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CHRISTIAAN HUYGENS fue uno de los cientificos que guid a la ciencia moderna
en sus primeros pasos. El fisico y matemdtico holandés se vio arropado con el manto
de una educacidn exquisita que le permitid introducirse en los circulos intelectuales
del siglo xvi, en una época en lo que las sociedades culturales y el intercambio de
ideas comenzaban o emerger. Pionero en el estudio matemdtico de la probabilidad,
sus trabajos en el campo de lo mecdnica le condujeron ol desarrollo del reloj de
péndulo. Pero fueron sus platos fuertes lu ptica y el estudio de la naturaleza de lo
luz, que le permifieron establecer el principio de Huygens, esfo es, lo base de
lo teoria ondulatoria de la luz desarrolloda posteriormente. También introdujo mejo-
ras sustanciales en el telescopio que le llevaron a descubrir Titdn, el mayor satélite
de Saturno, asi como reconocer sus anillos.
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Introduccion

Si cada nacion tiene derecho a su edad de oro, entonces el siglo xvi
pagoé esa deuda con creces a Holanda. En su modesta superficie,
abreviada por el mar, los rios y los lagos, se concentr6 en aquella
época una plétora de mentes excepcionales que parecia desafiar
la estadistica. Destacaron en todas las artes y oficios, desde la
pintura hasta la milicia, pasando por el comercio, el derecho,
la navegacion, la ingenieria, la literatura o la ciencia. La mayoria
compartia una curiosidad heterogénea, que tendia puentes entre
unas actividades y otras, como si se sintieran comprometidos
en una formidable empresa colectiva.

El fil6sofo Baruch Spinoza pulia lentes para telescopios y mi-
croscopios. Se especula que uno de los pioneros en el campo de la
microscopia, Antoni van Leeuwenhoek, sirvié de modelo a Johannes
Vermeer en El astrénomo y El geégrafo y que, ademas, le mostro las
posibilidades pictéricas de la ciAmara oscura. El ingeniero Simon
Stevin escribia sobre politica y el politico Johan de Witt era un mate-
matico avezado. Todos ellos prosperaron al amparo de la tolerancia
religiosa, que extendi6é su manto protector a extranjeros ilustres,
como René Descartes, y a un amplio registro de autores, que sufrian
la censura en sus respectivos paises. Casi una cuarta parte de los
libros publicados en Europa procedia de prensas holandesas.

A pesar de que durante este periodo de esplendor el mundo
tuvo la impresién de girar en torno a Amsterdam, La Haya o Delft,



Christiaan Huygens vivié muchos afios al otro lado de sus fronte-
ras, sobre todo en Paris. Desde muy pequeiio fue adiestrado para
desenvolverse en el gran escenario del mundo. Acabé eclipsando
a su padre, aunque se trataba de una estrella dificil de tapar. Cons-
tantijn Huygens encarné como nadie al cortesano sofiado por Bal-
tasar Castiglione. Fue poliglota, musico y literato por vocacion y
un diplomético consagrado a la casa de Orange por compromiso
y porque de algin modo tenfa que ganarse la vida. Su espiritu in-
quieto no distinguia entre una cultura cientifica y otra humanfs-
tica. En su biblioteca de La Haya acumulé cerca de 3000 libros,
de los cuales una décima parte eran de fisica y matematicas. La
educacién pluridisciplinar que recibié promovié la curiosidad
omnivora de su vida adulta, que supo transmitir a su hijo Chris-
tiaan. También le facilité una privilegiada red de contactos. En
la edicién de las obras completas de Christiaan Huygens casi la
mitad de los volimenes se ocupa de su correspondencia. Desde
luego, su perfil no corresponde al del sabio huraiio que acrisola su
obra en soledad. Con sus remitentes se podria elaborar el quién
es quién de la ciencia de la época. Huygens discutié sus ideas con
Isaac Newton, Gottfried Leibniz, Robert Boyle, Marin Mersenne,
el marqués de L'Hopital, Robert Hooke o Antoni van Leeuwen-
hoek. Este entramado de vinculos personales, unido al progreso
de las comunicaciones y a la fundacion de las primeras revistas
e instituciones cientificas, como la Royal Society o la Académie
Royale des Sciences —que dirigi6—, le mantuvo al corriente de
los tltimos descubrimientos.

La batalla decisiva de la revolucién cientifica se libr6 en los
cielos, con el telescopio como natural aliado. Huygens se gané
sus primeros galones en el frente abierto por Galileo, al resolver
uno de los problemas que habian suscitado sus observaciones de
Saturno. En las representaciones mas simples de una noche estre-
llada aparecen tres simbolos recurrentes: los circulos, que hacen
las veces de satélites o planetas; los poligonos de varias puntas,
para las estrellas, y los circulos rodeados por un anillo. Esta tl-
tima figura es la mas moderna y no se incorporé al imaginario
astronémico hasta que Huygens la introdujo en 1656. Las lentes
de su telescopio no prestaban la suficiente resolucion para distin-
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guir el anillo de Saturno, asi que su mérito fue vislumbrarlo con
los ojos de una inteligencia bien informada. También localizé la
primera luna del planeta, Titan, y supo establecer con asombrosa
exactitud la escala del sistema solar.

Estos descubrimientos sirvieron de remate a una exhaustiva
investigacion teérica. Huygens escudrifi6 los cielos con sus pro-
pios telescopios, pero antes de sentarse a fabricarlos se molest6
en fundar las leyes de la 6ptica geométrica, que gobiernan las
trayectorias de la luz al cruzar cualquier juego de lentes. Supo
asi como explotar al maximo las posibilidades del instrumento.
Ide6 lentes compuestas que corregian la aberracién esférica y mi-
crémetros que convirtieron el telescopio en una herramienta de
precision.

A partir de la década de 1670 se dio cuenta de que su conoci-
miento de la luz, en apariencia profundo, era meramente descrip-
tivo y pasé a interrogarse acerca de su naturaleza. Este cambio
de actitud dio aliento a una ambiciosa teoria, que se considera el
germen del modelo ondulatorio de 1a luz y que abrié la via a las vi-
siones més complejas de Fresnel, Young y Maxwell. Para Huygens
la luz era una onda en el sentido de que se propaga en circulos
—en realidad esferas— crecientes. La agitacion de las particulas
luminosas se transmite hasta el ojo del observador mediante una
larga cadena de colisiones entre particulas de materia. El llamado
«principio de Huygens» constituye un refinado ejemplo de mate-
matizacion de los fenémenos y ofrecié un soporte conceptual al
enigmético comportamiento del espato de Islandia. Esta variedad
transparente de calcita, descubierta en una cantera de Helgusta-
dir, presenta doble refraccién: los rayos luminosos se dividen en
dos al atravesarlo.

Aunque Saturno y la luz le ganaron una reputacién perdura-
ble, la invencién de la que €l se sentia méas orgulloso era el reloj de
péndulo, que ya habia entrevisto Galileo sin acertar a plasmarlo en
un mecanismo fiable. Huygens atacé el problema desde todos los
angulos imaginables y su estudio, mis que una obra de mecénica,
derivé en un taller de innovacién fisica y matematica.

Con frecuencia Huygens ha sido tachado de «cartesiano»,
una caracterizacién que no le habria hecho demasiado feliz. De
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elegir €l los padrinos, seguramente hubiera preferido a Galileo o
Arquimedes. Descartes fue un arquitecto de grandes sistemas, que
tuvo escasa fortuna a la hora de definir los detalles. Precisamente
estos ultimos eran los que fascinaban a Huygens. Como sefial6
Leibniz, que fue alumno suyo, «no mostraba gusto alguno por la
metafisica». Es cierto que la admiracién por el autor del Discurso
del método cegb a Huygens en su primera juventud: «Estaba con-
vencido de que cada vez que tropezaba con alguna dificultad era
culpa mia por no haber comprendido su pensamiento». No tardé
en desengafarse y en emprender una larga serie de correcciones.
Muchas de sus obras se pueden interpretar como refutaciones al
filésofo francés: su estudio de las colisiones, por ejemplo, o su
Optica geométrica. Hacia el final de su vida firmé una inequivoca
declaracion de apostasia cartesiana: «En la actualidad no encuen-
tro en toda su fisica, en su metafisica o en sus aseveraciones sobre
meteorologia nada que pueda tomar por verdadero». Donde si hu-
biera podido llegar a un acuerdo con Descartes hubiera sido en
su rechazo a la gravitacién universal de Newton y en la biisqueda
de una alternativa mecanicista, que explicara la atraccién entre
cuerpos mediante colisiones contra una corriente de particulas
diminutas.

En buena medida, para Huygens entender un fenémeno supo-
nia traducirlo a lenguaje matematico. En este terreno su destreza
sobrepasé a la de Galileo y, en realidad, nadie le hizo sombra hasta
la llegada de Newton. En una época en que todavia no se habian
establecido las fronteras entre matematica pura y aplicada, Huy-
gens fue fisico en sus matemaéticas y matemaético en su fisica. En
su geometria se reconoce el gusto por la mecédnica de Arquimedes,
que pesaba en una balanza imaginaria las figuras cuya superficie
queria delimitar. Veia el mundo con un ojo fisico y otro matema-
tico, y con la informacién que le proporcionaban ambos su mente
construia una imagen tridimensional. En cierta ocasion afirmé
que la éptica es una disciplina «donde la geometria se aplica a
la materia», un enunciado que valdria para resumir su forma de
entender la fisica. Su intuicién buscé circulos, curvas y angulos
en el espiritu de la luz y en el corazoén de los relojes. El principio
de Huygens, en el que se apuntala su interpretacién de la éptica,
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se puede leer como un tratado de construccién geométrica. Pocos
afnos antes de que iniciara su carrera cientifica, Descartes habia
oficiado el matrimonio entre el dlgebra y la geometria. Huygens
aprovech6 la conexién entre ambas disciplinas y también fue un
pionero en el uso de ecuaciones. Muchos le atribuyen el honor de
haber escrito la primera férmula fisica, en 1652.

Es consabido el aserto de Galileo de que el libro de la natura-
leza esté escrito en lengua matemadtica. Ahora bien, para describir
con propiedad la creciente complejidad de los fenémenos, habia
que aumentar el vocabulario heredado de los griegos y los ara-
bes. En el siglo xvn Newton y Leibniz acufiaron los neologismos
indispensables, cuando desarrollaron el calculo infinitesimal. La
revolucién sorprendié a Huygens con sesenta afos y asistio a su
imparable ascenso con suspicacia. £l habia encontrado ya su ma-
nera de descifrar matematicamente el universo, y no necesitaba
de intérpretes ni admitia férmulas prefabricadas.

En su clasico tratado Principios en el arte de pesar, Simon
Stevin hacia una llamada al pragmatismo: «La reflexién sobre los
principios de cualquier arte supone un esfuerzo baldio cuando su
propdsito no se encamina a la accién». Huygens hizo suya esta
consigna. Pertenecié a una estirpe mestiza de cientificos, como
Galileo o Newton, que no levantaban barreras entre la sala de es-
tudio y el taller o el laboratorio. Lo mismo elaboraba teorias que
fabricaba herramientas o mejoraba el disefio de aparatos para
procurarse mejores observaciones. Siempre sinti6 debilidad por
los instrumentos cientificos, por los telescopios, los microscopios,
las bombas de vacio o los relojes, que consideré a un tiempo como
utensilios y como el escenario de excitantes fenémenos fisicos.
Su obra favorecioé un salto en la instrumentacion cientifica, que
impulsé el conocimiento tanto o mas que sus leyes o principios.

Huygens prefigura al cientifico moderno, no ya por sus obras,
sino por su actitud, por su conciencia de que la ciencia procede
mediante aproximaciones. El no pretendia descubrir la Verdad,
con mayuscula, sino crear modelos operativos: «En el terreno de
la fisica no existen demostraciones ciertas y uno solo puede cono-
cer las causas a través de los efectos, hacer suposiciones basadas
en los experimentos o en los fenémenos conocidos y tratar de ve-
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rificar si otros efectos se muestran de acuerdo con esas mismas
suposiciones». A lo que ailadia: «Sin embargo, esta falta de demos-
traciones en fisica no debe conducirnos a la conclusién de que
todo resulta igual de dudoso, antes bien, debemos ser conscientes
del grado de probabilidad en cada caso, de acuerdo con el ni-
mero de experimentos que tienda a confirmar lo que previamente
hemos conjeturado».

Huygens se vio preso de su perfeccionismo. Sus logros se
pueden contemplar como un iceberg, del que sus contempora-
neos solo atisbaron una octava parte. Dejo asi un legado ambiguo,
puesto que muchos de sus tesoros solo fueron apreciados por los
historiadores. En ese sentido su influencia resulté mucho menos
acusada de lo que merecian la calidad y la cantidad de sus descu-
brimientos. Durante décadas acumulé innovaciones sobre éptica
y retuvo su publicacién porque las consideraba meros pasos in-
termedios hacia el objetivo que se habia fijado: el disefio de un te-
lescopio que produjera imagenes perfectas. Su nivel de exigencia
ante lo que consideraba una obra acabada hizo que muchos de sus
resultados solo se dieran a conocer péstumamente, cuando ya se
habian convertido en mercancia vieja que otros habian explotado.

En cualquiera de sus tratados brilla un talento singular. Fue
un investigador de imaginacién fértil, capaz de idear estrategias
originales para abordar los fenémenos que lo intrigaban. Su estilo
cautivaba incluso a quienes no estaban de acuerdo con él. Otros
pudieron redescubrir las mismas leyes o reproducir sus hallazgos
astrondémicos; sus teorias y sus inventos quiza amarillearon con el
paso del tiempo; pero sus creaciones conservan intacto su atrac-
tivo. Son clasicos donde sigue vibrando toda la elegancia y la fuerza
de su pensamiento. Con herramientas matematicas al alcance de
cualquiera, interpreté la naturaleza como si fuera un instrumento
musical al que solo €l sabia arrancar ciertas notas.
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1629

1645

1647

1652

1655

1657

1659

Christiaan Huygens nace el 14 de
abril en La Haya. Es el segundo hijo
del poeta y diplomético Constantijn
Huygens y Suzanna van Baerle.

Cursa estudios de derecho y
matematicas en la Universidad
de Leiden.

Prosigue su formacién como
diplomatico en el Collegium Auriacum
de Breda.

Deduce las leyes que rigen las
colisiones elésticas. Inicia sus estudios
sobre dptica geométrica, que motivardn
numerosas mejoras en el telescopio,
como el ocular de Huygens, el

micrémetro o el diafragma.

En marzo descubre el primer satélite
de Saturno, Titdn, y meses més tarde
deduce la estructura del anillo.

Publica el primer libro sobre
probabilidad, inspirado en la
correspondencia entre Fermat y Pascal.

Publica el Systema Saturnium, en el
que recoge sus hallazgos astronémicos
y realiza una asombrosa estimacién
sobre el tamaiio relativo de los planetas
y las dimensiones del sistema solar.

En el curso de su investigacion sobre
el reloj de péndulo, descubre la
tautocronia de la cicloide. También
establece el movimiento de un cuerpo
bajo la accién de una fuerza centripeta.

1666

1673

1676

1681

1690

1695

Se instala en Paris para dirigir la Real
Academia de Ciencias francesa, recién
fundada por Luis XIV.

Publica el Horologium oscillatorium,
que contiene una completa descripcion
de su reloj de péndulo. Diseiia relojes
regulados por la compresion y
expansién de un muelle, invento

cuya prioridad le disputa el cientifico
inglés Robert Hooke.

Inicia sus estudios sobre la naturaleza
de la luz, que culminaran en el famoso
principio que lleva su nombre. Con él
logra justificar la doble refraccion de
un cristal de una variedad de calcita,
el espato de Islandia.

Regresa a La Haya.

Viaja a Londres y se encuentra con
Isaac Newton. En sus iltimos afios
escribe el Cosmotheoros, donde
explora la posibilidad de vida en
otros planetas. Discute con el
filésofo aleman Gottfried Leibniz
sobre la relevancia del calculo

Publica el Traité de la lumiére, obra
en la que expone su vision sobre la luz.
Esta obra servira de base para la teoria
ondulatoria desarrollada por Thomas
Young y Augustin Fresnel.

Muere en La Haya, el 9 de julio,
a la edad de sesenta y seis afios.
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CAPITULO 1

La geometria de la luz

La luz fue la gran obsesién cientifica

de Huygens, que se inici6 con su estudio

de la 6ptica geométrica. Sus avances en este
campo le permitieron determinar matematicamente el
comportamiento de los rayos luminosos al atravesar
cualquier juego de lentes, un conocimiento que

aplico a perfeccionar el telescopio. Culminé

este paso de lo tedrico a lo practico con

el mayor descubrimiento astronémico
desde Galileo: Titan.






Hay familias que se consagran a perfeccionar un oficio y lo trans-
miten de padres a hijos con la misma perseverancia que su ape-
llido. En la Europa del siglo xvi1, el nombre de Huygens evocaba
de inmediato el ejercicio de la diplomacia. Lo llevaron con
orgullo embajadores, secretarios y consejeros al servicio de la
Repiiblica de las Provincias Unidas, que habia partido en dos los
Paises Bajos tras declarar su independencia frente al dominio es-
paiiol. El padre de Christiaan recibié el nombre de Constantijn
para celebrar la constancia de los habitantes de Breda durante la
toma de la ciudad en 1581.

La fe calvinista decretaba la salvacién o la condenacién del
alma desde el instante mismo del nacimiento. El pequefio Cons-
tantijn tuvo que asumir que ademas lo predestinaran a servir a un
estado que necesitaba de hombres excepcionales para sobrevivir.
Su padre, secretario de Guillermo de Orange, lo someti6 a una
educacion tan esmerada como implacable, de 1a que el nifio solo
salié bien parado gracias a que era un superdotado. Interpreté
a la perfeccion el papel de cortesano renacentista que le habian
asignado, capaz de orquestar alianzas politicas y tratados comer-
ciales al tiempo que componia un madrigal o asesoraba con tino
sobre la compra de una obra de arte.

Constantijn frecuenté las principales cortes europeas, con la
inevitable excepcién espafiola. De joven tocé el laid para el rey de
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Inglaterra. Fue secretario de dos principes de la casa de Orange,
Federico Enrique y Guillermo II. Los ingleses lo nombraron lord
y los franceses, caballero de la Orden de San Miguel. Sus retratos
cuelgan en las paredes de la National Gallery de Londres o del
Rijksmuseum de Amsterdam. Descartes fue un huésped habitual
de su casa en La Haya y, nada mas conocerlo, se asombré de «que
una sola mente se ocupara de tantos asuntos y se desenvolviera
tan bien en todos ellos». Incluso los menos entusiastas de la poli-
tica holandesa pueden agradecerle que favoreciera la carrera del
Jjoven Rembrandt con encargos oficiales. También supo poner sus
talentos al servicio de si mismo, y de su verdadera pasioén, la lite-
ratura, que cultivé a salto de mata y en siete idiomas. Al final de su
vida habia compuesto cerca de 80000 poemas, una autobiografia
y un diario exhaustivo, que le ganaron un sitio de honor en las
letras holandesas.

Cuando le llegé el turno de educar a sus hijos, Constantijn
intent6 aplicarles la misma plantilla que habia conformado su
propio carécter, para hacer de ellos funcionarios de una élite al
servicio del estatider. '

BAJO EL SIGNO DE SATURNO

Christiaan Huygens nacié el 14 de abril de 1629, la madrugada de
un sdbado. Para los holandeses no era el dia del sabbat sino el dia
de Saturno, un claro aviso para navegantes, puesto que el anillo
del planeta coronaria su gloria cientifica. Dias antes del parto, la
madre, Suzanna van Baerle, tuvo una corazonada. Tras cruzarse
en la calle con un chico de rostro deforme, se convencié de que
daria a luz a un monstruo. La fortuna le quiso llevar la contraria y
Christiaan vino al mundo sin taras. Suzanna fue una mujer de gran
cultura, talento para la pintura e ingenio, que sabia burlarse con
sutileza de los barrocos poemas que le dedicaba su marido. Gran
parte de su vida se vio asediada por la mala salud y unas migraras
demoledoras, que formaron parte de la herencia genética que legé
a su hijo Christiaan. Como tantas mujeres, se jugé la vida en cada
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embarazo. Los partos la dejaban postrada en la cama dias o sema-
nas enteras. Alumbré cuatro hijos varones. El quinto fue una nifia
y esta vez, después de debatirse dos meses contra la intermiten-
cia de las fiebres, Suzanna sucumbié6 a una infeccién. El pequefio
Christiaan tenfa entonces ocho afos y durante mucho tiempo se
neg6 a abandonar la falda de luto.

Huygens se cri6 con el fragor de las campaiias contra los es-
panoles de fondo. Su padre trabajaba para Federico Enrique, un
principe aquejado de una severa adiccién a la estrategia militar,
que pasaba mds tiempo en el campo de batalla que en su resi-
dencia oficial. Aunque sus obligaciones lo mantuvieron alejado
de sus hijos, Constantijn se preocupé de disefiar y supervisar con
cuidado su programa de estudios. Los dos mayores, Constantijn y
Christiaan, compartieron tutores y también aunaron fuerzas para
aliarse contra ellos. El profesor de latin, Henrick Bruno, daba fe
de esta rebeldia:

No se aplican a ninguna de las tareas que les encomiendo, me desa-
fian con descaro y hacen lo que les da la gana. Bruno no existe, no
es mas que aire.

Asi que a veces, cuando Constantijn dejaba el frente espafiol
tranquilo, corria para apaciguar el que se le acababa de abrir en
casa. A pesar de que el padre fomentaba una competencia mode-
rada entre los hermanos, ambos mantuvieron una relacién muy
afectuosa a lo largo de su vida.

Constantijn registré con rigor notarial el desarrollo de sus
hijos, en su diario. Contemplo los primeros pasos de Christiaan con
reparos. El nifio tartamudeaba, memorizaba mal, tendia a ladear
la cabeza y le gustaba hablar solo. A partir de los ocho afios, sin
embargo, tuvo que rectificar el tono de las anotaciones para reflejar
una progresion meteérica. Acostumbrado a ejercer de cazatalentos
para la corte, Constantijn se sintié en la obligacién de ganar al joven
prodigio a la causa de la poesia. A partir de los catorce afios fue
incapaz de arrancarle més versos latinos a Christiaan, ya fuera «me-
diante 6rdenes, promesas o reproches». Harto de recitar de memo-
ria a Virgilio, lo que el nifio queria era que le ensefiaran aritmética.
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Sus primeros tutores fueron estudiantes de teologia o aspirantes a
poetas, que se sentian incémodos ante su obsesion por los modelos
mecanicos. Uno de ellos advertia asi al padre del peligro:

Christiaan [...] vuelve a enredar con juguetes que él mismo se fabrica,

con pequeiias construcciones y maquinas. Demuestran gran ingenio,
sin duda, pero estan totalmente fuera de lugar. Sefior, no querra que
su hijo se convierta en un artesano. La Repiiblica, que ha depositado
tan altas esperanzas en €l desde su nacimiento, confia en que siga el
ejemplo de su padre y se dedique a los negocios.

El nifio planteaba pocos problemas cuando lo dejaban tran-
quilo, pero ofrecia una resistencia adamantina cuando lo obligaban

EL HEREDERO DE ARQUIMEDES

Simon Stevin (1548-1620) era incapaz de observar una obra cualquiera salida
de la mano del hombre sin obsesionarse con el modo de perfeccionar su di-
sefo, ya se tratara de un molino, una bomba de agua, una esclusa o la brida
de un caballo. Este hijo ilegitimo de Brujas supo auparse a pulso y a base de
talento desde la cuna mas humilde hasta la corte de los Orange, donde su
pericia como contable e ingeniero militar le ganaron el aprecio del principe
Mauricio. Su espiritu inquieto bebié con frecuencia de la obra de Arquime-
des, que logré trascender. Descubrio la paradoja hidrostatica: la presion que
ejerce un liguido es independiente de la forma del recipiente y depende solo
de la altura que alcance. Su tratado De Thiende («La décima») extendié en
toda Europa el uso de las fracciones decimales. Poligrafo incansable, produjo
obras de trigonometria, aritmética, geometria, perspectiva, musica, politica,
agrimensura y nautica. También determind el mejor modo de erigir fortifica-
ciones o de organizar un campamento militar.

El andlisis del equilibrio

Entre sus invenciones, la que mas celebraron sus contemporaneos fue un ve-
hiculo terrestre a vela, que dejaba atras a cualquier caballo a galope tendido.
El preferia su analisis del equilibrio de los cuerpos en un plano inclinado. Con-
cibié un argumento ingenioso mediante una sarta de esferas iguales dispuesta
en torno a una doble cufa. Las masas tenian que alcanzar el equilibrio, ya que
de lo contrario la sarta rodaria sin detenerse jamas, poniendo en marcha una
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a malgastar su inteligencia en cosas que no le interesaban. Cuando
cumplié quince afios el padre tird la toalla y decidié alimentar
el fuego en lugar de sofocarlo. Contraté a un tutor especial, Jan
Stampioen, un hombre que se habia ganado una reputacién como
profesor y como matemético: habia dado clases al hijo del prin-
cipe Federico Enrique y habia desafiado en prtiblico a Descartes
con un problema de geometria, desdefiando después la solucién
que le presentara. Disefi6 para Christiaan un amplio programa de
lecturas que repasaba las obras de Ptolomeo, Copérnico, Stevin,
Brahe, Kepler y el mismo Descartes. Ademas de poner al joven
al dia en materia cientifica, le aconsej6é que, en la medida de lo
posible, tratara de llegar siempre a sus propias conclusiones en
lugar de asimilar las de los demés. Una ardua recomendacién que

maquina de movimiento perpetuo.

Puesto que el nimero de esferas DE

es proporcional a la longitud de
las rampas, también ha de serlo la
masa total que se apoya en cada
una de ellas. Asi concluyo que dos
cuerpos unidos por una cuerda,
sobre rampas asimétricas, se halla-
ran en equilibrio cuando sus pesos
sean proporcionales a la longitud
de los planos. Se sospecha que Ga-
lileo nunca dejoé caer dos esferas
—una de madera de roble y otra de
plomo— desde lo alto de la Torre
de Pisa. La leyenda seria un refrito
del experimento que llevé a cabo
Stevin, encaramado a una torre de
la iglesia de Delft. Para refutar la
tesis aristotélica de que la veloci-
dad de caida de los cuerpos resulta
proporcional a su peso, solté dos
esferas de plomo, una diez veces
mas pesada que la otra, que toca-
ron el suelo casi al mismo tiempo.

BEGHINSELEN

DER WEEGHCONST
BESCHREVEN DVER
SIMON STEVIN

b Tcrl.ltlny,
Dnchel,e van Chniftoffel M!\
By Frangoysvan Raphelimghen.

cla o Lxxxv

La cadena de esferas ilustrd la cublierta del
tratado De Beghinselen der Weeghconst
(«Principios en el arte de pesarn).
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Huygens sigui6 al pie de la letra. Constantijn respetaba las inquie-
tudes cientificas de su hijo, pero no se aparté un milimetro de su
propdésito de hacer de €l un perfecto cortesano. Antes de acudir
a la universidad, sabia retérica, esgrima, tocar el latid, la viola de
gamba y el clavecin, montar a caballo, cazar, cantar, bailar, pati-

- nar sobre hielo y pintar. Ademas de su lengua materna dominaba

el griego, el latin, el italiano y el francés. Y lo que es mds impor-
tante, era diestro en el arte de la conversacién y sabia conducirse
como un aristécrata.

EL MATEMATICO FRUSTRADO

El florecimiento de la fisica y las matematicas en Holanda estuvo
estrechamente ligado a la ingenieria militar. En la misma propor-
cién en que el desarrollo de la ciencia escamaba a las autoridades
eclesidsticas, seducia a los nobles protestantes. Los pioneros en
el arte de la mecanica, como Simon Stevin, fueron expertos en
la construccién de fortificaciones. Seguian la estela de Leonardo
o de Galileo, que llamaban a la puerta de principes y mecenas
para venderles las ventajas militares de sus ingenios. En el afio
1600 el estatiider Mauricio, hermano mayor de Federico Enrique,
encomendo a Stevin la fundacién de una escuela de ingenieria en
Leiden. Resulta significativo que se estableciera en un convento
que habia desalojado la reforma protestante. Stevin convirtié las
matematicas en la columna vertebral de su plan de estudios.

A los dieciséis anos, Christiaan viajo a Leiden para matricu-
larse en la universidad. Habia alcanzado un nuevo compromiso
entre sus intereses y los de su padre: cada dia atenderia a dos
clases de jurisprudencia por una de matematicas. En esta dltima
asignatura tuvo como maestro a Frans van Schooten (1615-1660).
Mas recreador que creador, Van Schooten fue un hombre de un
singular talento didactico, que explicaba la ciencia de vanguardia
mejor que sus creadores. Publicé obras de Viete y Fermat, que
hasta entonces circulaban solo en versiones manuscritas. No se
conformaba con componer los libros y enviarlos a la imprenta,
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sino que enriquecia sus ediciones con comentarios y apéndices
extensos, que cubrian lagunas de los autores y facilitaban la asi-
milacién de las novedades. Van Schooten sentia debilidad por
Descartes. No solo divulgé su obra, también su aspecto: fue el
autor de uno de los escasos retratos auténticos que se conser-
van del fil6sofo. Como profesor, sirvié de punto de acrecién de
una productiva escuela fisica y matematica. Guiaba los proyectos
de investigacién de sus alumnos y a menudo publicaba sus obras
como anexos de los libros que editaba. Uno de los més populares,
Ezxercitationes mathematicae («Ejercicios de matematicas»), se
cerraba con De ratiociniis in ludo aleae («Del razonamiento en
los juegos de azar»), un estudio sobre el calculo de probabilidades
de Huygens. El Exercitationes fue uno de los textos que Newton
ley6 durante su etapa de estudiante en Cambridge.

Transcurridos dos anos, Constantijn arrancé a Huygens de
su edén matematico en Leiden para emplearlo como peén en el
tablero de ajedrez donde se estaba jugando su carrera politica. La
muerte de Federico Enrique habia entregado el poder a su hijo
Guillermo y la corte mudaba con la savia de una generacién nueva.
Para granjearse la simpatia del joven estatiider, Constantijn envié
a sus tres hijos mayores al Collegium Auriacum de Breda, cuyo
rector, André Rivet, habia sido tutor de Guillermo. Breda ofrecia
un ambiente menos estimulante que Leiden, al menos desde un
punto de vista cientifico, pero los hermanos Huygens tampoco se
aburrieron. La costumbre de los alumnos de ir a clase armados
desembocé en una pendencia entre el hermano pequefio, Lode-
wijk, ¥ un estudiante borracho. Ante la llamada de atencién del
rector Constantijn los devolvié a casa indignado.

En el plan trazado para Christiaan, la siguiente etapa consis-
tia en perfeccionar su instruccién juridica, la piedra angular en la
formacién de cualquier diplomatico. El mismo advirti6 a su her-
mano mayor de lo que se avecinaba: «Sospecho que nuestro padre
pretende que nos dejemos caer por el despacho de abogados, pero
confio en que la cosa no dure demasiado». Todo el entusiasmo que
le faltaba lo ponia su padre a la hora de recomendarlo para su
primera mision diplomaética. En la hiperbélica carta de presenta-
cién que Constantijn dirigié a Enrique, conde de Nassau-Siegen,
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la ciencia era casi una curiosidad entre los muchos talentos que
adornaban al joven Christiaan.

La retahila debi6 de causar la impresién buscada, porque en
octubre de 1649 Christiaan acompaiié al conde Enrique en su
embajada al reino de Dinamarca que pretendia reducir el tributo
que los barcos holandeses pagaban por atravesar el estrecho de
Oresund. Cumplido su deber, el joven dejé atras la corte en Flens-
burgo y visit6 el castillo de Hamlet, en Elsinor. Quiza desde lo
alto de una de sus torres enton6 su particular ser o no ser, para
protestar por la sombra que su padre proyectaba sobre su futuro.
Desde la atalaya se avistaba la costa sueca, a solo 4 km de distan-
cia, y Christiaan acarici6 el proyecto de cruzar el estrecho para
visitar a Descartes, que residia entonces en Estocolmo y daba
clases particulares a la reina Cristina. El plan se vio frustrado
por las tormentas. Quiza fuera psicosomatico, pero al regreso de
este primer contacto con su porvenir profesional, Huygens cayé
enfermo.

«Un muchacho versado no solo en leyes [...], sino también en
francés, latin, griego, hebreo, sirio y caldeo, que ademas destaca
como matematico, misico y pintor.»

— CARTA DE CONSTANTIIN PRESENTANDO A SU HIJO AL CONDE DE NASSAU-SIEGEN,

24

Ironias del destino, fue otra enfermedad inesperada la que
vino a sacarlo del atolladero. La viruela casi se habia convertido
en un examen obligatorio para los europeos del siglo xvn, del
que no se libraban ni los arist6cratas. En el otofio de 1650, Gui-
llermo II, que acababa de imponerse a sus adversarios politicos,
era vencido por un virus. No lleg6 a conocer a su tnico hijo, que
nacié ocho dias después de su muerte. Los partidarios de una ver-
dadera repiiblica trataron de aprovechar el periodo de regencia
para desmontar lo que seguia siendo de facto una monarquia he-
reditaria. La lealtad de los Huygens a la Casa de Orange les cerré
el acceso a los puestos oficiales. Se habian convertido en especia-
listas de una profesién que ya no podian ejercer. Para Constantijn
supuso un duro golpe; para sus hijos, no tanto. El mayor disfruté
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FOTO SUPERICR
IZGHNERDA:
Constantijn
Huygens rodeado
de sus hijos. La
tradicién pictérica
situaba al
primogénito a su
derecha, lo que
permite identificar
a Christiaan a su
izquierda.

FOTO SUPERIOR
DERECHA:
Christiaan pintado
por Bernard
Vaillant en 1686 a
partir de un dibujo
de su hermana
Suzanna.

FOTOS INFERIORES:
Frans van
Schooten,
profesor de
Christiaan,

y el retrato que
el matematico
realizé de
Descartes. Al pie
figura un texto
de Constantijn.
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de una tregua. Mientras el nifio heredero crecia para convertirse
en Guillermo III, al que serviria como secretario, aproveché para
beber, pintar y dilapidar su exquisita educacién como don Juan.
Christiaan obtuvo via libre para dedicarse a la ciencia.

PRIMERAS INVESTIGACIONES

Gracias a Van Schooten, Huygens habia ganado toda la compe-
tencia matemadtica que cabia adquirir antes de la invencién del
célculo infinitesimal. Sus primeros logros se produjeron en el
campo de la geometria, en ramas que hoy se contemplan como
curiosidades pasadas de moda. Es el caso de las cuadraturas, una
virgueria geométrica que consiste en construir un cuadrado a par-
tir de otra figura cualquiera, de modo que ambas presenten areas
iguales. Las tinicas herramientas que se permiten para su com-
posicién son la regla y el compas, un requisito que desbarata al-
gunas cuadraturas, como la del circulo. Hasta que el matematico
aleman Ferdinand von Lindemann demostré su imposibilidad en
el siglo x1x, se malgastaron en el empeiio improbos esfuerzos. A
los veintidés afios, Huygens localizé un error en uno de los in-
tentos mas intrincados, obra de un jesuita flamenco, Gregorio
de San Vicente. Huygens perfeccioné su propio método para ela-
borar cuadraturas, que aplicé a las secciones cénicas (elipses,
hipérbolas y pardbolas). Mediante una cuadratura aproximada
del circulo, mejoré el método de Arquimedes para calcular deci-
males de .

Van Schooten celebré estos trabajos, convencido de que se
podian situar sin desmerecimiento junto a las grandes obras de los
griegos. Y tenia razén, pero las matematicas del siglo xvi estaban
experimentando un cambio de rumbo vertiginoso que apartaria
su mirada del mundo clasico. Aunque los alardes de geometria
de Huygens tendrian escasa repercusion en la historia de las ma-
tematicas, le granjearon la admiracién de sus contemporaneos.
También le proporcionaron un juego de herramientas fiables con
las que desmontar el mecanismo de la naturaleza.
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Huygens compartia el gusto de Arquimedes por la mecénica,
y en las péginas de ambos conviven los tridngulos y los pesos, las
parabolas y los centros de gravedad, de modo que cuesta precisar
dénde acaba la fisica y comienzan las matematicas, y viceversa.
Existe una palabra holandesa que se diria acufiada ex profeso
para €l: vernufteling. Expresa la destreza a un tiempo de la mano
y de la mente. Ya en su infancia habia apuntado las obsesiones que
lo perseguirian a lo largo de su vida: los mecanismos y la matema-
tica. Huygens no fue artifice de grandes sistemas, como Descartes
o Newton, era un cazador de fenémenos intrigantes, que abordaba
con la actitud de quien destripa un aparato para descubrir sus en-
granajes. En lugar de llaves y destornilladores, Huygens se servia
del algebra y la geometria. Todas sus pasiones concurrieron en
ciertos inventos, como los telescopios y los relojes, surgidos en un
cruce casi magico entre la artesania, la fisica y las matematicas.

En Huygens se produce asi una curiosa tensién entre la abs-
traccién pura y el pragmatismo del artesano, empefiados ambos
en un mismo objetivo. Una excelente muestra de esta dualidad
se puso de manifiesto muy pronto, en su trabajo sobre éptica. Su
interés por las propiedades de las lentes lo embarcé, inadverti-
damente, en su mayor empresa cientifica. A ella se dedicaria con
intermitencias a lo largo de toda su vida. Le condujo a una larga
serie de innovaciones en el disefio de telescopios y a sorprenden-
tes hallazgos astronémicos, pero sobre todo desembocé en una
de las indagaciones mas profundas sobre la naturaleza de la luz.
Se trata de una historia de final agridulce para Huygens, en un
duelo desigual con Newton, pero el primer acto, que nos condu-
cird hasta los confines del sistema solar, fue formidable.

LOS LABERINTOS DE LA LUZ

A finales de octubre de 1652, Huygens confesaba a Van Schoo-
ten: «La diéptrica me absorbe por completo». Kepler habia intro-
ducido el término «diéptrica» en 1611 para referirse al estudio
matematico de la refraccién —la desviacién de la trayectoria de
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la luz— al atravesar un juego de lentes. La
teoria capaz de explicar de forma coherente
todos los fenomenos asociados a la interac-
ci6n de la luz con la materia no cuajé hasta
bien entrado el siglo xx. Sin embargo, para
disefiar instrumentos épticos basta con la
aproximacion de la 6ptica geométrica, que
considera la luz compuesta por un haz de
lineas rectas. A continuacién vamos a re-
sumir en qué estado se hallaba la diéptrica
antes de que Huygens se aplicase a su es-
tudio.

La luz se refracta, o desvia, al cruzar la
frontera entre dos medios materiales que
permitan su paso. Una parte de la luz tam-
bién se refleja, un aspecto que aqui no ten-
dremos en cuenta y que limita sobre todo el
numero de lentes que se pueden incorporar
en un sistema 6ptico. Cuantos més cristales
se vea obligada a atravesar la luz, més se
perderi por el camino, dando lugar a una
imagen mas mortecina.

El fenémeno de la refraccion se observa
con facilidad en la materia transparente
comun, cuando los rayos de sol recorren di-
versas combinaciones de agua, aire o vidrio.
El grado de la desviacién depende de cada
pareja de medios. Asi, un rayo de luz se abre
(B>a) al pasar del vidrio al aire (figura 1),
y se cierra (f <o) al pasar del aire al vidrio
(figura 2).

Cuando atraviesan un cuerpo transpa-
rente, los rayos luminosos deben cruzar dos
veces la frontera. Experimentan por tanto
una doble refraccién: al entrar y al salir. Si
las dos fronteras son planas y paralelas, la
desviacién se traduce en un desplazamiento



d lateral de los rayos, como ocurre en el cristal de una ventana
(figura 3).

Si se deforma la frontera, su contorno «desordenara» los
rayos de luz y los desviara en multiples direcciones, en funcién
del punto en que la hayan cruzado (figuras 4 y 5).

Estas desviaciones se pueden organizar de acuerdo a una
pauta determinada, de manera que produzcan una imagen.

Para el analisis que sigue resulta comodo asumir que los obje-
tos que nos rodean emiten luz visible. En cierto sentido lo hacen,
aunque se trate de una emisién condicionada, que se produce
como reaccion a la luz que reciben (del Sol o de una bombilla, por
ejemplo). Los atomos que componen la materia interacttian con
los fotones —particulas de luz— que llegan a su superficie y en el
proceso desprenden nuevos fotones. La calidad de la luz asi emi-
tida depende de dos factores: de como sea la luz que llega hasta
la materia y de la estructura de la propia
materia —qué atomos la forman y cémo se
organizan en el espacio—. No es 1o mismo
iluminar una manzana con luz solar que con
luz roja artificial; tampoco es lo mismo ilu- a
minar la manzana que un cenicero de cristal

FIG. 4

o un espejo. Se puede situar bajo una lam-
para un libro o una naranja. Ambos reciben
idéntica luz de la bombilla, pero interactian I
con ella de manera diferente y nos enviaran ;
rayos luminosos distintos. Estas discrepan- p
cias proporcionan informacién sobre cémo
son los objetos. A la hora de estudiar la for-
macién de imagenes, nuestro punto de par-
tida sera la luz visible que desprenden los
cuerpos.

Es el caso del 1apiz, con una mina azul,
de la figura 6 (pagina siguiente). De cada
punto de su superficie parten rayos lumino-
sos en muchas direcciones. La naturaleza
de estos rayos contiene informacién sobre
la forma y la composicién del lapiz. Los que

FIG. 5
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escapan del extremo A han interactuado con la mina azul, que
absorbe los colores verde y rojo. Los que surgen de C, han inte-
ractuado con una capa de pintura verde que absorbe el rojo y el
azul. Por 1ltimo, aquellos que llegan de B han interactuado con
la pintura roja de la base, que absorbe el azul y el verde. Todos
los puntos del ldpiz han recibido rayos similares, pero de ellos
emanan rayos distintos, cuya diversidad propaga la informacién
sobre su aspecto. Esta informacién, en general, se pierde en el
espacio. Si colocamos una pantalla L frente al l4piz, a cada punto
de su superficie llegaran rayos luminosos procedentes de toda
la superficie del lapiz. A K, por ejemplo, llegardn rayos azules,
verdes y rojos, como a cualquier otro punto de la pantalla, K'. De
modo que todos los puntos de L recibirdn el mismo tipo de luz del
lapiz: seran indistinguibles. No ofrecen informacién alguna sobre
el aspecto del objeto.

Si entre la pantalla y el 1apiz colocamos una lente de vidrio (fi-
gura 7), se produce un cambio radical. Todos los rayos azules que
parten del punto A y tocan la lente convergen en otro punto, A', de
la pantalla, que también serd azul. Lo mismo sucede con los rayos
rojos de B, que acabaran en un punto rojo B', y con cualquier otro
punto de la superficie frontal del ldpiz. Las diferencias de luz ya
no se mezclan y confunden a lo largo y ancho de la pantalla. La
lente lleva a cabo una separacion selectiva de rayos, debido a la
propia geometria de su contorno y a la refraccién, que asigna a
cada punto del lapiz un punto caracteristico de la pantalla. Como
resultado, en ella se proyectari una imagen invertida del lipiz, que
conserva la informacién sobre su apariencia que habia recogido
la luz al interactuar con él. Esta transmision de datos a través de la
luz es lo que llamamos «ver», puesto que nuestros ojos incluyen
lentes que proyectan una imagen en las células fotosensibles
de la retina.

Si no interponemos una pantalla, una retina o una lamina de
material fotosensible, los rayos se cruzan detras de la lente en los
puntos A', B', C', etc. y continiian su camino sin interferirse (figu-
ra 8). Por tanto, estos puntos se pueden considerar como genera-
dores de un patrén de rayos similar (invertido y a una escala
diferente) al que abandoné la superficie del lapiz.
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Por la misma razén, la imagen sera nitida solo a una distancia
determinada d de la lente, donde convergen los haces de rayos
dando lugar a A', B'y C'. Alli es donde hemos colocado la panta-
lla en las figuras. Si la situamos un poco antes (en d,) o un poco
después (en d,) todos los rayos que proceden de B, por ejemplo,
no se cruzaran en el mismo punto, generando un solo B', sino que
proyectarin un circulo (figura 9). Cada punto original del 14piz
producird asi una mancha luminosa. El resultado recuerda al
efecto de imprimir en un papel absorbente, donde cada punto se
desparrama. Al superponerse unos con otros, los circulos compo-
nen una imagen borrosa.

Desde su fundacién, el principal objetivo de la diéptrica fue
establecer el tamaiio de la imagen y la distancia a la que se genera
con nitidez, en funcién de dénde se haya situado la fuente de los
rayos. La clave para resolver la cuestion reside en la «distancia
focal», que es la distancia a la que converge un haz de rayos para-
lelos tras incidir sobre la lente (figura 10). Seguramente se deter-
mind por primera vez de modo experimental, al prender un fuego
concentrando los rayos solares con un vidrio curvado. El punto
de convergencia recibe el nombre de «foco» y lo representaremos
mediante la letra f.

La distancia focal es el atributo éptico mas importante de las
lentes y, de algiin modo, mide su capacidad para desviar la luz.

FIG. 9
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Depende del material y también

de su geometria, a saber, del grado ' |
de curvatura de sus fronteras, lo =
que incide también en su grosor.
Cuanto mas pronunciada sea la
curvatura de la lente (y por tanto
su espesor), menor sera la distan-
cia focal, y viceversa.

La distancia focal permite di-
vidir el espacio frente a una lente
en tres grandes regiones, que facilitan el estudio de cémo evolu-
cionan las imégenes en funcién de donde se sitiie el objeto. La pri-
mera region se extiende desde dos veces la distancia focal hasta
el infinito. La segunda regién, desde la distancia focal hasta dos
veces la distancia focal. La tercera, desde la lente hasta la distan-
cia focal. Estas tres regiones integran los dominios del objeto.
Se pueden establecer tres regiones simétricas al otro lado de la
lente (cuarta, quinta y sexta), que corresponden a los dominios
de la imagen. Una vez delimitado el terreno de juego (figura 11),
podemos comenzar la partida situando el 1dpiz azul en la primera
region. La lente producird una imagen mas pequefia e invertida en
la quinta. Cuanto mas lejos se encuentre el ldpiz, més cerca que-
dar4 la imagen de f'. A medida que lo vayamos acercando, la ima-

Distancia focal

Hee of f o f 2F

P 2 3| a4 55 | e

LA
——

Dominios del objeto Dominios de la imagen
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gen crecerd al mismo tiempo que se aproxima a 2f". Los objetos
situados en esta primera region producen imagenes ttiles para las
camaras fotograficas, ya que a la hora de hacer fotos nos interesa
«meter» un paisaje o el rostro de una persona en un rectangulo de
unos pocos centimetros.

Justo en el momento en el que el lapiz alcanza 2f, la lente
forma una imagen invertida del mismo tamaio en 2. Si el ldpiz
prosigue su avance y se interna en la segunda regi6n, dar4 lugar
a una imagen aumentada e invertida en la sexta. Cuanto més
se acerque el lapiz a f, mayor sera la imagen y més lejos retro-
cederd, mas alld de 2f". Por esta razén, esta segunda region se
aprovecha para proyectar imdgenes, en una pantalla de cine por
ejemplo.

Cuando el lapiz alcanza f, la lente es incapaz de producir nin-
guna imagen. Los haces que tuerce no se organizan de acuerdo
con ningin patrén til. Una vez dentro de la tercera region, sin
embargo, la lente pasa a desviar los rayos luminosos de una ma-
nera muy peculiar (figura 12). No produce una imagen real, que

~ se pueda proyectar en una pantalla o en el interior de una ca-

mara. Los rayos se organizan de modo idéntico a como lo harian
si procediesen de una version mucho mas grande del lapiz, que
no se muestra invertida. Es lo que se conoce como una «imagen
virtual». Este efecto se aprovecha en las lentes de aumento, que
se colocan muy cerca de los objetos, para situarlos en la tercera
region de la lupa.

En torno a 1608 se descubrié por accidente que al combinar
las desviaciones sucesivas de dos lentes se obtenian imigenes au-
mentadas de objetos remotos. Se acababa de inventar el telescopio.
La figura 13 muestra un esquema de cémo se disponen los crista-
les para explotar las prestaciones 6pticas de sus diversas regiones.
Obviamente, los telescopios apuntan a objetos que se encuentran
mucho maés lejos que dos veces la distancia focal de su primera
lente, el objetivo. Por tanto, este materializa una imagen mas pe-
quefia entre su f" (en la figura, /" ) y su 2f". Esta imagen se podria
registrar en una camara. La misi6n del objetivo es «cazar» el objeto
lejano y poner su imagen a tiro de la segunda lente, el ocular. Este
trabaja como una lupa. Se ubica de manera que la imagen generada

LA GEOMETRIA DE LA LUZ



2f f 2f

v

FIG. 13

Cuerpo

Objetivo

Imagen final

Efecto
camara
fotografica

por el objetivo caiga en su tercera regién (entre el ocular y su foco,
Jf..), para crear, a partir de ella, una imagen virtual muy aumentada.
En la figura 14 (pigina siguiente) se puede apreciar la trayectoria
de los rayos. El objetivo genera los puntos A' y B', que caen en la

tercera region del ocular. Este tiltimo genera una imagen virtual con
puntos A"y B'".
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FIG, 4

FIG. 15
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A ey A
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Hipérbola

Circulo

Los objetivos suelen ser relativamente grandes. Cuanta
mayor superficie presenten més luz recogerdn, una condicién in-
dispensable para definir objetos de los que nos llega muy poca
luz, como sucede con las estrellas. El ocular ofrece un grosor y
una curvatura mayores, para acortar la distancia focal, torcer con
mas fuerza la luz y proporcionar asi un aumento superior. Aunque
no lo hayamos especificado hasta ahora, hemos estado hablando
siempre de un tipo de lente particular, la biconvexa. Pertenece a
la familia de las lentes esféricas, con fronteras de seccién circu-
lar, como las que se representan en la figura 15 (a es biconvexa,
b, planoconvexa, ¢, planocéncava, d, bicéncava y e, concavocon-
vexa). También existen otras familias, con perfiles parabélicos (f)
o hiperbdlicos (g).
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En la naturaleza, los rayos de luz no muestran un compor-
tamiento tan disciplinado como en los dibujos. Los telescopios
nacieron aquejados de dos enfermedades épticas, la aberracién
esférica y la aberracién cromética, que comprometen la calidad
de sus imégenes. Las lentes esféricas se comportan como lentes
ideales solo con los rayos que las cruzan cerca de su centro, lo que

reduce el campo de vision ttil.

LAS ABERRACIONES DE LA LUZ

La aberracion esférica obedece a
que una lente esférica no dirige al
mismo punto todos los rayos lumi-
nosos paralelos que inciden sobre
su superficie, lo que produce ima-
genes borrosas. Para componer una
imagen nitida, hay que combinar las
desviaciones que introduce la re-
fraccién con las que causa el perfil
de la lente. Una frontera de vidrio
circular solo hace converger a un
mismo foco los rayos préximos a su
centro. A medida que los rayos se
alejan camino del borde, se inten-
sifica la divergencia. Para que una
lente de vidrio produzca imagenes
sin aberracion esférica su frontera
debe curvarse siguiendo contornos
no circulares, como los de una elip-
se 0 una hipérbola, impracticables
con las técnicas artesanales que se
conocian en la época de Huygens.
La naturaleza cuenta con recursos
superiores vy los trilobites, unos ar-
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Portada del Tratado de /a luz de Huygens,
obra que contiene disefios de lentes que
corrigen la aberracién esférica.

tréopodos marinos ya extinguidos, incorporaban hace millones de afios, en
sus ojos, disefios como los que sofid Descartes. La aberracion cromatica se
debe a un motivo distinto. Al atravesar el vidrio de una lente, la luz blanca
no se desvia en bloque, sino que se abre en un abanico de colores, como
hace al cruzar un prisma. Asi, cada punto se desparrama, creando una ima-

gen borrosa.
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HUYGENS ENTRA EN ESCENA

La invenci6n del telescopio no valid6 de manera automaética la
teoria de Copérnico, pero alteré de forma dramatica los términos
del debate entre los partidarios y los adversarios del heliocen-
trismo. El universo aristotélico se habia construido a partir de
lo que el ojo humano era capaz de distinguir a simple vista. Lo
que caia fuera de su alcance se habia completado con una sin-
gular mezcla de légica e imaginacién. La fascinacién griega por
las formas redondas habia postulado la necesidad de una Luna y
unos planetas de una esfericidad perfecta. Una de las objeciones

LA LEY DE LA FRONTERA

Ya en el afio 984, el persa |lbn A B T

Sahl habia formulado la ley de la P [ Y
refraccion en su Libro sobre los s | A\
instrumentos incendiarios, pero / r\ ol \

ningtin astrénomo occidental i .
acuso recibo. En el siglo xvi fue | |
redescubierta un minimo de tres T
veces. Thomas Harriot lo hizo en
1601, pero no se molesté en pu- \
blicarla. Willebrord Snell repitié \
el hallazgo en 1620 vy solo lo di- %
vulgé entre un reducido circulo
de afortunados, a través de su Sy
correspondencia. Descartes lle- |

gd a las mismas conclusiones

que sus predecesores a finales

de la década de 1620. A la tercera fue la vencida y él si publicé la relacion en
uno de los apéndices del Discurso del método. Como vivio una larga tempo-
rada en Holanda, muchos compatriotas, Huygens entre ellos, se maliciaron
que, en un descuido, el francés le habia echado un ojo a alguna carta de Snell.
No parece que la acusacion sea justa. En cualquier caso, la ley se quedd con
el nombre de Snell. Mucho antes que todos ellos, Ptolomeo habia tabulado
los angulos que forma la luz al cruzar la frontera del agua. Observé como a
medida que aumenta «, se incrementa B, pero que la progresion no es lineal.
Fue incapaz de dar con una férmula matematica que al introducir el primer
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al heliocentrismo argiiia que si la Tierra debia perder su posicién
central en el universo, ;por qué retenia ciertos privilegios, como
ser el unico planeta con satélite? A partir de 1610, Galileo revel6
el verdadero rostro de la Luna, que la distancia ya no maquillaba,
con sus crateres y montafas, y las cuatro lunas de Jupiter. El te-
lescopio revelaba con crudeza un sistema solar que desmentia es-
peculaciones milenarias, basadas en la falta de informacién.
Fascinado por la contundente exhibicién de Galileo, Kepler
se propuso perfeccionar el telescopio. Hasta entonces las mejoras
en el instrumento se venian introduciendo por el procedimiento
de ensayo y error. Kepler no confiaba en el azar. Quiso corregir los

angulo produjera automaticamente el segundo. En su Tratado sobre la luz,
Huygens recurria al dibujo de la figura para deducir la ley de refraccion. llustra
un rayo de luz que atraviesa el aire desde A hasta O, donde toca la superficie
horizontal de un blogue de vidrio. Su trayectoria recta forma un angulo a
con una imaginaria linea vertical que sirve de referencia. Al cruzar la frontera,
el rayo se desvia y atraviesa el vidrio a lo largo de otra linea recta, bajo un
angulo menor, B, desde O hasta D. Para hallar la relacién entre a y p basta
con trazar un circulo de radio arbitrario r. El cociente entre la longitud de los
segmentos AB y CD es constante para cualquier pareja de angulosa y By

vale aproximadamente 1,52.
AB A8 .52
cb C'D

Este numero cambia para otras parejas de medios. En el paso del aire al agua
vale 1,33. La relacién entre los segmentos se puede expresar en funcion de los
angulos utilizando la razén trigonomeétrica seno. En el diagrama de Huygens:

senu-A—B y sen B*@<
r r

Asi, la ley de Snell queda:

sena
senf

=152

Esta igualdad proporciona el angulo de salida para cualquier rayo incidente,
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defectos de las lentes y descubrir sus configuraciones més venta-
Jjosas a través de un estudio tedrico, que ademads explicase su fun-
cionamiento. Por desgracia, le faltaba un recurso imprescindible
para coronar con éxito la empresa. Hemos visto cémo la luz se
desvia al pasar del aire al vidrio, pero jcudl es la relacién exacta
entre los dngulos de entrada y salida, o y B? La respuesta es una
relacion trigonométrica, la ley de Snell, que Kepler ignoraba en
1610, cuando completé su tratado Dioptrice.

«De entrada puli mal la cara opuesta: fue debido a que apliqué
demasiada agua al principio o no puli donde debia. Logré
corregirlo, hasta cierto punto, puliendo de nuevo en el lugar
adecuado; después, al seguir puliéndolo, se volvi6 a estropear.»

— DEescripcioN DE HUYGENS DEL PULIDO DE LENTES.

40

Los dibujos de la seccién anterior ilustraban un andlisis
cualitativo de la formacién de imagenes. Sucede lo mismo en
los diagramas que Kepler inserté en su Dioptrice. Los rayos de
luz se tuercen al cruzar las lentes, pero ;exactamente cuanto?
Kepler solo pudo responder con las desviaciones medidas de
forma experimental. Este procedimiento recortaba su ambicién
de elaborar una teoria general, porque para explorar cada una de
las posibilidades haria falta que un artesano puliera lentes con
todas las curvaturas imaginables. Para obtener resultados gene-
rales y especular a su antojo sobre cualquier configuracién de
rayos y lentes necesitaba la relacién matematica exacta entre los
dngulos de la refraccién.

Aunque existen ciertas disputas al respecto, parece que Des-
cartes dedujo la relacién de Snell de forma independiente a finales
de la década de 1620. Llegé a una ley que equilibra en una ecua-
cién angulos y rayos de luz, fisica y geometria, pero Descartes se
decantd por su lado matematico. La aplicé en una serie de célcu-
los elegantes, para confeccionar una teoria casi platénica de c6mo
debian ser las lentes ideales de los telescopios, con perfiles hiper-
bélicos y elipticos, que eliminaban la aberracién esférica. Incluso
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disend el torno que las produciria. Por desgracia, no hubo arte-
sano capaz de tallar los cristales que exigia su imaginaci6n. Con
la tecnologia de la época, las tinicas lentes viables eran esféricas.

Huygens quiso hacer realidad el telescopio sofiado por Des-
cartes, pero a partir de los cristales que los artesanos sabian fa-
bricar. Fue el primero en aplicar la ley de Snell para calcular con
exactitud la distancia focal y los aumentos de cualquier lente es-
férica y determinar el tamaiio, la ubicacién y la orientacién de
sus imdgenes. Asi pudo plasmar sobre el papel el resultado de
cualquier configuracién de dos o més lentes que se le ocurriera,
sin necesidad de manipularlas fisicamente.

Conociendo la relacién entre o y B para los cruces de fron-
tera entre el aire y el vidrio, y la geometria de las lentes, cum-
pli6 la ambicién de Kepler de reducir la diéptrica a un problema
matematico. Después de sentar las bases de una teoria general
del telescopio, introdujo las primeras mejoras premeditadas en el
instrumento. Para un objetivo cualquiera calculé la curvatura de
un ocular céncavo que, ubicado a una distancia determinada, co-
rregia por completo su aberracion esférica (figura 16). Se trataba
de un éxito parcial, porque este emparejamiento (un objetivo con-
vexo y un ocular céncavo) correspondia a un telescopio terrestre,
como el que utilizé Galileo. A partir de los cincuenta aumentos,
estos telescopios ofrecen un campo visual tan reducido que se
vuelven inservibles para la observacién astronémica.

Huygens complet6 en dos afios el primer borrador de un tra-
tado donde organizaba, a lo largo de un centenar de paginas y en

FIG. 16
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una secuencia de proposiciones, su interpretacién matematica
de la diéptrica. Se pasaria el resto de su vida puliendo el manus-
crito, como si se tratara de una lente a la que siempre encontraba
defectos. Después de escribir la contribucién méas completa a la
teoria de las lentes desde Kepler —y de aparcarla en un cajén
de su escritorio—, consider6 que habia llegado el momento de
pasar a la accién. Si no habia quedado satisfecho con la teoria
de Kepler y Descartes, menos le convencié la calidad de los ins-
trumentos 6pticos que pudo adquirir en el mercado. Las lentes
que salian de los talleres se destinaban a lupas y gafas y distaban
de cumplir las exigencias que demandaba la incipiente tecnolo-
gia de los telescopios. Con la ayuda de su hermano Constantijn,
en 1654 Huygens emprendio la tarea de pulir sus propios objeti-
vos y oculares. No se habia propuesto una empresa sencilla. En
primer lugar, tuvo que lidiar con el secretismo de un gremio par-
ticularmente opaco. Una técnica novedosa permitia destacar a
un artesano sobre los demas, asi que el mejor modo de mantener
una posicién privilegiada era no compartir los descubrimientos.
Algunos se los llevaron a la tumba. Fue el caso del célebre fa-
bricante de telescopios francés Philippe-Claude Lebas. Ningun
ruego fue capaz de arrancar a la viuda el secreto de su depurada
técnica para pulir lentes.

A grandes rasgos, en la época de Huygens se partia de un
trozo de vidrio cuajado en un molde. En esta etapa preliminar ya
se introducian los primeros defectos dpticos. Las impurezas de
hierro coloreaban el vidrio; las burbujas y la densidad irregular
del material distorsionaban las imagenes. A la pieza se le daba
forma de lente con ayuda de un torno, frotidndola con polvos o
sustancias abrasivas. El modelado en bruto suponia el proceso
mas trabajoso; el de pulido, el mas delicado. Aunque Christiaan
diseiié un torno especial para facilitar la tarea, con el tiempo fue
dejando el grueso del trabajo en manos de los artesanos y se re-
servo el pulido final de los objetivos.

El contacto directo con las lentes y el trabajo en el taller afia-
di6 una nueva dimensién a su comprension de la diéptrica. La
préactica a veces produce resultados que uno no ha sabido leer en
la teoria. Entre ellos destaca una combinacion particularmente
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EL FILOSOFO ARTESANO

Para Bertrand Russell, Baruch Spino-
za (1632-1677) fue «el mas noble y
el mas amable de los grandes filéso-
fos». Lejos de compartir esta opinién,
la comunidad judia de Amsterdam lo
expulso de su seno en el verano de
1656, para castigar «sus actos y opi-
niones perversas». Spinoza, que dos
afnos después de la muerte de su pa-
dre habia rehusado hacerse cargo
del negocio familiar —una empresa
dedicada a la importacién y expor-
tacidon—, se vio entonces abocado a
una situacion delicada. Sus etéreas
incursiones en la ética o la teologia
necesitaban con urgencia de algun
medio mundano para sostenerse.
Hallé el que mejor se acomodaba a
su caracter en el tranquilo, paciente
y solitario oficio del pulidor de len-
tes. Esta eleccion también procurd su
muerte, ya que la inhalacion del pol-
vo de cristal agravo sus problemas
respiratorios. En la primavera de 1663
se instalo en la villa de Voorburg, en
la casa del pintor Daniel Tydeman, @  Retrato de Spinoza realizado por Franz

un paseo de cinco minutos de Hof-  Wulfhagen en 1664.

wijck, la casa de campo de los Huy-

gens. En aquella época, Christiaan y

Spinoza se vieron con frecuencia, discutieron sobre dptica y astronomia y
compartieron el placer de criticar a Descartes. Huygens tenia en alta estima la
habilidad manual de Spinoza, pero sentia poco aprecio por su filosofia. Quiza
se pueda disculpar recordando el comentario de Leibniz de que Huygens «no
mostraba gusto alguno por la metafisica». Por su parte, Spinoza admiraba
la ciencia de Huygens, aunque mostraba ciertos reparos hacia su técnica de
pulido: «Huygens ha estado y sigue estando absorto en el pulido de cristales
didptricos, y con ese motivo ha montado una maquina, bastante precisa, por
cierto, con la que puede fabricar lentes ayudandose de un torno. No se toda-
via qué pretende hacer con ella vy, si he de ser sincero, tampoco me interesa
demasiado. La experiencia me ha ensefado a pulir lentes esféricas a mano
con mas seguridad y perfeccién que ninguna maquina».
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FIG.17

Objeto

feliz de lentes: el «ocular de Huygens» (figura 17). Lo integran dos
lentes, que se sincronizan para dilatar el campo visual y reducir
tanto las aberraciones como las manchas producidas por las bur-
bujas o las irregularidades del vidrio.

En marzo de 1655, después de mds de un aiio de esfuerzos,
Constantijn y Christiaan completaron el montaje de su primer
telescopio, que media 4 m de largo y proporcionaba 43 aumen-
tos. Huygens lo estrené en el desvén de la casa familiar. Al caer
la noche abri6 las contraventanas de madera, acomodé el teles-
copio contra algin soporte (una escalera de mano, quizd) y lo
apunté al cielo. En el siglo xvu los astrénomos no tenian que huir
de las ciudades, ya que no existia la contaminacién luminica. Las
calles de La Haya carecian entonces de farolas, faros de coches o
neones que se interpusieran entre Huygens y el universo.

Christiaan contemplé primero el cuerpo celeste mas inme-
diato, la Luna. Espoleado por las hazafias de Galileo, pronto es-
cruté las inmediaciones de Marte y Venus, a la caza de nuevos
satélites. El primer boceto que se conserva de Saturno, salido de
su mano, lleva la fecha del 25 de marzo de 1655. Esa misma noche
advirtié la presencia de un punto brillante en la vecindad del pla-
neta. Noche tras noche sigui6 su evolucion. Pasados dieciséis dias
el punto habia regresado a su posicién inicial: se trataba de un
satélite que habia completado una érbita alrededor de Saturno.
La suerte habia jugado en favor de Huygens, porque hizo las ob-
servaciones en un momento en que el anillo estaba a punto de
ocultarse, de modo que su brillo no apantallaba el entorno del
planeta con un exceso de luz.

Doble ocular
Obijetivo P ——
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Las ocho primeras lunas de Saturno se descubrieron en mo-
mentos andlogos, en lo que se conoce como cruce del plano del
anillo. Entonces el disco se muestra de canto y su amplia superfi-
cie no refleja la luz del Sol hacia la Tierra. Los cruces son breves y
hay que aguardar unos catorce afios a que se repitan. Sin embargo,
no cabe atribuir todo el mérito a la suerte. Otros astrénomos ha-
bian localizado el mismo punto luminoso junto a Saturno cuando
Huygens era un adolescente, pero lo habfan tomado por una es-
trella. Huygens siguié con tenacidad su trayectoria en torno al
planeta (registré hasta 68 ciclos a lo largo de cuatro afios) para
fijar con precisién la duracién de su periodo. Més tarde recibiria
el nombre de Titan. El joven Christiaan habia estrenado su tele-
scopio con el mayor descubrimiento astronémico desde Galileo.

En junio divulgé entre un escogido circulo de corresponsa-
les un verso de los Fastos de Ovidio, con varias letras anadidas:
Admovere oculis distantia sidera nostris vvvvvvw ccec 1 hnbgx
(«Acercaron a nuestros ojos las estrellas remotas»). Quien supiera
reordenar las letras, obtendria una frase menos poética, pero no
menos sugerente: Saturno luna sua circunducitur diebus sex-
decim horis quatuor («La luna de Saturno gira a su alrededor en
dieciséis dias y cuatro horas»). Huygens no comunicé la solucién
a su juego de palabras hasta casi un afio después.

A principios de julio, tuvo que interrumpir sus observaciones
para atender los requerimientos de su padre. Constantijn queria
que se presentara en la Universidad de Angers para que se hiciera
con el titulo de doctor utriusque juris, es decir, de «doctor en
ambos derechos» (el civil y el canénico). Se trataba de un mero
tramite. Huygens no tendria que malgastar mas horas memori-
zando gruesos tratados de jurisprudencia, el diploma lo habia
comprado Constantijn al médico precio de 50 florines.

El joven aprovecho la excursién para disfrutar de una estan-
cia de cuatro meses en Parfs. La primera impresiéon que se llevé
de la ciudad no figura en el catdlogo de ninguna agencia de viajes.
Al poco de instalarse, escribia a su hermano mayor:

Todavia no he tenido tiempo de visitar ni a poetas ni a misicos, me
he limitado a vagar con mis compaiieros por las calles. Estdn llenas
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EL PLANETA ENCUBIERTO

Christiaan Huygens nunca llamé Titan a la luna de Saturno que habia des-
cubierto. Fue el astrénomo inglés John Herschel (1792-1871) quien le dio su
nombre definitivo. Titédn supo estar a la altura del enigmatico planeta que
orbitaba. La obsesién antropocéntrica por la busqueda de la vida considerd
durante mucho tiempo los satélites como astros de segunda. La revelacién de
que Titan era el cuerpo del sistema solar con la atmdsfera mas densa después
de la Tierra excitd la imaginacién de los astrénomos. Alguno llegé a calificarlo
de planeta enmascarado. Los escritores de ciencia ficcion se atrevieron a
materializar las fantasias de los cientificos. Isaac Asimov, Robert A. Heinlein,
Philip K. Dick, Kurt Vonnegut, Arthur C. Clarke o Stanislaw Lem poblaron la
mayor luna de Saturno de robots y de un abigarrado bestiario de alienigenas.
La realidad que nos transmitieron las sondas espaciales resultd mas prosaica,
pero no menos fascinante. Con la Tierra, Titan es el Unico cuerpo del sistema
solar con masas liquidas estables sobre su superficie. Posee lagos y valles flu-
viales, en los que no circula el agua, sino hidrocarburos liquidos. El metano y el
etano cambian de estado, se evaporan, se condensan en nubes y se precipitan
en lluvias. Después de siete afos de singladura espacial, un vehiculo robot del
tamafio de una lavadora, llamado Huygens, se separd de la sonda Cassini el
dia de Navidad de 2004. El 14 de enero se convertia en el ingenio humano que
se posaba mas lejos de nuestro planeta, al aterrizar en Titan.

Mapa de Titan compuesto con imagenes tomadas por la nave espacial Cassini, de la NASA, en el
afio 2009.
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de barro y apestan de un modo horroroso, ya que la gente vuelca sus
orinales por las ventanas, sin mas que avisar: «jAgua va!» [...] Cuen-
to con una habitacién para mi solo, alfombrada casi de arriba abajo.
En el atico hay ratas y ratones, que con frecuencia vienen a visitarme.
Y también tengo chinches, que me incordian durante la noche, asi
que llevo la frente y las manos cubiertas de picaduras.

En una visita al castillo de Fontainebleau disfruté lanzando-
les migas de pan a las obesas carpas. Para distraerse del asedio
nocturno de las chinches, su mente daba vueltas a un enigma que
mantenia en jaque a los mejores astrénomos de Europa.
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CAPITULO 2

El enigma de Saturno

Saturno dio origen a uno de los
rompecabezas mas desconcertantes del nuevo
cosmos que progresivamente iba revelando el telescopio.
Desde que en 1612 Galileo planteé el problema de las
multiples apariencias del planeta, la cuestién mantuvo
en jaque a los astrénomos. Fue un joven Huygens
quien, cuatro décadas después, ofrecié una
solucién tan sencilla y elegante
como inesperada.






Al final, no todo fueron ratas, chinches y sobresaltos en las ca-
llejuelas de Paris. Huygens terminé encontrando a los miusicos y
poetas que buscaba. Asi resumié los motivos que le habfan ofre-
cido sus acompanantes —entre los que figuraban su hermano pe-
quefio Lodewijk y su primo Louis Doublet— para visitar la capital
del reino de Francia:

Uno declaré que habia venido para aprender a comportarse en la
buena sociedad; otro, para que le presentaran celebridades; un ter-
cero, en cambio, se interesaba por los edificios elegantes y la dltima
moda, y lo tinico que pretendia un cuarto era estar lejos de su casa.
Después de mucho discutir, y de hacerlo acaloradamente, se decidié
casi por unanimidad que, para todo lo que se gana estando aqui, no
merece la pena recorrer una distancia tan larga.

El tono de la carta era humoristico y por eso no alegé un
quinto motivo que compensaba con creces las molestias de un
viaje de cerca de 500 km. Huygens aterriz6 en el Paris del Grand
Siecle en plena moda de los salones. Al tiempo que florecian las
veladas literarias de Madame de Maintenon o Mademoiselle de
Scudéry, la ciencia inspiraba sus propios cendculos. Gracias a la
intercesién de Constantijn, Christiaan fue introducido en los cir-
culos de Claude Mylon y Habert de Montmor, que se convertirian
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en el germen de instituciones cientificas mejor organizadas y con
mas recursos, como la Real Academia de Ciencias francesa. En la
Biblioteca Real, al abrigo de casi 20 000 volimenes, Huygens tuvo
ocasion de alternar con el poeta Jean Chapelain, los astrénomos
Adrien Auzout e Ismaél Boulliau o Gilles de Roberval. Una cons-
telacion de mentes inquietas que se daban unos a otros el trata-
miento que consideraban mas noble: el de matematicos.

No hace falta ningiin gurd para concluir que el secreto de
una prospera vida profesional es una buena agenda. Este dogma
contempordneo se hacia méas cierto todavia en la comunidad
cientifica del siglo xvi, cuando no existian revistas especializa-
das y la principal fuente de informacién era la correspondencia.
Las relaciones personales adquirian entonces un valor incalcu-
lable. Permitian estar al dia de los tltimos descubrimientos y
de las investigaciones en curso. Con frecuencia, los grandes tra-
tados pasaban a limpio péaginas que antes se habian entregado
a la posta y habian recorrido media Europa a lomos de los ca-
ballos. En el intercambio entre sabios se corregian los errores,
se compartian problemas y se sometian a prueba las ideas. Los
encabezamientos y despedidas de estas cartas refieren infinidad
de noticias, detallan envios de obras para el destinatario o sus
conocidos o solicitudes de libros que no se pueden adquirir de
otro modo. Uno de los mejores ejemplos de la correspondencia
como taller o work in progress se encuentra en las cartas que
cruzaron Blaise Pascal y Pierre de Fermat. Compusieron a cuatro
manos las bases del moderno célculo de probabilidades, en una
colaboracion que tuvo su origen en el desafio a Pascal de Antoine
Gombaud, que se habia armado a si mismo caballero de la Mere.
Huygens tuvo conocimiento de €l, casi con seguridad, durante
su primera estancia en Paris. Su caricter, que lo atraia como un
iman a los problemas (cientificos), lo empefié en su solucién.
Huygens redescubrié por su cuenta muchos resultados de Pascal
y Fermat, afiadiendo sus propias aportaciones y presentandolas
conforme a su particular gusto y temperamento en Del razona-
miento en los juegos de azar.

Constantijn abrié a su hijo todas las puertas que franquea la
llave de la diplomacia. Si bien Huygens exploté a fondo su red de
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EL FALSO CABALLERO Y EL JANSENISTA

El matematico francés Siméon Denis Pois-
son (1781-1840) situaba el origen del cal-
culo de probabilidades en «un problema
relativo a los juegos de azar, propuesto
por un hombre de mundo a un austero
jansenista». Esta pintoresca alianza alum-
bré una de las ramas de la matematica
mas pegadas a la tierra. El hombre de
mundo era el caballero de Méré (mas un
apodo que un titulo, puesto que Antoine
Gombaud era de origen noble pero no ca-
ballero). El austero jansenista respondia al
nombre de Blaise Pascal. &Y el problema?
Ha pasado a la historia como «el proble-
ma de los puntos». Se puede enunciar  Retrato de Blaise Pascal.

como sigue. Dos jugadores se enfrentan

con las mismas probabilidades de ganar en un juego de azar. Antes de comen-
zar, aportan cantidades iguales de dinero, que se llevara el vencedor. Se acuerda
que este sea el primero que gane un numero determinado de partidas. En el
caso de que un imprevisto obligue a interrumpir el juego, {qué procedimiento
deben seguir los jugadores para repartirse el dinero del modo mas justo?

Huygens entra en la partida

El caballero de Méré anima la investigacion planteando mas problemas relacio-
nados, igual que hicieron Pascal y Fermat, y cuantos tuvieron noticia del asun-
to. Entre ellos se contaba un joven Huygens. éCual fue su aportacién? Existe al
respecto cierto debate. Nosotros aqui nos remitimos a sus propias palabras,
tal como figuran en la carta a Van Schooten que encabeza Del razonamiento
en los juegos de azar. «Es preciso declarar, por otra parte, con el fin de que
nadie me atribuya el honor de la primera invencién, que no me corresponde,
que hace ya cierto tiempo que algunos de los mas célebres matematicos de
toda Francia se han ocupado de este género de Calculo. Pero estos sabios,
aunque se pusieron a prueba proponiéndose muchas cuestiones dificiles de
resolver, sin embargo han ocultado sus métodos. Por tanto, me he visto obli-
gado a examinar y profundizar yo mismo en toda esta materia [...]». Huygens
no postergd la publicacion de la obra, como hizo en numerosas ocasiones,
hasta perder el reconocimiento de la prioridad. Solo medié un afio entre su
estancia en Paris y la edicién del libro, que envid a Van Schooten en mayo de
1656. Durante mas de medio siglo se mantuvo como el Unico texto publicado
sobre el calculo de probabilidades. Cubri¢ asi un vacio en la literatura, entre
las tentativas parciales de Cardano y Galileo y el gran Ars Conjectand, «El arte
de hacer conjeturas», de Jakob Bernoulli, que vio la luz péstumamente en 1713.
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contactos, a cambio tenia mucho que ofrecer. En Paris su descu-
brimiento de Titdn causé sensacion. Cuando Jean Chapelain le
urgio a que lo diera a la imprenta, Huygens no se atrevié a llevarle
la contraria, pero le reconcomia un escripulo que lo perseguiria a
lo largo de su carrera cientifica: 1a conviccion de que el trabajo no
estaba terminado. ;Qué tratado sobre Saturno se podia considerar
completo si no desvelaba el misterio que envolvia sus desconcer-
tantes apariciones?

LOS TRES ROSTROS DE SATURNO

El telescopio no solo ayudé a que se asentara un nuevo modelo
cosmolégico, introdujo también rompecabezas inesperados. El
que planted Saturno resistio el ataque de los astrénomos maés bri-
llantes durante casi medio siglo.

La publicaciéon en marzo de 1610 del revolucionario Sidereus
nuncius («El mensajero de las estrellas») no frend la racha de
descubrimientos de Galileo. Cuando Kepler recibié en agosto del
mismo afio otra carta suya, que contenia un anagrama, Smais-
mrmilmepoetaleumibunenugtiaviras, no pudo resistir la cu-
riosidad y aplico todas sus energias a descifrarlo. ;Qué nuevo
prodigio habria hallado en el cielo? Galileo se habfa convertido
en un cazador de satélites y Kepler habia elaborado una teoria
que atribuia dos a Marte. Reordend una y otra vez las letras hasta
que obtuvo una frase con sentido: Salve umbistineum gemina-
tum Martia proles («Salve, ardientes gemelos, hijos de Marte»).
;Galileo habia localizado las dos lunas marcianas que buscaba
Kepler? En realidad, el astronomo alemén habia hecho un poco
de trampa y habia dado la vuelta a una de las consonantes, la ene,
para transformarla en la vocal que le faltaba, una u. La verdadera
solucién al anagrama era: Altissimum planetam tergeminum
observavi («He visto al planeta més alto [Saturno] formado por
tres cuerpos»). Saturno era el planeta menos brillante, el mas
alejado de cuantos se pueden percibir a ojo desnudo. Galileo se
mostré menos reservado con Cosme II, Gran Duque de la Tos-
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cana, y, en lugar de impacientarlo con mensajes codificados, le
explicé llanamente lo que habia visto:

He descubierto otro prodigio de lo mas singular, [...] la estrella de
Saturno no es una estrella simple, se compone de tres, que casi se
tocan [...], siendo la del centro tres veces mas grande que las latera-
les, disponiéndose en la forma: 00o.

Galileo confiaba en que el aspecto de los tres cuerpos celes-
tes variase con el curso de los dias, puesto que los dos satélites
tendrian que desplazarse en su 6rbita alrededor de Saturno. Para
su asombro, mantuvieron una terca inmovilidad. En una nueva
carta a Kepler, los caracterizé como «dos criados de este anciano
[Saturno], que vigilan cada uno de sus pasos y nunca se apartan
de su lado». Kepler concibi6 otra explicacién para esta enigmatica
parilisis. No eran satélites, en realidad el planeta constaba de tres
partes: «No tomaré a Saturno por un anciano, ni a las esferas que
lo acompaifian por sus esclavos; mas bien, atribuiré esta forma tri-
corpérea a Gerién». Gerién era uno de los adversarios mitolégicos
a los que se enfrenté Hércules con ocasién de sus doce trabajos,
un gigante monstruoso de tres cuerpos.

En vista de que la disposicién del sistema no se inmutaba, la
atencién de Galileo se desvio al estudio de las manchas solares.
Saturno aproveché el despiste para ejecutar su primera mutacién.
Cuando, en un respiro, Galileo volvié a ocuparse de él, le deparé
una sorpresa mayuscula:

También contemplé los tres cuerpos de Saturno este afio [1612], en
torno al solsticio de verano. Después de haberlo perdido de vista
durante més de dos meses, confiado en su constancia, al observar-
lo de nuevo hace unos dias, lo hallé solo, sin el apoyo de sus plane-
tas secundarios y, en suma, perfectamente redondo y tan claramen-
te definido como Jupiter. ;Qué se puede decir de tan extrafia
metamorfosis? ;Quizi las dos estrellas mas pequefias se han consu-
mido, como hacen las manchas solares? ;Quiza se han dado a la
fuga y se han desvanecido de pronto? ;Quiza Saturno ha devorado
a sus hijos?

EL ENIGMA DE SATURNO

55



56

En cuanto el caprichoso comportamiento de Saturno trans-
cendio6 a la comunidad cientifica, surgieron por doquier infini-
dad de teorias para intentar esclarecerlo. Los primeros tanteos
buscaron la respuesta en alguna configuracién de satélites,
puesto que en iiltima instancia eran estos los elementos mas fa-

LA CRIPTOGRAFIA DE LOS ASTRONOMOS

Entre los astrénomos del siglo xvi se extendié una practica curiosa para garan-
tizar la prioridad sobre cualquier descubrimiento que todavia no considerasen
maduro para su publicacidn. Lo resumian en una frase, alterando el orden de
las letras hasta velar su significado, y la insertaban en una carta que hacian
llegar a varios colegas de prestigio. El sistema funcionaba como un registro
de la propiedad intelectual. Si las expectativas no resultaban fundadas, el
rompecabezas se dejaba en su criptico limbo. En caso de confirmarse, sin
embargo, se revelaba la solucioén, y la fecha de la carta original servia de re-
ferencia para fijar atribuciones. Galileo, un virtuoso de los juegos de palabras,
construia anagramas. Es decir, tanto la frase en clave como su solucién tenian
sentido. Por ejemplo, en septiembre de 1610 incluyo en una carta a Kepler la
siguiente linea: Haec immatura a me fam frustra leguntur o. y. («Leo en vano
estas cosas, todavia inmaduras»). Al reordenar las letras se obtenia: Cynthiae
figuras aemulatur mater amorum («La madre de Amor imita las figuras de
Cinthia»). Cintia era un epiteto para referirse a la diosa de la Luna, que habia
nacido en el monte Cinto. La madre de Amor era Venus. Es decir: Venus pre-
sentaba fases, igual que la Luna. Conseguir dos enunciados con sentido resul-
taba laborioso. Huygens admiraba a Galileo pero nunca se entreg6 al juego
de corazén. Para encriptar su descubrimiento de Titdn recurrié a una cita de
Ovidio, pero anadiendo las letras que le faltaban. En su siguiente anagrama se
limité a presentar una lista alfabética de las letras que componian el mensaje.

Errores afortunados

Kepler estaba dotado de un sexto sentido a la hora de malinterpretar los acertijos
de Galileo. Ya hemos visto como creyo entender que habia avistado dos satélites
en torno a Marte. Aunque Galileo queria decir otra cosa, el planeta contaba, en
efecto, con dos lunas, Fobos y Deimos, que no se encontraron hasta dos siglos
después, en 1877. En el anagrama donde Galileo cifraba las fases de Venus, Kepler
interpretd este mensaje: Macula rufa in Jove est gyratur mathem, etc. Es decir:
«Hay una mancha roja en Jupiter que gira matem(aticamente)». Kepler amafié un
poco la solucién, porque afadid algunas letras que le faltaban y descarté otras.
De todos modos tampoco acerto esta vez, lo que no quita que, en su error, tu-
viera razon de nuevo. La gran mancha roja de Jupiter no se observd hasta 1665.
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miliares que los astrénomos podian situar en el cielo. Pero si se
trataba de satélites, ;qué peculiar dindmica los mantenia inmé-
viles durante meses para, sin previo aviso, ocultarlos? Daba la
impresioén de que Saturno pretendia embaucarlos con un truco
de feria celeste.

SYsTEMA SATVYR._. .4 47

poffe inveni

Ethzcea eft quam anno16 56 die 25 Mar-
W cum obfervatione Saturniz Lunz.
Erant enim Liter® aaaaaaacccccdececegh
iiiiiiillllmmnnnnnnnnnoooo pp qrr stteee
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contra procertocreditum fuerit, ac i naturali ratione
i folam iis fphericam comdu,fod&qnodm
anpuium

Pagina del Systema Saturnium, donde Huygens resuelve el anagrama sobre
el anillo del planeta.
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Dos dibujos de
Saturno segun
Galileo (arriba)
y segun Divini.

58

En el verano de 1616 Galileo enfocé de nuevo su telescopio
hacia el planeta més distante, para comprobar cémo progresaba
el ciclo de tres cuerpos a uno solo. No divisé ni una cosa ni la
otra. Saturno presentaba ahora dos «asas» laterales, como un
trofeo que alguien hubiera alzado hasta el firmamento. El esbozo
en el que reflej6é sus observaciones parece sugerir que habia re-
suelto el misterio y que habia dibujado un anillo. Una impresién
que desmiente la detallada descripcién que hizo al cardenal Fe-

derico Borromeo:

[Los dos acompafiantes de Saturno] ya no son dos esferas perfectas
como antes, sino dos cuerpos mucho mas grandes, que ya no son
redondos, como se aprecia en la figura adjunta, es decir, dos medias
elipses con dos pequeiios tridngulos oscuros en mitad de las figuras,
que tocan la esfera central de Saturno, que se observa, como siempre,

perfectamente redonda.

A lo largo de su vida Galileo recurrié a diversas expresiones
para referirse a lo que habia visto, como por ejemplo «mitras»,
pero siempre aludian a un par de apéndices. Observaciones pos-
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teriores, con telescopios mejores,
parecian proporcionar, de nuevo,
una respuesta evidente. Témese
como ejemplo el grabado que eje-
cuté el fabricante de telescopios
italiano Eustachio Divini en 1649,
en un momento en que la posicién
de Saturno exhibia con mayor cla-
ridad su anillo.

Estos dibujos muestran que,
a la hora de interpretar la infor-
macién que recogen nuestros sen-
tidos, el cerebro no se comporta
como un juez imparcial. Las ex-
pectativas y los prejuicios juegan
un papel determinante. Los astré-
nomos de las primeras décadas




PISTAS FALSAS

Saturno ostentaba el periodo or-
bital mas largo conocido, de unos
veintinueve afnos y medio. Después
de que Galileo pusiera el problema
encima de la mesa, se sucedieron
varias décadas en las que los as-
tronomos ampliaron el registro
de observaciones. Este proceso,
imprescindible para apuntalar una
hipétesis que se ajustara a los he-
chos, también introdujo pistas fal-
sas, por culpa de la calidad muy
dispar de las lentes —que no es-
taban sujetas a ningun estandar vy
dependian de la habilidad de cada
artesano— y por la propia sub-
jetividad de los observadores. El
mismo Galileo ya advirtié que un
telescopio podia mostrar una figura
ovalada donde otro, de mayor re-
solucion, revelaba las tres esferas.
Algunas de las representaciones
mas imperfectas de Saturno conta-
ban con el marchamo de un astré-
nomo de prestigio, luego la tarea
de cribarlas no era sencilla.

Tres observaciones de Saturno: de arriba
abajo, realizadas por Fontana (en 1638
y 1645) y Gassendi (en 1634).

del siglo xvi no veian un anillo alrededor de Saturno porque la
escasa resolucion de sus telescopios emborronaba la imagen y
también porque nadie esperaba encontrar una figura semejante
en el cielo. No existia ninglin precedente astronémico. Nosotros
sabemos que un disco rodea el ecuador de Saturno y, por tanto, en
una imagen borrosa o en un bosquejo completamos las lagunas
y «distinguimos» el anillo que esperamos ver.
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Incluso reduciendo el problema a justificar las tres encarna-
ciones de Saturno mejor establecidas —la de un cuerpo aislado,
la de tres cuerpos independientes y la de un cuerpo central con
dos asas—, nadie lograba concebir un conjunto de masas que, al
desplazarse, las fuera produciendo sucesivamente. En 1658, un
ano antes de que Huygens publicara su Systema Saturnium, el
cientifico y arquitecto Christopher Wren resumia con cierto desa-
liento el estado de la cuestion:

Solo Saturno se aparta de la norma del resto de cuerpos celestes y
exhibe fases tan contradictorias que todavia hoy no se sabe si es una
esfera en contacto con otras dos més pequefias o un esferoide que
dispone de dos conspicuas cavidades o, si asi se prefiere, dos man-
chas, o si representa alguna clase de recipiente con asas a los lados,
0, en fin, si se trata de otra forma cualquiera.

La primera hazafia de Huygens en relacién con Saturno habia
sido descubrir algo normal en el mas anémalo de los planetas: un
satélite. ;Seria capaz de desenredar la enervante paradoja de sus
muiltiples apariencias? En noviembre de 1655 sali6 de Paris de re-
greso a La Haya y se apresur6 a reanudar sus observaciones astro-
némicas. Por desgracia, las «asas» estaban a punto de desaparecer
y pronto Saturno le ofrecié su rostro mas hermético: una esfera
despojada. En una carta fechada el 8 de febrero de 1656, sin em-
bargo, presume de haber hallado la causa de todas las apariciones
del planeta. Por tanto, resolvi6 el enigma a ciegas, en un momento
en que el anillo no resultaba visible. Como ningun telescopio se lo
podia mostrar, tuvo que recurrir a los ojos de la mente.

LA SOLUCION DEL MISTERIO

A mediados de marzo de 1656 salia de la imprenta De Saturni luna
observatio nova («Nuevas observaciones de una luna de Saturno»),
que ya desde el titulo proclamaba el descubrimiento de Titan. En
este opusculo de dos paginas Huygens predecia que las asas reapa-
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recerian en abril de ese mismo afio. También anunciaba que habia
resuelto la paradoja de los tres rostros del planeta e invitaba al resto
de cientificos a presentar una explicacion que pudiera rivalizar con
la suya. En un nuevo anagrama escondia su propia solucién: a a a
oooppqrrstttttuuuuu«paraque en el caso de que alguien
estime que encontroé lo mismo que yo, tenga tiempo de darlo a cono-
cer y asi no se pueda decir que se apropi6 de una idea mia, ni que yo
me apropié de la suya». Su desafio, secundado por el espectacular
anuncio de Titan, reavivo el interés por un rompecabezas que habia
dejado fuera de combate al mismisimo Galileo.

«Hasta el momento Saturno engana a los astrénomos o, méas
bien, se burla de ellos, ya sea por odio o por malicia.»

— JOHANN GEORG LOCHER, ESTUDIANTE DE LA ACADEMIA JESUITA DE INGOLSTADT.

A pesar de la expectacion levantada, ningin astrénomo dio
con la verdadera respuesta. Como en una vieja novela policial,
después de escuchar las explicaciones insatisfactorias al misterio,
llegé el turno de Huygens. Absorto en la construccién del primer
reloj de péndulo, se hizo de rogar hasta el verano de 16569, mo-
mento en el que publicé su Systema Saturnium. En él se ofrecia
la solucién al anagrama: Annulo cingitur, tenui, plano, nusquam
cohaerente, ad eclipticam inclinato («Lo rodea un anillo plano y
delgado, que no lo toca en ningiin punto, inclinado respecto a la
ecliptica»). La ecliptica es un punto de referencia astronémico
que define el plano de la 6rbita terrestre.

Ya en sus primeras observaciones de marzo de 1655 Huygens
habia recogido una pista crucial. Aunque entonces las asas apenas
fueran visibles, no se acortaban a medida que se hacian més finas.
Esto le hizo sospechar que la diferencia entre los tres cuerpos o
las asas no se debia al desplazamiento de ninguna masa en torno a
Saturno. El grueso de su argumento se apoyaba en un paralelismo
entre los sistemas Luna-Tierra y Titan-Saturno.

La Tierra invierte un dia en su movimiento de rotacién,
mientras que la Luna tarda veintinueve dias en completar una
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LAS RESPUESTAS AL DESAFIO

El primero en recoger el guante arrojado por Huygens en De Saturni luna ob-
servatio nova fue el ilustre astronomo polaco Johannes Hevelius. Propuso que
el cuerpo de Saturno era un ovoide, al que se fijaban dos extensiones laterales
en forma de luna creciente y luna menguante. El conjunto, de lado, ofrecia a la
vista un contorno circular. Al rotar, tal como se muestra en la figura, se suce-
dian con facilidad las encarnaciones de la esfera aislada y el cuerpo con asas.
¢Queé ocurria con las tres esferas que habia distinguido Galileo? Seguin Hevelius
se podian descartar como una mera ilusién: «Admitimos, por consiguiente, que
aunque las esferas adyacentes a Saturno de hecho nos parezcan redondas,
de todos modos no lo son en absoluto». Una paradoja que no convencio a
duienes pasaban las horas de la noche con la mirada fija en el planeta v, por
mucho gue se frotaran los ojos, no dejaban de encontrar los viejos sirvientes
de Saturno tan redondos como su amo.

Tan lejos, tan cerca

Otras teorias, como la del jesuita aleman Christoph Scheiner, lograban justificar
la aparicion de las tres esferas o de una solitaria, pero recurrian a argumentos
bastante forzados para las asas. El matematico francés Gilles de Roberval
concibié una de las teorias mas ingeniosas. Para explicar la sorprendente
plasticidad de Saturno recurrid a una materia mas ductil que la que compone
los planetas y satélites. Del ecuador de Saturno surgirian chorros de vapor que
solo resultaban visibles a medida que se iban espesando. En los momentos
en los que una densa nube se concentraba en torno al ecuador, de lejos el
conjunto adquiria el aspecto de un elipsoide. Al irse disipando las tinieblas en
torno a la cintura del planeta, se abrian los huecos gue dibujaban el perfil de
las asas. Entre esta sucesion de tanteos, el arquitecto inglés Christopher Wren
casi dio en |la diana. Propuso que una corona muy delgada, en forma de elipse,
rodeaba a Saturno y lo cortaba en dos puntos del ecuador.

vuelta alrededor de nuestro planeta. Huygens extrapolé esta di-
ferencia de tiempos y consideré que la rotacién de Saturno en
torno a su eje también debia ser mucho mas breve que el pe-
riodo de su satélite. Si Titdn tardaba dieciséis dias en dar una
vuelta alrededor de Saturno, este debia demorarse solo unas
trece horas en girar sobre si mismo. Cualquier porcién de mate-
ria situada en el espacio entre el planeta y el satélite giraria en
una 6rbita de periodo intermedio.
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Por tanto, la masa que acompaiiaba a Saturno, al margen de
qué forma adoptase, tenia que desplazarse a su alrededor en ciclos
periédicos que durasen menos de dieciséis dias. Sin embargo, el
planeta tardaba mucho més en completar sus mutaciones cono-
cidas: unos catorce afios. Huygens se convenci6 entonces de que
si Saturno giraba como una peonza ante sus ojos cada noche, sin
que fuera capaz de percibir ninglin cambio en las asas, su masa
debia de repartirse simétricamente alrededor del eje de rotacion.
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Resulta facil detectar el giro de un cuerpo asimétrico, como la
mano de una persona. Por contra, el contorno de una esfera o de
un cilindro sin marcas en su superficie no ofrece ningin indicio
sobre si gira o permanece inmévil.

Entre las figuras que presentan simetria rotacional, la que
mejor cuadraba con la imagen borrosa de las asas era un anillo.
Quedaba una dificultad por vencer. Si el anillo solo invertia unas
horas en girar con un movimiento simétrico que los telescopios
terrestres no detectaban, ;a qué obedecian las mutaciones que se
producian cada catorce afios? La respuesta habia que buscarla en
la inclinacién del anillo.

El plano que contiene al anillo de Saturno forma un angulo de
26,73° con el plano de su érbita (figura 1), un &ngulo muy parecido
al que forma el ecuador de la Tierra con su plano orbital (23,44°).
Visto con lentes de diversa calidad y resolucién, un simple anillo
sesgado podia justificar la mayoria de las figuras que habian regis-
trado los astrénomos.

Quedaba por explicar en qué orden se sucedian las figuras y
la desaparicién regular del anillo. El Sol ofrece una perspectiva
privilegiada para hacerlo. Para nuestra estrella, Saturno muestra
un comportamiento orbital similar a la Tierra, aunque describa
una curva mucho méas amplia. El eje de rotacién de ambos plane-

FIG.1
Plano del anillo

26,73°

Plano de la orbita
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FIG. 2

tas se inclina en un dngulo que se mantiene constante a lo largo
de la trayectoria.

Esto hace que, para un habitante del Sol, el eje a veces se
muestre con el polo norte echado hacia delante; otras, hacia atras,
y otras, de costado (figura 2). La misma circunstancia motiva el
paso de las estaciones terrestres. La inclinacién del eje también
depara a Saturno sus inviernos y veranos, primaveras y otofios. A
causa de las diversas inclinaciones, los habitantes del Sol verian
el anillo desde abajo en la posicién C; lo observarian desde arriba
en la posicion A. En las posiciones B y D, un anillo muy fino visto
de canto resultaria invisible.

Dada la enorme distancia que separa a Saturno del Sol y la
Tierra, desde su punto de vista estan practicamente juntos. Por
tanto, en lineas generales, lo que vale para un habitante del Sol
vale también para uno terrestre. Con todo, la equivalencia no es
completa. En primer lugar, como ya sabemos, el eje de rotacién de
la Tierra también esta ladeado. Se puede considerar casi paralelo
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al de Saturno, asi que apreciamos un grado de inclinacién mucho
menor. En segundo lugar, los planos que contienen las orbitas de
la Tierra y de Saturno no coinciden, lo que nos sitiia a veces «por
encima» de Saturno y otras, «por debajo» (figura 3).

Todos estos efectos, sumados a la escasa resolucion de los
telescopios, dan cuenta de las mutaciones de Saturno. Huygens
inserté al final del Systema Saturnium un diagrama que ilustra
con maestria su hipétesis (se muestra en la pagina 67). Un miope
podria ver las apariciones que faltan, como los tres cuerpos, las
asas de Galileo o el huevo tumbado con manchas, contemplando
los dibujos sin gafas.

LA RESACA DEL TRIUNFO

A pesar de que Huygens habia desentrafiado el enigma de las apa-
riciones de Saturno mediante una cadena de razonamientos, atri-
buy6 su éxito a la superioridad técnica de su telescopio:

En esta investigacion solicitamos que se nos conceda que, puesto
que fuimos los primeros en detectar con nuestros telescopios al com-
pafiero de Saturno, y también en verlo con claridad siempre que asi
lo deseamos, nuestros telescopios se consideren superiores a los de
aquellos que, a pesar de observar a Saturno a diario, fueron sin em-
bargo incapaces de dar con la estrella [Titan]; y que por la misma
razon los resultados de nuestras observaciones acerca de la forma
del planeta se juzguen mas fidedignos, en todos los casos en que las
diferentes apariencias fueron observadas por nosotros y por ellos.
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Esta pretension era manifiestamente falsa, por dos razones
como minimo. Para empezar, los astrénomos habian registrado
la presencia de Titdn cuando Huygens era un nifio, aunque no re-
conocieran que se trataba de un satélite. Su acierto aqui no fue
instrumental. En segundo lugar, por irénico que fuera, Huygens
resolvié el problema en un momento en que los anillos no resul-
taban visibles y, por tanto, cuando su telescopio no interpretaba
papel alguno.

;Por qué se marcé entonces el farol? La hipétesis del anillo
descansaba en gran medida en los registros astronémicos acumu-
lados a lo largo de cuatro décadas. Huygens tuvo que descartar
muchas de las observaciones, que atribuia con razén a la imper-
feccion de las lentes ajenas. Sin embargo, las habian publicado
astrénomos de renombre y con mas experiencia que él. Trat6 de
imponer la autoridad que necesitaba a través de la superioridad
de su telescopio, que parecia avalar el descubrimiento de Titan.
La estrategia no alcanzo el éxito esperado. Muchas de las suspica-
cias que despert6 su hipétesis del anillo no respondian a motivos
cientificos sino al amor propio. Procedian de astronomos y arte-
sanos cuyo prestigio y cuyo sustento dependian de la calidad de
sus instrumentos. Fue el caso de Divini, considerado por muchos
como el mejor fabricante de telescopios de Europa, y de Johan-
nes Hevelius. Divini puso en tela de juicio las observaciones de
Huygens, atribuyéndolas a defectos épticos. Llegd a comentar con
sorna que le hubiera ido mejor de haber comprado uno de sus ins-
trumentos. Hevelius reacciond airado: «;Acaso supone Huygens
que yo, u otros, somos incapaces de distinguir entre lo esférico
y lo eliptico, o que [lo que vi] fue una invencién de mi mente... o
quiza que lo sofié? jNo, por Hércules!».

Huygens dio con la geometria correcta del anillo, pero no
con su estructura. En su opinién se trataba de un disco sélido,
continuo y de un grosor apreciable. ;Cémo si no podia arrojar una
sombra sobre la superficie del planeta? Hasta el final de su vida le
atribuyé una seccién de casi 4 000 km. Cuando le plantearon cémo
el canto de un aro de ese calibre podia desvanecerse bajo la ilumi-
nacién directa del Sol, Huygens arguyé que estaba formado por un
material absorbente que no reflejaba la luz. Christopher Wren, que
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SUPERTELESCOPIOS

Los grandes telescopios no cons-
tituyen una prerrogativa del siglo
xx. Cuanto menos pronunciada sea
la curvatura de una lente esférica,
menos patente se hace la aberra-
cién cromatica. Ya hemos visto que
al rebajar la curvatura, los rayos de
luz se desvian menos y mas lejos
cae el foco de la lente. Por esta ra-
z6n, los fabricantes de telescopios
enseguida trataron de conseguir
grandes distancias focales, lo que
implicaba separar, en la medida de
lo posible, el objetivo del ocular. Se
inicio asi la carrera por montar te-
lescopios cada vez mas largos. La
resistencia y la manejabilidad de
los tubos parecian, sin embargo,
imponer un limite. Si descansaban  Disefio de uno de los «telescopios aéreos»

en un solo apoyo, terminaban por ~ de Huygens.

doblarse o se partian con facilidad,

y se mostraban extremadamente sensibles a los golpes de viento. Huygens
corté el nudo gordiano eliminando el tubo. En la imagen puede apreciarse el
disefio de uno de sus «telescopios aéreos». El objetivo y el ocular se encajan
en dos cilindros cortos de metal, unidos por una cuerda tensa. La altura del
poste donde se situa el objetivo se podia ajustar tirando de una cuerda. La
pieza que sostiene en alto la lente se mantiene estable mediante un contra-
peso. De noche, Huygens se servia de una linterna para localizar la posicién
del objetivo, buscando el reflejo de la luz en el cristal.

habia imaginado una teoria incorrecta, si supo dar en cambio con
la razén de su invisibilidad: el disco es tan delgado que «no ofrece
grosor suficiente para que lo puedan apreciar los habitantes de la
Tierra y por este motivo la corona [el anillo] se puede considerar
como una mera superficie».

Siguiendo las huellas de su admirado Galileo, Huygens dedicé
el Systema Saturnium a un distinguido miembro de la familia
Médici, en su caso a Leopoldo, hijo de Cosme II. Lo tltimo que

EL ENIGMA DE SATURNC

69



70

se podia esperar era que el principe italiano le diera la callada
por respuesta. Un desaire que no obedeci6 a la falta de cortesia:
Huygens acababa de ponerle en un brete. El Saturnium, como
en su dia el Sidereus, pertenecia a un género literario (el ensayo
heliocéntrico) que levantaba escasas pasiones en el Vaticano.
Leopoldo tenia su corte en Florencia, que caia mucho mas cerca
de Roma que el domicilio de Huygens en La Haya. Aunque la Igle-
sia no hubiera adoptado una postura oficial en contra del anillo,
un jesuita influyente, Honoré Fabri, habia desarrollado una so-
lucién alternativa dentro de un marco geocéntrico. Contaba con
la colaboracién de Eustachio Divini, molesto con Huygens por
haber cuestionado la supremacia de sus telescopios. Ambos re-
dactaron un tratado que enmendaba la plana al holandés desde la
cubierta (se titulaba Brevis annotatio in Systema Saturnium)
y que dedicaron a Leopoldo de Médici. Como cabia esperar, la
teoria de Fabri ofrecia un perfil conservador y recurria a un juego
de satélites. En su primera versién, cuatro lunas acompafiaban a
Saturno, dos pequeiias, opacas, y dos medianas, reflectantes. No
orbitaban en torno al planeta, sino alrededor de puntos situados a
su espalda. Para explicar las observaciones conocidas ejecutaban
toda suerte de malabarismos orbitales que hubieran dejado sin
aliento a Ptolomeo. En el proceso de superar algunas objeciones
de Huygens, Fabri afiadi6 dos satélites més.

Asi, Leopoldo se vio en un fuego cruzado de dedicatorias.
La de Fabri acompaifiaba una teoria alambicada y geocéntrica, que
defendia un respetable miembro de la Iglesia; 1a de Huygens ser-
via de preAmbulo a una sobria y sugestiva propuesta copernicana,
que desprendia un sospechoso tufo calvinista, ya que procedia de
Holanda. Si bien Huygens apelaba solo al rigor de sus observacio-
nes y razonamientos, los italianos desplegaron otras técnicas de
persuasion: su teoria estaba de acuerdo con las Sagradas Escritu-
ras y con la doctrina de la Iglesia. En el texto de Fabri, ademas, se
hacian veladas alusiones al proceso de Galileo. El principe sali6
del apuro sacando partido de su patrocinio de las ciencias. Para
algo se habia molestado en fundar una de las primeras sociedades
cientificas de Europa, la Accademia del Cimento. Dejo, pues, que
fueran los expertos quienes se mancharan las manos.
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Cumpliendo las érdenes de Leopoldo y haciendo honor a su
propio nombre (en italiano el verbo cimentare significa «poner a
prueba»), la Accademia constituy6é una comisién para examinar
las dos alternativas. Construyeron una maqueta a escala de cada
modelo, el de Huygens y el de Fabri, y los estudiaron desde largas
distancias con telescopios de diversa resolucién. Para no dejarse
influir por ideas preconcebidas, encargaron a personas ajenas al
experimento que describieran qué figuras observaban. El modelo
de Fabri solo refiejé con acierto las apariciones solitaria y de tres
cuerpos, dando lugar a configuraciones que no se apreciaban en el
firmamento. El modelo de Huygens tropezé con un tnico escollo.
Por mas que untaron el borde exterior del anillo con una infinidad
de sustancias absorbentes, se resistia a desaparecer cuando lo
iluminaban con un falso Sol. Solo al hacer el disco muy fino se
ocultaba a la vista, puesto de canto. Asi, un sencillo modelo me-
canico daba la razén a Wren. Precisamente porque la prueba se
saldo6 a favor de Huygens, la Accademia del Cimento nunca hizo
publicas sus conclusiones.

«Un hombre que opine como Copérnico, que esta Tierra
nuestra es un planeta conducido alrededor del Sol y alumbrado
por €l como los demés, no podra evitar que le asalte alguna vez

la fantasia [...] de que el resto de los planetas tienen su propio
vestido y su mobiliario, incluso unos habitantes,
al igual que esta Tierra nuestra.»

— CurisTiaaN HUYGENS.

Con pequerios ajustes a su modelo, Huygens consigui6 pre-
decir las siguientes mutaciones de Saturno con una exactitud sin
precedentes. Hasta Fabri terminé reculando. Antes de hacerlo tuvo
la generosidad de reconocer que después de leer el Systema Sa-
turnium le costaba no ver un anillo cada vez que observaba a Sa-
turno. Al ampliar el campo de las expectativas visuales, la obra de
Huygens facilité que la mente humana distinguiera por fin anillos
en el firmamento. Divini fue menos receptivo y se negé a aceptar
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el anillo hasta que lo contempld con sus propios 0jos, a través de
un telescopio fabricado por su hermano.

El Systema Saturnium se puede considerar como una digna
continuacion del Sidereus nuncius de Galileo. A pesar de lo que
el titulo pudiera sugerir, no se circunscribe a Saturno. Huygens
fue el primero en apreciar rasgos en la superficie de Marte. Al
seguir el desplazamiento de la mancha de Syrtis Major —una ex-
tensa region de roca volcanica—, advirtié que el planeta rotaba al-
rededor de un eje y pudo establecer la duracién del dia marciano.
También aport6 nuevas observaciones de Jupiter y de la nebulosa
de Orién, donde distingui6 tres de las estrellas que forman en su
centro el cimulo del Trapecio. Describi6 la nebulosa como «una

HACIA UN TELESCOPIO MEJOR

Dado que el objetivo proyecta una imagen en el interior del telescopio, esta
se puede manipular antes de que la amplie el ocular. Huygens aprovecho
esta circunstancia para introducir dos importantes mejoras en el instrumento.
Galileo ya se habia percatado de que al tapar con un disco de papel el borde
del objetivo (donde se acumulaban los defectos de manufactura y de la abe-
rracion esférica) se obtenia una imagen menos luminosa, pero mas definida.
Dedujo las dimensiones dptimas del disco a base de pruebas. Huygens las
calculd matematicamente y, ademas, descubrid la ventaja de insertar el disco
no en el objetivo directamente, sino en la imagen que genera. De esta forma
también se corregia en parte la aberracion cromatica.

El micrémetro

En los primeros afnos de la década de 1640, el astronomo aficionado William
Gascoigne quedo perplejo ante un misterioso filamento que cruzaba el campo
de visidn de su telescopio. Se perfilaba con absoluta nitidez, pero al alzar la
vista del ocular se desvanecia en el espacio que se abria delante de él. Una
inspeccion mas atenta revelé que una arafa habia tejido su tela justo en el
plano donde el objetivo proyectaba la imagen. El ocular habia aumentado
hilo e imagen a la vez, fundiéndolos. A partir de este afortunado accidente, a
Gascoigne se le ocurrid sustituir la tela de arafia por un dispositivo con dos
barras verticales, separadas por una distancia graduable (véase la imagen).
Con él podia realizar medidas sobre las imagenes que mostraba el telescopio.
Acababa de inventar el micrometro. Huygens concibié un mecanismo similar.
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grieta en el cielo, que permite atisbar una regién mas luminosa
en lo profundo». El Systema Saturnium también contiene una
asombrosa estimacién de las dimensiones del sistema solar.

LA GRANDEZA DEL MUNDO

El monumental trabajo astronémico de Copérnico y Kepler permi-
ti6 cartografiar con bastante exactitud los dominios del Sol y de
los seis planetas entonces conocidos: Mercurio, Venus, la Tierra,
Marte, Jupiter y Saturno. Las proporciones del mapa que trazaron

p——

Para hacerlo no necesito el concurso de ninguna arafa: le basté su profundo
conocimiento de la didptrica. El micrometro convirtio el telescopio en un
instrumento de precision. Hasta entonces los astréonomos solo ofrecian esti-
maciones subjetivas sobre los tamafios de los cuerpos celestes y los valores I
variaban demasiado de un autor a otro. El micrémetro proporcioné un patrén. 1
William Gascoigne murié en la batalla de Marston Moor, durante la guerra civil
inglesa, antes de que pudiera divulgar su hallazgo. Fue la descripcion que hizo
Huygens de su micrémetro en el Systema Saturnium la que lo dio a conocer
y lo incorpor¢ a la practica astronomica. a

Objetivo Imagen |

Efecto
camara :
fotografica B
Ocular !
Micrémetro
£ - a— i = o - i = e
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eran correctas, pero no supieron definir la escala. Todas las longi-
tudes quedaban expresadas en funcién de una incégnita, la distan-
cia entre el Sol y la Tierra, que, segtin Huygens, los astrénomos no
habian logrado despejar de un modo satisfactorio:

[...] ala hora de estimar la distancia entre la Tierra y el Sol difieren
mucho unos de otros, lo que no es de extrafiar, ya que todavia no se
ha encontrado un método aceptable de medir dicha distancia. Ya
traten de determinarla mediante eclipses o dicotomias de la Luna,
resulta facil demostrar que sus esfuerzos son en vano.

;Qué hacer entonces? Huygens ensay6 un ataque oblicuo a
la cuestién. Sirviéndose de su micrémetro, calculé el didmetro
angular de los planetas. Esta magnitud corresponde al angulo des-
parejado de un tridngulo isésceles, cuyos lados iguales son las
distancias desde el observador a los extremos del planeta. El ter-
cer lado lo forma su didmetro. Con mas sencillez, se puede definir
como la apertura de una pinza imaginaria con la que el observador
sujetara el cuerpo celeste (figura 4).

Huygens comenzd con Saturno, para el que obtuvo un dia-
metro angular de 68". Consultando el mapa sin escalas del sis-

FlG. 4

Diametro
lineal

Didmetro
angular

Distancia
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tema solar, comprobé que la distancia mas corta entre Saturno
y la Tierra equivalia a ocho veces la distancia media que nos
separa del Sol. Dedujo entonces que si sacaramos a Saturno de
su orbita y lo colocdramos junto al Sol lo veriamos ocho veces
mas grande. Este cambio de ubicacién también multiplicaria
por 8 el didmetro angular que habia medido: 68'"-8=544"=9' 4",
Desde la Tierra, el didmetro angular del Sol es 30' 30". Con estos
dos valores, uno real (el del Sol) y otro ficticio (el de Saturno
desplazado), que corresponden a los angulos que se medirian
para la estrella y el planeta alejados a la misma distancia, pudo
comparar sus tamanos:

g, =9'4"=9-60"+4"=544" ag, 544" 11
Og =30'30"=30-60"+30"=1830"] a,, T1830" 37

Teniendo en cuenta que para dngulos pequenios y cuerpos si-
tuados a la misma distancia, la relacion entre los didmetros linea-
les es la misma que entre los angulares, concluyé que el didametro
de Saturno era 11/37 veces el didmetro del Sol. En sus calculos
habia incorporado el anillo; después de descontarlo la fraccién se
redujo a 5/37. Realiz6 las mismas operaciones con Venus, Marte
y Jupiter:

DSoI 1
1

Dvﬂf\u‘ a
1

Diste 166
2

DJapi:er ﬁ
5

DSaluma -33}-

No incluyé valores de Mercurio porque las condiciones de
observacién no se lo permitieron.

Esta secuencia contradecia la creencia arraigada de que el
volumen de los planetas crecia con la distancia al Sol y que, por
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tanto, Venus debia ser mayor que
Mercurio; la Tierra, mayor que
Venus, y asi sucesivamente. De
nuevo, se trata de tamarios re-
lativos, expresados en relacién
con el didmetro del Sol, cuyas
dimensiones absolutas se ignora-
ban. Seguia faltando el factor de
la escala. Huygens habia llegado
demasiado lejos ahora para de-
tenerse. El precio por continuar
adelante fue recurrir a un razona-
miento algo caprichoso:

Con el fin de conservar la armonia de
todo el sistema en la medida de lo
posible, parece que, después de todo,

En es':::nﬂ;f:; resulta de lo més razonable admitir que, puesto que la Tierra se en-
Huygens reflejé cuentra situada entre Marte y Venus en lo que respecta a las distan-
i ;’:“;::’: cias, también ocupe una posicién intermedia con relacién a los ta-
los planetas en un manos. Hemos dicho que el didmetro de Marte es 1/166 el didmetro

WEIED Npovasy del Sol, y que el de Venus, 1/84. Por tanto, si tomamos para el didgme-

tro de la Tierra la media de estos dos diametros, hallamos que co-
rresponde a 1/111 el del Sol.

1 1
D -iD. D -LD . Lamedja:-@-j—l@ﬁrzL.
Ven 84 Sol Mar 166 Sol 2 111
1
Luego D, =—0D,_ ..
'l.lg Tie 111 Sol

Al recurrir a «la armonia de todo el sistema» estaba abando-
nando el terreno de la demostracién cientifica, para perderse en
una conjetura. El mismo reconocia que a partir de aqui sus argu-
mentos descansaban «sobre una base resbaladiza». Apoyandose
en ella obtuvo que el diametro del Sol era 111 veces el de la Tierra.
Se trata de una excelente aproximacién. Segin los célculos actua-
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LA ESCALA DEL SISTEMA SOLAR

Huygens habia determinado los tamafios relativos de los planetas con respec-
to al Sol. Con la ecuacion D, =1 D, que ligaba el didmetro de nuestra es-
trella con el didmetro de la Tierra, pudo transformarlos en tamafios absolutos.
Para comprender por qué esta relacién encerraba la clave para llevar a cabo
la misma operacién con las distancias, aplicamos el esquema del didmetro
angular, que aparece en la pagina 74, a un observador terrestre que contempla
al Sol. A partir de la imagen, vemos que una sencilla igualdad trigonométrica
relaciona TS (la distancia de la Tierra al Sol) con a y con D,

Dsol
sen%- 2 T5m—Dso
s 2sen(g)

Introduciendo el valor a = 30" 30": TS = 113 - D_,. Apelando a la armonia celeste,
Huygens habia logrado establecer que O, =1 -D__. Luego:

TS=N3-D,, =M3-M-D,, =12543-D,,.
Como el radio de la Tierra se habia estimado con suficiente exactitud, esta

ultima ecuacién proporciona el factor de escala buscado para el mapa del
sistema solar de Kepler y Copérnico: la distancia entre el Sol y la Tierra.

///r’é’//ﬂl%

/2

L]
TierrN

Sol

les la cifra correcta es 109. En los tiempos de Huygens se contaba
ya con una medida bastante aceptable del didmetro terrestre. Este
valor le permitié transformar todas las distancias y tamaifios rela-
tivos en absolutos y fijar la escala, expandiendo el sistema solar
hasta sus colosales dimensiones.
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En sus calculos intervino la suerte, equilibrando varios erro-
res que se cancelaron entre si. La aberracién cromaética dispersa el
contorno de los cuerpos celestes, dilatando su didmetro angular.
Un exceso que se compensa al atribuir a la Tierra un tamafio mas
pequeiio del que le corresponde, ya que es mas grande que Marte
y que Venus. Pero no deja de resultar impresionante lo certero del
resultado.

Huygens también se permitié algin tic medieval, como otros
fundadores de la ciencia moderna. Kepler entrevié6 una suerte de
muneca rusa de figuras geométricas para el sistema solar, donde
las 6rbitas de los planetas encajaban sucesivamente dentro de una
esfera y de los cinco sé6lidos platénicos. Newton vivié entregado a
extranas obsesiones, como averiguar las proporciones del templo
de Salomén. El Systema Saturnium contiene un vaticinio nume-
rolégico algo desconcertante, que gira en torno al nimero 6, un
nimero perfecto, puesto que es igual a la suma de sus factores
primos (6=3-2-1; 6=3+2+1). Huygens pronosticé que ya no se
descubririan nuevos satélites, puesto que tenian que ajustarse a
la misma regla de perfeccién que sus hermanos mayores, los pla-
netas. De igual modo que existia media docena de planetas, seis
debian ser las lunas. La Tierra aportaba la suya, Galileo habia des-
cubierto cuatro satélites de Jupiter y Huygens habia cerrado la
cuenta con Titan. Cassini desbarataria esta armonia aritmética al
sefialar un séptimo satélite en el cielo, también de Saturno: Japeto.

EL ANILLO SE ROMPE

El principal obstaculo para el disco sélido que abanderaba
Huygens es su estabilidad. La fuerza de la gravedad decrece de
acuerdo con la inversa del cuadrado de la distancia entre masas
(es proporcional a 1/r?, siendo 7 la distancia). Imaginemos un pla-
neta P frente al que se alinean dos esferas iguales, a y b, separadas
por una cierta distancia (figura 5). En este caso r, es mayor que ',
luego la atraccién entre Py a serd mayor que entre Py b y las dos
masas tenderdn a separarse.
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Si las dos esferas formaran
parte de la masa de un mismo
cuerpo, esta asimetria de las fuer-
zas tenderia a deformarlo. La de-

FIG. 5

pendencia de la gravedad con la
inversa del cuadrado de la dis-
tancia (1/r?) también hace que la
diferencia de tensiones aumente a P
medida que un cuerpo se aproxima

a b
a un planeta. La intensidad de la () - 0]

fuerza es particularmente sensi-
ble a las variaciones de distancia
cuando 7 es pequeiio, como se ob-
serva en la figura 6. P
La curva representa valores a
de 1/r% A la izquierda, cerca del
origen, el cociente arroja valores
grandes, que varian mucho de un
punto a otro. Entre los extremos
de la esfera a, 1/r®pasa de valer 1
4 a valer 1. Una diferencia de 3. e~
A la derecha, lejos del origen, el
cociente adquiere valores peque-
nos. Entre los extremos de b, se-
parados la misma distancia que los
extremos de a, 1/r? pasa de valer
0,0178 a valer 0,0156. Una diferen-
cia de apenas 0,0022.
Por tanto, aunque a y b ten-

- N W BB U O N O

gan el mismo tamaiio, la variacién
en la intensidad de la fuerza que
experimentan sus extremos da un
salto considerable en el lado iz-
quierdo de la grafica, donde 7 es pequefio (cuando la esfera esta
muy cerca del planeta), mientras que apenas se aprecia en el lado
derecho (cuando la esfera estd lejos). Por tanto, la esfera apenas
«sentira» la presencia de P mientras se mantenga alejada, pero
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sufrird una tensién disgregadora si se aproxima demasiado. Po-
demos visualizar el proceso en una secuencia en la que una esfera
elastica se acerca al planeta P. A medida que se aproxima cede a
tensiones cada vez mayores. La esfera se transforma primero en
un huevo, que se estira y achata hasta que las fuerzas de cohesién
pierden la partida y se rompe.

La distancia a la que se produce la rotura de un cuerpo por las
disensiones entre las fuerzas gravitatorias a las que se ve sometido
se llama «limite de Roche». La principal resistencia a la deforma-
cion la presentan las fuerzas electromagnéticas que atraen entre
si las particulas que componen la masa del cuerpo (interaccio-
nes quimicas). Su labor de cohesién resulta mas efectiva cuanto
menos voluminoso sea el cuerpo. Asi, un astronauta o los satélites
de comunicaciones que orbitan la Tierra caen dentro del limite de
Roche, pero sus reducidas dimensiones los protegen de la frac-
tura. La gravedad, por tanto, levanta una frontera en torno a los
planetas que impide la supervivencia de cuerpos de una cierta
envergadura en sus inmediaciones. El radio de la érbita de los sa-
télites grandes, como la Luna, siempre supera el limite de Roche.
Entre los planetas del sistema solar, Jupiter ostenta el titulo de
maximo «cascanueces», como tienen ocasién de comprobar los
cometas que se internan demasiado en sus dominios.

Frente a fuentes gravitatorias extremadamente intensas, la
deformacion ni siquiera respeta a los objetos pequefios. Un agu-
jero negro puede suscitar tensiones tan desiguales entre los pies
y la cabeza de una persona en su proximidad como para desinte-
grarla. Es lo que se conoce de manera informal como «espague-
tizacion».

Los anillos de Saturno estan formados por un colosal enjam-
bre de polvo y fragmentos de hielo que orbitan a su alrededor a di-
versas velocidades, dibujando mil circulos concéntricos. El tirén
gravitatorio de los grandes satélites abre zanjas y divisiones que
le dan su aspecto de disco fonografico. Las cuatro franjas princi-
pales, visibles desde la Tierra, se designan mediante las letras A,
B, Cy D (figura 7). Su orden alfabético refleja el de su descubri-
miento y también su disposicion, desde el borde exterior hacia
el centro. Las sondas espaciales aumentaron la jurisdiccién de
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FIG.7
Anillo A (14600 km de ancho)

Anillo 8 (25600 km de ancho)
Anillo C (17300 km de ancho)
Anillo D (7600 km de ancho)

136780 km

los anillos al localizar tres nuevas bandas, F, G y E, mas amplias
y difusas. Para ofrecer una idea de las dimensiones del sistema,
podemos sefialar que el borde externo de A se extiende hasta algo
mas de dos veces el radio de Saturno. La franja mayor, E, mide
unas ocho veces el radio del planeta.

Wren tenia razoén, el disco es extremadamente fino, ape-
nas de 1 km de espesor, aunque se despliega a lo largo de una
superficie que, si incluyera las regiones exteriores mas tenues,
cubriria la 6rbita de la Luna. Si se pudieran reducir las cuatro
franjas principales al didmetro de un CD, su grosor correspon-
deria al de una membrana celular. Al margen de dénde proceda
su masa (de un satélite, de una sucesién de cometas capturados
por la gravedad o de la materia primigenia del sistema solar que
alimentd al resto de planetas), la razén dltima de su existencia
hay que buscarla en el limite de Roche, puesto que la porcién
mas densa cae dentro de sus fronteras. La figura 8 (en la pagina
siguiente) permite apreciar con claridad esta situacién. Las dis-
tancias se miden a partir del centro de Saturno y cada unidad es
un radio del planeta.

La propuesta de que el anillo sélido en realidad estaba hecho
afiicos es casi tan antigua como la hipétesis de Huygens. Un afio des-
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FIG. 8

25

pués de que se imprimiera el Sys-
tema Saturniuwm ya la adelant6 el
poeta Jean Chapelain. En 1845, un
joven estudiante de matematicas

AR de 1a Universidad de Cambridge,

John Couch Adams, después de

""" R T analizar ciertas irregularidades en
= Limite . -

ww b de Roche la 6rbita de Urano, concluyé que

se debian a las perturbaciones gra-
vitatorias inducidas por la masa de
Anillo 8 un planeta desconocido. Sus vatici-
nios fueron ignorados por George

- Anillo € - Airy, astrénomo real y director del

W Anillo D observatorio de Greenwich. Airy
estimaba los argumentos matema-

- Saturno ticos demasiado volatiles y se neg6

a orientar sus telescopios hacia
las coordenadas senaladas por
Adams. De modo que fue otro ma-
temadtico de mente volatil, el francés Urbain Le Verrier, quien se
apunté el tanto y figura en las enciclopedias como descubridor de
Neptuno.
Para conmemorar el ejercicio de clarividencia bien informada
y olimpicamente despreciada de Adams, la Universidad de Cam-
bridge instauré un premio en su honor. En 1856 se propuso como
problema desentraifiar si el anillo de Saturno era sélido, fluido o
se componia de «muchas piezas separadas de materia». El tnico
que se mostré a la altura del desafio fue un joven James Clerk
Maxwell. Todavia faltaban unos afios para que revolucionara la
termodinamica y el electromagnetismo, pero ya ensefi6 sus ga-
rras. Maxwell sometié al anillo a un asedio matematico de dos
afios, con armas mucho mas sofisticadas que las que tenian a su
alcance los cientificos del siglo xvi, gracias a un calculo diferen-
cial plenamente desarrollado. Encontré que un anillo sélido solo
seria estable si concentraba 9/2 de su masa en un solo punto, una
configuracién extravagante que no se observaba. Asi resumia sus
conclusiones:
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[...] el unico sistema de anillos que puede existir es uno que se com-
ponga de un nimero indefinido de particulas independientes, que
giran alrededor del planeta con velocidades distintas en funcién de
sus respectivas distancias. Estas particulas pueden disponerse en
una serie de anillos estrechos, o se pueden desplazar y entrecruzar
sin orden ni concierto. En el primer caso la destruccién del sistema
serd muy lenta; en el segundo caso serd més rapida, pero podria
manifestarse en las particulas una tendencia a ordenarse en anillos
estrechos, que ralentizaria el proceso.

Curiosamente, cuando Airy ley6 la obra de Maxwell coment6:
«Que yo tenga noticia, se trata de una de las aplicaciones mas
notables de las matematicas a la fisica». En Sobre la estabilidad
del movimiento de los anillos de Saturno se perciben ecos del
espiritu de Huygens. Si este advirti6 el anillo antes que ningin
telescopio, gracias a los ojos de la razén, Maxwell también vis-
lumbré con ellos la dindmica de sus particulas, con un detalle que
no se pudo registrar hasta casi cuarenta afios después, mediante
analisis espectrales.

Pocos cientificos serian capaces de recorrer la senda que con-
dujo a Huygens desde su primitivo interés por la refraccion al des-
cubrimiento de Titan y del anillo de Saturno. A lo largo del camino
dilaté el marco de la diéptrica con su diseccién matematica de
las lentes. Introdujo mejoras en el telescopio, como el ocular que
lleva su nombre, el diafragma o el micrémetro, que emanaban di-
rectamente de las leyes de la geometria. También aprendi6 a pulir
lentes; disefi6é y construyd un torno para facilitar la tarea y monté
un telescopio que, si bien no obedecia a su pretensién de ser el
mejor del mundo, tampoco desmerecia a los que producian los
fabricantes més habiles de la época. Con él reconocié un satélite
que los demaés no veian, aunque durante aios lo tuvieran ante sus
ojos. Mientras Saturno exhibia el anillo en todo su esplendor nin-
gin astréonomo fue capaz de reconocerlo, Huygens lo hizo cuando
Saturno lo ocultaba. De propina, calculé el periodo de Marte y
estimé por primera vez las dimensiones del sistema solar.

Ante esta exhibicién de facultades, que ponia en evidencia a
matematicos, artesanos y astrénomos, no quedaba otra reaccién
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que enmudecer de asombro. En su primer contacto con la luz,
esta se habia manifestado como un entramado de lineas rectas.
A medida que Huygens se adentrara mas y més en su naturaleza
irfa descubriendo otros rostros de la luz, tan cambiantes y contra-
dictorios como los de Saturno. Los mayores enigmas atin estaban
por venir.
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CAPITULO 3

La esencia escurridiza de la luz

Cuanto mas se investigaba
la luz, més facetas contradictorias revelaba.

De describir mateméaticamente su comportamiento,
Huygens pasé a preguntarse acerca de su verdadera
naturaleza. Sus primeras respuestas pusieron los cimientos
de la moderna teoria ondulatoria de la luz. La puerta de
acceso al célebre principio que lleva su nombre se
present6 bajo la forma de uno de esos
rompecabezas fisicos que tanto le
gustaban: la doble refraccion
del espato de Islandia.






En la década de 1660 encontramos a Huygens convertido en uno
de los principales actores en el teatro de la ciencia europea. Al
mismo tiempo se estaban levantando los escenarios donde se es-
trenarfa gran parte de los éxitos cientificos de la época: la Royal
Society de Londres y la Real Academia de Ciencias de Paris. Estas
instituciones actuaron como catalizadores en la expansion del co-
nocimiento y a su amparo surgieron las primeras revistas cienti-
ficas, las Philosophical Transactions y el Journal des S¢avans.
Huygens las aprovecharia como vehiculo para difundir sus ideas,
al margen de sus siempre laboriosos tratados. En ambas organiza-
ciones fue admitido con una mezcla de admiracién, por su talento,
y de reserva, por su condicién de extranjero.

Huygens viajé a Londres en 1661, formando parte de una
comitiva diplomatica que asistia a la coronacion de Carlos II. El
Gresham College, que presume de ser el centro de educacién su-
perior mds antiguo de la ciudad y que constituiria una especie de
ensayo general para la Royal Society, fue una de sus visitas obliga-
das. Si no se habia llevado una primera impresién de Paris dema-
siado halagiiefia, el Londres arrasado por los tumultos que habian
precedido a la Restauracién tampoco desperté su entusiasmo.
Tras la muerte de Cromwell, el Gresham College habia servido
de cuartel y, segiin escribia el obispo de Rochester a Christopher
Wren, los soldados se habian comportado como unos inquilinos
de pesadilla:
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Hallé el lugar en un estado tan asqueroso, tan sucio y apestaba de
un modo tan infernal, que si vinieras ahora a utilizar tu telescopio,
serias como el rico que observa el cielo desde el infierno.

Cuando se pudieron reanudar las actividades ordinarias en
el college, al nuevo rey le parecieron una comedia del absurdo.
Segun anota Samuel Pepys en su diario, Carlos II se habia reido
«con ganas en el Gresham College al ver que se perdia el tiempo
en pesar el aire y que no se hacia otra cosa en todo el tiempo que
estuvo alli».

Huygens no compartia el sentido del humor regio y asistié
con entusiasmo a los experimentos con el vacio que desarrolla-
ban Robert Boyle y Robert Hooke, inspirados por la obra pionera
de Otto von Guericke. En el verano, de regreso en La Haya, se
propuso fabricar su propia bomba. Hacia finales de aifio ya pre-
sumia de haber mejorado el disefio de Boyle. Los ingleses no die-
ron crédito a sus resultados, quizd porque no fueron capaces de
igualarlos. Huygens oculté los detalles de su modelo por temor a
que lo plagiaran y no fue hasta junio de 1663 que se present6 en
Londres dispuesto a demostrar la superioridad de su bomba de
aire. Para no presenciar la exhibicién, Boyle se marché a Essex
con el pretexto de visitar a su hermana, la condesa de Warwick.
Solo después de que Hooke le advirtiera de que el artefacto del
holandés tampoco aventajaba tanto al suyo, Boyle se dej6 caer
por el Gresham College.

VIDA EN PARIS

El tnico lugar del mundo que podia rivalizar con Londres en una
atmosfera estimulante y propicia a la investigacién y al inter-
cambio de ideas cientificas era Paris. Huygens, ademds, sentia
una mayor afinidad hacia la cultura francesa. Antes de viajar a
Londres habia disfrutado de una segunda estancia a orillas del
Sena. En casa de Montmor habia retomado las tertulias que tanto
echaba de menos en La Haya: «Cada martes se celebra una reu-
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nién, donde coinciden veinte o treinta hombres ilustres. Nunca
me la pierdo».

No solo los hombres ilustres atraian su atencién. También
en Paris se enamor6 de Marianne Petit, la hija de un ingeniero.
La relacién tropezé con barreras insalvables desde el comienzo.
Hasta el retrato que Huygens intent6 esbozar de la joven se le
resisti6. O quizd era un pretexto para alargar las visitas. Parece
que la vocacion de Marianne era acabar en un convento, y que un
hereje protestante no era el mejor interlocutor para disuadirla del
empeno. El fracaso en el cortejo pesoé en el &nimo de Huygens du-
rante meses. Cuando su hermano Constantijn le enviaba juegos
de palabras que escondian mensajes picantes, €l respondia con
otros sobre astronomia.

«Es cierto que no podria vivir en ningin otro sitio mas feliz que
en esta ciudad [Paris]. Sus exquisitos habitantes y su singular
amabilidad me ligan a ella cada vez mas.»

— CHrisTiaaN HUYGENS.

Si Huygens buscaba un pretexto para instalarse en Parfs,
pronto recibié una invitacién formal. El Rey Sol parecia decidido
a transformar la capital de su reino en la capital del mundo entero.
Una ambicién desmesurada que también comprendia el &mbito del
conocimiento. Por desgracia, en el momento de la fundacion de la
Real Academia de Ciencias, que habia de convertirse en la maxima
institucion cientifica de Francia, la muerte conspiraba para llenar
su panteén de hombres ilustres. Descartes habia fallecido en 1650,
Pascal en 1662 y Fermat en 1665. Huygens habia aquilatado ya un
enorme prestigio, que permitia compensar en parte las bajas. A
pesar de ser extranjero se expresaba en un perfecto francés y su
actitud cortesana resultaba tan familiar como aceptable en los cir-
culos de Paris. Su nombre sonaba en todas las quinielas.

Una de las pocas tachas que podian comprometer su desig-
nacién procedia, inesperadamente, de su padre. Desde 1650 la re-
publica holandesa habia quedado sin estatiider. Viendo su estrella
declinar a la sombra de los Orange, Constantijn explotaba el brillo
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de Christiaan para mantenerse en el candelero, ya que seguia ha-
ciendo gestiones en favor de sus viejos patrones. Con frecuencia,
para distender el ambiente de una negociacién, organizaba una
exhibicién con los instrumentos cientificos que fabricaba su hijo.
Huygens experimentaba un rechazo visceral hacia estos monta-
jes. Aunque nunca se opuso a ellos abiertamente, los boicoteaba
a su manera. Con motivo de una linterna mégica que Constantijn
le habia encargado, le escribia a su hermano pequefio Lodewijk:

Como le he prometido que le enviaria la linterna, tendré que hacerlo.
No he sido capaz de encontrar una buena excusa para librarme. Pero
cuando llegue, ti podrias, si te parece, evitar ficilmente que funcio-
ne. Tienes que quitar una de las tres lentes que vienen juntas. Yo me
comportaré como si no tuviera la menor idea de qué es lo que falla
y la explicacién subsiguiente causara justo el retraso necesario. Todo
seria por su propio bien porque, en mi opinién, no resulta apropiado
que nuestro padre se entregue a semejante juego de titeres en el
Louvre, y estoy seguro de que ti tampoco querras ayudarle.

No sabemos si Luis XIV disfrutaba con los divertimentos que
aderezaban las maniobras diplomadticas de Constantijn. Desde
luego no debia de hacerle demasiada gracia colocar al frente de
su rutilante academia al hijo de un holandés con una presencia
politica tan fuerte. Maxime, cuando la reptblica se interponia en
sus planes de expansién territorial. No obstante, después de cier-
tas vacilaciones, a Huygens le ofrecieron el puesto de director
cientifico de la Academia en junio de 1665. Se mostré encantado:

Es mejor y resulta mas satisfactorio que me sienten en un caballo y
me pague un rey, que permanecer ocioso en este pais durante el
resto de mis dias.

El solemne acto de fundacién se celebré un aiio después. En
él participaron muchos de los cientificos que habian acogido a
Huygens en su primer viaje a Paris, como Auzout o Roberval. En
el término de una década el orden jerarquico se habia subvertido.
De ser un joven prometedor, Ismaél Boulliau lo nombré «cabeza
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suprema» del grupo. En agosto, Huygens se instal6 en la Biblio-
teca del Rey, donde se habia establecido la sede de la academia,
asi que podia asistir a las reuniones sin salir de casa. Recibié un
salario de 6000 libras, que cuadruplicaba el de los miembros or-
dinarios. Hasta entonces se habia mantenido a expensas de una
generosa asignacion paterna. La primera reunién oficial de 1a Real
Academia de Ciencias tuvo lugar tres dias antes de Navidad.

Huygens fijaria su residencia en Paris durante un largo pe-
riodo de quince afos, en el que habria que descontar varias re-
tiradas a La Haya, motivadas por problemas de salud, brotes
depresivos y un enrarecimiento paulatino de la atmésfera politica.
Si en el siglo xvi Francia e Inglaterra parecian los destinos natu-
rales para cualquier fisico o matematico, no lo eran en absoluto
para un holandés. La misma prosperidad que impulsaba la ciencia
henchia las pretensiones geoestratégicas.

En una de las etapas mas productivas de Huygens, entre 1652
y 1674, se declararon hasta tres guerras entre Inglaterra y Holanda
por la hegemonia naval. En 1672, cuando Francia se incorporé a
las hostilidades, soné la hora del regreso de la casa de Orange. Que
era decir lo mismo que la de los dos Constantijn, padre e hijo. El
hermano de Huygens pudo interpretar por fin el papel que llevaba
ensayando casi dos décadas y fue nombrado secretario del nuevo
estatider, Guillermo III. Constantijn, a los setenta y siete afios, re-
cuperé todo el pulso de su influencia. La decisién de Luis XIV de
declarar la guerra a Holanda colocé a Huygens en una situacién
delicada. Ahora vivia en una nacién hostil. Los franceses podian
elegir entre verlo como un ilustre hombre de ciencia, ciudadano del
mundo, o como un espia evidente, ya que estaba emparentado con
los principales consejeros del enemigo. Una disyuntiva bastante
facil de resolver para la mayoria.

EL CIENTIFICO HIPERACTIVO

La obra cientifica de Huygens que hemos repasado en los capitu-
los anteriores abarca un lustro, desde 1651 a 1656. Su abundan-
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cia resulta engafiosa. En realidad, en ese periodo acometié con
éxito muchas mas empresas. En concreto, el afio 1652 provoca
una sensacién de vértigo. En doce meses enmendé la plana una
vez mas a Descartes y desarroll6 su propia teoria sobre la meca-
nica de las colisiones, en la que estableci6 la conservacién de la
energia, estudié6 las aureolas del sol, inicié su fértil investigacién
en didptrica y produjo resultados en élgebra y geometria. Casi
parece una broma cuando se dirige a Van Schooten y le confiesa
que sufre una jaqueca paralizante: «Por el momento, sin embargo,
debo privarme de estudiar, salvo que mi fuerza de voluntad pueda
combatir el dolor».

La curiosidad hiperactiva de Huygens dejaba muchos fren-
tes abiertos. Podia saltar de un asunto a otro en funcién de su
interés o de los apremios de los demas. Sus investigaciones tan
pronto avanzan como se detienen, se simultanean o se entorpecen
unas a otras. Dos impulsos contradictorios contribuyen al estan-
camiento: su resistencia a dar un proyecto por zanjado y su faci-
lidad para comprometerse con otros nuevos. Huygens compartia
la excitacién del cazador. Una vez pasada la euforia del descubri-
miento, sentarse a escribir y organizar un tratado de acuerdo a
una estructura l6gica de hipétesis y deducciones resultaba menos
tentador que lanzarse a una nueva pesquisa. De entre el denso
tejido de inquietudes que progresan con frenazos y acelerones a
lo largo de los afios, componiendo una obra intrincada y diversa,
en este capitulo vamos a seguir el hilo de la luz hasta el final. Fue
el asunto que cautivé su curiosidad cientifica durante mas tiempo,
su empresa mas sostenida.

Tras la publicacién del Systema Saturnium, Huygens man-
tenia intacta su obsesién por dar con el disefio del telescopio
perfecto. A partir de 1665 invirtié gran parte de sus energias en
erradicar la aberracién esférica. Recordemos que en ese mismo
afio habia hallado una configuracién de lentes donde un ocular
coéncavo corregia la aberracion de un objetivo convexo. Esta dispo-
sicién correspondia, sin embargo, a un anteojo o telescopio terres-
tre. Huygens buscaba una solucién apropiada para un instrumento
astronémico. Ensayé la misma tictica de emparejar lentes esféri-
cas de modo que cancelaran mutuamente sus aberraciones.
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Sus esfuerzos culminaron el 1 de febrero
de 1669. En lugar de actuar sobre el ocular,
opté por duplicar las lentes del objetivo. El
sistema de una lente bicéncava y una pla-
noconvexa (figura 1) se comporta como un
objetivo hiperbélico libre de aberracién es-
férica. La clave de la receta radicaba en la
relacion entre el radio de las curvaturas, que
Huygens estableci6 con exactitud.

El disefio llevaba el sello de Huygens:
una elegante aleacién de fisica y geometria,
donde la materia corregia sus defectos si-
guiendo instrucciones matematicas. Huygens
habia culminado por fin su monumental obra
en diéptrica, al resolver el problema de la
aberraciéon. Ya estaba en condiciones, bajo
su exigente punto de vista, de componer el
gran tratado sobre la luz que le venian deman-
dando desde hacia mas de una década. Sin
embargo, su mente volvié a dispersarse por
culpa de otros asuntos.

En octubre de 1669, Isaac Barrow, primer
titular de la Catedra Lucasiana de Cambridge,
daba a la imprenta sus Lectiones XVIII. En
ellas aplicaba la ley de Snell a desentraiiar el
comportamiento de las lentes esféricas, cum-
pliendo el viejo sueiio de Kepler. Huygens ha-
bia completado la misma tarea quince afios
antes, pero habia guardado tanto tiempo la
fruta en el cajén que se le habia terminado
pasando. Se consolé considerando que, des-
pués de todo, esta pérdida de atribucién no

resultaba tan grave. Acababa de resolver un problema mucho mas
ambicioso, que exhibia un absoluto dominio de los resultados pu-
blicados por Barrow. Decidié retomar su didptrica en un nuevo
tratado que coronaria con su receta para curar el mal de las abe-

rraciones.
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NEWTON CONTRA HUYGENS

Huygens habia escrito al lado de su disefio de 1669 el grito de gue-
rra de Arquimedes: «jEureka!». Asi solia reflejar en su cuaderno
de notas el jiibilo de cada descubrimiento. Cinco afios después lo
tachaba. ;El motivo? Tenia nombre y apellido: Isaac Newton. En
el primer curso que dicté como sucesor de Barrow en la Catedra
Lucasiana, Newton reconocia el enorme progreso que se habia
producido en el campo de la diéptrica, al tiempo que sefialaba una
pequena grieta que amenazaba con derrumbar el edificio levan-
tado por sus precursores:

Sin embargo han dejado algo —de la maxima importancia, ade-
méas— para que puedan descubrirlo quienes han seguido sus pasos;
a saber, encuentro en las refracciones una cierta irregularidad que
lo trastorna todo [...]. Por esta razén, me interno en la diéptrica no
para ofrecer un nuevo tratamiento sistematico, sino para, de entra-
da, examinar a fondo esta propiedad en la naturaleza de la luz y
después mostrar hasta qué punto mina la perfeccién de la diéptrica
y como se puede evitar, hasta donde la naturaleza lo permite, este
obstaculo. Voy a describir aqui diversos aspectos relacionados con
la teoria y practica de los telescopios y microscopios, para demos-
trar que el perfeccionamiento definitivo de la 6ptica —en contra de
la opinién establecida— debe buscarse en una combinacién de diép-
trica y catoptrica.

La propiedad de la naturaleza a la que se referia Newton era
su famosa descomposicién de la luz solar al atravesar un prisma.
Las lineas negras que trazaba la éptica geométrica escamotea-
ban un fenémeno 6ptico insoslayable: la luz blanca atina rayos
de diversos colores, que se desvian en dngulos distintos al atra-
vesar un medio transparente. Por tanto, la lente convierte cada
punto de un objeto en un borrén policromo, lo que origina una
imagen distorsionada. Este defecto recibe el nombre de aberra-
cién cromética. Newton consideraba que tenia mucho més peso
en la formacién de imégenes que la aberracién esférica y que, de
hecho, arruinaba el futuro de cualquier telescopio compuesto solo
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de lentes (didptrica). La solucién residia en un nuevo disefio, el
telescopio de reflexién, que utilizaba espejos (catéptrica).

De hallarse Newton en lo cierto, la ambicién de Huygens de
perfeccionar el telescopio mediante sutiles arreglos de lentes
estaba condenada al fracaso. De modo progresivo, Huygens fue
tomando conciencia del terremoto que se avecinaba. En primer
lugar leyé el articulo que Newton publicé en febrero de 1672 en
las Philosophical Transactions. Su reaccién inicial fue de cautela:

En lo que respecta a su nueva teoria de los colores, la encuentro
bastante ingeniosa, pero tendré que verse si resulta compatible con

todas las experiencias.

UN TELESCOPIO DE ESPEJOS

En la primera mitad del siglo xvi, en plena expansién de la industria 6ptica, la
idea del telescopio de reflexién estaba en el aire. Fue apuntada entre otros por
Descartes. Tras comprender que las lentes producian imagenes ampliadas al
desviar el curso de los rayos luminosos, resultaba natural pensar en las posibi-
lidades que ofrecian los espejos. En 1663, el escocés James Gregory propuso
un primer disefio operativo, con dos piezas, una de seccion parabdlica y otra
elipsoidal (figura 1). Lograr, sin embargo, que una superficie metélica bien
pulida adoptase estas curvaturas suponia desafios técnicos semejantes a que
lo hicieran las lentes. Gregory, como en su dia Descartes, termind desistiendo.
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Desde luego, Huygens no compartia el negro futuro que
Newton habia pintado para los telescopios de refraccién. Habia
pasado demasiados afios trabajando con ellos:

También tiene que reconocer, por tanto, que esta dispersion de los
rayos no perjudica a las lentes tanto como él parece haber deseado
que se crea, cuando propuso espejos céncavos como la tinica espe-
ranza de perfeccionar el telescopio.

Sospechaba que la critica demoledora del inglés respondia

en parte a una estrategia para realzar su propia propuesta de un
telescopio de reflexién. En un plano menos utilitario, le parecié

T TRl R S R

En el espiritu de Huygens, de operar con los elementos que eran capaces de
producir los artesanos, Newton desarrollé un prototipo mas simple, a partir
de un espejo plano y otro de corte esférico (figura 2). Disefid sus propias
herramientas y también prepard la aleacion del espejo. El telescopio reflector
ofrecia ventajas incuestionables. De entrada acusaba menos la aberracién
esférica. Como la luz no atraviesa en él ninguna frontera entre medios, tam-
poco sufria pérdidas de luminosidad ni la imagen se deformaba a causa de
las irregularidades del vidrio o la presencia de burbujas. Por la misma razon se
veia libre por completo de la aberraciéon cromaética. Su punto débil radicaba en
el material reflectante. Su comportamiento debia aproximarse, hasta donde
fuera posible, al de un espejo ideal y mantener sus propiedades sin nublarse

al reaccionar quimicamente con la atmésfera.

el Lente del ocular

Espejo
concavo

| )ﬂ*jo plano
e
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que Newton introducia demasiados colores en su teorfa. En su
opinién, bastaba con dos: el azul y el amarillo. A la hora de respon-
der a Huygens, Newton moder6 su condena a la refraccion, pero
desmonté sus argumentos de una luz blanca integrada por una
pareja de colores. Llegados a este punto, el cortesano Huygens
estimé que el entusiasmo de Newton en llevarle la contraria resul-
taba incompatible con los buenos modales. A través del secretario
de la Royal Society, Henry Oldenburg, anuncié que se retiraba de
la polémica: «Ver que sostiene sus opiniones con tanto ardor, me
quita las ganas de seguir discutiendo». Sin embargo, dio al César
lo que correspondia al César. En su cuaderno de notas taché el
«eureka» y escribi6 al lado: «Esta invencién resulta iniitil, debido
a la aberracién newtoniana que produce colores».

Al final, la aberracién croma-
tica (figura 2) no enterr6 al teles-
copio de lentes. En torno a 1730,
Chester Moor Hall, abogado inglés
y cientifico aficionado, introdujo
un nuevo enfoque donde pesaban
tanto los ingredientes fisicos como
los geométricos. Su solucién com-
binaba lentes de secciones diferen-
tes, pero también de materiales
distintos (figura 3). Asi, por ejem-
plo, el angulo de refraccién de la
luz cambia al atravesar un vidrio
crown o un vidrio flint.

La publicacién de los trabajos
de Barrow sobre éptica y la teoria
de Newton sobre la descomposi-
cion de la luz habian desbaratado
en el plazo de unos meses una em-
presa cientifica de casi dos décadas.

La curiosidad muiltiple e infa-
tigable de Huygens a veces se
convertia en el mayor enemigo de
su obra. Era responsable de una
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dispersién que lo distraia constantemente de su objetivo y que
dilataba sin cesar el momento de dar a conocer sus descubrimien-
tos. También era su principal virtud. La curiosidad lo distraia de
los fracasos e incluso le hacia ver en ellos la apertura de nuevos
campos de exploracién. Huygens habia objetado a la teoria de los
colores de Newton que: «incluso si fuera cierto que los rayos lu-
minosos en origen fueran algunos rojos, otros azules, etc., todavia
quedaria la gran dificultad de explicar mediante la fisica, en qué
consiste la mecanica de esta diversidad de colores». Una puntua-
lizacion justa, pero aplicable también a toda su interpretacién de
la diéptrica. La 6ptica geométrica habia conocido su momento
de esplendor durante la juventud de Huygens, pero habia quedado
superada por los acontecimientos. Incapaz de justificar los nue-
vos fenémenos, sus principios siguieron siendo de utilidad para
el optico y el artesano, pero debian abandonar la vanguardia de
la fisica. Este vacio colocé a Huygens en la rampa de lanzamiento
para una nueva investigacién. El empujén definitivo, que le permi-
ti6é encauzar sus inquietudes, llegd bajo la forma de uno de esos
rompecabezas fisicos que tanto le gustaban.

LA ROCA MISTERIOSA

A mediados del siglo xvi Islandia se hallaba bajo dominacién
danesa. En la primavera de 1668 el rey Federico III ordené una
expedicion geoldgica que debia encaminarse a la costa oriental
de la isla, hasta Helgustadir. Su objetivo era recoger muestras de
una variedad de calcita que exhibia una transparencia fuera de lo
comiin. Erasmus Bartholinus, profesor de geometria y medicina
de la Universidad de Copenhague, estudi6 las propiedades 6pticas
del mineral y hallé algo sorprendente. Cuando un rayo de luz in-
cide contra una de las caras del espato de Islandia se divide en dos
(figura 4). En su travesia a través del cristal los rayos divergen,
hasta que vuelven a cruzar la frontera. Una vez en el aire, siguen
su camino en paralelo. Esta duplicacién de los rayos explica que
si se mira a través del espato se observen imagenes dobles.
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Rayo incidente

Los dos rayos exhiben un
comportamiento distinto. Uno se
ajusta a la ley de Snell y en con-
secuencia recibe el nombre de
«rayo ordinario». El otro se llama
«extraordinario» y sus dngulos de
entrada y salida no cumplen la re-
lacién de los senos.

Reve En 1671, el astrénomo Jean
extraordinario Picard, miembro de la Real Aca-
demia de Ciencias, viajé a Copen-
hague y, a su regreso a Paris, llevé
consigo varias muestras de espato.
Haciendo gala de su obsesiva me-
ticulosidad, Huygens las sometié a un examen escrupuloso y des-
cubrié fenémenos que Bartholinus habia pasado por alto. El mas
chocante se producia al situar dos cristales uno a continuacién
del otro. La luz, al incidir sobre el primero, se partia en dos. Sin
embargo, al seguir su camino e incidir sobre el segundo, los rayos
no se dividian. ;Qué le ocurria a la luz en su viaje a través de la cal-
cita? Ademds de desviarse, algo alteraba su naturaleza. Aqui Huy-
gens habia tropezado con un rasgo insospechado de la luz, puesto
que el ojo humano no es capaz de percibirlo: la polarizacién. Mu-
chos insectos y cefalépodos si son sensibles a ella.

Como las apariciones de Saturno, la doble refraccién reve-
laba un fenémeno natural que desafiaba el marco conceptual es-
tablecido. Si la luz se redujera a la 6ptica geométrica, algo como
la calcita de Helgustadir no deberia existir. Y, no obstante, la aca-
baban de extraer de una cantera. La determinacién de Huygens
de explicar la doble refracciéon lo empujé mas alld de los limites
de la diéptrica. Emprendi6 un primer asalto a la cuestién en 1672,
sin éxito. Cinco afos después, durante un prolongado retiro en
La Haya, consum¢ el ataque definitivo. El 6 de agosto de 1677
escribié en su cuaderno de notas un nuevo eureka que esta vez
nadie le obligaria a tachar. En octubre, escribia a Jean-Baptiste
Colbert —el influyente ministro de Luis XIV— para anunciarle que
habia resuelto el rompecabezas: «No es una maravilla pequefia

Rayo ordinario
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de la naturaleza, ni resulté facil de desentrafiar». A mediados de
1679 hizo una presentacién ordenada de su teoria ante la Real
Academia de Ciencias, que conformaria el grueso de su Traité de
la lumiére (Tratado sobre la luz). Este, siguiendo su costumbre,
no lo publicé hasta diez ainos después.

«Mientras los geémetras demuestran sus proposiciones
mediante principios incontestables, aqui los principios son
corroborados por las conclusiones que pueden extraerse de
ellos; l1a naturaleza de la materia tratada no permite otra cosa.»

— CurisTiaaN HuyGeNs, TRAITE DE LA LUMIERE.

En la éptica geométrica todo lo que habia que tener en cuenta
era la curvatura de las lentes y la ley de la refraccién. Simplemente
con conocer la relacién matemética entre o y f§ y asumiendo una
propagacién rectilinea de la luz su comportamiento se reducia
a un problema de geometria. Empero, no se decia nada acerca
de la naturaleza de la propia luz. ;Cudl era el motivo de la ley de
los senos? ;Qué es realmente un rayo luminoso? ;Se compone
de partes o constituye una unidad elemental? ;Cémo funciona el
mecanismo de su propagacién? Para Huygens habia llegado el mo-
mento de abordar estas cuestiones:

En 6ptica, como en cualquier otra ciencia donde la geometria se
aplique a la materia, las demostraciones se apoyan en hechos expe-
rimentales; por ejemplo, que la luz viaja siguiendo lineas rectas, que
los 4angulos de incidencia y reflexion son iguales o que los rayos de
luz se refractan de acuerdo con la ley de los senos [...]. La mayoria
de los autores que tratan la materia se contentan con asumir estos
hechos. Sin embargo otros, con una mente mas inquisitiva, han tra-
tado de hallar su origen y su causa, considerdandolos en si mismos
como fenémenos naturales dignos de interés. Y aunque han llegado
a plantear algunas ideas ingeniosas, no bastan para que los lectores
méds inteligentes no deseen explicaciones més profundas que los
dejen plenamente satisfechos.
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Encontramos una prueba de la grandeza de Huygens en que,
después de dedicar un cuarto de siglo a comprender la luz, de
ver cOmo otros le arrebataban sus hallazgos o cémo sus obje-

LA POLARIZACION DE LA LUZ

Existen otros procedimientos para propagar una perturbacion fisica sin recurrir
a las colisiones que Huygens introduce en su modelo de la luz. Encontramos
un ejemplo sencillo en una cuerda donde uno de sus extremos se agita arriba
y abajo, mientras el otro permanece sujeto. La perturbacion opera en vertical,
pero se propaga a lo largo de la cuerda en horizontal (figura 1). El concepto
de «polarizacion» se puede aplicar a esta cuerda. Sefalaria la direccién en que
se agita la mano: arriba y abajo. Diriamaos, en este caso, que la perturbacién
posee una polarizacién vertical. También podria presentar una polarizacién
transversal, de derecha a izquierda (figura 2). Combinando desplazamien-
tos transversales y verticales, la mano puede trazar un sinfin de trayectorias
sin salirse del plano perpendicular a la direccién de propagacion fijada. En
lenguaje técnico se diria que la polarizacion de la cuerda muestra entonces

FIG.1
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tivos cientificos se frustraban, fue capaz de producir por fin su
obra maestra sobre la materia aplicando un enfoque del todo
inesperado.

una mezcla de componentes transversales y verticales. Atribuimos a la luz un
rasgo semejante, puesto que al cruzarse con una particula cargada —como
un electron— es capaz de agitarla en una direccién perpendicular a la que
sigue su propia trayectoria. La luz solar ofrece una mezcla de componentes
transversales y verticales, pero la disposicién espacial de los atomos en el
espato de Islandia introduce una asimetria en la respuesta de sus electrones:
unos pueden oscilar solo en vertical y otros, solo en sentido transversal. Cuan-
do la luz del sol incide sobre ellos con su batiburrillo de polarizaciones, los
electrones de un grupo solo responden a su componente transversal y los del
otro, solo a la vertical. Cada clase desvia la luz en una direccion distinta y asi
se generan dos rayos: uno queda polarizado en vertical y el otro, en sentido
transversal. Si a continuacion se interpone en su camino un segundo cristal,
los rayos ya no volveran a dividirse, ya que los electrones de cada grupo solo
podran responder a una de las dos polarizaciones (figura 3).

5 . e . 4
Fia.3 Combinacién de polarizaciones
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ONDAS O PARTICULAS

Los cientificos del siglo xvn trataron de atrapar la esencia de la
luz en dos esquemas conceptuales que idealizaban fenémenos
cotidianos: ondas y particulas. Ambos explicaban la propagacién
luminosa en todas direcciones y con velocidad finita, aunque recu-
rrian a procedimientos incompatibles. Hasta el punto de que una
de las versiones ondulatorias que se anticip6 a la formulacién de
Huygens, debida al jesuita Ignace Gaston Pardies, se planteaba
como un claro desafio al atomismo.

Las particulas, como las balas, no afectan a todo el espacio
que atraviesan y la interaccién con ellas responde al principio del
todo o nada. O se choca contra una particula o se evita. Las ondas
exhiben un cardcter menos radical. No se concentran en puntos o
trayectorias lineales, se desparraman y barren el espacio de forma
gradual, sin dejar huecos. Cada propuesta tenia sus ventajas e in-
convenientes. Huygens veia una traba insalvable en el modelo
corpuscular:

[...] la luz consiste en un movimiento de la materia entre nosotros y
el cuerpo luminoso. Si ademas tenemos en cuenta y consideramos
la extraordinaria velocidad con que la luz se esparce en todas direc-
ciones y también el hecho de que procediendo, como lo hace, de
direcciones muy diferentes y en verdad opuestas, los rayos se inter-
penetran sin obstruirse unos a otros, entonces podemos comprender
que siempre que vemos un objeto luminoso, no puede ser debido a
la transmision de la materia que nos llega del objeto, como por ejem-
plo un proyectil o una flecha que vuela en el aire [...]

En otras palabras, si la luz fuera una rafaga de particulas, al
cruzarse dos rayos, rebotarian. La experiencia dicta que dos haces
de linterna se ignoran, como si ninguno advirtiera la presencia
del otro. Sin embargo, la visién de Huygens se apartaba de la de
Pardies, ya que no renunciaba a los &tomos. En su modelo, las par-
ticulas interpretan el papel de mediadores. No se propagan, lo que
se propaga es la perturbacién que las sacude. Poco después de
cumplir su papel transmisor, podemos encontrarlas mas o menos
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en el mismo lugar y estado, mientras la perturbacién que las agit6
progresa para afectar a otras particulas remotas. Se puede pensar
en el coche que embiste a otro en un atasco y genera una sucesion
de choques en cascada. La accién del primer vehiculo termina
desplazando al tltimo de la fila sin haberlo tocado. En realidad,
cada vehiculo apenas se mueve, pero transmite el impulso dece-
nas de metros.

Segin Huygens las particulas de un cuerpo luminoso se agi-
tan y colisionan contra las particulas de éter de su entorno inme-
diato, comunicandoles su agitacién. Esta agitacién ser4 la luz, que
se transmitira en una cadena de colisiones hasta sacudir las célu-
las de nuestros ojos. Huygens no se pierde demasiado en el jardin
del éter. Recurrié a él porque los experimentos de Robert Boyle
y Evangelista Torricelli ya habian establecido que el sonido no
se propaga en el vacio, mientras que la luz si. La materia comiin,
como el aire, no podia por tanto difundir ambas. Huygens postulé
entonces la existencia de una materia sutil e invisible, el éter, inte-
grada por particulas «que se aproximan a una dureza casi perfecta
y que poseen una elasticidad tan pronta como se quiera». Ocupan
todo el espacio que dejan los dtomos que componen los sélidos,
gases y liquidos. Huygens contempla la posibilidad de que el éter
no penetre en los cuerpos, aunque €l se inclina por que si lo haga.
En este sentido parece considerar la materia como una esponja,
por cuyos orificios y recovecos se cuelan las particulas de éter.

Partiendo de una fuente luminosa, la agitacién local de sus
particulas promueve una cadena de colisiones, cuyo efecto, visto
desde la distancia, se traduce en la dilatacién de un frente esférico
que crece en torno, como en la disposicién de fichas de dominé
de la figura 5 (en la pagina siguiente), donde la caida de las piezas
centrales se propaga en una cascada circular.

Este modelo de la luz aclara por qué dos rayos se atraviesan
sin interferirse. Las particulas pueden bailar al compéas combi-
nado de dos cadenas de colisiones: «La misma particula de ma-
teria puede servir a multitud de ondas que procedan de distintos
frentes o incluso de sentidos opuestos». Recuperando el simil del
coche atrapado en un atasco, este es capaz de transmitir los im-
pactos de varios vehiculos que vengan contra él desde cualquier
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direccién, aunque se produzcan de
manera simultianea.

Igual que en el ejemplo del do-
mind, cada ficha que cae no solo
transmite su impulso en una direc-
cién estrictamente radial, sino que
lo difunde en un abanico més am-
plio, siempre hacia delante. En las
fichas se debe a su particular dispo-
sicion, de modo que al caer arras-
tran a mas de una. Huygens recrea
el mismo efecto mediante colisiones

(figura 6).

[...] cuando una esfera, como sucede
aqui con A, se halla en contacto con va-
rias esferas similares CCC, recibe el im-
pacto de otra esfera B, de tal modo que
ejerza un impulso sobre todas las esferas
CCC que la tocan, les transmitiré la tota-
lidad de su movimiento, tras lo cual per-
manecera inmévil, como la esfera B.

A escala microscdpica, el modelo de Huygens despliega un
colosal juego de billar en tres dimensiones, donde cada bola
transmite el golpe que recibe y se detiene. Al menos en prome-
dio. Cada particula mantiene una cierta libertad de movimientos,
igual que los coches que avanzan poco a poco en un atasco, pero,
en lo que respecta a la luz, se comporta como un corredor de
relevos que enseguida entrega el testigo.

EL PRINCIPIO DE HUYGENS

Aunque en muchas ocasiones se considere a Huygens fundador
de la moderna teoria ondulatoria de la luz, hay que tener cuidado
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con el significado que él atribuia a la palabra «onda», porque no
coincide con el que asumieron cientificos posteriores al extender
sus ideas. La intuicién fisica que guiaba a Huygens para visualizar
c6mo «se transmite sucesivamente» la luz se basaba en el sonido:

[La luz,] como el sonido, debe propagarse en superficies esféricas u
ondas; las llamo ondas a causa de su analogia con las que vemos
formarse en el agua cuando arrojamos en ella una piedra y a causa
de que nos permiten observar una semejante y gradual propagacion
en circulos, aunque responden a una causa diferente y solo se for-
man en una superficie plana.

Huygens toma de las ondas en el agua la «propagacion gra-
dual en circulos», pero advierte que «responden a una causa dife-
rente». En particular, las ondas de un estanque son transversales:
se propagan en una direccién perpendicular a la perturbacién que
las origina. La piedra cae en vertical, los circulos concéntricos se
despliegan en horizontal. Las particulas del éter de Huygens trans-
miten la luz basicamente en la direccién de su movimiento, aunque
abran su radio de influencia en abanico. En ningiin caso menciona
atributos caracteristicos de un modelo ondulatorio clédsico, como
son la longitud de onda, la fase y la interferencia.

La pieza clave de su construccién es el llamado «principio de
Huygens»: cada particula afectada por un frente luminoso se trans-
forma a su vez en el origen de un nuevo frente. En la analogia del
dominé, la propagacion se inicia con una ficha al caer, y cada ficha
que cae derriba otras, extendiendo la perturbacién en abanico. En
tres dimensiones, las colisiones lo hacen en una seccién de circun-
ferencia:

[...] cada particula de una porcién de materia en la que se propaga
una onda, no deberia de transmitir su movimiento solo a la siguien-
te particula que se encuentre en una linea recta dibujada desde la
fuente luminosa, sino que también comunica necesariamente una
parte a todas las demas que la tocan y que se oponen a su movimien-
to. Por tanto, se sigue que alrededor de cada particula se desarrolla
una onda de la cual esa particula es el centro.
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El principio establece que si conocemos cémo es el frente
de la perturbacién en un momento dado (,), podremos determi-
narlo con exactitud en cualquier instante posterior (Z,). Basta con
considerar cada punto del viejo frente (F) como fuente de nue-
vos frentes esféricos, secundarios, que se expanden progresiva-
mente hacia fuera con un radio r=v(¢,~t,). El frente resultante
(F,) sera la superficie que envuelva todas las esferas a la vez en
el estado en el que se encuentren en cada momento (figura 7). En

r=v(ta-ty)

108 LA ESENCIA ESCURRIDIZA DE LA LUZ

cierto modo, el trasfondo de par-
ticulas de éter con sus colisiones
sirve de coartada fisica para un
método de construccién geomé-
trico, un juego de regla y compés
que permite dibujar cémo evolu-
ciona la perturbacién. La fisica,
por supuesto, determina los para-
metros de la composicién, como
la apertura del compés.

Los frentes secundarios no se
propagan exactamente como la
perturbacién original. Las peque-
fas esferas no se expanden hacia
el interior, en direccion a la fuente
luminosa O. Desde cada punto del
frente F| solo se genera la onda
secundaria hacia fuera, para com-
poner F,. La onda hacia dentro que
daria lugar a F", no se produce (fi-
gura 8).

Conviene precisar que el efec-
to no es acumulativo. A medida
que el frente avanza no va engor-
dando con las aportaciones de es-
feras que progresan desde todos
los puntos interiores. De ser asi,
al encender y apagar una bombilla
se desataria una onda expansiva




de luz cada vez més intensa que nos cegaria. Como en la analo-
gia de las fichas de domind, la causa inicial solo barre cada punto
una vez. Si se enciende y apaga la fuente, vemos la luz un instante

y luego se desvanece.

Los casos mas sencillos a los
que puede aplicarse el principio
de Huygens son la propagacién de
ondas planas y esféricas (figuras 9
y 10). Las lineas perpendiculares
al frente de ondas (los radios en
el caso de la esfera) conforman
los rayos luminosos de la éptica
geométrica.

A la vista de los ejemplos, la
construccion de Huygens parece
algo barroca y hasta innecesaria.
:Por qué para averiguar el aspecto
del nuevo frente no se dibuja sen-
cillamente una linea recta detras
de otra o un circulo cada vez mas
amplio, a la distancia que corres-
ponda en funcién de la velocidad
de propagacion?

La razén de ser del principio
estriba en que resuelve la construc-
cién de los frentes en situaciones
menos obvias. Permite derivar, por
ejemplo, la ley de Snell, llegando a
determinar el valor de la constante
numérica como cociente de las
velocidades de la luz en cada uno
de los medios. Para comprobarlo,
vamos a situarnos en una frontera
plana entre el aire y el vidrio (fi-
gura 11, en la pagina siguiente). El
principio de Huygens se aplica en
ambos medios, pero la luz viaja a

Envolvente
de las
esferas
—————
A .
Cada punto —
del frente en
tyes I‘uagte
de ondas
esféricas »
-
—»
Frenteen b Frente en ¢;

FIG. 10

Frente en t,
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FIG. 11
& _— Frente en el aire
B 2

ﬁ‘
= \ Rayo de luz
en el aire

r
it

=2

Frente en el vidrio en el vidrio

mayor velocidad en el aire (v,) que en el vidrio (v,). Para esta di-
ferencia, Huygens propone la siguiente explicacién:

Siendo la rarefaccion de los cuerpos transparentes tal como se ha
dicho, uno concibe con facilidad que las ondas se podrian transmi-
tir en la materia etérea que ocupa los intersticios entre particulas.
Y, por otra parte, uno puede concebir que la progresion de estas
ondas debe ser un poco més lenta en el interior de los cuerpos, en
virtud de los pequefios desvios que las mismas particulas provocan.

Las particulas de éter transmiten la perturbacién con mas ce-
leridad en la escasa densidad del aire, donde apenas encuentran
tropiezos, que cuando se pierden en el esponjoso laberinto de la
materia transparente. Para incorporar en nuestra construccién la
disparidad de velocidades (v, y v,), las ondas secundarias esféricas
tendran un radio mayor en el aire (7,) que en el vidrio (). En otras
palabras, la apertura del comp4s serd mayor en un medio que en
el otro. Podemos asumir que en el aire: » =v_-{; mientras que en el
vidrio: r =v -1, donde v, > v, y, por tanto, para intervalos de tiempo
iguales: r >7.

De nuevo, los rayos de luz de la dptica geométrica son lineas
perpendiculares al frente de ondas. En cuanto un frente luminoso
toque un punto A de la frontera, la colisién entre las particulas de
éter desencadenari la propagacién en el vidrio. Un intervalo de
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LA LEY DE SNELL REVISITADA

La relacion entre los angulos a y p se deriva con facilidad con ayuda de dos
triangulos (figura 1). El primero une A y D con un tercer punto E, que se ubica
trazando una recta perpendicular al frente en el aire, que acabe en D. El segun-
do triangulo une A y D con un tercer punto F, que se sitlia trazando desde A
una perpendicular al frente en el vidrio. A partir del diagrama se deduce que:

senu-y‘—’;, senﬁ-ﬂ.
L L

Dividiendo los dos senos:

wne Oavel.Y
senff r, vt v,

Queda por ver si estos dngulosa  FiG.1
y B son los mismos que trazaba-
mos en los diagramas de la 6pti-
ca geométrica, donde siempre se
tomoé como referencia una linea
vertical y no la frontera horizon-
tal. Basta recordar que dos rectas
forman entre si el mismo angulo
que sus perpendiculares. En la
figura 2, el angulo y entre las rec-
tas a y b es el mismo que forman
sus respectivas perpendiculares
¢y d. Por tanto, el angulo « entre
las rectas AE vy AD es el mismo
gue el que forman sus perpendi-
culares. La perpendicular a AE es
el rayo 1y la perpendicular a AD
es una linea vertical. Luego es el
mismo a de la éptica geomeétrica.
El dngulo f se forma entre las rec-
tas AD vy FD. Sus perpendiculares
son una recta vertical y el rayo 2.

tiempo después, el frente en el aire avanza un trecho de longitud
7,y alcanza un punto de la frontera B, desatando en €l un segundo
frente de ondas esféricas. Entre tanto el frente esférico de A se
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ha expandido dentro del vidrio con un radio mas pequerfio, r,. Lo
mismo sucede cuando el frente toca los puntos C y D. En cada
intervalo de tiempo el frente en el aire avanza 7, y los frentes en

a2

A T T
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e gl

533
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nz

el vidrio crecenr,

EL INTENTO DE GALILEO

El dato de que la luz recorre en el vacio
300 000 km en 1 s nos resulta familiar.
Sin embargo, este nimero tan extraordi-
nario permanecio durante siglos fuera del
alcance de la tecnologia y hasta la épo-
ca de Huygens muchos tuvieron razones
para pensar que se transmitia de forma
instantanea. Galileo ided un experimento
para medir su velocidad, cuyo resultado
pone de manifiesto lo arduo de la empre-
sa. Consistia en situar a dos observadores,
en una noche cerrada, en lo alto de dos
colinas, separadas varios kildmetros. Am-
bos (el propio Galileo y un ayudante) por-
taban lamparas, provistas de una mirilla
que se abria y cerraba, para encenderlas  Retrato de Galileo atribuide a Francesco
y apagarlas. Al comienzo del experimento  Apoliodoro.

permanecian apagadas. En el momento

en el que Galileo encendia la suya ponia

en marcha un cronémetro. La luz debia recorrer entonces la distancia entre
colinas. En cuanto divisara la sefial, el ayudante debia responder encendiendo
la segunda linterna. Su luz emprenderia el camino de vuelta hasta alcanzar a
Galileo, momento en el que este detendria su reloj. Como conocia la distancia
d entre colinas, le bastaba dividir 2d entre el tiempo registrado para obtener la
velocidad que buscaba.

Una medicién imposible

Galileo fue incapaz de medir tiempo alguno. Tan pronto levantaba la mirilla
de su linterna, divisaba un fulgor en la colina de enfrente. Los Unicos retrasos
apreciables cabia atribuirlos a los tiempos de reaccion de los dos experimen-
tadores. La luz se escurria como una anguila a través de las redes que Galileo
habia tendido para atraparla. Si su reloj hubiera podido medir décimas de se-
gundo, los observadores se tendrian que haber separado una distancia mayor
que el diametro de la Tierra para provocar un retardo detectable.
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El frente en el vidrio, en cada instante, es la superficie que
envuelve a todas las esferas (circulos en la figura). Esta construc-
cién ya nos permite calcular el &ngulo entre la direccién de propa-
gacion de la luz incidente y la que se transmite en el vidrio.

La teoria corpuscular de Newton también atribuia la causa de
la refraccién a la disparidad en las velocidades de propagaci6n,
aunque el escenario microscépico que planteaba predecia justo
el efecto contrario: que la luz viaja mas rapido en los materiales
mas densos. Segin la interpretacion de Newton, la luz es una co-
rriente de particulas. Cuando se aproximan a la frontera entre dos
medios, su masa experimenta una mayor atraccién neta hacia el
material mas denso, que las acelera. Esa aceleracion se produce
solo en la direccién perpendicular a la frontera, lo que cierra el
dngulo de propagacién hacia dentro.

La discrepancia entre ambas predicciones ofrecia, a priori,
una manera de fallar en favor de una u otra teoria a través de un
experimento, pero en el siglo xvii no se disponia de medios téc-
nicos para medir la velocidad de la luz en el aire o el vidrio. Solo
se habia logrado acotar en el espacio, mediante observaciones
astronémicas, que correspondian a su propagacion en el vacio.
Hasta un siglo después de la muerte de Newton, el fisico francés
Léon Foucault no determiné en un laboratorio que la luz viaja mas
despacio en el agua que en el aire. Para entonces la teoria cor-
puscular atravesaba uno de sus peores momentos. No levantaria
cabeza hasta que Einstein introdujo los fotones en su descripcién
mecéanico-cudntica de la luz.

LAS RAZONES DEL RAYO EXTRAORDINARIO

El principio de Huygens también describe la reflexion de la luz,
pero, sin duda, el gran golpe de efecto vino de su andlisis elegante
de la doble refraccién. Después de mucho bregar para encajar el
fenémeno en el marco corpuscular, Newton solo consigui6 expre-
sarse en términos bastante arcanos, viendo en cada rayo de luz
«cuatro lados o cuartos, dos de los cuales ocasionan la propiedad
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CRONOMETRAR LA LUZ

Vamos a plantear un experimento algo
artificioso. Una maquina, en un punto A,
dispara hacia delante una pelota con una
velocidad constante v cada 10 segundos.
Una persona B que se coloca frente a ella,
a una distancia de varios metros, recibe la
pelota poco tiempo después; pongamos
que pasados 2 segundos. Si B permane-
ce en su sitio, recogera las pelotas con la
misma frecuencia con que A las arroja:
cada 10 segundos. No llegan de forma
instantanea, pero como invierten el mis-
mo tiempo en cada viaje, la regularidad
de A se reproduce en B. ¢éQué ocurre si B
se empieza a alejar en linea recta de A?  Ole Romer.

La accién de la maquina seguira siendo

regular, pero para cada nuevo lanzamiento la distancia que debe recorrer la
pelota habra aumentado y, por tanto, también el tiempo que invierte en com-
pletar el viaje. Ya no llegara a B a los 2 segundos, sinc a los 2,5 segundos, por
ejemplo, a los 3 segundos, a los 3,5 segundos... Si B no fuera consciente de su
desplazamiento se llevaria la impresion de que la pelota se retrasa. En cuanto
se detenga, se reestablecera la regularidad. Si, transcurrido un tiempo, B se
pone de nuevo en marcha, ahora para acercarse a la maquina, la pelota tendra
cada vez que recorrer menos distancia. A medida que se reducen los tiempos
entre una entrega y la siguiente, la llegada de la pelota se adelanta.

La caza de la luz

El astronomo danés Ole Remer observo el mismo fendomeno entre 1671 y
1676. En su caso el proceso regular que estudiaba no era el lanzamiento de
una pelota, sino la ocultacién de lo, uno de los satélites de Jupiter, detras del
planeta. Como el periodo de la érbita es perfectamente regular, la desapari-
cion debia repetirse tras intervalos de tiempo iguales. Sin embargo, Remer
encontré que durante la mitad del afo el eclipse se adelantaba y durante la
otra mitad, se retrasaba. En otras palabras, a lo largo de seis meses la Tierra,
en su periplo alrededor del Sol, se acercaba a lo, y a lo largo de los seis meses
siguientes, se alejaba. A la luz le sucedia lo mismo que a la pelota que parte
desde A hasta B: su tiempo de vuelo dependia de la distancia a una Tierra en
movimiento. Parece que Huygens fue la primera persona que aprovechd los
tiempos medidos por Remer para calcular la velocidad de la luz, gue estimo en
214000 km/s. Una razonable aproximacion, teniendo en cuenta la imprecision
en los valores que se manejaban entonces para las distancias interplanetarias.
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de la que depende la refraccién extraordinaria, mientras los otros
dos lados opuestos no se relacionan con ella».

El principal logro de Huygens fue que aunque el rayo extraor-
dinario no respete la ley de Snell, si se somete a su principio, des-
pués de introducir una serie de adaptaciones razonables. Vamos
a considerar un fragmento de espato que refleje la distribucion es-
pacial de sus atomos, responsables de sus peculiares propiedades
Opticas. Obtenemos asf un romboedro de seis caras iguales. Cada
una de ellas presenta un rombo con dos dngulos obtusos de 102° y
dos angulos agudos, de 78°. Se disponen de modo que tres 4ngulos
obtusos coincidan en dos vértices opuestos. En el resto de vértices
se encuentran dos dngulos agudos y uno obtuso.

Para construir el rayo extraordinario, Huygens se apoya en un
elemento de simetria del cristal: su eje 6ptico. En realidad, més
que un €je, se trata de una direccién: la tinica en la que la luz no se
divide al incidir sobre una cara del mineral. Para localizarla en la
practica, basta con rotar el cristal frente a un rayo luminoso, hasta
que quede orientado de manera que desaparezca uno de los dos
rayos que lo atraviesan. También se puede determinar recurriendo
a la geometria. Se parte de uno de los vértices donde coinciden
tres angulos de 102° y se traza una linea imaginaria que forme el
mismo angulo con las tres aristas que coinciden en el vértice. El
caso mds sencillo se da cuando todos los lados del cristal son
iguales (figura 12). Entonces basta con trazar una recta que una
las dos esquinas opuestas de tres dngulos obtusos.

FIG. 12 )

@ Carbono
© Oxigeno

O Calcio

LA ESENCIA ESCURRIDIZA DE LA LUZ

Eje optico

15



Una vez identificado el eje
optico del cristal, disponemos de
todos los elementos necesarios
para producir los frentes, invo-
cando el principio de Huygens. La

: Eje 6ptico

Eje menor principal novedad consiste en que

v diametro

FIG. 14

FIG. 15

,_ﬁ____._._
I
|

ne

cada punto del cristal que reciba
la perturbacién del frente lumi-
| noso se convertirad en generador
] de dos clases de frentes secunda-
; rios, que se expandirdn hacia de-
a - > lante. Uno de ellos seri esférico
00 o y dara cuenta del rayo ordinario.
El segundo adoptara la forma de
un huevo o, con mas precision,

Rayo extraordinario de un elipsoide.

Referencia , , | Los elipsoides presentan

ejeépticn\\\ vAA
(S AW AW

menos simetria que las esferas:
su aspecto cambia en funcién
de cémo se orienten. ;En qué di-
recciones hay que disponer sus
ejes? La respuesta viene dada por
las propiedades geométricas del
cristal. Los elipsoides se orientan
de modo que su eje menor quede
Rayo ordinario paralelo al eje 6ptico. La longitud
¢/ de este eje menor coincide con el
/ / diametro de las esferas, puesto
B g que la velocidad de propagacion
(E;'gggi - de ambos frentes es la misma a
e lo largo del eje 6ptico. En los di-
il \ bujos, bidimensionales, el frente
ordinario vendra dictado por cir-
culos crecientes y el secundario,

por elipses (figura 13).
Vamos a seguir paso a paso la evolucion del rayo extraor-
dinario (figura 14). Como en el caso de la refraccion normal, el
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frente de ondas que llega desde el aire toca en un primer punto A
la superficie del cristal, desatando un frente secundario. Cuando
el frente en el aire alcanza B, en A ha crecido un elipsoide, cuyo
eje menor es paralelo al eje Optico. Para una mayor claridad se
han dibujado las elipses completas, pero la parte que queda en el
aire no juega ningin papel. Como en la refraccién ordinaria, los
frentes secundarios solo crecen en el interior del cristal. Para de-
terminar el aspecto del frente extraordinario en un instante dado,
basta con generar la superficie que envuelve todos los elipsoides.
La direccion del rayo serd perpendicular al frente, como siempre.
En las figuras 14 y 15 se muestra en paralelo la construccién de
los dos frentes.

Llama la atencién todo el espacio que dedica Huygens a des-
cribir la construccién geométrica de estos dos frentes en el Traité
de la lumiére y el poco que reserva a su justificacion fisica. ;Por
qué se genera en el espato de Islandia un segundo frente elipsoi-
dal y no en el resto de materiales transparentes conocidos hasta
entonces? Huygens se limita a apuntar lo siguiente:

Me parece que la disposicién, o el orden regular, de estas particulas
[que componen el cristal] contribuye a la formacién de las ondas
esferoidales (no se requiere nada mds, para ello, que el movimiento
sucesivo de la luz se propague un poco més deprisa en una direccion
que en otra) y apenas albergo dudas de que en el cristal exista una
disposicion tal de particulas iguales y semejantes, debido a su forma
y a sus angulos de medida definida e invariable.

Las esferas corresponden a un desplazamiento de la luz igual
en todas las direcciones. La ruptura de esta simetria deforma la
esfera, estirdndola en las direcciones del cristal donde la luz se
propaga més deprisa y generando el elipsoide. Pero de nuevo:
;por qué el espato de Islandia da lugar a esta asimetria? Huygens
sugiere que la respuesta hay que buscarla en la disposicion de las
particulas que forman el cristal, pero tampoco ofrece mas pistas.
Desde luego, él era consciente de que su propuesta no proporcio-
naba una soluciéon completa. Huygens cierra su estudio del es-
pato haciendo referencia a cémo la doble refraccion desaparece
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cuando la luz se hace pasar por un segundo cristal. En un rasgo

de honestidad cientifica presenta el fenémeno como un problema
abierto:

Aunque no he sido capaz hasta ahora de hallar la causa, no por esa

razén me resisto a describirlo, para ofrecer a otros la oportunidad
de investigarlo.

ns LA ESENCIA ESCURRIDIZA DE LA LUZ




CAPITULO 4

El tiempo en sus manos

El tiempo acabo siendo una de las
conquistas mas sutiles y fundamentales de
la revolucioén cientifica del siglo xvii. Huygens fue
el primero en construir un reloj con la suficiente precision
para merecer el calificativo de instrumento cientifico.
El disefio de su reloj de péndulo presenta otra
perfecta simbiosis de geometria,
fisica y mecanica.






Paris ofrecié a Huygens todo lo que habia ido a buscar: quince
afos de intensa actividad en uno de los centros neuralgicos de la
ciencia institucional. El precio que tuvo que pagar a cambio fue
una dosis considerable de su cordura. En enero de 1670, después
de una fuerte helada, sufrié una indisposicién que en principio se
atribuyo a un enfriamiento. La naturaleza de su mal, sin embargo,
pronto revelé raices méas profundas. No solo habia enfermado
el cuerpo, también el espiritu. Un mes después, Francis Vernon,
secretario del embajador inglés, lo visité y lo encontrd postrado
en la cama, rodeado de manuscritos, desplegados sobre las siba-
nas. Eran las obras que durante décadas no habia tenido prisa por
completar. Vernon detecté en Huygens sintomas alarmantes:

Su debilidad y la palidez de su rostro dejaban bien claro hasta qué
punto la enfermedad habia menoscabado su salud. Y, no solo eso,
observé algo peor, algo que ningin ojo alcanza a penetrar y ningin
sentido a discernir. Se trataba de una disolucién del espiritu, de una
increible necesidad de dormir, que €l entendia tan poco como quienes
le atendian. Al no saber a qué atenerse, se ha preparado para lo peor.

Convencido de que se hallaba a las puertas de la muerte,

Huygens habia reunido todos los descubrimientos de valor que
no habia publicado y le rogé a Vernon que los hiciera llegar a la
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Royal Society. Al dar este paso, dejaba claro que sus compaiieros
de la Academia no le merecian demasiada confianza. Quiz4 el se-
cretario del embajador inglés pecé algo de chauvinismo y exageré
las opiniones de Huygens. Quiza no:

Dijo que auguraba la desintegracién de la Academia, porque la veia
contaminada con todos los matices de la envidia, porque se susten-
taba en las expectativas de beneficio, porque dependia por comple-
to del humor de un principe y del favor de un ministro. En caso de
que cualquiera de ellos viera remitir su entusiasmo, la estructura
entera del proyecto de la asamblea quedaria condenada.

La incertidumbre sobre el desenlace de la enfermedad se
alargé durante semanas. Huygens se mostraba bajo la influencia
de su planeta talisman, Saturno, a quien la tradicién atribuia el
humor melancélico. Recibié la visita de Antoine Vallot, el médico
real, pero, tres siglos antes de que se sintetizara el Prozac, el iinico
remedio contra la depresion consistia en evitar la leche entera,
que, al parecer, agravaba la tristeza. En cuanto se vio con fuerzas
para resistir el largo viaje de regreso a casa, dejo atras el norte de
Francia y se recluy6 en su vieja casa de La Haya. Alli pasoé lo que
quedaba de invierno. La atmésfera familiar y el carifio de sus pa-
rientes y amigos conjuraron poco a poco la sombra que lo cubria
y hacia finales de aiio pudo pensar en retomar su vida.

UN HOLANDES EN PARIS

A su regreso a Paris Huygens hall6 cualquier cosa menos sosiego.
El afio de 1672 pasaria a la historia como «el afio del desastre»
para los holandeses. Tuvieron que encarar una guerra que parecia
imposible ganar, que les estall6 en cuatro frentes, contra Fran-
cia, Inglaterra, Miinster y Colonia. Al asomarse a la ventana de
su domicilio parisino, Huygens escuchaba los vitores, el estrépito
de los carros y de los soldados enardecidos que se dirigian a su
tierra para conquistarla. En un gesto que muchos compatriotas no
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le perdonaron, dedicé la que consideraba su obra magna, el Ho-
rologium oscillatorium, a Luis XIV. El tratado, que gira en torno
al reloj de péndulo, sali6 de prensas francesas meses después de
que se iniciaran las hostilidades y se abre con un encendido elogio
al monarca. Cuando los holandeses que residian en Francia reci-
bieron la orden de abandonar el pais, se hizo una excepcién con
Huygens. El otofio trajo hasta la puerta de la Biblioteca del Rey
aun joven de veintiséis afios, llamado Gottfried Wilhelm Leibniz,
que queria aprender matematicas. Huygens acept6 el encargo de
instruirlo y asi se inicié una amistad en la que no tardarian en
invertirse los papeles de maestro y alumno.

Huygens hallaba en la ciencia un espacio donde refugiarse
de los rigores del mundo, pero el placer que extraia de ella le aca-
rreaba cada vez mas efectos secundarios. Ya no era el joven pro-
metedor que se dejaba guiar tinicamente por la curiosidad, que se
enfrascaba durante horas en el pulido de lentes, a solas o con su
hermano, y al que los astrénomos y matemaéticos animaban, sin
considerarlo un rival. El ejercicio profesional de la ciencia y la
direccién de una institucién que debia responder ante un rey y sus
ministros lo expusieron a intrigas, pugnas académicas y envidias
que lo desequilibraban profundamente. En Paris, como represen-
tante de una nacién enemiga que cobraba un sueldo exorbitado,
estaba sometido a la presién afiadida de obtener resultados que
justificaran su posicién. El afan por ocupar su puesto o las in-
quinas personales encontraron entonces una expresion aceptable
si sabian disfrazarse bajo el rechazo al extranjero, al espia o al
hereje. Para completar el cuadro, en la década de 1670 se vio en-
vuelto en una serie de polémicas agrias, con adversarios que des-
tacaban poco por su diplomacia o su caricter contemporizador.
Entre ellos figuraba uno de los miembros més sobresalientes de la
Academia, Gilles de Roberval, autor de la hipétesis de que los ani-
llos de Saturno se debian a vapores que emanaban de su ecuador.
Descrito como un hombre de «genio irreflexivo, irascible e impa-
ciente en la discusién», atacé las ideas de Huygens sobre gravi-
tacién. El prolifico y suspicaz Robert Hooke también lo convirtié
en el blanco de sus burlas, cuando estimé que pretendia arreba-
tarle el descubrimiento del reloj de muelle. La misma invencién lo
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enfrent6 al relojero real, Isaac Thuret, que, después de introducir
mejoras en su disefio original, quiso apropidrselo. Huygens era un
cientifico que disfrutaba del esfuerzo por desentranar, que vivia
enganchado a la emocién del hallazgo, pero sentia pereza ante el
proceso de publicacién y aborrecia los conflictos derivados de su
actividad como investigador.

En el ambito privado tampoco le faltaban motivos para la me-
lancolia. A medida que pasaban los afios, la singularidad que exhi-
bia su genio cientifico se extendia a la vida doméstica. Fue viendo
c6mo uno tras otro sus hermanos formaban una familia. En 1660
se cas6 Susanne; en 1668, Constantijn; y en 1674, Lodewijk. A este
altimo Huygens le refiri6 asi el descubrimiento del reloj de muelle:

Th tienes un hijo hermoso y yo, una hija invencién, que es hermosa
a su manera. Gozara de una larga vida, en compaiifa de su hermana
mayor, el péndulo, y su hermano el anillo de Saturno, como los hijos
del buen Epaminondas.

El general griego al que aludia tampoco se casé ni tuvo hijos,
circunstancia que le afearon los tebanos, por privar al Estado de la
riqueza de sus genes. A diferencia de Epaminondas, a Huygens la
cuestion si parecia preocuparle. A través de su correspondencia,
se entreven diversas relaciones sentimentales, donde no faltan
varios conatos de matrimonio que, como muchas de sus obras,
nunca llegé a rematar. Al final de su vida, la soledad seria para €1
una condena.

Si la primera depresién atacé por sorpresa, se acumulaban
los pretextos para una recaida. Su situacién en Versalles se volvia
mas delicada conforme Francia veia alejarse la posibilidad de in-
vadir los Paises Bajos. Como tantas guerras que se eternizan, esta
se habia iniciado con la confianza en un triunfo facil. Sin embargo,
los holandeses habian tomado buena nota de las ensefianzas de
Simon Stevin. Abrieron las esclusas para convertir el pais en una
isla inexpugnable y mostraron su maestria en el arte de construir
fortificaciones.

Hasta qué punto el conflicto alent6 la animadversién gala
contra la patria de Huygens se aprecia en la huella que dejé en su
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EL TELESCOPIO INVERSO

La microscopia fasciné a Constantijn Huygens padre, que presumia de llevar
siempre encima una poderosa lente de aumento, habito en el que lo habia
iniciado el inventor Cornelijs Drebbel, durante su etapa como embajador en
Londres. Su principal contribucion en este campo fue difundir, con la ayuda
de su hijo Christiaan, la obra de su compatriota Antoni van Leeuwenhoek, que
no sabia latin. Leeuwenhoek, de formacién autodidacta, poseia una asombro-
sa destreza para confeccionar microscopios de una sola lente con didmetros
milimétricos. Su curiosidad perspicaz y disciplinada lo convirtié en el primer
gran explorador de la vida a una escala diferente de la humana (con permiso
de Robert Hooke). En los charcos, en la saliva, en el semen, sorprendié una
miriada de criaturas diminutas, de «animalculos», como él los llamaba, que
exhibian insdlitos disefios naturales. El mas llamativo de sus descubrimientos
fueron los espermatozoides, que revolucionaron las teorias sobre el mecanismo
de generacion de los seres vivos. Huygens no se podia conformar con traducir
los textos de Leeuwenhoek y copiar sus dibujos. Aplicé sus estudios sobre la
aberracion esférica y su conocimiento matematico de la refraccién a mejorar las
configuraciones de lentes de los microscopios v la iluminacion de las muestras.
También observé infusorios (organismos unicelulares acuaticos) y bacterias.
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folclore. En el sitio de Maastricht murié D’Artagnan (el personaje
de Dumas y el capitan de la guardia de mosqueteros que lo ins-
pir6) y la guerra dio origen a una cancién popular, que se canta
aun hoy en dia, Aupreés de ma blonde («Al lado de mi rubia»),
donde una joven llora a su marido, que «se llevaron los holande-
ses». En un juego de asociaciones libres era muy posible que al
oir la palabra «Huygens» cualquier francés respondiera «Orange»
y Luis XIV debia de ver al director holandés de su muy regia Aca-
demia cada vez con menos simpatia. En gran medida, si Huygens
pudo permanecer en Paris fue gracias a la tutela de Colbert.

A finales de febrero de 1676, Constantijn hace sonar de nuevo
las alarmas, en una carta a un amigo: «No me abandona una gran
inquietud por la afeccién melancélica que mi querido hijo viene su-
friendo desde hace algiin tiempo en Paris». Una semana més tarde
se desespera: «No sé qué se supone que debo pensar de esta do-
lencia. No tiene fiebre y los médicos me aseguran que no tengo por
qué temer nada grave. Pero la enfermedad ha calado hondo [...]».

EL REGRESO A HOLANDA

En marzo, Huygens se apresur6 a volver a La Haya. Esta vez alargo
cuanto pudo la convalecencia, dominado por las dudas acerca de
la conveniencia de su regreso. Quizi el reencuentro con las viejas
herramientas que habia utilizado en la fabricacién de telescopios
reavivo su fascinacién por la diéptrica, y traté de mantener a raya
sus fantasmas entregandose al disefio de microscopios.

Huygens no reunié el &nimo suficiente para volver a Paris hasta
junio de 1678. La depresién se le habia pegado igual que una som-
bra, o una suerte de fiebres tercianas, que tan pronto se aplacaban
como resurgian. Cada invierno el frio y la falta de luz precipitaban
la crisis. A comienzos de 1681 emprendi6 la enésima retirada. En
su lenta recuperacién solo le conforté una certidumbre: «No quiero
permanecer en Francia, porque alli he caido enfermo en tres oca-
siones y temo volver a hacerlo». Quizad Huygens habia entrevisto
una secreta relacién entre Paris y su padecimiento, una intuicién
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ominosa de que si volvia seria para morir a orillas del Sena. En
cualquier caso los franceses parecian tan interesados como él en
ahorrarle ese trance. La muerte de uno de sus principales valedo-
res, Colbert, en 1683, y 1a revocacién, dos afios después, del edicto
de Nantes, que amparaba la libertad religiosa de los stibditos pro-
testantes, liquidaron su atormentado idilio con Francia.

«Dedico una parte del poco tiempo que me queda a dejar
resueltos los asuntos de mi querido Arquimedes.»

— ConsTanTiiN HUYGENS, EN UNA CARTA A HENRI DE BERINGHEN.

En abierto contraste con la fragilidad de Huygens, su padre
parecia indestructible. A los ochenta afios habia orquestado un re-
tiro gradual de la vida piblica, después de ceder el testigo a su hijo
mayor. La gota le impedia tocar instrumentos musicales y se con-
solaba afiadiendo versos a un torrencial poema sobre la vejez, en
el que daba la impresién de conversar méas con los muertos («las
sombras sin lengua», como él los llamaba) que con sus tltimos
amigos. Seis décadas de actividad frenética velando por los intere-
ses de reyes y principes le habian dejado un poso amargo, que se
trasluce en el epitafio que compuso a la muerte de su perro: «Ojala
(y si fuera asi, el mundo no seria peor) mi perrito estuviera vivo,
y todos los grandes del mundo, muertos». Su preocupacién habia
pasado de los asuntos de Estado al bienestar de su hijo Christiaan.
Le ofrecié el cargo que ocupaba al servicio de Guillermo III, pero
Huygens estaba harto de la esclavitud de la corte. En el mismo
mar de intereses, estrategias y maniobras donde su padre toda-
via se desenvolvia como pez en el agua, €l se ahogaba. Entonces
Constantijn se asegur6 de que recibiera una parte del estipendio
que le aportaba la casa de Orange.

Licido hasta el final, Constantijn Huygens no llegé a celebrar
su noventa y un cumpleafios. Murié el Viernes Santo de 1687. Para
el cortejo fliinebre se engancharon quince coches enlutados, que
colapsaron el trifico de La Haya, en lo que parecia un funeral de
Estado. En el reparto de la herencia, la casa de la Het Plein fue a
parar a manos del hijo mayor y Huygens se trasladé a Hofwijck,
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l1a residencia familiar de verano, donde se retiré a sobrellevar su
duelo. A los cinco dias de instalarse alli, sinti6 la mudanza como
un destierro:

Durante este tiempo todavia no he ido a La Haya, ni he recibido no-
ticias de la ciudad. Lo que me ha proporcionado un anticipo de la
existencia solitaria a la que me debo ir acostumbrando.

LOS «PRINCIPIA» Y EL VIAJE A LONDRES

Huygens alivié el rigor de la soledad con la lectura de un volumi-
noso best seller: los Philosophiae naturalis principia mathema-
tica («Principios matematicos de la filosofia natural») de Newton.
Antes de que Edmund Halley le hiciera llegar un ejemplar, ya le
habian prevenido de que Newton se atrevia a cuestionar a Des-
cartes. Poco le podia inquietar a Huygens que otros incurrieran
en uno de sus vicios favoritos: «Me da igual que no sea cartesiano,
siempre y cuando no nos venga con supercherias tales como la
atraccion». Se referia a la nocién de accién a distancia, es decir,
a la posibilidad de que dos cuerpos puedan influirse mutuamente
sin que medie un intercambio mecénico, como una colisiéon. Huy-
gens se desvaneci6 de la faz de la tierra durante meses. Cuando
retomo su correspondencia en noviembre, fue para anunciar a su
hermano Constantijn un pequeiio cambio de aires:

He pasado todo el invierno en Hofwijck, lo que me ha deparado unas
cuantas noches miserables cuando el tiempo era malo. Pero uno se
termina acostumbrando a todo [...]. Me gustaria visitar Oxford [Cam-
bridge, en realidad], aunque solo sea para conocer a Newton. Des-
pués de leer la obra que me envid, siento una gran admiracién hacia
sus excelentes descubrimientos.

Newton y Huygens podian no ponerse de acuerdo en asun-

tos cientificos, pero se respetaban. Newton elogiaba sobre todo
la geometria fisica de Huygens, su manera de hacer. Cuando Ri-
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chard Bentley, insigne humanista de la Universidad de Oxford, le
pidi6 consejo antes de sumergirse en la lectura de los Principia,
le hizo la siguiente observacién: «Si puede conseguir un ejemplar
del Horologium oscillatorium de Huygens, su examen cuida-
doso le dejard mucho més preparado». Segiin Henry Pemberton,
responsable de la tercera edicién de los Principia, Newton «le
consideraba el mas elegante entre los escritores matematicos mo-
dernos y el més perfecto seguidor de los antiguos».

En la obra de Newton, Huygens apreciaba una soberbia des-
cripcién matematica, a la que no terminaba de encontrar sentido fi-
sico. ;De dénde surgia, por ejemplo, la gravitacién? A este respecto,
€l se consideraba mucho mas préximo al enfoque de Descartes,
que habia tratado de explicarla mediante la colisién de particulas
de éter, que desviaban los cuerpos, aproximéandolos. Para Huygens
resultaba inconcebible que la materia ejerciera una atraccién de
forma instantdnea por su mera presencia, sin ningin proceso de
propagacién. Era como el sortilegio de un mago que agita su varita
y hace levitar a un ayudante. Cualquier perturbacion fisica tenia
que transmitirse mediante el contacto directo entre masas, como
ocurria en su teoria de la luz. En su juicio sobre los Principia se
mezclan en la misma medida admiracién y discrepancia:

Tengo en alta estima su discernimiento y su sutileza, pero creo que
el autor los aplica a un fin equivocado en la mayor parte de la obra,
alli donde estudia asuntos de escasa utilidad o cuando se apoya en
el improbable principio de atraccién.

En todos los sentidos, el libro le parecia un derroche de inte-
ligencia. «No se ha producido nada mejor ni més astuto en torno
a estas materias», reconocio.

Cuando llegé a Londres a mediados de junio, se sintié mas
en casa que en ninguno de sus anteriores viajes al extranjero. Dos
meses atras, un natural de La Haya, Guillermo III, habia sido co-
ronado rey de Inglaterra en la abadia de Westminster y entre su
séquito importado de Holanda destacaba su hermano Constantijn.
Sin ninguna exigencia institucional a la que someterse, Huygens
disfrut6 a fondo de la visita. En el Gresham College tuvo lugar una
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de las sesiones mas singulares e irénicas en la historia de la cien-
cia. Huygens dict6é una conferencia sobre la gravedad y Newton
correspondio con otra sobre la doble refraccién del espato de
Islandia. Ambos tuvieron oportunidad de hablar largo y tendido
durante el verano, aunque no conocemos los detalles de sus con-
versaciones. Mas tarde, Huygens mencionaria de pasada a Leibniz
que Newton le habia referido «unos cuantos experimentos esplén-
didos». Huygens intenté aprovechar la influencia de su familia en
el nuevo rey para promocionar a Newton al puesto de director del
King’s College de Cambridge, sin éxito. También se reencontré
con Boyle, que le recibié con todos los honores en su laboratorio.

EL CALCULO INFINITESIMAL

La estancia en Londres, en compaiiia de una de las sociedades
cientificas mas brillantes, volvié intolerable la austeridad de Hof-
wijck. «Me resulta imposible pasar el invierno aqui, en esta sole-
dad», se apresuré a escribir a Constantijn. El &nimo de Huygens
vacilaba entre Escila y Caribdis. Era incapaz de soportar las ten-
siones y servidumbres de la Academia, pero tampoco se avenia
con la vida de ermitafio. No hall6 la paz de espiritu ni en Versa-
lles ni en la campifia holandesa. A finales de afio, traté de buscar
un nuevo equilibrio, alquilando un apartamento en la calle Noor-
deinde, en La Haya. A partir de entonces pasaria la mitad del afio
en el campo y la otra mitad, en la ciudad.

En febrero de 1690 retomé su correspondencia con Leibniz
para enviarle el Traité de la lumiére. Encontré a su antiguo pu-
pilo en plena forma y convencido de que habia inventado una he-
rramienta matematica revolucionaria: el calculo infinitesimal. Al
principio, con sinceridad, Huygens consider6 el procedimiento
«bastante oscuro». Sin embargo, habia logrado despertar su curio-
sidad. Para satisfacerla, Leibniz le dicté un cursillo acelerado por
correo. Cuando dejé de parecerle oscuro, no le encontré la gracia.
Huygens fue capaz de resolver cualquier problema que Leibniz le
planteara para demostrar la superioridad del calculo mediante sus
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refinados despliegues geométricos. En respuesta a una carta del
matematico francés Guillaume de L'Hépital, que discutia la misma
cuestién, comenté: «No veo necesario el método de célculo del
senor Leibniz en este asunto y tampoco creo que sea tan 1itil como
€l parece pretender». Para quienes carecian del virtuosismo de
Huygens, sin embargo, este nuevo lenguaje, en el que se iba a ex-
presar el grueso de la fisica hasta el siglo xx, llegé como llovido del
cielo. Huygens desarrollaba una estrategia original a la medida de
cada problema, mientras que el célculo ofrecia una técnica para
tratarlos y resolverlos de forma sistematica. El invento de Leibniz
(v también de Newton, que desat6 una verdadera guerra de atribu-
cion) dio un impulso extraordinario a la fisica matematica. Permi-
ti6 derivar con sencillez resultados que de otro modo dependian
de andlisis laboriosos o de un golpe de genio. Su principal virtud
para la mayoria suponia el principal defecto para Huygens, porque
a su juicio, al suministrar férmulas prefabricadas, entorpecia la
relacién entre su intuicion fisica y los fenémenos.

EL «COSMOTHEOROS»

Mientras su mente se mantuvo licida, siguié alimentando su cu-
riosidad cientifica. Quiza para conjurar una Tierra que cada vez
le resultaba maés inhdspita, en su tltima obra Huygens proyecté
su imaginacién mas alla de las nubes. En el Cosmotheoros se em-
barcé en un recorrido césmico, en el que los humanos, con sus
miserias, quedaban relegados a un plano muy secundario. Sus
péaginas contienen un ameno repaso de sus descubrimientos as-
tronémicos. También plasmé en ellas su vision fisica del mundo,
aproveché una vez mas para criticar a Descartes y, finalmente, se
entregd al puro placer de la especulacion. Acepté que habia vida
inteligente en el resto de planetas y traté de deducir su anatomia y
coémo se organizarian sus sociedades. Sofid con animales que mul-
tiplicaban por quince el tamafo de los elefantes y que atravesaban
las planicies de Jupiter, y con habitantes de Venus con mejores
aptitudes musicales que los humanos. Con el Cosmotheoros Huy-
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gens anticip6 el tono de la ciencia ficcién «dura», ya que sometio
su fantasia a los limites de los conocimientos de la época. El libro
adopta el formato de dos cartas extensas dirigidas a su hermano
Constantijn. Al leerlas, se tiene la sensacién de asistir a una de las
conversaciones que debieron de mantener en su juventud, en una
noche estrellada cualquiera, mientras escudrifiaban el cielo con
los telescopios que habian fabricado juntos.

«Por decirlo en pocas palabras, fue uno de los grandes
ornamentos de nuestro tiempo.»

— EvLocio pe LeieNiz A HUYGENS.

132

A su regreso de Londres, Huygens se habia visto abrumado
por la sensacion de que clausuraba una gira de despedida. Anoté
en un cuaderno una especie de didlogo interior, donde reflejaba
parte de sus inquietudes:

& Te gustaria ser inmortal? ;Por qué no, siempre y cuando se te con-
ceda un cuerpo fuerte y sano y una mente fuerte y sana? Pero si la
vejez trae consigo decadencia fisica y debilidad mental, ;no preferi-
rias entonces morir o bien procurarte una salida por tus propios
medios?

A sus sesenta y cinco aios, Huygens no albergaba ya ningtn
anhelo de inmortalidad. La mala salud le iba arrebatando cada vez
mas horas y mas dias. Un despojamiento progresivo que aceptaba
con resignacién: «Veo que uno termina por acostumbrarse a todo
esto». Su inteligencia, su principal aliada frente a los infortunios,
se acabd convirtiendo en su peor enemiga: «La mente infecta todo
lo que toca de una miserable enfermedad». En marzo de 1695
mandé llamar a un abogado para dejar listo su testamento. En é1
manifestd su deseo de que Constantijn se hiciera cargo de la publi-
cacion del Cosmotheoros. Asumia que ya nunca veria el libro im-
preso. Mediada la primavera, su hermano abandond el palacio de
Whitehall y cruzé el mar para visitarlo en el piso de la Noordeinde,
en La Haya. En los tiltimos momentos, Huygens vivié atormentado
por el miedo a perder la razén. Se convenci6é de que trataban de
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envenenarlo y se autolesionaba con cristales rotos. En la noche
del 9 de julio, al fin, pudo descansar.

LA DIVISION DEL TIEMPO

En su afén de retratar fisicamente el movimiento de los cuerpos,
Galileo se enfrent6 al problema de medir el tiempo. Necesitaba re-
gistrar posiciones en instantes sucesivos, con suficiente precisién
para luego ajustar las observaciones a patrones mateméticos. Las
distancias se podian establecer con razonable exactitud, pero la
variable temporal mostraba un comportamiento mas escurridizo.
Se pueden practicar en una vara muescas a distancias iguales,
pero ;qué método sirve para marcar intervalos semejantes en algo
tan intangible como el tiempo? ;Qué fenémenos de la naturaleza
ofrecian la regularidad requerida para servir de escala?

Quiz4 no sea casualidad que, dentro de la mecénica, los gran-
des avances de los antiguos se restringieran al campo de la esta-
tica y al estudio de situaciones de equilibrio, donde los sistemas
no cambian con el transcurso del tiempo. Los historiadores de la
ciencia han polemizado sobre qué relojes pudo manejar Galileo
para deducir las primeras leyes de la dindmica. Hay quien sospe-
cha que utilizaba clepsidras, o relojes de agua; otros defienden
que, siendo un intérprete consumado de latd, se servia de ritmos
musicales para generar intervalos de tiempo muy cortos aproxi-
madamente iguales. Tampoco falté quien pusiera en duda que rea-
lizara experimento alguno, afirmando que sus leyes eran el fruto
de especulaciones afortunadas.

En 1961 un estudiante de doctorado de la Universidad de Cor-
nell, Thomas Settle, reprodujo en el salén de su apartamento com-
partido los experimentos que Galileo habia descrito en la jornada
tercera de los Discorsi. Cronometr6 el descenso de una bola de
billar a lo largo de un plano inclinado, sirviéndose de un rudimen-
tario reloj de agua, que habia fabricado con una maceta y un tubo.
Recogi6 una coleccion de datos que no llegaban a desviarse una
décima de segundo de los valores tedricos.
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Regresando al siglo xvi, el progreso en mecénica, y también
en astronomia, demandaba relojes cada vez mas precisos. Los
gobernantes, libres en principio de toda inquietud cientifica, to-
maron cartas en el asunto por sus implicaciones néduticas y ofre-
cieron cuantiosas recompensas para incentivar la investigacion.
En un periodo en el que los barcos ya recorrian rutas comerciales
aventuradas, cruzaban el océano Atlantico o bordeaban Africa
para llegar hasta la India, los marineros todavia carecian de un sis-
tema fiable para localizar su posicién en alta mar. Con frecuencia

CRONOMETRANDO EL ESPACIO

Para ubicar un punto cualquiera P sobre la superficie terrestre bastan dos
numeros. El primero se obtiene cortando el planeta en una serie de rodajas
paralelas al plano del ecuador. Cada rodaja se identifica mediante un angulo
que se llama latitud. Una vez que se selecciona una rodaja, ya solo queda
establecer en qué punto de su circunferencia se sitta P. Para ello se recurre
a un segundo angulo, la longitud. En el caso de la latitud, el ecuador sirve
de referencia natural para medir los angulos. Para la longitud hay que fijar
una referencia convencional, el meridiano de Greenwich, que es un arco de
circunferencia que va de polo a polo cruzando una localidad inglesa cercana
a Londres. Sobre una esfera llena de accidentes geograficos que sirven de
orientacién y con ayuda de un buen mapa, resulta dificil extraviarse. Es lo que
sucede en tierra. El problema surge en una superficie desnuda, libre de puntos
de referencia, como el mar. éCémo averiguan los marineros su posicion a lo
largo de una travesia prolongada y rica en percances?

Latitud y longitud

La rotaciéon de la Tierra proporciona un norte y un sur (un eje) y un ecuador
naturales. Su movimiento hace que los cuerpos celestes se desplacen para
los observadores terrestres, marcando referencias. Al medir el angulo entre el
horizonte y el Sol (de dia) o la Estrella Polar (de noche, en el hemisferio norte;
en el austral, la Cruz del Sur), se puede determinar la latitud. Con la longitud
hay que proceder de otro modo. La Tierra completa una vuelta alrededor de
su eje cada 24 horas, asi que cada hora rota 15° (24 h-15°/h=360°). Si nos
situamos sobre el polo Sur, veremos que la Tierra se comporta igual que una
ruleta que gira 15° cada hora en el sentido de las agujas del reloj. Podemos
iniciar la observacion en el momento en que Greenwich (G) enfrenta al Sol. En
ese instante alli sera mediodia y para sus habitantes el Sol se encontrara en
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se perdian, enfrentado a la tripulacién a la muerte por inanicion,
por escorbuto o al naufragio. La solucién practica al llamado «pro-
blema de la longitud» parecia residir en la medicién del tiempo,
con instrumentos que fueran capaces de arrostrar, como las bri-
Jjulas, cualquier zozobra que comprometiera la travesia.

Huygens se aproximé a los relojes con el mismo animo con
el que habia abordado los telescopios: el de construir un instru-
mento perfecto. Para ello examin6 la cuestién bajo todos los 4n-
gulos, tanto técnicos como fisicos y matematicos. Tampoco pudo

el punto mas alto respecto al horizonte. A cada hora que pasa, Greenwich se
aleja del punto de mediodia 15°. A medida que progresa la rotacién, todos los
puntos de la Tierra irdn experimentando su mediodia (despreciamos aqui
los efectos que introduce la inclinacién del eje). Para el punto A, que estd a15°,
ocurre una hora después que en G; en B, a 30°, a las dos horas; en N, a 225°,
quince horas después. Por ello, un marinero que navegue con un reloj que
mantenga la hora local de Greenwich, podra determinar su posicién. Cuando
el Sol alcance el punto mas alto sobre el horizonte (su mediodia) un vistazo
al reloj le indicara la diferencia horaria con Greenwich y con ella, los grados
que lo separan de este meridiano: su longitud.

60° \
45° N\
30°
o Direccién
V  345° al Sol
330°
315°
P R
240° . 300°
255 270° 285
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evitar que, a lo largo del camino, su curiosidad divagara y lo detu-
viera a examinar con méas detalle muchos aspectos accesorios. Y
alainversa, en el proyecto también aplicé resultados de investiga-
ciones previas, como su estudio del movimiento circular.

Los relojes que marcaron las horas y los minutos de los fa-
raones o los césares aprovechaban fenémenos naturales que
progresan a un ritmo regular, como el movimiento del Sol o la
consuncion de una vela, o cuya constancia propicia acciones con
la misma duracién —como la caida de un pufiado de arena de un
recipiente a otro bajo el influjo de la gravedad—. El reloj de pén-
dulo llevé a cabo la transicién hacia un planteamiento mas so-
fisticado: la explotacion de fenémenos periédicos, cuya esencia
consiste en repetir un mismo proceso ciclo tras ciclo.

Identificar un fenémeno periédico es como encontrar una
regla en la naturaleza que ya trae marcadas las divisiones tem-
porales iguales. La frecuencia de la luz o del sonido constituye
un buen ejemplo. La escala atémica ofrece un catilogo completo
de fenémenos periddicos, inaccesibles para la tecnologia humana
hasta el siglo xx. Hoy en dia, la mayoria de los relojes sigue el
ritmo que marcan las vibraciones de un cristal de cuarzo sometido
a un pequeiio voltaje.

Los cientificos del siglo xvir tuvieron que ganarse los movi-
mientos periddicos con el sudor de su frente. Cuenta la leyenda
que en sus tiempos de estudiante, asistiendo a una misa en la ca-
tedral de Pisa, Galileo se fij6 en el vaivén de una lampara que
colgaba del techo y que acababan de encender. Valiéndose de su
propio pulso —otro fenémeno natural mis o menos periédico—
como cronémetro, llegé a la conclusion de que el tiempo invertido
en cada oscilacién era el mismo, a pesar de que el rozamiento con
el aire iba acortando la amplitud de las oscilaciones. Galileo tar-
daria décadas en relacionar este episodio con los relojes. Segin su
discipulo Vincenzo Viviani, el chispazo de inspiracién le sobrevino
en el dltimo afio de su vida:

Recuerdo que un dia de 1641, mientras vivia con él en la villa de

Arcetri, se le ocurri6 la idea de adaptar el péndulo a un reloj con
pesos o resortes [...]. El esperaba que el movimiento natural y muy
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regular del péndulo paliara cualquier defecto en el arte de los relojes.
Sin embargo, como su ceguera le impedia llevar a cabo los dibujos
y modelos necesarios, y como su hijo Vincenzo vino un dia desde
Florencia a Arcetri, Galileo le cont6 la idea y varias conversaciones
siguieron.

Se desconoce el alcance exacto de estas discusiones. Segiin
parece, Vincenzo Galilei intent6 llevar a la practica el proyecto de
su padre. De ser el caso, no logré un mecanismo que funcionara
de modo satisfactorio, puesto que no lo divulgé. El propio Huy-
gens trat6 de zanjar el debate sobre la prioridad en la introduccién
de su Horologium oscillatorium: «A pesar de los rumores que
cualquiera puede difundir, el desarrollo y construccién de estos
[relojes] debe por entero su origen y perfeccionamiento a mis cui-
dadosas reflexiones».

+En qué consistia la invencién en disputa? Vamos a comenzar
con el disefio de un reloj extremadamente rudimentario. Consta
de un tambor, al que enrollamos una cuerda atada a un peso. Se
puede insertar una manecilla en el eje o en otro disco que se aco-
ple al cilindro mediante engranajes. Al soltar el peso, la gravedad
tirara de €l y pondra el tambor en movimiento, haciendo girar la
manecilla. La vida de este reloj resultara efimera, puesto que la ro-
tacion se detendri en cuanto el peso alcance el suelo o la cuerda
se desenrolle del todo.

Una primera mejora, por tanto, consiste en ralentizar la caida.
Se puede recurrir a uno de los sistemas de freno mas elementales:
la friccién. Sin embargo, resulta dificil de ajustar de modo que el
tambor complete una vuelta justo cada minuto, por ejemplo. Por
otro lado, el propio rozamiento introduce un desgaste severo en
el mecanismo que, de todos modos, tampoco operaria de manera
uniforme, ya que es muy sensible a las condiciones atmosféricas,
como la temperatura y la humedad.

A finales del siglo xm los relojeros incorporaron un refina-
miento técnico que permitia frenar la caida del peso y dotar a
la rotacién del tambor de un ritmo acompasado: el escape. Hay
quien atribuye su invencién a Villard de Honnecourt, un personaje
envuelto en brumas de leyenda. La tnica fuente de informacién
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acerca de su vida se reduce a un pufiado de comentarios sueltos
en treinta hojas de pergamino, que acompaiian disefios de auté6-
matas y maquinas de movimiento perpetuo. El escape primitivo se
compone de una rueda dentada, la corona, y un eje con dos pale-
tas, sobre el que se arma un bastidor horizontal o balancin del que
cuelgan dos contrapesos (figura 1). Las paletas forman un dngulo
de unos 90°% de modo que solo una de ellas entra en contacto cada
vez con la corona. La corona y el eje giran en direcciones perpen-
diculares. Ambos elementos se comunican a base de golpes. El eje
vertical va alternando su sentido de giro, a impulsos de los bofeto-
nes sucesivos que le propinan los dientes a las paletas, mientras el
peso progresa siempre hacia abajo, arrastrando el cilindro. Cada
impacto de un diente contra una paleta, a su vez, frena moment4-
neamente el giro de la corona y, por tanto, del cilindro.

g Oscilacién del eje

| con los contrapesos
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Los dientes de la corona presentan un canto recto y otro
curvo. Los rectos son los que mantienen el vaivén del eje. Al gol-
pear la paleta superior, lo impulsan en un sentido y al golpear
la paleta inferior, en el contrario. El mismo impacto que aparta
una paleta del camino de la corona, interpone la otra en el ex-
tremo opuesto. El papel de los contrapesos es frenar la inercia
de estos giros, para que no se disipe demasiada energia en los
impactos. El mecanismo de escape ejecuta dos trabajos a la vez:
mantiene el eje en movimiento y frena con impulsos intermitentes
larotacién del tambor. La gravedad —y la mano que vuelve a subir
el peso cuando se desenrolla toda la cuerda— suministra toda la
energia que precisa el reloj: tira del tambor, mueve la corona y las
paletas, y atempera la oscilacién del eje.

Este ingenioso mecanismo obra una discretizacién del tiempo,
que viene dictada por la sucesién de impactos de las paletas. En
otras palabras, proporciona un tictac ritmico al reloj. Sin embargo,
no genera una regla temporal muy precisa, con divisiones equidis-
tantes. Cualquier desgaste en los dientes —frecuente, a causa de los
impactos— o el minimo desequilibrio entre los contrapesos hace
que la entrada y salida de las paletas al interferir en el giro de la
rueda no se produzca a intervalos exactos y regulares. Cada golpe
también provoca un retroceso algo azaroso en la corona, dificil de
regular. El mejor reloj con este modelo de escape, llamado de rueda
catalina y foliot, operaba con un error de 15 minutos al dia.

EL MAESTRO RELOJERO

La pauta del reloj de Huygens no surge del didlogo imperfecto
entre dos componentes de su mecanismo. La adquiere de un
agente externo: el péndulo. Este ofrece, por su propia naturaleza
fisica, un fenémeno periédico puro, que introduce una division
nitida e igual del tiempo. El péndulo comunica la regularidad de
su movimiento a las entradas y salidas de las paletas. Ademas, co-
rrige sus asimetrias. Si, como pensaba Galileo, la amplitud de las
oscilaciones no afecta al periodo, este no se vera afectado aunque
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Periodo 1

reciba de los dientes de la corona impactos de distinta intensidad,
que tiendan a modificar la amplitud. El péndulo también permite
un movimiento mas suave que el vaivén de los contrapesos, lo
que reduce el desgaste de los engranajes. Las orientaciones de
la corona y el eje cambian, pero siguen girando en direcciones

perpendiculares (figura 2).

Como en el modelo de escape anterior, el golpeteo de los
dientes suministra al péndulo la energia que pierde en la friccién
con el aire. Los relojes de péndulo dosifican la caida de un cuerpo

# Periodo 2
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bajo la accién de la gravedad a in-
tervalos regulares. En un alarde
de disefio, esa regulacién también
se alimenta de la propia gravedad.
El principal problema que deben
afrontar es que, en contra de lo
que suponia Galileo, el periodo
de oscilacién de un péndulo si de-
pende de la amplitud (figura 3).

En otras palabras, el peso tar-
da més tiempo en completar una
oscilacién cuando el dngulo o es
grande que cuando es pequefio.
Es cierto que esta dependencia de-
saparece practicamente para angu-
los reducidos, pero el mecanismo
de escape exigia oscilaciones hol-
gadas para funcionar. Huygens
asumi6 esta imposicién practica
¥ se propuso construir un péndulo
cuyo periodo no dependiera de la
amplitud de las oscilaciones, ya
fueran grandes o pequefias.

En el péndulo, el compromiso
entre el tirén vertical de la grave-
dad, que tiende a arrastrar el peso
hasta el suelo, y la resistencia de la
cuerda, que no le deja alejarse méas




alla de su longitud, le obliga a trazar un arco de circunferencia.
Contamos por tanto con dos elementos: la gravedad y una restric-
cion que imponemos a la trayectoria natural del peso. De ambos,
el mas sencillo de manipular es el segundo. Nos podemos olvidar
por un momento de la cuerda, con la esperanza de que sabremos
idear otro procedimiento que limite el movimiento del peso y lo
obligue a oscilar en un camino que no sea circular. Se podria en-
sartar, por ejemplo, en un alambre bien engrasado o hacerlo rodar
por una rampa curva. Por tanto, examinando la situacién con ab-
soluta libertad, ;podemos imponer al peso una trayectoria ciclica,
que recorra bajo el impulso de la gravedad, y que no dependa de
la amplitud?

Desde un punto de vista fisico, la pregunta se puede plantear
de otro modo: ;Existe alguna trayectoria a lo largo de la cual un
cuerpo, al caer, tarde lo mismo en alcanzar su punto més bajo, in-
dependientemente de a qué altura inicie el descenso? La intuicién
parece sefialar que no. En la ficcién de Moby Dick, el protago-
nista, Ismael, tropieza con la respuesta por azar, mientras limpia
por dentro una olla inmensa, donde se refina la grasa de ballena.
Descubre que no importa desde qué altura se le caiga el jab6n,
siempre tarda lo mismo en resbalar hasta el fondo. ;Qué patrén
matematico seguia la curvatura de las ollas del Pequod? Doscien-
tos aios antes que Ismael, en diciembre de 1659, Huygens descu-
brié que se trataba de una cicloide invertida.

La cicloide era una de las curvas mejor conocidas por los ma-
tematicos de la época. Llegd a ganarse el apelativo de «Helena de
los geémetras» o «manzana de la discordia», por las polémicas
que generé su estudio. Se cuenta que Pascal comenz6 a pensar en
ella para distraer un dolor de muelas. Como el recurso funciond,
lo interpreté como una sefal divina de que debia profundizar en
sus propiedades. Galileo surge, una vez més, en este punto de
la historia, puesto que fue €l quien le otorgé el nombre de «ci-
cloide», después de admirar «su airosisima curvatura, adaptable
a los arcos de un puente».

El método mas sencillo para trazar una cicloide consiste en
marcar un punto en una circunferencia y hacer que ruede sin des-
lizamiento. La trayectoria que sigue el punto dibuja la cicloide
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ERRORES CIRCULARES

La figura 1 muestra un péndulo simple y en ella se sefialan los principales res-
ponsables de su movimiento: el peso, P, debido a la gravedad, y la tensién de
la cuerda, T. En un analisis clasico newtoniano, el peso se descompone en la
suma de dos fuerzas, una perpendicular a la trayvectoria (P,=P-cosa) y otra
tangencial (P,=P - sena). Esta divisién conduce a dos ecuamones En una de
ellas, P, se iguala a la tension (P,=T) en los dos extremos de la oscilacién. Si
/o fuera mayor que T daria de si Ia cuerda hasta romperla. Si fuera mas débil,
Ia cuerda tiraria de la masa m. Dado que L se mantiene constante, esta pri-
mera ecuacion confina el movimiento del peso a un arco de circunferencia.
La segunda ecuacién describe su dindmica: cémo se acelera y se frena una
vez instalado en el circulo, a lo largo de las oscilaciones: m - a,=P,= -P - sena
(siendo &, la aceleracién tangencial). Se introduce un signo negativo porgue
cuando o es positivo (sen «, también positivo para a <180°) la fuerza apunta
hacia la izquierda, sentido que consideramos negativo. Y a la inversa. De-
sarrollando un poco la expresion:

dz

m- —2=—m-g-sena,
at

donde s representa el espacio recorrido a lo largo de la circunferencia (s=L- ).

d*s d?s s
—— =-g-sena, —=-g-sen>,
a "TIsene gz L

La solucién de esta ecuacion es una funcion s(t), gue da para cada instante ¢t
la posicion s de la masa: define su trayectoria. En general, no es una funcién
periddica. Cuando a es muy pequefio (es decir, cuando L es mucho mayor
que s) el seno y el angulo se vuelven practicamente iguales (a=sena) y la
ecuacion se simplifica:

s 8
a9

La solucion de esta ecuacion si que corresponde a una funcién periddica:

s(t)usméx-seﬂ[‘j%vt].

Cuanto mayor sea el angulo a, mas se apartara su valor del seno y peor serd la
aproximacion periodica. Esta discrepancia se conoce con el nombre de error
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circular. En la figura 2, la curva negra representa la funcién sen a y la recta
gris, la funcion a. Se ve que coinciden solo para dngulos pequefios. A partir
de unos 15°, aproximadamente, comienza la divergencia.

FIG.1

FIG. 2
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FlG. 4

FIG.5

(figura 4). La curva mantiene una
relaciéon muy especial con la gra-
vedad. En 1696, Jacob Bernoulli
planteo el siguiente desafio ala co-
munidad cientifica: si se unen dos
puntos A y B mediante un alambre
y en él se inserta una cuenta, ;qué
forma debe adoptar el alambre
para que la cuenta tarde el menor
tiempo posible en ir desde A hasta
B? La respuesta, de nuevo, es una
cicloide invertida.

El rasgo de la curva que inte-
resaba a Huygens era su isocronia:
da igual desde qué altura se suelte
un cuerpo, si cae siguiendo una
cicloide siempre tardara lo mismo
en alcanzar el punto méas bajo.
Ahora bien, las caidas constituyen

la mitad del movimiento pendular, porque una vez que el cuerpo
alcanza el punto més bajo, el impulso que ha ganado le obliga a
remontar. Si la restriccién que condiciona el ascenso es simétrica
respecto a la que limita la bajada (y despreciamos el rozamiento),
subird hasta alcanzar la misma altura desde la que cayé, y desde
ella volvera a descender en sentido contrario. Tiempos de caida
iguales para todas las alturas se traducen asi en tiempos de as-
censo iguales. El periodo es la suma de dos bajadas y dos subidas
simétricas. Si todos los tiempos son independientes de las alturas,
el periodo también sera independiente de la amplitud.

Huygens habia hallado la solucién teérica a su problema: un
péndulo ideal que oscilase siguiendo una cicloide. Ahora debia
implementarla con los elementos que tenia a su disposicién. Llevd
el agua a su molino y transformé el problema fisico en uno geomé-
trico. Tenia que arreglarselas para componer una cicloide con una
sucesién de trazos de compads, puesto que el péndulo describe
arcos de circunferencia. Para lograr su objetivo jugé con el largo
de la cuerda. Bastaba con interponer en su camino un clavo, que,
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a partir de ese punto, produciria un
movimiento pendular de longitud
menor. Si disponia una serie de cla-
vos, uno a continuacién de otro y
a diferentes alturas, cada uno obli-
garia al peso a trazar una circunfe-
rencia de radio mds pequefo, que
volveria a cortar el clavo siguiente,
que a su vez impondria una circun-
ferencia menor. Y asi sucesivamente
(figura 5).

Desde un punto de vista mate-
maético, cualquier curva se puede
trocear para, a continuacién, aproxi-
mar cada uno de sus fragmentos
mediante un brevisimo arco de cir-
cunferencia. Los trozos presentaran
diversos grados de curvatura. Alli
donde sea pequeiia, hay que abrir
mucho el compas para acomodar el
trazo a la curva. Donde la curvatura
sea pronunciada, por el contrario,
hay que cerrarlo (figura 6).

Si uno lleva a cabo la operacién
sobre un folio, repasando el con-
torno de la curva a base de trazos
de compas, descubre que durante
el proceso va creando una serie de
puntos: los agujeros que va dejando
la punta del compas al hincarse en el
papel. Al unir estos puntos se dibuja
una segunda curva, relacionada con
la primera, que se llama su «evoluta»
(figura 7). Huygens obtuvo el sor-
prendente resultado de que la evo-
luta de una cicloide es otra cicloide

(figura 8).

FIG.&
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Por tanto, si se cuelga un péndulo del punto C, y se fijan cla-
vos en los puntos que van desde C, hasta C, la trayectoria circular
natural del peso P se vera rectificada cinco veces, obligdndole a
ajustarse a una cicloide. La aproximacion sera mejor cuantos mas
clavos se sittien a lo largo de la cicloide evoluta. En la practica,
en lugar de una hilera de clavos, Huygens utiliz6 dos chapas me-
talicas que combé siguiendo dos arcos de cicloide. De ese modo
condicionaban la oscilacién del péndulo, acortando y alargando
la cuerda en funcién de la amplitud.

Huygens jugé matematicamente con la naturaleza con el fin
de forzar un verdadero movimiento periédico donde no lo habia.
Fue un hito en la historia de la ciencia. A su viejo maestro Van
Schooten le hizo participe de su entusiasmo: «Sin duda se trata de
mi mejor descubrimiento».

Podemos contemplar el funcionamiento del péndulo de Huy-
gens bajo otra perspectiva. En un péndulo clésico, el peso, en
su vaivén, traza arcos de circunferencia. Su periodo, a partir de
un cierto dngulo, empieza a acusar la dependencia con la ampli-
tud. Cuanto mayor se haga el &ngulo, mayor seri el periodo. Por
otra parte, Galileo ya habia sefialado que la longitud de la cuerda
afecta también al tiempo que el peso invierte en completar cada
ciclo. Cuanto més larga sea la cuerda, mayor sera el periodo. Aqui
se manifiestan, por tanto, dos tendencias opuestas. Aumentar
la amplitud alarga el periodo. Reducir la longitud de la cuerda
lo disminuye. ;Qué sucede si a medida que crece el angulo se
acorta la cuerda, de manera que ambos efectos sobre el periodo
se contrarresten? Exactamente ese es el cometido de la chapa
de cicloide.

En el grabado de la pagina 149 se muestra el disefio completo
del reloj de Huygens, tomado de la primera parte del Horologium.
El péndulo oscila con un periodo constante e independiente de la
amplitud, que provee a la corona de un tictac uniforme. En su mo-
mento, el reloj de Huygens establecié un récord absoluto de pre-
cision, con un error de menos de un minuto al dia. Desde luego,
su propuesta no sefiald la tnica via de progreso en la industria de
los relojes. Alternativas mas prosaicas pronto volvieron excesivo
su alarde de ingenio. Entre 1670 y 1680 se desarrollaron el escape
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de dncora y el de Graham, capaces de operar con las oscilaciones
pequerias de un péndulo normal.

En principio, el Horologium oscillatorium iba a limitarse a
la descripcién de un instrumento cientifico, pero se fue enrique-
ciendo y evolucionando a lo largo de los afos, al méas puro estilo
Huygens, hasta convertirse en un compendio de tratados de diver-
sas disciplinas. Igual que habia hecho para perfeccionar el telesco-
pio a través de la diéptrica, a la hora de disefiar su reloj se propuso
comprender a fondo todos los fenémenos fisicos implicados. El
motor del reloj era la gravedad, asi que Huygens emprendi6é un
analisis completo sobre la caida de los cuerpos. Hizo lo propio
con el movimiento circular, ya que en el corazén del mecanismo
latia un péndulo.

«Lo lei con gran satisfacciéon, encontrandolo lleno
de especulaciones muy ingeniosas y utiles,
muy dignas de su autor.»

— RESPUESTA DE NEWTON TRAS RECIBIR UN EJEMPLAR DEL HoroLoGIuM.

La quinta parte del Horologium se cierra con trece teoremas
sin demostracién sobre la fuerza centrifuga. De ellos se deduce
que la aceleracién que rectifica constantemente la tendencia de un
cuerpo a seguir una linea recta y lo obliga a trazar una circunfe-
rencia, tirando de él hacia su centro, vale v*/r (donde v es la velo-
cidad del cuerpo, y 7, el radio de la circunferencia). Newton llegé
a la misma conclusién por otra via, pero no publicé el resultado,
asi que por una vez fue Huygens quien se llevo el gato al agua.

El Horologium también contiene un pequeiio tratado de geo-
metria. Después de tropezar con el campo de las evolutas, la tenta-
cién de esbozar una teoria general era irresistible y, por supuesto,
Huygens cay6 en ella. Desarroll6 métodos para definir la evoluta de
una curva cualquiera, que aplicé a la pardbola, la elipse y la hipér-
bola. También relacioné la cuadratura de curvas con sus evolutas.

La medicion del tiempo se fue apoderando de la imaginacién
de Huygens, hasta erigirse en su segunda gran obsesion cientifica.
El reloj de péndulo funcionaba admirablemente en los salones de
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Luis XIV, pero para ayudar a un capitan de barco a determinar su
posicion después de una tempestad, su mecanismo debia resis-
tir zarandeos y sacudidas constantes. No superaron la prueba. La
mayoria acababa pardndose o se estrellaban contra el suelo, por
mucho que se anclaran a una viga del techo. La frustracién ante la
vulnerabilidad de los péndulos en las travesias maritimas impulsé
a Huygens a replantear su estrategia. Sabiendo que un buen reloj
necesita de un movimiento periédico que lo gobierne, ensay6 un
procedimiento distinto, donde el giro de la corona venia acompa-
sado por la compresién y expansién de un resorte metélico enro-
llado en espiral. Este modelo ofrecia otro atractivo: permitia la
fabricacién de relojes de bolsillo, algo impensable hasta entonces.
La euforia por el invento se vio empaiada cuando su tentativa
de patentarlo en Inglaterra lo expuso a las iras de Robert Hooke.
Hooke exhibia una prolifica versatilidad, que en ocasiones pro-
vocaba pasmo y en otras encarnaba a la perfeccién el refran de
que quien mucho abarca poco aprieta. A menudo entreveia posi-
bilidades que luego no acertaba a concretar, por falta de tiempo
o porque su destreza matematica no estaba a la altura de su intui-
cién fisica. Hooke proclamé a los cuatro vientos que él habia des-
cubierto el reloj de muelle dieciséis afos atras y que el resorte de
Huygens «no valia un penique». Huygens se mostré escandalizado
ante los términos de la reclamacion y con fastidio se quejé de la
«egocéntrica pretensiéon» de Hooke «de haberlo inventado todo».

LA TERRIBLE SIMETRIA

Para cerrar este repaso a la ciencia de Huygens vamos a retroce-
der cuatro décadas, a fin de examinar una de sus obras primeri-
zas, en la que brilla con singular claridad la elegancia de su estilo.
Contaba entonces con veintitrés afios y ni el tiempo, ni el pulido
de lentes, ni la luz habfan captado todavia su atencién. A pesar de
su juventud, ya se habia hecho notar como un alumno aventa-
jado de Arquimedes, con su andlisis de la estabilidad de los cuer-
pos en el agua y el virtuosismo matemadtico de sus cuadraturas.
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Estrenando una actitud que pronto se convertiria en costumbre,
el punto de partida fue una refutacién a la ciencia de Descartes,
en particular a sus leyes sobre la colisién eldstica entre cuerpos.
Su modo de proceder se ajustaria a las pautas habituales. Obtuvo
los primeros resultados importantes en 1652, que no publicé, con
vistas a completar un proyecto més ambicioso, que abandonaria
y retomaria a lo largo de los afios. Esboz6 un tratado en 1656,
que alcanzaria su forma definitiva en 1667 (De motu corporum
ex percussione, «Sobre el movimiento de los cuerpos en coli-
sién»). El texto veria la luz péstumamente. Huygens divulgé con
cierta precipitacion parte de sus resultados, sin demostraciones,
en 1669, primero en el Journal des Sgavans y luego en las Philo-
sophical Transactions, después de enterarse de que John Wallis
y Christopher Wren habian publicado en enero un articulo sobre
el mismo tema. Como en otras ocasiones, de tanto retener la mer-
cancia, se le acabé enranciando.

Descartes habia enunciado sus leyes sobre la colisién entre
cuerpos en sus Principia philosophiae de 1644. Constituian una
de las vigas maestras de su concepcion mecanicista, dado que re-
ducia las diversas interacciones fisicas, como la gravedad, laluz o
el magnetismo, a choques entre particulas de éter. Como autor de
un magno sistema capaz de explicar el mundo, el filésofo francés
tenia una idea muy definida de cémo debia comportarse la natura-
leza. Cuando un experimento le llevaba la contraria, simplemente
pasaba por alto la impertinencia:

Las demostraciones de todo esto son tan ciertas que aun cuando la
experiencia parezca demostrar lo contrario, sin embargo, estamos
maés obligados a dar crédito a nuestra razén que a nuestros sentidos.

Un espiritu mas propio de los seguidores de Aristételes, a los
que combatia, que a lo que solemos entender por pensamiento
cartesiano. Fruto de esta postura ensimismada, la naturaleza que
presenta Descartes tiene algo de fantasioso, circunstancia que lle-
v a Leibniz a calificar los Principia de «una bonita novela de
fisica». El libro prescribe ocho reglas para desentrafar el meca-
nismo de las colisiones que, ciertamente, terminan por describir
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algunos fenémenos sorprendentes. Una de ellas establece que
cuando un cuerpo choca contra otro mayor que él, que se halla
en reposo, rebota con la misma velocidad que traia sin desplazar
un solo centimetro al mas grande. Este enunciado, de ser cierto,
impediria que los nifios tirasen al suelo a los adultos cuando, en
plena carrera, tropiezan con ellos.

Podemos imaginar a Huygens alzando una ceja mientras leia
los Principia. En enero de 1652 expres6 sus dudas a un cientifico
de Lovaina, Gerard van Gutschoven. Aguard6 nueve meses mas,
hasta estar bien seguro, antes de confiar sus inquietudes a su men-
tor, Van Schooten, acérrimo cartesiano. El profesor de la Universi-
dad de Leiden le recomendé que no perdiera el tiempo ahondando
en semejantes herejias. Huygens se mantuvo en sus trece:

Si todas las reglas de Descartes, excepto la primera, no son erréneas,
entonces, obviamente, ya no soy capaz de sefialar la diferencia entre
lo que es correcto y lo que es falso.

Pero Huygens, desde luego, era muy capaz de realizar esa
distinciéon. En lugar de prestar oido a Van Schooten, se atuvo al
consejo de su primer maestro, Jan Stampioen, y trat6 de llegar
a sus propias conclusiones, sin dejarse condicionar por las aje-
nas. Su manera de abordar el problema combina modos antiguos
y modernos. Antiguos porque se vale de una fisica que todavia
no habia sido remozada por Newton, y modernos porque en gran
medida su argumentacién gira en torno a la simetria, una actitud
muy del gusto fisico contemporaneo. Huygens basé su andlisis en
un principio que Galileo habia descrito en sus célebres Discorsi
de 1638. El cientifico italiano habia observado que una persona
instalada en la bodega de un barco sin escotillas es incapaz de
decidir, mediante un experimento mecéanico, si estd en reposo o se
mueve con velocidad constante. Es decir, mientras la nave no ace-
lere, su desplazamiento no afecta a la dindmica de los elementos
que se encuentran en su interior. En su estudio de las colisiones,
Huygens cambia constantemente de perspectiva, pero como todas
ellas se relacionan entre si mediante velocidades constantes, la
esencia de la interaccién que estd examinando no sufre ninguna
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alteracion. Su instinto fisico le llevé a percibir que lo que de ver-
dad importa en un choque es la velocidad relativa entre los cuer-
pos: aquella con la que cada uno advierte que se aproxima el otro,
algo que no cambia bajo ningin punto de vista.

Las colisiones que consideré eran eldsticas, lo que quiere
decir que el impacto no roba energia al movimiento de los cuer-
pos. Estos rebotan y no se adhieren ni se incrustan. Huygens par-
ti6 de la tnica regla de Descartes que salvé de la quema: si dos
masas iguales chocan con la misma velocidad, rebotan invirtiendo
sus velocidades. La fuerte simetria de la situacién ofrece un de-
senlace intuitivo. Llamaremos a las masas de los cuerpos m,ym,
y asumiremos como positivas las velocidades dirigidas hacia la
derecha (—) y como negativas, las de sentido contrario (<). Al
invertir su velocidad, m, pasa de va-vy m, pasade -v av.

A partir de aqui, Huygens busco la simetria de esta colision
elemental en todas las demas. Ahora bien, para revelarla, habia
que adoptar el punto de vista adecuado. Es como cambiar de bu-
taca al asistir a un especticulo. Se pretende adquirir un angulo
mas favorable que permita apreciar una simetria que pasa desa-
percibida para el resto de espectadores, pero esa posicién privi-
legiada no altera la naturaleza de la representacién. Todos los
cambios de punto de vista que maneja Huygens entraiian veloci-
dades constantes.

Lo podemos ver mediante un par de ejemplos. Situemos, por
ejemplo, el segundo cuerpo m, en reposo, mientras la masam, se
dirige a su encuentro con una velocidad v. ;Cudl sera el resultado
de esta colisién? ;La masa m, invertira su velocidad y rebotara
con —v? ;Se detendrad y comunicara toda su velocidad a m,? ;Solo
le cederd una parte de su impulso y las dos avanzaran hacia la
derecha con distintas velocidades?

De entrada se ha perdido la simetria del caso anterior, lo que
limita la intuicién sobre lo que va a suceder. Huygens contempla
entonces el impacto a bordo de un vehiculo que se desplaza hacia
la derecha con velocidad v/2. Para aclarar la situacion, recurre a
dos observadores, uno en reposo (Or), que ubica en la orilla de un
canal, y otro subido en una barca (Ob) que navega en el sentido de
m, con velocidad constante v/2.
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Ob se mueve con la barca, asi que
para él la masa m, ya no permanece

m m
quieta: sale a su encuentro con velocidad .1 .2
v/2. Por otro lado, como Ob se mueve
en el mismo sentido que m , verd a esta v
masa moverse mas despacio. Es el mismo &S or orilla
efecto que se aprecia al viajar en coche. —— =x
Los postes de la luz, en reposo, vienen ] Q3 ob ) canal
hacia nosotros con la velocidad que lleva Ay T
el vehiculo y los coches que comparten la v/2

carretera en nuestro sentido parecen co-
rrer mas despacio que si los contempla-
ramos desde el arcén. Por tanto, Ob asiste a la siguiente colision:

m, m,
& &
— —
/2 /2

Con esta perspectiva, nuestra intuicién ya sabe resolver el
choque: se invierten las velocidades de cada masa.

ml mz
r &
—/2 v/2

Desde el punto de vista privilegiado de Ob se aprecia la sime-
tria. Para saber qué es lo que observaria Or hay que despojar a
cada masa de la parte del movimiento debida al desplazamiento
de la barca. Recuperando el simil del coche, al detenernos en el
arcén, los vehiculos que circulaban en nuestro mismo sentido ga-
naran la velocidad que llevidbamos y los que corrian en sentido
contrario la perderan. Por tanto, m, y m, ganaran y perderan v/2,
respectivamente. Es decir, después de que se haya producido la
colision, Or vera como m, queda en reposo y como m, se aleja
hacia la derecha con velocidad v.

La estrategia que se ha aplicado en este caso particular re-
suelve con facilidad cualquier choque entre dos cuerpos de masas
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iguales que se muevan con distintas velocidades. ;Qué ocurre
cuando las masas también son diferentes? Esta nueva condicién
parece romper definitivamente la simetria, pero Huygens logré
restablecerla. Existe una velocidad para la barca que traslada a un
punto de vista exclusivo donde cada cuerpo invierte su velocidad
después del impacto. Es:

m v -m, v,
1!":“!,]+?’P‘l.‘2

En el numerador de la expresién se multiplican velocidades
por masas, dando lugar a una magnitud fisica que recibe el nom-
bre de «momento» (el momento, p, de un cuerpo de masa m es:
p=m-v). Al volver a dividir por una masa se obtiene una velocidad.

Tomemos la situacion:

m,
m,
@
v, =z
& Or orilla
N
-
A —
m, v, — My v, canal
m+m, T

Ahora las masas son distintas: m, es mayor que m . Para defi-
nir mejor la colisién, asumiremos que v, es mayor que v, (0 mejor
todavia: m, -v, >m,-v,). Si asistimos al choque desde una barca
que se desplaza hacia la derecha con una velocidad constante:

m v, -m, v,
y
m;, +m,

esto es lo que observaremos:
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n,y
&
— i

m m.
m(vr +7,) _;n1+_;n2(”1 "'vz)

Como m, es mayor que m,, para un espectador montado en la
barca la masa pequena correra més deprisa que la grande. Desde
su atalaya simétrica, Ob advertird que m, invierte su velocidad
después del impacto, igual que m.,:

m;
my
=
P C— S
... (v, +v,) s (v, +v,)
m,+m, m, +m,

Para averiguar qué escena contempla Or, plantado en la ori-
lla, hay que sumar
m, v -m, v,
m, +m,

ala masa que se desplaza en el sentido de la barca, m,, y sustraer
la misma velocidad a la masa que corre en sentido contrario, m,.
Asi se obtiene un resultado que dista mucho de ser intuitivo:

m;
m,
&
“— —_—

_(mz -m,)v +2myv,  2myp, +(my —my)v,

m,+m, m, +Mm,

Al ojo atento de Huygens no se le escaparon dos nuevas si-
metrias. Aunque en el proceso de choque se modifiquen las velo-
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cidades de los cuerpos, existen otras magnitudes que permanecen
inalterables. La mas evidente es la masa. Menos obvia resulta la
suma del producto de cada masa por su velocidad (el momento),

antes y después del impacto. Es decir:

M V) et MV

1 1 antes

=My V) gespata T M Vs gespuss

2 antes

Py antest P s = P desputs + P2 despots

EL DEMONIO ESTA EN LOS DETALLES

La expresion, en apariencia algo arbitraria, de la velocidad de la barca corres-
ponde al llamado «centro de masas». Se trata de una entidad abstracta, util
para investigar el comportamiento de numerosos sistemas fisicos. Para dos
cuerpos como m, y m,, situados en x,y x,, se ubica en un punto que descansa
en la linea que los une. Su posicion x_, viene dada por:

my X, +m,- X,
Xem = i
my+m;

El centro de masas senala un punto de equilibrio. En él se podria apoyar un
tablén que contrabalancearia los dos cuerpos (véase la figura). Si las masas
se mueven, en general también lo hara el punto x_ . Su velocidad vendra
dada por:

v aMitmy v,

cm rn]+m2

Cambiando el signo a v, para reflejar que esta masa se desplaza hacia la iz-
quierda, se obtiene la expresién para la velocidad de la barca que, por tanto,
se situa en el centro de masas. Este es el punto privilegiado desde el que se
aprecia la simetria del impacto. Teniendo en cuenta la conservacion del mo-

ma
® h .
A
| | |
(0] x Xem X2
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Esta simetria se puede asumir en otros contextos fisicos, al
margen de las colisiones. Hasta tal punto cabe generalizarla que
constituye uno de los pilares de la fisica: el principio de conserva-
cién del momento. Huygens también reparé en la constancia de
otra cantidad, la suma del producto de cada masa por el cuadrado
de su velocidad, antes y después de la colision:

+Mm, v,

p2 Ly 2 s a2 2
ml v +m2 v2 antes ml 1"11 después 2 72 después

1 antes

mento, se deduce que en la colisién no varia la velocidad del centro de masas.
Podemos ver con un poco mas de detalle como cambian las velocidades para
los observadores de la barca y de la orilla. Definimos las variables v,,, (veloci-
dad de la masa m, tal como se percibe desde la barca antes del choque)
(velocidad de la masa m, desde la barca antes del choque), v, , (velocidad de
la masa m, tal como se percibe desde la orilla antes del chogue), v,_, (velocidad
de la masa m, desde la orilla antes del choque) y v, (velocidad de la barca).

Desde Ob, antes del impacto, las velocidades de los cuerpos son:

My =y vy My (v +vs)
- - - 1% 2 '2l.2 1 2
Viba =Vi0a Ve =V; ( ]

my+m, m+m,

myvy—my vy m1-{v1+v2)

Vaba =Vaoa ~Vp =~V2 = == .
my +m my+ my

A partir de estas expresiones se deduce una de las claves de la simetria
en el centro de masas: en él ambos cuerpos muestran el mismo momento
(m,v,,,=m, v, ). Después del impacto se invierten las velocidades, luego:

_mz»(v1+v2) " =m1-[v1+v2]

V. =
bd 2 2bd
my + My my + My

donde el subindice d sustituye ahora al a, para indicar que estas son las ve-
locidades después del choque. Para resolver las velocidades desde la orilla,

basta con deshacer el primer cambio:

Vied = Vibg +Vp =
™ R my +m, m +m, my+m,

mz'(V;+V2)+(m,-v1—m2-v2]- (mg—m;)-v,+2-m2<v2’

Vaod =Vapg Ve =

my +my my+m, m+m,

EL TIEMPO EN SUS MANOS

m1-[v}+v2)+(m,‘v1-—m2<v2]_2>m1-v1+(m,»-m2)-v2‘

157



158

donde no cuesta reconocer una manifestacién del principio de
conservacién de la energia, en este caso, de la energia cinética.

Hay que recalcar que Huygens se desenvolvié en un marco
conceptual prenewtoniano. No empleé en ningtin momento la no-
cién de fuerza, ni hablé, por tanto, de fuerzas de accién y reaccién
para justificar los cambios de velocidad que experimentan los
cuerpos. Hoy en dia las colisiones eldsticas se resuelven a un nivel
de fisica elemental, casi sin pensar, asumiendo como axiomas los
principios de conservacion, que proporcionan dos ecuaciones con
dos incoOgnitas (las velocidades finales). Huygens procedi6 a la
inversa. En el siglo xvn las leyes de conservacién no estaban clara-
mente establecidas, aunque se hallaban ya en proceso de madura-
cion. En cierto sentido Huygens convirtié un problema dindmico
en estatico. Los cuerpos que chocan desde luego se mueven, pero
los contemplé desde una perspectiva tan simétrica y predecible
como si nunca salieran de una situacién de equilibrio.

El andlisis de las colisiones de Huygens se puede considerar
revolucionario, ya que marca el nacimiento de la fisica matema-
tica. A la hora de imaginar a un fisico en plena faena, ya sea Albert
Einstein o Sheldon Cooper, a uno le viene de inmediato a la mente
una pizarra llena de ecuaciones. No siempre fue asi. Galileo habia
expresado verbalmente las leyes sobre la caida de los cuerpos,
apoyandose en figuras geométricas, como habia hecho antes que
él Arquimedes y cuantos le precedieron en el estudio de la natu-
raleza. Hasta Girolamo Cardano resolvié la ecuacion ciibica con
buena prosa y visualizando cada término como un cubo tridimen-
sional, que se podia plasmar en un dibujo. A partir de la obra de
Francois Viete, el dlgebra cuajé como un lenguaje flexible y con-
ciso, que operaba con mds potencia que las palabras en el Ambito
matemaético. Casi acto seguido, Descartes tendié un puente entre
las imagenes de la geometria y las ecuaciones. El aspecto de los
libros de mecénica o astronomia sufrié entonces una metamorfo-
sis radical. De una coleccién de parrafos apretados, que solo se
interrumpian para dejar espacio a una serie de laminas plagadas
de rectas, parabolas y circulos, las piginas se llenaron de expre-
siones algebraicas, de lineas sueltas, como versos, donde se inter-
calaban las letras y los simbolos de las operaciones. Este punto
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de inflexién en la representacion y en el modo de pensar y de
manipular matematicamente los conceptos fisicos se produce con
Huygens. Casi con seguridad, las grandes hojas en las que apunt6
sus célculos sobre colisiones, en 1652, registran la primera vez
que alguien escribi6 ecuaciones donde las variables encarnaban
velocidades y masas, en suma, entidades fisicas. Por supuesto, la
transicién acontecié de forma gradual. El propio Huygens, como
Newton, prefirié la mayoria de las veces la manera tradicional de
Arquimedes.

Los cambios de perspectiva que animan De motu corporum
ex percussione desprenden un fuerte aroma relativista. Un detalle
que Einstein no pasé por alto. En la relatividad especial los puntos
de vista reciben el nombre de «sistemas de referencia». Aquellos
que permanecen en reposo o se desplazan con velocidad cons-
tante respecto a otros se llaman «inerciales». En 1954, Einstein
escribia a su amigo, el ingeniero suizo Michele Besso:

La teoria de la relatividad especial en el fondo no hace mas que adap-
tar la nocién de sistema inercial a la firme certidumbre, dictada por
la experiencia, de la constancia de la velocidad de la luz, para cual-
quier sistema inercial. No puede prescindir del concepto de sistema
inercial, que es insostenible desde un punto de vista epistemolégico
([Ernst] Mach puso de manifiesto la inconsistencia del concepto con
claridad, aunque ya habia sido entrevista por Huygens y Leibniz).
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