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Introduccion

;Quién era John von Neumann? Si para responder a esta pregunta
nos remitimos a la certificacién académica, podemos afirmar que
Von Neumann era matemaético, pues consta que el 12 de marzo de
1926 se doctoré en dicha ciencia en la Universidad de Budapest
con la calificacion de summa cum laude. También podriamos
decir que era quimico, dado que en 1925 obtuvo la titulacién de
ingeniero quimico en la Escuela Politécnica Federal de Zirich.
Hay un dicho popular que dice «por sus obras lo conoceréis». Si
aplicamos esta médxima a las obras de Von Neumann, el abanico
de posibilidades se abre notablemente, ya que entre sus obras hay
que contar con una diversidad importante de campos cientificos.
Sus aportaciones al dlgebra, la topologia y el andlisis funcional
le definen como un matemaético puro, y el establecimiento de las
bases matematicas de lo que hoy se conoce como «teoria de jue-
gos», lo distinguen como uno de los mayores impulsores de lo que
actualmente llamamos «matematica aplicada». Como matemati-
co, nadie duda en calificarlo como uno de los mas importantes del
siglo xx. Es més, se dice de él que probablemente fue el dltimo de
los matematicos que alcanzé a tener una visién completa de todas
las matematicas.

Sin embargo, si nos atenemos a considerar a Von Neumann
como el creador de los espacios de Hilbert, que proporciona-
ron a la mecénica cuantica un formalismo riguroso, incluyendo



como casos particulares en una sola teoria las dos tendencias que
existian en la década de 1920 —la interpretacién ondulatoria de
Schrodinger y la matricial de Heisenberg—, estamos ante un emi-
nente fisico teérico. Buena muestra de ello es que su libro Fun-
damentos matemdticos de la mecdnica cudntica es uno de los
grandes pilares en los que se apoya la fisica cuantica.

Si le preguntiaramos a un economista si sabe quién era Von
Neumann, la respuesta seria rotundamente afirmativa en la ma-
yoria de los casos, pues se pueden contar por miles los econo-
mistas que trabajan cada dfa en teoria de juegos después de la
publicacién de Teoria de juegos y comportamiento econémico,
que escribié Von Neumann en colaboracién con el matemaético y
economista aleman Oskar Morgenstern. Ademés, Von Neumann
marcé un hito en la historia de la economia cuando en 1937 pu-
blicé The Model of General Economic Equilibrium, considerado
como el articulo més importante sobre economia matematica que
se habia escrito hasta entonces.

«;Von Neumann? Es el padre de la computacién actual», nos
responderia un informético. «Tuvo una idea genial», continuaria
diciendo. En las primeras computadoras que se construyeron,
cambiar de programa significaba cambiar fisicamente los com-
ponentes electrénicos para distribuirlos de otra forma. Von Neu-
mann ideé una arquitectura especial gracias a la cual cualquier
programa podia ser redisefiado en la misma memoria de la ma-
quina. Actualmente, todos los ordenadores funcionan segin la ar-
quitectura de Von Neumann, y también fue el primero en disefiar
la computacién en paralelo.

;Pero Von Neumann no era un experto en cibernética? Si,
cierto, fue pionero en aplicar la combinatoria, la 16gica matemati-
cay lateoria de la informacién al diseiio de autématas artificiales,
asentando bases firmes para el desarrollo de la IA (Inteligencia
Artificial). Y de paso, también cred los primeros modelos de mé-
quinas autorreplicantes, es decir, capaces de generar por si mis-
mas miquinas cada vez mas complejas.

También es obligado incluir en esta larga lista de titulaciones
y logros al Von Neumann estratega militar, pues colaboro intensa-
mente con el Departamento de Defensa de Estados Unidos, esta-
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bleciendo matematicamente las estrategias bésicas de la Guerra
Fria, aportando ideas que, actualmente, son ya de manual en este
tipo de operaciones.

Podriamos concluir que Von Neumann tenia una «mente re-
nacentista», que define el perfil de un cientifico, asi, sin més. Pero
esto no seria del todo cierto, ya que en fisica, en economia, en
cibernética o en estrategia militar, Von Neumann actué siempre
como matemaético, buscando las estructuras bésicas en las que se
fundamentaban cada una de estas disciplinas y dejando en ellas
la impronta matematica que les permitiria alcanzar el rango de
ciencia, transformando asi las matematicas puras en matemaéticas
aplicadas.

En la mayoria de las fotografias que se conservan de Von
Neumann lo vemos casi siempre de pie, hablando con alguien,
escribiendo en una pizarra, junto a una computadora... Los pies
de foto refuerzan la idea de que en el momento en que el fotogra-
fo capté la imagen, Von Neumann estaba de paso. Siempre ha-
bia alguien que le estaba esperando. Se dirigia caminando a otro
departamento del edificio, iba en coche a otra ciudad, en avién
a otro estado e incluso a otro continente. Von Neumann estaba
siempre en constante movimiento. Esta es quizi la caracteristica
que define mejor su personalidad. Su deambular por el mundo era
reflejo de su viaje interior. Los departamentos, los edificios, las
personas, eran escenarios en los que habfa algiin problema que
resolver, y a los que volvia una y otra vez. En este sentido, para
Von Neumann las matematicas no fueron un fin en si mismas, sino
la llave que le daba acceso a los miiltiples parajes de la ciencia.

En la biografia de Von Neumann se puede establecer una li-
nea divisoria, tanto en la manera de vivir, como en el tipo de acti-
vidad cientifica que llevé a cabo. Se trata de una linea imaginaria
que cruza el Atlantico y que separa Europa de Estados Unidos.
Aun sabiendo que es una simplificacién excesiva, se podria decir
que Europa fue el escenario en el que Von Neumann se dedico a
las matemadticas puras, mientras que en Estados Unidos sus es-
fuerzos estuvieron dirigidos a las matematicas aplicadas.

A principios del siglo xx, la ciencia habia sufrido una transfor-
macién profunda que supuso un cambio de paradigma. La teorfa
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de la relatividad y el nacimiento de la fisica cudntica abrieron las
puertas al universo de las particulas elementales. Romper un 4to-
mo, fisionar su nicleo, aparecia como una posibilidad real. Pero
esto, a su vez, trajo consigo un nuevo concepto de lo que era la
investigacion cientifica. Ya no se trataba de un reducido nimero
de personas trabajando en un pequefio laboratorio con un pre-
supuesto relativamente bajo. Ahora habia que construir grandes
edificios capaces de albergar un acelerador de particulas o un
reactor nuclear, contar con el concurso de cientos de cientificos
y técnicos llevando a cabo conjuntamente un mismo proyecto.
Ademas, por primera vez en la historia, se hacia necesario contar
con inversiones millonarias para desarrollar un experimento de
fisica fundamental.

Sin embargo, por desgracia, también se dio la circunstancia
de que este experimento de fisién, sin duda el més ambicioso que
se habia propuesto nunca la comunidad cientifica, acontecia en
un escenario bélico, en el que estaban en juego no solo la validez
de hipétesis cientificas, sino también la vida de las personas. Y
esta es una de las facetas mas criticadas de la actividad cientifica
de Von Neumann, que se corresponde con el periodo de su es-
tancia en Estados Unidos. El gran matematico hiingaro puso sus
conocimientos al servicio de la fabricacién de la primera bom-
ba atémica, e hizo realidad la bomba termonuclear de fusién, el
dispositivo con mayor capacidad de destruccién jamas fabricado
por el hombre.

Es indudable que las dramaticas circunstancias en que se vio
inmersa la sociedad civil a causa de la Segunda Guerra Mundial
ejercieron una clara influencia, no solo en Von Neumann, sino
también en la mayoria de los cientificos que se vieron implicados,
voluntaria o involuntariamente, en la aplicaciéon de sus conoci-
mientos a la industria bélica.

Siempre ha sido un tema controvertido el calibrar la respon-
sabilidad de un cientifico frente a las posibles consecuencias
sociales y politicas que sus investigaciones puedan traer, conse-
cuencias que solo inciden en nuestra realidad cotidiana en el mo-
mento en que la ciencia se convierte en tecnologia. Pero también
es cierto que en la investigacion atémica en la que Von Neumann
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estuvo tan implicado, la barrera que separa ciencia y tecnologia
era realmente difusa. En este sentido, Von Neumann declaré en
una ocasion que una persona no tenia por qué sentirse responsa-
ble de la época y de la sociedad que le habian tocado vivir.

También se ha dicho de Von Neumann que tenia una tenden-
cia politica de extrema derecha, dada su manifiesta oposicién a la
Uni6n Soviética y al expansionismo de las ideologias comunistas,
una animadversién que probablemente se forjé en sus afios de ju-
ventud, en la Hungria convulsionada por la época del politico co-
munista mingaro Béla Kun y por el hecho de ser judio y haber he-
redado el temor de generaciones perseguidas por el antisemitismo
ruso. Lo que si parece cierto es que fue proclive a alinearse en el
bando de los «halcones», implicAndose plenamente en el estamen-
to militar, y también lo es que en circunstancias criticas podia de-
jar a un lado sus favoritismos politicos y dar la cara por un amigo,
como quedd de manifiesto cuando, en plena caza de brujas, Robert
Oppenheimer, el director cientifico del Proyecto Manhattan, fue
llevado ante el Comité de Actividades Antiamericanas. Von Neu-
mann, poniendo en riesgo su reputacién, acudié voluntariamente
para testificar en favor de su inocencia y de su lealtad.

La personalidad de los grandes genios suele ser motivo de
controversias. Sus relaciones con el entorno, en especial con los
seres mas préximos, no se ajustan a los patrones habituales. Von
Neumann aborrecia algunos sentimentalismos, a los que consi-
deraba como una pérdida de tiempo. Esto no significa que fuera
ajeno a las circunstancias que le rodeaban, ni mucho menos in-
sensible a aquello que pudiera afectar a sus seres queridos. No
disponia de demasiado tiempo para su familia y probablemente
no manifestaba hacia ellos, ni hacia nadie, lo que se podria enten-
der como un afecto «normal». No obstante, fue atento y, a su ma-
nera, carinoso con sus seres allegados. Incluso se puede hablar
de una vertiente roméantica. La lectura de la correspondencia que
Von Neumann mantuvo con Klara Dan, su segunda mujer, denota
una naturaleza apasionada y turbulenta. Si leyéramos esas cartas
sin conocer nada de la biografia de su autor, pensariamos que
fueron escritas por un musico, un pintor o un poeta, enamorado
de una muyjer a la que cabria calificar cuanto menos de dificil.
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Von Neumann era un genio, y los genios suelen marcar un
hito, pero en este caso fueron varios los hitos: en matematicas,
en fisica, en teoria de juegos, en estrategias militares, en teoria de
automatas, en légica, en informética. En este sentido fue un caza-
dor nato: alli donde olia la presa se lanzaba con todo su arsenal,
y si las armas de las que disponia no eran las adecuadas, creaba
otras nuevas. Pero de toda esa frenética actividad acabé destilan-
do un perfil cientifico, que iba més alla del fisico, del informatico
o del estratega, ya que la presa era siempre un problema sin resol-
ver, e ir a la caza de problemas sin resolver es lo que caracteriza
la naturaleza de un matematico puro.
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1903

N

1922

1925

1926

1928

1929

1930

1933

1935

1937

Nace en Budapest, Hungria, el 28 de
diciembre, Margitta Neumann Janos
(John von Neumann), primer hijo de
Miksa Neumann y Margaret Kann.

Inicia los estudios de secundaria
en el Instituto Luterano de Budapest.

Junto con su tutor, Michael Fekete,
publica su primer articulo matematico.

Obtiene el titulo de ingeniero quimico
en Zirich. Realiza una tesis doctoral
sobre la axiomatizacién de la teoria
de conjuntos.

Ingresa en la Universidad de Gotinga,
donde colabora con David Hilbert.

Publica «Sobre la teoria de los juegos
de sociedad», el primer articulo sobre
teoria de juegos.

Se casa con Mariette Koevesi.

Trabaja como profesor visitante
en la Universidad de Princeton.

Es nombrado profesor del Instituto
de Estudios Avanzados de Princeton
y contratado como Privatdozent

en la Universidad de Viena.

Nace su hija Marina.
Adquiere la nacionalidad estadounidense

y se divorcia de Mariette. Al afio
siguiente se casa con Klara Dan.

1943

1944

1947

1948

1951

1952

1955

1956

1957

Es contratado en el Laboratorio
Cientifico de Los Alamos.

Se publica la primera edicién de su
libro Theory of Games and Economic
Behavior («Teoria de juegos y
conducta econémica»).

El presidente Truman le concede la
medalla al Mérito y la Fuerza Naval
la medalla a los Servicios Civiles
Distinguidos.

Entra a formar parte como asesor
en la corporacién RAND (Research
ANd Development).

Se publica la «Teoria general y 16gica
de los autématas». Es nombrado
presidente de la Sociedad Matematica
Americana (AMS).

Jura el cargo en la Comision de Energia
Atémica de Estados Unidos.

Se le diagnostica un cancer de huesos
que al afio siguiente provoca su
incapacidad.

El presidente Eisenhower le impone
la Medal of Freedom (medalla de la
Libertad). Recibe el premio Enrico
Fermi de Ciencia. Es internado

en el hospital militar Walter Reed
de Washington.

Muere en Washington, el 8 de febrero,
a la edad de cincuenta y tres afios.
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CAPITULO 1

Hungria: el nacimiento
de un matematico

A edades muy tempranas Von Neumann

puso de manifiesto las cualidades que caracterizan
a un nino prodigio, como la facilidad para los idiomas
o la memoria fotografica. Y nada mas alcanzar la edad

adulta, en sus primeros afios como universitario, publicé
su primer trabajo matematico, un resultado que le vali6é
la admiracién y el reconocimiento académico y que
seria el inicio de un prestigio internacional
en constante aumento.






En 1867, Francisco José I fue coronado emperador de Austria y
rey de Hungria. Ese mismo afio firmo con los hingaros un tratado
en el que les garantizaba un razonable nivel de autonomia. Hun-
gria tenia un pasado histérico con la suficiente entidad politica y
cultural como para suponer una clara amenaza a la unidad nacio-
nal austriaca, por lo que en el tratado quedaron excluidos los mi-
nisterios del Ejército y el de Asuntos Exteriores, dos importantes
organos de poder que quedaban fuera del control hiingaro y que
sin duda mermaban su independencia como estado. Aun asi, los
hiingaros no pusieron objeciones a una alianza con Austria que
les garantizaba la necesaria proteccién frente al expansionismo
ruso, por el que siempre se habian visto amenazados.

Por aquel entonces, los circulos de influencia del poder del
Imperio austrohiingaro se concentraban en la corte de Viena, una
corte que intentaba hacer prevalecer la unidad nacional basando-
la en la cultura magiar, algo que era complicado frente a la profu-
sién de etnias que no tenian como idioma el magiar y entre las que
se encontraban croatas, serbios, rusos, eslovacos. La poblacién
era mayoritariamente de origen judio.

A finales del siglo xix, Hungria todavia no se habia desprendi-
do de sus estructuras feudales y se sustentaba en una economia
basicamente agricola. La llegada de la industrializacién trajo con-
sigo la inevitable concentracion de recursos en las grandes capita-
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les. Gran parte del campesinado hacia todo lo posible para poder
emigrar a la capital, Budapest, siempre con la esperanza de mejo-
rar su nivel de vida y, sobre todo, de proporcionar a sus hijos una
educacion, acorde con los tiempos, que les permitiera alcanzar
una posicioén social que a ellos les habia sido vedada. El avance
tecnoldgico y cultural fueron determinantes para modificar la es-
tructura social. En las viejas costumbres heredadas del feudalis-
mo, detentar una posicién social ventajosa era algo que solo podia
obtenerse a través de las herencias. En cambio, los estudios, ya
fueran en el campo de la ciencia o de la tecnologia, posibilitaban
alcanzar un estatus social razonable por méritos propios. En este
sentido, la poblacion que se mostraba mas activa era la judia, que,
en Budapest, superaba ampliamente a la magiar.

La construccién de fabricas en las afueras de Budapest creé
un cinturén industrial que atrajo asi a un campesinado muy empo-
brecido que acabaria por convertirse en la clase obrera, una clase
también empobrecida, pero con una diferencia sustancial impor-
tante: hasta entonces, el campesino habia sido siempre un vasallo
de la corte feudal vienesa, pero ahora el obrero era un ciudadano
que, aunque perteneciera a un bajo estrato social, podia empezar
a reivindicar unos derechos en los que antes ni siquiera se le hu-
biera ocurrido pensar. Por otro lado, la aparicién de profesiones
liberales, inevitable en todo desarrollo industrial, también cola-
boré a transformar profundamente el tejido social. Ingenieros,
arquitectos, médicos, abogados, periodistas, presionaron para
que el conjunto de la sociedad fuera abandonando las viejas es-
tructuras que frenaban su desarrollo. La corte de Viena, que se-
guia anclada en sus fiestas y en su boato, empezé a mirar con
cierto recelo todas estas transformaciones, un recelo que pronto
dejaria paso al miedo, ya que la vieja aristocracia vienesa no solo
era incapaz de cambiar su estructura social, sino que ademaés veia
cémo se empobrecia dia a dia debido a la creciente falta de recur-
sos econémicos. Todo esto acabé por generar un caldo de cultivo
en el que nacieron tensiones sociales dificiles de gestionar y en el
que una ideologia socialista incipiente acabaria abriéndose paso,
alterando de forma convulsa la relativa paz en la que hasta enton-
ces Hungria habia avanzado politica y culturalmente.
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LA FAMILIA NEUMANN

Buda, Obuda y Pest fueron las tres ciudades que acabaron convir-
tiéndose en la capital de Hungria. Buda significa «agua», y segura-
mente la ciudad adopt6 este nombre debido a la majestuosa pre-
sencia del Danubio. Pest significa «horno», y lo més probable es
que hiciera referencia a las numerosas fuentes termales que hay
en esa ciudad. La unificacién oficial de las tres ciudades tuvo lu-
gar por real decreto en 1873, y fue a partir de entonces que la ca-
pital de Hungria pasé a llamarse Budapest.

«En matematicas no entiendes las cosas, simplemente te acabas
acostumbrando a ellas.»

— JouN voN NEUMANN.

Aun asi, los habitantes de la capital seguian refiriéndose indis-
tintamente a Buda y a Pest, si bien no como ciudades distintas, si
como barrios claramente diferenciados. Buda, situada sobre una
altiplanicie en la orilla izquierda del Danubio, con un gran castillo
y multitud de construcciones renacentistas y barrocas, acabé con-
figurandose como la parte antigua de la ciudad, la zona seiorial en
la que la gente adinerada construia sus residencias de verano. Pest
era la otra cara de la moneda, una ciudad moderna en rapido de-
sarrollo, presidida por el gran edificio del Parlamento, sede de la
burocracia hiingara, en la que se habian afincado bancos y comer-
cios y con una oferta cultural en constante crecimiento.

A finales del siglo x1x, la regién en la que se encontraba Pest se
habia convertido en uno de los centros molineros més importan-
tes de toda Europa. Jakab Kann, descendiente de una familia judia
que habia emigrado a Hungria procedente de Bohemia, vio una
oportunidad de negocio en abastecer de titiles a esta industria mo-
linera y amasé una pequefia fortuna fabricando ruedas de molino,
lo que le permitié comprar una casa en Pest, en la ribera del Danu-
bio, y otra en Buda, para pasar la época estival. La casa que hizo
construir en Pest, en el nimero 62 de la calle Vaci-Korut, era una
finca de cuatro plantas. En la planta baja estableci6 las oficinas de
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su floreciente negocio y habilit6 la primera para vivir con su fami-
lia. Las dos plantas superiores las reservé como dote para sus dos
hijas. Jakab Kann era un patriarca judio en el sentido més tradicio-
nal y queria a toda la familia unida bajo el mismo techo.

Margaret Kann, la hija mayor de Jakab Kann, se prometi6
con Miksa Neumann, un prominente abogado judio que se trans-
formé en banquero y que cuando se casé ya ostentaba el cargo de
director del Jelziloghitel Hitelbank, una entidad financiera ubi-
cada en Pest. Jakab Kann le regal6 al joven matrimonio el cuarto
piso de la casa. El tercero ya habia sido ocupado por la familia de
su hermana, de manera que, tal y como habia planeado el abuelo
Jakab, vivian todos juntos en una misma casa formando, segin
los testimonios de sus diferentes miembros, una familia muy
bien avenida.

Y fue en este pafs, en esta ciudad y en este célido ambiente de
una familia judia, que naci6 Janos, el primogénito de la familia
Neumann, el 28 de diciembre de 1903. Cuatro afios més tarde na-
ci6 su hermano Mihaly y en 1911, Nicholas, su otro hermano. El
nombre completo de Janos era Margitta Neumann Jianos —era
costumbre anteponer los apellidos al nombre de pila—, nombre
que sufriria algunos cambios hasta adquirir la forma en que lo
conocemos actualmente.

El boom cultural que sacudié a Hungria a finales del siglo xix
trajo como consecuencia la apariciéon de una «meritocracia». Un
sector significativo de la poblacién empez6 a reivindicar los méri-
tos alcanzados por el esfuerzo en el trabajo y la adquisicién de
elementos culturales progresistas, lo que hizo que la aristocracia
vienesa se sintiera amenazada por un incipiente radicalismo al
que solo podia oponerse aumentando su poder econémico. Una
de las pocas maneras que tenia de conseguirlo era poner a la ven-
ta titulos nobiliarios, algo que consiguié pese a la fuerte oposicién
de la vieja aristocracia, que no vefa con buenos ojos que sus no-
bles apellidos se convirtieran en objetos de compra y venta. Asi
las cosas, a principios del siglo xx las opciones para la alta bur-
guesia hiingara eras dos: o se unia a los movimientos radicales
que pugnaban por las reformas sociales, o bien buscaba cobijo en
la aristocracia vienesa para utilizar los privilegios de los que toda-
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«EL ARTE DE LA FUGA»

El abuelo de John Von Neumann era un gran aficionado a la mdsica y una de
las pocas personas que en aquella época poseia un graméfono. Era costumbre
en las familias burguesas de la época formar, en la medida de lo posible, una
pequefia orquesta de camara familiar. El joven Janos aprendio a tocar el vio-
lin y aunque con los afios abandond este instrumento, nunca perdié su aficién
por la musica. Una de las obras musicales que mas interes® a Von Neumann
fue El arte de la fuga, un conjunto de catorce fugas y cuatro céanones com-
puestos por Johann Sebastian Bach con el animo de ejemplificar las técnicas
del contrapunto. Originalmente, fueron creadas sin responder a un orden par-
ticular y sin la asignacion de un instrumento concreto. Esto, al parecer, impre-
siond vivamente al joven Janos, que debid ver en esta obra un proceso de
abstraccion dentro de la misma musica. Segun testimonia su hermano Nicho-
las, El arte de la fuga de Bach fue la fuente de inspiracion para que afios mas
tarde Von Neumann pensara en la posibilidad de que un ordenador no tuvie-
ra un programa previo asignado, lo que le llevo a disefiar la arquitectura de
ordenadores que lleva su nombre.

Manuscrito de una partitura de Ef arte de la fuga, de Johann Sebastian Bach.

via gozaba. Poseer uno de esos titulos nobiliarios conllevaba un
desembolso econémico importante, ya que eran muy caros, pero
también suponian una buena inversion, especialmente para aque-
llos que se movian en sectores de influencia, como era el caso del
padre de Von Neumann, Miksa Neumann. De esta manera, a partir
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de 1913, Miksa Neumann adquirié el titulo nobiliario de «von»
(«de»), que se ponia de manifiesto al afiadir una «i» al final del
apellido, con lo que Margitta paso a ser Margittai. Asi, el nombre
completo de su primogénito era ya por entonces Margittai Neu-
mann Janos. John fue el nombre de pila que Von Neumann adopté
cuando adquiri6 la nacionalidad estadounidense, y asi fue c6mo
Margitta Neumann Janos acabé llamandose John von Neumann.

LA INFANCIA DE JANOS

Janos pasé su infancia rodeado de nifios, todos ellos hermanos o
primos hermanos, que vivian en el mismo edificio, compartiendo
comidas, juegos y celebraciones. Es probable que de no ser asi,
Janos, como tantos ninos superdotados, hubiera desarrollado un
cardcter taciturno y excesivamente hermético. La vertiente ex-
traordinariamente sociable que Von Neumann manifest6 de adul-
to se forjoé sin duda en este ambiente familiar tan préximo, lo que
no quiere decir que la suya fuera una personalidad abierta y co-
municativa. En la mente de Janos, siempre activa, quedaba poco
espacio para las manifestaciones efusivas, lo que hizo que fuera
considerado como un nifio un tanto altivo y distante. Su sociabili-
dad era aprendida y resultado de un proceso de adaptacién del
que siempre solia salir airoso. Su madre cuenta la anécdota de
que en una ocasion en que ella estaba sentada junto a una venta-
na, con la mirada perdida y el cefio fruncido, Jinos se acercé a
ella y en lugar de intentar averiguar cuil era su motivo de preocu-
pacion, le pregunté: «;Qué estas calculando?».

En aquella casa se hablaban varios idiomas. Todas las gober-
nantas que habian tenido hablaban francés o inglés. El conoci-
miento de idiomas ha sido siempre un requisito importante en la
comunidad judia, ya que en cualquier momento se podian ver
obligados a emigrar a otro pais, pero incluso en circunstancias
normales, idiomas como el alemén se consideraban imprescindi-
bles, ya que, para determinados sectores de la sociedad hingara,
Alemania era uno de los destinos prioritarios si se pretendian al-
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canzar determinados niveles profesionales y sociales. Esto sin
olvidar las lenguas muertas, por las que Miksa Neumann sentia
una especial devocién. En aquella época, el latin era asignatura
obligatoria en la ensefianza secundaria, asi como el griego, que se
empezaba a estudiar a la edad de catorce anos, pero gracias a las
ensefnanzas de su padre, Janos era capaz de hacer chistes en grie-
go clasico con tan solo seis afos. De esta manera, no es sorpren-
dente que, con una mente privilegiada como la suya y estando en
un ambiente tan favorable, Von Neumann mostrara una gran faci-
lidad para los idiomas: de mayor hablaba hiingaro, que era su len-
gua materna, aleman, inglés, francés y, por supuesto, latin y grie-
go. En mis de una ocasién, Von Neumann hizo referencia a la
importancia de haber aprendido estas lenguas muertas, que le
ayudaron a comprender mejor cudl debia ser la estructura interna
del lenguaje de las computadoras.

«No tiene sentido ser preciso cuando no sabes
ni siquiera de lo que hablas.»

— Joun voN NEUMANN.

Lo que si podria parecer sorprendente es que en las fiestas
navidefias se cantaran canciones populares alemanas junto a un
arbol de Navidad. Sorprendente, porque se trataba de una fiesta
pagana en la que la comunidad judia no participaba. Aunque el
abuelo Jakab Kann era un hombre devoto que cumplia religiosa-
mente con los ritos del judaismo, el espiritu religioso se habia ido
debilitando en las sucesivas generaciones. Janos no tuvo una edu-
cacién religiosa en el sentido estricto que confiere el judaismo,
pero crecié en un ambiente en el que los rituales judios se mante-
nian aunque fuera por pura tradicién, lo que incluia el asistir a
clases con un rabino para que le iniciara en el «Libro». Del poco
calado que las creencias religiosas del judaismo tuvieron en Von
Neumann da fe el que no tuviera el mas minimo reparo en hacerse
catélico cuando las circunstancias lo requirieron, para poder for-
malizar su primer matrimonio. Von Neumann manifest6 siempre
un agnosticismo sin fisuras, a excepcién de un breve lapso de
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tiempo, justo antes de su muerte, en el que reclamo la presencia
de un sacerdote catolico.

Hay dos cualidades que es muy frecuente encontrar entre las
biografias de los grandes genios de las matematicas. Una es la
facilidad para los idiomas, y la otra, la memoria fotografica. Es
posible que ambas guarden una estrecha relacién. Jianos no fue
una excepcién. Era capaz de memorizar una pagina del listin de
teléfonos con tan solo leerla un par o tres de veces. Cuando la
familia se reunia con amigos, le pedian que hiciera alguna demos-
tracion, y entonces comprobaban que Janos podia recitar los
nombres, apellidos, direcciones y niimeros de teléfono siguiendo
el orden de las columnas, o en orden inverso, o bien respondien-
do preguntas de forma aleatoria. En una ocasién, su padre com-

KRIEGSSPIEL, JUEGOS DE GUERRA

Cuando era el pequefio Janos, Von Neumann jugaba con sus hermanos, es-
pecialmente con Mihaly, a juegos de guerra, pero no lo hacia como la mayoria
de los nifios —él no solia hacer nada como la mayoria de la gente—, montando
paradas militares o batallas en las que soldados de plomo caian abatidos por
el impacto de pequerios objetos contundentes. Jugaban a una variante de un
antiguo juego de guerra llamado «Kriegsspiel», que en aleman quiere decir
literalmente «juego de guerra». En 1824, George von Reisswitz, teniente de
artilleria del ejército prusiano, ided un juego de mesa que representaba un
campo de batalla en el que podian recrearse diferentes estrategias de guerra.
Muy pronto los altos mandos del ejército se dieron cuenta de que aquello iba
mucho mas alla de ser un mero juego y que podia ser utilizado para adiestrar
a sus oficiales en las artes de la guerra. El éxito de esta iniciativa quedo pro-
bado en 1866 en la campanfia contra Austria y, afios mas tarde, en las victorias
obtenidas contra los ejércitos de Napoléon lll. Con el tiempo, se difundieron
diferentes versiones del Kriegsspiel en inglés, aleman y francés que fueron
adaptadas por la mayoria de los ejércitos para la instruccion de los oficiales
en las técnicas de estrategia militar. El Kriegsspiel al que Janos jugaba con
sus hermanos era una versién recreada por ellos mismos a base de dibujar
en un papel los campos de batalla con sus fortalezas, montafas, rios y demas
elementos necesarios para desarrollar las batallas. Durante la Primera Guerra
Mundial, Janos siguid con detalle todos los informes sobre los avances y re-
tiradas de tropas de los ejércitos para reflejarlos de la manera mas fidedigna
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pré una voluminosa enciclopedia; era tan grande que se vio obli-
gado a destinar una de las habitaciones de la casa para poderla
albergar. El pequeio Janos pasaba en aquella estancia varias ho-
ras cada dia. Entre otras cosas, ley6 de cabo a rabo una historia
mundial. Empez6 por el primer volumen y, sin saltarse una pagi-
na, fue recorriendo cronolégicamente la historia hasta que termi-
né en la dltima péagina del tltimo tomo. En total, la enciclopedia
histérica constaba de veinte gruesos voliimenes. Pero su mente
no se dedicaba solamente a archivar datos, cosa a la que ayudaba
su portentosa memoria fotografica, sino que también se dedicé a
gestionar la informacién. Ya de pequefio mostré un interés espe-
cial por las relaciones entre los diferentes paises y especialmente
por los conflictos bélicos y las distintas estrategias que se plantea-

posible en su Kriegsspiel particular. Aflos mas tarde, durante su estancia en
Estados Unidos, seguiria practicando este juego en sus frecuentes visitas a
la corporacion RAND (Research ANd Development), un laboratorio de ideas

que forma a las fuerzas armadas norteamericanas.

Un grupo de oficiales prusianos discutiendo estrategias militares frente a un tablero
de Kriegsspiel. Grabado de Adalbert von Roessler, hacia 1884.
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ban. Janos intentaba establecer relaciones que no aparecian ex-
plicitas en los textos. Su interés por las estrategias militares se
manifesté a edades muy tempranas. Habia aprendido a jugar al
ajedrez de la mano de su padre, que casi siempre le ganaba, lo que
le permiti6 comprobar que su hijo era un mal perdedor. Sin em-
bargo, si buscamos al nifio que juega con soldados de plomo, vol-
veremos a encontrar al estratega. Su hermano Mihdly decia que
sus juegos no consistian en organizar desfiles o derribar soldados,
sino que sus formaciones militares obedecian a ticticas previa-
mente establecidas, en las que mostraba mucho més interés en el
desarrollo de la batalla y en los movimientos de tropas, que en los
enfrentamientos bélicos en si.

EL MILAGRO HUNGARO

A mediados del siglo xix tuvo lugar en Europa una profunda refor-
ma de los sistemas educativos. La revolucién industrial trajo con-
sigo numerosas innovaciones tecnolégicas que requerian procesos
de fabricacion en los que eran necesarios dispositivos y mecanis-
mos que hasta entonces nunca se habian utilizado. Las nacientes
ingenierias técnicas se veian obligadas a incorporar en sus progra-
mas de ensefianza nuevas asignaturas, la mayoria de las cuales re-
querian conocimientos matematicos mas avanzados que los que
proporcionaban los acostumbrados programas de ensefianza.

El aprendizaje de las matemaéticas es largo y se establece pa-
so a paso. Es un edificio de varias plantas cuya construccién re-
quiere de unos cimientos sélidos, que son los que se crean a lo
largo de la ensefianza secundaria. Hungria inicié una reforma a
mediados del siglo xix que ya se habia consolidado a principios del
Xx, que tuvo como resultado lo que se conoce como el «milagro
hingaro», un fenémeno que ha sido objeto de estudio por parte de
muchos historiadores de la ciencia, y que dio nombres como el de
los fisicos Dennis Gabor (1900-1979), Le6 Szilard (1898-1964), Ed-
ward Teller (1908-2003) o el fisico y matematico Eugene Paul Wig-
ner (1902-1995), varios de ellos compafieros de Von Neumann en
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EL ROJO Y EL BLANCO

Después de la Primera Guerra Mundial, Hungria vivié un breve pero sangriento
periodo politico bajo el régimen de Béla Kun, militar que en la Gran Guerra
formaba parte del ejército austrohtingaro y que fue apresado por los rusos.
En aquella época, se hablaba de los famosos lavados de cerebro de los sovié-
ticos a sus prisioneros. Cierto o no, el caso es que Kun volvié a su pais como
comunista convencido. En marzo de 1919 tomé el poder vy llevé a la practica
las teorias de Marx y Lenin al pie de la letra. Esto significé el traspaso de poder
a la clase proletaria, gran parte de la cual pertenecia todavia al campesinado,
la reparticion de los bienes y una forma de terror politico sistematizada v
practicada por comisarios politicos designados directamente por el propio
Kun. El vandalismo y las tropelias llevadas a cabo por las hordas de su partido
convirtieron a Budapest en una ciudad peligrosa. La familia Neumann se exilié
a Austria. Janos tenia entonces quince anos. El partido de Kun durd apenas
cinco meses y en agosto de 1919 fue derrocado por el almirante Miklés Horthy,
que instaurd un régimen de extrema derecha mas violento que el anterior,
pasando sin transicion del terror rojo al terror blanco, durante el cual fueron
asesinadas mas de cinco mil personas y cerca de cien mil se vieron obligadas
a abandonar Hungria. Los judios habian formado parte activa del anterior
régimen —ocho de los once comisarios politicos de Kun habian sido judios—,
y Miksa Neumann se salvo de la quema, ya que habia mantenido una clara
oposicion al régimen de Kun. Ademas, seguia formando parte de la clase aris-
tocratica y de los banqueros del régimen anterior. La seguridad de su familia
estaba de momento garantizada, pero los judios eran mal vistos en la mayoria
de circulos sociales. Fue entonces cuando un gran nimero de intelectuales
judios decidieron emigrar a Alemania.

Discurso de Béla Kun en Kassa (actual Kogice, en Eslovaquia).
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su época de estudiante. El lema por el que se rigi6 la nueva refor-
ma era «innovar o morir», una mixima que se siguié al pie de la
letra. Fue la época en la que la matematica discreta se abria paso
através de la herencia continuista que todavia se arrastraba desde
la época de Isaac Newton (1643-1727), en la que se habian consti-
tuido los fundamentos del andlisis matematico. Un movimiento
aperturista que tendria uno de sus maximos exponentes en David
Hilbert (1862-1943), el gran matematico alemén que afios mas tar-
de serfa uno de los mentores que tuvo mayor influencia sobre Von
Neumann. Laszl6 Ratz (1863-1930), matematico hingaro dedica-
do a la ensenanza secundaria, fue uno de los méximos responsa-
bles en la reforma de la ensefianza de las matematicas en la edu-
cacion media, iniciada en 1909. Una de las iniciativas que mejor
impulsaron esta reforma fue la creacién en 1894 de la Kozépisko-
lai Matematikai Lapok —revista matematica para la escuela se-
cundaria—, cuya direccién recayé en Ratz. Se trataba de una pu-
blicacion en la que participaban tanto profesores como alumnos y
en la que basicamente se proponian problemas de matematicas
elementales. Esta revista, asi como la instauracién de concursos
matematicos, como el E6tvds, tuvieron una influencia decisiva en
la aparicién de nuevos mateméticos en Hungria.

EL INSTITUTO LUTERANO

Como era costumbre entre las familias acomodadas de la época,
Janos fue educado en su hogar por tutores hasta la edad de diez
anos. Sus estudios de secundaria los cursé en el Budapest-Fasori
Evangélikus Gimnéazium, un colegio muy elitista que a pesar de
pertenecer a la iglesia luterana —todos los colegios privados es-
taban sufragados por algunas iglesias, ya fuera cristiana, copta o
luterana—, era una institucién muy abierta en cuanto a las creen-
cias religiosas, de manera que, ademas de las asignaturas lectivas
correspondientes, Jinos también recibi6 las ensefianzas de un ra-
bino con el que se inici6 en la lengua hebrea y en la cultura judia
contenida en la Tora.
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FOTO SUPERIOR
IZQUIERDA:
Margaret Kan,
esposa de Miksa
Neumann y madre
de Von Neumann.

FOTO SUPERIOR
CERECHA:

Miksa Neumann
junto a su hijo, el
pequefio Margitta
Neumann Janos.

FOTO INFERIOR:
Fachada del
Budapest-Fasori
Evangélikus
Gimnazium, donde
a partir de 1911
Von Neumann
curso sus estudios
de escuela
secundaria.
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LAS OLIMPIADAS MATEMATICAS

Las Olimpiadas Matematicas son, segun
reza su reglamento, «concursos entre
jovenes estudiantes, cuyo objetivo pri-
mordial es estimular el estudio de las
matematicas y el desarrollo de jévenes
talentos en esta ciencia». Sus origenes se
remontan a las competiciones matema-
ticas nacionales E6tvds de Hungria. En
1894, se le pidid servir al barén Lorand
Edtvos (1848-1919) como ministro de
Educacion en el Gobierno hungaro, para
ayudar a la aceptacion de los derechos
civiles vy la libertad religiosa en el Parla-
mento. Para conmemorar ese aconteci-
miento, a partir de ese afo la Sociedad
Hungara de Matematicas y Fisica decidio
organizar concursos anuales para gra-
duados de la escuela secundaria. El ac-
tual nombre de Olimpiadas data de 1958,
ano de celebracién de las primeras Olim- ’

¥ & Ly E&tvés, a quien se debe el nombre de las
piadas Internacionales de Matematicas | iraras competiciones matematicas,
por iniciativa de Rumania. En la primera  nacidas en Hungria en 1894.
edicion participaron siete paises, y en la
actualidad, la participacion se ha exten-
dido a ochenta paises de los cinco continentes. A Von Neumann, que obtuvo
el premio nacional E&tvds, se le puede considerar un ganador preolimpico.

El fisico y politico hingaro Lorand

Janos pasé ocho afos en este colegio. A pesar de ser un nifio
prodigio, nunca adelantd un curso, algo que podia haberle aislado
de los demads y que de hecho iba en contra de los criterios pedagé-
gicos del mismo Laszl6 Ratz, al que tuvo como profesor de Mate-
maticas. En el instituto se fomentaba el trabajo en grupo y los
compaiieros de Janos se debatian entre la envidia y el respeto que
despertaban sus extraordinarias capacidades intelectuales. Fue
en este colegio donde hizo amistad con Eugene Wigner, premio
Nobel de Fisica en 1963, que iba un curso por delante. Wigner
cuenta que a Janos le gustaba mucho hablar, aunque fuera solo de
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matemaéticas, y que daban largos paseos durante los cuales Jianos
procuraba llevar siempre la conversacién a la teoria de conjuntos,
por la que ya entonces parecia estar especialmente fascinado.

Ratz se dio cuenta muy pronto de que estaba ante un genio y
fue a hablar con el padre de Janos para recomendarle una educa-
cién personalizada que le ayudara a ampliar sus conocimientos
de matematicas, a lo que este accedi6 sin dudarlo un momento.
Rétz habl6 con J. Kuerschak, un distinguido matemético de la
Universidad de Budapest, que eligi6 como profesor particular a
Michael Fekete (1886-1957), un joven matematico con el que J4-
nos estuvo trabajando hasta que acabé los estudios de secunda-
ria. En el ultimo aifio de colegio, ambos hicieron un trabajo con-
junto sobre un teorema de analisis que fue publicado en la revista
Jahresbericht der Deutsche Mathematiker-Vereinigung («Infor-
me anual de la Sociedad Matematica Alemana»).

Janos obtuvo el premio nacional E6tvos, un concurso a nivel
nacional que se hacia entre todos los colegios de ensefianza se-
cundaria y que exigia un nivel muy alto en la comprensién de con-
ceptos matematicos y en la resolucion de problemas. Fue enton-
ces cuando Janos pudo demostrar que era el mejor, algo de lo
que, al parecer, tomoé conciencia para el resto de su vida.

ESTUDIOS UNIVERSITARIOS

A mas de una persona le puede sorprender saber que uno de los
mas ilustres matematicos del siglo xx fuera también licenciado en
quimica. Esta no fue una carrera elegida por vocacién, sino una
solucién de compromiso entre los intereses encontrados de pa-
dre e hijo. En Europa, una familia judia, fuera cual fuera la posi-
cién social o econémica que ocupara, se vefa obligada a vivir con
las maletas preparadas para emprender en cualquier momento un
viaje que podia ser solo de ida. Esto significaba la posibilidad de
encontrarse de la noche a la mafiana en un pais extranjero con
muy escasos recursos. En estas circunstancias, cualquier miem-
bro de la comunidad judia era muy consciente de que el equipaje
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mas valioso no era el que llevaba en su maleta, sino el que trans-
portaba en su cerebro, aquel que nadie le podia quitar mientras
conservara la vida. Esto suponia que debia dominar uno o varios
idiomas y tener los conocimientos necesarios para poder ejercer
una profesién como medio de vida. Ambas cosas dependian en
gran medida del entorno geogrifico en el que se estuviera movien-
do. En relacion a los idiomas, Miksa Neumann ya se habia ocupa-
do de que sus hijos se desenvolvieran perfectamente en aleman y
tuvieran conocimientos suficientes de inglés y de francés, con lo
que ya tenian cubierto el acceso a los entornos culturales que en
aquel entonces dominaban el escenario politico mundial. En
cuanto a conocimientos, el padre de Jianos siempre vio con bue-
nos ojos que su hijo tuviera una formacién en matematicas, ya
que, dadas las cualidades innatas que habia mostrado en ese
terreno, sabia que acabaria destacando en el restringido circulo
de los matematicos profesionales. Pero eso era algo que podia
quedar exclusivamente circunscrito al ambito del prestigio inte-
lectual, sin que necesariamente le proporcionara una holgada po-
sicién econémica. Fue entonces cuando pidié ayuda a un ingenie-
ro y fisico amigo suyo, Theodore von Karmén (1881-1963), para
que tratara de convencer a su hijo de elegir una carrera con un
futuro maés rentable. Entre los tres llegaron a un acuerdo: Janos
estudiaria ingenieria quimica, pero sin abandonar las matemati-
cas, lo que le llevé durante los siguientes cinco afios a una intensa
actividad académica que solo alguien con sus extraordinarias do-
tes podia llevar a cabo.

El acceso a una universidad hiingara estaba muy restringido y
mas todavia para los judios, pero el curriculum de Janos podia
derribar con facilidad las puertas de cualquier universidad euro-
pea. En 1921, se matricul6 para estudiar matematicas en la Univer-
sidad de Budapest. En realidad, para obtener el titulo, ya que no
asistié a ninguna clase y solo hizo acto de presencia para exami-
narse, eso si, obteniendo siempre las maximas calificaciones. Si-
multdneamente, hizo dos cursos de ingenieria quimica en la Uni-
versidad de Berlin, de 1921 a 1923, y otros dos en el Instituto Fede-
ral de Tecnologia de Ziirich, de 1923 a 1925, en el que obtuvo la li-
cenciatura en quimica. Finalizo sus estudios académicos cuando
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recibié el doctorado en matematicas por la Universidad de Buda-
pest en 1926, con una tesis sobre teoria de conjuntos. Cuando te-
nia veinte afios, ya habfa publicado una definicién de los nimeros
ordinales, que es la que todavia se utiliza en la actualidad.

A partir de ese momento, Von Neumann emprendi6é una ca-
rrera metedrica que le llevd a convertirse en uno de los matemati-
cos de mayor reconocimiento internacional. Fue conferenciante
en Berlin de 1926 a 1929 y en Hamburgo de 1929 a 1930.

En 1927 recibi6é una beca Rockefeller para realizar estudios
posdoctorales en la Universidad de Gotinga. Esta es una fecha
remarcable en la biografia de Von Neumann, ya que aquella uni-
versidad era el centro neurdlgico de las matematicas del momen-
to, y también porque alli conoceria a David Hilbert, uno de los
més insignes matematicos del siglo xx y una de las personas que
mayor influencia tendria en su carrera cientifica.
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CAPITULO 2

Alemania: la matematica pura

Los trabajos mas importantes
que Von Neumann llevé a cabo en Gotinga
bajo la direccién de Hilbert fueron basicamente sobre
cuestiones de axiomatizacion. Para comprender el alcance
de sus aportaciones, es interesante tener una vision clara
del papel que los axiomas han desempenado en las
matematicas a lo largo de toda su historia, pero sobre
todo de las profundas crisis a las que dicha
axiomatica se vio sometida a principios del
siglo xx y que pusieron en entredicho los
fundamentos de las matematicas.






En el dltimo cuarto del siglo xix, la matematica europea tenia
como referencia a la Universidad de Berlin, caracterizada cada
vez mas por un pensamiento purista que se ponia de manifiesto
en el tratamiento geométrico de los problemas en su vertiente
sintética, oponiéndose a la utilizacion de elementos del analisis
cartesiano y el dlgebra, aduciendo que esta dltima era un enfoque
que alejaba a las matematicas de su faceta mas intuitiva, que era
la que proporcionaba la geometria clasica.

Para los puristas, un punto, una recta o un plano eran concep-
tos intuitivos que podian visualizarse y que permitian enunciar y
demostrar teoremas por medio de las leyes de la l6gica, basando-
se en el conjunto de axiomas que habian sido establecidos por el
matemaético y geémetra griego Euclides (ca. 325-ca. 265 a.C). En
cambio, bajo el punto de vista analitico, una recta era un conjunto
de puntos definidos en coordenadas cartesianas cuyas reglas del
juego estaban dictadas por el dlgebra abstracta. Ya por entonces,
el analisis matematico se habia desarrollado lo suficiente como
para poder trabajar con rectas, planos y curvas con un elevado
nivel de complejidad sin necesidad de «ver» nada de lo que se
estaba haciendo.

La universidad de la ciudad alemana de Gotinga acabaria
siendo el buque insignia de esta nueva forma de plantear las ma-
tematicas.
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GOTINGA

La Universidad de Gotinga fue fundada en 1734 por Jorge II, prin-
cipe elector de Hanéver. En 1866, Prusia se anexioné dicho reino,
lo que supuso un cambio importante, ya que el Gobierno prusiano
consideraba que la universidad era una institucién clave para el
progreso de la nacién. Este mismo afo, el mateméatico alemén
Felix Klein (1849-1925) fue nombrado rector de la universidad,
instituci6n a la que siempre permaneci6 fiel, rechazando todo tipo
de ofertas, incluida la de una cétedra en Berlin, y en la que traba-
Jj6 hasta su jubilacién en 1930, aunque sigui6é impartiendo cursos
hasta 1934. Klein tenfa un proyecto, conocido como el Programa
de Erlangen, que llevo a la practica a lo largo de un periodo de
diez afios y con el que se proponia establecer nuevas relaciones

FELIX KLEIN

El matematico aleman Felix Klein nacié el 25 de abril de 1849 en Dusseldorf,
hijo de un alto funcionario del Estado prusiano. En los primeros afios de su
infancia fue educado por su madre. Tras estudiar durante dos afios en una
escuela elemental privada, en 1857 ingreso en el Instituto de Dusseldorf, en el
que permanecio durante ocho afos cursando el bachillerato. A los dieciséis
afnos entrd en la Universidad de Bonn. A pesar del interés que despertaban en
él las matematicas, se matriculd en muy pocas asignaturas de esta disciplina,
dedicando la mayor parte de su actividad a la boténica. Al afio siguiente de su
acceso a la universidad, se encargé de las practicas de fisica que se llevaban
a cabo bajo la direccién de Julius Plicker, un fisico matematico que estaba
trabajando en su libro Nueva geometria del espacio. Klein profundizé en el
tema hasta el punto de que a la muerte de Pllcker, se encargé de la redaccion
de la segunda parte del libro.

Una formacién a medida

Consciente de su falta de preparacion en algunas areas de las matematicas,
especialmente en el calculo integral, en 1869 se traslado a Gotinga, donde
asistio durante un afio a los cursos de Alfred Clebsch. Klein no siguié nunca
un programa académico convencional, él mismo se marco el camino a seguir
segun sus propios intereses. En su estancia en Berlin, en 1870, no asistio prac-
ticamente a clases de matematicas, pero si mantuvo una intensa actividad de
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entre las diferentes areas que habian ido apareciendo en el mismo
seno de las matematicas, pero sobre todo hacerlas mas cercanas
ala fisica. En el desarrollo de este proyecto tuvo como firme alia-
do a David Hilbert, uno de los cientificos mas destacados del cam-
bio de siglo, considerado como el matematico que mas ha influido
en la geometria después de Euclides.

Elimpulso que Hilbert dio a Gotinga a partir de 1895 provoca-
ria un giro que acabaria convirtiendo al Instituto de Matemaéticas
de Gotinga en un referente mundial. Coincidié con Klein en abrir
las puertas a la comunidad internacional y en abandonar las ten-
dencias puristas y especializadas para conseguir una mayor uni-
ficacién entre las diferentes areas de las matematicas, evitando
siempre cualquier enfrentamiento abierto con la Universidad de
Berlin. En este sentido, Gotinga destacé por ser una universidad

«cafén» con dos matematicos importan-
tes, el austriaco Otto Stolz (1842-1905)
—que ya era catedratico, pero que habia
asistido a Berlin para ampliar estudios—y
el noruego Sophus Lie (1842-1899), con
quien llevé a cabo una actividad de tra-
bajo extraordinariamente productiva, ya
que fue quien le descubrid la importancia
de una nueva teoria desarrollada por Eva-
riste Galois (1811-1832), que tendria un pa-
pel trascendental en los futuros trabajos
de Klein: la teoria de grupos. A instancias
de Clebsch, Klein recibio el nombramien-
to de catedratico numerario de mate-
maticas de la Universidad de Erlangen,
donde al explicar su programa docente,
tuvo lugar por primera vez la lectura de
su famoso Programa de Erlangen. A lo
largo de su actividad docente, Klein ensefid matematicas en Munich (1875-
1880), Leipzig (1880-1886) y Gotinga (1886-1913), ciudad esta ultima en la que
fundé un instituto de matematicas aplicadas. En 1882, Klein sufrio un derrumbe
psiquico como consecuencia de una grave enfermedad nerviosa que termind
con su actividad como investigador. Murié en Gotinga el 22 de junio de 1925.
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muy abierta que aceptaba cientificos y pensadores innovadores
con independencia de su origen, creencias o posicién social.

Hilbert mantenia una postura muy clara en cuanto al papel
que las matematicas debian tener en relacion a la fisica, incluso
llegando a decir que la fisica era demasiado dificil para los fisicos.
Junto con el también matemadtico alemén Richard Courant (1888-
1972), publicé un libro titulado Los métodos de la fisica matemd-
tica (1924), de inestimable ayuda para los fisicos, que todavia se
publica y que es conocido como el «Courant-Hilbert».

AXIOMATICA

Los conceptos més elementales de punto, recta y plano, y las rela-
ciones que se establecen entre ellos, desde las mas sencillas hasta
las mads complejas, fueron sistematizados y ordenados, entre los
anos 330 y 275 a.C., en uno de los libros mas difundidos de la his-
toria de la humanidad: los Elementos (Stoikheia) de Euclides, en
los que todo el saber geométrico de la época se condensé en tre-
ce libros. Euclides construyé la geometria utilizando tres herra-
mientas conceptuales claves: los axiomas, los postulados y los
teoremas. Los teoremas hacen referencia a proposiciones que no
son evidentes y que se demuestran, mediante un proceso légico de
razonamiento, a partir de los axiomas y los postulados. Para ello,
Euclides parte de veintitrés axiomas y cinco postulados, a partir de
los cuales demuestra todos los teoremas. La diferencia que existe
entre un axioma y un postulado es importante para comprender la
naturaleza de la geometria que se describe en los Elementos. Un
axioma no necesita demostracién, ya que se trata de una propo-
sicién clara y evidente. Por ejemplo, el primer axioma de los Ele-
mentos dice: «un punto es lo que no tiene partes». En cambio, un
postulado es una proposicién que, no siendo tan evidente como un
axioma, se admite como verdadera sin necesidad de demostrarla.
De esta forma, el edificio matematico se construye paso a
paso sobre un sistema de axiomas y unas reglas de juego basadas
en la légica que permitan la creacion de teoremas. Hasta la apari-
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EL QUINTO POSTULADO

El quinto postulado de los Elementos R
de Euclides, que no tiene la nitidez de 3
los otros cuatro, afirma:

Si una recta, al incidir sobre dos
rectas, hace los angulos internos
del mismo lade menores que dos
rectos, las dos rectas prolongadas
indefinidamente se encontraran en
el lado en el que estan los [dngulos]
menores gue dos rectos.

Supongamos una recta R, que corta

a otras dos, R, y R, (véase la figura).

Los angulos internos, menores que

dos rectos, a los que hace referen- b

cia el postulado, serian los sefialados

como a y b. El quinto postulado afir- Ra2

ma que si prolongamos las rectas R,

Y R,, estas se encontraran en la parte

derecha de la figura. Desde siempre

llamé la atencion de los gedmetras que el quinto postulado no tuviera la
simplicidad y, sobre todo, el caracter de evidencia de los cuatro anteriores.
Hasta el mismo Euclides, consciente de ello, traté de evitarlo y, de hecho, no
lo utilizé hasta la demostracion de la proposicion 29 del Libro |. Este intento
de construir toda su geometria tratando de evitar el uso del quinto postula-
do ha conducido a que, en ocasiones, se afirmara que Euclides fue el primer
gedmetra no euclideo. El caso es que, desde su mismo nacimiento, el quinto
postulado de Euclides planteé algunos interrogantes. ¢Era cierto? Y en caso
afirmativo, éera realmente un postulado independiente o se trataba de un teo-
rema que podia ser demostrado a partir de los cuatro postulados anteriores?

cién de las geometrias no euclideas el edificio parecia ser lo sufi-
cientemente sélido como para poder confiar en él. Pero los pos-
tulados sobre los que se basaba la geometria de Euclides habian
tenido siempre un punto débil, el quinto postulado, que al final
acabé creando una fisura en todo el sistema. Asi, el quinto postu-
lado de Euclides acab6 convirtiéndose en una de las cuestiones
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miés controvertidas de la historia de las matematicas, siendo obje-
to de polémicas investigaciones que duraron mas de dos mil afios.

GEOMETRIAS NO EUCLIDEAS
La geometria no euclidea aparece cuando se niega la validez del

quinto postulado. Si tenemos en cuenta que durante dos mil afios
con la geometria euclidea se ha medido el mundo en el que vivi-

EL PROGRAMA DE ERLANGEN

En la geometria euclidea estamos habituados a manejar una serie de ele-
mentos, que son los objetos propios de esta geometria, como puntos, rectas,
planos, angulos, etc.; y una serie de transformaciones que actuan sobre dichos
objetos. Podemos trasladarlos de un sitio a otro, hacerlos girar, alargarlos o en-
cogerlos o aplicarles determinadas simetrias. Algunas de estas transformacio-
nes pueden ser de «ida y vuelta», en el sentido de que si una transformacién
lleva un punto A hasta otro punto B, exista otra que lleve a B hasta A. También
puede suceder que al aplicar dos transformaciones consecutivas, el resultado
sea otra transformacion. Cuando un conjunto de transformaciones cumple es-
tas propiedades —ademas de algunos detalles adicionales que ahora no vienen
al caso—, se dice que se tiene un «grupo de transformaciones». Algunas de
las propiedades de los objetos con los que trabajamos en geometria pueden
ser mas o menos inmunes a dichas transformaciones.

Un ejemplo

Supongamos que a una circunferencia le aplicamos una traslacion. El que el
centro de la circunferencia esté en un determinado punto es una propiedad
que cambia con la traslacion. Si lo que hacemos es reducir el tamanio de la
circunferencia, el radio variard. Sin embargo, frente a todas estas transfor-
maciones hay una propiedad que permanece invariante, que es la relacién
entre la longitud de la circunferencia y su diametro. Felix Klein observé que
el estudio de estas propiedades invariantes era lo que en realidad definia un
determinado tipo de geometria, ya que permitia comparar figuras con pro-
piedades idénticas. Propuso entonces una definicién de geometria —la mas
general y la mas abstracta— consistente en una pareja (X; G) formada por un
conjunto X de objetos y un grupo G de transformaciones que pueden apli-
carse a estos objetos. Todas las geometrias conocidas —euclidea, proyectiva,
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mos, queda claro que se trata de un acto no exento de audacia in-
telectual. Ante esta perspectiva, podria parecer que la creacién de
geometrias no euclideas no pudiera ir méas alla de un puro juego
matematico, de un superfluo diletantismo intelectual. De hecho,
en un principio pareci6 que las cosas serian asi, pero, con el tiem-
po, esas geometrias se revelaron como una herramienta podero-
sa, no solo en el dmbito matemadtico, en el que materias como
los sistemas dinamicos, las funciones automorfas o la teoria de
nimeros se beneficiaron de ellas, sino que resulté ser una vara

hiperbolica, etc.— quedaban clasificadas por este sistema, ademas de abrir
el camino a nuevas geometrias, ya que el conjunto de objetos geométricos
X podia estar formado por cualquier tipo de objeto. Todas estas ideas fueron
expuestas por Klein en 1872 en la cdtedra de matematicas de la ciudad de
Erlangen bajo el titulo de «Panorama comparativo de las novisimas investiga-
ciones geométricas». Con el tiempo, seria conocido en el dmbito matematico

como el Programa de Erlangen de Felix Klein.

=

Postal de 1916 en la que se representa la calle de la Universidad de Erlangen.
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de medir imprescindible en muchos campos de la fisica moderna.
Para distancias relativamente pequefas, la geometria euclidea y
las no euclideas son préacticamente equivalentes. Sin embargo,
cuando se trata de distancias astronémicas o en ciertos &mbitos
de la fisica moderna, como la relatividad o la teoria de propaga-
cion de ondas, las geometrias no euclideas resultan ser una herra-
mienta mas precisa.

Ante este panorama, se lleg6 a la conclusién de que la geo-
metria hiperbélica —un tipo de geometria no euclidea— era tan
consistente como lo pudiera ser la geometria euclidea; es decir,
si la geometria hiperbdlica lleva a alguna contradiccién, entonces,
la geometria euclidea también. Los sucesivos avances en fisica
tedrica llegaron incluso a poner en evidencia que la geometria de
Euclides no es necesariamente la mas «realista».

La aparicion de las geometrias no euclideas habia planteado
una cuestion que iba mucho més alla de la misma geometria. Se
trataba de abandonar el recinto sagrado de las verdades inmuta-
bles que nos mostraban los axiomas para focalizar el interés en
la consistencia interna de dichos axiomas. Pero la geometria no
habia sido mas que el detonador de una crisis mucho més profun-
da que acabaria por afectar a uno de los pilares bésicos de toda la
matemadtica, los conjuntos.

TEORIA DE CONJUNTOS

En matemaéticas, la teoria de conjuntos reviste una especial im-
portancia porque es una teoria muy simple y sencilla, a partir de
la cual se pueden definir los siguientes conceptos: par ordenado,
relacién, funcién, particion, orden, los niimeros naturales, los en-
teros, los racionales, los reales, los complejos, la estructura de
grupo, el anillo, el cuerpo, el espacio vectorial... La lista es muy,
muy larga. Asi pues, el concepto de conjunto es uno de los mas
fundamentales de las matematicas. Es dificil encontrar alguna de
sus ramas que no esté, implicita o explicitamente, basada en di-
cho concepto. Se podria afirmar que todo el edificio matematico

ALEMANIA: LA MATEMATICA PURA



se sostiene sobre la piedra angular de la teoria de conjuntos, una
teoria de la que solo se valen los matemticos, los légicos y, en
menor medida, todos aquellos que se dedican a tareas de progra-
macién informética.

El primer escollo con el que se encuentra la teoria de con-
juntos es la propia definicién de conjunto; una vez salvado este
trance, las cosas funcionan de maravilla. Es muy dificil definir lo
que es un conjunto sin utilizar la misma palabra «conjunto» o al-
guno de sus sinénimos: agrupacién, reunién, montoén, etc. Una de
las mejores definiciones, que no utiliza sin6nimos —por lo menos
de forma aparente— es la que dio el britdnico Bertrand Russell
(1872-1970):

Un conjunto es una consideracién simultanea de entes.

Esta es una definicién interesante, porque plantea el concep-
to como una actitud mental, lo que es sintoma de que se trata de
un concepto muy primitivo. Podriamos, por ejemplo, estar en una
reunién social en la que no conocemos a nadie y al borde del abu-
rrimiento. Si, para pasar el rato, empezamos a fijarnos en los za-
patos que llevan todos los asistentes a la reunién y hacemos luego
una clasificacién, aunque sea muy simple, como «me gustan o no
me gustan», habremos empezado a establecer una relacién en un
conjunto muy bien definido: «el de todos los zapatos que hay en
la reunion». El cambio en la actitud mental consiste precisamen-
te en hacer de manera repentina esa consideracién simultinea
de objetos, «restringir nuestra atencion a...», «fijarnos solo en...»,
que es la que ha definido al conjunto de zapatos.

Hay dos conjuntos especiales, y teéricamente imprescindi-
bles: el conjunto vacio y el conjunto universal. El primero se sim-
boliza con el signo @ y se define como el conjunto que carece
de elementos. Es un conjunto que puede considerarse filosofica-
mente conflictivo y que, en su momento, tuvo sus detractores,
ya que si carece de elementos, es que esta formado por nada; la

nada no existe y, por tanto, el conjunto vacio no puede tener una
identidad real. El conjunto universal, en cambio, plantea el pro-
blema de que tiene demasiadas existencias o, si se quiere, de que
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es demasiado grande. En la mayoria de textos se simboliza con la
letra U. Su definicién es algo mas imprecisa que la del conjunto
vacio, ya que lo que se pretende es que sea un conjunto que abar-
que a todos los conjuntos con los que estamos tratando. Ya que
al vacio se le ha negado todo, seria tentador darselo todo a U,
pero esto seria tanto como afirmar que U es el conjunto de todos
los conjuntos posibles, algo muy poco recomendable, no por una
cuestion metafisica —que los mateméticos suelen obviar sin pes-
tafiear—, sino porque afecta a la légica interna de la misma defi-
nicién de conjunto. Por ello, al conjunto universal se le imponen
unos ciertos limites convencionales. En el ejemplo que utilizamos
al inicio, el del invitado aburrido que observaba los zapatos de los
concurrentes a una fiesta, podriamos considerar como conjunto
universal U el de «todos los zapatos que hay en la reunién». Pero
se podria dar el caso de que nos conviniera ampliar el conjunto
universal a los zapatos fabricados en el Ambito nacional si, por
ejemplo, estamos haciendo referencia a determinadas marcas.
Tampoco habria inconveniente en que tomaramos como con-
junto universal al formado por «todos los zapatos del mundo».
Lo importante es que sea lo suficientemente grande como para
movernos en su interior a nuestras anchas. Es fécil que, siguien-
do este tipo de procesos, nuestros conjuntos universales acaben
teniendo infinitos elementos, por lo que no es de extraiar que la
historia de la teoria de conjuntos esté intimamente relacionada
con la del infinito, y mas en concreto, con el concepto de infinito
actual y con la necesidad de crear objetos mateméticos con un
nimero infinito de elementos con los que se pudiera operar.

A pesar de que las primeras nociones de conjunto fueron es-
tablecidas por Bernard Bolzano (1781-1848), la creacion de dicha
teoria se atribuye de forma indiscutible a Georg Cantor (1845-
1918). Se podria decir que esta nacié en 1874 en una memoria pu-
blicada en la prestigiosa revista Journal de Crelle con el titulo de
Uber eine Eigenschaft des Ibegriffes aller reellen algebraischen
Zahlen («Sobre una propiedad caracteristica de la totalidad de
los niimeros reales algebraicos»).

El matemadtico y légico aleman Gottlob Frege (1848-1925)
fue el primero en establecer una serie de axiomas para dotar a
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la teorfa de conjuntos de una estructura légica. Los axiomas no
solo pretenden garantizar que las operaciones realizadas entre
conjuntos son correctas, sino que de alguna forma muestran de
forma implicita o explicita la misma definicién de conjunto. Sin
embargo, este sistema axiomadtico tuvo una vida corta debido a la
aparicion de una insidiosa paradoja.

LA PARADOJA DE RUSSELL

En 1903, Bertrand Russell demostrdé que la teoria de conjuntos
de Cantor era inconsistente, cuestionando la misma definicién de
conjunto, algo de lo que Cantor ya fue consciente al plantearse la
imposibilidad de que existiera el conjunto de todos los conjuntos,
ya que un conjunto no deberia pertenecerse a si mismo.

Supongamos que existen dos clases de conjuntos, los que
pertenecen a si mismos y los que no. Llamemos, por ejemplo, M
al conjunto de todas las mesas que existen. Sea m una mesa cual-
quiera; entonces, m pertenece al conjunto M:

meM.

Esté claro que el conjunto de todas las mesas no es una mesa,
por lo que podemos afirmar que:

MEM.

Por tanto, este es un ejemplo de un conjunto que no se perte-
nece a sf mismo.

Consideremos ahora el conjunto T formado por todos aque-
llos conjuntos que tienen mas de tres elementos. Si pensamos en
el conjunto p, formado por una pareja de mellizos, tendremos que:

p&T.

Por otro lado, el conjunto T tiene seguro mas de tres elemen-
tos —de hecho, tiene infinitos—, por lo que:
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TET,

con lo que tenemos un ejemplo de conjunto que pertenece a si
mismo.
Russell plantea entonces el siguiente conjunto R:

«R esta formado por conjuntos que tienen la propiedad de no
ser elementos de si mismos.»

Segun los ejemplos anteriores, se tiene que:
MERy TER.

En estas condiciones, la pregunta que se plantea Russell es
la siguiente:

JRER?

Si la respuesta es si, entonces E no puede ser un elemento de
R, ya que se contiene a si mismo y, por lo tanto, no pertenece a R.
Si la respuesta es no, entonces R es un conjunto que no pertenece
a si mismo, de manera que es un elemento de R. Asi, sea cual sea
la respuesta, nos encontramos con un elemento que pertenece y
no pertenece a un conjunto, lo que constituye una paradoja o, en
términos l6gicos, una contradiccion.

El problema que subyace bajo esta contradiccién es que en
el marco teérico de Cantor, nada impide que se puedan cons-
truir conjuntos como el de Russell, por lo que habia que intentar
definir una axiomatica en la que este tipo de conjuntos no tuvie-
ran cabida.

EL MODELQO DE VON NEUMANN
El l6gico y matematico aleman Ernst Zermelo (1871-1953) esta-

blecié un total de siete axiomas con los que no solo pretendia
hacer consistente la teoria de conjuntos, sino también evitar
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conjuntos conflictivos como el que Russell habia creado para
establecer su paradoja. Para ello, defini6 conceptos fundamen-
tales y relaciones entre ellos. Estaban implicitas la definiciones
de conjunto, la de conjunto vacio, la unién y la interseccién, y
también el conjunto de las partes. Con esto se garantizaba la
existencia de conjuntos «seguros», aquellos en los que se po-
dia confiar y que permitian demostrar teoremas que eran fun-
damentales para el anilisis, a la vez que dejaba fuera de juego
a los conjuntos poco fiables que pudieran dar lugar a parado-
jas. Mas tarde, la teoria de conjuntos de Zermelo fue mejora-
da y ampliada por Abraham Adolf Fraenkel (1891-1965), dando
lugar al conjunto de axiomas que se conoce como axiomatica
de Zermelo-Fraenkel. Siguiendo un simil empleado por Henri
Poincaré (1854-1912), se habian encerrado a las ovejas en un
corral para resguardarlas de los lobos que estaban fuera, pero
todavia no habia garantias de que al cerrar la cerca no hubiera
quedado dentro algin lobo camuflado. Y es que la axiomética de
Zermelo-Fraenkel permitia la creacién de todos los conjuntos
que son necesarios en la teoria matematica, pero no excluia la
posibilidad de que existieran conjuntos que pertenecieran a si
mismos, como los lobos que habian quedado dentro.

«Existe un conjunto infinito A que no es demasiado grande.»

— Jonn voN NEUMANN.

50

Von Neumann resolvié el problema de dos formas diferentes
que se complementaban la una a la otra: el axioma de la fundacién
y el concepto de clase. Ambos modelos aparecieron en 1928 en su
tesis doctoral por la Universidad de Budapest bajo el titulo de Die
Axiomatisierung der Mengenlehere («La axiomatizacién de la
teoria de conjuntos»).

Mediante el axioma de la fundacién, Von Neumann construia
los conjuntos de abajo hacia arriba, siguiendo los axiomas de Zer-
melo, de modo que si un conjunto pertenece a otro, forzosamente
tiene que ser el primero en la sucesion. De esta manera, se evitaba
la posibilidad de que un conjunto pudiera pertenecer a si mismo.
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Es importante destacar que el método que utilizé para demostrar
este resultado, al que bautizé con el nombre de «método de los
modelos internos», es una herramienta que se convirtié en fun-
damental en muchas demostraciones de la teoria de conjuntos
¥ que se sigue utilizando actualmente. Por otro lado, el método
del concepto de clase lo basé en la utilizacién de funciones para
definir conjuntos.

LA FUNCION CARACTERISTICA

Una funcién caracteristica aplicada sobre un conjunto es aque-
lla que solo toma dos valores 1 y 0, segin un criterio definido
previamente. Dicho criterio se establece de forma que todos los
elementos que toman el valor 1 sean precisamente los que forman
el conjunto que queremos definir. Consideremos, por ejemplo, el
conjunto de todos los nimeros pares. Una manera de caracterizar
a este conjunto mediante una funcién c seria la siguiente: ¢(4) =1;
¢(7)=0; ¢(31)=0; ¢(220)=1. Es decir, lo que hacemos es que la
funcién ¢ tome el valor 1 cuando es aplicada a un ntimero par y
el valor 0 cuando se aplica a un ntimero impar (véase la figura).
Seglin este criterio, el conjunto de todos los niimeros pares es-
taria formado por todos aquellos nimeros que toman valor 1 en
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esta funcion caracteristica. De esta manera, se observa que los
conjuntos pueden ser definidos mediante funciones.

Una correspondencia definida entre dos conjuntos es una
manera de definir una relacién entre los elementos del primer
conjunto y los del segundo. Por ejemplo, si el primer conjunto
estd formado por camisetas y el segundo por pantalones, pode-
mos establecer una correspondencia entre ambos que diga: a
cada camiseta del primer conjunto le corresponde un pantalén
del segundo que tenga la misma talla. Diremos que el pantalén es
la imagen de una determinada camiseta. Podria suceder que una
camiseta tuviera una talla XXL y que entre los pantalones no hu-
biera ninguno de esa talla, por lo que diriamos que la camiseta en
cuestién no tiene ninguna imagen. También podria suceder que
hubiera una talla de camiseta a la que le correspondieran varios
pantalones de la misma talla. En este caso, lo que diremos es que
la camiseta tiene varias imdgenes. Cuando se da la circunstancia
de que en una correspondencia todos los elementos tienen una
—y solo una— imagen, decimos que se trata de una aplicacién o
funcién definida entre ambos conjuntos. Un ejemplo de funcién
es el siguiente: se define una aplicacién del conjunto de los mi-
meros enteros de manera que a cada nimero le corresponda di-
cho niimero multiplicado por dos. Si llamamos a esta funcién f se
tiene, por ejemplo, que f(2)=4; f(5) = 10; f(14)=28... Si en lugar
de escribir la funciéon como lo hemos hecho, indicando a dénde
va a parar cada elemento mediante la letra efe y una igualdad, lo
hubiéramos hecho mediante pares de elementos encerrados en
un paréntesis:

29 (5, 10) (14, 28),

el resultado hubiera sido el mismo. La diferencia esta en que aho-
ra la funcién se define mediante un conjunto cuyos elementos
estan formados por pares. Asi, resumiendo, una funcién puede
venir representada como un conjunto de pares y un conjunto se
puede expresar como una funcién caracteristica.

La idea es que el conjunto, tal y como lo trata la axiomatica
de Zermelo-Fraenkel, se fundamenta en el concepto de pertenen-
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cia. En cambio, la de Von Neumann —el matematico hiingaro te-
nia veintidés anos cuando estableci6 la axiomética de la teoria de
conjuntos— esta basada en el concepto de funcién. Esta diferen-
cia formal tiene, entre otras, una consecuencia importante, y es
que el niimero de axiomas que requiere la axiomética de Zermelo-
Fraenkel no esta determinado a priori —potencialmente, puede
haber una infinidad de ellos—. En cambio, en la idea de Von Neu-
mann bastan dieciocho axiomas; ademds, la primera puede estar
incluida en la segunda como modelo.

La otra gran ventaja del modelo de Von Neumann es que el
modelo de conjunto no estd basado en el concepto de pertenen-
cia, sino en el de clases de funciones, distinguiendo entre conjun-
tos y clases propias. Estas iltimas son tan grandes que no cabe la
posibilidad de que estén contenidas en ninguna otra. En cambio,
los conjuntos, que obedecen a condiciones més restringidas, si
pueden ser elementos que pertenezcan a otras clases. De esta ma-
nera, en el recinto quedaban encerradas solamente las ovejas, de-
jando a los lobos fuera, ya que lo que conducia a contradicciones
no era el considerar las clases propias, sino la posibilidad de que
pertenecieran a otras clases. La axiomatica de Zermelo-Fraenkel-
Von Neumann se sigue utilizando en la actualidad.

MECANICA CUANTICA

Desde sus origenes, la fisica ha sido una ciencia experimental.
En numerosas ocasiones una teoria surge de un experimento y
se consagra mediante otro experimento. En el interludio se cons-
truyen hipétesis de trabajo, se definen términos y, sobre todo, se
establecen férmulas, siendo el momento en el que la fisica y las
matematicas caminan de la mano. La formulacién es importante
porque, entre otras cosas, posee una capacidad predictiva y unas
grandes dosis de generalizacién, consecuencia del cardcter abs-
tracto de las matematicas. Si tenemos un depdésito con un liquido
cuyas caracteristicas conocemos, y el recipiente tiene un orificio
de salida, podemos hacer una medicién que refleje el tiempo que
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tarda el depésito en vaciarse. Si disponemos de una teorfa adecua-
da sobre las leyes fisicas que rigen el vaciado de depésitos —lo
que invariablemente supone disponer de unas cuantas férmulas
matematicas—, estaremos en condiciones de hacer predicciones
del tiempo que tardan en vaciarse otros depésitos con formas di-
ferentes y que contengan distintos liquidos y volimenes.

En este sentido, que las matematicas y la fisica vayan de la
mano no presupone en absoluto que lo hayan hecho en su desa-
rrollo histérico, ya que la mayoria de las veces han evolucionado
recorriendo caminos separados, aunque al final acaben siempre
encontrandose. Tarde o temprano, la fisica necesita de las mate-
maéticas para consolidarse como ciencia exacta. La aparicién de
nuevas teorias como la relatividad y la naciente mecanica cuén-
tica a principios del siglo xix obligé a desarrollar unas matemati-
cas que se adaptaran a los nuevos paradigmas. Y es asi como lo
que se conoce por fisica tedrica o fisica matematica adquirié un
gran protagonismo, especialmente en entornos favorables, como
sin duda lo era el que Hilbert habia creado en la Universidad de
Gotinga.

DOS TEORIAS COMPLEMENTARIAS

Habia datos experimentales que no podian ser explicados den-
tro del marco tedrico de la fisica newtoniana. Especialmente
dos fenémenos. El primero de ellos era la emisién de radiacion
por un cuerpo negro para el que no se habia encontrado ninguna
explicacién satisfactoria. El segundo era que si un electrén gira-
ba en una érbita alrededor de un nicleo debia ir perdiendo ener-
gia paulatinamente para finalmente acabar estrelldindose contra
el nicleo, cosa que no sucedia. Ademads, resultados experimen-
tales también corroboraban que las particulas tenian una doble
naturaleza, como onda y como corpisculo, lo que se ponia de
manifiesto en algunos experimentos realizados con fotones, en
los que, como en el caso del efecto fotoeléctrico, se comporta-
ban como si fueran particulas, y en otros manifestaban su natu-
raleza ondulatoria, como en el experimento de la doble rendija.
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Aparecieron entonces dos teorias capaces de dar una expli-
cacion a estos fenomenos. La primera de ellas debida a Wer-
ner Heisemberg (1901-1976), y la segunda a Erwin Schrédinger
(1887-1961). Asi como la mecénica que plante6 Heisemberg era
una mecénica matricial, la de Schrédinger era una mecénica
ondulatoria, y las herramientas matematicas de las que se valia
cada una de ellas eran l6gicamente diferentes. En el esquema de
Schrodinger, la ecuacién de onda asociada a una particula era
una ecuacioén diferencial, cuya resolucion para el electrén en el
atomo de hidrégeno dio un resultado que coincidia con el obte-
nido experimentalmente, lo que sirvié para consolidar la teoria
ondulatoria.

«Es mas facil viajar en un avién, incluso pilotarlo,
que entender por qué puede volar.»

— Joun von NEUMANN.

Todo esto sucedia en Gotinga entre los afios 1925 y 1926. Se
hacia urgente la necesidad de encontrar una herramienta mate-
matica que pudiera ser utilizada indistintamente por ambas teo-
rias. En estas circunstancias volvié a darse la situacion, tantas
veces repetida a lo largo de la historia de la ciencia, de que una
teoria matematica, completamente abstracta, en el sentido de que
nada tenia que ver con alguna realidad fisica concreta, vino como
anillo al dedo para unificar matematicamente ambas teorias, y fue
precisamente Hilbert el que 1a habia creado con la teoria de los
espacios funcionales. No obstante, la unificacién, en un sentido
méas general, de ambas teorias, se conseguiria si se era capaz de
establecer un sistema axiomatico de naturaleza abstracta que fue-
ra capaz de englobarlas.

LA AXIOMATIZACION DE LA FISICA

;Se puede axiomatizar la fisica? Esta fue la cuestion abierta que
Hilbert plante6 en Gotinga y que figura en sexto lugar en su fa-
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mosa lista de los veintitrés problemas planteados en Paris en el
Segundo Congreso Internacional de Matematicas.
En el texto original, Hilbert pedia textualmente:

[...] [investigar los fundamentos de] aquellas ciencias fisicas en las
que la matematica tiene un papel importante; en el primer nivel estin
la teoria de probabilidades y la mecénica.

En cuanto a las probabilidades, en 1933, el matemético ruso
Andréi Nikoldyevich Kolmogérov fue el primero en establecer
una axiomatica para las probabilidades. En relacién a la fisica,
diferentes cientificos —entre ellos Von Neumann— hicieron
avances muy importantes, pero hay objeciones a que pueda ser
definitivamente resuelto debido a la enorme complejidad de los
resultados experimentales que pueden hacer inestable el sistema

DAVID HILBERT

El matematico aleman David Hilbert nacio el 23 de enero de 1862 en Konigs-
berg —actual Kaliningrado, Rusia—, capital de la antigua Prusia Oriental. Su
padre, funcionario del Estado, habia sido destinado a esta ciudad para ejercer
las funciones de juez. El ambiente familiar en el que crecié Hilbert era propicio
al desarrollo intelectual, en gran parte gracias a la influencia de su madre, una
mujer extraordinariamente culta que cultivaba la filosofia, la astronomia y las
matematicas. A los dieciocho afios, una vez terminado el bachillerato, Hilbert
inicié en la Universidad de Kénigsberg sus estudios de matematicas. Tuvo
maestros de privilegio, ya que entre ellos se encontraban personalidades como
H. Weber o F. Lindemann. Este fue el periodo en el que Hilbert se inicié en la
teoria de invariantes y también cuando tuvo ocasién de conocer a Hermann
Minkowski (1864-1909), matematico ruso con el que mantuvo una estrecha
amistad durante toda su vida. En 1892, Hilbert obtuvo una plaza como cate-
dréatico extraordinario en la Universidad de Kénigsberg. Este cairgo, ademas del
prestigio académico, le permitia una estabilidad econdmica suficiente como
para poder formar una familia, de manera que en 1892 se casé entonces con
Kéathe Jerosch. Uno de los momentos cruciales en la carrera profesional de
Hilbert fue cuando, en 1895, Felix Klein, en contra de la opinién de la mayoria
i de académicos, le propuso para ocupar el puesto de profesor ordinario en la
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axiomatico; de hecho, este sigue siendo uno de los veintitrés pro-
blemas de la lista que todavia permanece abierto.

LA AXIOMATICA DE VON NEUMANN

Von Neumann axiomatizé la mecénica cudntica de manera que
los parametros que definian el estado de una particula pudieran
ser establecidos mediante los cinco axiomas que habia determi-
nado para el espacio de Hilbert. De esta manera, la formulacién
matematica era lo suficientemente abstracta como para perma-
necer separada por completo de la experimentacion fisica. Es-
tos resultados fueron publicados en diversos articulos que apa-
recieron en la revista Mathematische Annalen entre los afios
1929 y 1930.

Universidad de Gotinga. A finales de la
primavera de 1920, Hilbert cayo grave-
mente enfermo a causa de una anemia.
En aquellos tiempos, se trataba de una
larga enfermedad para la que no existian
remedios eficaces. A pesar de la gran
fatiga fisica y animica en que se encon-
traba sumido, encontré fuerzas para de-
dicarse plenamente a investigar en los
fundamentos de las matematicas. Hilbert
fue uno de los primeros pacientes en el
mundo en probar un preparado hepatico
que desarrollé la medicina en 1927 y que
afortunadamente le salvo la vida en aque-
lla ocasién. Los diez ultimos afios de su Retrato de David Hilbert en los dltimos
existencia los pas6 parcialmente aislado ~ 2fos de su vida.

a causa de los acontecimientos politicos

de la Alemania nazi. David Hilbert murié el 14 de febrero de 1943 en Gotinga,
Alemania. A su entierro pudieron acudir muy pocas personas, entre ellas su
esposa, que ya estaba medio ciega, y el fisico Arnold Sommerfeld (1868-1951),
que a duras penas pudo desplazarse desde Munich para acudir al sepelio.
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Von Neumann se ocup6 también de otro asunto que estaba
incomodando sobremanera a los fisicos y que iba a significar un
avance importante en las teorias de la medida. En buena parte de
los experimentos de fisica siempre se realiza algin tipo de medi-
cion, y las mediciones comportan errores. Por muy preciso que
sea el instrumento utilizado, el error es inevitable, por lo que es
importante conocer la magnitud del error o, por lo menos, tenerlo
acotado entre ciertos margenes. En fisica clasica, la teoria de la
medicion y de los errores se habia desarrollado lo suficiente como
para poder confiar de manera razonable en los resultados de los
experimentos. Pero la fisica cudntica introdujo un nuevo concep-
to del error que dio al traste con las teorias anteriores. Debido a
la propia naturaleza de la observacién, no es posible obtener me-
diciones precisas, como mucho se puede aspirar a resultados de
tipo estadistico. La explicacién estd en que lo que pretendemos
medir tiene las dimensiones microscoépicas de un dtomo o de un
electron, y el aparato de medicién interfiere inevitablemente con
el objeto a medir. La situaciéon es parecida a la que tendriamos si
con una regla quisiéramos determinar la posicién que tiene una
caja de cerillas que estd encima de una mesa con respecto a los
bordes de la misma, y cada vez que acercamos la regla a la caja,
movemos «sin querer» la posicion de esta. Algo similar es lo que
sucede en fisica cuintica.

El sistema axiomatico establecido por Von Neumann era en si
mismo una teoria de la medida que permitia describir el proceso
de observacion y el objeto observado como elementos 16gicos a
tratar en el sistema de axiomas. Para ello, tuvo la brillante idea
de considerar que la observacion no transcurria a lo largo de un
determinado periodo de tiempo, sino que tenia lugar en un instan-
te, con lo que consiguié que tuviera un caricter atemporal. To-
dos estos resultados se encuentran contenidos en Mathematische
Grundlangen der Quantenmechanik (Fundamentos matemdti-
cos de la mecdnica cudntica), publicado en Berlin en 1932, uno
de sus libros que mayor popularidad llegé a alcanzar. En 1936, este
trabajo fue completado por Von Neumann en colaboracién con el
matematico estadounidense Garrett Birkhoff (1911-1996) con un
estudio detallado de la l6gica de la mecédnica cudntica.
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Von Neumann era consciente de que la légica que describia
los fenémenos cuénticos se apartaba sensiblemente de la 16gica a
la que estamos habituados en el marco clésico. En 16gica de enun-
ciados existe una conectiva que se representa con el signo A, que
es equivalente a la conjuncién copulativa «y» en el lenguaje ordi-
nario. Dos enunciados A y B unidos por esta conectiva se repre-
sentan como A A B. Por ejemplo, el enunciado A podria ser «Luis
tiene treinta y cuatro anos», y el B «Luis es moreno», de manera
que A A B se leeria «Luis tiene treinta y cuatro afios y es moreno».
La afirmaci6n solo es verdad si ambos enunciados son verdaderos.
Una de las propiedades de esta conectiva es su cardcter conmuta-
tivo: Ba A; es decir, el que sea verdadero o falso no depende del
orden en que consideremos los enunciados. Da lo mismo afirmar
que «Luis tiene treinta y cuatro afios y es moreno» que decir que
«Luis es moreno y tiene treinta y cuatro afios». Pero en fisica cudn-
tica las cosas no funcionan de esta manera.

Laluz es una onda electromagnética transversal que tiene dos
planos de vibraciéon perpendiculares. Cuando se coloca un filtro
polarizado —es el material con el que se construyen los cristales
para las gafas de sol polarizadas— en la trayectoria de un rayo
luminoso, se impide el paso de uno de los dos planos de vibracion,
de manera que si se colocan dos filtros polarizados perpendicula-
res, la luz no puede pasar. Tomemos ahora un tercer filtro que esté
polarizado en diagonal. Se comprueba experimentalmente que si
este tercer filtro se coloca entre los dos anteriores, la luz si puede
pasar a través de los tres. Es obvio que, en cambio, silo colocamos
después del segundo, la luz no pasara porque los dos primeros no
le dejan. Podemos llamar A al segundo filtro y B al tercero, y poner
una pantalla detris de los filtros. Podemos convenir en que «ver-
dadero» es cuando la pantalla se ilumina y «falso» cuando queda
a oscuras. Segin esto, A A B daria como resultado «verdadero», ya
que la pantalla con esta disposicién de filtros se ilumina. En cam-
bio, B A A seria «falso», dado que la luz no puede pasar; de manera
que AAB = BaA.

Von Neumann compilé todos sus resultados sobre la l6gica que
debia regir los fenémenos cudnticos en una reedicion de la Mathe-
matische Grundlangen der Quantenmechanik publicada en 1936.
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EL DERRUMBE DE LOS FUNDAMENTOS

Un sistema l6gico como el que acabamos de describir sugiere una
cierta «mecanicidad», en el sentido de que todas las operaciones
que se llevan a cabo con los enunciados siguen unas reglas fijas.
Dicho de una forma un tanto incorrecta, pero sencilla, es impor-
tante «tener cuidado» con lo que se hace, pero no es necesario
«pensar» en lo que se hace. Entonces, parece que se podrian crear
teoremas de geometria de una forma puramente légica, sin necesi-
dad de pensar en rectas o planos, ni imaginar c6mo estos se cruzan
o cortan en el espacio. Es mas, podriamos pensar en la posibilidad
de «darle vueltas a la manivela» y que se crearan de manera auto-
mética todos los teoremas geométricos posibles. Una posibilidad
asi harfa que las matematicas no solo fueran una ciencia exacta,
sino también una ciencia perfecta, la ciencia de todas las ciencias.

Durante més de dos mil afios, el método axiomético de la geo-
metria habia dado muy buenos resultados. Fundamentandose en
unos pocos axiomas, se podian demostrar una infinidad de teore-
mas. Parecia razonable pensar que este mismo método pudiera
aplicarse a otras ramas. A finales del siglo xix, la aritmética ya ha-
bia sido dotada de un sistema axiomatico que parecia susceptible
de entrar en el juego; una vez aceptados los axiomas, de ellos se
podria derivar toda una serie de proposiciones que adquiririan el
rango de teoremas. Ese era el objetivo que perseguia David Hil-
bert, pero el teorema de Godel actué en el proyecto como un tor-
pedo en la linea de flotacién.

Godel se doctoré en 1930 con un trabajo dirigido por su direc-
tor de tesis, el matematico austriaco Hans Hahn (1879-1934), titu-
lado «La completitud de los axiomas del célculo l6gico de primer
orden», un tema estrechamente relacionado con el programa for-
malista de Hilbert. A primeros de septiembre de ese mismo afio
asisti6 a un congreso sobre Epistemologia de las Ciencias Exactas
en Konigsberg —actual Kaliningrado, en Rusia—, al que acudie-
ron Rudolf Carnap, Arend Heyting, John von Neumann y Friedrich
Waismann. En él manifesté de manera clara sus dudas sobre la
posibilidad de llevar a cabo el programa formalista de Hilbert y
anuncié algunos de sus resultados sobre la incompletitud de la
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KURT GODEL

El matematico, |dgico y filésofo austria-
co-estadounidense Kurt Gédel (1906-
1978) fue el menor de los dos hijos de
Rudolf y Marianne Gédel, expatriados
alemanes dedicados a la industria textil.
Tras graduarse en el Realgymnasium de
Brno, Kurt abandond su pais natal para
matricularse en 1924 en la Universidad de
Viena. Gédel habia ingresado en dicha
universidad con la clara intencién de es-
tudiar fisica, pero la influencia de dos de
sus profesores, Philipp Furtwéangler y
Hans Hahn, le llevd a decantarse por las
matematicas. Por aquel entonces, ya ha-
bia padecido unas fiebres reumaticas
que le dejaron ciertas secuelas psicolo-
gicas que marcarian para siempre su ca- Instituto de Estudios Avanzados de
racter y que se traducian en una preo- Princeton (Nueva Jersey, Estados
cupacion hipocondriaca por su salud y  Unidos), en la década de 1940.
especialmente por todo lo que tuviera

relacién con la alimentacién. En la década de 1920, a pesar de estar sumida en
una fuerte depresién econdomica, la Universidad de Viena se habia convertido
en un centro cultural de referencia obligada. En 1926, Godel fue invitado a un
seminario de filosofia del circulo de Moritz Schlick, frecuentado por filosofos,
fisicos y matematicos, como Rudolf Carnap (1891-1970), Hans Hahn (1879-1934),
Moritz Schlick (1882-1936), Friedrich Waismann (1896-1959), Otto Neurath
(1882-1945), y que acabaria por constituir el famoso Circulo de Viena. Carnap
como filésofo y Karl Menger como matematico, fueron los que introdujeron a
Godel en la légica matematica. En aquella época, el Circulo de Viena seguia
muy de cerca los trabajos de Ludwig Wittgenstein (1889-1951) sobre el lengua-
je del lenguaje —metalenguaje—, algo que Godel ya se habia propuesto aplicar
a las matematicas. A pesar de ello, Gédel no se adhirid a las corrientes de
pensamiento del Circulo de Viena, en las que imperaba el positivismo logico.
Mas bien mantuvo una postura contraria y marcada por un platonismo de-
clarado. Gédel creia que las verdades existian con independencia de que se
conocieran o no. En el terreno de las matematicas, esto significaba que los
teoremas no se creaban, sino que se descubrian. En mas de una ocasion ma-
nifesté que los resultados a los que habia llegado habian sido inspirados por
esta metafisica platonista. Cuando en 1952 la Universidad de Harvard concedid
a Godel el titulo de Doctor Honorario en Ciencias, le distinguié como «el des-
cubridor de la verdad matematica mas significativa de este siglo».

Kurt Gédel durante su estancia en el
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aritmética. Poco tiempo después, en 1931, y con tan solo veinticin-
co anos, publicé su famoso teorema de incompletitud, que iba a
socavar los firmes cimientos en los que se apoyaban las mateméti-
cas. A pesar de que el contenido del teorema versaba sobre temas
muy especializados, obtuvo un eco internacional asombrosamen-
te rdpido y amplio, que en 1933 le permitié el cargo de docente ad
honérem (Privatdozent, en alemén) en la Universidad de Viena.

LOS TEOREMAS DE GODEL

Una teoria es un cuerpo formado por un conjunto de axiomas
y unas reglas de inferencia légica que permiten establecer una
serie de conclusiones o teoremas a partir de dichos axiomas. Una
teoria es «contradictoria» cuando, dentro de su cuerpo teérico, se
puede demostrar una afirmacién y también su contraria. Cuando
una teoria no es contradictoria, se dice que es «consistente». Por
otro lado, dentro del marco tedrico debe existir la posibilidad de
demostrar cualquier afirmacion que sea cierta. En este caso, se
dice que el sistema es «completo».

El primer teorema establecido por Godel afirma que en todo
sistema axiomatico capaz de albergar la aritmética de los niime-
ros enteros, existen proposiciones que son ciertas, pero indemos-
trables dentro del mismo sistema; es decir, si la teoria aritmética
es consistente, entonces es incompleta. Esto es tanto como afir-
mar que no puede existir un sistema de axiomas que comprenda
a la aritmética de los niimeros naturales que sea perfecto, ya que
o bien es inconsistente o bien es incompleto.

Cuando Von Neumann acudié al célebre congreso de Konigs-
berg, se interesé inmediatamente por los resultados que Goddel
habia expuesto. No es de extranar este sibito interés si se tiene
en cuenta que Von Neumann habia establecido un sistema axio-
matico para la teoria de conjuntos que le llevaba a considerarlo
como un tema practicamente cerrado. Sin embargo, en ese mo-
mento Von Neumann debia aceptar que el sistema quedaba in-
completo, no porque el sistema axiomatico contuviera defectos,
sino porque cualquier sistema de esa naturaleza era incompleto
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por definicién. Von Neumann no solo acepté el resultado, sino
que en el tiempo récord de un mes le present6 a Gédel una con-
secuencia de su teorema, que Godel acabd demostrando como un
segundo teorema.

El segundo teorema de Gédel afirmaba que si una teoria arit-
meética es consistente, no existe en su seno demostracién alguna
de que, efectivamente, lo es. Este segundo teorema es algo més
intrincado y tiene como consecuencia que una teoria que com-
prenda en su seno a la aritmética de los nimeros naturales no
puede justificarse a si misma, en el sentido de hacer una afirma-
cién del tipo «la teoria T es consistente». Dicha teoria estara do-
tada de un cierto simbolismo formal, en el cual se pueda incluir
la afirmacién «la teoria 7" es consistente» mediante un simbolo
que podria ser, por ejemplo, C(T). El segundo teorema de Godel
afirma entonces que, si T es consistente, C(7T) no puede ser de-
mostrado a partir de 7.

Este segundo teorema, al que Godel no parecié darle méas im-
portancia que la de ser una mera consecuencia del primero, re-
sulto ser el que mas repercusion acabé teniendo en la comunidad
matematica, que lo ha conocido siempre como «segundo teorema
de Godel», sin que casi nunca se haga mencion a la crucial inter-
vencién que Von Neumann tuvo en éL.

Actualmente, las teorias de Godel se han generalizado y apli-
cado a campos muy diversos. Uno de los terrenos en los que tiene
una aplicacién més directa es el de las ciencias computacionales,
especialmente en la imposibilidad de resolver el «problema de la
detencién», que consiste en encontrar la manera de poder decidir
si un ordenador cualquiera, con programas y datos de entrada
arbitrarios, puede llegar a detenerse o a quedar atrapado en un
bucle infinito. Otra de las consecuencias del teorema de Godel en
este terreno es la de los virus, ya que se demuestra que «ningin
programa que no altere el sistema operativo de un ordenador sera
capaz de detectar todos los programas que si lo hagan».

Hilbert valoré las consecuencias del teorema de Godel con
un cierto pesimismo, ya que habia depositado grandes esperanzas
en la posibilidad de que se pudieran establecer los fundamentos
de las matemaéticas de manera que dieran lugar a un proceso auto-
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constructivo, del que podrian surgir resultados complejos a partir
de suposiciones sencillas implantadas en un sistema légico con-
sistente. Godel no compartia ese pesimismo, ya que no creia que
su teorema de incompletitud implicara que el método axiomatico
no era el adecuado para el desarrollo tedrico de las matematicas,
sino que simplemente afectaba al quehacer de las mismas, devol-
viendo a la intuicién el papel protagonista que siempre habia crei-
do que debia tener. Este era un punto de vista totalmente acorde
con sus concepciones filos6ficas, mas cercanas al platonismo que
al positivismo 16gico. En cierta forma, se podria afirmar que la ac-
cién demoledora de sus teoremas relegaba el aspecto mecénico y
«exacto» de las matematicas a un segundo término, priorizando
el valor de la imaginacién y de la intuicién, devolviéndolas asi al
lugar que les correspondia como ciencias del espiritu, junto a la
muisica y a la filosofia.

CONCLUSIONES

El programa de Hilbert habia acabado en fracaso, pero Von Neu-
mann tampoco compartia el pesimismo de Hilbert respecto al fu-
turo de las matematicas. A efectos practicos, consideraba como
un éxito la axiomatizacién de conjuntos que habia liberado a esta
de «objetos extranos» y también la posterior axiomatizacién que
llevé a cabo en la mecénica cudntica. Von Neumann nunca re-
nuncié a establecer modelos légicos y abstraer lo maximo posi-
ble determinados problemas, incluso en dreas muy apartadas de
las matematicas, como haria luego con la teoria de juegos. En su
sentido mas amplio, el plan podia haber fracasado, pero si bien
la axiomatizacién no le ofrecia la posibilidad de eliminar desde
sus origenes las contradicciones y otros elementos extranos, si
le permitia poder tener un conocimiento y, hasta cierto punto, un
control sobre ellos.

Las matematicas se habian hecho siempre de la misma ma-
nera y los resultados habian sido satisfactorios. Von Neumann no
veia motivos para que las cosas no pudieran seguir asi. A pesar de
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que era cierto que la validez interna del sistema 16gico habia que-
dado cuestionada, la historia de las matematicas desde sus inicios
proporcionaba garantias mas que sobradas de su gran eficacia
como herramienta, de la que se habian visto muy beneficiadas
otras ciencias, especialmente la fisica. Von Neumann afirmaba
que las matemaéticas clasicas proporcionaban resultados que eran
ala vez elegantes y titiles, y que se basaban en unos fundamentos
tan sélidos como lo pudieran ser la existencia del electrén. Ade-
mads, en su opinién, de la misma manera que alguien estaba dis-
puesto a aceptar la validez de una ciencia como la fisica, también
podia aceptar la validez de las matematicas clasicas.
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CAPITULO 3

Teoria de juegos

Von Neumann dio paso a la creaciéon de una
nueva teoria matematica conocida hoy como «teoria de
juegos». A partir de ese momento, los juegos pasaron a
ser algo mas que un mero pasatiempo para convertirse

en el escenario en el que dos o varias personas podian
desarrollar estrategias racionales para influir en el
resultado final de la partida. Los escenarios podian
ser muy diversos, e implicaban un tema tan
fundamental y complejo como
la toma de decisiones.






El juego es una actividad inherente no solo a la especie humana,
sino también a la mayoria de las especies evolucionadas. Es un
hecho comprobado que el juego, como tal, es imprescindible en la
mayoria de procesos de aprendizaje y desarrollo de las facultades
que consideramos superiores. Es a través del juego que muchos
animales aprenden a coordinar movimientos para acechar, ata-
car, defenderse y es también por medio del juego que el hombre
aprende un gran numero de destrezas utilizando una serie de ele-
mentos con los cuales simular una situacion real. En un juego hay
tres conceptos claves: el escenario, el azar y la apuesta.

El escenario en el que se desarrolla el juego es el primer paso
para reconocer su estructura, ya que permite crear modelos mate-
maéticos en situaciones tan simples como una partida de dados, o tan
complejas como pueden ser los posibles desenlaces de una batalla.

El azar interviene siempre en mayor o menor medida en cual-
quier tipo de juego y decide el grado de iniciativa de los jugadores a la
hora de definir sus estrategias. En aquellos juegos en los que el azar es
poco relevante, como el ajedrez, la iniciativa del jugador es decisiva.
En cambio, en un juego de puro azar, como puede ser el lanzamiento
de una moneda, la iniciativa de los jugadores se limita a la apuesta.

La apuesta es aquello que «se pone en juego». Puede ser algo
inmaterial, como la habilidad del jugador o el honor, o puede ser
algo que revista tintes tan dramaticos como jugarse la vida en
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la ruleta rusa. En cualquier caso, todo juego lleva implicita una
apuesta, incluso cuando nadie se juega nada, ya que un juego,
como tal, no puede existir sin decidir si alguno de los jugadores
ha ganado o ha perdido la partida. Lo importante de la apuesta es
que se le puede asignar niimeros. En el caso mas simple, como
es ganar o perder, sin mas, los niimeros podrian ser respectiva-
mente 1y 0; ¥y cuando a algo se le pueden asignar nlimeros existe
la posibilidad de darle un tratamiento matemdtico.

El célculo de probabilidades y la estadistica son teorias que
surgieron a raiz del estudio sistematico de los juegos, pero méas en
el &nimo de la prediccién que de la propia naturaleza del juego. Con
los primeros trabajos de Von Neumann se adopté una 6ptica distin-
ta, muy lejos de los célculos estadisticos, en los que el juego revel6
una naturaleza diferente, no tanto como un suceso basicamente
dependiente de las reglas del azar, sino mas bien como un conflicto
de intereses. En este sentido, hay que considerar las investigacio-
nes de Von Neumann como un trabajo pionero en lo que acabaria
siendo una nueva rama de las matematicas: la teoria de juegos.

Es dificil llegar a saber con seguridad cudndo y dénde Von Neu-
mann se interesé por el aspecto matematico de los juegos, ya que
no hay constancia de ello ni en escritos ni en charlas informales. A
finales de 1926, cuando todavia era becario en la Universidad de Go-
tinga, sorprendié con una conferencia sobre teoria de juegos en la
sede de la Sociedad Matematica de dicha universidad. A raiz de esa
conferencia, escribié un articulo que envié a la revista Mathemaltis-
che Annalen y que fue publicado al afio siguiente bajo el titulo «Zur
Theorie der Gesellschaftsspiele» («Sobre la teoria de los juegos de
sociedad»). Durante los afos que siguieron a esta publicacién no
pareci6 interesarse por el tema, lo que no quiere decir que no lo
hiciera, ya que dieciocho afios mas tarde publicé —junto con el eco-
nomista Oskar Morgenstern— un libro sobre la teoria de juegos que
figura entre las obras de mayor relevancia de Von Neumann.

En su trabajo inicial, Von Neumann formalizé matematica-
mente los juegos competitivos en los que intervienen dos perso-
nas, mostrando un interés especial en las posibles estrategias que
pueden desarrollar los jugadores en aquellos juegos que se carac-
terizan por lo que Von Neumann denominé «de suma cero».
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OSKAR MORGENSTERN

El matematico y economista aleman Os-
kar Morgenstern nacio el 24 de enero de
1902 en Gorlitz, Alemania. Hasta cierto
punto, se podria decir que era de cuna
aristocratica, ya que su madre fue hija
ilegitima del emperador Federico IIl. En
1925 se gradud en ciencias politicas y
econdmicas en la Universidad de Viena.
Gracias a una beca Rockefeller, pasd los
siguientes cuatro afos en Princeton para
cursar estudios de posgrado. En 1929
volvié a Austria, donde entré a formar
parte del Mathematische Kolloquium, un
grupo de matematicos liderado por Karl
Menger (1902-1985), quien era especial-
mente critico con el renombrado Circulo
de Viena. En 1938, Morgenstern fue expulsado de su catedra de Viena por las
autoridades nazis y se vio obligado a emigrar a Estados Unidos, pais en el que
se nacionalizd. Ya en 1970, accedid a la cdtedra de Economia en Princeton,
cargo que ocupd hasta su muerte, el 26 de julio de 1977. Junto con Menger,
Morgenstern defendid una clara postura a favor de la axiomatizacion de la teo-
ria economica, rechazando las corrientes defendidas en parte por el Circulo de
Viena, que optaban por el uso de herramientas matematicas que habian sido
utilizadas con éxito en la fisica, como el calculo infinitesimal, para aplicarlas
a la teoria del equilibrio econdmico. Por tanto, antes de que Von Neumann
y Morgenstern se encontraran en Princeton ya habia una concordancia casi
absoluta de la forma en como habia que abordar la economia si se pretendia
que alcanzara el rango de ciencia.

JUGADORES

La teoria de juegos es de largo alcance porque sus posibles apli-
caciones pueden ir mas alld de lo que entendemos por «juego» y
aplicarse a otros escenarios. De hecho, de lo que se trata es de
definir estrategias y de formalizar la toma de decisiones. Exis-
te un ejemplo que, por su extraordinaria simpleza, se utiliza con
frecuencia para entender cudles son los objetivos que persigue la
teoria de juegos: el reparto de un pastel.
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Supongamos que dos personas tienen que repartirse un pastel.
Normalmente, en este ejemplo los protagonistas son dos nifnos. Se
supone que facilita la comprensién el que se trate de jugadores a
los que les gustan mucho los pasteles, y cuyo tinico objetivo es ga-
nar y llevarse el pedazo mas grande. En este sentido, la naturaleza
egoista de los nifios define muy bien el perfil ideal del jugador. El
reparto se plantea en los siguientes términos: el nifio A cortara la
tarta y el nifio B ser4 el primero en elegir su pedazo. Lo primero
que hace el nifio A es tener en cuenta al nifio B y pensar que lo que
este hard una vez la tarta esté cortada sera coger el pedazo mas
grande. Este pensamiento es fundamental para decidirse por la
mejor estrategia, que sin duda es cortar la tarta en dos pedazos
iguales. Cualquier otra consideracion es peligrosa. Si, por ejemplo,
A piensa que, como B es un nifio bueno y muy bien educado, coge-
ra siempre el trozo mas pequefio, puede decidir un corte asimétri-
co que le favorezca. Esta es una opcién mucho més arriesgada que
la primera y se basa en todo caso en la intuicién o en informacion
privilegiada que poco o nada tiene que ver con el juego.

Esta exposiciéon puede parecer excesivamente simple, pero
contiene los elementos claves para determinar el escenario ele-
gido por la teoria de juegos para que sus resultados sean validos.
Cualquier situacién del tipo «solo juego para pasar el rato y no
me importa perder y dejar ganar a mi contrincante», puede estar
plenamente justificada en muchos escenarios, pero no en el de
la teoria de juegos, en la que se considera que los jugadores son
todos seres racionales y que actian como tales, que su objetivo
en el juego es ganar y que para ello adoptan una posicién egoista.

El requisito de que los jugadores deben ser perfectamente ra-
cionales va bastante mas alld de que se comporten como tales. Su-
pone una situacion ideal, ya que nadie es capaz de tener en cuenta
todas las jugadas posibles y tomar la decisién adecuada para ga-
nar a toda costa. Juegos de estructura sencilla, como el nim o el
tres en raya, permiten alcanzar ese nivel sin demasiado esfuerzo,
ya que se trata de juegos en los que el arbol de decisiones tiene
pocas ramas y que, si ambos jugadores son perfectamente racio-
nales en el sentido antes indicado, terminan inexorablemente en
tablas o bien la partida se decide en funcién de cudl es el jugador
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que comienza. Otros juegos, como el go o el ajedrez, tienen estas
mismas caracteristicas, pero con un nivel de complejidad mucho
mas alto que hace casi imposible la infalibilidad de la jugada. En
la actualidad, todavia no se sabe si en este tipo de juegos con
jugadores idealmente racionales habria un ganador o necesaria-
mente la partida finalizaria en tablas.

JUEGO BIPERSONAL DE SUMA CERO

En lineas muy generales, un juego es una dinamica en la que in-
tervienen dos o més jugadores y que se desarrolla en un marco de
reglas bien definidas. Los participantes pueden tomar decisiones
que configuren un tipo particular de estrategia capaz de interferir
en el desarrollo del juego. El objetivo del juego es obtener algin
tipo de beneficio, por lo que el pago es uno de los conceptos fun-
damentales. El pago, una nocién algo méas general que la de la
apuesta, es una forma de premio que puede ser externa al juego y
a repartir entre los distintos jugadores, o bien tener forma de pe-
nalizacion. Este es el caso de una apuesta entre dos jugadores, en
la que uno gana (pago positivo) y el otro pierde (pago negativo).

El concepto de pago permite establecer una primera clasifi-
cacién de los juegos en dos grandes grupos: los juegos de suma
cero y los de suma no-cero. Los primeros son aquellos en los que
los jugadores compiten por un dnico premio o pago y se rigen
por la sencilla férmula de que el total de ganancias es igual al de
pérdidas. En cambio, aquellos juegos en los que se puede optar
simultineamente por varios premios son juegos de suma no-cero.

El abanico de juegos de suma cero es muy amplio. Hay que
tener en cuenta que juegos como las damas o el ajedrez entran en
esta categoria, ya que basta con considerar que el vencedor obtie-
ne un punto y el otro jugador lo pierde. También podemos decir
que el primero tiene un punto positivo y el segundo un punto ne-
gativo. Este es el escenario que Von Neumann denominé «juego
bipersonal de suma cero», que, como esquema, abarca una gran
variedad de juegos competitivos.
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Los juegos bipersonales de suma cero son a todo o nada, a
muerte, de manera que el juego termina cuando uno de los ju-
gadores gana y el otro pierde. Dicho de otra forma, no existe la
posibilidad de que los jugadores colaboren entre si.

MATRIZ DE PAGOS

Una disposicién que resulta ser muy util para analizar un juego
es la llamada «matriz de pagos» (Pay-Off Matrix), que consiste en
una tabla de doble entrada, en la cual las estrategias posibles del
jugador A figuran en la izquierda y las del jugador B en la parte
superior. Por estrategias se entienden las posibles opciones que
plantea el juego. En cada una de las casillas de la tabla estin re-
presentadas las ganancias o pérdidas que obtiene cada jugador
segun la estrategia elegida. Dos niimeros, separados por una barra
0 una coma, representan las ganancias y las pérdidas para el pri-
mero y el segundo jugador, respectivamente. Por ejemplo:

Jugador B
1 2
1 10/2 -3/5
Jugador A
2 /-6 4/8

Esta matriz de pagos nos dice que si el jugador A opta por la
estrategia 2 y el jugador B por la 1, el resultado sera que el pri-
mero ganard 1 y el segundo perderd 6. En cambio, si el jugador
A optaporlaly el Bporla2, el primero perderad 3 y el segundo
ganard 5. Otra manera mas sencilla de representar la matriz de
pagos, que tiene la misma lectura que la anterior, es la siguiente:
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Bl B2
Al 10,2 -3,5
A2 1,-6 4,8
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En el caso de que se trate de un juego de suma cero, basta
con poner un solo nimero en cada casilla, ya que lo que gana un
jugador, lo pierde el otro. Por ejemplo:

Bl B2
Al 9 =
A2 -2 14

Esta matriz indica que si el jugador A opta por la primera
estrategia y el B por la segunda, el primero pierde 3 y el segundo
gana 3, y asi con las demas casillas.

Esta forma de plantear un juego bipersonal de suma cero me-
diante una tabla de doble entrada es la que Von Neumann llamé
reduccioén a la forma normal del juego.

Esta claro que las tablas utilizadas en el ejemplo anterior se
corresponderian con juegos muy sencillos, 1o que no quiere decir
que no puedan ser utilizadas para juegos tan complejos como el
ajedrez, en el que la tabla de la matriz de pagos seria descomunal-
mente grande. Lo importante no es el tamaifio de la tabla, sino el
hecho de que el juego en cuestion pueda ser reducido a su forma
normal.

Esta forma de modelizar un juego tiene un antecedente claro
en el matemético francés Emile Borel (1871-1956), quien entre los
anos 1921 y 1927 publicé una serie de trabajos sobre teoria de
juegos que tenian como objetivo fundamental el poder determi-
nar estrategias ganadoras con independencia del factor suerte o
de la condicién psicolégica de los jugadores a la hora de tomar
decisiones. A pesar de las similitudes en los planteamientos, Von
Neumann siempre reivindicé que sus investigaciones las habia
llevado a cabo con total independencia de los trabajos de Borel.
Es cierto que los resultados matematicos de Von Neumann tienen
mayor generalidad e incluso responden a cuestiones claves que
ni siquiera estdn planteadas en los escritos de Borel, pero aun
asi, hay autores que reivindican las aportaciones de Borel y que
cuando se refieren a este esquema lo hacen como la teoria de
Borel-Neumann.
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PRIMER TEOREMA DEL MINIMAX

Para poder definir una estrategia ganadora como objetivo funda-
mental del juego, es necesario presuponer que los jugadores cum-
plen con los dos requisitos siguientes:

1. Ambos son racionales.
2. Ambos eligen sus estrategias solamente para promover su
propio beneficio.

Supongamos ahora que dos jugadores A y B intervienen en un
juego cuya matriz de pagos es la siguiente:

B1 B2 | B3
Al =5 0] -2
A2 1 -3 -2
A3 3 8 =]

En esta matriz estan reflejadas tres posibles opciones para
cada uno de los jugadores; podemos pensar que los niimeros
representan ganancias o pérdidas en euros. Se trata pues de un
juego bipersonal de suma cero planteado en su forma normal.
Analicemos las posibles estrategias de cada uno de los jugado-
res. Supongamos que B elige 1a primera estrategia. Est4 claro que
la mejor opcién para A es la tercera estrategia, ya que gana tres
euros, mientras que con la primera pierde cinco y con la segunda
solo gana uno. En el caso de que B elija la segunda, A deberia
seguir manteniendo la tercera estrategia, ya que le proporciona
la mayor ganancia. Y en la iltima opcién, en la que B opta por
la tercera estrategia, A pierde en las tres opciones, pero es en la
tercera en la que pierde menos, solo un euro. De manera que la
mejor estrategia a seguir por A es, sin duda, la tercera, indepen-
dientemente de lo que decida hacer B.

Para el jugador B, el planteamiento es algo diferente. En el
caso en que el jugador A opte por la primera, B1 es su mejor op-
cién. En el caso A2, obviamente la opcién es B2, y en caso A3,
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B debe elegir la tercera, ya que representa la menor de las tres
pérdidas. El caso es que B no tiene ni idea de qué es lo que va a
hacer A y debe tomar una decision; es entonces cuando se hace la
siguiente conjetura: «A es un jugador racional y su mejor opcién
es A3, en cuyo caso B3 representa para mi la mejor opcién, luego
esta es la estrategia que voy a seguir». El jugador B sabe que, de
otra manera, lo mds probable es que pierda, y lo que hace es mi-
nimizar esa opcion.

Siguiendo este esquema, Von Neumann hizo el siguiente plan-
teamiento: en cada una de las filas aparece siempre un nimero
que es el mas pequefio de los tres, al que llama el valor minimo.
Por ejemplo, en la tabla anterior tenemos en la primera fila los ni-
meros -5, 0, 2. El menor de los tres es, por tanto, —5. Siguiendo el
mismo criterio, se tiene que para la segunda fila, el valor minimo
es -3, y para la tercera, —1. Ahora, lo que hizo Von Neumann fue
tomar el nimero méas grande de estos tres, que es —1 (que es en
realidad, en las tres estrategias, el que representa la menor de las
pérdidas). A este nimero lo llamé mayor minimo.

Con las columnas hizo lo mismo, pero al revés. Buscamos
en cada columna cuél es el niimero mas grande, es decir el valor
mdaimo. Para la primera columna, tenemos que es el niimero 3,
para la segunda el 8 y para la tercera el —1. Ahora buscamos entre
estos tres niimeros cudl es el mas pequeiio, al que Von Neumann
llamé el menor mdximo, que en este caso sera —1.

En este juego, el mayor minimo y el menor maximo coinci-
den en el valor -1. Y esto no es casual, pues es precisamente lo
que afirma el teorema de Von Neumann: «en la mayoria de jue-
gos bipersonales de suma cero el mayor minimo de todas las filas
coincide siempre con el menor maximo de las columnas», nime-
ro que representa un valor de juego tinico de la mejor estrategia a
seguir por ambos jugadores.

Este resultado, que se conoce como «primer teorema del mi-
nimax», se publicé en 1928 en el articulo «Sobre la teoria de los
juegos de sociedad». En él, ademds de proporcionar una primera
demostracion del teorema del minimax, Von Neumann estable-
cié las que serian las bases generales para la futura teoria de
Jjuegos.
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LA BATALLA DEL MAR DE BISMARCK

La teoria de juegos ha tenido y sigue teniendo una estrecha relacion con los
llamados «juegos de guerra». Una de las primeras aplicaciones de esta teoria ‘
a la estrategia militar fue la que se llevé a cabo en la batalla del mar de Bis-

marck, el 23 de diciembre de 1942, que enfrento las estrategias del general
estadounidense George Kenney y del contraalmirante Masatomi Kimura. Al final
de la batalla habian sido hundidos la totalidad de los buques de transporte y
la mitad de la escolta japonesa. El criterio minimax proporcioné en esta batalla
una estrategia ganadora a las fuerzas norteamericanas y asentd una nueva
doctrina en lo referente a los vuelos de reconocimiento.

Los aviones de las tropas aliadas atacan a un buque japonés en la batalla del mar de Bismarck.

La flota japonesa debia salir del puerto de Rabaul, al noreste de la isla de
Nueva Bretafia, con destino al puerto de Lae para servir como refuerzo. El
contraalmirante Masatomi Kimura tenia dos opciones: elegir la ruta norte, que
era la que pasaba por el mar de Bismarck, en la que solia haber condiciones
meteoroldgicas adversas, o bien optar por la ruta sur, por el mar de Salomén,
con condiciones climatolégicas mas favorables. El general Kenney debia con-
centrar todos los aviones de reconocimiento en una de las dos rutas, teniendo
en cuenta el coste que suponia los dias de que dispondria para el bombardeo
una vez avistado el convoy. Al aplicar el criterio minimax a la matriz de pagos,
se vio que la ruta norte tenia en ambos casos un coste estimado de dos dias,
por lo que se optd por esta estrategia:

SR

Kimura

Ruta norte Ruta sur
Ruta norte 2 F
Ruta sur 1 3

Kenney

R = o A S - —
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Es importante insistir una vez mis en que para que el teore-
ma del minimax se cumpla, deben darse las condiciones de que
ambos jugadores sean racionales, que velen inicamente por sus
propios intereses y que analicen con todo rigor cada una de las
posibles estrategias a seguir. No en todos los juegos se cumplen
estos requisitos. Cuando, por ejemplo, uno de los oponentes es
la naturaleza, intervienen factores que deben ser considerados
como aleatorios y, en este sentido, se trata claramente de un opo-
nente que no lleva a cabo ningin tipo de andlisis.

«Cualquiera que considere métodos aritméticos para producir
digitos aleatorios est4, por supuesto, en pecado mortal.»

— JoHN voN NEUMANN.
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Seria de esperar que alguien que ha decidido estudiar los en-
tresijos tedricos que se esconden detras de los juegos eligiera como
modelo juegos de la categoria de las damas o el ajedrez. Por supues-
to, Von Neumann conocia bien estos juegos que practicaban con
asiduidad sus padres y sus hermanos en el ambito hogarefio. Sin
embargo, en el articulo de 1928 en el que demostraba el teorema del
minimax, aparece un andlisis exhaustivo sobre el juego del péquer.
Se sabe que Von Neumann era muy aficionado a este juego, aunque
parece ser que no se le daba demasiado bien. Lo que consideraba
mas interesante del péquer era la posible jugada de «farol», que a la
hora de definir estrategias anadia al analisis una gran complejidad.
El poder establecer matematicamente en el péquer una estrategia
adecuada es mucho més complicado que en el caso de los juegos bi-
personales de suma cero. Aun asi, Von Neumann inventd una varian-
te simplificada del péquer que le permitié incluirlo en sus estudios.

PUNTOS DE SILLA

Supongamos que dos jugadores A y B se enfrentan a un juego con
la siguiente matriz de pagos:
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Bl B2 | B3

(a1 | -3 ] 1] 4
A2 | 3 | o | 1
A3 | 3 | 1| -4

Cuando el jugador A elige la estrategia 1, la maxima pérdida
ocurre cuando el jugador B elige también la estrategia 1, y que
para A supone una pérdida de -3, anotada en negrita en la siguien-
te tabla:

Bl | B2 | B3
Al | 3| 2| 4 |-3
A2 | 3| o |1 ]o
A3 | 3 | 2| -4|-4
3 | o | 4

Siguiendo este sistema, se van anotando las maximas pér-
didas en cada una de las estrategias. Vemos entonces que para
el jugador A, el minimo de todos estos valores es el cero, que
corresponde a la estrategia 2. A este valor Von Neumann lo llamé
el valor del juego. Cuando este valor es 0, como en este ejem-
plo, se dice que se trata de un juego justo. Para el jugador B, el
minimo valor también es en este caso 0, y se corresponde con la
estrategia 2.

Observemos que las dos estrategias minimax coinciden en
un punto de la tabla (A2-B2) que tiene la caracteristica de ser el
minimo de la fila y maximo de la columna. A este punto se le llama
ensilladura o punto de silla. Esto no tiene por qué suceder siem-
pre, pero cuando sucede, condiciona la estrategia de ambos juga-
dores. En la tabla anterior es facil comprobar que a ninguno de
los dos jugadores le interesa cambiar la estrategia. Se trata de una
situacion de equilibrio, en la que el juego alcanza un resultado 6p-
timo, ya que la estrategia minimax de un jugador coincide con la
del otro. Cuando en un juego hay un punto de silla, se puede afir-
mar que este representa la estrategia estable. Es el fin del juego.
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Visualizar un punto de silla es facil si nos imaginamos una
silla de montar con dos direcciones perpendiculares, una que po-
demos llamar A que es la que uniria los estribos y otra B la que
va de la cabeza a la cola del caballo. El jinete se sienta precisa-
mente en el punto de silla. El jugador que sigue la direccién A
tiene que subir hasta alcanzar el «méximo» en el punto de silla.
En cambio, el jugador B debe bajar hasta alcanzar su «minimo»
en dicho punto.

«Debemos predecir todos los procesos estables. Debemos
controlar todos los procesos inestables.»

— Jonn voN NEUMANN.
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Segiin esto, Von Neumann definié el punto de silla como un
punto de una matriz que cumple que:

1. Es el minimo de su fila.
2. Es el mayor de su columna.

Cuando en el desarrollo de una partida, el jugador A supone
que B no va a cambiar de estrategia y, en consecuencia, opta
por no cambiar la suya y, a su vez, el jugador B cree que A no
cambiara y decide también no cambiar la suya, se dice que el
juego ha alcanzado un «equilibrio de Nash» —por el matematico
estadounidense John Forbes Nash (1928)—. En un juego dado,
puede no existir ningin equilibrio de Nash o incluso existir uno
0 varios.

No todos los juegos bipersonales de suma cero tienen un
punto de silla. Von Neumann puso un ejemplo muy sencillo para
este caso, consistente en el lanzamiento simultdneo de dos mone-
das. Cada jugador apuesta un euro. El primer jugador lanza al aire
simultineamente ambas monedas. Si las dos coinciden en cara o
cruz, se queda las monedas. En caso contrario, si en una sale cara
y en la ofra cruz, se las lleva el otro jugador. La matriz de pagos de
este juego seria la siguiente:
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JOHN FORBES NASH

Nacido el 13 de junio de 1928 en Blue-
field, Virginia, Estados Unidos, John For-
bes Nash destacd a muy temprana edad
por su talento para las matematicas y fue
uno de los diez alumnos de su promo-
cion que fueron premiados con una beca
para estudiar en el Instituto de Tecnolo-
gia de Carnegie, donde se inicio en los
estudios de ingenieria y de quimica, antes
de decidirse por lo que habria de ser su
verdadera vocacion: las matematicas. Su
siguiente destino fue la prestigiosa Uni-
versidad de Princeton, donde se ganaria
la admiracion entre sus compafieros con
un juego de mesa que afios mas tarde se
comercializaria con el nombre de Hex. La
aficién de Nash por los juegos formaba parte de sus investigaciones matemati-
cas. En la década de 1950, |a teoria de juegos se habia convertido en uno de los
campos mas apasionantes de las matematicas. Nash tuvo un papel crucial en
el primer estudio experimental que se hizo del «dilema del prisionero» —véase
el capitulo 5—, para luego centrarse en los juegos de suma cero o juegos
no cooperativos, en los que los intereses de los jugadores son estrictamente
opuestos. Una de sus aportaciones mas importantes ha sido el concepto del
llamado «equilibrio de Nash», pilar en el que se basaria una nueva teoria eco-
noémica que en 1994 le valdria la concesion del premio Nobel de Economia.
La nocién de «equilibrio de Nash» corresponde a una situacién en la que las
dos partes rivales estan de acuerdo con determinada situacion del juego o
negociacién, cuya alteracién ofrece desventajas a ambas partes. Es una fase
del juego en la que ninguno de los jugadores, si considera que las acciones de
su oponente estan determinadas, deseara cambiar su propia opcion.

Cara Cruz
Cara 1 =1
Cruz -1 1

Es facil comprobar que existe una diferencia de dos euros
entre el minimo valor maximo y el miximo valor minimo. Este
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tipo de situaciones llev6 a Von Neumann a afinar todavia més su
teoria de juegos al distinguir entre lo que se llamé estrategias pu-
ras y estrategias mixtas. Las primeras son aquellas en las que un
jugador elige la misma estrategia en todas las partidas. Cuando
ambos jugadores eligen ese mismo camino, todas las partidas son
iguales. Por el contrario, las estrategias mixtas responden al he-
cho de que un jugador cambie su estrategia de una partida a otra
siguiendo una secuencia aleatoria. Por ejemplo, puede decidir su
estrategia en funcién del lanzamiento de una moneda o de unos
dados. En el articulo publicado en 1928, John von Neumann de-
mostré mateméaticamente que en todo juego bipersonal de suma
cero en el que sea posible jugar estrategias mixtas, ademas de las
puras, las estrategias minimax de cada jugador coincidirian siem-
pre en una solucién estable, un punto de silla. La teoria general de
juegos pivota sobre este resultado.

En conclusién, el teorema del minimax afirma que en todo
juego finito de dos jugadores racionales, con suma cero y con
estrategia pura o estrategia mixta, siempre existe una solucion.
Este teorema fue considerado por Von Neumann como la clave
de béveda sobre la que se sustentaba todo el edificio de la teoria
de juegos.

INFORMACION INCOMPLETA

El primer teorema del minimax que Von Neumann demostré en
1928 se puede aplicar a la mayoria de juegos bipersonales de
suma cero, pero no a todos, ya que el planteamiento requiere que,
en todo momento, cada uno de los jugadores conozca sin ambi-
giiedades cudl es la situacién que se ha alcanzado en el juego. A
este tipo de juegos Von Neumann los clasificé como «juegos con
informacién completa». En una partida de ajedrez, de damas o de
tres en raya, cada uno de los jugadores puede comprobar cuél es
la situacién de las fichas después de la tltima jugada. Pero si, por
ejemplo, uno de los jugadores ocultara una parte del tablero, esta
condicion ya no se daria y el teorema no podria aplicarse.
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Von Neumann demostré un segundo teorema del minimax que
podia aplicarse a juegos bipersonales de suma cero con «informa-
cién incompleta». Segin dicho teorema, no se puede conseguir
una estrategia ganadora para una Uinica partida, pero si es posible
establecer una media ganadora cuando se juegan varias partidas.

Un juego muy sencillo que sirve para ilustrar estas condicio-
nes es el clasico «piedra, papel o tijera». La matriz de pagos de
un juego en el que los contendientes se jugaran un euro en cada
partida seria:

B
Piedra Papel Tijera
Piedra o] -1 1
A Papel 1 o} -1
Tijera -1 1 o

En el caso, por ejemplo, en que el jugador A saque papel y
el jugador B piedra, el jugador A gana un euro, perdido por el ju-
gador B. Los empates, en los que nadie gana ni pierde, tienen un
cero en cada casilla.

Es facil comprobar que en este ejemplo el primer teorema del
mininax no se cumple, ya que el mayor minimo de cualquier fila
es -1, mientras que el menor maximo de cualquier columna es 1.
Esto es debido a que la informacién del juego en incompleta. En
una sola partida no existe un criterio para decidirse por alguna de
las tres estrategias. Sin embargo, en el caso de jugar varias parti-
das puede que uno de los jugadores elija una cierta pauta. Segin
Von Neumann, la mejor seré la que esté dictada por las leyes de
azar, ya que al jugador contrario le impedira identificar un patrén
de juego. Ademas, si en este caso el jugador contrario adopta la
misma estrategia, no tiene garantizada la victoria, pero al menos
sf una probabilidad razonable de quedar empatados, lo que tam-
bién es una manera de minimizar las pérdidas.

En estas condiciones, el segundo teorema del minimax afir-
ma que el mayor minimo del resultado medio para A coincide
con el menor maximo del resultado medio de B. Este teorema es
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de caracter mas general que el primero, ya que puede aplicarse a
juegos bipersonales de suma cero, ya sean con informacién com-
pleta o no.

TEORIA DE JUEGOS Y TOPOLOGIA

El enunciado del teorema del minimax es elemental y se puede
entender empleando un lenguaje coloquial que no incluya tecnicis-
mos, pero la demostracién esta muy lejos de ser sencilla. En un pri-
mer momento, Von Neumann intenté demostrar el teorema valién-
dose tinicamente de técnicas algebraicas, pero no consigui6 llegar
a un resultado satisfactorio, por lo que recurri6 a la topologia.

La topologia es la rama de las matemaéticas que estudia las
propiedades de las figuras que permanecen invariantes frente a
determinado tipo de transformaciones consistentes en dilatar,
contraer o estirar, siempre que en dicha transformacién no se
hagan coincidir puntos diferentes ni se hagan aparecer otros nue-
vos. Se dice que dos figuras son topolégicamente equivalentes
cuando se pueden obtener la una de la otra mediante transfor-
maciones de este tipo. La mejor manera de hacerse una idea de
lo que son este tipo de transformaciones es imaginar que tienen
lugar en una superficie elastica, en algin tipo de goma o plastilina
que podamos deformar con cierta facilidad y sobre la que haya
un dibujo, por ejemplo un cuadrado. Estirando convenientemen-
te la superficie eldstica, llegaremos a conseguir que el cuadrado
se convierta en un circulo o en un hexagono o en un poligono
cualquiera. Lo importante es que, durante la transformacion, la
superficie no se rompa y que no superpongamos unos puntos so-
bre otros. Este tipo de transformaciones que se pueden llevar a
cabo sin cortar, agujerear o pegar, es decir, manipulando a base
de modelar estirando, apretando o alisando, es lo que se denomi-
na una transformacion conlinua.

Un tipo particular de este tipo de transformaciones son
aquellas que dejan un punto fijo. Concretamente, de los espacios
que tienen esta propiedad para cualquier tipo de transformacion
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continua se dice que poseen la propiedad del punto fijo, y son
importantes porque constituye un invariante topolégico que per-
mite la clasificacién de diferentes tipos de superficie. Entre los
varios teoremas que hay referentes a puntos fijos, cabe destacar
uno que reviste especial importancia, el teorema del punto fijo
de Brouwer, debido al matematico aleman L.E.J. Brouwer (1881-
1966). El enunciado matematico es algo complicado, pero se pue-
de comprender facilmente de la siguiente manera. Imaginemos
que tenemos una taza de café y que revolvemos el liquido sua-
vemente con una cucharilla. El teorema afirma que, una vez que
el café haya vuelto a su estado de reposo, hay un punto que se
encontrard exactamente en la misma posicién que estaba antes
de revolverlo. De las muchas maneras que hay de revolver el café,
una de ellas es un caso particular en el que el teorema es eviden-
te, que es aquella en la que el movimiento de la cucharilla sigue
un circulo alrededor del borde. En este movimiento circular, el
punto que estd en el centro de la taza permanece siempre inmévil
—es el 0jo del huracdn—, y ese es precisamente el punto fijo de
Brouwer.

Von Neumann encontré una estrecha relacion entre el teore-
ma del minimax y la teoria de los puntos fijos. Esto no solo le ayu-
d6 a demostrar el teorema en cuestion, sino que aios mas tarde
le permitié llevar a cabo una importante ampliacién del teorema
del punto fijo de Brouwer.

LA GUERRA DE LOS SEXOS

A pesar de su nombre, quiza poco afortunado, la guerra de los
sexos es un ejemplo clisico en la teoria de juegos aplicada a
situaciones de la vida cotidiana que nos permite entender con-
ceptos basicos y sacar conclusiones de tipo social. El esquema
original fue planteado por Robert Duncan Luce y Howard Raiffa
en Games and Decisions («Juegos y decisiones»). El juego esti
formado por una pareja hombre-mujer que debe decidir como pa-
sar la tarde del domingo. Las alternativas que se plantean son «ir
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al fitbol» o «ir al cine». Las preferencias de él y de ella son un
tépico y, por lo tanto, muy claras. Lo que ocurre es que a esta
preferencia se afiade otra, que priva sobre la anterior y que es la
de ir juntos donde sea, antes que separarse, ya que es una de las
pocas tardes de las que disponen para ello. Segiin esto, el orden
de preferencias de él seria:

1. Los dos van juntos al fiitbol.

2. Los dos van juntos al cine.

3. El va al fiitbol y ella al cine.

4. Elvaal cine y ella al fiitbol.

En funcién de estas preferencias, podemos establecer la si-

guiente matriz de pagos, de manera que 1 signifique el mejor pago
y 4 el peor:

Ella futbol Ella cine
El fatbol 1,2 33
El cine 4.4 2]

La lectura de esta tabla de pagos es sencilla. Si los dos van
al fiitbol, él va donde quiere y esta con ella (1 de preferencia); sin
embargo, ella no va donde quiere, pero esta con él, lo que ocupa el
segundo lugar de sus preferencias. Si €l va al fiitbol y ella al cine,
cada cual va donde quiere, pero estan separados, lo que ocupa para
cada uno de ellos el tercer lugar en su orden de preferencias (3,3).

Nos encontramos ante un juego sin repeticién, es decir, que
se juega una sola vez y no se pueden tomar decisiones en funcién
de las que ya se han tomado en juegos anteriores. Ademads, se
trata de un juego sin transferencia de utilidad, no cooperativo,
ya que suponemos que no pueden establecerse acuerdos previos,
como serian los del tipo que ella le propusiera a él: «si vienes con-
migo al cine, te pago la entrada».
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La estrategia minimax nos llevaria a la siguiente situacién:

Ella futbol Ella cine
El futbol 12 33 3
El cine 4,4 2,1
4 3

Las mayores pérdidas que sufre él son 3 y 4; por tanto, su
minimax es 3. Las de ella son 4 y 3; su minimax también es 3. Esta
situacion ocurre cuando él va al fitbol y ella al cine, con un pago
de 3,3, que no es ni mucho menos el mejor para cada uno de ellos.
Nos encontramos ante una situacién en la que la estrategia mi-
nimax no representa un punto de equilibrio de Nash, ya que uno
de los jugadores podria cambiar la estrategia para obtener una
mayor ganancia. Cuando él se dirige solo hacia el estadio, podria
cambiar de opinién e ir al cine, con lo que obtendria una mayor
ganancia —aun a riesgo de que ambos tomaran la misma decision
y se encontraran con la pérdida maxima—.

Haciendo un pequeiio esfuerzo de imaginacién, podriamos
pensar en un mundo en el que a las mujeres les apasionara el
fiitbol y a los hombres el cine. El juego seria exactamente igual
que el descrito con anterioridad. Esto quiere decir que se trata de
un juego simétrico. Vamos a realizar ahora una pequefia modifica-
cién que lo convertird en un juego asimétrico. Alteremos el orden
de valores de él:

1. Los dos van juntos al fiitbol.
2. El va al fiitbol y ella al cine.
3. Los dos van juntos al cine.
4. El va al cine y ella al fiitbol.

Es decir, él prefiere ir solo al ftitbol que juntos al cine. Enton-
ces, la matriz de pagos es la siguiente:
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Ella futbol Ella cine
El fatbol 1,2 23
El cine 4.4 31

Ante esta perspectiva, esté claro que, independientemente de
lo que elija ella, él siempre elegir4 ir al fiitbol, ya que sale ganando
en cualquiera de las dos opciones que tome ella. Y para ella, dadas
las circunstancias y sabiendo que él elegira siempre ir al fiitbol,
la jugada més ventajosa es acompaiiarle al partido. Este sf es un
punto de silla, un punto de equilibrio de Nash, una estrategia a la
que siempre acudiran ambos jugadores. En este caso, se dice que
existe una dominancia de opciones o que un jugador posee una
estrategia dominante, que es preferida a cualquier otra estrategia
a su disposicién, Se pueden dar casos en los que cada uno de los
dos jugadores tenga una estrategia dominante.

Lo paraddjico de la situacién anterior es que la posicién
egoista y de dominacién «voy a ir al fiitbol contigo o sin ti» con-
duce, en este caso, a un resultado mejor que el del caso anterior.

TRANSFERENCIA DE UTILIDAD

En su articulo «Sobre la teoria de los juegos de sociedad», apare-
cido en 1928, Von Neumann se plante6 una variante para los jue-
gos de suma cero, considerando aquellos en los que intervenian
mas de dos jugadores, un escenario con una nueva variable: las
posibles alianzas entre jugadores. En el caso, por ejemplo, de tres
jugadores A, B y C se puede dar la circunstancia de que dos de
ellos, A y B, se alien para contar como un solo jugador mediante
algun tipo de pacto, como podria ser el ir a medias en los benefi-
cios. En los juegos que se han analizado hasta ahora, los conten-
dientes no podian comunicarse entre si para establecer acuerdos
previos. En esos casos, se habla de juegos sin transferencia de
utilidad, a diferencia de aquellos en que los jugadores pueden co-
municarse entre si y establecer determinados pactos antes de em-
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pezar a jugar y que reciben el nombre de juegos con transferen-
cia de utilidad, también conocidos como juegos cooperativos.
Por ejemplo, imaginemos un grupo de tres amigos A, By C
que deben repartirse entre ellos 100 euros. La decisién de c6mo va
a ser el reparto se hard por votacién y mayorfa simple. Las posi-
bles coaliciones son AB, AC, BC y una cuarta ABC. Con estas pre-
misas, las distintas formas de establecer los pagos son infinitas:

A=33;B=33,C=34
A=70;B=30;C=0
A=25B=70;C=5

etc.

Asi, ninguna coalicién es estable. El andlisis en este tipo de
juegos es muy diferente —y bastante mas complicado— del que
se lleva a cabo en los juegos no cooperativos. Aqui se trata de ave-
riguar qué posibilidades hay de formar coaliciones estables en las
que el reparto de ganancias se haga de tal manera que ninguno de
los miembros cooperantes esté interesado en romper la coalicién.
En la vida préctica, este tipo de andlisis lleva a la propuesta de un
arbitraje que haga factible la coalicién 6ptima. Una situacion real
que requiere este tipo de técnicas es, por ejemplo, la que se da en
el Parlamento Europeo cuando hay que asignar un presupuesto a
repartir entre todos los miembros de la Comunidad, teniendo en
cuenta que cada pais tiene asignado un niimero determinado de
parlamentarios con derecho a voto.

Las posibles coaliciones entre jugadores introducen un fac-
tor de inestabilidad dificil de gestionar. En cualquier caso, la
unica forma de aplicar los resultados obtenidos para los juegos
bipersonales de suma cero es considerar el conjunto formado por
una alianza como la identidad unitaria de un nuevo jugador. Si en
un escenario en el que hay, por ejemplo, cuatro jugadores A, B, C
y D, se forma una alianza entre A, By C, y a este terceto de juga-
dores se le considera como un jugador enfrentado a D; entonces
se puede aplicar el esquema de juego bipersonal de suma cero.

El teorema del minimax, y en general los resultados de la
teoria de juegos, tienen sus limitaciones. Obviamente, no son un
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método infalible para ganar en cualquier juego que se nos pre-
sente, incluso aunque se trate de dos jugadores racionales. Lo
que la teoria propone es la mejor forma de tomar decisiones, es
decir, cudl es la mejor manera de jugar. Es posible que un juga-
dor racional enfrentado a otro que no lo sea, pueda desarrollar
técnicas de juego ganadoras que poco o nada tengan que ver con
la teoria de juegos. Lo realmente importante de la cuestién es el
hecho de haber podido desarrollar una teorfa matemética capaz
de modelizar un escenario, de abstraer una situacién para some-
terla a las leyes de la l6gica matematica y obtener unos resulta-
dos. Bajo este punto de vista, la teoria de juegos guarda muchas
similitudes con la axiomatizacién de la teoria de conjuntos o la
de la mecénica cudntica. Este es el verdadero centro de interés de
Von Neumann y el motivo por el que su obra se dispersa en dreas
cientificas tan heterogéneas, llegando incluso a dar un formato
cientifico a disciplinas que carecian de él, como es el caso de la
teoria econdémica.

TEORIA ECONOMICA

El primer estadio de una ciencia es desarrollar técnicas de ob-
servacion que le permitan llevar a cabo una precisa descripcion
del objeto estudiado. El siguiente paso es establecer leyes, casi
siempre empiricas, que sean un fiel reflejo del comportamiento
de dicho objeto. A partir de este punto, 1a teoria debe ser capaz de
predecir el comportamiento del sistema a lo largo del tiempo.
La descripcién cientifica de un sistema planetario tan comple-
jo como el nuestro perderia gran parte de su valor si no fuera
capaz de determinar, por ejemplo, la fecha, la hora exacta y la
localizacién geografica en que tendra lugar un eclipse de Sol.
Sin embargo, para que dicha prediccién no sea un arte adivina-
toria, sino una ciencia exacta, es necesario que el cuerpo teérico
que la sustenta esté «matematizado», que es casi tanto como
decir que sus leyes respondan sin ambigiiedades a un conjunto
de ecuaciones. En este sentido, cuando se afirma que la fisica
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dejé el ambito de la filosofia natural para convertirse en ciencia,
se esta afirmando implicitamente que las recién nacidas técni-
cas del célculo infinitesimal habian convertido en férmulas las
leyes de la mecdnica establecidas por Newton. Galileo realizé
una descripcién detallada de la caida libre de cuerpos, pero ha-
bria que esperar hasta la aparicion del célculo infinitesimal que
matematizo las leyes de la mecénica para conocer con un alto
grado de precisién cudnto tarda la piedra en llegar al suelo y con
qué velocidad lo hace.

CIENCIA Y ECONOMIA

A principios del siglo xx, algunas ciencias naturales, como la qui-
mica o la biologia ya habian introducido en su teoria técnicas ma-
tematicas de calculo. Pero en las llamadas ciencias sociales, este
proceso resultaba ser —y todavia lo es— mucho mas dificil, ya
que interviene siempre lo que llamamos el factor humano y todo
lo que conlleva de impredecibilidad. Aun asi, entre las ciencias so-
ciales, la economia era la que en principio tenfa mas puntos para
convertirse en ciencia, ya que en iltima instancia trataba con nui-
meros, pero ese era a su vez uno de los motivos por el que mucha
gente no veia con buenos ojos el que algo tan sensible como el
comportamiento humano se tratara friamente con la ciencia de
los niimeros.

En el terreno de la prediccién, uno de los aspectos en los que
la teoria econémica se ha mostrado siempre mas interesada, es
donde a su vez se muestra mas débil. En este sentido, siempre
ha guardado grandes semejanzas con otra disciplina, también de
gran complejidad, como es la meteorologia, con la diferencia de
que, a hechos pasados, la segunda tiene herramientas de anilisis
muy superiores a los de la primera. Es posible que la meteorologia
no sea capaz de predecir un determinado fenémeno atmosférico,
pero si puede, una vez acontecido, explicar con detalle las cau-
sas que lo han producido, cosa que la teoria econémica no puede
hacer la mayoria de las veces frente a muchas crisis que se pro-
ducen de forma inesperada. Parece légico que las cosas sean de
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CARL MENGER Y LA COMPUTACION DE LA MORAL

El factor humano siempre ha tenido un
peso importante a la hora de establecer
una teoria econdmica, pero no solo por
lo que tiene de impredecible, sino tam-
bién porque obliga a la intervencion de
factores de indole estrictamente moral.
En este sentido, es interesante recalcar la
influencia que tuvieron en Morgenstern, y
consecuentemente en Von Neumann, las
tesis sostenidas por Carl Menger (1840-
1921), conocido por su obra Principios de
economia politica. Menger, influenciado
filoséficamente por la obra de Wittgen-
stein, se planteaba el codigo moral como
un conjunto de reglas de juego que rigen,
ordenan y estructuran las relaciones hu-
manas en el conjunto de individuos que
conforman una determinada sociedad,
de manera que deben considerarse tan-
tas «morales» como diferentes grupos
sociales entren en consideracion. Para
analizar estos diferentes codigos mora- El economista austriaco Carl Menger fue
les, Menger proponia la utilizacion de la e padre de Karl Menger, matemético que
Iégica y la combinatoria, descartando asi alcanzé un gran renombre internacional.
la utilizacién tan en boga del analisis in-

finitesimal, gue tan pobres resultados habia dado en su aplicacion a la teoria
econdmica. Precisamente en esta concepcion era donde Morgenstern veia
grandes posibilidades de mejorar el tratamiento de la teoria econdmica, ex-
pectativa que se vio en parte cumplida con la adopcion de la teoria de juegos
y muy especialmente con el teorema del minimax aplicado al analisis de los
equilibrios del mercado.

esta forma si tenemos en cuenta que la meteorologia estd mucho
més cerca de las ciencias fisicas que la economia y que, por tanto,
es mucho més susceptible de ser matematizada. No en vano, Von
Neumann dijo en una ocasiéon que la economia llevaba un retraso
de un millén de millas respecto al estado de una ciencia avanzada
como la fisica.
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EL PLANTEAMIENTO DE VON NEUMANN

A pesar de que no habfa publicado ningin trabajo sobre teoria
econémica antes de 1937, el interés de Von Neumann por los te-
mas de economia se desperté ya en las conversaciones que su
padre, banquero, traia con frecuencia a colacién en las reunio-
nes familiares. Desde un buen principio, su idea era abandonar
las herramientas propias del célculo infinitesimal, a pesar de los
buenos resultados que se habian obtenido en su aplicacién a la
mecéinica newtoniana. Von Neumann creia incluso que eran téc-
nicas sobrevaloradas a las que poco partido iba a poder sacar la
teoria econ6mica.

Su planteamiento estaba més en el area de lo que hoy llama-
mos «matemaética discreta». Siguiendo técnicas muy parecidas a
las que emple6 en la teoria de juegos y aprovechando la generali-
zacioén que él mismo habia llevado a cabo del teorema del punto
fijo de Brouwer, Von Neumann publicé en 1937 un trabajo titula-
do «Sobre un sistema de ecuaciones econémicas y una generali-
zacién del teorema del punto fijo de Brouwer», en el que demos-
tré la existencia de un parametro matematico que representara
el equilibrio de precios. Quizi lo més relevante de este trabajo
fue que la teoria se basaba en un sistema de axiomas que habia
creado con independencia de su justificaciéon econémica. En este
sentido, su metodologia guardaba muchas similitudes con la ma-
nera en como habfa tratado la axiomatizacién de la teorfa de con-
juntos o la de la mecénica cudntica. Se trataba siempre de partir
de cero y de definir con precisién los elementos que iban a entrar
en juego.

La teoria de juegos habia sido desarrollada en un ambito
puramente matematico, pero Von Neumann queria darle una di-
mensién mas alld de esas fronteras y eligié la economia como
nuevo destino. Antes de Von Neumann, la economia se valia de
analogias con la mecénica clésica, utilizando, como ya se ha co-
mentado, herramientas propias del andlisis matematico como el
célculo de variaciones. El cambio fue utilizar la teoria de juegos y
herramientas como la combinatoria y la convexidad. También ha-
bria que afiadir que los trabajos de Von Neumann significaron el
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inicio de lo que hoy se conoce como «matematica aplicada». Para
este proyecto, el gran matematico hiingaro tuvo un compaiiero de
viaje. Esta vez no se trataba de un matemético o un fisico, si no
de un economista un tanto especial.

LA TEORIA DE JUEGOS Y LA ECONOMIA

En 1934, Von Neumann conocié en Princeton a Oskar Morgens-
tern (1902-1977), un economista aleman que habia alcanzado una
gran reputacién en el Circulo de Viena. Morgenstern, que tenia
una clara tendencia a rodearse mas de mateméticos que de eco-
nomistas, se interesé de inmediato en el nuevo enfoque que Von
Neumann proponia. Ambos coincidian en sus criticas a la manera
en como hasta entonces se habia enfocado la teoria econémica
y se pusieron a trabajar juntos para preparar un texto que tenia
como finalidad servir de prélogo a un conjunto de conferencias
sobre teoria econémica que Von Neumann iba a impartir en Prin-
ceton. Sin embargo, Morgenstern primero iba a tener que ponerse
al dia para alcanzar el nivel matematico que requerian las circuns-
tancias. Von Neumann le recomendé una serie de lecturas que le
habrian de facilitar el trabajo. En este punto, hay que reconocer
el mérito y el talento de Morgenstern, ya que alcanzar el nivel
requerido para trabajar codo a codo con Von Neumann no debia
ser una tarea nada facil.

Lo que empez6 siendo un texto introductorio para un ciclo de
conferencias acabé convirtiéndose en uno de los libros de teoria
econdmica mas importantes que se habian escrito hasta la fechay
que sirvié de base no solo para el desarrollo posterior de la teoria
econdmica, sino también para la recién nacida teoria de juegos. El
libro que Von Neumann escribié conjuntamente con Morgenstern
aparecio en 1944 bajo el titulo Theory of Games and Economic
Behavior («Teoria de juegos y conducta econémica»), y esta con-
siderada como una de las obras mas importantes de Von Neumann
y en la que la teoria de juegos aparece completamente desarrolla-
da, hasta el punto de que se la considera como punto de partida de
una nueva rama de las matematicas.
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En esta obra, Von Neumann y Morgenstern demostraron que
un juego cualquiera con » jugadores y suma no nula se puede re-
ducir a un juego con n + 1 jugadores y suma nula. El hecho de que
en la teoria de juegos se estudien basicamente los juegos de dos
Jjugadores con suma nula se debe a que estos son més sencillos de
analizar y en cierto sentido generalizan el caso de n + 1 jugadores
con suma nula. Es obvio que la complejidad aumenta exponen-
cialmente con el niimero de jugadores. Para resolver esta com-
plejidad, Von Neumann y Morgenstern trabajaron con matrices
n-dimensionales y funciones de n variables.

«La caracteristica vital mas importante de las matematicas es,
en mi opinion, su particular relacién con las ciencias naturales,
o0 mas generalmente, con cualquier ciencia que interpreta la
experiencia a un nivel mas que el meramente descriptivo.»

— Joun von NEUMANN.

Las aplicaciones de la teoria de juegos al comportamiento de
los agentes econémicos surgieron de forma natural al considerar
a estos como sujetos de un juego competitivo en el que el objeti-
vo era conseguir un beneficio minimizando los riesgos. Se trata-
ba, por tanto, de juegos competitivos en los que cabian posibles
alianzas entre los participantes.

Puede parecer paradigmético, pero es frecuente que muchos
de los libros que mayor influencia han tenido en la evolucion de
una determinada disciplina sean comparativamente los menos
leidos. Tiene su légica si pensamos que su lectura —que en ge-
neral requiere de conocimientos previos muy avanzados— esta
reservada a un estrecho circulo de especialistas. Pero, por otro
lado, estos mismos especialistas suelen gozar de un reconocido
prestigio que acaba popularizando la obra mas alld de entornos
puramente profesionales, hasta el punto en que los medios de co-
municacion se interesen por el tema y lo pongan de moda. Algo
asi sucedié con The Theory of Games and Economic Behavior,
un libro plagado de férmulas y de lectura dificil, claramente enca-
minado a especialistas, al que The New York Times le dedicé un
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GODEL Y LA CONSTITUCION

Una noche, Oskar Morgenstern recibidé una llamada telefénica de Kurt Gédel
en la que le comunicaba, con cierta excitacién, que habia descubierto inconsis-
tencias en la Constitucion de Estados Unidos. El caso es que, al dia siguiente,
Godel debia presentarse ante el juez Philip Forman para formalizar, en lo que
habia de ser un puro tramite, su nacionalizacion como ciudadano norteameri-
cano. Estaba claro que Gédel se habia leido a fondo la Constitucion y que no
estaba dispuesto a dejar pasar ni una. Entonces, Morgenstern decidio llamar a
Einstein —que ya por aquel entonces gozaba de una extraordinaria populari-
dad— para que le acompaiiara en la visita al juez. De forma que al dia siguiente
se presentaron los tres en el juzgado. Como era de esperar, Godel inicié una
disertacion sobre un fallo en la redaccion del articulo quinto de la Constitucion
que hacia peligrar la consistencia de todo el sistema. Por suerte, Morgenstern
y Einstein pudieron convencer al juez de las buenas intenciones de Godel v
este pudo jurar la Constitucion sin mayores problemas. Sin duda, tuvo suerte
de ir muy bien acompafado y de encontrarse con un juez inteligente.

Einstein disfrutaba de la compaiiia de G&del y solian dar juntos largos paseos por el campus
de Princeton.
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largo articulo en el que ponia de manifiesto la revolucién que el
nuevo enfoque significaba. Al poco tiempo, todos los especialis-
tas —y, como sucede con frecuencia en estos casos, muchos que
no lo eran— coincidieron en que la aparicién de este libro supuso
un antes y un después en la historia de la teorfa econémica. A
pesar de ello, apenas llegaron a venderse cuatro mil ejemplares
en cinco afios. Muchas de las suscripciones no fueron de mate-
méticos ni de economistas, sino de jugadores profesionales que
debieron quedar muy frustrados al abrir el libro y encontrarse con
165 paginas repletas de férmulas matematicas.

Von Neumann y Morgenstern comparaban el nivel cientifico
de la teoria econémica con el que tenia la fisica antes de las teo-
rias de Newton o de Keppler. Consideraban que los enfoques in-
tuicionistas, exentos de una teoria sdlida en la que apoyarse y en
la que los autores basaban sus explicaciones en una terminologia
vaga que carecia de definiciones precisas, apenas tenian validez.
No obstante, también eran conscientes, y asi lo manifestaban,
de que el desarrollo futuro de la economia exigiria la creacién de
unas nuevas matematicas que todavia estaban por inventar.
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CAPITULO 4

Estados Unidos: 1a matematica
aplicada

Hasta 1940, el trabajo de investigacion de Von
Neumann se habia centrado en las ciencias puras.

A partir de entonces, la mayor parte de sus trabajos fueron
encaminados a las matematicas aplicadas y, debido a los
violentos acontecimientos de esas fechas, muchos de
ellos aplicados al escenario bélico, y otros, como
la nueva arquitectura de ordenadores, fueron
herramientas fundamentales para construir
el nuevo tejido social de la posguerra.






A finales del siglo xix, el nivel de las matematicas que se enseiia-
ban en Estados Unidos era muy bajo comparado con el europeo.
La materia impartida en los primeros cursos universitarios era el
equivalente en Alemania a las materias de ensefianza secundaria,
algo que afectaba no solo a los propios cursos de matemaéticas, sino
también a la mayoria de carreras técnicas que tenian que utilizarlas
como herramienta bésica. Ademads, en la mayoria de las universida-
des norteamericanas, al profesorado se le pagaba para ensefiar, no
para investigar, de manera que a dicho estamento se le hacia nece-
sario recurrir a otras fuentes de financiacion si queria dedicarse a
tareas de investigacion.

Asf las cosas, se imponia una reforma global que, entre otras
cosas, considerara la creacién de revistas especializadas y asocia-
ciones matematicas que sirvieran de escaparate para conseguir la
financiacién necesaria para crear becas de investigacion. El centro
educativo pionero en dar estos primeros pasos fue la Universidad
Johns Hopkins de Baltimore, que estableci6é cursos de posgrado y
foment6 la investigacién matemaética, creando en 1878 la Ameri-
can Journal of Mathematics, la primera revista de matematicas
que hubo en Estados Unidos. Diez afios mas tarde se fundé la So-
ciedad Matematica de Nueva York, que ademéis de acoger a cual-
quier docente que se dedicara a las matematicas, también hacia lo
propio con ingenieros, estudiantes y cualquiera que estuviera inte-
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resado en esta ciencia. El niimero de asociados fue rdpidamente en
aumento y se extendié por todo el pais, por lo que en 1894 pasé a
llamarse Sociedad Matematica Americana (American Mathemati-
cal Society, mas conocida por su sigla, AMS).

En 1861 fue creado el Instituto Tecnolégico de Massachu-
setts (Massachusetts Institute of Technology, o MIT), que muy
pronto se convertiria en uno de los grandes centros de ensefianza
de Estados Unidos, pero como su propio nombre indicaba, fue
creado con el animo de acumular entre sus estudiantes conoci-
mientos de tipo técnico antes que cientifico. En aquel tiempo, la
politica educativa imperante seguia priorizando la tecnologia, de
la que esperaba resultados practicos, relegando a un segundo pla-
no la investigacion en ciencias basicas. Sin embargo, la necesidad
creciente de una buena preparacion en fisica y en matematicas

GOTINGA Y EL NAZISMO

Uno de los muchisimos errores que cometieron los alemanes fue el de eliminar
de su comunidad cientifica a cualquiera que fuera judio, lo que incluyé a un
buen numero de fisicos y matematicos que hipotéticamente podian haber
colaborado en la fabricacion de una bomba nuclear. Aparte de algunas ex-
cepciones como Werner Heisenberg o Wernher Von Braun, ya antes de la
guerra la Alemania nazi comenzo a llevar a cabo un vaciado alarmante de
cientificos bajo la premisa de que la ciencia judia no podia ser fiable. Frente
a esta politica, cabe destacar la postura que David Hilbert mantuvo siempre
frente a las ideologias politicas que, para tratar de justificar sus fechorias, in-
tentaban involucrar a cientificos e intelectuales en sus panegiricos. Ya habia
tomado un partido claro en el comienzo de la Primera Guerra Mundial, cuando
se nego a firmar un manifiesto en el que el Gobierno aleman pretendia justi-
ficar intelectualmente sus acciones de guerra. Cuando el nazismo impuso sus
criterios selectivos, basicamente racistas, para decidir quién tenia derecho a
ejercer determinados cargos publicos, Hilbert movié cielo y tierra, amparan-
dose incluso en la Constitucion de Weimar, para que los matematicos mas
emblematicos no fueran expulsados de Gotinga. Sin embargo, fue una batalla
perdida, de la que da testimonio la respuesta que dio al ministro nazi de Edu-
cacion, cuando le preguntdé qué tal progresaban las matematicas en Gotinga,
una vez se la habia limpiado de judios. La respuesta fue muy breve: «Ya no
hay matematicas en Gotinga».
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para las mismas carreras técnicas, junto con la informacioén que
llegaba de Europa de la recién nacida mecéanica cuintica, sensibi-
lizé a un sector importante de cientificos que veian la necesidad
de crear facultades en las que se impartieran 4reas tan novedosas
como la fisica tedrica. Los recursos econémicos para este tipo de
iniciativas recayd en el sector privado, que empez6 a financiar al-
gunos proyectos universitarios mediante fundaciones y donacio-
nes. Una de las méds destacadas fue la fundacién Rockefeller, que
se convirtié en uno de los buques insignia en promover la intro-
duccién de los mis modernos avances cientificos en las universi-
dades. Su director, Abraham Flexner (1866-1959), fue el promotor
para la creacién de un centro de investigacién que se inaugur6
en el drea de las matematicas y que se construyé en las inmedia-
ciones de Princeton, dando lugar al nacimiento del Instituto de

Berlin, 1933. Quema de libros de autores judios y de otros considerados antigermanos.
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Estudios Avanzados de Princeton (Institute for Advanced Study,
IAS), que acabaria siendo uno de los centros de investigaciéon en
matométicas mée importantee del mundo. Uno de sus miembros
mas destacados fue Oswald Veblen (1880-1960), un matemético
estadounidense de prestigio internacional que sabfa coordinar
con eficacia su actividad como cientifico y como organizador y
que asumio, entre otras, la tarea de organizar el centro e intentar
reclutar a matemaéticos de prestigio para que trabajaran en él.

Se inicié asf una nueva época en la que por primera vez el
flujo de cientificos que cruzaban el Atlantico se invirti6. Ya no
serian los norteamericanos los que irian a ampliar conocimientos
a Alemania, sino los alemanes los que cruzarian el Atlantico para
investigar en Estados Unidos, una inmigracién que se vio favore-
cida por el advenimiento de la Alemania nazi.

«Podria parecer que hemos llegado al limite de lo que es posible
lograr con la tecnologia informatica, aunque hay que tener
cuidado con tales declaraciones, ya que tienden a sonar
bastante tontas en cinco afnos.»

— Joun voN NEUMANN.
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A principios del siglo xx, Gotinga seguia siendo el referente
mundial de la investigacién matematica, pero en Estados Unidos
habia surgido un centro capaz de emularlo y de alcanzar su mis-
mo nivel de reconocimiento: Princeton.

Oswald Veblen y Von Neumann se conocieron en el Congreso
Internacional de Matematicas que se celebré en Bolonia en 1928.
No seria arriesgado decir que el futuro de Von Neumann se deci-
di6 en aquel encuentro. Ademas del intercambio de conocimien-
tos cientificos, propio de un congreso de esa naturaleza, Veblen le
hizo participe en su proyecto de crear en Princeton un centro de
investigacién dedicado a las matematicas puras y también a otra
area, en la que Von Neumann habia mostrado un especial interés,
que era la fisica matematica. Estados Unidos ya se habia configu-
rado como el pais de las oportunidades, como la tierra prometida.
Von Neumann era consciente de ello y Veblen le estaba abriendo
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una puerta. El empujon final se lo daria la dramética situacion en
la que se veria comprometida Europa en los aiios anteriores a la
Segunda Guerra Mundial.

PRIMEROS CONTACTOS

Desde el comienzo, Von Neumann fue especialmente critico con
el nazismo. De todas maneras, no se puede decir que como cienti-
fico judio, sus emigraciones a Alemania y posteriormente a Esta-
dos Unidos fueran motivadas por las persecuciones antisemitas,
ya que en ambas ocasiones los motivos fueron encontrar mejores
oportunidades de trabajo.

Von Neumann se cas6 en diciembre de 1929 con Mariette
Koevesi, una novia de la adolescencia, hija de un médico de Buda-
pest. Para poder formalizar la boda, Von Neumann se vio obligado
a convertirse al catolicismo, a lo que no puso ninguna objecién, a
pesar de haber nacido en el seno de una familia judia tradicional.
El fruto de dicha unién fue Marina, su tnica hija, nacida en 1935.
Al ano siguiente de la boda, Von Neumann fue aceptado como
profesor visitante en la Universidad de Princeton y en 1933 fue
nombrado profesor titular en el Instituto de Estudios Avanzados
de Princeton. Por aquel entonces tenia veintinueve afos y era el
profesor mas joven de una prestigiosa institucién que albergaba
despachos de personalidades del mundo de la ciencia como Ein-
stein, Dirac, Turing o Godel.

El acceso escalonado a los diferentes puestos de trabajo a los
que Von Neumann se vio obligado a ocupar no estuvo determi-
nado por motivos académicos en los que se cuestionara su valia
profesional, sino que era debido a la situacion politica y econémi-
ca de Estados Unidos que, en aquellas fechas, afectaba a las leyes
de inmigracién. Cuando las depuraciones nazis se hicieron ex-
tensivas mas alld de las fronteras alemanas, implicando a paises
como Checoslovaquia, Hungria, Polonia o Italia, los cientificos de
origen judio se vieron obligados a emigrar, siendo muy pocos los
paises a los que podian optar. Sin duda, Estados Unidos era el
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destino preferido, pero ser admitido en ese pais no era una tarea
facil. La crisis econémica habia obligado a prescindir de muchos
puestos de trabajo y el sector académico no se salvé de la criba.
Los profesores que habian mantenido su plaza se vefan obliga-
dos a emplear casi la totalidad de su jornada laboral en impartir
clases. Estar en posesi6n de un contrato académico que permi-
tiera dedicarse en exclusiva a la investigacién era todo un lujo y
la llegada masiva de cientificos de Europa se percibié como una
amenaza ante la escasez de puestos de trabajo.

A pesar de estas condiciones adversas, gracias a su ya conso-
lidado prestigio internacional, Von Neumann consiguié ascender
rapidamente en el escalafén administrativo para consolidar su
posicién académica en Estados Unidos. De hecho, obtuvo la na-
cionalidad estadounidense en 1937, el mismo aiio en que iniciaria
sus actividades como colaborador del Laboratorio de Investiga-
cién Balistica (Ballistics Research Laboratory).

Como profesor, es decir, impartiendo clases, estuvo un pe-
riodo relativamente corto, de 1930 a 1933, algo que el alumnado
corriente agradecid, ya que Von Neumann no se distinguia por sus
cualidades docentes. Lo hacia todo deprisa, sin entretenerse en
explicaciones y sin que sus alumnos tuvieran apenas tiempo de
tomar apuntes.

Von Neumann dedicé los afios anteriores a la guerra a la in-
vestigacién basica. En colaboracién con Garrett Birkhoff, en 1936
publicé «La légica de la mecénica cudntica», y entre 1936 y 1937,
en el Instituto de Estudios Avanzados de Princeton, las «Leccio-
nes sobre geometria continua», que asentaria las bases para el
posterior desarrollo de la teoria de reticulos.

Aquellos fueron aiios agitados, de constantes viajes a Europa
y también por el interior de Estados Unidos; fueron agitados no
solo profesionalmente, sino también en su vida privada. A los dos
anos de su matrimonio, su mujer se enamoroé del fisico J.B. Kuper,
y abandoné a Von Neumann llevandose con ella a su hija Marina,
para fijar su residencia provisional en Nevada, estado en el que
los tramites para conseguir el divorcio eran mas faciles. Los mo-
tivos que Mariette adujo para ello fueron en términos de «abuso
y crueldad». Esto ha sido utilizado en ocasiones para denunciar
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serios defectos en la personalidad y la estabilidad emocional de
Von Neumann, para poner de manifiesto el tépico de la incompa-
tibilidad del genio con su capacidad para relacionarse con los de-
mas. Sin embargo, esto tltimo no es cierto, ya que hay constancia
de que esas fueron razones de mutuo acuerdo que tenian como
tinico objetivo acelerar los tramites necesarios. Posteriormente
al divorcio, Von Neumann y Mariette siempre mantuvieron una
relacién cordial. Pactaron que su hija permaneciera con su madre
hasta los doce afios, para luego pasar la adolescencia viviendo
con su padre. Mariette consideré que era un privilegio que su hija
pudiera vivir ese importante periodo de la vida junto a un hombre
del talante de Von Neumann.

«Si la gente no piensa que las matematicas son simples, es solo
porque no se dan cuenta de lo complicada que es la vida.»

— Joun voN NEUMANN.

Hasta 1936, Von Neumann pas6 todos los veranos en Europa,
hasta que el nazismo hizo imposible la vida de los cientificos y
de la mayoria de la gente, tanto en Alemania como en los paises
ocupados. En el otoiio de 1938, Von Neumann solicité un permiso
en la Universidad de Princeton para hacer un viaje en el que debia
resolver ciertos asuntos personales. Iba a casarse de nuevo, esta
vez con Klara Dan, una antigua novia de la que volvié a enamo-
rarse en uno de los muchos viajes que hizo a Europa antes de la
guerra. Klara estaba casada, y a pesar de proceder de una familia
de la alta burguesia de Budapest, consiguié el divorcio con cier-
ta facilidad. Aquel mismo otofio, Klara le habia escrito una carta
comunicdandole su angustia por la situacién politica y la necesi-
dad de emigrar a un pais como Estados Unidos. Von Neumann
no se lo pensé dos veces y fue a su ciudad natal para casarse por
segunda vez. En aquel viaje, el iltimo que realizé a Europa, Von
Neumann no quiso renunciar a ninguna de las visitas que tenia
programadas, especialmente la del fisico danés Niels Bohr (1885-
1962) en Copenhage. No hay que olvidar que por aquellas fechas
todos estos desplazamientos comportaban ciertos riesgos, ya que
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transcurrian en una Alemania cada vez mds controlada por los
nazis. El 17 de noviembre, Von Neumann y Klara Dan se casaron
y al cabo de pocos dias cruzaron Europa para embarcarse en el
Queen Mary, que les llevaria a Estados Unidos para establecer su
residencia definitiva. Con el tiempo, toda la familia de Von Neu-
mann acabaria residiendo en Estados Unidos.

COMPUTACION

La fisica nace de la observacién de fenémenos que se repiten y
que inducen al cientifico a disefiar un escenario en el que sea ca-
paz de recrear dichos fenémenos, de reproducirlos con la mayor
fidelidad posible o de hacer mediciones precisas en el caso de que
se trate de fenémenos naturales imposibles de recrear a escalas
razonables. El objetivo final suele ser el de poder encontrar una
ley que, aunque no sea capaz de explicar totalmente la naturaleza
del fenémeno, si pueda predecir lo que sucedera en el futuro. En
este sentido, se podria decir que la fisica es la ciencia de la pre-
diccién. Por ejemplo, en el caso de la gravitacién, se observa que
los cuerpos son atraidos por la Tierra. Se pueden llevar a cabo
experimentos dejando caer diferentes objetos desde diferentes
alturas y hacer mediciones, que es lo que en su momento hizo
Galileo. Todos los datos obtenidos figuran en el escenario de lo
que se denomina fisica experimental y, en el mejor de los casos,
acaban conduciendo al establecimiento de una ley, que es lo que
hizo Newton al definir la ley de la gravitacién universal mediante
una férmula que describia con precisién cémo dos masas cua-
lesquiera se atraen entre si. Hasta ahora, nadie ha sido capaz de
explicar «por qué» dos masas se atraen, pero si sabemos «cé6mo»
lo hacen, lo que nos permite hacer predicciones precisas sobre el
comportamiento de una masa que esta sometida a los efectos de
un campo gravitatorio.

El resultado final de un proceso de estas caracteristicas es
una o varias férmulas matematicas. El advenimiento del célculo
infinitesimal dio lugar a que esta y otras leyes pudieran ser trata-
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das con herramientas mateméticas, lo que casi siempre da lugar
al nacimiento de nuevas férmulas que, a su vez, tienen nuevas
interpretaciones fisicas.

Cuando hablamos de la fisica en estos términos, lo hacemos
refiriéndonos a ella como a una ciencia basica. Pero, siguiendo
con el ejemplo, la ley de la gravitacién puede ayudarnos a calcu-
lar cuél es el comportamiento de una masa que es proyectada al
espacio con una velocidad y una inclinacién determinadas. Se
sabe que su trayectoria seguira una paribola, de la que conoce-
mos su ecuacién, gracias a la cual podemos determinar la altu-
ra y el alcance maximo que tendrd, el tiempo que empleari en
realizar todo el recorrido y la velocidad que tendri en cualquier
punto de su trayectoria. Todos estos datos son vitales para el
lanzamiento de proyectiles. Esto es fisica aplicada, aquella rama
de la fisica en la que se abandona el escenario de las ciencias ba-
sicas, para acabar adentrandonos en el campo de la tecnologia.
El esquema es aparentemente simple: observacién, medicion,
hipétesis, leyes que tengan reflejo en ecuaciones matematicas,
aplicaciones practicas y disefio de dispositivos tecnolégicos.
Pero, como sucede en cualquier explicacién esquematica, esta
ruta adolece de un exceso de simplificacién. Las cosas no suelen
ser tan sencillas, ni los procesos evolucionan en una sola direc-
cion. Lo que acaba pasando es que hay que caminar hacia delante
y hacia atris varias veces. El dispositivo final —que podria ser
un cafiéon o un cohete intercontinental— no funciona nunca a la
primera, lo que obliga a replantearse la teoria y a reformularse
las ecuaciones.

Habitualmente, entre los especialistas que trabajan en los
grandes proyectos cientificos o tecnoldgicos hay matematicos, fi-
sicos y tecnélogos en diferentes dreas. Entre los matematicos,
los hay que se dedican mas a las matematicas tedricas y otros a
las matematicas aplicadas. En la actualidad, esta distincion estd
clara, pero cuando Von Neumann empez6 a trabajar en Estados
Unidos, dicha distincién apenas existia. Si ha habido un matema-
tico capaz de reunir en una sola mente una visién completa de las
matematicas puras y de las aplicadas, ha sido precisamente Von
Neumann.
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ECUACIONES

No siempre, pero la mayoria de las veces, el nexo que une las ma-
tematicas puras y las aplicadas son las ecuaciones.

Una ecuacién puede ser planteada, pero eso no quiere decir
que pueda ser resuelta. A lo largo de su historia, las matematicas
han dedicado siglos a la resolucién de ecuaciones. Siempre ha
sido uno de sus temas prioritarios, lo que tiene una clara razén
de ser. Si tenemos una ecuacién que nos permite calcular todos
los elementos de la trayectoria de un proyectil, pero no sabemos
cOmo resolverla, de poco nos servira.

Resolver una ecuacién es encontrar las soluciones. Por ejem-
plo, la ecuacién

x+3=5

tiene como solucién x=2.
Sin embargo, una ecuacién como

x*-3x+2=0

no tiene una solucién tan obvia. Podriamos ir probando solucio-
nes para ver si acabamos acertando con la correcta, pero sucede
que este tipo de ecuaciones si saben resolverse. Se trata de una
ecuacién de segundo grado cuyo método de resolucion se ensena
en los colegios y que suele aprenderse mas o menos a los catorce
anos. Esta ecuacion tiene un algoritmo de resolucién que nos pro-
porciona dos niimeros 1 y 2, que son las soluciones de la ecuacién.
Si no conociéramos el algoritmo, no nos quedaria mas remedio
que ir probando soluciones. En este caso concreto las hallariamos
rapidamente, pero en una ecuacién como

2,342 + 23,66 2°-0,652%+11,370x-36,62=0
el tanteo supone una tarea ingente con pocas probabilidades de

éxito. Una alternativa seria encargarle el trabajo a una maquina.
Actualmente, la velocidad de calculo de los procesadores hace
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que un planteamiento de estas caracteristicas parezca razonable.
El trabajo de un matematico en estas lides puede resultar muy
itil, no solo para la determinaci6n de las ecuaciones, sino también
para acotar el rango de las soluciones. Por ejemplo, saber que los
nimeros que estamos buscando se encuentran entre 0 y 10, sin
duda facilitar4 la bisqueda de soluciones por tanteo.

Durante el primer periodo de su estancia en Estados Unidos,
cuando empezo a trabajar para el Laboratorio de Investigacién Ba-
listica, Von Neumann estuvo investigando el problema que plan-
teaba la turbulencia hidrodindmica, lo que se entiende por «meca-
nica de medios continuos», una herramienta esencial en el terreno
de la balistica y en la que intervienen ecuaciones diferenciales en
derivadas parciales no lineales de una gran complejidad analitica.
Su enfoque se dirigié entonces hacia la resolucién de dichos siste-
mas por métodos numéricos, de ahi que estuviera tan interesado
en las posibilidades que para ello ofrecian las nuevas maquinas de
computacién electrénica. Von Neumann ya sabia que los cédlculos
iban a suponer un escollo importante. Obviamente, no se trataba
de ecuaciones de segundo grado, sino de ecuaciones para las que
no se disponia de un algoritmo de resolucién. Todo ello iba a re-
querir de horas de célculo manual o, expresado con otro término,
de computos. Asi, se les llamaba precisamente computadores al
equipo de personas que trabajaba realizando todos estos calculos
—o computadoras, si se tiene en cuenta que, por el motivo que fue-
re, siempre habia mas mujeres que hombres realizando calculos—.

LAS PRIMERAS COMPUTADORAS

Uno de los significados de la palabra inglesa computer es «cal-
culador», «el que computa». Segiin esto, la historia de la com-
putacién deberia hacer referencia a objetos capaces de hacer un
céleculo, en el sentido de hacer cuentas (operaciones aritméticas)
de forma automatica, De esta manera, en un sentido genérico, el
término «computadora» se emplea para designar un dispositivo al
que se le dan unos datos de entrada (input) y del que esperamos
un resultado, o sea, unos datos de salida (output).
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El nivel de automatismo y la complejidad de las operaciones
efectuadas son dos factores determinantes en el desarrollo de la
computacién. La diferencia entre tener que mover las fichas de un
abaco con la mano, o que esta accion la lleven a cabo dispositivos
electromecéanicos, sefiala un avance tecnolégico. Que el dispositivo
en cuestion esté disefiado para efectuar sumas en las que intervienen
nimeros de varios digitos o que sea capaz de resolver ecuaciones
diferenciales, también es una cuestién técnica, aunque de otra natu-
raleza. En cualquier caso, los dispositivos de célculo surgen ante la
necesidad de aliviarnos del penoso trabajo de tener que realizar ta-
reas de célculo totalmente mecénicas en las que no se exige pensar,
sino llevar a cabo un proceso absolutamente rutinario y susceptible,
por tanto, de responder a las instrucciones de un programa.

A diferencia de las ciencias bésicas, en las que la aportacién
de una sola persona puede producir un resultado sorprendente, en
tecnologia, el desarrollo suele ser mas lento y se produce de for-
ma escalonada. Fabricar mecanismos de ruedas dentadas, ejes y
acoplamientos no solo requiere un disefio adecuado, sino también
de una industria capaz de fabricar las piezas. Esta es la razén por
la que las famosas maquinas —analitica y diferencial— del cienti-
fico de la computacién britanico Charles Babbage (1791-1871) es-
tuvieron condenadas al fracaso. Buena prueba de ello es que en la
actualidad se han construido, con 4nimo museistico, maquinas de
Babbage que funcionan perfectamente. Aun asi, a estas maquinas
se las considera como el gran hito de la era mecénica de la compu-
tacion, especialmente si se contemplan junto a la presencia de la
matematica britanica Ada Augusta Byron (1815-1852), condesa de
Lovelace, responsable del primer lenguaje de programacion de la
historia, que significé la aparicién de un elemento decisivo a tener
en cuenta en la evolucién de la computacién, lo que actualmente
entendemos por software, el programa. A partir de entonces, la
computadora pasé a tener «cuerpo y alma», es decir, hardware
y software. En este aspecto, cabe destacar la publicacién en 1854
de Las leyes del pensamiento del matematico britanico George
Boole (1815-1864), obra en la que tiene lugar el nacimiento de las
llamadas «algebras booleanas», una nueva dlgebra de la légica en
la que las variables solo pueden tomar dos valores, 0 y 1, y en la
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que operan tres funciones elementales: AND (y), OR (0) y NOT
(no), en base a las que se construirian las futuras puertas légicas
de las modernas computadoras. En esta época precedente a las
diferentes generaciones de computadoras, también hay que hacer
una especial mencién al afio 1801, fecha en la que aparece el telar
automatico del comerciante francés Joseph Jacquard (1752-1834),
basado en una serie de tarjetas perforadas capaz de conservar una
determinada informacién de procesos repetitivos.

El inicio de la nueva generacién de computadoras se suele
datar en 1890, coincidiendo con el censo de la poblacién que el
Gobierno de Estados Unidos queria llevar a cabo y para el cual
tenia prevista una duracién de diez afios. Con el dispositivo de
Herman Hollerith (1860-1929), basado en las tarjetas perforadas
de Jacquard para el hardware y en las édlgebras de Boole para el
software, el censo se llevé a cabo en un tiempo récord de dos
anos. A raiz de este trabajo, en 1924 se fundé la primera empresa
dedicada a la fabricacién de este tipo de maquinas calculadoras,
la International Business Machines Corporation (IBM).

Von Neumann introdujo el uso de tarjetas perforadas en los
primeros cdlculos matematicos con computadoras. Su hermano
Nicholas afirmaba que esta idea le surgié en una conversacién
que tuvieron en una sobremesa, cuando todavia vivian en Buda-
pest, en casa de sus padres. En aquellas conversaciones familia-
res era frecuente que el padre, siempre interesado en atraer a sus
hijos al mundo de los negocios, explicara con cierto detalle las
implicaciones sociales y culturales a las que llevaba la economia.
Hacia poco que la entidad bancaria que Miksa Neumann dirigia
habia invertido en una innovadora empresa textil para la adquisi-
cion de los telares Jacquard.

Von Neumann sabia de la importancia de relacionar muy es-
trechamente la teoria y la practica mediante los resultados expe-
rimentales; el feedback que se obtenia de los experimentos per-
mitia hacer ajustes en la teoria. Sin embargo, era necesario que
los resultados obtenidos en los célculos fueran lo més ajustados
posible. La introduccién de nuevos métodos de célculo habia su-
puesto un gran avance en la historia de la ciencia y Von Neumann
creia firmemente que la introduccién de las computadoras iba a
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tener en ese sentido un papel similar. Pero, para ello, era nece-
sario introducir nuevas técnicas en el cdlculo numérico. En este
campo destacan sus aportaciones en las técnicas de estabilidad
numérica en el calculo de matrices inversas y en el de aproxima-
cion de funciones que presentan discontinuidades de salto.

Los trabajos realizados por Von Neumann en trayectorias ba-
listicas y ondas de expansion le convirtieron en un experto recla-
mado por los estamentos militares. No obstante, esto no era méis
que la antesala de un experimento que significaria uno de los gran-
des logros de la investigacién cientifica y, desgraciadamente, tam-
bién uno de los mayores hitos de la historia por lo que respecta a la
capacidad de destruccion del ser humano. Von Neumann acabaria
siendo uno de los cientificos mas implicados en el proyecto.

LA BOMBA ATOMICA

Ao 1944, Los aliados empezaban a creer que tenian probabilida-
des de ganar la guerra, pero todavia no estaban del todo conven-
cidos. Rommel habia perdido la batalla en el norte de Africa, los
italianos ya no querian seguir en el bando de Hitler y las fuerzas
norteamericanas habian conquistado Sicilia, un enclave estratégico
para dominar el Mediterraneo. La gran apuesta de Stalingrado la
ganaron los rusos, que por primera vez avanzaban en lugar de retro-
ceder, aunque fuera ralentizados por el mal estado del terreno que
habia dejado uno de los inviernos mas crudos en el este de Europa.
Pero la guerra todavia esti lejos de terminar. El ejército alemén se
mantienia blindado en los paises ocupados y ni un solo soldado de
las fuerzas aliadas podia poner los pies en ellos. En septiembre de
ese mismo ano, la Wehrmacht lanzaba el V2 —sucesor de la bom-
ba V1—, el primer cohete con objetivos militares, que habia sido
construido en la planta secreta de Peenemiinde bajo la direccion
del ingeniero espacial Wernher von Braun. Se trataba de un arma
que generaba el panico sobre las poblaciones a las que iba dirigida,
entre otras cosas porque era muy dificil de interceptar y porque ni
siquiera se la oia llegar, ya que viajaba a una velocidad superior a la
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Esquema del

. mecanismo de
Explosivo Masas subcriticas implosién en el
que una de las
masas subcriticas
es disparada
mediante un
explosivo
convencional para
impactar sobre la
otra masa
subcritica.

del sonido. Era un dispositivo bélico de efectos psicolégicos, pero
como arma militar tenfa una eficacia muy cuestionable. De hecho,
murieron mas personas en su proceso de fabricacion que por los
efectos destructivos de sus explosiones al alcanzar el blanco. Sus
mayores defectos pivotaban sobre dos factores; el primero era la
escasa precision en los dispositivos de navegacién, y el segundo, la
relativa poca potencia de su ojiva explosiva, 975 kg de amatol, que
dirigidos con precision hacia un objetivo concreto podian ser leta-
les, pero que en el caso de caer en campos proximos a areas urba-
nas —como sucedié en la mayoria de las ocasiones—, sus efectos
se limitaban a producir un crater de dimensiones moderadas.

Los alemanes se jactaban de poseer un arma secreta que podia
dar un vuelco a la contienda y hacer que pudieran ganar la guerra.
Obviamente, no se trataba de mejorar los sistemas de navegacion,
sino de sustituir la carga explosiva por otra cuyos efectos fueran
tan devastadores que la precisién en el impacto se convirtiera en
un asunto menor. Los alemanes se habian propuesto construir la
primera bomba atémica de la historia. Tenian a su alcance todos
los medios necesarios para ello, ya que disponian de toda el agua
pesada que se producia en la planta noruega Norsk Hydro y de la
mayor reserva mundial de uranio procedente del Congo Belga. En
ese sentido llevaban una clara ventaja, pero habian perdido la oca-
si6én de contar con un auténtico monopolio de mentes privilegiadas.

La primera bomba atémica se basaba en un proceso de fisién
nuclear del uranio enriquecido que comportaba una disminucion
de masa (véase la figura). La teoria de la relatividad de Einstein
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habia dejado establecido mediante su conocida ecuacién E = m-c?
que la disminucién de masa comporta el aumento en la energia
—Yya que ¢, la velocidad de la luz, es un factor constante—. El pri-
mero en darse cuenta de que con los conocimientos disponibles
era posible construir una bomba de fisién fue el fisico hingaro
Leé Szilard (1898-1964); de hecho, él la disefié y la patent6 en
1933 con el 4nimo de que nadie pudiera utilizarla. En 1939, Szilard
se traslad6 a Nueva York, donde estuvo trabajando con el fisico
italiano Enrico Fermi (1901-1954) en el primer reactor nuclear de
la historia. Fue entonces cuando se decidi6é que el uranio era un
elemento apto para provocar una reaccién en cadena.

Frente a la alarma que causé el saber que los alemanes estaban
ya trabajando en la construccién de la primera bomba de fisién, el
propio Le6 Szilard, junto con Edward Teller (1908-2003) y Eugene
Wigner (1902-1995) —los tres hiingaros y también judios— conven-
cieron a Einstein para que, valiéndose de su prestigio, escribiera
una carta dirigida al presidente Roosevelt advirtiéndole del peligro.
Y fue asi como nacié el Proyecto Manhattan.

EL PROYECTO MANHATTAN

El17 de diciembre de 1941, el presidente de Estados Unidos, Franklin
Delano Roosevelt, autorizoé la fabricaciéon de una bomba atémica.
Se formé un equipo interdisciplinar con la colaboracién de di-
ferentes departamentos de las universidades de Columbia, Califor-
nia y Chicago. El objetivo era fabricar la primera bomba de fisi6n
nuclear. El cargo de director cientifico del proyecto recay6 en el
fisico Robert Oppenheimer (1904-1967), siendo el responsable mi-
litar el general Leslie Groves (1896-1970). En total, en el Proyecto
Manhattan participaron méas de 125000 personas. Quizi uno de sus
mayores méritos fuera del &mbito cientifico, si no el tinico, fue que
acabara siendo uno de los secretos mejor guardados de la histo-
ria. En él participaron cientificos de gran renombre internacional,
como Richard Feynman, Edward Teller, Enrico Fermi, Richard
Wilkins, Stanislaw Ulam, Louis Slotkin o Klaus Fuchs; y también
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Von Neumann, que fue quien disefié practicamente la totalidad del
mecanismo de ignicién.

Von Neumann, que llevaba tiempo trabajando en hidrodina-
mica de fluidos, disefié un dispositivo que mediante una detona-
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En 1942, el Gobierno de Estados Unidos construyé en Oak Ridge (Tennessee)
unas instalaciones secretas que ocuparon mas de 24000 hectéreas con el
fin de albergar las instalaciones del Proyecto Manhattan y a todos los traba-
jadores, incluyendo técnicos y cientificos, que formaron una comunidad de
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ejército. Muy pocos, entre ellos Von Neumann, podian entrar o salir del recin-
to, que tenia un cartel en la entrada en el que podia leerse el siguiente aviso:
«Lo que veas, hagas u cigas aqui, cuando salgas de aqui, debe quedar aqui».
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EL METODO MONTECARLO

El método Montecarlo es un me-

todo numérico que se utiliza en .
estadistica para conseguir aproxi- . .
maciones precisas a expresiones - -
matematicas complejas para las 5
que no existe un algoritmo de cal-

culo. Consiste fundamentalmente .
en la simulacion de variables alea-

torias. Una de las maquinas mas

sencillas que se conocen para la
generacion de numeros aleatorios %
es la tipica ruleta de un casino, de . .
ahi que al método se le pusiera el e .

nombre de uno de los lugares mi-

ticos en lo que a juegos de azar @ .

se refiere. Muchos profanos en el

tema creen que se trata de un mé-

todo para ganar en el juego de la ruleta, pero este método estadistico no tiene
nada que ver con los juegos de casino. Hay una manera sencilla de ilustrar la
idea basica que sustenta el método Montecarlo. Imaginemos que tenemos
un recinto cuadrado de lado uno, en cuyo interior hay una figura geométrica
de forma caprichosa de la que queremos calcular el area (véase la figura).

cién provocara una onda de choque que produjera una sibita re-
duccion del niicleo de plutonio. El volumen de dicho nicleo era
lo suficientemente grande como para que la masa de plutonio fue-
ra inferior a la masa critica. Al producirse una reduccién homo-
génea del volumen, el nicleo pasaba a tener masa supercritica.
El modelo matemaético sobre el que se sustentaba el dispositivo
requeria la solucién de un sistema de ecuaciones en diferencias
finitas, para cuya resolucién necesitaba el concurso de un orde-
nador capaz de ejecutar una enorme cantidad de complejas ope-
raciones en el menor tiempo posible. Von Neumann establecié los
algoritmos necesarios para la resolucién de las ecuaciones, pero
es muy probable que sin la ayuda de las computadoras la propues-
ta no hubiera sido viable.
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También podriamos haber elegido como ejemplo cualquier figura de lados
curvos y, por supuesto, cualquiera que estuviera definida por una funcién
matematica. Se colocan ahora N puntos de forma aleatoria. Un escenario
aleatorio podria ser el nimero de bolas de granizo que han caido dentro
del recinto cuadrado después de una granizada. Contamos luego el niimero
de puntos N' que hay dentro de la figura cuya area queremos calcular. Su-
pongamos que N=40 y N'=13. El cociente N/N'=0,32 es una aproximacién
al area que estamos buscando. Es facil demostrar que el error cometido es
proporcional a una cierta magnitud, de forma que para cada nueva cifra de-
cimal que queramos obtener sera necesario aumentar el volumen de célculo
en cien veces; de esta manera, aunque el método responda a un algoritmo
sencillo, requiere del uso de herramientas computacionales. El método fue de-
sarrollado por Von Neumann a raiz de una idea que le propuso el matematico
polaco-estadounidense Stanislaw Ulam (1909-1984), que fue invitado por Von
Neumann para participar en el Proyecto Manhattan. Ulam reconocio que la
idea surgid en una ocasion en que estaba jugando a un complicado solitario en
el transcurso de una enfermedad. Pensé que, en lugar de realizar un cdmputo
detallado de cada una de las posibilidades de resolucién del juego, era mas
interesante llevar a cabo pruebas aleatorias contando el numero de cartas
que habian intervenido en la solucién. Von Neumann aplicé el método para
detectar neutrones generados por un material radiactivo a lo largo del radio
de una esfera. En 1947 envi¢ una propuesta formal al Laboratorio Nacional de
Los Alamos en un documento que constituye el primer testimonio escrito que
se tiene de una descripcion formal del método Montecarlo.

El Proyecto Manhattan duré 2 aiios, 3 meses y 16 dias. La
primera bomba atémica de la historia fue detonada en el desierto
de Alamogordo el 16 de julio de 1945.

EL ENIAC

En julio de 1943 empez6 a construirse un nuevo ordenador en la
escuela Moore de Ingenieria Eléctrica de la Universidad de Pensil-
vania, situada en Filadelfia, que marcaria un hito en la historia de
la computacién; se le dio el nombre de ENIAC (Electronic Numeri-
cal Integrator and Computer). Se trataba de un proyecto de maxi-
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mo secreto cuyo nombre en clave era PX. El ENIAC esta consi-
derado como el primer ordenador de la historia, aunque algunos
piensan que la progenitura se le deberia dar a la Colossus, puesta
en funcionamiento a mediados de febrero de 1944 en Bletchley
Park, una instalacién militar localizada en Buckinghamshire, In-
glaterra. La Colossus, inspirada por el cientifico de la computacion
Alan Turing (1912-1954) y disefiada por el matemético Max New-
man (1897-1984), fue utilizada para descifrar la maquina Enigma.
El ENIAC cost6 cerca de 8000 délares y fue financiado por el
ejército. Media 30 metros de largo y pesaba 32 toneladas. Funcio-
naba con 17468 vilvulas de vacio que disipaban tanto calor que la
temperatura de la habitacion en la que estaba ubicado podia subir

LA EDVAC, UN PASO ADELANTE

A pesar de los avances que Von
Neumann habia introducido, el
ENIAC adolecia de serias limita-
ciones. Después de la guerra, Von
Neumann colaboré en el disefio v
la construccién de una nueva com-
putadora que corrigiera los errores
y mejorara las prestaciones del
ENIAC. La nueva maquina, la ED-
VAC (Electronic Discrete Variable
Automatic Computer), mejoraba
mucho la velocidad de la anterior
(el ENIAC realizaba 333 operacio- John von Neumann (izquierda) y Robert

nes por segundo, mientras que la  oppenheimer junto a la EDVAC.

EDVAC hacia 20000) y ademas

incorporaba totalmente la arquitec-

tura de Von Neumann. Von Neumann no solo se limité al aspecto estructural
de las computadoras, sino que también trabajé en el disefio de algoritmos
que permitieran implementar el procesamiento de operaciones matematicas
mas complejas que los puros cdlculos numéricos que hasta entonces se ha-
bian estado realizando con las computadoras. Llegé a desarrollar algoritmos
para resolver diferentes tipos de ecuaciones, calcular la inversa de una matriz,
encontrar vectores propios y calcular los valores propios correspondientes,
asi como hallar los maximos y los minimos para funciones de varias variables.
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FOTO SUPERIOR:
Von Neumann

¥ su segunda
esposa, Klara Dan,
en 1954,

FOTO INFERIOR:
Dos operadores
manejando el
panel de control
principal del
ENIAC en la
escuela Moore
de Ingenieria
Eléctrica de la
Universidad de
Pensilvania, en la
década de 1940,
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facilmente hasta los 50 °C. Unicamente podia almacenar veinte ni-
meros, pero su defecto fundamental era que para cambiar un pro-
grama era necesario reconfigurar sus circuitos, de forma muy pare-
cida a como lo hacian las telefonistas en las antiguas centralitas, en
una operacién que podia llevar varios dias. Otro de los problemas
serios del ENIAC es que se pasaba mds tiempo averiado que en
funcionamiento. Aun asi, el ENIAC estuvo funcionando diez afios
y durante ese periodo realizé mas célculos matematicos de los que
se habian realizado en la historia de la humanidad hasta entonces.

Von Neumann entré en contacto con el ENIAC de forma to-
talmente casual. El matemitico estadounidense Herman Heine

LA COLOSSUS

El matematico britanico Alan Turing (1912-1954) esta considerado como uno
de los padres de la informatica actual a raiz de un articulo que escribié en 1931,
titulado «Sobre los numeros computables». Dicho documento fue considera-
do por la comunidad matematica como uno de los avances mas importantes
del siglo, en el que se establecian las bases de lo que hoy se conoce como la
«maquina de Turing», un esquema tedrico que encerraba el fundamento
de lo que habrian de ser todos los futuros programas informaticos. A partir de
su publicacion, Turing inicio una carrera ascendente hasta alcanzar el titulo
de profesor de Matematicas del King's College de Cambridge, donde perma-
necio hasta que el 4 de septiembre de 1939, un dia después de que Inglaterra
declarase la guerra a Alemania, fue llamado a formar parte del equipo de crip-
toanalistas de Bletchley. Este equipo obtuvo importantes éxitos descifrando
las claves de la maguina Enigma, utilizada por los alemanes para cifrar sus
mensajes. Turing mostro un talento tan extraordinario como descifrador, que
acabd por convertirlo en el principal criptoanalista del Reino Unido. El objetivo
fundamental del equipo de Bletchley era el arma submarina alemana. Poder
descifrar los mensajes que el alto mando enviaba a los submarinos alemanes
mediante el codigo enigma, significaba poderlos interceptar antes de que lie-
varan a cabo su mision. Turing disefi¢ entonces una maquina electromecanica
para descifrar los codigos, la Colossus. Estas grandes y ruidosas maquinas
que recibieron el socbrenombre de «bombas» ocuparon varios cobertizos en
Bletchley y fueron claves, no solo para el criptoanalisis disefiado por Turing,
sino también como simientes de los futuros ordenadores que llegarian afos
después. La criptografia estaba ya entonces bajo secreto militar, pero también
lo estaban aquellas ruidosas maquinas que se mostraron tan eficaces en el
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Goldstine (1913-2004) se alisté en el ejército al comenzar la Se-
gunda Guerra Mundial. Trabajé con el grado de teniente en el BRL,
que era el laboratorio de investigacién de balistica de Aberdeen,
en Maryland. Como especialista en la confeccién de tablas de tiro,
era muy consciente de la urgente necesidad de automatizar los en-
gorrosos y largos célculos mediante la utilizacién de algin tipo de
computador electrénico, motivo por el que acepto el cargo de ha-
cer de enlace entre la escuela Moore, en Filadelfia, encargada de
construir el ENIAC, y Aberdeen. En el verano de 1944, Goldstine se
encontré casualmente con Von Neumann en el vestibulo de la es-
tacién de tren de Aberdeen. Debido a los numerosos compromisos

descifrado de mensajes, auténticos ancestros de los actuales ordenadores. Asi,
no es de extrafar que el ENIAC, el primer computador con el que se enfrentd
Von Neumann, estuviera también bajo secreto militar, ya que iba a ser utilizado
para fabricar la primera bomba atémica,

La Colossus, uno de los primeros ordenadores de la historia, fue emplazado, en 1943, en las
instalaciones militares de Bletchley Park, Inglaterra; entrd en funcionamiento en febrero de 1944.
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que tenia con diversas instituciones gubernamentales, Von Neu-
mann era de los pocos cientificos que no estaba obligado a perma-
necer en las instalaciones de Alamogordo. Goldstine no le conocia
personalmente, pero habia asistido a varias conferencias suyas y
decidi6 abordarle. Curiosos por naturaleza, cuando los mateméti-
cos se encuentran tienen una facil tendencia a interesarse uno por
el trabajo del otro. La charla transcurri6 sin mayor trascendencia,
hasta que Goldstine le dej6 caer a Von Neumann que estaba traba-
Jando en la construccién de un nuevo ordenador. En este punto, la
actitud de Von Neumann cambi6 y, segin cuenta el propio Gold-
stine, le someti6 a un interrogatorio de tercer grado. El calado de
las preguntas le parecié propio de un experto y decidié invitarle al
centro de investigaciones de Moore para ponerle directamente en
contacto con los ingenieros John Mauchly y Prosper Eckert, que
estaban trabajando en el disefio del ENIAC. Lo que nadie aclara
en esta anécdota es c6mo dos personas que estaban trabajando,
cada una de ellas en sendos proyectos de alto secreto, se pusieran
a hablar por los codos de sus respectivos trabajos en el vestibulo
de una estacion de tren en el que acababan de conocerse.

Nada més plantarse delante de la nueva computadora, Von
Neumann le pregunté a Eckert por la estructura légica del siste-
ma. Aquella fue una pregunta clave para que los ingenieros del
ENIAC le abrieran las puertas a una colaboracién que ya no ce-
saria hasta que acabara la guerra. Von Neumann pensé en la po-
sibilidad de disefiar un conjunto de instrucciones que fuera un
fiel reflejo de todos los pasos que se daban con papel y ldpiz en la
resolucién de un problema y que, a su vez, este conjunto de ins-
trucciones pudiera ser almacenado en la memoria central. Para
que este conjunto de datos pudiera ingresar en la computadora,
era necesario dotar a esta de una nueva unidad diferente a aquella
en la que se realizaban los célculos, de manera que por un lado se
pudieran entrar indistintamente datos y programas, y por otro re-
coger los resultados. Al hacer esto, Von Neumann estaba configu-
rando un concepto que hoy nos resulta muy familiar, el software.

De esta manera, en 1945, en el Laboratorio Nacional de Los
Alamos se empez6 a trabajar en el proyecto de un nuevo ordena-
dor que tuviera programas almacenados.
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ARQUITECTURA DE ORDENADORES

Lo que actualmente se conoce como «arquitectura de Von Neu-
mann» se corresponde con el concepto de programa almacenado.
Hoy en dia existen computadoras con programas almacenados,
como por ejemplo una calculadora de bolsillo con la que pode-
mos llevar a cabo una serie de complicados célculos, pero con la
que no es posible escribir un texto. En cambio, en un PC, si que-
remos un determinado programa de tratamiento de textos, basta
con instalarlo y ponernos a trabajar. Pero esto no siempre fue
asi. Como ya se ha dicho, en las primeras computadoras, como el
ENIAC, cambiar el programa significaba cambiar el disefio, para
lo que habia que hacer un croquis con papel y ldpiz para luego
cambiar el cableado de la maquina.

Von Neumann diseii6 varios tipos de recableado para agili-
zar las operaciones en el ENIAC, pero sabia que por mucho que
optimizara el sistema, no dejaria de ser siempre un apafio con
serias limitaciones. La idea de Von Neumann fue que los datos
del programa, que al fin y al cabo también podian expresarse en
bits como ceros y unos, fueran almacenados en la memoria junto
con los otros datos. Esto permitia modificar las direcciones de
memoria y también los mismos programas durante su ejecucion.
La mayoria de las computadoras modernas se basan en este tipo
de arquitectura.

Los ordenadores construidos con este tipo de arquitectura
constan de cinco componentes (véase la figura de la pagina si-

guiente):
1. Unidad aritmético-légica.
2. Memoria.
3. Dispositivo de entrada-salida.
4. Unidad de control.

5. Buses del sistema (datos, direcciones y control).
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i
Buses del sistema laT s '

Unidad Unidad B
aritmético-légica de control ' ' ;

Dlspodiiivg e entrada-salids |

La idea de almacenar las instrucciones junto con los datos
tiene un antecedente en un articulo publicado en 1936 por Alan
Turing en la London Mathematical Society en el que se daba una
descripcion detallada de lo que él llamaba la «maquina compu-
tadora universal», un modelo teérico de computadora que ac-
tualmente se conoce como «maquina de Turing», y que contenia
tantos datos como instrucciones con una capacidad de memo-
ria infinita. Es méds que probable que Von Neumann conociera la
existencia de los trabajos de Turing, ya que ambos estuvieron en
contacto durante los afios 1936-1937, cuando Turing estuvo en la
Universidad de Princeton. Ademas, el proyecto ya habia sido ex-
puesto por Turing en la Universidad de Cambridge en 1935. Es
cierto que ambos trabgjos, tanto el de Turing como el de Von Neu-
mann, se refieren a ordenadores con programas almacenados. Sin
embargo, el trabajo de Von Neumann se publicé antes, por lo que
este tipo de arquitectura lleva su nombre.
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CAPITULO 5

El cerebro electronico

En los ultimos afios de su vida, Von Neumann
supo conjugar una matematica aplicada, relacionada
béasicamente con la industria armamentistica, con la

matematica pura, en una nueva vertiente que le llevé a
estudiar la estructura légica de la reproduccién de
los seres vivos —los autématas celulares— y las
matematicas que rigen el funcionamiento
del cerebro, considerando a este como
una red neuronal que podria llegar
a ser simulada por un ordenador.






Al finalizar la Segunda Guerra Mundial hubo una didspora de
cientificos que se alejaron de los estamentos militares para regre-
sar al ambito académico, que a todas luces era su espacio natural
de trabajo. En medio de esta nueva realidad del momento, el De-
partamento de Defensa de Estados Unidos veia cé6mo el nicleo
duro de investigadores, que tan buenos resultados habia dado
durante el periodo bélico, se iba reduciendo dia a dia en un esce-
nario estratégico que, debido al empeno puesto en el desarrollo
de las armas nucleares, tenia todavia tintes de guerra, aunque
fuera calificada con el eufemismo de «Guerra Fria». A los moti-
vos puramente profesionales de esta didspora se sumaban otros
de indole moral.

La comunidad cientifica se habia dividido en dos grupos cla-
ramente diferenciados: por un lado estaban los que no acepta-
ban colaborar en el incremento del potencial armamentistico nu-
clear, y por otro, aquellos cientificos que lo veian como el tinico
garante para alcanzar una posible paz mundial. Sin ningin lugar
a dudas, Von Neumann formaba parte del segundo grupo. Para
agravar todavia més la situacién, la investigacién en el desarro-
llo de armas de destruccién masiva, en lugar de detenerse, dio
un paso de gigante con la aparicion en el escenario de la bomba
termonuclear, el mayor dispositivo destructivo que jamas habia
creado el hombre.

EL CEREBRO ELECTRONICO
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LA BOMBA DE HIDROGENO

La bomba termonuclear de fusién o bomba de hidrégeno, fue con-
siderada por muchos como el proyecto cientifico mas importante
que se habia realizado hasta entonces. Los problemas de célculo
que comportaba la construccién de esta bomba eran muy supe-
riores a aquellos con los que se tuvieron que enfrentar los cien-
tificos del Proyecto Manhattan. Para la ocasién, Von Neumann
disefié nuevos programas para las modernas calculadoras que ya
se habian empezado a construir siguiendo la arquitectura que é1
mismo habfa disefiado. Se pregunt6 si el volumen total de cél-
culos que habia que realizar superaria a los llevados a cabo en
toda la historia de la humanidad, aunque rdpidamente llegé a la
conclusién de que no seria posible si se tenian en cuenta también
todos los célculos que habian realizado los nifios en las escuelas
durante sus afios de aprendizaje.

La bomba de hidrégeno se basa en la energia desprendida al
fusionarse dos niicleos de dos is6topos de hidrégeno, deuterio
y tritio, para dar como resultado un niicleo de helio, producien-
do una reaccion en cadena entre neutrones, con la consiguiente
generacion de energia. Para llevar a cabo esta fusion de los nu-
cleos, es necesario aportar una enorme cantidad de energia, tanta
como la que proporciona una explosién nuclear. De esta mane-
ra, para conseguir una explosién nuclear se sigue un proceso de
fisién-fusién-fisién. En la primera parte del proceso, se provoca
una explosién nuclear que produce la energia suficiente para fu-
sionar los niicleos y, a su vez, desencadenar més energia, que es
empleada en fisionar nuevos nicleos cuya liberacién de energia
es el resultado final de la bomba. Se comprende que los célculos
fueran mucho mas complicados que los que comportaron el dise-
fio de la primera bomba. Aun asi, todo el computo se realizé en
seis meses, un tiempo récord para la época.

La primera bomba de hidrégeno se hizo explotar el 1 de no-
viembre de 1952 en Eniwetok, un atolén de las islas Marshall. La
temperatura alcanzada en el centro de la explosion fue superior
a quince millones de grados. Frente a la multitud de criticas y
voces de alarma que se alzaron contra el lanzamiento de la prime-
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ra bomba de hidrégeno, Von Neumann defendié el proyecto con
un razonamiento cuanto menos curioso. Era consciente de que la
contaminacion radiactiva suponia una amenaza medioambiental
que debia ser tenida en cuenta. Sin embargo, también conside-
raba que cualquier accién que fuera valorada, de alguna manera
comportaba un coste que habia que asumir. Para ello, ponia el
ejemplo del coste de vidas humanas que comportaba la ventaja de
los desplazamientos en automévil, que por entonces se cobraba
ya entre treinta mil y cuarenta mil victimas anuales.

La dedicacién de Von Neumann a la energia nuclear, en su
fase destructiva, le acarre6 dos graves consecuencias, una de ca-
ricter psicolégico y otra de naturaleza fisica, que se pusieron de
manifiesto al final de su vida. La primera se tradujo en un pesimis-
mo creciente que ya nunca le abandoné. Consideraba que la tec-
nologia alcanzada por el ser humano habia superado con creces su
capacidad para gestionarla. Estaba plenamente convencido de que
el holocausto nuclear podria retrasarse durante un cierto periodo
de tiempo, pero que al final serfa inevitable. Su principal amargura
se centraba en la imposibilidad de los Gobiernos para conseguir
la estabilidad politica necesaria para evitar el desenlace fatal. La
segunda consecuencia fue que padecié un cincer de huesos que
acab6é con su vida. Es dificil, incluso hoy en dia, saber con certeza
el origen real de un cancer, pero aun asi parece ser que el cidncer
que afecté a Von Neumann fue debido a un prolongado contacto
con fuentes radiactivas, junto con un exceso de confianza que le
llevé a no tomar nunca las medidas de seguridad necesarias.

LA GUERRA FRIA

Después de que la Unién Soviética hiciera detonar su primera
bomba atémica el 22 de agosto de 1949, el conflicto nuclear entre
Estados Unidos y la Unién Soviética estaba servido. Eran los ini-
cios de la llamada «Guerra Fria». El mundo se abria a un nuevo
escenario nunca antes conocido. Gracias al armamento nuclear,
las primeras potencias mundiales estaban en condiciones de bo-
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rrar del mapa a cualquiera de sus oponentes con tan solo apretar
un botén. O, por lo menos, eso era lo que se creia. Aunque es muy
probable que se hubiera sobrestimado el poder destructivo de los
arsenales nucleares de la época, lo que si parecia cierto era que
un ataque nuclear relaimpago dejaria completamente devastados
los grandes niicleos urbanos sobre los que se asentaban los pode-
res social y econémico de las grandes potencia mundiales.

Von Neumann no fue el tnico cientifico que mantuvo esta
actitud belicista. También el matemético britdnico Bertrand Rus-

MATEMATICAS DE LA GUERRA

En la actualidad, poco o nada significaran para un profano el siguiente con-
junto de simbolos:

dgf) -k, r(t)  BO)=B
E‘_;Et?i aoky b(E)  r(0)=RW.
Un matematico verad en ellos un sistema de ecuaciones diferenciales en el
que aparecen unas condiciones iniciales. Lo que dificilmente alguien podria
sospechar es que se trata de uno de los muchos modelos de batalla estable-
cidos por la OTAN, en el que figuran unidades de combate, nimero de ope-
raciones realizadas en un tiempo t y parametros similares. Sin duda, el nivel
de complejidad en el que han entrado actualmente las estrategias militares
hace de las matematicas una herramienta imprescindible. Por otra parte, no
es algo extrafio, si se tiene en cuenta que, debido al alto nivel tecnolégico
en el que opera el armamento moderno, se hace necesaria la intervencién
de sofisticados dispositivos, como grandes computadores, complejas redes
de comunicaciones o constelaciones de satélites de vigilancia. Hoy, ya no se
trata de dominar las bases de la geometria o el célculo diferencial, como se
exigia antano, sino que es necesario ser experto en dreas como la criptografia,
el calculo de probabilidades y la estadistica o la teoria de juegos, por men-
cionar solo algunas. La importancia de las matematicas en la guerra se puso
de manifiesto a medida que estas pasaron a formar parte de las asignaturas
claves en la carrera militar, especialmente en la ingenieria. En el transcurso de
la Primera Guerra Mundial, con la aparicion del sonar y de las nuevas teorias de
aerodinamica, gran parte de la tecnologia estaba pendiente de su desarrollo
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sell, que por entonces gozaba de una gran popularidad, apoyaba
la guerra preventiva, aunque con algunos matices que la hacian
algo menos tajante que la de Von Neumann, ya que era partidario
de dar una alternativa al enemigo: rindete, sométete al poder de
Estados Unidos y te evitaras el holocausto nuclear. Por el contra-
rio, Von Neumann no era partidario de poner sobre aviso a nadie.
Su concepto del ataque preventivo consistia en eliminar cuanto
antes la capacidad militar de Rusia, sin esperar ningin tipo de
provocacion, y a ser posible mientras estuvieran durmiendo.

matematico, que llegd a ser tan espectacular que el matemadtico francés Emile
Picard (1856-1941), catedratico de Calculo Diferencial en la Sorbona, lanzé
una voz de alarma temiendo que los estudiantes de matematicas decidieran
dedicarse en un futuro exclusivamente a la matematica aplicada. Sin embargo,
con el tiempo se demostré que esa preocupacion era infundada.

Maniobras navales de la OTAN. Los avances tecnolégicos han cambiado notablemente
la configuracién externa de un buque de guerra.
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Frente a esta actitud de Von Neumann cabe considerar dos
aspectos, uno emocional y otro racional. El primero nos retrotrae
alos primeros afios de su vida, cuando su familia se vio obligada a
huir del terror rojo con el que Béla Kun atemorizé a los habitantes
de Budapest y que para Von Neumann llevaba el sello inconfundi-
ble del «imperialismo comunista». Por otro lado, estaba el mate-
matico racional, frio, que pensaba en términos de estrategias, de
toma de decisiones que quedaban reflejadas en nimeros y ecua-
ciones, en modelos y axiomas. En este contexto estrictamente
racional, el escenario de la guerra era el escenario de un juego, el
escenario al que de nifio habia dedicado horas junto con su her-
mano Mihaly frente al tablero del Kriegsspiel.

«Si me propone usted bombardearles mafiana, yo le contesto:
;por qué no hoy? Si dice usted que hoy a las cinco de la tarde,
yo le contesto: ;por qué no a la una?»

— PaLABRAS DE VON NEUMANN EN UN ARTICULO DE LA REVISTA LIFE, EN LAS QUE HACE PATENTE
SU POSTURA ANTE EL CONFLICTO NUCLEAR EN LOS INICIOS DE LA GUERRA Fria.
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Von Neumann era un experto en la teoria de juegos, lo que,
como ya vimos en su momento, implica serlo también en la toma
de decisiones y en la configuracién de estrategias, dos de las ca-
pacidades méas buscadas por los estamentos militares. Asi, no
es de extraifiar que la lista de instituciones relacionadas directa
o indirectamente con dichos estamentos —de las que Von Neu-
mann era consejero— fuera muy larga. En este aspecto, se le ha
criticado en muchas ocasiones su querencia hacia los uniformes
militares de alto rango y el que un matematico de su talla em-
pleara gran parte de su tiempo en cuestiones aparentemente muy
alejadas de las ciencias puras. Es posible que en esta critica haya
mucho de cierto, pero también hay que tener en cuenta que esos
eran circulos, como es el caso de la corporacién RAND, en los
que, precisamente un cientifico, podia encontrar todos los me-
dios necesarios, sobre todo econémicos, para dar rienda suelta a
su imaginacién y llevar a cabo iniciativas cientificas que de otra
forma se habrian visto entorpecidas. En esas circunstancias, los
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LA CORPORACION RAND

Cuando finalizé la Segunda Guerra Mundial, la mayoria de cientificos que
habian estado trabajando para el Departamento de Defensa volvieron a sus
hogares y ocuparon de nuevo sus puestos en las universidades o fueron
contratados por empresas privadas. El ejército de Estados Unidos tuvo una
auténtica fuga de cerebros provocada por la paz. Ante esta situacion, en
1946 fue fundada la corporacién RAND (Research ANd Development) por las
Fuerzas Aéreas del Ejército de Estados Unidos, que en 1947 se independizé
del ejército de tierra, constituyéndose como fuerza independiente. La RAND
fue concebida como un think tank, depdésito de ideas. Era una institucion que
incorporaba personal para «pensar lo impensable» y en el que habia proyec-
tos de investigacién que iban desde los misiles intercontinentales hasta la
fonética del islandés. Von Neumann fue contratado por la RAND en diciembre
de 1948, y se le ofrecié un singular contrato por doscientos délares mensuales
gue no le obligaba ni siquiera a hacer acto de presencia en la sede. Tan solo le
pidieron que el tiempo que tardaba en afeitarse por las mafianas lo empleara
para darle vueltas a alguno de los proyectos en los que trabajaban, y que luego
les comunicara sus conclusiones.

Edificio de la sede de la corporacién RAND frente a las playas de Santa Ménica, en 1958.
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estamentos militares, promovidos por un sentido mas pragmati-
co, se mostraron también mas habiles y en todo caso la critica
habria que centrarla més en las instituciones académicas que,
paraddjicamente, siempre han sido més reacias a este tipo de
dinamicas.

EL DILEMA DEL PRISIONERO

Durante el tiempo que Von Neumann estuvo trabajando para la
RAND, se interesé por las matematicas que estaban implicadas
en un problema de apariencia tan sencilla como el dilema del pri-
sionero que, ademas de encerrar una gran complejidad, guardaba
grandes paralelismos con las cuestiones que planteaba el escena-
rio de la disuasion nuclear, en el que en aquella época estaba tra-
bajando intensamente.

Cuando Merrill Flood y Melvin Dresher, dos investigadores
de la RAND, idearon este sencillo juego, al que Albert William
Tucker, otro investigador de la misma organizacién, bautizé como
«el dilema del prisionero», no podian sospechar que habian dado
nacimiento a uno de los mayores iconos de la teoria de juegos de
todos los tiempos.

El dilema del prisionero se plantea en los siguientes térmi-
nos. Dos componentes de una organizacién criminal han sido de-
tenidos. La policia tiene fundadas sospechas de que han cometido
un delito por el que podrian ser condenados a una pena de seis
afos de carcel, pero carece de las pruebas necesarias para que se
haga efectiva la condena. Sin una acusacion formal solo podran
ser condenados a un afio de carcel por un delito menor. La policia
les ofrece entonces un trato en las siguientes condiciones: si uno
confiesa acusando al otro, el primero quedara libre de cargos, y
el segundo sera condenado a una pena de diez afos de céarcel. Si
cada uno por su parte declara en contra del otro, ambos deberan
cumplir una sentencia de cuatro afos de carcel. La policia man-
tiene incomunicados a ambos presos de manera que ninguno de
los dos puede saber la decision que toma el otro. Si llamamos A y
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B a cada uno de los prisioneros, el resumen de la situacién queda
reflejado en la siguiente matriz de pagos:

B no acusaa A B siacusaa A
A noacusaaB 11 10,0
A siacusaaB 0,10 4,4

Al no poder compartir estrategias debido a la incomunica-
cion, la toma de decisiones se convierte en un asunto nada trivial.
En un principio, todo apunta a que una postura egoista en la que
solo se tengan en cuenta los intereses de cada uno de los prisio-
neros seria la mas ventajosa, ya que en caso de condena cumpliria
un méximo de cuatro afios, frente a la posibilidad de cumplir la
pena maxima de diez, con la ventaja afiadida de que, con un poco
de suerte, podria quedar libre de condena si el otro prisionero no
le acusa.

Este razonamiento parece bastante sensato, y cabe pensar
que el otro prisionero también se lo planteara en los mismos tér-
minos, por lo que lo mas probable es que ambos acaben cum-
pliendo una condena de cuatro aios. Esta es la que podria consi-
derarse la estrategia dominante. Sin embargo, es obvio que no es
la mejor solucién, ya que si ambos se hubieran negado a declarar
uno en contra del otro, la condena hubiera sido de solo un afio.
Asi, parece que la mejor estrategia es la de cooperar, pero esto
significa que a priori debemos confiar en la postura del contrin-
cante, algo de lo que no tenemos garantias.

Existe toda una rama de las matemaéticas dedicada a estudiar
situaciones como la expuesta, tratdndolas como «juegos de estra-
tegia». El juego empieza con una tabla numérica, a veces extrema-
damente complicada, y las estrategias son las posibles «jugadas»
optimas de los jugadores. Si se utilizan las armas del frio intelec-
to, de las probabilidades, de la llamada «esperanza matematica»
y del dlgebra, se llega a conclusiones racionales en las que, por lo
general, es mejor que cada jugador no actiie en términos egoistas.
Lo que un jugador cree que es bueno para €, puede que no lo sea
tanto, si tienen en cuenta las posibles acciones de los demés. Asi,
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la decision ideal, o estrategia 6ptima, pasa en muchas ocasiones,
por soluciones cooperativas. De este modo, todos obtienen el
mayor beneficio posible compatible con el menor prejuicio po-
sible. En el dilema del prisionero, la experiencia muestra que los
Jjugadores se inclinan por la delacién, en lugar de hacerlo por la
confianza; y, mateméaticamente, se equivocan.

Si se plantea el dilema del prisionero en un ambiente infor-
mal, por ejemplo en una comida entre amigos que tengan ganas
de pensar frente a un café y una copa de licor, tendremos garan-
tizadas dos cosas, la primera es que la sobremesa ser4 larga, y la
segunda, que cuando finalice no se habra llegado a ninguna con-
clusion. Y es que, en principio, el dilema del prisionero carece de
una solucién convincente, ya que es un planteamiento que tiene
mas de paradoja que de acertijo 16gico con solucién. Las dos po-
sibles soluciones que se plantean como las correctas, que ambos
cooperen o que decidan inculpar al otro, son muy dificiles de jus-
tificar racionalmente.

Sabemos que en este tipo de situaciones en las que se debe
tomar una decision pueden intervenir diversos factores como los
morales o los emocionales. También podemos dejarnos llevar
por la intuicién o dejarnos fascinar por algin arte adivinatoria o
simplemente tomar unos dados y dejarlo todo en manos del azar.
Pero siempre quedard la misma pregunta en el aire: jexiste algin
método para que la toma de la decision se lleve a cabo de una
forma racional? Plantear el problema en estos términos es lo que
posibilita que adquiera una naturaleza matematica. Esta manera
de pensar, siempre presente en el &nimo de Von Neumann, fue lo
que le llevo a interesarse por el dilema del prisionero.

Es interesante y, hasta cierto punto imprescindible, insistir
en que en el planteamiento del dilema no se hagan intervenir fac-
tores de indole moral —«no estd bien traicionar a un compaiero»
o «esta es una decisién que me crea problemas de conciencia»—,
ya que solo aportan confusién para la solucién del problema. Algo
similar sucede con el concepto de estrategias colaborativas. No
se trata de que la cooperacion sea o no preferible por cuestiones
éticas, puesto que es algo que se saldria del &mbito puramente
matematico, sino de si es una estrategia 6ptima para obtener el
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JUEGOS COOPERATIVOS

Los juegos cooperativos son aque-
llos en los que los jugadores pre-
tenden alcanzar un cierto objetivo
comun, como ganar unas votacio-
nes, mejorar la gestion de una em-
presa o incrementar los beneficios
de la misma. En cualquier caso,
para lograr el objetivo existe una
colaboracion entre los jugadores.
Es la situacion contraria a los deno-
minados juegos no cooperativos,
también llamados competitivos, en
los que la estrategia individual tie-
ne un papel fundamental. Un claro
ejemplo de ambos conceptos se da
en los juegos de guerra. Durante la
Guerra Fria se produjo un equilibrio
inestable entre las dos grandes po-
tencias mundiales, la Union Sovié- g paintbanr es un juego cooperativo en el que
tica y Estados Unidos. Se trataba  se simulan escenas de guerra.

de un juego competitivo regulado

por estrategias unilaterales. Estaba

claro que esta situacion de juego no cooperativo podria traer consecuencias
fatales para ambos contendientes, lo cual llevé a establecer acuerdos de no
proliferacion de armas nucleares.

Cooperar para ganar

Los juegos de rol también pueden constituir un ejemplo de juego cooperativo;
se parecen a una obra de teatro que discurre alrededor de una mesa. Los par-
ticipantes interpretan papeles de personajes ficticios siguiendo las indicacio-
nes de un narrador que trama el desarrollo del juego, pero los jugadores son
libres de decidir lo que hacen dentro de la obra. Asimismo, el popular domind
jugado individualmente es un juego competitivo; en cambio, si se juega por
parejas es cooperativo.

mayor beneficio con el minimo riesgo en un escenario concreto
de juego en el que se dé un conflicto de intereses.

Para evitar este tipo de confusiones es bueno plantear el di-
lema como un mero juego de casino en el que se puede ganar o
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perder una cierta cantidad de dinero convenida, y no como un
relato con tintes dramaticos que puede afectar seriamente a la
vida de las personas, como lo es poner en juego una condena de
prision. Esta es la forma que William Poundstone propone en su
libro El dilema del prisionero (1992).

Se trata de un juego para dos personas, que se juega una sola
vez. Si se quiere repetir, es obligatorio cambiar de pareja. La tinica
obligaci6n que se les exige a los jugadores es la de querer ganar,
como en cualquier otro juego. Esto parece una trivialidad, pero no
lo es, ya que venimos de las consideraciones morales del dilema
del prisionero. Si un jugador de péquer se plantea engafiar al con-
trario mediante un farol, no tiene sentido que digamos que este
Jjugador esté engafiando al contrario con triquifiuelas propias de
alguien que carece de principios morales. Algo asi seria completa-
mente estipido, ya que lo tinico exigible a los jugadores es que se
atengan a las reglas del juego sin hacer trampas —esconder un as
en la manga si puede ser moralmente sancionable— y sobre todo,
insistiendo de nuevo, se le pide que si juega, juegue para ganar.
Este tipo de planteamientos adquiere una gran relevancia cuando
la teoria de juegos se lleva més alld de un mero pasatiempo y se
plantea en un escenario bélico.

Volviendo al dilema en la versidén casino, los jugadores jue-
gan en una mesa que dispone de un dispositivo electrénico que
estd debajo de la misma, oculto al contrincante y que sirve para
tomar la decisién de cooperar o no. El crupier es quien decide en
qué momento los jugadores pueden pulsar los botones correspon-
dientes. Una vez establecido el valor de las apuestas, la matriz de
pagos podria ser la siguiente:

B coopera B no coopera
A coopera 2,2) 0, 3)
A no coopera (3,0) an

De manera que en el caso en que ambos cooperen, cada uno
gana dos euros, si ninguno de los dos coopera, cada uno gana un
euro y, por iltimo, en el caso en que uno coopere y el otro no, el
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primero no gana nada y el segundo gana tres euros. Esta tltima
situacion es lo que vulgarmente se entiende por «hacer el primo»,
que es lo que la mayoria de los jugadores tratan de evitar a toda
costa.

Esta matriz de pagos puede tener diversas variantes, como
la de incluir pérdidas introduciendo niimeros negativos, que nos
acercaria mas al dilema del prisionero en su versién clésica, pero
como modelo sirve para estudiar el dilema si cumple los siguien-
tes requisitos: uno de los resultados ha de ser el de «premio»,
que es cuando ambos contendientes cooperan —dos euros—; otro
de castigo, cuando ambos no cooperan; y un tercero que se da
cuando solo uno de los dos no coopera, que tiene que contemplar
siempre para uno de ellos una contribucién mayor que la de la
cooperacion.

TEORIA DE AUTOMATAS

Seria erréneo pensar que la actividad cientifica de Von Neumann
después de la guerra estuvo centrada tinicamente en temas milita-
res. Su biografia muestra a las claras que su mente nunca estuvo
ocupada en una sola cosa.

Uno de los temas en los que Von Neumann estuvo trabajando
en esta segunda etapa de su vida fue el del autorreplicador univer-
sal, algo que tocaba muy de cerca su faceta reproductora, uno de
los secretos ocultos de la vida. Queria demostrar que dicha faceta
no obedecia a extrafias leyes ocultas, sino a reglas matematicas,
mas o menos simples, que conforman el verdadero lenguaje de la
naturaleza.

El autorreplicador universal de Von Neumann es una maquina
que consiste en un médulo de fabricacién que, con instrucciones
precisas y un entorno de piezas adecuado, es capaz de construir
lo que sea, y que ademads posee las instrucciones necesarias para
construirse a si misma. Von Neumann se vio obligado a introducir
una condicién para evitar lo que se llama una «regresion infinita»:
en alguna parte de la maquina deben estar las instrucciones que
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describen a la propia maquina en su totalidad. Por lo tanto, dentro
de dichas instrucciones debe haber otras instrucciones que las
describen, y asi sucesivamente. Sea como fuere, una maquina no
puede contener una regresion infinita como esa. Para solucionar-
lo, afiadi6 un tercer componente, que era un copiador de instruc-
ciones, de forma que la maquina completa estaba formada por un
constructor, la lista de instrucciones y un copiador. De esta ma-
nera, en la primera fase, la lista de instrucciones era interpretada
y en la segunda fase simplemente copiada.

Para construir una maquina autorreplicadora en un orde-
nador es necesario disefiar un autémata que emule a una ma-
quina de Turing. Tedricamente, es posible disefiar las puertas
légicas necesarias para ello: NOT-AND-OR (no-y-o). Por ejem-
plo, se puede disefiar una puerta NOT con lo que se denomina
un «canon de autématas deslizadores», un esquema demasiado
complejo para describirlo en este contexto. Von Neumann lle-
g6 a demostrar que, en un entorno de estas caracteristicas, un
autémata de 200000 estados seria capaz de autorreproducirse,
algo que, de momento, va més alld de nuestras posibilidades de
computacion.

Si algiin dia es posible la realizacién practica de un autorre-
plicador de Von Neumann, quiere decir que en alguna parte habra
un robot rodeado de piezas que se pondra a trabajar, y al cabo de
un tiempo aparecera una réplica exacta del mismo. Entonces, se
fabricarian dos, y luego cuatro, y asi en progresiéon geométrica. Lo
que Von Neumann no previé —ni nadie puede hacerlo hoy— es
qué tal se llevarian estos robots con los humanos, ya que hay que
tener en cuenta que en muy poco tiempo acabarian por represen-
tar una mayoria abrumadora e imparable.

En 1948, Von Neumann se puso manos a la obra y disefié un
constructor universal, una maquina que, siguiendo unas instruc-
ciones dadas, seria capaz de montar otra maquina con un conjun-
to de piezas que se encontraran en su entorno, algo que en cierta
forma podemos ver en cualquier fiabrica moderna que esté roboti-
zada. Pero Von Neumann queria llegar un poco més alld y dotar a
la maquina y a su entorno de las instrucciones y 1as piezas necesa-
rias para construir una réplica exacta de si misma; es decir, queria

EL CEREBRO ELECTRONICO



ROBOTICA

El término robot, que procede de la
palabra checa robota («trabajo obli-
gatorio»), fue empleado por primera
vez en una obra de teatro, Robots
Universales de Rossum, del drama-
turgo checo Karel Capek y estrenada
en enero de 1921 en Praga. El argu-
mento se centraba en una fabrica
capaz de construir seres mecéanicos
al servicio del hombre. Al final de la
obra, los robots acaban destruyen-
do a la especie humana. La robética
es una ciencia aplicada gue gracias
a los conocimientos aportados por
la cibernética y la ingenieria técnica,
es capaz de construir una maquina
controlada por un programa que sea
capaz de manipular objetos y tener
una cierta interaccién con su entor-
no. Su objetivo es el de sustituir al ser
humano en una serie de trabajos que
encierren rutina, fatigabilidad, inac-
cesibilidad o peligro. La fisiologia de

Robot tocando el piano, expuesto en el Museo
de Ciencia y Tecnologia de Shanghai, China.

un robot se configura a base de elementos mecanicos. Su anatomia, formada
por metales o plasticos, se mueve gracias a servomotores, su sistema nervioso
esta formado por cables eléctricos y por sus venas fluye aceite de maquina.
Su cerebro no se asemeja a un ordenador... Es un ordenador. Sin embargo,
en muchos casos existe la idea equivocada de que un robot debe parecerse
a un ser humano. En sentido estricto, un lavavajillas es un robot. Las tres ca-
racteristicas fundamentales que se le exigen a un robot son:

1. Que sea programable, de la misma manera que lo es un ordenador.

2. Que sea una maquina capaz de llevar a cabo acciones concretas en su

entorno.

3. Que sea flexible.

La tercera caracteristica es en realidad una consecuencia de las dos anteriores,
ya que por un lado supone la capacidad de operar con un abanico amplio de
programas vy, por el otro, la de interactuar con el medio de diversas formas.
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CIBERNETICA

La cibernética es la ciencia que estudia
las diferentes formas de comunicacién
que pueden establecerse entre dos ma-
quinas y, por supuesto, las leyes que go-
biernan la comunicacion entre el hombre
y la maquina. El matematico hungaro
Norbert Wiener (1894-1964) esta consi-
derado como el padre de la cibernética.
En 1948 escribid un pequefio libro titula-
do Cibernética, o control en los animales
V las maquinas, que acabé por convertir-
se en un best seller, lo que permitié salir
al autor de la precaria situacién econé-
mica en la que se encontraba.

Norbert Wiener.

construir un replicador. La naturaleza en la que vivimos abunda
en replicadores, el propio ADN es uno de ellos. Curiosamente,
Von Neumann, una de las mentes tedricas mas privilegiadas del
siglo xx, pretendia traspasar el terreno tedrico y construir su mé-
quina autorreplicante, a la que llamé Kinematon.

Cuando Von Neumann estaba peleando con las insalvables
dificultades técnicas que suponian la realizacién préctica del Ki-
nematon, un amigo suyo, el matematico polaco-estadounidense
Stanislaw Ulam, le dio un buen consejo; le sugirié que si lo que le
interesaba era profundizar en las leyes que regian el proceso, de-
jara los trabajos manuales y se dedicara a establecer un modelo
virtual. Von Neumann decidi6é cambiar su estrategia y plante6 un
sistema formado por una matriz plana infinita en la que pudiera
representar cada una de las células, lo que viene a ser lo mismo
que un papel cuadriculado en el que una célula pudiera estar re-
presentada en una de las cuadriculas. En cada una de las células
se podia identificar un estado, y el nimero posible de estados
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debia ser finito. Concretamente, en el modelo original de Von
Neumann, para cada célula habia 29 estados definidos. La idea
era que, segin unas reglas previamente definidas, cada estado
dependiera de alguna forma del estado de las células vecinas, y
que dependieran directamente del estado anterior. De esta mane-
ra, el sistema guardaba ciertas analogias con los sistemas vivos,
al menos en el sentido en que las células podian moverse para
entrar en contacto con otras células y, lo que era mas importan-
te, generar otras células en estados andlogos o idénticos al suyo.
En definitiva, lo que Von Neumann se proponia era estudiar una
estructura muy compleja mediante un modelo muy simple, los
autématas celulares.

AUTOMATAS CELULARES

Un autémata celular viene a ser la abstraccién matemaética de
los procesos celulares que observamos en los seres vivos y que
se puede definir como un sistema dindmico que consta de dos
elementos: un espacio celular y unas reglas de comportamiento.
Por definicién, un espacio celular es un dominio Von Neumann-
dimensional cuyos elementos, denominados «células», poseen un
estado que viene determinado o bien por un niimero finito de va-
lores {v,,...,v,}, 0 bien por un valor continuo cualquiera. Esta defi-
nicién puede resultar un tanto criptica, pero tiene como finalidad
mostrar que aunque el resultado tiene la forma de un juego muy
simple, no esti exento de todo el formalismo que la rigurosidad
matematica exige. Pero, para hacerlo més entendible, reduzca-
mos esta definicién a su expresién mas sencilla y que, ademas,
es la que se utiliza en las exposiciones tedricas. De entrada, el
dominio Von Neumann-dimensional va ser 2-dimensional, de ma-
nera que pueda representarse en un papel cuadriculado en el que
cada una de las cuadriculas es una célula. De los dos conjuntos de
valores, vamos a rechazar el del conjunto continuo, ya que todo el
proceso se va allevar a cabo en las tripas de un ordenador, y estos
se mueven siempre con valores discretos. En cuanto al conjunto
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{v,;---,0,} posible de dichos valores discretos, nos
vamos a quedar solamente con dos {1, 0}. El pri-

mero va a significar que la célula esta viva, y el

segundo que la célula estd muerta. También po-

driamos haber elegido dos colores. En definitiva,

tomamos el papel cuadriculado y delimitamos

nuestra zona de trabajo, por ejemplo a un cua-
drado de siete casillas por lado. A continuacién,

FiG. 2

148

tomamos un rotulador negro y rellenamos unas
cuantas casillas (figura 1).

Ya tenemos nuestro espacio celular en el
que hay unas cuantas células vivas, las casillas de color negro, y
unas cuantas células muertas, las casillas de color blanco. Aho-
ra solo nos queda establecer las reglas de desarrollo, es decir,
la descripcién precisa de cémo estas células van a medrar en
su entorno. Si la figura anterior la consideramos la etapa 1, de-
bemos tener algin criterio para pasar a la etapa 2 y, evidente-
mente, debe ser el mismo criterio que nos sirva para pasar de la
etapa 2456 a la 2457. Expresado en términos matematicos, ne-
cesitamos un algoritmo que, conociendo el estado de la «etapa
N», nos permita configurar el de la «etapa N + 1». Como en nues-
tra cuadricula no aparecen, de momento, elementos extrafios,
como marcianitos comecocos o cosas parecidas, sobre cada una
de nuestras células solo pueden influir las otras células del en-
torno, lo que nos lleva a precisar el concepto de entorno. Uno
de los entornos mas sencillos es el de las reglas Norte, Sur, Este,
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Oeste, que significa que sobre una célula solo pueden influir las
células que estén encima, debajo o a alguno de los dos lados.
Este es el que se llama «entorno de Von Neumann». Si a estas
les anadimos también las celdas diagonales, tendremos lo que
se llama «entorno de Moore». Se entiende que la posibilidad de
definir entornos es casi ilimitada. Podriamos empezar por decir
que solo influyen las celdas que se encuentran, por ejemplo, a
una distancia » determinada. Existen entornos muy complejos
que se definen mediante funciones matriciales, de los que no es
necesario hablar aqui.

Partamos del espacio celular anterior y definamos las si-
guientes reglas que van a actuar en un entorno de Moore:

1. Las células con niimero par de vecinas vivas mueren.

2. Las celdas con numero impar de vecinas vivas generan una
célula viva.

De esta manera, tendremos las tres etapas que se muestran
en la figura 2.

También se puede empezar con menos casillas y definir otras
reglas de juego. Sin duda, se trata de una actividad ciertamente
relajante llevar adelante unas cuantas etapas y contemplar el re-
sultado —existen sencillos programas de ordenador que pueden
llevarnos rapidamente a la etapa 1000—. Nos podemos encontrar
con figuras y situaciones sorprendentes. Se pueden crear configu-
raciones estables, especies en extincién, naturalezas muertas, de-
predadores, o estructuras que se van moviendo por la cuadricula
sin perder su forma.

Esta es una variante del juego de la vida, disefiado por el
matematico britanico John Horton Conway en 1970. Ademas de
ser un juego divertido y tener importantes implicaciones ma-
tematicas, puede ser una herramienta valiosa para investigar y
comprender algunos procesos complejos de la naturaleza, ya
que en si mismo es un potente modelo que se puede aplicar, por
ejemplo, al estudio de cémo una marea negra puede afectar a la
fauna marina.
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EL JUEGO DE LA VIDA

Dos especialistas en autématas ce-
lulares podrian mantener una con-
versacion del siguiente tipo:

— Llevo varias semanas trabajan-
do en Vida 4555.

— Interesante. Yo me estoy de-
dicando a Vida 5766. Le estoy
encontrando una aplicacién
practica a la forma en cémo

% 3 Una mesa interactiva en la que se recrea el juego
se propagan los incendios en de la vida, expuesta en el Museo de Arte de San
los bosques. José, California.

Para que esta conversacion sea inteligible, es necesario conocer el significado
de los cuatro digitos que se mencionan: el primero de ellos hace referencia al
numero minimo de células que han de rodear a una célula viva para que no
se muera. El segundo es lo mismo, pero hace referencia al nimero maximo. El
tercero es el nimero minimo de células vivas que ha de haber para que exista
la posibilidad de recobrar vida. El cuarto, y ultimo, representa el nimero maxi-
mo de vecinas que se pueden tener para recobrar vida. Lo que actualmente
se entiende por «juego de la vida» es una teoria matematica que asombra por
su sencillez. Es objeto de intensas investigaciones y sus aplicaciones posibles
pueden ser de indole tedrica o eminentemente practica, como la reproduccién
de células cancerigenas, la proliferacién de arboles infectados en un bosque,
la propagacion de incendios o el crecimiento de cristales.

DEL SUENO DE LEIBNIZ AL DE NEUMANN

El pensamiento humano se desarrolla en un ambito misterioso y
obedece a leyes que todavia no se han revelado en su totalidad,
ni mucho menos. Sin embargo, a lo largo de la historia, algunos
grandes pensadores han abrigado la creencia de que si fuera po-
sible asignar niimeros a las ideas, de forma que a cada una de
ellas le correspondiese un niimero, bastaria con realizar calculos
con estos niimeros para saber las proposiciones que son ciertas y
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cuiles son falsas. En sintesis, ese era el suefio de Gottfried Leib-
niz (1646-1716). El poeta aleméan Friedrich Hélderlin (1770-1843)
dijo en una ocasién: «El hombre, cuando suefia, es un principe, y
cuando reflexiona, un mendigo». Y qué duda cabe de que Leibniz
tenia mucho de principe...

Sin embargo, para figuras como Pascal, Leibniz o Descartes,
cuyas mentes matematicas abrigaban, si no un cierto pragmatis-
mo, si una forma de concrecién, reflexionar significaba llevar sus
ideas a la practica, momento en el que el suefio podia tornarse en
pesadilla. Asi, no es de extrafiar que sus primeras conclusiones se
concretaran en maquinas de calcular, ya que el cdlculo numérico
es una de las primeras operaciones abstractas que realiza la men-
te humana. Ademas, el tiempo ha demostrado que las maquinas
«pensantes» mas avanzadas que, de momento, somos capaces de
fabricar, basan su funcionamiento en un cémputo de nimeros
que sigue unas reglas algebraicas bien definidas, las del algebra
computacional. Esta disciplina es una compleja y, hasta cierto
punto muy especializada, rama de las matematicas, que surgié
con el advenimiento de la informética, pero que tuvo sus origenes
en la mente especuladora de filésofos y matematicos.

«La verdad es demasiado complicada como para permitir nada
mas alla de meras aproximaciones.»

— Joun voN NEUMANN.

La méquina calculadora disefiada por Leibniz era, al menos
sobre el papel, mas compleja que la de Pascal, ya que, ademas de
sumar y restar, también podia multiplicar, dividir y extraer rai-
ces cuadradas. Entre el periodo en el que empezé a concebirla y
el momento en que la pudo ver realizada pasaron casi veintitrés
anos. El nombre que le puso a la maquina ya era representativo:
Getrocknetsrechenmaschine (calculadora secuencial o por pa-
so0s). De hecho, esta maquina calculadora multiplicaba por reite-
racién de sumas, pero los mecanismos presentaban una dificultad
que la técnica de la época no podia resolver, por lo que nunca
lleg6 a funcionar bien. A pesar de su fracaso, Leibniz estuvo du-
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rante todo ese tiempo dandole vueltas a una idea realmente re-
volucionaria. Si los nimeros podian ser representados en base
dos, no solo podria simplificar los mecanismos, sino que tenia la
posibilidad de aplicar la l6gica binaria al proceso de célculo.

Para Leibniz, el mundo podia ser interpretado segin dos ni-
veles distintos. Uno de ellos era el fisico, inmerso en el espacio y
el tiempo, en el que rigen las leyes de la causalidad —todo efecto
tiene una causa— y en el que los fenémenos se pueden explicar
mediante leyes mecénicas. En el otro nivel, el metafisico, no exis-
te ni el espacio ni el tiempo, ni tampoco causas y efectos; solo ni-
meros. Leibniz explicé con claridad la naturaleza de este segundo
nivel cuando afirmé:

Con precision metafisica, no tenemos més razén cuando decimos
que el buque empuja al agua para producir un gran nimero de remo-
linos, que cuando afirmamos que el agua estd siendo solicitada para
producir estos remolinos y ellos causan que el bugue se mueva en
armonia con ellos.

A partir de estos supuestos, Leibniz buscé un lenguaje uni-
versal que, a modo de diccionario, incluyera todos los términos
que pudieran ser abarcados en el mundo metafisico y la manera
en que dichos términos podrian relacionarse entre si, para dar
lugar a nuevas verdades, de manera que se pudiera controlar di-
cho mecanismo de relacion. Esta empresa es la que le llevé a ser
considerado como el padre de la 16gica simbdlica. En cuanto a la
asignacién numeérica, Leibniz propuso asignar niimeros primos a
los términos simples y el producto de dichos nimeros a términos
cualesquiera. Para llevar esta idea a la préctica, formulé un alge-
bra con solo dos conectivas, la negacién y la conjuncién, creando
asi las bases para una légica binaria.

;Se ha cumplido el suefio de Leibniz? En algunos aspectos
si, y en otros es probable que no se cumpla nunca. La matemati-
ca britanica Ada Lovelace (1815-1852), la primera programadora
de la historia, probablemente conocia las ambiciosas metas de
Leibniz, ya que en una ocasién, haciendo referencia a las compu-
tadoras, escribié:
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La méaquina analitica no tiene la pretensién de crear nada. Puede
realizar cualquier cosa siempre que conozcamos cémo llevarla a
cabo. Puede seguir un andlisis, pero es incapaz de descubrir rela-
ciones analiticas o verdades. Su potencialidad es la de ayudarnos
a hacer posible aquello sobre lo que tenemos un conocimiento
previo.

Leibniz sofiaba con la posibilidad de construir una méquina
que emulara una parcela de la mente humana. Von Neumann so-
naba con descubrir el lenguaje de programacién con el que funcio-
na esa parcela.

REDES NEURONALES

En 1943, dos estadounidenses, el neurdlogo y cibernético Warren
McCulloch (1898-1969) y el 16gico Walter Pitts (1923-1969), idea-
ron un modelo computacional que simulaba el funcionamiento
del sistema nervioso, creando para ello unas unidades llamadas
«nodos» que se interconectaban unas con otras de forma similar
a como los axones conectan entre si las dendritas en los sistemas
biolégicos. Habian nacido las redes neuronales artificiales (ANN,
de Artificial Neural Networks). Von Neumann trabajé en redes
neuronales ampliando y desarrollando modelos mas complejos
que los propuestos por McCulloch y Pitts.

Existen basicamente dos tipos de ANN, los bioldgicos, que
tratan de reproducir algunas funciones como la audicién o la vi-
sién humanas, y los modelos dirigidos a una aplicacién con-
creta, que apenas guardan similitud con los sistemas biolégicos.
John von Neumann hizo una estimacién sobre la cantidad de in-
formacién que el cerebro registraba como memoria a lo largo de
una vida media. El nimero final era aproximadamente de 2,8 - 10*
(280000000 000000000000 bits), una cantidad dificil de ubicar en
nuestro exiguo cerebro por mucho empeiio que se ponga.

Von Neumann consideraba a las células nerviosas como los
dispositivos electrénicos capaces de generar bits: 1 cuando ge-
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BIONICA

La cibernética dio lugar al desarro-
llo de la bidnica, que es la ciencia
que se dedica a investigar la simu-
lacién de actividades humanas y
animales por medio de maquinas.
Los avances en biologia v electréni-
ca se suman en esta nueva ciencia
que permite estudiar los principios
mediante los cuales se organizan
los seres vivos. En la actualidad, la
bidnica tiene importantes aplicacio-
nes en la construccién de modelos
referidos a las moléculas proteicas
y a los acidos nucleicos. A pesar de
que se han hecho avances tecnolégicos importantes en bidnica, apenas se ha
cumplido alguna de las expectativas que se plantearon en la década de 1950.
Hasta cierto punto, en comparacién con la informatica, ha sido un fracaso.
Este hecho no deberia sorprendernos si pensamos que solo la estructura que
supone el fondo de retina de un ojo humano, capaz de alcanzar los diez mi-
llones de detecciones por segundo, requiere un ordenador que procese mas
de mil millones de instrucciones por segundo. Todo el hardware biolégico
que procesa la imagen en la retina pesa unos 20 miligramos y la totalidad
del cerebro unos 1500, lo que supone construir un ordenador del tamarfio de
un PC capaz de procesar mas de cien billones de instrucciones por segundo.
Sin embargo, la capacidad de los actuales PC apenas seria capaz de emular
el cerebro de uno de los peguefios peces que habitan en nuestras peceras.

Una mano bidnica.

neran un impulso eléctrico y 0 cuando estdn en reposo. Todo el
sistema conlleva una enorme complejidad en la que intervienen
procesos electroquimicos y mecanicos, pero su funcionamiento
bisico debe contener una parte légica y otra aritmética, ambas
con igual relevancia. De ahi concluyé que el cerebro puede, en
este sentido, ser tratado de forma anéloga a como se abordan los
problemas que plantea una maquina calculadora corriente. En
ese punto volvia una vez mas a considerar la estructura légica
como herramienta para la creacion de un modelo. Podria aplicar
este modelo incluso al lenguaje, tal y como lo entendemos co-

EL CEREBRO ELECTRONICO



loquialmente. En ese marco, hizo una reflexién interesante que
puso de manifiesto su concepcién ontolégica de las matemadticas.
Afirmé, textualmente, que idiomas como el griego o el sanscrito
son realidades histéricas y no necesidades légicas. Lo primero es
un proceso de aprendizaje al que se enfrenta el sistema nervioso
central, mientras que lo segundo es estructural y obedece a una
naturaleza propia que debe tener una estrecha relacién con las
matematicas, lo que es tanto como afirmar que las matemaéticas
no son un «invento» del ser humano, sino que forman parte de su
propia naturaleza,

En diciembre de 1949, Von Neumann dio una conferencia en
la Universidad de Illinois titulada «Theory and Organization of
Complicated Automata» («Teoria y organizacion de autématas
complicados»). El esquema era el siguiente: si pensamos en el
cerebro como una méaquina calculadora, cuando la utilizamos
para comunicarnos con otra persona, lo hacemos mediante un
lenguaje secundario que es resultado de un lenguaje primario que
tiene lugar previamente en el sistema nervioso. Ambos lenguajes
pueden ser en principio muy diferentes. Pero cuando pensamos
en matematicas, la precision, la eficacia y la profundidad con que
expresamos conceptos aritméticos y lé6gicos nos hacen deducir
que el lenguaje primario de nuestro sistema nervioso central tie-
ne que estar muy cercano a eso que llamamos «matematicas». O
sea, en definitiva, nuestra mente es una mente matematica, por lo
menos en lo primigenio.

Von Neumann reflejé todos estos resultados en un manus-
crito que no llegé a finalizar y que fue publicado incompleto y
péstumamente con el titulo The Computer and the Brain («El
ordenador y el cerebro»).

LOS ULTIMOS ANOS
A partir de la década de 1950, Von Neumann actuaba como conse-

jerode una gran cantidad de corporaciones, agencias gubernamen-
tales y privadas. Era miembro del comité asesor del Laboratorio
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de Investigacion Balistica, en Maryland, de la Oficina de Artilleria
de la Marina de Estados Unidos, en Washington, del Laboratorio
Cientifico de Los Alamos, director del proyecto de Computadora
Electrénica del Instituto de Estudios Avanzados de Princeton, del
Proyecto de Armas Especiales de las Fuerzas Armadas y también
del grupo de evaluacién de sistemas de armas de la misma orga-
nizacion. A partir de 1952 pasé a formar parte de la Comisién de
Energia Atémica de Estados Unidos y en 1955 juré su cargo como
miembro de la Comisién de Energia Atémica, por designacién
del entonces presidente de Estados Unidos, Dwight David Eisen-
hower. Su capacidad para la gesti6n de escenarios complejos y la
toma de decisiones le habia llevado a ocupar su tiempo en activi-
dades que estaban muy alejadas de las ciencias puras.

Von Neumann gozaba de una buena posicién econémica;
solo del Instituto de Estudios Avanzados de Princeton recibia
12500 délares al afio. Vivia con su madre, con su mujer, Klara,
y su hija Marina en una gran casa situada en el nimero 26 de
Westcoot Road, que a menudo era el centro de reuniones sociales
a las que acudian personas famosas. El mismo era ya una perso-
nalidad mediatica reclamada por los medios de comunicacién, la
radio y la televisién para que diera su opinién sobre diferentes
temas, algunos de los cuales empezaban ya a invadir el &mbito de
su vida privada.

En el verano de 1955, Von Neumann empezé a quejarse de
fuertes dolores en el hombro izquierdo. En un principio, lo re-
lacioné con una caida que habia tenido a causa de un resbalén.
El dolor, que en circunstancias normales deberia haber remitido
al cabo de pocos dias, persistié hasta el punto de que tuvo que
someterse a una operacion quirirgica. Fue entonces cuando se le
diagnosticé un cancer éseo. Luego se comprobé que se trataba de
un cancer secundario que tenia su origen en un cancer en la pros-
tata. Siempre se ha dicho que Von Neumann contrajo el cancer
por no haber tomado las precauciones necesarias que exigen los
protocolos cuando se trabaja en ambientes radiactivos. Incluso
se alude a una cierta prepotencia de su caracter cuando se afirma
que la seguridad que tenia en si mismo le hacia creer que nada po-
dia afectarle, ni siquiera la radiacién a la que €él, como la mayoria
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de los componentes del Proyecto Manhattan, se habia visto some-
tido; de hecho, no fue el inico que se vio afectado por el cdncer.

No es necesario relatar la enajenacién mental y la angustia
a que se ve sometida una persona a la que se le diagnostica un
céncer terminal. Los médicos le dieron un plazo de vida de afio
y medio. En 1955, el cancer le afect6 la médula espinal y sus mo-
vimientos quedaron destinados a una silla de ruedas. Pusieron a
su disposici6n los medios necesarios para que pudiera proseguir
Sus tareas como consejero, pero sobre todo para poder concluir
algunos proyectos cientificos, entre los que se encontraba la rea-
lizacion de un misil balistico, y también otro de cardcter més cien-
tifico en el que llevaba tiempo trabajando y que era la posibilidad
de crear un cerebro artificial que llegara a emular, en pequefias
medidas, el comportamiento del cerebro humano.

«¢ Usted me despierta temprano para decirme que tengo razén?
iDespiérteme para decirme que me equivoqué!»

— Joun voN NEUMANN.

La ultima aparicién en piblico de Von Neumann tuvo lugar
en febrero de 1956 en la Casa Blanca, cuando el presidente Eisen-
hower le impuso la Medal of Freedom (medalla de la Libertad).
A partir de ese momento, su estado de salud le obligé a quedar
confinado en su casa. Para finales de marzo de ese mismo afio
estaban programadas las prestigiosas conferencias Sillman de la
Universidad Yale, a las que Von Neumann estaba invitado para ha-
blar sobre sus trabajos acerca de las relaciones entre ordenador
y cerebro. Ante la imposibilidad de su asistencia, la universidad
se ofreci6 a que alguien leyera el manuscrito en su nombre. Sin
embargo, Von Neumann no pudo llegar a finalizar esta tltima ta-
rea y ese manuscrito no llegé a leerse en ptblico nunca. En abril
de 1956, ingresé en el hospital Walter Reed, del que ya no saldria.
A pesar de su mal estado de salud, se hizo instalar un despacho
provisional que le permitiera seguir trabajando.

Los fuertes dolores provocados por la enfermedad obliga-
ron a suministrarle fuertes dosis de morfina, lo que afecté a su
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rendimiento mental. Este progresivo deterioro intelectual fue la
secuela que mas insoportable le resulté a Von Neumann. Ante
la proximidad de la muerte, el fisico hingaro tomé una decisién
inesperada, se convirtié al catolicismo. Durante toda su vida fue
un agnéstico irreductible. Quiza buscé un consuelo que ya no sa-
bia dénde encontrar, aunque fue initil ya que, segin testimonio
de las personas que estuvieron préximas a €él durante el dltimo
afo, las noches y los dias se convirtieron en un infierno delirante.

John von Neumann murié en Washington el 8 de febrero de
1957, a la edad de cincuenta y cuatro afios.

EL PENSAMIENTO MATEMATICO DE VON NEUMANN

Se puede hacer una clasificacion muy general de las matematicas
en matematicas puras y matematicas aplicadas. Actualmente, la
mayoria de universidades las contemplan como licenciaturas di-
ferentes, pero no siempre ha sido asi. A principios del siglo xx, el
desarrollo tecnolégico exigio a los ingenieros una creciente utili-
zacién de las matemaéticas y en muchos casos, si no la creacion, si
la adecuacion de diferentes herramientas matematicas a su traba-
jo. Por otro lado, los nuevos descubrimientos que revolucionaron
la fisica, especialmente la teoria de la relatividad y la mecénica
cudntica, dieron nacimiento a la fisica matematica, una disciplina
con entidad propia y que se encuentra en la frontera entre las ma-
tematicas puras y las aplicadas. Aunque no siempre se reconozca
de forma técita, en términos generales existe un cierto distancia-
miento entre las ciencias puras y las aplicadas. En este contexto,
el término «puro» podria ser aceptado en su acepcion literal. Los
puristas consideran que la investigacion tedrica debe ser indepen-
diente de las necesidades materiales del mundo que les rodea. En
este punto, el caso de Von Neumann es realmente singular, ya que
destacé como genio tanto en la teoria pura como en la creacién
de herramientas matematicas e incluso de dispositivos mecani-
cos para resolver problemas muy concretos, demostrando que
era capaz de moverse con maestria en ambos campos. Abordé
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FOTO SUPERIOR:

El 16 de febrero
de 1956, el
presidente Dwight
David Eisenhower
impuso la medalla
de la Libertad a
Von Neumann,
miembro de la
Comisién de
Energia nuclear,
por su valiosa
contribucion al
adelanto en el
terreno de la
seguridad de
Estados Unidos.

FOTO INFERIOR:
Von Neumann
impartiendo una
conferencia sobre
su trabajo acerca
de las maquinas
calculadoras

en la sede de

la Sociedad
Filosdfica
Americana,

en 1957,
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temas de matemaética pura, como la axiomatizacién de la teoria
de conjuntos o de la mecénica cuéntica, y también obtuvo éxitos
en cuestiones tan «terrenales» como la teoria econémica, la ba-
listica o el disefio del mecanismo de implosién de la bomba até-
mica. Pocos cientificos han mostrado una dualidad tan marcada,
a la que Neumann dedica una interesante reflexién en su articulo
«The Mathematician» («El matemético») publicado en sus obras
completas, que sintetiza esta doble naturaleza del trabajo mate-
matico frente a la que acaba adoptando una postura muy clara.

«Yo estaba conduciendo por la carretera. Los drboles me
pasaban por la derecha de manera ordenada a 60 millas por
hora. De repente uno de ellos se cruz6 en mi camino.»

— JoHN vON NEUMANN.

160

Parece que, dado su alto nivel de abstraccién, las matemé-
ticas puras pueden estar muy alejadas de lo que coloquialmente
entendemos por realidad. Von Neumann defiende que, aun asi, las
matematicas tienen siempre un origen empirico, es decir, basa-
do en algin tipo de experiencia directa con la realidad. Para ello,
toma dos ejemplos. El primero lo proporciona la geometria, que
es la disciplina con la que las matemaéticas nacen como tales. La
propia etimologia del término es una buena prueba de ello, ya que
hace referencia directa a la medida de los objetos. La axiomatiza-
cién por parte de Euclides es lo que la aleja del empirismo, para
convertirla en una ciencia pura. El dilema milenario planteado por
el quinto postulado se debe, segiin Neumann, a que es el tnico de
los cinco en el que interviene un espacio infinito, muy alejado
de la experiencia y que vuelve a reencontrar su sitio en la realidad
cuando se hace uso de las geometrias no euclideas en campos de
la fisica como la teoria de la relatividad general. El otro ejemplo
es el del cédlculo, punto de partida de lo que se puede considerar
como matematica moderna, y que tuvo su origen en los esfuerzos
del astrénomo y matematico aleméan Johannes Kepler (1571-1630)
para conseguir calcular voliimenes de figuras con superficies cur-
vas, lo que acabaria dando origen a la teoria de integrales.
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Von Neumann puso un tercer ejemplo en el que se adentraba
en los ambitos de la l6gica y de la filosofia, donde el empirismo
puede parecer mas ausente, como podria ser la teoria de conjun-
tos, que obligé a revisar los fundamentos de las matematicas. En
este terreno puramente abstracto, se puede esperar un rigor total
en el que las mateméticas queden exentas de cualquier atisbo de
duda en cuanto a la validez absoluta de las verdades que estable-
cen. Sin embargo, el golpe asestado por los teoremas de Gédel
dej6 a las matematicas sin la posibilidad de tener unos funda-
mentos l6gicos consistentes. Ante esta renuncia, Von Neumann
propuso que la ciencia matematica deberia ser aceptada tal cual,
como una realidad sobre la que investigamos, de la misma ma-
nera que aceptamos como realidad la existencia del electrén, lo
que de algin modo le devuelve su caricter empirico. La tesis que
sustenté, segin sus propias palabras, era la siguiente:

Muchas de las mejores inspiraciones matemaéticas proceden de la
experiencia y dificilmente es posible creer en la existencia de un
concepto de rigor matemaético absoluto, inmutable y disociado de
toda experiencia humana.

Mas tarde, Von Neumann llegé a afirmar que de no ser asi,
las matematicas corrian el riesgo de entrar en un proceso de de-
generacién. Hizo una comparacién entre las matematicas y la fi-
sica. La segunda se mueve en campos mucho més delimitados y
concentrados, con menos subdivisiones, lo que tiene dos conse-
cuencias importantes. La primera es que un fisico teérico estd
potencialmente en condiciones de tener un conocimiento general
que le permita abarcar al menos la mitad de todo lo que se sabe en
su materia, mientras que un matemético profesional, como seria
el caso del propio Von Neumann, a duras penas puede aspirar a
estar al corriente de una cuarta parte de lo que se conoce —es
indudable que actualmente esta proporcién se ha visto reducida
sensiblemente—. La segunda cuestién hace referencia a la propia
naturaleza en el trabajo de investigacién. Ante un reto, el fisico se
ve en la obligacion de resolverlo, porque lo habitual es que supon-
ga un freno a todo el cuerpo teérico y que, por tanto, es algo que
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no se puede soslayar. En cambio, para el matematico las cosas
son muy diferentes. Ante un problema frente al que no encuentra
la solucion, basta con dejarlo y pasar a otra cosa sin que por ello
se resienta el edificio matematico. Es mas, Von Neumann incluso
afirmé que la eleccién de un problema concreto como objetivo se
decide por cuestiones puramente estéticas.

Al final del articulo, Von Neumann advertia sobre los peligros
de separarse excesivamente de las fuentes originales. La exagera-
da especializacién a que quedan abocadas las matemaéticas pura-
mente abstractas con su constante alejamiento de la realidad de
sus fuentes originales, puede llevarlas a un proceso de degenera-
cién. En palabras del propio Von Neumann:

En cualquier caso, siempre que se alcance este punto, me parece que
el tinico remedio es el retorno rejuvenecedor a la fuente: la reinyec-
cion de ideas més o menos empiricas. Estoy convencido de que esta
es una condicién necesaria para conservar el frescor y la vitalidad
de la matematica, y que esto seguird siendo igualmente cierto en el
futuro.

Actualmente se generan del orden de 200000 teoremas de ma-
tematicas cada afio. Est4 claro que nadie puede abarcar més que
una infima parte del conocimiento que ello supone. Lo que Von
Neumann vaticiné se ha cumplido, por lo menos en su vertiente
negativa.
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