de Von Neumann. Von Neumann no solo se limitó al aspecto estructural 
de las computadoras, sino que también trabajó en el diseño de algoritmos 
que permitieran implementar el procesamiento de operaciones matemáticas 

. más complejas que los puros cálculos numéricos que hasta entonces se ha­
bían estado real izando con las computadoras. Llegó a desarrollar algoritmos 
para resolver d iferentes tipos de ecuaciones, calcular la inversa de una matriz, 
encontrar vectores propios y calcular los valores propios correspond ientes, 
así como hallar los máximos y los mínimos para funciones de varias variables. 

ESTADOS UNIDOS: LA MATEMÁTICA APLICADA 



ESTA DOS UNIDOS: LA MATEMÁTICA APLICADA 

FOTO SUPERIOR: 
Von Neumann 
y su segunda 
esposa, Klara Dan, 
en 1954. 

FOTO INFERIOR: 
Dos operadores 
manejando el 
panel de control 
principal del 
ENIAC en la 
escuela Moore 
de Ingeniería 
Eléctrica de la 
Universidad de 
Pensilvania, en la 
década de 1940. 
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fácilmente hasta los 50 ºC. Únicamente podía almacenar veinte nú­
meros, pero su defecto fundamental era que para cambiar un pro­
grama era necesario reconfigurar sus circuitos, de forma muy pare­
cida a como lo hacían las telefonistas en las antiguas centralitas, en 
una operación que podía llevar varios días. Otro de los problemas 
serios del ENIAC es que se pasaba más tiempo averiado que en 
funcionamiento. Aun así, el ENIAC estuvo funcionando diez años 
Y durante ese período realizó más cálculos matemáticos de los que 
se habían realizado en la historia de la humanidad hasta entonces. 

Von Neumann entró en contacto con el ENIAC de forma to­
talmente casual. El matemático estadounidense Herman Reine 

LA COLOSSUS 

El matemático britán ico A lan Turing (1912-1954) está considerado como uno 
de los padres de la informática actual a raíz de un artículo que escribió en 1931, 
titulado «Sobre los números computables». Dicho documento fue considera­
do por la comunidad matemática como uno de los avances más importantes 
del siglo, en el que se establecían las bases de lo que hoy se conoce como la 
«máquina de Turing», un esquema teórico que encerraba el fundamento 
de lo que habrían de ser todos los futuros programas informáticos. A part ir de 
su publicación, Turing inició una carrera ascendente hasta alcanzar el título 
de profesor de Matemáticas del King's College de Cambridge, donde perma­
neció hasta que el 4 de septiembre de 1939, un día después de que Inglaterra 
declarase la guerra a Alemania, fue llamado a formar parte del equipo de crip­
toanal istas de Bletchley. Este equipo obtuvo importantes éxitos desc ifrando 
las claves de la máquina Enigma, ut ilizada por los alemanes para cifrar sus 
mensajes. Turing mostró un talento tan extraordinario como descifrador, que 
acabó por convertirlo en el principal criptoanalista del Reino Unido. El objetivo 
fundamental del equipo de Bletchley era el arma submarina alemana. Poder 
descifrar los mensajes que el alto mando enviaba a los submarinos alemanes 
mediante el código enigma, significaba poderlos interceptar antes de que lle­
varan a cabo su m isión. Turing diseñó entonces una máquina electromecán ica 
para descifrar los códigos, la Colossus. Estas grandes y ruidosas máquinas 
que recibieron el sobrenombre de «bombas» ocuparon varios cobertizos en 
Bletchley y fueron claves, no solo para el criptoaná lisis diseñado por Turing, 
sino también como simientes de los futuros ordenadores que llegarían años 
después. La criptografía estaba ya entonces bajo secreto militar, pero también 
lo estaban aquellas ruidosas máquinas que se mostraron tan eficaces en el 
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Goldstine (1913-2004) se alistó en el ejército al comenzar la Se­
gunda Guerra Mundial. Trabajó con el grado de teniente en el BRL, 
que era el laboratorio de investigación de balística de Aberdeen, 
en Maryland. Como especialista en la confección de tablas de tiro, 
era muy consciente de la urgente necesidad de automatizar los en­
gorrosos y largos cálculos mediante la utilización de algún tipo de 
computador electrónico, motivo por el que aceptó el cargo de ha­
cer de enlace entre la escuela Moore, en Filadelfia, encargada de 
construir el ENIAC, y Aberdeen. En el verano de 1944, Goldstine se 
encontró casualmente con Von Neumann en el vestfüulo de la es­
tación de tren de Aberdeen. Debido a los numerosos compromisos 

descifrado de mensajes, auténticos ancestros de los actuales ordenadores. Así, 
no es de extrañar que el ENIAC, el primer computador con el que se enfrentó 
Von Neumann, estuviera también bajo secreto militar, ya que iba a ser utilizado 
para fabricar la primera bomba atómica. 

La Colossus, uno de los primeros ordenadores de la historia, fue emplazado, en 1943, en las 
instalaciones militares de Bletchley Park, Inglaterra; entró en funcionamiento en febrero de 1944. 
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que tenía con diversas instituciones gubernamentales, Von Neu­
mann era de los pocos científicos que no estaba obligado a perma­
necer en las instalaciones de Alamogordo. Goldstine no le conocía 
personalmente, pero había asistido a varias conferencias suyas y 
decidió abordarle. Curiosos por naturaleza, cuando los matemáti­
cos se encuentran tienen una fácil tendencia a interesarse uno por 
el trabajo del otro. La charla transcurrió sin mayor trascendencia, 
hasta que Goldstine le dejó caer a Von Neumann que estaba traba­
jando en la construcción de un nuevo ordenador. En este punto, la 
actitud de Von Neumann cambió y, según cuenta el propio Gold­
stine, le sometió a un interrogatorio de tercer grado. El calado de 
las preguntas le pareció propio de un experto y decidió invitarle al 
centro de investigaciones de Moore para ponerle directamente en 
contacto con los ingenieros John Mauchly y Prosper Eckert, que 
estaban trabajando en el diseño del ENIAC. Lo que nadie aclara 
en esta anécdota es cómo dos personas que estaban trabajando, 
cada una de ellas en sendos proyectos de alto secreto, se pusieran 
a hablar por los codos de sus respectivos trabajos en el vestlbulo 
de una estación de tren en el que acababan de conocerse. 

Nada más plantarse delante de la nueva computadora, Von 
Neumann le preguntó a Eckert por la estructura lógica del siste­
ma. Aquella fue una pregunta clave para que los ingenieros del 
ENIAC le abrieran las puertas a una colaboración que ya no ce­
saría hasta que acabara la guerra. Von N eumann pensó en la po­
sibilidad de diseñar un cor\junto de instrucciones que fuera un 
fiel reflejo de todos los pasos que se daban con papel y lápiz en la 
resolución de un problema y que, a su vez, este cor\junto de ins­
trucciones pudiera ser almacenado en la memoria central. Para 
que este cortjunto de datos pudiera ingresar en la computadora, 
era necesario dotar a esta de una nueva unidad diferente a aquella 
en la que se realizaban los cálculos, de manera que por un lado se 
pudieran entrar indistintamente datos y programas, y por otro re­
coger los resultados. Al hacer esto, Von Neumann estaba configu­
rando un concepto que hoy nos resulta muy familiar, el software. 

De esta manera, en 1945, en el Laboratorio Nacional de Los 
Álamos se empezó a trabajar en el proyecto de un nuevo ordena­
dor que tuviera programas almacenados. 
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ARQUITECTURA DE ORDENADORES 

Lo que actualmente se conoce como «arquitectura de Van Neu­
mann» se corresponde con el concepto de programa almacenado. 
Hoy en día existen computadoras con programas almacenados, 
como por ejemplo una calculadora de bolsillo con la que pode­
mos llevar a cabo una serie de complicados cálculos, pero con la 
que no es posible escribir un texto. En cambio, en un PC, si que­
remos un determinado programa de tratamiento de textos, basta 
con instalarlo y ponemos a trabajar. Pero esto no siempre fue 
así. Como ya se ha dicho, en las primeras computadoras, como el 
ENIAC, cambiar el programa significaba cambiar el diseño, para 
lo que había que hacer un croquis con papel y lápiz para luego 
cambiar el cableado de la máquina. 

Van Neumann diseñó varios tipos de recableado para agili­
zar las operaciones en el ENIAC, pero sabía que por mucho que 
optimizara el sistema, no dejaría de ser siempre un apaño con 
serias limitaciones. La idea de Van Neumann fue que los datos 
del programa, que al fin y al cabo también podían expresarse en 
bits como ceros y unos, fueran almacenados en la memoria junto 
con los otros datos. Esto permitía modificar las direcciones de 
memoria y también los mismos programas durante su ejecución. 
La mayoría de las computadoras modernas se basan en este tipo 
de arquitectura. 

Los ordenadores construidos con este tipo de arquitectura 
constan de cinco componentes (véase la figura de la página si­
guiente): 

l. Unidad aritmético-lógica. 

2. Memoria. 

3. Dispositivo de entrada-salida. 

4. Unidad de control. 

5. Buses del sistema ( datos, direcciones y control). 
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Memoria 

Dispositivo de entrada-salida 

La idea de almacenar las instrucciones junto con los datos 
tiene un antecedente en un artículo publicado en 1936 por Alan 
Turing en la London Mathematical Society en el que se daba una 
descripción detallada de lo que él llamaba la «máquina compu­
tadora universal», un modelo teórico de computadora que ac­
tualmente se conoce como «máquina de Turing», y que contenía 
tantos datos como instrucciones con una capacidad de memo­
ria infinita. Es más que probable que Van Neumann conociera la 
existencia de los trabajos de Turing, ya que ambos estuvieron en 
contacto durante los años 1936-1937, cuando Turing estuvo en la 
Universidad de Princeton. Además, el proyecto ya había sido ex­
puesto por Turing en la Universidad de Cambridge en 1935. Es 
cierto que ambos trabajos, tanto el de Turing como el de Van Neu­
mann, se refieren a ordenadores con programas almacenados. Sin 
embargo, el trabajo de Van Neumann se publicó antes, por lo que 
este tipo de arquitectura lleva su nombre. 

ESTADOS UNIDOS: LA MATEMÁTICA APLICADA 



CAPÍTULO 5 

El cerebro electrónico 

En los últimos años de su vida, Von N eumann 
supo coajugar una matemática aplicada, relacionada 
básicamente con la industria armamentística, con la 

matemática pura, en una nueva vertiente que le llevó a 
estudiar la estructura lógica de la reproducción de 
los seres vivos -los autómatas celulares- y las 

matemáticas que rigen el funcionamiento 
del cerebro, considerando a este como 

una red neuronal que podría llegar 
a ser simulada por un ordenador. 





Al finalizar la Segunda Guerra Mundial hubo una diáspora de 
científicos que se alejaron de los estamentos militares para regre­
sar al ámbito académico, que a todas luces era su espacio natural 
de trabajo. En medio de esta nueva realidad del momento, el De­
partamento de Defensa de Estados Unidos veía cómo el núcleo 
duro de investigadores, que tan buenos resultados había dado 
durante el período bélico, se iba reduciendo día a día en un esce­
nario estratégico que, debido al empeño puesto en el desarrollo 
de las armas nucleares, tenía todavía tintes de guerra, aunque 
fuera calificada con el eufemismo de «Guerra Fría». A los moti­
vos puramente profesionales de esta diáspora se sumaban otros 
de índole moral. 

La comunidad científica se había dividido en dos grupos cla­
ramente diferenciados: por un lado estaban los que no acepta­
ban colaborar en el incremento del potencial armamentístico nu­
clear, y por otro, aquellos científicos que lo veían como el único 
garante para alcanzar una posible paz mundial. Sin ningún lugar 
a dudas, Von Neumann formaba parte del segundo grupo. Para 
agravar todavía más la situación, la investigación en el desarro­
llo de armas de destrucción masiva, en lugar de detenerse, dio 
un paso de gigante con la aparición en el escenario de la bomba 
termonuclear, el mayor dispositivo destructivo que jamás había 
creado el hombre. 
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LA BOMBA DE HIDRÓGENO 

La bomba termonuclear de fusión o bomba de hidrógeno, fue con­
siderada por muchos como el proyecto científico más importante 
que se había realizado hasta entonces. Los problemas de cálculo 
que comportaba la construcción de esta bomba eran muy supe­
riores a aquellos con los que se tuvieron que enfrentar los cien­
tíficos del Proyecto Manhattan. Para la ocasión, Von Neumann 
diseñó nuevos programas para las modernas calculadoras que ya 
se habían empezado a construir siguiendo la arquitectura que él 
mismo había diseñado. Se preguntó si el volumen total de cál­
culos que había que realizar superaría a los llevados a cabo en 
toda la historia de la humanidad, aunque rápidamente llegó a la 
conclusión de que no sería posible si se tenían en cuenta también 
todos los cálculos que habían realizado los niños en las escuelas 
durante sus años de aprendizaje. 

La bomba de hidrógeno se basa en la energía desprendida al 
fusionarse dos núcleos de dos isótopos de hidrógeno, deuterio 
y tritio, para dar como resultado un núcleo de helio, producien­
do una reacción en cadena entre neutrones, con la consiguiente 
generación de energía. Para llevar a cabo esta fusión de los nú­
cleos, es necesario aportar una enorme cantidad de energía, tanta 
como la que proporciona una explosión nuclear. De esta mane­
ra, para conseguir una explosión nuclear se sigue un proceso de 
fisión-fusión-fisión. En la primera parte del proceso, se provoca 
una explosión nuclear que produce la energía suficiente para fu­
sionar los núcleos y, a su vez, desencadenar más energía, que es 
empleada en fisionar nuevos núcleos cuya liberación de energía 
es el resultado final de la bomba. Se comprende que los cálculos 
fueran mucho más complicados que los que comportaron el dise­
ño de la primera bomba. Aun así, todo el cómputo se realizó en 
seis meses, un tiempo récord para la época. 

La primera bomba de hidrógeno se hizo explotar el 1 de no­
viembre de 1952 en Eniwetok, un atolón de las islas Marshall. La 
temperatura alcanzada en el centro de la explosión fue superior 
a quince millones de grados. Frente a la multitud de críticas y 
voces de alarma que se alzaron contra el lanzamiento de la prime-
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ra bomba de hidrógeno, Von Neumann defendió el proyecto con 
un razonamiento cuanto menos curioso. Era consciente de que la 
contaminación radiactiva suponía una amenaza medioambiental 
que debía ser tenida en cuenta. Sin embargo, también conside­
raba que cualquier acción que fuera valorada, de alguna manera 
comportaba un coste que había que asumir. Para ello, ponía el 
ejemplo del coste de vidas humanas que comportaba la ventaja de 
los desplazamientos en automóvil, que por entonces se cobraba 
ya entre treinta mil y cuarenta mil víctimas anuales. 

La dedicación de Von Neumann a la energía nuclear, en su 
fase destructiva, le acarreó dos graves consecuencias, una de ca­
rácter psicológico y otra de naturaleza física, que se pusieron de 
manifiesto al final de su vida. La primera se tradujo en un pesimis­
mo creciente que ya nunca le abandonó. Consideraba que la tec­
nología alcanzada por el ser humano había superado con creces su 
capacidad para gestionarla. Estaba plenamente convencido de que 
el holocausto nuclear podría retrasarse durante un cierto período 
de tiempo, pero que al final sería inevitable. Su principal amargura 
se centraba en la imposibilidad de los Gobiernos para conseguir 
la estabilidad política necesaria para evitar el desenlace fatal. La 
segunda consecuencia fue que padeció un cáncer de huesos que 
acabó con su vida. Es dificil, incluso hoy en día, saber con certeza 
el origen real de un cáncer, pero aun así parece ser que el cáncer 
que afectó a Von Neumann fue debido a un prolongado contacto 
con fuentes radiactivas, junto con un exceso de confianza que le 
llevó a no tomar nunca las medidas de seguridad necesarias. 

LA GUERRA FRÍA 

Después de que la Unión Soviética hiciera detonar su primera 
bomba atómica el 22 de agosto de 1949, el conflicto nuclear entre 
Estados Unidos y la Unión Soviética estaba servido. Eran los ini­
cios de la llamada «Guerra Fría». El mundo se abría a un nuevo 
escenario nunca antes conocido. Gracias al armamento nuclear, 
las primeras potencias mundiales estaban en condiciones de bo-
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rrar del mapa a cualquiera de sus oponentes con tan solo apretar 
un botón. O, por lo menos, eso era lo que se creía. Aunque es muy 
probable que se hubiera sobrestimado el poder destructivo de los 
arsenales nucleares de la época, lo que sí parecía cierto era que 
un ataque nuclear relámpago dejaría completamente devastados 
los grandes núcleos urbanos sobre los que se asentaban los pode­
res social y económico de las grandes potencia mundiales. 

Von Neumann no fue el único científico que mantuvo esta 
actitud belicista. También el matemático británico Bertrand Rus-

MATEMÁTICAS DE LA GUERRA 

En la actualidad, poco o nada significarán para un profano el siguiente con­
junto de símbolos: 

db(t) = -K · r(t) b(O) = B 
dt ' 

dr(t) = -K b · b(t) r(O) = Rw. 
dt 

Un matemático verá en ellos un sistema de ecuac iones diferenciales en el 
que aparecen unas condiciones iniciales. Lo que difícilmente alguien podría 
sospechar es que se trata de uno de los muchos modelos de batalla estable­
cidos por la OTAN, en el que figuran unidades de combate, número de ope­
raciones realizadas en un tiempo t y parámetros similares. Sin duda, el nivel 
de complejidad en el que han entrado actualmente las estrategias militares 
hace de las matemáticas una herramienta imprescindible. Por otra parte, no 
es algo extraño, si se tiene en cuenta que, debido al alto nivel tecnológico 
en el que opera el armamento moderno, se hace necesaria la intervención 
de sofist icados dispositivos, como grandes computadores, complejas redes 
de comunicaciones o constelaciones de satélites de vigilancia. Hoy, ya no se 
trata de dominar las bases de la geometría o el cálculo diferencial, como se 
exigía antaño, sino que es necesario ser experto en áreas como la criptografía, 
el cálculo de probabilidades y la estadística o la teoría de juegos, por men­
cionar solo algunas. La importancia de las matemáticas en la guerra se puso 
de manifiesto a medida que estas pasaron a formar parte de las asignaturas 
claves en la carrera militar, especialmente en la ingeniería. En el transcurso de 
la Primera Guerra Mundial, con la aparición del sonar y de las nuevas teorías de 
aerodinámica, gran parte de la tecnología estaba pendiente de su desarrollo 
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sell, que por entonces gozaba de una gran popularidad, apoyaba 
la guerra preventiva, aunque con algunos matices que la hacían 
algo menos tajante que la de Von Neumann, ya que era partidario 
de dar una alternativa al enemigo: ríndete, sométete al poder de 
Estados Unidos y te evitarás el holocausto nuclear. Por el contra­
rio, Von Neumann no era partidario de poner sobre aviso a nadie. 
Su concepto del ataque preventivo consistía en eliminar cuanto 
antes la capacidad militar de Rusia, sin esperar ningún tipo de 
provocación, y a ser posible mientras estuvieran durmiendo. 

matemático, que llegó a ser tan espectacular que el matemático francés Émile 
Picard (1856-1941), catedrático de Cálculo Diferencial en la Sorbona, lanzó 
una voz de alarma temiendo que los estudiantes de matemáticas decidieran 
dedicarse en un futuro exclusivamente a la matemática aplicada. Sin embargo, 
con el tiempo se demostró que esa preocupación era infundada. 

Maniobras navales de la OTAN. Los avances tecnológicos han cambiado notablemente 
la configuración externa de un buque de guerra. 
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Frente a esta actitud de Von Neurnann cabe considerar dos 
aspectos, uno emocional y otro racional. El primero nos retrotrae 
a los primeros años de su vida, cuando su familia se vio obligada a 
huir del terror rojo con el que Béla Kun atemorizó a los habitantes 
de Budapest y que para Von Neurnann llevaba el sello inconfundi­
ble del «imperialismo comunista». Por otro lado, estaba el mate­
mático racional, frío, que pensaba en términos de estrategias, de 
toma de decisiones que quedaban reflejadas en números y ecua­
ciones, en modelos y axiomas. En este contexto estrictamente 
racional, el escenario de la guerra era el escenario de un juego, el 
escenario al que de niño había dedicado horas junto con su her­
mano Mihály frente al tablero del Kriegsspiel. 

«Si me propone usted bombardearles mañana, yo le contesto: 
¿por qué no hoy? Si dice usted que hoy a las cinco de la tarde, 
yo le contesto: ¿por qué no a la una?» 
- PALABRAS DE VON NEUMANN EN UN ARTICULO DE LA REVISTA LIFE, EN LAS QUE HACE PATENTE 

SU POSTURA ANTE EL CONFLICTO NUCLEAR EN LOS INICIOS DE LA GUERRA FRIA. 
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Von Neurnann era un experto en la teoría de juegos, lo que, 
como ya vimos en su momento, implica serlo también en la toma 
de decisiones y en la configuración de estrategias, dos de las ca­
pacidades más buscadas por los estamentos militares. Así, no 
es de extrañar que la lista de instituciones relacionadas directa 
o indirectamente con dichos estamentos -de las que Von Neu­
mann era consejero- fuera muy larga. En este aspecto, se le ha 
criticado en muchas ocasiones su querencia hacia los uniformes 
militares de alto rango y el que un matemático de su talla em­
pleara gran parte de su tiempo en cuestiones aparentemente muy 
alejadas de las ciencias puras. Es posible que en esta crítica haya 
mucho de cierto, pero también hay que tener en cuenta que esos 
eran círculos, como es el caso de la corporación RAND, en los 
que, precisamente un científico, podía encontrar todos los me­
dios necesarios, sobre todo económicos, para dar rienda suelta a 
su imaginación y llevar a cabo iniciativas científicas que de otra 
forma se habrían visto entorpecidas. En esas circunstancias, los 
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LA CORPORACIÓN RANO 

Cuando finalizó la Segunda Guerra Mundial, la mayoría de científicos que 
habían estado trabajando para el Departamento de Defensa volvieron a sus 
hogares y ocuparon de nuevo sus puestos en las universidades o fueron 
contratados por empresas privadas. El ejército de Estados Unidos tuvo una 
auténtica fuga de cerebros provocada por la paz. Ante esta situación, en 
1946 fue fundada la corporación RAND (Research ANd Development) por las 
Fuerzas Aéreas del Ejército de Estados Unidos, que en 1947 se independizó 
del ejército de tierra, constituyéndose como fuerza independiente. La RAND 
fue concebida como un think tank, depósito de ideas. Era una institución que 
incorporaba personal para «pensar lo impensable» y en el que había proyec­
tos de investigación que iban desde los misiles intercontinentales hasta la 
fonética del islandés. Von Neumann fue contratado por la RAND en diciembre 
de 1948, y se le ofreció un singular contrato por doscientos dólares mensuales 
que no le obligaba ni siquiera a hacer acto de presencia en la sede. Tan solo le 
pidieron que el tiempo que tardaba en afeitarse por las mañanas lo empleara 
para darle vueltas a alguno de los proyectos en los que trabajaban, y que luego 
les comunicara sus conclusiones. 

Edificio de la sede de la corporación RANO frente a las playas de Santa Mónica, en 1958. 
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estamentos militares, promovidos por un sentido más pragmáti­
co, se mostraron también más hábiles y en todo caso la crítica 
habría que centrarla más en las instituciones académicas que, 
paradójicamente, siempre han sido más reacias a este tipo de 
dinámicas. 

EL DILEMA DEL PRISIONERO 

Durante el tiempo que Von Neumann estuvo trabajando para la 
RAND, se interesó por las matemáticas que estaban implicadas 
en un problema de apariencia tan sencilla como el dilema del pri­
sionero que, además de encerrar una gran complejidad, guardaba 
grandes paralelismos con las cuestiones que planteaba el escena­
rio de la disuasión nuclear, en el que en aquella época estaba tra­
bajando intensamente. 

Cuando Merrill Flood y Melvin Dresher, dos investigadores 
de la RANO, idearon este sencillo juego, al que Albert William 
Tucker, otro investigador de la misma organización, bautizó como 
«el dilema del prisionero», no podían sospechar que habían dado 
nacimiento a uno de los mayores iconos de la teoría de juegos de 
todos los tiempos. 

El dilema del prisionero se plantea en los siguientes térmi­
nos. Dos componentes de una organización criminal han sido de­
tenidos. La policía tiene fundadas sospechas de que han cometido 
un delito por el que podrían ser condenados a una pena de seis 
años de cárcel, pero carece de las pruebas necesarias para que se 
haga efectiva la condena. Sin una acusación formal solo podrán 
ser condenados a un año de cárcel por un delito menor. La policía 
les ofrece entonces un trato en las siguientes condiciones: si uno 
confiesa acusando al otro, el primero quedará libre de cargos, y 
el segundo será condenado a una pena de diez años de cárcel. Si 
cada uno por su parte declara en contra del otro, ambos deberán 
cumplir una sentencia de cuatro años de cárcel. La policía man­
tiene incomunicados a ambos presos de manera que ninguno de 
los dos puede saber la decisión que toma el otro. Si llamamos A y 
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B a cada uno de los prisioneros, el resumen de la situación queda 
reflejado en la siguiente matriz de pagos: 

B no acusa a A B sí acusa a A 

r A no acusa a B 1,1 10,0 

r A sí acusa a B 0,10 4,4 

Al no poder compartir estrategias debido a la incomunica­
ción, la toma de decisiones se convierte en un asunto nada trivial. 
En un principio, todo apunta a que una postura egoísta en la que 
solo se tengan en cuenta los intereses de cada uno de los prisio­
neros sería la más ventajosa, ya que en caso de condena cumpliría 
un máximo de cuatro años, frente a la posibilidad de cumplir la 
pena máxima de diez, con la ventaja añadida de que, con un poco 
de suerte, podría quedar libre de condena si el otro prisionero no 
le acusa. 

Este razonamiento parece bastante sensato, y cabe pensar 
que el otro prisionero también se lo planteará en los mismos tér­
minos, por lo que lo más probable es que ambos acaben cum­
pliendo una condena de cuatro años. Esta es la que podría consi­
derarse la estrategia dominante. Sin embargo, es obvio que no es 
la mejor solución, ya que si ambos se hubieran negado a declarar 
uno en contra del otro, la condena hubiera sido de solo un año. 
Así, parece que la mejor estrategia es la de cooperar, pero esto 
significa que a priori debemos confiar en la postura del contrin­
cante, algo de lo que no tenemos garantías. 

Existe toda una rama de las matemáticas dedicada a estudiar 
situaciones como la expuesta, tratándolas como «juegos de estra­
tegia» . El juego empieza con una tabla numérica, a veces extrema­
damente complicada, y las estrategias son las posibles «jugadas» 
óptimas de los jugadores. Si se utilizan las armas del frío intelec­
to, de las probabilidades, de la llamada «esperanza matemática» 
y del álgebra, se llega a conclusiones racionales en las que, por lo 
general, es mejor que cada jugador no actúe en términos egoístas. 
Lo que un jugador cree que es bueno para él, puede que no lo sea 
tanto, si tienen en cuenta las posibles acciones de los demás. Así, 
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la decisión ideal, o estrategia óptima, pasa en muchas ocasiones, 
por soluciones cooperativas. De este modo, todos obtienen el 
mayor beneficio posible compatible con el menor prejuicio po­
sible. En el dilema del prisionero, la experiencia muestra que los 
jugadores se inclinan por la delación, en lugar de hacerlo por la 
confianza; y, matemáticamente, se equivocan. 

Si se plantea el dilema del prisionero en un ambiente infor­
mal, por ejemplo en una comida entre amigos que tengan ganas 
de pensar frente a un café y una copa de licor, tendremos garan­
tizadas dos cosas, la primera es que la sobremesa será larga, y la 
segunda, que cuando finalice no se habrá llegado a ninguna con­
clusión. Y es que, en principio, el dilema del prisionero carece de 
una solución convincente, ya que es un planteamiento que tiene 
más de paradoja que de acertijo lógico con solución. Las dos po­
sibles soluciones que se plantean como las correctas, que ambos 
cooperen o que decidan inculpar al otro, son muy difíciles de jus­
tificar racionalmente. 

Sabernos que en este tipo de situaciones en las que se debe 
tomar una decisión pueden intervenir diversos factores como los 
morales o los emocionales. También podemos dejarnos llevar 
por la intuición o dejarnos fascinar por algún arte adivinatoria o 
simplemente tornar unos dados y dejarlo todo en manos del azar. 
Pero siempre quedará la misma pregunta en el aire: ¿existe algún 
método para que la toma de la decisión se lleve a cabo de una 
forma racional? Plantear el problema en estos términos es lo que 
posibilita que adquiera una naturaleza matemática. Esta manera 
de pensar, siempre presente en el ánimo de Von Neumann, fue lo 
que le llevó a interesarse por el dilema del prisionero. 

Es interesante y, hasta cierto punto imprescindible, insistir 
en que en el planteamiento del dilema no se hagan intervenir fac­
tores de índole moral - «no está bien traicionar a un compañero» 
o «esta es una decisión que me crea problemas de conciencia»-, 
ya que solo aportan confusión para la solución del problema. Algo 
similar sucede con el concepto de estrategias colaborativas. No 
se trata de que la cooperación sea o no preferible por cuestiones 
éticas, puesto que es algo que se saldría del ámbito puramente 
matemático, sino de si es una estrategia óptima para obtener el 
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JUEGOS COOPERATIVOS 

Los juegos cooperativos son aque­
llos en los que los jugadores pre­
tenden alcanzar un cierto objetivo 
común, como ganar unas votacio­
nes, mejorar la gestión de una em­
presa o incrementar los beneficios 
de la misma. En cualquier caso, 
para lograr el objetivo existe una 
colaboración entre los jugadores. 
Es la situación contraria a los deno­
minados juegos no cooperativos, 
también llamados competitivos, en 
los que la estrategia individual tie­
ne un papel fundamental. Un claro 
ejemplo de ambos conceptos se da 
en los juegos de guerra. Durante la 
Guerra Fría se produjo un equilibrio 
inestable entre las dos grandes po­
tencias mundiales, la Unión Sovié­
tica y Estados Unidos. Se trataba 
de un juego competitivo regulado 
por estrategias unilaterales. Estaba 

El paintba/1 es un juego cooperativo en el que 
se simulan escenas de guerra. 

claro que esta situación de juego no cooperativo podría traer consecuencias 
fatales para ambos contendientes, lo cual llevó a establecer acuerdos de no 
proliferación de armas nucleares. 

Cooperar para ganar 
Los juegos de rol también pueden constituir un ejemplo de juego cooperativo; 
se parecen a una obra de teatro que discurre alrededor de una mesa. Los par­
ticipantes interpretan papeles de personajes ficticios siguiendo las indicacio­
nes de un narrador que trama el desarrollo del juego, pero los jugadores son 
libres de decidir lo que hacen dentro de la obra. Asimismo, el popular dominó 
jugado individualmente es un juego competitivo; en cambio, si se juega por 
parejas es cooperativo. 

mayor beneficio con el mínimo riesgo en un escenario concreto 
de juego en el que se dé un conflicto de intereses. 

Para evitar este tipo de confusiones es bueno plantear el di­
lema corno un mero juego de casino en el que se puede ganar o 
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perder una cierta cantidad de dinero convenida, y no como un 
relato con tintes dramáticos que puede afectar seriamente a la 
vida de las personas, como lo es poner en juego una condena de 
prisión. Esta es la forma que William Poundstone propone en su 
libro El dilema del prisionero (1992). 

Se trata de un juego para dos personas, que se juega una sola 
vez. Si se quiere repetir, es obligatorio cambiar de pareja. La única 
obligación que se les exige a los jugadores es la de querer ganar, 
como en cualquier otro juego. Esto parece una trivialidad, pero no 
lo es, ya que venimos de las consideraciones morales del dilema 
del prisionero. Si un jugador de póquer se plantea engañar al con­
trario mediante un farol, no tiene sentido que digamos que este 
jugador está engañando al contrario con triquiñuelas propias de 
alguien que carece de principios morales. Algo así sería completa­
mente estúpido, ya que lo único exigible a los jugadores es que se 
atengan a las reglas del juego sin hacer trampas -esconder un as 
en la manga sí puede ser moralmente sancionable- y sobre todo, 
insistiendo de nuevo, se le pide que si juega, juegue para ganar. 
Este tipo de planteamientos adquiere una gran relevancia cuando 
la teoría de juegos se lleva más allá de un mero pasatiempo y se 
plantea en un escenario bélico. 

Volviendo al dilema en la versión casino, los jugadores jue­
gan en una mesa que dispone de un dispositivo electrónico que 
está debajo de la misma, oculto al contrincante y que sirve para 
tomar la decisión de cooperar o no. El crupier es quien decide en 
qué momento los jugadores pueden pulsar los botones correspon­
dientes. Una vez establecido el valor de las apuestas, la matriz de 
pagos podría ser la siguiente: 

B coopera B no coopera 

1 A coopera (2, 2) (0, 3) 

1 A no coopera (3, O) (1, 1) 

De manera que en el caso en que ambos cooperen, cada uno 
gana dos euros, si ninguno de los dos coopera, cada uno gana un 
euro y, por último, en el caso en que uno coopere y el otro no, el 
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primero no gana nada y el segundo gana tres euros. Esta última 
situación es lo que vulgarmente se entiende por «hacer el primo», 
que es lo que la mayoría de los jugadores tratan de evitar a toda 
costa. 

Esta matriz de pagos puede tener diversas variantes, corno 
la de incluir pérdidas introduciendo números negativos, que nos 
acercaría más al dilema del prisionero en su versión clásica, pero 
corno modelo sirve para estudiar el dilema si cumple los siguien­
tes requisitos: uno de los resultados ha de ser el de «premio», 
que es cuando ambos contendientes cooperan --dos euros-; otro 
de castigo, cuando ambos no cooperan; y un tercero que se da 
cuando solo uno de los dos no coopera, que tiene que contemplar 
siempre para uno de ellos una contribución mayor que la de la 
cooperación. 

TEORÍA DE AUTÓMATAS 

Sería erróneo pensar que la actividad científica de Von Neurnann 
después de la guerra estuvo centrada únicamente en ternas milita­
res. Su biografía muestra a las claras que su mente nunca estuvo 
ocupada en una sola cosa. 

Uno de los ternas en los que Von Neurnann estuvo trabajando 
en esta segunda etapa de su vida fue el del autorreplicador univer­
sal, algo que tocaba muy de cerca su faceta reproductora, uno de 
los secretos ocultos de la vida. Quería demostrar que dicha faceta 
no obedecía a extrañas leyes ocultas, sino a reglas matemáticas, 
más o menos simples, que conf orrnan el verdadero lenguaje de la 
naturaleza. 

El autorreplicador universal de Von N eurnann es una máquina 
que consiste en un módulo de fabricación que, con instrucciones 
precisas y un entorno de piezas adecuado, es capaz de construir 
lo que sea, y que además posee las instrucciones necesarias para 
construirse a sí misma. Von Neurnann se vio obligado a introducir 
una condición para evitar lo que se llama una «regresión infinita»: 
en alguna parte de la máquina deben estar las instrucciones que 
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describen a la propia máquina en su totalidad. Por lo tanto, dentro 
de dichas instrucciones debe haber otras instrucciones que las 
describen, y así sucesivamente. Sea como fuere, una máquina no 
puede contener una regresión infinita como esa. Para solucionar­
lo, añadió un tercer componente, que era un copiador de instruc­
ciones, de forma que la máquina completa estaba formada por un 
constructor, la lista de instrucciones y un copiador. De esta ma­
nera, en la primera fase, la lista de instrucciones era interpretada 
y en la segunda fase simplemente copiada. 

Para construir una máquina autorreplicadora en un orde­
nador es necesario diseñar un autómata que emule a una má­
quina de Turing. Teóricamente, es posible diseñar las puertas 
lógicas necesarias para ello: NOT-AND-OR (no-y-o). Por ejem­
plo, se puede diseñar una puerta NOT con lo que se denomina 
un «cañón de autómatas deslizadores», un esquema demasiado 
complejo para describirlo en este contexto. Van Neumann lle­
gó a demostrar que, en un entorno de estas características, un 
autómata de 200 000 estados sería capaz de autorreproducirse, 
algo que, de momento, va más allá de nuestras posibilidades de 
computación. 

Si algún día es posible la realización práctica de un autorre­
plicador de Van Neumann, quiere decir que en alguna parte habrá 
un robot rodeado de piezas que se pondrá a trabajar, y al cabo de 
un tiempo aparecerá una réplica exacta del mismo. Entonces, se 
fabricarían dos, y luego cuatro, y así en progresión geométrica. Lo 
que Van Neumann no previó - ni nadie puede hacerlo hoy- es 
qué tal se llevarían estos robots con los humanos, ya que hay que 
tener en cuenta que en muy poco tiempo acabarían por represen­
tar una mayoría abrumadora e imparable. 

En 1948, Van Neumann se puso manos a la obra y diseñó un 
constructor universal, una máquina que, siguiendo unas instruc­
ciones dadas, sería capaz de montar otra máquina con un conjun­
to de piezas que se encontraran en su entorno, algo que en cierta 
forma podemos ver en cualquier fábrica moderna que esté roboti­
zada. Pero Van Neumann quería llegar un poco más allá y dotar a 
la máquina y a su entorno de las instrucciones y las piezas necesa­
rias para construir una réplica exacta de sí misma; es decir, quería 

EL CEREBRO ELECTRÓNICO 



ROBÓTICA 

El término robot, que procede de la 
palabra checa robota («trabajo obl i­
gatorio»), fue empleado por primera 
vez en una obra de teatro, Robots 
Universa/es de Rossum, del drama­
turgo checo Karel Capek y estrenada 
en enero de 1921 en Praga. El argu­
mento se centraba en una fábrica 
capaz de construir seres mecánicos 
al servicio del hombre. Al final de la 
obra, los robots acaban destruyen­
do a la especie humana. La robótica 
es una ciencia aplicada que gracias 
a los conocimientos aportados por 
la cibernética y la ingeniería técnica, 
es capaz de construir una máquina 
controlada por un programa que sea 
capaz de manipular objetos y tener 
una cierta interacción con su entor­
no. Su objetivo es el de sustituir al ser 
humano en una serie de trabajos que 
enc ierren rutina, fatigabilidad, inac­
cesibilidad o peligro. La fisiología de 

Robot tocando el piano, expuesto en el Museo 
de Ciencia y Tecnología de Shanghai, China. 

un robot se configura a base de elementos mecánicos. Su anatomía, formada 
por metales o plásticos, se mueve gracias a servomotores, su sistema nervioso 
está formado por cables eléctricos y por sus venas fluye aceite de máquina. 
Su cerebro no se asemeja a un ordenador ... Es un ordenador. Sin embargo, 
en muchos casos existe la idea equivocada de que un robot debe parecerse 
a un ser humano. En sentido estricto, un lavavajillas es un robot. Las tres ca­
racterísticas fundamentales que se le exigen a un robot son: 

l. Que sea programable, de la misma manera que lo es un ordenador. 

2. Que sea una máquina capaz de llevar a cabo acciones concretas en su 
entorno. 

3. Que sea flexible. 

La tercera característica es en realidad una consecuencia de las dos anteriores, 
ya que por un lado supone la capacidad de operar con un abanico amplio de 
programas y, por el otro, la de interactuar con el medio de diversas formas. 
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CIBERNÉTICA 

La cibernética es la ciencia que estudia 
las diferentes formas de comunicación 
que pueden establecerse entre dos má­
quinas y, por supuesto, las leyes que go­
biernan la comunicación entre el hombre 
y la máquina. El matemático húngaro 
Norbert Wiener (1894-1964) está consi­
derado como el padre de la cibernética. 
En 1948 escribió un pequeño libro titula­
do Cibernética, o control en los animales 
y las máquinas, que acabó por convertir­
se en un best se/fer, lo que permitió salir 
al autor de la precaria situación econó­
mica en la que se encontraba. 

Norbert Wiener. 

construir un replicador. La naturaleza en la que vivimos abunda 
en replicadores, el propio ADN es uno de ellos. Curiosamente, 
Von Neumann, una de las mentes teóricas más privilegiadas del 
siglo xx, pretendía traspasar el terreno teórico y construir su má­
quina autorreplicante, a la que llamó Kinematon. 

Cuando Von Neumann estaba peleando con las insalvables 
dificultades técnicas que suponían la realización práctica del Ki­
nematon, un amigo suyo, el matemático polaco-estadounidense 
Stanislaw Ulam, le dio un buen consejo; le sugirió que si lo que le 
interesaba era profundizar en las leyes que regían el proceso, de­
jara los trabajos manuales y se dedicara a establecer un modelo 
virtual. Von Neumann decidió cambiar su estrategia y planteó un 
sistema formado por una matriz plana infinita en la que pudiera 
representar cada una de las células, lo que viene a ser lo mismo 
que un papel cuadriculado en el que una célula pudiera estar re­
presentada en una de las cuadrículas. En cada una de las células 
se podía identificar un estado, y el número posible de estados 
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debía ser finito. Concretamente, en el modelo original de Von 
Neumann, para cada célula había 29 estados definidos. La idea 
era que, según unas reglas previamente definidas, cada estado 
dependiera de alguna forma del estado de las células vecinas, y 
que dependieran directamente del estado anterior. De esta mane­
ra, el sistema guardaba ciertas analogías con los sistemas vivos, 
al menos en el sentido en que las células podían moverse para 
entrar en contacto con otras células y, lo que era más importan­
te, generar otras células en estados análogos o idénticos al suyo. 
En definitiva, lo que Von N eumann se proponía era estudiar una 
estructura muy compleja mediante un modelo muy simple, los 
autómatas celulares. 

AUTÓMATAS CELULARES 

Un autómata celular viene a ser la abstracción matemática de 
los procesos celulares que observamos en los seres vivos y que 
se puede definir como un sistema dinámico que consta de dos 
elementos: un espacio celular y unas reglas de comportamiento. 
Por definición, _un espacio celular es un dominio Von Neumann­
dimensional cuyos elementos, denominados «células», poseen un 
estado que viene determinado o bien por un número finito de va­
lores {v¡,···,vn), o bien por un valor continuo cualquiera. Esta defi­
nición puede resultar un tanto críptica, pero tiene como finalidad 
mostrar que aunque el resultado tiene la forma de un juego muy 
simple, no está exento de todo el formalismo que la rigurosidad 
matemática exige. Pero, para hacerlo más entendible, reduzca­
mos esta definición a su expresión más sencilla y que, además, 
es la que se utiliza en las exposiciones teóricas. De entrada, el 
dominio Von Neumann-dimensional va ser 2-dimensional, de ma­
nera que pueda representarse en un papel cuadriculado en el que 
cada una de las cuadrículas es una célula De los dos conjuntos de 
valores, vamos a rechazar el del conjunto continuo, ya que todo el 
proceso se va a llevar a cabo en las tripas de un ordenador, y estos 
se mueven siempre con valores discretos. En cuanto al conjunto 
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(v
1
, ... ,vJ posible de dichos valores discretos, nos 

vamos a quedar solamente con dos 11, O). El pri­
mero va a significar que la célula está viva, y el 
segundo que la célula está muerta. También po­
dríamos haber elegido dos colores. En definitiva, 
tomamos el papel cuadriculado y delimitamos 
nuestra zona de trabajo, por ejemplo a un cua­
drado de siete casillas por lado. A continuación, 
tomamos un rotulador negro y rellenamos unas 
cuantas casillas (figura 1). 

Ya tenemos nuestro espacio celular en el 
que hay unas cuantas células vivas, las casillas de color negro, y 
unas cuantas células muertas, las casillas de color blanco. Aho­
ra solo nos queda establecer las reglas de desarrollo, es decir, 
la descripción precisa de cómo estas células van a medrar en 
su entorno. Si la figura anterior la consideramos la etapa 1, de­
bemos tener algún criterio para pasar a la etapa 2 y, evidente­
mente, debe ser el mismo criterio que nos sirva para pasar de la 
etapa 2 456 a la 2 457. Expresado en términos matemáticos, ne­
cesitamos un algoritmo que, conociendo el estado de la «etapa 
N», nos permita configurar el de la «etapaN + 1». Como en nues­
tra cuadrícula no aparecen, de momento, elementos extraños, 
como marcianitos comecocos o cosas parecidas, sobre cada una 
de nuestras células solo pueden influir las otras células del en­
torno, lo que nos lleva a precisar el concepto de entorno. Uno 
de los entornos más sencillos es el de las reglas Norte, Sur, Este, 

1 

_j 
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Oeste, que significa que sobre una célula solo pueden influir las 
células que estén encima, debajo o a alguno de los dos lados. 
Este es el que se llama «entorno de Von N eurnann». Si a estas 
les añadirnos también las celdas diagonales, tendremos lo que 
se llama «entorno de Moore». Se entiende que la posibilidad de 
definir entornos es casi ilimitada. Podríamos empezar por decir 
que solo influyen las celdas que se encuentran, por ejemplo, a 
una distancia r determinada. Existen entornos muy complejos 
que se definen mediante funciones matriciales, de los que no es 
necesario hablar aquí. 

Partamos del espacio celular anterior y definamos las si­
guientes reglas que van a actuar en un entorno de Moore: 

l. Las células con número par de vecinas vivas mueren. 

2. Las celdas con número impar de vecinas vivas generan una 
célula viva. 

De esta manera, tendremos las tres etapas que se muestran 
en la figura 2. 

También se puede empezar con menos casillas y definir otras 
reglas de juego. Sin duda, se trata de una actividad ciertarne_nte 
relajante llevar adelante unas cuantas etapas y contemplar el re­
sultado -existen sencillos programas de ordenador que pueden 
llevamos rápidamente a la etapa 1000- . Nos podernos encontrar 
con figuras y situaciones sorprendentes. Se pueden crear configu­
raciones estables, especies en extinción, naturalezas muertas, de­
predadores, o estructuras que se van moviendo por la cuadrícula 
sin perder su forma. 

Esta es una variante del juego de -la vida, diseñado por el 
matemático británico John Horton Conway en 1970. Además de 
ser un juego divertido y tener importantes implicaciones ma­
temáticas, puede ser una herramienta valiosa para investigar y 
comprender algunos procesos complejos de la naturaleza, ya 
que en sí mismo es un potente modelo que se puede aplicar, por 
ejemplo, al estudio de cómo una marea negra puede afectar a la 
fauna marina. 

EL CEREBRO ELECTRÓNICO 149 



150 

IEL JUIE(>O DIE LA VIDA 

Dos especialistas en autómatas ce­
lulares podrían mantener una con­
versación del siguiente tipo: 

- Llevo varias semanas trabajan­
do en Vida 4555. 

- Interesante. Yo me estoy de­
dicando a Vida 5766. Le estoy 
encontrando una apl icación 
práctica a la forma en cómo 
se propagan los incendios en 
los bosques. 

Una mesa interactiva en la que se recrea el juego 
de la vida, expuesta en el Museo de Arte de San 
José, California. 

Para que esta conversación sea inteligible, es necesario conocer el significado 
de los cuatro dígitos que se mencionan: el primero de ellos hace referencia al 
número mínimo de células que han de rodear a una célula viva para que no 
se muera. El segundo es lo mismo, pero hace referencia al número máximo. El 
tercero es el número mínimo de células vivas que ha de haber para que exista 
la posibilidad de recobrar vida. El cuarto, y último, representa el número máxi­
mo de vecinas que se pueden tener para recobrar vida. Lo que actualmente 
se entiende por «juego de la vida» es una teoría matemática que asombra por 
su sencillez. Es objeto de intensas investigaciones y sus aplicaciones posibles 
pueden ser de índole teórica o eminentemente práctica, como la reproducción 
de células cancerígenas, la proliferación de árboles infectados en un bosque, 
la propagación de incendios o el crecimiento de cristales. 

DEL SUEÑO DE LEIBNIZ AL DE NEUMANN 

El pensamiento humano se desarrolla en un ámbito misterioso y 
obedece a leyes que todavía no se han revelado en su totalidad, 
ni mucho menos. Sin embargo, a lo largo de la historia, algunos 
grandes pensadores han abrigado la creencia de que si fuera po­
sible asignar números a las ideas, de forma que a cada una de 
ellas le correspondiese un número, bastaría con realizar cálculos 
con estos números para saber las proposiciones que son ciertas y 
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cuáles son falsas. En síntesis, ese era el sueño de Gottfried Leib­
niz (1646-1716). El poeta alemán Friedrich Héilderlin (1770-1843) 
elijo en una ocasión: «El hombre, cuando sueña, es un príncipe, y 
cuando reflexiona, un mendigo». Y qué duda cabe de que Leibniz 
tenía mucho de príncipe ... 

Sin embargo, para figuras como Pascal, Leibniz o Descartes, 
cuyas mentes matemáticas abrigaban, si no un cierto pragmatis­
mo, sí una forma de concreción, reflexionar significaba llevar sus 
ideas a la práctica, momento en el que el sueño podía tornarse en 
pesadilla. Así, no es de extrañar que sus primeras conclusiones se 
concretaran en máquinas de calcular, ya que el cálculo numérico 
es una de las primeras operaciones abstractas que realiza la men­
te humana. Además, el tiempo ha demostrado que las máquinas 
«pensantes» más avanzadas que, de momento, somos capaces de 
fabricar, basan su funcionamiento en un cómputo de números 
que sigue unas reglas algebraicas bien definidas, las del álgebra 
computacional. Esta disciplina es una compleja y, hasta cierto 
punto muy especializada, rama de las matemáticas, que surgió 
con el advenimiento de la informática, pero que tuvo sus orígenes 
en la mente especuladora de filósofos y matemáticos. 

«La verdad es demasiado complicada como para permitir nada 
más allá de meras aproximaciones.» 

- JOHN VON NEUMANN. 

La máquina calculadora diseñada por Leibniz era, al menos 
sobre el papel, más compleja que la de Pascal, ya que, además de 
sumar y restar, también podía multiplicar, dividir y extraer raí­
ces cuadradas. Entre el período en el que empezó a concebirla y 
el momento en que la pudo ver realizada pasaron casi veintitrés 
años. El nombre que le puso a la máquina ya era representativo: 
Getrocknetsrechenmaschine ( calculadora secuencial o por pa­
sos). De hecho, esta máquina calculadora multiplicaba por reite­
ración de sumas, pero los mecanismos presentaban una dificultad 
que la técnica de la época no podía resolver, por lo que nunca 
llegó a funcionar bien. A pesar de su fracaso, Leibniz estuvo du-
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rante todo ese tiempo dándole vueltas a una idea realmente re­
volucionaria. Si los números podían ser representados en base 
dos, no solo podría simplificar los mecanismos, sino que tenía la 
posibilidad de aplicar la lógica binaria al proceso de cálculo. 

Para Leibniz, el mundo podía ser interpretado según dos ni­
veles distintos. Uno de ellos era el físico, inmerso en el espacio y 
el tiempo, en el que rigen las leyes de la causalidad -todo efecto 
tiene una causa- y en el que los fenómenos se pueden explicar 
mediante leyes mecánicas. En el otro nivel, el metafísico, no exis­
te ni el espacio ni el tiempo, ni tampoco causas y efectos; solo nú­
meros. Leibniz explicó con claridad la naturaleza de este segundo 
nivel cuando afirmó: 

Con precisión metafísica, no tenemos más razón cuando decimos 
que el buque empaja al agua para producir un gran número de remo­
linos, que cuando afirmamos que el agua está siendo solicitada para 
producir estos remolinos y ellos causan que el buque se mueva en 
armonía con ellos. 

A partir de estos supuestos, Leibniz buscó un lenguaje uni­
versal que, a modo de diccionario, incluyera todos los términos 
que pudieran ser abarcados en el mundo metafísico y la manera 
en que dichos términos podrían relacionarse entre sí, para dar 
lugar a nuevas verdades, de manera que se pudiera controlar di­
cho mecanismo de relación. Esta empresa es la que le llevó a ser 
considerado como el padre de la lógica simbólica. En cuanto a la 
asignación numérica, Leibniz propuso asignar números primos a 
los términos simples y el producto de dichos números a términos 
cualesquiera. Para llevar esta idea a la práctica, formuló un álge­
bra con solo dos conectivas, la negación y la conjunción, creando 
así las bases para una lógica binaria. 

¿Se ha cumplido el sueño de Leibniz? En algunos aspectos 
sí, y en otros es probable que no se cumpla nunca. La matemáti­
ca británica Ada Lovelace (1815-1852), la primera programadora 
de la historia, probablemente conocía las ambiciosas metas de 
Leibniz, ya que en una ocasión, haciendo referencia a las compu­
tadoras, escribió: 
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La máquina analítica no tiene la pretensión de crear nada. Puede 
realizar cualquiet cosa siempre que conozcamos cómo llevarla a 
cabo. Puede seguir un análisis, pero es incapaz de descubrir rela­
ciones analíticas o verdades. Su potencialidad es la de ayudarnos 
a hacer posible aquello sobre lo que tenemos un conocimiento 
previo. 

Leibniz soñaba con la posibilidad de construir una máquina 
que emulara una parcela de la mente humana. Von Neumann so­
ñaba con descubrir el lenguaje de programación con el que funcio­
na esa parcela. 

REDES NEURONALES 

En 1943, dos estadouniden·ses, el neurólogo y cibernético Warren 
McCulloch (1898-1969) y el lógico Walter Pitts (1923-1969), idea­
ron un modelo computacional que simulaba el funcionamiento 
del sistema nervioso, creando para ello unas unidades llamadas 
«nodos» que se interconectaban unas con otras de forma similar 
a como los axones conectan entre sí las dendritas en los sistemas 
biológicos. Habían nacido las redes neuronales artificiales (ANN, 
de Artificial Neural Networks). Von Neumann trabajó en redes 
neuronales ampliando y desarrollando modelos más complejos 
que los propuestos por McCulloch y Pitts. 

Existen básicamente dos tipos de ANN, los biológicos, que 
tratan de reproducir algunas funciones como la audición o la vi­
sión humanas, y los modelos dirigidos a una aplicación con­
creta, que apenas guardan similitud con los sistemas biológicos. 
John von Neumann hizo una estimación sobre la cantidad de in­
formación que el cerebro registraba como memoria a lo largo de 
una vida media. El número final era aproximadamente de 2,8 • 102º 
(280000000000000000000 bits), una cantidad difícil de ubicar en 
nuestro exiguo cerebro por mucho empeño que se ponga. 

Von Neumann consideraba a las células nerviosas como los 
dispositivos electrónicos capaces de generar bits: 1 cuando ge-
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BIÓNICA 

La cibernética dio lugar al desarro­
ll o de la biónica, que es la ciencia 

que se dedica a investigar la simu­
lación de actividades humanas y 

animales por medio de máquinas. 
Los avances en biología y electróni­
ca se suman en esta nueva ciencia 
que permite estudiar los principios 
mediante los cuales se organizan 
los seres vivos. En la actualidad, la 
biónica tiene importantes aplicacio­
nes en la construcción de modelos 
referidos a las moléculas proteicas 
y a los ácidos nucleicos. A pesar de 

Una mano biónica . 

que se han hecho avances tecnológicos importantes en biónica, apenas se ha 
cumplido alguna de las expectativas que se plantearon en la década de 1950. 
Hasta cierto punto, en comparación con la informática, ha sido un fracaso. 
Este hecho no debería sorprendernos si pensamos que solo la estructura que 
supone el fondo de retina de un ojo humano, capaz de alcanzar los diez mi­
llones de detecciones por segundo, requiere un ordenador que procese más 
de mil millones de instrucciones por segundo. Todo el hardware biológico 
que procesa la imagen en la ret ina pesa unos 20 miligramos y la totalidad 
del cerebro unos 1500, lo que supone construir un ordenador del tamaño de 
un PC capaz de procesar más de cien billones de instrucciones por segundo. 
Sin embargo, la capacidad de los actuales PC apenas sería capaz de emular 
el cerebro de uno de los pequeños peces que habitan en nuestras peceras. 

neran un impulso eléctrico y O cuando están en reposo. Todo el 
sistema conlleva una enorme complejidad en la que intervienen 
procesos electroquímicos y mecánicos, pero su funcionamiento 
básico debe contener una parte lógica y otra aritmética, ambas 
con igual relevancia. De ahí concluyó que el cerebro puede, en 
este sentido, ser tratado de forma análoga a como se abordan los 
problemas que plantea una máquina calculadora corriente. En 
ese punto volvía una vez más a considerar la estructura lógica 
como herramienta para la creación de un modelo. Podría aplicar 
este modelo incluso al lenguaje, tal y como lo entendemos co-
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loquialmente. En ese marco, hizo una reflexión interesante que 
puso de manifiesto su concepción ontológica de las matemáticas. 
Afirmó, textualmente, que idiomas como el griego o el sánscrito 
son realidades históricas y no necesidades lógicas. Lo primero es 
un proceso de aprendizaje al que se enfrenta el sistema nervioso 
central, mientras que lo segundo es estructural y obedece a una 
naturaleza propia que debe tener una estrecha relación con las 
matemáticas, lo que es tanto como afirmar que las matemáticas 
no son un «invento» del ser humano, sino que forman parte de su 
propia naturaleza. 

En diciembre de 1949, Von Neumann dio una conferencia en 
la Universidad de Illinois titulada «Theory and Organization of 
Complicated Automata» («Teoría y organización de autómatas 
complicados»). El esquema era el siguiente: si pensamos en el 
cerebro como una máquina calculadora, cuando la utilizamos 
para comunicarnos con otra persona, lo hacemos mediante un 
lenguaje secundario que es resultado de un lenguaje primario que 
tiene lugar previamente en el sistema nervioso. Ambos lenguajes 
pueden ser en principio muy diferentes. Pero cuando pensamos 
en matemáticas, la precisión, la eficacia y la profundidad con que 
expresamos conceptos aritméticos y lógicos nos hacen deducir 
que el lenguaje primario de nuestro sistema nervioso central tie­
ne que estar muy cercano a eso que llamamos «matemáticas». O 
sea, en definitiva, nuestra mente es una mente matemática, por lo 
menos en lo primigenio. 

Von Neumann reflejó todos estos resultados en un manus­
crito que no llegó a finalizar y que fue publicado incompleto y 
póstumamente con el título The Computer and the Brain ( «El 
ordenador y el cerebro»). 

LOS ÚLTIMOS AÑOS 

A partir de la década de 1950, Von Neumann actuaba como conse­
jero de una gran cantidad de corporaciones, agencias gubernamen­
tales y privadas. Era miembro del comité asesor del Laboratorio 
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de Investigación Balística, en Maryland, de la Oficina de Artillería 
de la Marina de Estados Unidos, en Washington, del Laboratorio 
Científico de Los Álamos, director del proyecto de Computadora 
Electrónica del Instituto de Estudios Avanzados de Princeton, del 
Proyecto de Armas Especiales de las Fuerzas Armadas y también 
del grupo de evaluación de sistemas de rumas de la misma orga­
nización. A partir de 1952 pasó a formar parte de la Comisión de 
Energía Atómica de Estados Unidos y en 1955 juró su cargo como 
miembro de la Comisión de Energía Atómica, por designación 
del entonces presidente de Estados Unidos, Dwight David Eisen­
hower. Su capacidad para la gestión de escenarios complejos y la 
toma de decisiones le había llevado a ocupar su tiempo en activi­
dades que estaban muy alejadas de las ciencias puras. 

Von Neumann gozaba de una buena posición económica; 
solo del Instituto de Estudios Avanzados de Princeton recibía 
12 500 dólares al año. Vivía con su madre, con su mujer, Klara, 
y su hija Marina en una gran casa situada en el número 26 de 
Westcoot Road, que a menudo era el centro de reuniones sociales 
a las que acudían personas famosas. Él mismo era ya una perso­
nalidad mediática reclamada por los medios de comunicación, la 
radio y la televisión para que diera su opinión sobre diferentes 
temas, algunos de los cuales empezaban ya a invadir el ámbito de 
su vida privada. 

En el verano de 1955, Von Neumann empezó a quejarse de 
fuertes dolores en el hombro izquierdo. En un principio, lo re­
lacionó con una caída que había tenido a causa de un resbalón. 
El dolor, que en circunstancias normales debería haber remitido 
al cabo de pocos días, persistió hasta el punto de que tuvo que 
someterse a una operación quirúrgica. Fue entonces cuando se le 
diagnosticó un cáncer óseo. Luego se comprobó que se trataba de 
un cáncer secundario que tenía su origen en un cáncer en la prós­
tata. Siempre se ha dicho que Von Neumann contrajo el cáncer 
por no haber tomado las precauciones necesarias que exigen los 
protocolos cuando se trabaja en ambientes radiactivos. Incluso 
se alude a una cierta prepotencia de su carácter cuando se afirma 
que la seguridad que tenía en sí mismo le hacía creer que nada po­
día afectarle, ni siquiera la radiación a la que él, como la mayoría 
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de los componentes del Proyecto Manhattan, se había visto some­
tido; de hecho, no fue el único que se vio afectado por el cáncer. 

No es necesario relatar la enajenación mental y la angustia 
a que se ve sometida una persona a la que se le diagnostica un 
cáncer terminal. Los médicos le dieron un plazo de vida de año 
y medio. En 1955, el cáncer le afectó la médula espinal y sus mo­
vimientos quedaron destinados a una silla de ruedas. Pusieron a 
su disposición los medios necesarios para que pudiera proseguir 
sus tareas como consejero, pero sobre todo para poder concluir 
algunos proyectos científicos, entre los que se encontraba la rea­
lización de un misil balístico, y también otro de carácter más cien­
tífico en el que llevaba tiempo trabajando y que era la posibilidad 
de crear un cerebro artificial que llegara a emular, en pequeñas 
medidas, el comportamiento del cerebro humano. 

«¿Usted me despierta temprano para decirme que tengo razón? 
¡Despiérteme para decirme que me equivoqué!» 

- JOHN VON NEUMANN. 

La última aparición en público de Van Neumann tuvo lugar 
en febrero de 1956 en la Casa Blanca, cuando el presidente Eisen­
hower le impuso la Medal of Freedom (medalla de la Libertad). 
A partir de ese momento, su estado de salud le obligó a quedar 
confinado en su casa. Para finales de marzo de ese mismo año 
estaban programadas las prestigiosas conferencias Sillman de la 
Universidad Y ale, a las que Van N eumann estaba invitado para ha­
blar sobre sus trabajos acerca de las relaciones entre ordenador 
y cerebro. Ante la imposibilidad de su asistencia, la universidad 
se ofreció a que alguien leyera el manuscrito en su nombre. Sin 
embargo, Van Neumann no pudo llegar a finalizar esta última ta­
rea y ese manuscrito no llegó a leerse en público nunca. En abril 
de 1956, ingresó en el hospital Walter Reed, del que ya no saldría. 
A pesar de su mal estado de salud, se hizo instalar un despacho 
provisional que le permitiera seguir trabajando. 

Los fuertes dolores provocados por la enfermedad obliga­
ron a suministrarle fuertes dosis de morfina, lo que afectó a su 
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rendimiento mental. Este progresivo deterioro intelectual fue la 
secuela que más insoportable le resultó a Von Neumann. Ante 
la proximidad de la muerte, el físico húngaro tomó una decisión 
inesperada, se convirtió al catolicismo. Durante toda su vida fue 
un agnóstico irreductible. Quizá buscó un consuelo que ya no sa­
bía dónde encontrar, aunque fue inútil ya que, según testimonio 
de las personas que estuvieron próximas a él durante el último 
año, las noches y los días se convirtieron en un infierno delirante. 

John von Neumann murió en Washington el 8 de febrero de 
1957, a la edad de cincuenta y cuatro años. 

EL PENSAMIENTO MATEMÁTICO DE VON NEUMANN 

Se puede hacer una clasificación muy general de las matemáticas 
en matemáticas puras y matemáticas aplicadas. Actualmente, la 
mayoría de universidades las contemplan como licenciaturas di­
ferentes, pero no siempre ha sido' así. A p1incipios del siglo xx, el 
desarrollo tecnológico exigió a los ingenieros una creciente utili­
zación de las matemáticas y en muchos casos, si no la creación, sí 
la adecuación de diferentes herramientas matemáticas a su traba­
jo. Por otro lado, los nuevos descubrimientos que revolucionaron 
la física, especialmente la teoría de la relatividad y la mecánica 
cuántica, dieron nacimiento a la física matemática, una disciplina 
con entidad propia y que se encuentra en la frontera entre las ma­
temáticas puras y las aplicadas. Aunque no siempre se reconozca 
de forma tácita, en términos generales existe un cierto distancia­
miento entre las ciencias puras y las aplicadas. En este contexto, 
el término «puro» podría ser aceptado en su acepción literal. Los 
puristas consideran que la investigación teórica debe ser indepen­
diente de las necesidades materiales del mundo que les rodea. En 
este punto, el caso de Von Neun1ann es realmente singular, ya que 
destacó como genio tanto en la teoría pura como en la creación 
de herramientas matemáticas e incluso de dispositivos mecáni­
cos para resolver problemas muy concretos, demostrando que 
era capaz de moverse con maestría en ambos campos. Abordó 
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temas de matemática pura, como la axiomatización de la teoría 
de conjuntos o de la mecánica cuántica, y también obtuvo éxitos 
en cuestiones tan «terrenales» como la teoría económica, la ba­
lística o el diseño del mecanismo de implosión de la bomba ató­
mica. Pocos científicos han mostrado una dualidad tan marcada, 
a la que Neumann dedica una interesante reflexión en su artículo 
«The Mathematician» ( «El matemático») publicado en sus obras . 
completas, que sintetiza esta doble naturaleza del trabajo mate­
mático frente a la que acaba adoptando una postura muy clara. 

«Yo estaba conduciendo por la carretera. Los árboles me 
pasaban por la derecha de manera ordenada a 60 millas por 
hora. De repente uno de ellos se cruzó en mi camino.» 
- JoHN VON NEUMANN. 

Parece que, dado su alto nivel de abstracción, las matemá­
ticas puras pueden estar muy alejadas de lo que coloquialmente 
entendemos por realidad. Von Neumann defiende que, aun así, las 
matemáticas tienen siempre un origen empírico, es decir, basa­
do en algún tipo de experiencia directa con la realidad. Para ello, 
toma dos ejemplos. El primero lo proporciona la geometría, que 
es la disciplina con la que las matemáticas nacen como tales. La 
propia etimología del término es una buena prueba de ello, ya que 
hace referencia directa a la medida de los objetos. La axiomatiza­
ción por parte de Euclides es lo que la aleja del empirismo, para 
convertirla en una ciencia pura El dilema milenario planteado por 
el quinto postulado se debe, según Neumann, a que es el único de 
los cinco en el que interviene un espacio infinito, muy alejado 
de la experiencia y que vuelve a reencontrar su sitio en la realidad 
cuando se hace uso de las geometrías no euclídeas en campos de 
la f'isica corno la teoría de la relatividad general. El otro ejemplo 
es el del cálculo, punto de partida de lo que se puede considerar 
como matemática moderna, y que tuvo su origen en los esfuerzos 
del astrónomo y matemático alemán Johannes Kepler (1571-1630) 
para conseguir calcular volúmenes de figuras con superficies cur­
vas, lo que acabaría dando origen a la teoría de integrales. 
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Von Neurnann puso un tercer ejemplo en el que se adentraba 
en los ámbitos de la lógica y de la filosofía, donde el empirismo 
puede parecer más ausente, como podría ser la teoria de coajun­
tos, que obligó a revisar los fundamentos de las matemáticas. En 
este terreno puramente abstracto, se puede esperar un rigor total 
en el que las matemáticas queden exentas de cualquier atisbo de 
duda en cuanto a la validez absoluta de las verdades que estable­
cen. Sin embargo, el golpe asestado por los teoremas de Godel 
dejó a las matemáticas sin la posibilidad de tener unos funda­
mentos lógicos consistentes. Ante esta renuncia, Von Neurnann 
propuso que la ciencia matemática deberia ser aceptada tal cual, 
como una realidad sobre la que investigamos, de la misma ma­
nera que aceptamos como realidad la existencia del electrón, lo 
que de algún modo le devuelve su carácter empírico. La tesis que 
sustentó, según sus propias palabras, era la siguiente: 

Muchas de las mejores inspiraciones matemáticas proceden de la 
experiencia y difícilmente es posible creer en la existencia de un 
concepto de rigor matemático absoluto, inmutable y disociado de 
toda experiencia humana. 

Más tarde, Von Neurnann llegó a afirmar que de no ser así, 
las matemáticas coman el riesgo de entrar en un proceso de de­
generación. Hizo una comparación entre las matemáticas y la fí­
sica. La segunda se mueve en campos mucho más delimitados y 
concentrados, con menos subdivisiones, lo que tiene dos conse­
cuencias importantes. La primera es que un físico teórico está 
potencialmente en condiciones de tener un conocimiento general 
que le permita abarcar al menos la mitad de todo lo que se sabe en 
su materia, mientras que un matemático profesional, como seria 
el caso del propio Von Neurnann, a duras penas puede aspirar a 
estar al corriente de una cuarta parte de lo que se conoce -es 
indudable que actualmente esta proporción se ha visto reducida 
sensiblemente-. La segunda cuestión hace referencia a la propia 
naturaleza en el trabajo de investigación. Ante un reto, el físico se 
ve en la obligación de resolverlo, porque lo habitual es que supon­
ga un freno a todo el cuerpo teórico y que, por tanto, es algo que 
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no se puede soslayar. En cambio, para el matemático las cosas 
son muy diferentes. Ante un problema frente al que no encuentra 
la solución, basta con dejarlo y pasar a otra cosa sin que por ello 
se resienta el edificio matemático. Es más, Von Neumann incluso 
afirmó que la elección de un problema concreto como objetivo se 
decide por cuestiones puramente estéticas. 

Al final del artículo, Von Neumann advertía sobre los peligros 
de separarse excesivamente de las fuentes originales. La exagera­
da especialización a que quedan abocadas las matemáticas pura­
mente abstractas con su constante alejamiento de la realidad de 
sus fuentes originales, puede llevarlas a un proceso de degenera­
ción. En palabras del propio Von Neumann: 

En cualquier caso, siempre que se alcance este punto, me parece que 
el único remedio es el retomo rejuvenecedor a la fuente: la reinyec­
ción de ideas más o menos empíricas. Estoy convencido de que esta 
es una condición necesaria para conservar el frescor y la vitalidad 
de la matemática, y que esto seguirá siendo igualmente cierto en el 

futuro. 

Actualmente se generan del orden de 200 000 teoremas de ma­
temáticas cada año. Está claro que nadie puede abarcar más que 
una ínfima parte del conocimiento que ello supone. Lo que Von 
Neumann vaticinó se ha cumplido, por lo menos en su vertiente 
negativa. 
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