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Introducción 

Si cada nación tiene derecho a su edad de oro, entonces el siglo xvn 
pagó esa deuda con creces a Holanda. En su modesta superficie, 
abreviada por el mar, los ríos y los lagos, se concentró en aquella 
época una plétora de mentes excepcionales que parecía desafiar 
la estadística. Destacaron en todas las artes y oficios, desde la 
pintura hasta la milicia, pasando por el comercio, el derecho, 
la navegación, la ingeniería, la literatura o la ciencia. La mayoría 
compartía una curiosidad heterogénea, que tendía puentes entre 
unas actividades y otras, como si se sintieran comprometidos 
en una formidable empresa colectiva. 

El filósofo Baruch Spinoza pulía lentes para telescopios y mi­
croscopios. Se especula que uno de los pioneros en el campo de la 
microscopía, Antoni van L€euwenhoek, sirvió de modelo aJohannes 
Vermeer en El astrórwrrw y El geógrafo y que, además, le mostró las 
posibilidades pictóricas de la cámara oscura El ingeniero Simon 
Stevin escribía sobre política y el político Johan de Witt era un mate­
mático avezado. Todos ellos prosperaron al amparo de la tolerancia 
religiosa, que extendió su manto protector a extranjeros ilustres, 
como René Descartes, y a un amplio registro de autores, que sufrían 
la censura en sus respectivos países. Casi una cuarta parte de los 
libros publicados en Europa procedía de prensas holandesas. 

A pesar de que durante este período de esplendor el mundo 
tuvo la impresión de girar en torno a Ámsterdam, La Haya o Delft, 

7 



8 

Christiaan Huygens vivió muchos años al otro lado de sus fronte­
ras, sobre todo en París. Desde muy pequeño fue adiestrado para 
desenvolverse en el gran escenario del mundo. Acabó eclipsando 
a su padre, aunque se trataba de una estrella difícil de tapar. Cons­
tantijn Huygens encarnó como nadie al cortesano soñado por Bal­
tasar Castiglione. Fue políglota, músico y literato por vocación y 
un diplomático consagrado a la casa de Orange por compromiso 
y porque de algún modo tenía que ganarse la vida. Su espíritu in­
quieto no distinguía entre una cultura científica y otra humanís­
tica. En su biblioteca de La Haya acumuló cerca de 3 000 libros, 
de los cuales una décima parte eran de física y matemáticas. La 
educación pluridisciplinar que recibió promovió la curiosidad 
omnívora de su vida adulta, que supo transmitir a su hijo Chris­
tiaan. También le facilitó una privilegiada red de contactos. En 
la edición de las obras completas de Christiaan Huygens casi la 
mitad de los volúmenes se ocupa de su correspondencia. Desde 
luego, su perfil no corresponde al del sabio huraño que acrisola su 
obra en soledad. Con sus remitentes se podría elaborar el quién 
es quién de la ciencia de la época. Huygens discutió sus ideas con 
Isaac Newton, Gottfried Leibniz, Robert Boyle, Marin Mersenne, 
el marqués de L'Hópital, Robert Hooke o Antoni van Leeuwen­
hoek. Este entramado de vínculos personales, unido al progreso 
de las comunicaciones y a la fundación de las primeras revistas 
e instituciones científicas, como la Royal Society o la Académie 
Royale des Sciences -que dirigió-, le mantuvo al corriente de 
los últimos descubrimientos. 

La batalla decisiva de la revolución científica se libró en los 
cielos, con el telescopio como natural aliado. Huygens se ganó 
sus primeros galones en el frente abierto por Galileo, al resolver 
uno de los problemas que habían suscitado sus observaciones de 
Saturno. En las representaciones más simples de una noche estre­
llada aparecen tres símbolos recurrentes: los círculos, que hacen 
las veces de satélites o planetas; los polígonos de varias puntas, 
para las estrellas, y los círculos rodeados por un anillo. Esta úl­
tima figura es la más moderna y no se incorporó al imaginario 
astronómico hasta que Huygens la introdujo en 1656. Las lentes 
de su telescopio no prestaban la suficiente resolución para distin-
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guir el anillo de Saturno, así que su mérito fue vislumbrarlo con 
los ojos de una inteligencia bien informada. También localizó la 
primera luna del planeta, Titán, y supo establecer con asombrosa 
exactitud la escala del sistema solar. 

Estos descubrimientos sirvieron de remate a una exhaustiva 
investigación teórica. Huygens escudriñó los cielos con sus pro­
pios telescopios, pero antes de sentarse a fabricarlos se molestó 
en fundar las leyes de la óptica geométrica, que gobiernan las 
trayectorias de la luz al cruzar cualquier juego de lentes. Supo 
así cómo explotar al máximo las posibilidades del instrumento. 
Ideó lentes compuestas que corregían la aberración esférica y mi­
crómetros que convirtieron el telescopio en una herramienta de 
precisión. 

A partir de la década de 1670 se dio cuenta de que su conoci­
miento de la luz, en apariencia profundo, era meramente descrip­
tivo y pasó a interrogarse acerca de su naturaleza. Este cambio 
de actitud dio aliento a una ambiciosa teoría, que se considera el 
germen del modelo ondulatorio de la luz y que abrió la vía a las vi­
siones más complejas de Fresnel, Young y Maxwell. Para Huygens 
la luz era una onda en el sentido de que se propaga en círculos 
-en realidad esferas- crecientes. La agitación de las partículas 
luminosas se transmite hasta el ojo del observador mediante una 
larga cadena de colisiones entre partículas de materia. El llamado 
«principio de Huygens» constituye un refinado ejemplo de mate­
matización de los fenómenos y ofreció un soporte conceptual al 
enigmático comportamiento del espato de Islandia. Esta variedad 
transparente de calcita, descubierta en una cantera de Helgusta­
dir, presenta doble refracción: los rayos luminosos se dividen en 
dos al atravesarlo. 

Aunque Saturno y la luz le ganaron una reputación perdura­
ble, la invención de la que él se sentía más orgulloso era el reloj de 
péndulo, que ya había entrevisto Galileo sin acertar a plasmarlo en 
un mecanismo :fiable. Huygens atacó el problema desde todos los 
ángulos imaginables y su estudio, más que una obra de mecánica, 
derivó en un taller de innovación física y matemática. 

Con frecuencia Huygens ha sido tachado de «cartesiano», 
una caracterización que no le habría hecho demasiado feliz. De 
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elegir él los padrinos, seguramente hubiera preferido a Galileo o 
Arquímedes. Descartes fue un arquitecto de grandes sistemas, que 
tuvo escasa fortuna a la hora de definir los detalles. Precisamente 
estos últimos eran los que fascinaban a Huygens. Como señaló 
Leibniz, que fue alumno suyo, «no mostraba gusto alguno por la 
metafísica». Es cierto que la admiración por el autor del Discurso 
del método cegó a Huygens en su primera juventud: «Estaba con­
vencido de que cada vez que tropezaba con alguna dificultad era 
culpa mía por no haber comprendido su pensamiento». No tardó 
en desengañarse y en emprender una larga serie de correcciones. 
Muchas de sus obras se pueden interpretar como refutaciones al 
filósofo francés: su estudio de las colisiones, por ejemplo, o su 
óptica geométrica. Hacia el final de su vida firmó una inequívoca 
declaración de apostasía cartesiana: «En la actualidad no encuen­
tro en toda su física, en su metafísica o en sus aseveraciones sobre 
meteorología nada que pueda tomar por verdadero». Donde sí hu­
biera podido llegar a un acuerdo con Descartes hubiera sido en 
su rechazo a la gravitación universal de Newton y en la búsqueda 
de una alternativa mecanicista, que explicara la atracción entre 
cuerpos mediante colisiones contra una corriente de partículas 
diminutas. 

En buena medida, para Huygens entender un fenómeno supo­
nía traducirlo a lenguaje matemático. En este terreno su destreza 
sobrepasó a la de Galileo y, en realidad, nadie le hizo sombra hasta 
la llegada de Newton. En una época en que todavía no se habían 
establecido las fronteras entre matemática pura y aplicada, Huy­
gens fue físico en sus matemáticas y matemático en su física. En 
su geometría se reconoce el gusto por la mecánica de Arquímedes, 
que pesaba en una balanza imaginaria las figuras cuya superficie 
quería delimitar. Veía el mundo con un ojo físico y otro matemá­
tico, y con la información que le proporcionaban ambos su mente 
construía una imagen tridimensional. En cierta ocasión afirmó 
que la óptica es una disciplina «donde la geometría se aplica a 
la materia», un enunciado que valdría para resumir su forma de 
entender la física. Su intuición buscó círculos, curvas y ángulos 
en el espíritu de la luz y en el corazón de los relojes. El principio 
de Huygens, en el que se apuntala su interpretación de la óptica, 
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se puede leer como un tratado de construcción geométrica. Pocos 
años antes de que iniciara su carrera científica, Descartes había 
oficiado el matrimonio entre el álgebra y la geometría. Huygens 
aprovechó la conexión entre ambas disciplinas y también fue un 
pionero en el uso de ecuaciones. Muchos le atribuyen el honor de 
haber escrito la primera fórmula física, en 1652. 

Es consabido el aserto de Galileo de que el libro de la natura­
leza está escrito en lengua matemática. Ahora bien, para describir 
con propiedad la creciente complejidad de los fenómenos, había 
que aumentar el vocabulario heredado de los griegos y los ára­
bes. En el siglo XVII Newton y Leibniz acuñaron los neologismos 
indispensables, cuando desarrollaron el cálculo infinitesimal. La 
revolución sorprendió a Huygens con sesenta años y asistió a su 
imparable ascenso con suspicacia. Él había encontrado ya su ma­
nera de descifrar matemáticamente el universo, y no necesitaba 
de intérpretes ni admitía fórmulas prefabricadas. 

En su clásico tratado Principios en el arte de pesar, Simon 
Stevin hacía una llamada al pragmatismo: «La reflexión sobre los 
principios de cualquier arte supone un esfuerzo baldío cuando su 
propósito no se encamina a la acción». Huygens hizo suya esta 
consigna. Perteneció a una estirpe mestiza de científicos, como 
Galileo o Newton, que no levantaban barreras entre la sala de es­
tudio y el taller o el laboratorio. Lo mismo elaboraba teorías que 
fabricaba herramientas o mejoraba el diseño de aparatos para 
procurarse mejores observaciones. Siempre sintió debilidad por 
los instrumentos científicos, por los telescopios, los microscopios, 
las bombas de vacío o los relojes, que consideró a un tiempo como 
utensilios y como el escenario de excitantes fenómenos físicos. 
Su obra favoreció un salto en la instrumentación científica, que 
impulsó el conocimiento tanto o más que sus leyes o principios. 

Huygens prefigura al científico moderno, no ya por sus obras, 
sino por su actitud, por su conciencia de que la ciencia procede 
mediante aproximaciones. Él no pretendía descubrir la Verdad, 
con mayúscula, sino crear modelos operativos: «En el terreno de 
la física no existen demostraciones ciertas y uno solo puede cono­
cer las causas a través de los efectos, hacer suposiciones basadas 
en los experimentos o en los fenómenos conocidos y tratar de ve-
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rificar si otros efectos se muestran de acuerdo con esas mismas 
suposiciones». A lo que añadía: «Sin embargo, esta falta de demos­
traciones en física no debe conducirnos a la conclusión de que 
todo resulta igual de dudoso, antes bien, debemos ser conscientes 
del grado de probabilidad en cada caso, de acuerdo con el nú­
mero de experimentos que tienda a confirmar lo que previamente 
hemos conjeturado». 

Huygens se vio preso de su perfeccionismo. Sus logros se 
pueden contemplar como un iceberg, del que sus contemporá­
neos solo atisbaron una octava parte. Dejó así un legado ambiguo, 
puesto que muchos de sus tesoros solo fueron apreciados por los 
historiadores. En ese sentido su influencia resultó mucho menos 
acusada de lo que merecían la calidad y la cantidad de sus descu­
brimientos. Durante décadas acumuló innovaciones sobre óptica 
y retuvo su publicación porque las consideraba meros pasos in­
termedios hacia el objetivo que se había fijado: el diseño de un te­
lescopio que produjera imágenes perfectas. Su nivel de exigencia 
ante lo que consideraba una obra acabada hizo que muchos de sus 
resultados solo se dieran a conocer póstumamente, cuando ya se 
habían convertido en mercancía vieja que otros habían explotado. 

En cualquiera de sus tratados brilla un talento singular. Fue 
un investigador de imaginación fértil, capaz de idear estrategias 
originales para abordar los fenómenos que lo intrigaban. Su estilo 
cautivaba incluso a quienes no estaban de acuerdo con él. Otros 
pudieron redescubrir las mismas leyes o reproducir sus hallazgos 
astronómicos; sus teorías y sus inventos quizá amarillearon con el 
paso del tiempo; pero sus creaciones conservan intacto su atrac­
tivo. Son clásicos donde sigue vibrando toda la elegancia y la fuerza 
de su pensamiento. Con herramientas matemáticas al alcance de 
cualquiera, interpretó la naturaleza como si fuera un instrumento 
musical al que solo él sabía arrancar ciertas notas. 
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1629 Christiaan Huygens nace el 14 de 1666 Se instala en París para dirigir la Real 
abril en La Haya Es el segundo hijo Academia de Ciencias francesa, recién 
del poeta y diplomático Constantijn fundada por Luis XIV. 
Huygens y Suzanna van Baerle. 

1673 Publica el Horologium oscillatorium, 
1645 Cursa estudios de derecho y que contiene una completa descripción 

matemáticas en la Universidad de su reloj de péndulo. Diseña relojes 
de Leiden. regulados por la compresión y 

expansión de un muelle, invento 
1647 Prosigue su formación como cuya prioridad le disputa el científico 

diplomático en el Collegium Auriacun1 inglés Robert Hooke. 
de Breda. 

1676 Inicia sus estudios sobre la naturaleza 
1652 Deduce las leyes que rigen las de la luz, que culminarán en el famoso 

colisiones elásticas. Inicia sus estudios principio que lleva su nombre. Con él 
sobre óptica geométrica, que motivarán logra justificar la doble refracción de 
numerosas mejoras en el telescopio, un cristal de una variedad de calcita, 
como el ocular de Huygens, el el espato de Islandia. 
micrómetro o el diafragma. 

1681 Regresa a La Haya. 
1655 En marzo descubre el primer satélite 

de Saturno, Titán, y meses más tarde 1689 Viaja a Londres y se encuentra con 
deduce la estructura del anillo. Isaac Newton. En sus últimos años 

escribe el Cosmotheoros, donde 
1657 Publica el primer libro sobre explora la posibilidad de vida en 

probabilidad, inspirado en la otros planetas. Discute con el 
correspondencia entre Fermat y Pascal. filósofo alemán Gottfried Leibniz 

sobre la relevancia del cálculo 
1659 Publica el Systema Saturnium, en el infinitesimal. 

que recoge sus hallazgos astronómicos 
y realiza una asombrosa estimación 1690 Publica el Traité de la lumiere, obra 
sobre el tan1año relativo de los planetas en la que expone su visión sobre la luz. 
y las dimensiones del sistema solar. Esta obra servirá de base para la teoría 
En el curso de su investigación sobre ondulatoria desarrollada por Thomas 
el reloj de péndulo, descubre la Young y Augustin Fresnel. 
tautocronía de la cicloide. También 
establece el movimiento de un cuerpo 1695 Muere en La Haya, el 9 de julio, 
bajo la acción de una fuerza centripeta. a la edad de sesenta y seis años. 
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CAPÍTULO 1 

La geometría de la luz 

La luz fue la gran obsesión científica 
de Huygens, que se inició con su estudio 

de la óptica geométrica. Sus avances en este 
campo le permitieron determinar matemáticamente el 
comportamiento de los rayos luminosos al atravesar 

cualquier juego de lentes, un conocimiento que 
aplicó a perfeccionar el telescopio. Culminó 

este paso de lo teórico a lo práctico con 
el mayor descubrimiento astronómico 

desde Galileo: Titán. 





Hay familias que se consagran a perfeccionar un oficio y lo trans­
miten de padres a hijos con la misma perseverancia que su ape­
llido. En la Europa del siglo xvn, el nombre de Huygens evocaba 
de inmediato el ejercicio de la diplomacia. Lo llevaron con 
orgullo embajadores, secretarios y consejeros al servicio de la 
República de las Provincias Unidas, que había partido en dos los 
Países Bajos tras declarar su independencia frente al dominio es­
pañol. El padre de Christiaan recibió el nombre de Constantijn 
para celebrar la constancia de los habitantes de Breda durante la 
toma de la ciudad en 1581. 

La fe calvinista decretaba la salvación o la condenación del 
alma desde el instante mismo del nacimiento. El pequeño Cons­
tantijn tuvo que asumir que además lo predestinaran a servir a un 
estado que necesitaba de hombres excepcionales para sobrevivir. 
Su padre, secretario de Guillermo de Orange, lo sometió a una 
educación tan esmerada como implacable, de la que el niño solo 
salió bien parado gracias a que era un superdotado. Interpretó 
a la perfección el papel de cortesano renacentista que le habían 
asignado, capaz de orquestar alianzas políticas y tratados comer­
ciales al tiempo que componía un madrigal o asesoraba con tino 
sobre la compra de una obra de arte. 

Constantijn frecuentó las principales cortes europeas, con la 
inevitable excepción española. De joven tocó el laúd para el rey de 
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Inglaterra. Fue secretario de dos príncipes de la casa de Orange, 
Federico Enrique y Guillermo II. Los ingleses lo nombraron lord 
y los franceses, caballero de la Orden de San Miguel. Sus retratos 
cuelgan en las paredes de la National Gallery de Londres o del 
Rijksmuseum de Árnsterdan1. Descartes fue un huésped habitual 
de su casa en La Haya y, nada más conocerlo, se asombró de «que 
una sola mente se ocupara de tantos asuntos y se desenvolviera 
tan bien en todos ellos». Incluso los menos entusiastas de la polí­
tica holandesa pueden agradecerle que favoreciera la carrera del 
joven Rembrandt con encargos oficiales. También supo poner sus 
talentos al servicio de sí mismo, y de su verdadera pasión, la lite­
ratura, que cultivó a salto de mata y en siete idiomas. Al final de su 
vida había compuesto cerca de 80 000 poemas, una autobiografía 
y un diario exhaustivo, que le ganaron un sitio de honor en las 
letras holandesas. 

Cuando le llegó el turno de educar a sus hijos, Constantijn 
intentó aplicarles la misma plantilla que había conformado su 
propio carácter, para hacer de ellos funcionarios de una élite al 
servicio del estatúder. 

BAJO EL SIGNO DE SATURNO 

Christiaan Huygens nació el 14 de abril de 1629, la madrugada de 
un sábado. Para los holandeses ,no era el día del sabbat sino el día 
de Saturno, un claro aviso para navegantes, puesto que el anillo 
del planeta coronaría su gloria científica. Días antes del parto, la 
madre, Suzanna van Baerle, tuvo una corazonada. Tras cruzarse 
en la calle con un chico de rostro deforme, se convenció de que 
daría a luz a un monstruo. La fortuna le quiso llevar la contraria y 
Christiaan vino al mundo sin taras. Suzanna fue una mujer de gran 
cultura, talento para la pintura e ingenio, que sabía burlarse con 
sutileza de los barrocos poemas que le dedicaba su marido. Gran 
parte de su vida se vio asediada por la mala salud y unas migrañas 
demoledoras, que formaron parte de la herencia genética que legó 
a su hijo Christiaan. Como tantas mujeres, se jugó la vida en cada 
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embarazo. Los partos la dejaban postrada en la cama días o sema­
nas enteras. Alumbró cuatro hijos varones. El quinto fue una niña 
y esta vez, después de debatirse dos meses contra la intermiten­
cia de las fiebres, Suzanna sucumbió a una infección. El pequeño 
Christiaan tenía entonces ocho años y durante mucho tiempo se 
negó a abandonar la falda de luto. 

Huygens se crió con el fragor de las campañas contra los es­
pañoles de fondo. Su padre trabajaba para Federico Enrique, un 
príncipe aquejado de una severa adicción a la estrategia militar, 
que pasaba más tiempo en el campo de batalla que en su resi­
dencia oficial. Aunque sus obligaciones lo mantuvieron alejado 
de sus hijos, Constantijn se preocupó de diseñar y supervisar con 
cuidado su programa de estudios. Los dos mayores, Constantijn y 
Christiaan, compartieron tutores y también aunaron fuerzas para 
aliarse contra ellos. El profesor de latín, Henrick Bruno, daba fe 
de esta rebeldía: 

No se aplican a ninguna de las tareas que les encomiendo, me desa­
fían con descaro y hacen lo que les da la gana. Bruno no existe, no 
es más que aire . 

Así que a veces, cuando Constantijn dejaba el frente español 
tranquilo, corría para apaciguar el que se le acababa de abrir en 
casa. A pesar de que el padre fomentaba una competencia mode­
rada entre los hermanos, ambos mantuvieron una relación muy 
afectuosa a lo largo de su vida. 

Constantijn registró con rigor notarial el desarrollo de sus 
hijos, en su diario. Contempló los primeros pasos de Christiaan con 
reparos. El niño tartamudeaba, memorizaba mal, tendía a ladear 
la cabeza y le gustaba hablar solo. A partir de los ocho años, sin 
embargo, tuvo que rectificar el tono de las anotaciones para reflejar 
una progresión meteórica. Acostumbrado a ejercer de cazatalentos 
para la corte, Constantijn se sintió en la obligación de ganar al joven 
prodigio a la causa de la poesía. A partir de los catorce años fue 
incapaz de arrancarle más versos latinos a Christiaan, ya fuera «me­
diante órdenes, promesas o reproches». Harto de recitar de memo­
ria a Virgilio, lo que el niño quería era que le enseñaran aritmética. 
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Sus primeros tutores fueron estudiantes de teología o aspirantes a 
poetas, que se sentían incómodos ante su obsesión por los modelos 
mecánicos. Uno de ellos advertía así al padre del peligro: 

Christiaan [ ... ] vuelve a enredar con juguetes que él mismo se fabrica, 
con pequeñas construcciones y máquinas. Demuestran gran ingenio, 
sin duda, pero están totalmente fuera de lugar. Señor, no querrá que 
su hijo se convierta en un artesano. La República, que ha depositado 
tan altas esperanzas en él desde su nacimiento, confía en que siga el 
ejemplo de su padre y se dedique a los negocios. 

El niño planteaba pocos problemas cuando lo dejaban tran­
quilo, pero ofrecía una resistencia adamantina cuando lo obligaban 

EL HEREDERO DE ARQUÍMEDES 

Simon Stevin (1548-1620) era incapaz de observar una obra cualquiera salida 
de la mano del hombre sin obsesionarse con el modo de perfeccionar su di­
seño, ya se tratara de un molino, una bomba de agua, una esclusa o la brida 
de un caba llo. Este hijo ilegítimo de Brujas supo auparse a pulso y a base de 
talento desde la cuna más humilde hasta la corte de los Orange, donde su 
pericia como contable e ingeniero militar le ganaron el aprecio del príncipe 
Mauricio. Su espíritu inquieto bebió con frecuencia de la obra de Arquíme­
des, que logró trascender. Descubrió la paradoja hidrostática: la presión que 
ejerce un líquido es independiente de la forma del recipiente y depende solo 
de la altura que alcance. Su tratado De Thiende («La décima») extendió en 
toda Europa el uso de las fracciones decimales. Polígrafo incansable, produjo 
obras de trigonometría, aritmética, geometría, perspectiva, música, política, 
agrimensura y náutica. También determinó el mejor modo de erigir fortifica­
ciones o de organizar un campamento militar. 

El análisis del equilibrio 
Entre sus invenciones, la que más celebraron sus contemporáneos fue un ve­
hículo terrestre a vela,_que dejaba atrás a cualquier caballo a galope tendido. 
Él prefería su análisis del equilibrio de los cuerpos en un plano inclinado. Con­
cibió un argumento ingenioso mediante una sarta de esferas iguales dispuesta 
en torno a una doble cuña. Las masas tenían que alcanzar el equ ilibrio, ya que 
de lo contrario la sarta rodaría sin detenerse jamás, poniendo en marcha una 
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a malgastar su inteligencia en cosas que no le interesaban. Cuando 
cumplió quince años el padre tiró la toalla y decidió alimentar 
el fuego en lugar de sofocarlo. Contrató a un tutor especial, Jan 
Stampioen, un hombre que se había ganado una reputación como 
profesor y como matemático: había dado clases al hijo del prín­
cipe Federico Enrique y había desafiado en público a Descartes 
con un problema de geometría, desdeñando después la solución 
que le presentara. Diseñó para Christiaan un amplio programa de 
lecturas que repasaba las obras de Ptolomeo, Copérnico, Stevin, 
Brahe, Kepler y el mismo Descartes. Además de poner al joven 
al día en materia científica, le aconsejó que, en la medida de lo 
posible, tratara de llegar siempre a sus propias conclusiones en 
lugar de asimilar las de los demás. Una ardua recomendación que 

máquina de movimiento perpetuo. 
Puesto que el número de esferas 
es proporcional a la longitud de 
las rampas, también ha de serlo la 
masa total que se apoya en cada 
una de ellas. Así concluyó que dos 
cuerpos unidos por una cuerda, 
sobre rampas asimétricas, se halla­
rán en equilibrio cuando sus pesos 
sean proporcionales a la longitud 
de los planos. Se sospecha que Ga­
lileo nunca dejó caer dos esferas 
-una de madera de roble y otra de 
plomo- desde lo alto de la Torre 
de Pisa. La leyenda sería un refrito 
del experimento que llevó a cabo 
Stevin, encaramado a una torre de 
la iglesia de Delft. Para refutar la 
tesis aristotélica de que la veloci­
dad de caída de los cuerpos resulta 
proporcional a su peso, soltó dos 
esferas de plomo, una diez veces 
más pesada que la otra, que toca­
ron el suelo casi al mismo tiempo. 

DE 

BEGHINSELEN 
DER WEEGHCONST 

BES C HREVEN DVER 
SIMON STEVIN 

van Brugghc. 

ToT L • YD • ,,, 
Jode Oruckcrye van Chrilliollcl Pb.o<ijn, 

By fnD'°Y' nn Raphcliagf,cn. 
el:.. b, uitna. 

La cadena de esferas ilustró la cubierta del 
tratado De Beghinselen der Weeghconst 
( «Principios en el arte de pesar»). 
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Huygens siguió al pie de la letra. Constantijn respetaba las inquie­
tudes científicas de su hijo, pero no se apartó un milímetro de su 
propósito de hacer de él un perfecto cortesano. Antes de acudir 
a la universidad, sabía retórica, esgrima, tocar el laúd, la viola de 
gamba y el clavecín, montar a caballo, cazar, cantar, bailar, pati­
nar sobre hielo y pintar. Además de su lengua materna dominaba 
el griego, el latín, el italiano y el francés. Y lo que es más impor­
tante, era diestro en el arte de la conversación y sabía conducirse 
como un aristócrata. 

EL MATEMÁTICO FRUSTRADO 

El florecimiento de la física y las matemáticas en Holanda estuvo 
estrechamente ligado a la ingeniería militar. En la misma propor­
ción en que el desarrollo de la ciencia escamaba a las autoridades 
eclesiásticas, seducía a los nobles protestantes. Los pioneros en 
el arte de la mecánica, como Simon Stevin, fueron expertos en 
la construcción de fortificaciones. Seguían la estela de Leonardo 
o de Galileo, que llamaban a la puerta de príncipes y mecenas 
para venderles las ventajas militares de sus ingenios. En el año 
1600 el estatúder Mauricio, hermano mayor de Federico Enrique, 
encomendó a Stevin la fundación de una escuela de ingeniería en 
Leiden. Resulta significativo que se estableciera en un convento 
que había desalojado la reforma protestante. Stevin convirtió las 
matemáticas en la columna vertebral de su plan de estudios. 

A los dieciséis años, Christiaan viajó a Leiden para matricu­
larse en la universidad. Había alcanzado un nuevo compromiso 
entre sus intereses y los de su padre: cada día atendería a dos 
clases de jurisprudencia por una de matemáticas. En esta última 
asignatura tuvo como maestro a Frans van Schooten (1615-1660). 
Más recreador que creador, Van Schooten fue un hombre de un 
singular talento didáctico, que explicaba la ciencia de vanguardia 
mejor que sus creadores. Publicó obras de Viete y Fermat, que 
hasta entonces circulaban solo en versiones manuscritas. No se 
conformaba con componer los libros y enviarlos a la imprenta, 
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sino que enriquecía sus ediciones con comentarios y apéndices 
extensos, que cubrían lagunas de los autores y facilitaban la asi­
milación de las novedades. Van Schooten sentía debilidad por 
Descartes. No solo divulgó su obra, también su aspecto: fue el 
autor de uno de los escasos retratos auténticos que se conser­
van del filósofo. Como profesor, sirvió de punto de acreción de 
una productiva escuela f'ISica y matemática. Guiaba los proyectos 
de investigación de sus alumnos y a menudo publicaba sus obras 
como anexos de los libros que editaba. Uno de los más populares, 
Exercitationes mathematicae ( «Ejercicios de matemáticas»), se 
cerraba con De ratiociniis in ludo aleae ( «Del razonamiento en 
los juegos de azar»), un estudio sobre el cálculo de probabilidades 
de Huygens. El Exercitationes fue uno de los textos que Newton 
leyó durante su etapa de estudiante en Cambridge. 

Transcurridos dos años, Constantijn arrancó a Huygens de 
su edén matemático en Leiden para emplearlo como peón en el 
tablero de ajedrez donde se estaba jugando su carrera política. La 
muerte de Federico Enrique había entregado el poder a su hijo 
Guillermo y la corte mudaba con la savia de una generación nueva. 
Para granjearse la simpatía del joven estatúder, Constantijn envió 
a sus tres hijos mayores al Collegium Auriacum de Breda, cuyo 
rector, André Rivet, había sido tutor de Guillermo. Breda ofrecía 
un ambiente menos estimulante que Leiden, al menos desde un 
punto de vista científico, pero los hermanos Huygens tampoco se 
aburrieron. La costumbre de los alumnos de ir a clase armados 
desembocó en una pendencia entre el hermano pequeño, Lode­
wijk, y un estudiante borracho. Ante la llamada de atención del 
rector Constantijn los devolvió a casa indignado. 

En el plan trazado para Christiaan, la siguiente etapa consis­
tía en perfeccionar su instrucción jurídica, la piedra angular en la 
formación de cualquier diplomático. Él mismo advirtió a su her­
mano mayor de lo que se avecinaba: «Sospecho que nuestro padre 
pretende que nos dejemos caer por el despacho de abogados, pero 
confío en que la cosa no dure demasiado». Todo el entusiasmo que 
le faltaba lo ponía su padre a la hora de recomendarlo para su 
primera misión diplomática. En la hiperbólica carta de presenta­
ción que Constantijn dirigió a Enrique, conde de Nassau-Siegen, 

LA GEOMETRÍA DE LA LUZ 23 



la ciencia era casi una curiosidad entre los muchos talentos que 
adornaban al joven Christiaan. 

La retalu1a debió de causar la impresión buscada, porque en 
octubre de 1649 Christiaan acompañó al conde Enrique en su 
embajada al reino de Dinamarca que pretendía reducir el tributo 
que los barcos holandeses pagaban por atravesar el estrecho de 
Oresund. Cumplido su deber, el joven dejó atrás la corte en Flens­
burgo y visitó el castillo de Hamlet, en Elsinor. Quizá desde lo 
alto de una de sus torres entonó su particular ser o no ser, para 
protestar por la sombra que su padre proyectaba sobre su futuro. 
Desde la atalaya se avistaba la costa sueca, a solo 4 km de distan­
cia, y Christiaan acarició el proyecto de cruzar el estrecho para 
visitar a Descartes, que residía entonces en Estocolmo y daba 
clases particulares a la reina Cristina. El plan se vio frustrado 
por las tormentas. Quizá fuera psicosomático, pero al regreso de 
este primer contacto con su porvenir profesional, Huygens cayó 
enfermo. 

« Un muchacho versado no solo en leyes [ ... ], sino también en 
francés, latín, griego, hebreo, sirio y caldeo, que además destaca 
como matemático, músico y pintor.» 
- CARTA DE CONSTANTIJN PRESENTANDO A SU RJJO AL CONDE DE NASSAU- SIEGEN. 

24 

Ironías del destino, fue otra enfermedad inesperada la que 
vino a sacarlo del atolladero. La viruela casi se había convertido 
en un examen obligatorio para los europeos del siglo XVII, del 
que no se libraban ni los aristócratas. En el otoño de 1650, Gui­
llermo 11, que acababa de imponerse a sus adversarios políticos, 
era vencido por un virus. No llegó a conocer a su único hijo, que 
nació ocho días después de su muerte. Los partidarios de una ver­
dadera república trataron de aprovechar el período de regencia 
para desmontar lo que seguía siendo de facto una monarquía he­
reditaria. La lealtad de los Huygens a la Casa de Orange les cerró 
el acceso a los puestos oficiales. Se habían convertido en especia­
listas de una profesión que ya no podían ejercer. Para Constantijn 
supuso un duro golpe; para sus hijos, no tanto. El mayor disfrutó 
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FOTO SUPERIOR 
IZQUIERDA: 
Constantijn 
Huygensrodeado 
de sus hijos. La 
tradición pictórica 
situaba al 
primogénito a su 
derecha, lo que 
permite identificar 
a Christiaan a su 
izquierda. 

FOTO SUPERIOR 
DERECHA: 
Christiaan pintado 
por Bernard 
Vaillant en 1686 a 
partir de un dibujo 
de su hermana 
Suzanna. 

FOTOS INFERIORES: 
Frans van 
Schooten, 
profesor de 
Christiaan, 
y el retrato que 
el matemático 
realizó de 
Descartes. Al pie 
figura un texto 
de Constantijn. 
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de una tregua. Mientras el niño heredero crecía para convertirse 
en Guillermo III, al que serviría como secretario, aprovechó para 
beber, pintar y dilapidar su exquisita educación como don Juan. 
Christiaan obtuvo vía libre para dedicarse a la ciencia. 

PRIMERAS INVESTIGACIONES 

Gracias a Van Schooten, Huygens había ganado toda la compe­
tencia matemática que cabía adquirir antes de la invención del 
cálculo infinitesimal. Sus primeros logros se produjeron en el 
campo de la geometría, en ramas que hoy se contemplan como 
curiosidades pasadas de moda. Es el caso de las cuadraturas, una 
virguería geométrica que consiste en construir un cuadrado a par­
tir de otra figura cualquiera, de modo que ambas presenten áreas 
iguales. Las únicas herramientas que se permiten para su com­
posición son la regla y el compás, un requisito que desbarata al­
gunas cuadraturas, como la del círculo. Hasta que el matemático 
alemán Ferdinand von Lindemann demostró su imposibilidad en 
el siglo XIX, se malgastaron en el empeño ímprobos esfuerzos. A 
los veintidós años, Huygens localizó un error en uno de los in­
tentos más intrincados, obra de un jesuita flamenco, Gregorio 
de San Vicente. Huygens perfeccionó su propio método para ela­
borar cuadraturas, que aplicó a las secciones cónicas ( elipses, 
hipérbolas y parábolas). Mediante una cuadratura aproximada 
del círculo, mejoró el método de Arquímedes para calcular deci­
males den. 

Van Schooten celebró estos trabajos, convencido de que se 
podían situar sin desmerecimiento junto a las grandes obras de los 
griegos. Y tenía razón, pero las matemáticas del siglo XVII estaban 
experimentando un cambio de rumbo vertiginoso que apartaría 
su mirada del mundo clásico. Aunque los alardes de geometría 
de Huygens tendrían escasa repercusión en la historia de las ma­
temáticas, le granjearon la admiración de sus contemporáneos. 
Tan1bién le proporcionaron un juego de herramientas fiables con 
las que desmontar el mecanismo de la naturaleza. 
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Huygens compartía el gusto de Arquímedes por la mecánica, 
y en las páginas de ambos conviven los triángulos y los pesos, las 
parábolas y los centros de gravedad, de modo que cuesta precisar 
dónde acaba la física y comienzan las matemáticas, y viceversa. 
Existe una palabra holandesa que se diría acuñada ex profeso 
para él: vernufteling. Expresa la destreza a un tiempo de la mano 
y de la mente. Ya en su infancia había apuntado las obsesiones que 
lo perseguirían a lo largo de su vida: los mecanismos y la matemá­
tica. Huygens no fue artífice de grandes sistemas, como Descartes 
o Newton, era un cazador de fenómenos intrigantes, que abordaba 
con la actitud de quien destripa un aparato para descubrir sus en­
granajes. En lugar de llaves y destornilladores, Huygens se seIVÍa 
del álgebra y la geometría. Todas sus pasiones concurrieron en 
ciertos inventos, como los telescopios y los relojes, surgidos en un 
cruce casi mágico entre la artesanía, la física y las matemáticas. 

En Huygens se produce así una curiosa tensión entre la abs­
tracción pura y el pragmatismo del artesano, empeñados ambos 
en un mismo objetivo. Una excelente muestra de esta dualidad 
se puso de manifiesto muy pronto, en su trabajo sobre óptica. Su 
interés por las propiedades de las lentes lo embarcó, inadverti­
damente, en su mayor empresa científica. A ella se dedicaría con 
intermitencias a lo largo de toda su vida. Le condujo a una larga 
serie de innovaciones en el diseño de telescopios y a sorprenden­
tes hallazgos astronómicos, pero sobre todo desembocó en una 
de las indagaciones más profundas sobre la naturaleza de la luz. 
Se trata de una historia de final agridulce para Huygens, en un 
duelo desigual con Newton, pero el primer acto, que nos condu­
cirá hasta los confines del sistema solar, fue formidable. 

LOS LABERINTOS DE LA LUZ 

A-finales de octubre de 1652, Huygens confesaba a Van Schoo­
ten: «La dióptrica me absorbe por completo». Kepler había intro­
ducido el término «dióptrica» en 1611 para referirse al estudio 
matemático de la refracción - la desviación de la trayectoria de 
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la luz- al atravesar un juego de lentes. La 
teoría capaz de explicar de forma coherente 
todos los fenómenos asociados a la interac­
ción de la luz con la materia no cuajó hasta 
bien entrado el siglo xx. Sin embargo, para 
diseñar instrumentos ópticos basta con la 
aproximación de la óptica geométrica, que 
considera la luz compuesta por un haz de 
líneas rectas. A continuación vamos a re­
sumir en qué estado se hallaba la dióptrica 
antes de que Huygens se aplicase a su es­
tudio. 

La luz se refracta, o desvía, al cruzar la 
frontera entre dos medios materiales que 
permitan su paso. Una parte de la luz tam­
bién se refleja, un aspecto que aquí no ten­
dremos en cuenta y que limita sobre todo el 
número de lentes que se pueden incorporar 
en un sistema óptico. Cuantos más cristales 
se vea obligada a atravesar la luz, más se 
perderá por el camino, dando lugar a una 
imagen más mortecina. 

El fenómeno de la refracción se observa 
con facilidad en la materia transparente 
común, cuando los rayos de sol recorren di­
versas combinaciones de agua, aire o vidrio. 
El grado de la desviación depende de cada 
pareja de medios. Así, un rayo de luz se abre 
(~>a) al pasar del vidrio al aire (figura 1), 
y se cierra (~ < a) al pasar del aire al vidrio 
(figura 2). 

Cuando atraviesan un cuerpo transpa­
rente, los rayos luminosos deben cruzar dos 
veces la frontera. Experimentan por tanto 
una doble refracción: al entrar y al salir. Si 
las dos fronteras son planas y paralelas, la 
desviación se traduce en un desplazamiento 



d lateral de los rayos, como ocurre en el cristal de una ventana 
(figura 3). 

Si se deforma la frontera, su contorno «desordenará» los 
rayos de luz y los desviará en múltiples direcciones, en función 
del punto en que la hayan cruzado (figuras 4 y 5). 

Estas desviaciones se pueden organizar de acuerdo a una 
pauta determinada, de manera que produzcan una imagen. 

Para el análisis que sigue resulta cómodo asumir que los obje­
tos que nos rodean emiten luz visible. En cierto sentido lo hacen, 
aunque se trate de una emisión condicionada, que se produce 
como reacción a la luz que reciben ( del Sol o de una bombilla, por 
ejemplo). Los átomos que componen la materia interactúan con 
los fotones - partículas de luz- que llegan a su superficie y en el 
proceso desprenden nuevos fotones. La calidad de la luz así emi­
tida depende de dos factores: de cómo sea la luz que llega hasta 
la materia y de la estructura de la propia 
materia -qué átomos la forman y cómo se 
organizan en el espacio- . No es lo mismo 
iluminar una manzana con luz solar que con 
luz roja artificial; tampoco es lo mismo ilu­
minar la manzana que un cenicero de cristal 
o un espejo. Se puede situar bajo una lám­
para un libro o una naranja. Ambos reciben 
idéntica luz de la bombilla, pero interactúan 
con ella de manera diferente y nos enviarán 
rayos luminosos distintos. Estas discrepan­
cias proporcionan información sobre cómo 
son los objetos. A la hora de estudiar la for­
mación de imágenes, nuestro punto de par­
tida será la luz visible que desprenden los 
cuerpos. 

Es el caso del lápiz, con una mina azul, 
de la figura 6 (página siguiente). De cada 
punto de su superficie parten rayos lumino­
sos en muchas direcciones. La naturaleza 
de estos rayos contiene información sobre 
la forma y la composición del lápiz. Los que 
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escapan del extremo A han interactuado con la mina azul, que 
absorbe los colores verde y rojo. Los que surgen de C, han inte­
ractuado con una capa de pintura verde que absorbe el rojo y el 
azul. Por último, aquellos que llegan de B han interactuado con 
la pintura roja de la base, que absorbe el azul y el verde. Todos 
los puntos del lápiz han recibido rayos similares, pero de ellos 
emanan rayos distintos, cuya diversidad propaga la información 
sobre su aspecto. Esta información, en general, se pierde en el 
espacio. Si colocamos una pantalla L frente al lápiz, a cada punto 
de su superficie llegarán rayos luminosos procedentes de toda 
la superficie del lápiz. A K, por ejemplo, llegarán rayos azules, 
verdes y rojos, como a cualquier otro punto de la pantalla, K '. De 
modo que todos los puntos de L recibirán el mismo tipo de luz del 
lápiz: serán indistinguibles. No ofrecen información alguna sobre 
el aspecto del objeto. 

Si entre la pantalla y el lápiz colocamos una lente de vidrio (fi­
gura 7), se produce un cambio radical. Todos los rayos azules que 
parten delpuntoAytocan la lente convergen en otropunto,A', de 
la pantalla, que también será azul. Lo mismo sucede con los rayos 
rojos de B, que acabarán en un punto rojo B', y con cualquier otro 
punto de la superficie frontal del lápiz. Las diferencias de luz ya 
no se mezclan y confunden a lo largo y ancho de la pantalla. La 
lente lleva a cabo una separación selectiva de rayos, debido a la 
propia geometría de su contorno y a la refracción, que asigna a 
cada punto del lápiz un punto característico de la pantalla. Como 
resultado, en ella se proyectará una imagen invertida del lápiz, que 
conserva la información sobre su apariencia que había recogido 
la luz al interactuar con él. Esta transmisión de datos a través de la 
luz es lo que llan1amos «ver», puesto que nuestros ojos incluyen 
lentes que proyectan una imagen en las células fotosensibles 
de la retina. 

Si no interponemos una pantalla, una retina o una lámina de 
material fotosensible, los rayos se cruzan detrás de la lente en los 
puntos A', B', C', etc. y continúan su camino sin interferirse (figu­
ra 8). Por tanto, estos puntos se pueden considerar como genera­
dores de un patrón de rayos similar (invertido y a una escala 
diferente) al que abandonó la superficie del lápiz. 
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Por la misma razón, la imagen será nítida solo a una distancia 
determinada d de la lente, donde convergen los haces de rayos 
d ando lugar aA' , B' y C' . Allí es donde hemos colocado la panta­
lla en las figuras. Si la situamos un poco antes ( en d

1
) o un poco 

después ( en d2) todos los rayos que proceden de B, por ejemplo, 
no se cruzarán en el mismo punto, generando un solo B', sino que 
proyectarán un c írculo (figura 9). Cada punto original del lápiz 
producirá así una mancha luminosa. El resultado recuerda al 
efecto de in1primir en un papel absorbente, donde cada punto se 
desparrama. Al superponerse unos con otros, los círculos compo­
nen una imagen borrosa. 

Desde su fundación, el principal objetivo de la dióptrica fue 
establecer el tamaño de la imagen y la distancia a la que se genera 
con nitidez, en función de dónde se haya situado la fuente de los 
rayos. La clave para resolver la cuestión reside en la «distancia 
focal», que es la distancia a la que converge un haz de rayos para­
lelos tras incidir sobre la lente (figura 10). Seguramente se deter­
minó por primera vez de modo experimental, al prender un fuego 
concentrando los rayos solares con un vidrio curvado. El punto 
de convergencia recibe el nombre de «foco» y lo representaremos 
mediante la letraf 

La distancia focal es el atributo óptico más importante de las 
lentes y, de algún modo, mide su capacidad para desviar la luz. 

------
FIG.9 

d 

LA GEOMETRÍA DE LA LUZ 



Depende del material y también 
de su geometría, a saber, del grado 
de curvatura de sus fronteras, lo 
que incide también en su grosor. 
Cuanto más pronunciada sea la 
curvatura de la lente (y por tanto 
su espesor), menor será la distan­
cia focal, y viceversa. 

La distancia focal permite di­
vidir el espacio frente a una lente 

FIG.10 

Dis tancia foca l 

L ----------

en tres grandes regiones, que facilitan el estudio de cómo evolu­
cionan las imágenes en función de dónde se sitúe el objeto. La pri­
mera región se extiende desde dos veces la distancia focal hasta 
el infinito. La segunda región, desde la distancia focal hasta dos 
veces la distancia focal. La tercera, desde la lente hasta la distan­
cia focal. Estas tres regiones integran los dominios del objeto. 
Se pueden establecer tres regiones simétricas al otro lado de la 
lente (cuarta, quinta y sexta), que corresponden a los dominios 
de la imagen. Una vez delimitado el terreno de juego (figura 11), 
podemos comenzar la partida situando el lápiz azul en la primera 
región. La lente producirá una imagen más pequeña e invertida en 
la quinta. Cuanto más lejos se encuentre el lápiz, más cerca que­
dará la imagen def' . A medida que lo vayamos acercando, la ima-

FIG. 11 
2f f o f ' 2f' 

,, 
2' 3 ' 4' 5' 6 ' 

Dominios del objeto Dominios de la imagen 
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gen crecerá al mismo tiempo que se aproxima a 2f'. Los objetos 
situados en esta primera región producen imágenes útiles para las 
cámaras fotográficas, ya que a la hora de hacer fotos nos interesa 
«meter» un paisaje o el rostro de una persona en un rectángulo de 
unos pocos centímetros. 

Justo en el momento en el que el lápiz alcanza 2f, la lente 
forma una imagen invertida del mismo tamaño en 2f'. Si el lápiz 
prosigue su avance y se interna en la segunda región, dará lugar 
a una imagen aumentada e invertida en la sexta. Cuanto más 
se acerque el lápiz aj, mayor será la imagen y más lejos retro­
cederá, más allá de 2f '. Por esta razón, esta segunda región se 
aprovecha para proyectar imágenes, en una pantalla de cine por 
ejemplo. 

Cuando el lápiz alcanza!, la lente es incapaz de producir nin­
guna imagen. Los haces que tuerce no se organizan de acuerdo 
con ningún patrón útil. Una vez dentro de la tercera región, sin 
embargo, la lente pasa a desviar los rayos luminosos de una ma­
nera muy peculiar (figura 12). No produce una imagen real, que 
se pueda proyectar en una pantalla o en el interior de una cá­
mara. Los rayos se organizan de modo idéntico a como lo harían 
si procediesen de una versión mucho más grande del lápiz, que 
no se muestra invertida. Es lo que se conoce como una «imagen 
virtual». Este efecto se aprovecha en las lentes de aumento, que 
se colocan muy cerca de los objetos, para situarlos en la tercera 
región de la lupa. 

En torno a 1608 se descubrió por accidente que al combinar 
las desviaciones sucesivas de dos lentes se obterúan imágenes au­
mentadas de objetos remotos. Se acababa de inventar el telescopio. 
La figura 13 muestra un esquema de cómo se disponen los crista­
les para explotar las prestaciones ópticas de sus diversas regiones. 
Obviamente, los telescopios apuntan a objetos que se encuentran 
mucho más lejos que dos veces la distancia focal de su primera 
lente, el objetivo. Por tanto, este materializa una imagen más pe­
queña entre suf' (en la figura,f '

0
b) y su 2f'. Esta imagen se podría 

registrar en una cámara La misión del objetivo es «cazar» el objeto 
lejano y poner su imagen a tiro de la segunda lente, el ocular. Este 
trabaja como una lupa Se ubica de manera que la imagen generada 
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FIG. 12 

1 FIG. 13 

2f f 

Cuerpo 

Objetivo 
@ 

d > 2fob 

o 

Efecto 
cámara 

fotográfica 

o f' 2f' 

Imagen final 

Ocu lar d < foc 

por el objetivo caiga en su tercera región ( entre el ocular y su foco, 
f 0J, para crear, a partir de ella, una imagen virtual muy aumentada. 
En la figura 14 (página siguiente) se puede apreciar la trayectoria 
de los rayos. El objetivo genera los puntos A' y B', que caen en la 
tercera región del ocular. Este último genera una imagen virtual con 
puntos A" y B". 
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B" 
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B ---
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C) 

Círculo 

Parábola 

g~ 
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' Hipérbola ' 

Los objetivos suelen ser relativamente grandes. Cuanta 
mayor superficie presenten más luz recogerán, una condición in­
dispensable para definir objetos de los que nos llega muy poca 
luz, como sucede con las estrellas. El ocular ofrece un grosor y 
una curvatura mayores, para acortar la distancia focal, torcer con 
más fuerza la luz y proporcionar así un aumento superior. Aunque 
no lo hayamos especificado hasta ahora, hemos estado hablando 
siempre de un tipo de lente particular, la biconvexa. Pertenece a 
la fanülia de las lentes esféricas, con fronteras de sección circu­
lar, como las que se representan en la figura 15 (a es biconvexa, 
b, planoconvexa, e, planocóncava, d, bicóncava y e, concavocon­
vexa). También existen otras familias, con perfiles parabólicos (f) 
o hiperbólicos (g). 
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En la naturaleza, los rayos de luz no muestran un compor­
tamiento tan disciplinado como en los dibujos. Los telescopios 
nacieron aquejados de dos enfermedades ópticas, la aberración 
esférica y la aberración cromática, que comprometen la calidad 
de sus imágenes. Las lentes esféricas se comportan como lentes 
ideales solo con los rayos que las cruzan cerca de su centro, lo que 
reduce el campo de visión útil. 

LAS ABERRACIONES DE LA LUZ 

La aberración esférica obedece a 
que una lente esférica no dirige al 
mismo punto todos los rayos lumi­
nosos paralelos que inciden sobre 
su superficie, lo que produce imá­
genes borrosas. Para componer una 
imagen nítida, hay que combinar las 
desviaciones que introduce la re­
fracción con las que causa el perfil 
de la lente. Una frontera de vidrio 
circular solo hace converger a un 
mismo foco los rayos próximos a su 
centro. A medida que los rayos se 
alejan camino del borde, se inten­
sifica la divergencia. Para que una 
lente de vidrio produzca imágenes 
sin aberración esférica su frontera 
debe curvarse siguiendo contornos 
no circulares, como los de una elip-
se o una hipérbola, impracticables 
con las técnicas artesanales que se 
conocían en la época de Huygens. 
La naturaleza cuenta con recursos 
superiores y los trilobites, unos ar-
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Portada del Tratado de la luz de Huygens, 
obra que cont iene diseños de lentes que 
corrigen la aberración esférica. 

trópodos marinos ya extinguidos, incorporaban hace millones de años, en 
sus ojos, diseños como los que soñó Descartes. La aberración cromá t ica se 
debe a un motivo distinto. Al atravesar el vidrio de una lente, la luz blanca 
no se desvía en bloque, sino que se abre en un aban ico de colores, como 
hace al cruzar un prisma. Así, cada punto se desparrama, creando una ima­
gen borrosa. 
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HUYGENS ENTRA EN ESCENA 

La invención del telescopio no validó de manera automática la 
teoría de Copérnico, pero alteró de forma dramática los términos 
del debate entre los partidarios y los adversarios del heliocen­
trismo. El universo aristotélico se había construido a partir de 
lo que el ojo humano era capaz de distinguir a simple vista. Lo 
que caía fuera de su alcance se había completado con una sin­
gular mezcla de lógica e imaginación. La fascinación griega por 
las formas redondas había postulado la necesidad de una Luna y 
unos planetas de una esfericidad perfecta. Una de las objeciones 

LA LEY DE LA FRONTERA 

Ya en el año 984, el persa lbn 
Sahl había formulado la ley de la 
refracción en su Libro sobre los 
instrumentos incendiarios, pero 
ningún astrónomo occidental 
acusó recibo. En el siglo xv11 fue 
redescubierta un mínimo de tres 
veces. Thomas Harriot lo hizo en 
1601, pero no se molestó en pu­
blicarla . W illebrord Snell repit ió 
el hallazgo en 1620 y solo lo di­
vulgó entre un reducido círculo 
de afortunados, a través de su 
correspondencia. Descartes lle­
gó a las mismas conclus iones 
que sus predecesores a finales 

1 

CI 
D 

de la década de 1620. A la tercera fue la vencida y él sí publ icó la relación en 
uno de los apéndices del Discurso del método. Como vivió una larga tempo­
rada en Holanda, muchos compatriotas, Huygens entre ellos, se maliciaron 
que, en un descuido, el francés le había echado un ojo a alguna carta de Snell. 
No parece que la acusación sea justa. En cualquier caso, la ley se quedó con 
el nombre de Snell. Mucho an tes que todos el los, Pto lomeo había tabulado 
los ángulos que forma la luz al cruzar la frontera del agua. Observó cómo a 
medida que aumenta a, se incrementa ~. pero que la progresión no es lineal. 
Fue incapaz de dar con una fórmula matemática que al introducir el primer 
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al heliocentrismo argüía que si la Tierra debía perder su posición 
central en el universo, ¿por qué retenía ciertos privilegios, como 
ser el único planeta con satélite? A partir de 1610, Galileo reveló 
el verdadero rostro de la Luna, que la distancia ya no maquillaba, 
con sus cráteres y montañas, y las cuatro lunas de Júpiter. El te­
lescopio revelaba con crudeza un sistema solar que desmentía es­
peculaciones milenarias, basadas en la falta de información. 

Fascinado por la contundente exhibición de Galileo, Kepler 
se propuso perfeccionar el telescopio. Hasta entonces las mejoras 
en el instrumento se venían introduciendo por el procedimiento 
de ensayo y error. Kepler no confiaba en el azar. Quiso corregir los 

ángulo produjera automáticamente el segundo. En su Tratado sobre la luz, 
Huygens recurría al dibujo de la figura para deducir la ley de refracción. Ilustra 
un rayo de luz que atraviesa el aire desde A hasta O, donde toca la superficie 
horizontal de un bloque de vidrio. Su trayectoria recta forma un ángulo a 
con una imaginaria línea vertical que sirve de referencia. Al cruzar la frontera, 
el rayo se desvía y atraviesa el vidrio a lo largo de otra línea recta, bajo un 
ángulo menor, p, desde O hasta O. Para hallar la relación entre a y P basta 
con trazar un círculo de radio arbitrario r. El cociente entre la longitud de los 
segmentos AB y CD es constante para cualquier pareja de ángulos a y P y 
vale aproximadamente 1,52. 

~=A'B'=l52 
CD C'D' ' 

Este número cambia para otras parejas de medios. En el paso del aire al agua 
vale 1,33. La relación entre los segmentos se puede expresar en función de los 
ángulos utilizando la razón trigonométrica seno. En el diagrama de Huygens: 

Así, la ley de Snell queda: 

AB CD 
sen a=- y sen P=-. 

r r 

sen a= 152 
sen p ' · 

Esta igualdad proporciona el ángulo de salida para cualquier rayo incidente. 
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defectos de las lentes y descubrir sus configuraciones más venta­
josas a través de un estudio teórico, que además explicase su fun­
cionamiento. Por desgracia, le faltaba un recurso imprescindible 
para coronar con éxito la empresa. Hemos visto cómo la luz se 
desvía al pasar del aire al vidrio, pero ¿cuál es la relación exacta 
entre los ángulos de entrada y salida, a y~? La respuesta es una 
relación trigonométrica, la ley de Snell, que Kepler ignoraba en 
1610, cuando completó su tratado Dioptrice. 

«De entrada pulí mal la cara opuesta: fue debido a que apliqué 
demasiada agua al principio o no pulí donde debía. Logré 
corregirlo, hasta cierto punto, puliendo de nuevo en el lugar 
adecuado; después, al seguir puliéndolo, se volvió a estropear.» 
- DESCRIPCIÓN DE ÜUYGENS DEL PULIDO DE LENTES. 
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Los dibujos de la sección anterior ilustraban un análisis 
cualitativo de la formación de imágenes. Sucede lo mismo en 
los diagramas que Kepler insertó en su Dioptrice. Los rayos de 
luz se tuercen al cruzar las lentes, pero ¿exactamente cuánto? 
Kepler solo pudo responder con las desviaciones medidas de 
forma experimental. Este procedimiento recortaba su ambición 
de elaborar una teoría general, porque para explorar cada una de 
las posibilidades haría falta que un artesano puliera lentes con 
todas las curvaturas imaginables. Para obtener resultados gene­
rales y especular a su antojo sobre cualquier configuración de 
rayos y lentes necesitaba la relación matemática exacta entre los 
ángulos de la refracción. 

Aunque existen ciertas disputas al respecto, parece que Des­
cartes dedujo la relación de Snell de forma independiente a finales 
de la década de 1620. Llegó a una ley que equilibra en una ecua­
ción ángulos y rayos de luz, física y geometría, pero Descartes se 
decantó por su lado matemático. La aplicó en una serie de cálcu­
los elegantes, para confeccionar una teoría casi platónica de cómo 
debían ser las lentes ideales de los telescopios, con perfiles hiper­
bólicos y elípticos, que eliminaban la aberración esférica. Incluso 

LA GEOMETRÍA DE LA LUZ 



diseñó el torno que las produciría. Por desgracia, no hubo arte­
sano capaz de tallar los cristales que exigía su imaginación. Con 
la tecnología de la época, las únicas lentes viables eran esféricas. 

Huygens quiso hacer realidad el telescopio soñado por Des­
cartes, pero a partir de los cristales que los ~esanos sabían fa­
bricar. Fue el primero en aplicar la ley de Snell para calcular con 
exactitud la distancia focal y los aumentos de cualquier lente es­
férica y determinar el tamaño, la ubicación y la orientación de 
sus imágenes. Así pudo plasmar sobre el papel el resultado de 
cualquier configuración de dos o más lentes que se le ocurriera, 
sin necesidad de manipularlas físicamente. 

Conociendo la relación entre a y f3 para los cruces de fron­
tera entre el aire y el vidrio, y la geometría de las lentes, cum­
plió la ambición de Kepler de reducir la dióptrica a un problema 
matemático. Después de sentar las bases de una teoría general 
del telescopio, introdujo las primeras mejoras premeditadas en el 
instrumento. Para un objetivo cualquiera calculó la curvatura de 
un ocular cóncavo que, ubicado a una distancia determinada, co­
rregía por completo su aberración esférica (figura 16). Se trataba 
de un éxito parcial, porque este emparejamiento (un objetivo con­
vexo y un ocular cóncavo) correspondía a un telescopio terrestre, 
como el que utilizó Galileo. A partir de los cincuenta aumentos, 
estos telescopios ofrecen un campo visual tan reducido que se 
vuelven inservibles para la observación astronómica. 

Huygens completó en dos años el primer borrador de un tra­
tado donde organizaba, a lo largo de un centenar de páginas y en 

FIG.16 
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una secuencia de proposiciones, su interpretación matemática 
de la dióptrica. Se pasaría el resto de su vida puliendo el manus­
crito, como si se tratara de una lente a la que siempre encontraba 
defectos. Después de escribir la contribución más completa a la 
teoría de las lentes desde Kepler - y de aparcarla en un cajón 
de su escritorio-, consideró que había llegado el momento de 
pasar a la acción. Si no había quedado satisfecho con la teoría 
de Kepler y Descartes, menos le convenció la calidad de los ins­
trumentos ópticos que pudo adquirir en el mercado. Las lentes 
que salían de los talleres se destinaban a lupas y gafas y distaban 
de cumplir las exigencias que demandaba la incipiente tecnolo­
gía de los telescopios. Con la ayuda de su hermano Constantijn, 
en 1654 Huygens emprendió la tarea de pulir sus propios objeti­
vos y oculares. No se había propuesto una empresa sencilla. En 
primer lugar, tuvo que lidiar con el secretismo de un gremio par­
ticularmente opaco. Una técnica novedosa permitía destacar a 
un artesano sobre los demás, así que el mejor modo de mantener 
una posición privilegiada era no compartir los descubrimientos. 
Algunos se los llevaron a la tumba. Fue el caso del célebre fa­
bricante de telescopios francés Philippe-Claude Lebas. Ningún 
ruego fue capaz de arrancar a la viuda el secreto de su depurada 
técnica para pulir lentes. 

A grandes rasgos, en la época de Huygens se partía de un 
trozo de vidrio cuajado en un molde. En esta etapa preliminar ya 
se introducían los primeros defectos ópticos. Las impurezas de 
hierro coloreaban el vidrio; las burbujas y la densidad irregular 
del material distorsionaban las imágenes. A la pieza se le daba 
forma de lente con ayuda de un tomo, frotándola con polvos o 
sustancias abrasivas. El modelado en bruto suponía el proceso 
más trabajoso; el de pulido, el más delicado. Aunque Christiaan 
diseñó un tomo especial para facilitar la tarea, con el tiempo fue 
dejando el grueso del trabajo en manos de los artesanos y se re­
servó el pulido final de los objetivos. 

El contacto directo con las lentes y el trabajo en el taller aña­
dió una nueva dimensión a su comprensión de la dióptrica. La 
práctica a veces produce resultados que uno no ha sabido leer en 
la teoría. Entre ellos destaca una combinación particularmente 
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EL FILÓSOFO ARTESANO 

Para Bertrand Russell, Baruch Spino­
za (1632-1677) fue «e l más noble y 
el más amable de los grandes filóso­
fos». Lejos de compartir esta opinión, 
la comunidad judía de Ámsterdam lo 
expulsó de su seno en el verano de 
1656, para castigar «sus actos y opi­
niones perversas». Spinoza, que dos 
años después de la muerte de su pa­
dre había rehusado hacerse cargo 
del negocio familiar -una empresa 
dedicada a la importación y expor­
tación-, se vio entonces abocado a 
una situación delicada. Sus etéreas 
incursiones en la ética o la teología 
necesitaban con urgencia de algún 
medio mundano para sostenerse. 
Halló el que mejor se acomodaba a 
su carácter en el tranquilo, paciente 
y solitario oficio del pulidor de len­
tes. Esta elección también procuró su 
muerte, ya que la inhalación del pol­
vo de cristal agravó sus problemas 
respiratorios. En la primavera de 1663 
se instaló en la villa de Voorburg, en 
la casa del pintor Daniel Tydeman, a Retrato de Spinoza realizado por Franz 

un paseo de cinco minutos de Hof- Wulthagen en 1664. 

w ijck, la casa de campo de los Huy-
gens. En aquella época, Christiaan y 
Spinoza se vieron con frecuencia, discutieron sobre óptica y astronomía y 
compartieron el placer de criticar a Descartes. Huygens tenía en alta estima la 
habilidad manual de Spinoza, pero sentía poco aprecio por su filosofía. Quizá 
se pueda discu lpar recordando el comentario de Leibniz de que Huygens «no 
mostraba gusto alguno por la metafísica». Por su parte, Spinoza admiraba 
la ciencia de Huygens, aunque mostraba ciertos reparos hacia su técnica de 
pulido: «Huygens ha estado y sigue estando absorto en el pulido de cristales 
dióptricos, y con ese motivo ha montado una máquina, bastante precisa, por 
cierto, con la que puede fabricar lentes ayudándose de un torno. No sé toda­
vía qué pretende hacer con ella y, si he de ser sincero, tampoco me interesa 
demasiado. La experiencia me ha enseñado a pulir lentes esféricas a mano 
con más seguridad y perfección que ninguna máquina». 
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feliz de lentes: el «ocular de Huygens» (figura 17). Lo integran dos 
lentes, que se sincronizan para dilatar el campo visual y reducir 
tanto las aberraciones como las manchas producidas por las bur­
bujas o las irregularidades del vidrio. 

En marzo de 1655, después de más de un año de esfuerzos, 
Constantijn y Christiaan completaron el montaje de su primer 
telescopio, que medía 4 m de largo y proporcionaba 43 aumen­
tos. Huygens lo estrenó en el desván de la casa familiar. Al caer 
la noche abrió las contraventanas de madera, acomodó el teles­
copio contra algún soporte (una escalera de mano, quizá) y lo 
apuntó al cielo. En el siglo xvn los astrónomos no tenían que huir 
de las ciudades, ya que no existía la contaminación lumínica. Las 
calles de La Haya carecían entonces de farolas , faros de coches o 
neones que se interpusieran entre Huygens y el universo. 

Christiaan contempló primero el cuerpo celeste más inme­
diato, la Luna. Espoleado por las hazañas de Galileo, pronto es­
crutó las inmediaciones de Marte y Venus, a la caza de nuevos 
satélites. El primer boceto que se conserva de Saturno, salido de 
su mano, lleva la fecha del 25 de marzo de 1655. Esa misma noche 
advirtió la presencia de un punto brillante en la vecindad del pla­
neta. Noche tras noche siguió su evolución. Pasados dieciséis días 
el punto había regresado a su posición inicial: se trataba de un 
satélite que había completado una órbita alrededor de Saturno. 
La suerte había jugado en favor de Huygens, porque hizo las ob­
servaciones en un momento en que el anillo estaba a punto de 
ocultarse, de modo que su brillo no apantallaba el entorno del 
planeta con un exceso de luz. 

), 
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Las ocho primeras lunas de Saturno se descubrieron en mo­
mentos análogos, en lo que se conoce como cruce del plano del 
anillo. Entonces el disco se muestra de canto y su amplia superfi­
cie no refleja la luz del Sol hacia la Tierra. Los cruces son breves y 
hay que aguardar unos catorce años a que se repitan. Sin embargo, 
no cabe atribuir todo el mérito a la suerte. Otros astrónomos ha­
bían localizado el mismo punto luminoso junto a Saturno cuando 
Huygens era un adolescente, pero lo habían tomado por una es­
trella. Huygens siguió con tenacidad su trayectoria en tomo al 
planeta (registró hasta 68 ciclos a lo largo de cuatro años) para 
fijar con precisión la duración de su período. Más tarde recibiría 
el nombre de Titán. El joven Christiaan había estrenado su tele­
scopio con el mayor descubrimiento astronómico desde Galileo. 

En junio divulgó entre un escogido círculo de corresponsa­
les un verso de los Fastos de Ovidio, con varias letras añadidas: 
Admovere oculis distantia sidera nostris vvmmvv ccc rr hnbqx 
( «Acercaron a nuestros ojos las estrellas remotas»). Quien supiera 
reordenar las letras, obtendría una frase menos poética, pero no 
menos sugerente: Saturno luna sua circunducitur diebus sex­
decim horis quatuor ( «La luna de Saturno gira a su alrededor en 
dieciséis días y cuatro horas»). Huygens no comunicó la solución 
a su juego de palabras hasta casi un año después. 

A principios de julio, tuvo que interrumpir sus observaciones 
para atender los requerimientos de su padre. Constantijn quería 
que se presentara en la Universidad de Angers para que se hiciera 
con el título de doctor utriusque juris, es decir, de «doctor en 
ambos derechos» ( el civil y el canónico). Se trataba de un mero 
trámite. Huygens no tendría que malgastar más horas memori­
zando gruesos tratados de jurisprudencia, el diploma lo había 
comprado Constantijn al módico precio de 50 florines. 

El joven aprovechó la excursión para disfrutar de una estan­
cia de cuatro meses en París. La primera impresión que se llevó 
de la ciudad no figura en el catálogo de ninguna agencia de viajes. 
Al poco de instalarse, escribía a su hermano mayor: 

Todavía no he tenido tiempo de visitar ni a poetas ni a músicos, me 
he limitado a vagar con mis compañeros por las calles. Están llenas 
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EL PLANETA ENCUBIERTO 

Christiaan Huygens nunca llamó Titán a la luna de Saturno que había des­
cubierto. Fue el astrónomo inglés John Herschel (1792-1871) quien le dio su 
nombre definitivo. Titán supo estar a la altura del enigmático planeta que 
orbitaba. La obsesión antropocéntrica por la búsqueda de la vida consideró 
durante mucho tiempo los satélites como astros de segunda. La revelación de 
que Titán era el cuerpo del sistema solar con la atmósfera más densa después 
de la Tierra excitó la imaginación de los astrónomos. Alguno llegó a calificarlo 
de planeta enmascarado. Los escritores de ciencia ficción se atrevieron a 
materializar las fantasías de los científicos. Isaac Asimov, Robert A. Heinlein, 
Philip K. Dick, Kurt Vonnegut, Arthur C. Clarke o Stanislaw Lem poblaron la 
mayor luna de Saturno de robots y de un abigarrado bestiario de alienígenas. 
La realidad que nos transmitieron las sondas espaciales resultó más prosaica, 
pero no menos fascinante. Con la Tierra, Titán es el único cuerpo del sistema 
solar con masas líquidas estables sobre su superficie. Posee lagos y valles flu­
viales, en los que no circula el agua, sino hidrocarburos líquidos. El metano y el 
etano cambian de estado, se evaporan, se condensan en nubes y se precipitan 
en lluvias. Después de siete años de singladura espacial , un vehículo robot del 
tamaño de una lavadora, llamado Huygens, se separó de la sonda Cassini el 
día de Navidad de 2004. El 14 de enero se convertía en el ingenio humano que 
se posaba más lejos de nuestro planeta, al aterrizar en Titán. 

Mapa de Titán compuesto con imágenes tomadas por la nave espacial Cassini, de la NASA, en el 
año 2009. 
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de barro y apestan de un modo horroroso, ya que la gente vuelca sus 
orinales por las ventanas, sin más que avisar: «¡Agua va!» [ .. . ] Cuen­
to con una habitación para mí solo, alfombrada casi de arriba abajo. 
En el ático hay ratas y ratones, que con frecuencia vienen a visitarme. 
Y también tengo chinches, que me incordian durante la noche, así 
que llevo la frente y las manos cubiertas de picaduras. 

En una visita al castillo de Fontainebleau disfrutó lanzándo­
les migas de pan a las obesas carpas. Para distraerse del asedio 
nocturno de las chinches, su mente daba vueltas a un enigma que 
mantenía en jaque a los mejores astrónomos de Europa. 
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CAPÍTULO 2 

El enigma de Saturno 

Saturno dio origen a uno de los 
rompecabezas más desconcertantes del nuevo 

cosmos que progresivamente iba revelando el telescopio. 
Desde que en 1612 Galileo planteó el problema de las 

múltiples apariencias del planeta, la cuestión mantuvo 
en jaque a los astrónomos. Fue un joven Huygens 

quien, cuatro décadas después, ofreció una 
solución tan sencilla y elegante 

como inesperada. 





Al final, no todo fueron ratas, chinches y sobresaltos en las ca­
llejuelas de París. Huygens terminó encontrando a los músicos y 
poetas que buscaba. Así resumió los motivos que le habían ofre­
cido sus acompañantes -entre los que figuraban su hermano pe­
queño Lodewijk y su primo Louis Doublet- para visitar la capital 
del reino de Francia: 

Uno declaró que había venido para aprender a comportarse en la 
buena sociedad; otro, para que le presentaran celebridades; un ter­
cero, en can1bio, se interesaba por los edificios elegantes y la última 
moda, y lo único que pretendía un cuarto era estar lejos de su casa. 
Después de mucho discutir, y de hacerlo acaloradamente, se decidió 
casi por unanimidad que, para todo lo que se gana estando aquí, no 
merece la pena reconer una distancia tan larga. 

El tono de la carta era humorístico y por eso no alegó un 
quinto motivo que compensaba con creces las molestias de un 
viaje de cerca de 500 km. Huygens aterrizó en el París del Grand 
Siecle en plena moda de los salones. Al tiempo que florecían las 
veladas literarias de Madame de Maintenon o Mademoiselle de 
Scudéry, la ciencia inspiraba sus propios cenáculos. Gracias a la 
intercesión de Constantijn, Christiaan fue introducido en los cír­
culos de Claude Mylon y Habert de Montmor, que se convertirían 
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en el germen de instituciones científicas mejor organizadas y con 
más recursos, como la Real Academia de Ciencias francesa. En la 
Biblioteca Real, al abrigo de casi 20 000 volúmenes, Huygens tuvo 
ocasión de alternar con el poeta Jean Chapelain, los astrónomos 
Adrien Auzout e Ismael Boulliau o Gilles de Roberval. Una cons­
telación de mentes inquietas que se daban unos a otros el trata­
núento que consideraban más noble: el de matemáticos. 

No hace falta ningún gurú para concluir que el secreto de 
una próspera vida profesional es una buena agenda. Este dogma 
contemporáneo se hacía más cierto todavía en la comunidad 
científica del siglo xvn, cuando no existían revistas especializa­
das y la principal fuente de información era la correspondencia. 
Las relaciones personales adquirían entonces un valor incalcu­
lable. Permitían estar al día de los últimos descubrimientos y 
de las investigaciones en curso. Con frecuencia, los grandes tra­
tados pasaban a limpio páginas que antes se habían entregado 
a la posta y habían recorrido media Europa a lomos de los ca­
ballos. En el interéan1bio entre sabios se corregían los errores, 
se compartían problemas y se sometían a prueba las ideas. Los 
encabezamientos y despedidas de estas cartas refieren infinidad 
de noticias, detallan envíos de obras para el destinatario o sus 
conocidos o solicitudes de libros que no se pueden adquirir de 
otro modo. Uno de los mejores ejemplos de la correspondencia 
como taller o work in progress se encuentra en las cartas que 
cruzaron Blaise Pascal y Pierre de Fermat. Compusieron a cuatro 
manos las bases del moderno cálculo de probabilidades, en una 
colaboración que tuvo su origen en el desafío a Pascal de Antaine 
Gombaud, que se había armado a sí mismo caballero de la Mere. 
Huygens tuvo conocimiento de él, casi con seguridad, durante 
su primera estancia en París. Su carácter, que lo atraía como un 
imán a los problemas (científicos), lo empeñó en su solución. 
Huygens redescubrió por su cuenta muchos resultados de Pascal 
y Fermat, añadiendo sus propias aportaciones y presentándolas 
conforme a su particular gusto y temperamento en Del razona­
miento en los juegos de azar. 

Constantijn abrió a su hijo todas las puertas que franquea la 
llave de la diplomacia. Si bien Huygens explotó a fondo su red de 
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EL FALSO CABALLERO Y EL JANSENISTA 

El matemático francés Siméon Denis Pois­
son (1781-1840) situaba el origen del cá l­
culo de probabilidades en «un problema 
relativo a los juegos de azar, propuesto 
por un hombre de mundo a un austero 
jansenista». Esta pintoresca alianza alum­
bró una de las ramas de la matemática 
más pegadas a la tierra. El hombre de 
mundo era el caballero de Méré (más un 
apodo que un título, puesto que Antoine 
Gombaud era de origen noble pero no ca­
ballero). El austero jansenista respondía al 
nombre de Blaise Pascal. ¿y el problema? 
Ha pasado a la historia como «el proble-
ma de los puntos». Se puede enunciar Retrato de Blaise Pascal. 

como sigue. Dos jugadores se enfrentan 
con las mismas probabilidades de ganar en un juego de azar. Antes de comen­
zar, aportan cantidades iguales de dinero, que se llevará el vencedor. Se acuerda 
que este sea el primero que gane un número determinado de partidas. En el 
caso de que un imprevisto obligue a interrumpir el juego, ¿qué procedimiento 
deben seguir los jugadores para repartirse el dinero del modo más justo? 

Huygens entra en la partida 
El caballero de Méré animó la investigación planteando más problemas relacio­
nados, igual que hicieron Pascal y Fermat, y cuantos tuvieron noticia del asun­
to. Entre ellos se contaba un joven Huygens. ¿cuál fue su aportación? Existe al 
respecto cierto debate. Nosotros aquí nos remitimos a sus propias palabras, 
tal como figuran en la carta a Van Schooten que encabeza Del razonamiento 
en los juegos de azar: «Es preciso declarar, por otra parte, con el fin de que 
nadie me atribuya el honor de la primera invención, que no me corresponde, 
que hace ya cierto t iempo que algunos de los más célebres matemáticos de 
toda Francia se han ocupado de este género de Cálculo. Pero estos sabios, 
aunque se pusieron a prueba proponiéndose muchas cuestiones difíciles de 
resolver, sin embargo han ocultado sus métodos. Por tanto, me he visto obli­
gado a examinar y profundizar yo mismo en toda esta materia [ ... ]». Huygens 
no postergó la publicación de la obra, como hizo en numerosas ocasiones, 
hasta perder el reconocimiento de la prioridad. Solo medió un año entre su 
estancia en París y la edición del libro, que envió a Van Schooten en mayo de 
1656. Durante más de medio siglo se mantuvo como el único texto publicado 
sobre el cálculo de probabilidades. Cubrió así un vacío en la literatura, entre 
las tentativas parciales de Carda no y Galileo y el gran Ars Conjectandi, «El arte 
de hacer conjeturas», de Jakob Bernoulli, que vio la luz póstumamente en 1713. 
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contactos, a cambio tenía mucho que ofrecer. En París su descu­
brimiento de Titán causó sensación. Cuando Jean Chapelain le 
urgió a que lo diera a la imprenta, Huygens no se atrevió a llevarle 
la contraria, pero le reconcomía un escrúpulo que lo perseguiría a 
lo largo de su carrera científica: la convicción de que el trabajo no 
estaba terminado. ¿Qué tratado sobre Saturno se podía considerar 
completo si no desvelaba el misterio que envolvía sus desconcer­
tantes apariciones? 

LOS TRES ROSTROS DE SATURNO 

El telescopio no solo ayudó a que se asentara un nuevo modelo 
cosmológico, introdujo también rompecabezas inesperados. El 
que planteó Saturno resistió el ataque de los astrónomos más bri­
llantes durante casi medio siglo. 

La publicación en marzo de 1610 del revolucionario Sidereus 
nuncius («El mensajero de las estrellas») no frenó la racha de 
descubrimientos de Galileo. Cuando Kepler recibió en agosto del 
mismo año otra carta suya, que contenía un anagrama, Smais­
mrmilmepoetaleumibunenugttaviras, no pudo resistir la cu­
riosidad y aplicó todas sus energías a descifrarlo. ¿Qué nuevo 
prodigio habría hallado en el cielo? Galileo se había convertido 
en un cazador de satélites y Kepler había elaborado una teoría 
que atribuía dos a Marte. Reordenó una y otra vez las letras hasta 
que obtuvo una frase con sentido: Salve umbistineum gemina­
tum Martia proles («Salve, ardientes gemelos, hijos de Marte»). 
¿Galileo había localizado las dos lunas marcianas que buscaba 
Kepler? En realidad, el astrónomo alemán había hecho un poco 
de trampa y había dado la vuelta a una de las consonantes, la ene, 
para transformarla en la vocal que le faltaba, una u. La verdadera 
solución al anagrama era: Altissimum planetam tergeminum 
observavi ( «He visto al planeta más alto [Saturno] formado por 
tres cuerpos»). Saturno era el planeta menos brillante, el más 
alejado de cuantos se pueden percibir a ojo desnudo. Galileo se 
mostró menos reservado con Cosme II, Gran Duque de la Tos-
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cana, Y, en lugar de impacientarlo con mensajes codificados, le 
explicó llanamente lo que había visto: 

He descubierto otro prodigio de lo más singular, [ ... ] la estrella de 
Saturno no es una estrella simple, se compone de tres, que casi se 
tocan[ ... ], siendo la del centro tres veces más grande que las latera­
les, disponiéndose en la forma: oüo. 

Galileo confiaba en que el aspecto de los tres cuerpos celes­
tes variase con el curso de los días, puesto que los dos satélites 
tendrían que desplazarse en su órbita alrededor de Saturno. Para 
su asombro, mantuvieron una terca inmovilidad. En una nueva 
carta a Kepler, los caracterizó como «dos criados de este anciano 
[Saturno], que vigilan cada uno de sus pasos y nunca se apartan 
de su lado». Kepler concibió otra explicación para esta enigmática 
parálisis. No eran satélites, en realidad el planeta constaba de tres 
partes: «No tomaré a Saturno por un anciano, ni a las esferas que 
lo acompañan por sus esclavos; más bien, atribuiré esta forma tri­
corpórea a Gerión». Gerión era uno de los adversarios mitológicos 
a los que se enfrentó Hércules con ocasión de sus doce trabajos, 
un gigante monstruoso de tres cuerpos. 

En vista de que la disposición del sistema no se inmutaba, la 
atención de Galileo se desvió al estudio de las manchas solares. 
Saturno aprovechó el despiste para ejecutar su primera mutación. 
Cuando, en un respiro, Galileo volvió a ocuparse de él, le deparó 
una sorpresa mayúscula: 

También contemplé los tres cuerpos de Saturno este año [1612], en 
tomo al solsticio de verano. Después de haberlo perdido de vista 
durante más de dos meses, confiado en su constancia, al observar­
lo de nuevo hace unos días, lo hallé solo, sin el apoyo de sus plane­
tas secundarios y, en suma, perfectamente redondo y tan claramen­
te definido como Júpiter. ¿Qué se puede decir de tan extraña 
metamorfosis? ¿Quizá las dos estrellas más pequeñas se han consu­
mido, como hacen las manchas solares? ¿Quizá se han dado a la 
fuga y se han desvanecido de pronto? ¿Quizá Saturno ha devorado 
a sus hijos? 

EL ENIGMA DE SATURNO 55 



56 

En cuanto el caprichoso comportamiento de Saturno trans­
cendió a la comunidad científica, surgieron por doquier infini­
dad de teorías para intentar esclarecerlo. Los primeros tanteos 
buscaron la respuesta en alguna configuración de satélites, 
puesto que en última instancia eran estos los elementos más fa-

LA CRIPTOGRAFÍA DE LOS ASTRÓNOMOS 

Entre los astrónomos del siglo xv11 se extendió una práctica curiosa para garan­
tizar la prioridad sobre cualquier descubrimiento que todavía no considerasen 
maduro para su publicación. Lo resumían en una frase, alterando el orden de 
las letras hasta velar su significado, y la insertaban en una carta que hacían 
llegar a varios colegas de prestigio. El sistema funcionaba como un registro 
de la propiedad intelectual. Si las expectativas no resultaban fundadas, el 
rompecabezas se dejaba en su críptico limbo. En caso de confirmarse, sin 
embargo, se revelaba la solución, y la fecha de la carta original servía de re­
ferencia para fijar atribuciones. Galileo, un virtuoso de los juegos de palabras, 
construía anagramas. Es decir, tanto la frase en clave como su solución tenían 
sentido. Por ejemplo, en septiembre de 1610 incluyó en una carta a Kepler la 
siguiente línea: Haec immatura a me iam frustra leguntur o. y. («Leo en vano 
estas cosas, todavía inmaduras»). Al reordenar las letras se obtenía: Cynthiae 
figuras aemulatur mater amorum («La madre de Amor imita las figuras de 
Cinthia»). Cintia era un epíteto para referirse a la diosa de la Luna, que había 
nacido en el monte Cinto. La madre de Amor era Venus. Es decir: Venus pre­
sentaba fases, igual que la Luna. Conseguir dos enunciados con sentido resul­
taba laborioso. Huygens admiraba a Galileo pero nunca se entregó al juego 
de corazón. Para encriptar su descubrimiento de Titán recurrió a una cita de 
Ovidio, pero añadiendo las letras que le faltaban. En su siguiente anagrama se 
limitó a presentar una lista alfabética de las letras que componían el mensaje. 

Errores afortunados 
Kepler estaba dotado de un sexto sentido a la hora de malinterpretar los acertijos 
de Galileo. Ya hemos visto cómo creyó entender que había avistado dos satélites 
en torno a Marte. Aunque Galileo quería decir otra cosa, el planeta contaba, en 
efecto, con dos lunas, Fobos y Deimos, que no se encontraron hasta dos siglos 
después, en 1877. En el anagrama donde Galileo cifraba las fases de Venus, Kepler 
interpretó este mensaje: Macula rufa in Jove est gyratur mathem, etc. Es decir: 
«Hay una mancha roja en Júpiter que gira matem(áticamente)». Kepler amañó un 
poco la solución, porque añadió algunas letras que le faltaban y descartó otras. 
De todos modos tampoco acertó esta vez, lo que no quita que, en su error, tu­
viera razón de nuevo. La gran mancha roja de Júpiter no se observó hasta 1665. 

•-n-
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miliares que los astrónomos podían situar en el cielo. Pero si se 
trataba de satélites, ¿qué peculiar dinámica los mantenía inmó­
viles durante meses para, sin previo aviso, ocultarlos? Daba la 
impresión de que Saturno pretendía embaucarlos con un truco 
de feria celeste. 

• 7 

ea quam clixi annali inclinatione , omncs mirai>ilcs Saturni 
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annulurn 

Página del Systema Saturnium, donde Huygens resuelve el anagrama sobre 
el anillo del planeta. 
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Dos dibujos de 
Saturno según 

Galileo (arriba) 
y según Divini. 

58 

En el verano de 1616 Galileo enfocó de nuevo su telescopio 
hacia el planeta más distante, para comprobar cómo progresaba 
el ciclo de tres cuerpos a uno solo. No divisó ni una cosa ni la 
otra. Saturno presentaba ahora dos «asas» laterales, como un 
trofeo que alguien hubiera alzado hasta el firmamento. El esbozo 
en el que reflejó sus observaciones parece sugerir que había re­
suelto el misterio y que había dibujado un anillo. Una impresión 
que desmiente la detallada descripción que hizo al cardenal Fe­
derico Borromeo: 

[Los dos acompañantes de Saturno) ya no son dos esferas perfectas 
como antes, sino dos cuerpos mucho más grandes, que ya no son 
redondos, como se aprecia en la figura adjunta, es decir, dos medias 
elipses con dos pequeños triángulos oscuros en mitad de las figuras, 
que tocan la esfera central de Saturno, que se observa, como siempre, 
perfectamente redonda. 

A lo largo de su vida Galileo recurrió a diversas expresiones 
para referirse a lo que había visto, como por ejemplo «mitras», 
pero siempre aludían a un par de apéndices. Observaciones pos­
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teriores, con telescopios mejores, 
parecían proporcionar, de nuevo, 
una respuesta evidente. Tómese 
como ejemplo el grabado que eje­
cutó el fabricante de telescopios 
italiano Eustachio Divini en 1649, 
en un momento en que la posición 
de Saturno exhibía con mayor cla­
ridad su anillo. 

Estos dibujos muestran que, 
a la hora de interpretar la infor­
mación que recogen nuestros sen­
tidos, el cerebro no se comporta 
como un juez imparcial. Las ex­
pectativas y los prejuicios juegan 
un papel determinante. Los astró­
nomos de las primeras décadas 



PISTAS FALSAS 

Saturno ostentaba el periodo or­
bital más largo conocido, de unos 
veintinueve años y medio. Después 
de que Galileo pusiera el problema 
encima de la mesa, se sucedieron 
varias décadas en las que los as­
trónomos ampliaron el registro 
de observaciones. Este proceso, 
impresc indible para apuntalar una 
hipótesis que se ajustara a los he­
chos, también introdujo pistas fal­
sas, por culpa de la calidad muy 
dispar de las lentes -que no es­
taban sujetas a ningún estándar y 
dependían de la habilidad de cada 
artesano- y por la propia sub­
jetividad de los observadores. El 
mismo Galileo ya advirtió que un 
telescopio podía mostrar una figura 
ovalada donde otro, de mayor re­
solución, revelaba las tres esferas. 
Algunas de las representaciones 
más imperfectas de Saturno conta­
ban con el marchamo de un astró­
nomo de prestigio, luego la tarea 
de cribarlas no era sencilla. 

Tres observaciones de Saturno: de arriba 
abajo, realizadas por Fontana (en 1638 
y 1645) y Gassendi (en 1634). 

del siglo XVII no veían un anillo alrededor de Saturno porque la 
escasa resolución de sus telescopios emborronaba la imagen y 
también porque nadie esperaba encontrar una figura semejante 
en el cielo. No existía ningún precedente astronómico. Nosotros 
sabemos que un disco rodea el ecuador de Saturno y, por tanto, en 
una imagen borrosa o en un bosquejo completamos las lagunas 
y «distinguimos» el anillo que esperamos ver. 
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Incluso reduciendo el problema a justificar las tres encama­
ciones de Saturno mejor establecidas -la de un cuerpo aislado, 
la de tres cuerpos independientes y la de un cuerpo central con 
dos asas-, nadie lograba concebir un conjunto de masas que, al 
desplazarse, las fuera produciendo sucesivamente. En 1658, un 
año antes de que Huygens publicara su Systema Saturnium, el 
científico y arquitecto Christopher Wren resumía con cierto desa­
liento el estado de la cuestión: 

Solo Saturno se aparta de la norma del resto de cuerpos celestes y 
exhibe fases tan contradictorias que todavía hoy no se sabe si es una 
esfera en contacto con otras dos más pequeñas o un esferoide que 
dispone de dos conspicuas cavidades o, si así se prefiere, dos man­
chas, o si representa alguna clase de recipiente con asas a los lados, 
o, en fin, si se trata de otra forma cualquiera. 

La primera hazaña de Huygens en relación con Saturno había 
sido descubrir algo nom1al en el más anómalo de los planetas: un 
satélite. ¿Sería capaz de desenredar la enervante paradoja de sus 
múltiples apariencias? En noviembre de 1655 salió de París de re­
greso a La Haya y se apresuró a reanudar sus observaciones astro­
nómicas. Por desgracia, las «asas» estaban a punto de desaparecer 
y pronto Saturno le ofreció su rostro más hermético: una esfera 
despojada. En una carta fechada el 8 de febrero de 1656, sin em­
bargo, presume de haber hallado la causa de todas las apariciones 
del planeta. Por tanto, resolvió el enigma a ciegas, en un momento 
en que el anillo no resultaba visible. Como ningún telescopio se lo 
podía mostrar, tuvo que recurrir a los ojos de la mente. 

LA SOLUCIÓN DEL MISTERIO 

A mediados de marzo de 1656 salía de la imprenta De Saturni luna 
observatio nova («Nuevas observaciones de una luna de Saturno»), 
que ya desde el título proclan1aba el descubrimiento de Titán. En 
este opúsculo de dos páginas Huygens predecía que las asas reapa-
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recerian en abril de ese mismo año. También anunciaba que había 
resuelto la paradoja de los tres rostros del planeta e invitaba al resto 
de científicos a presentar una explicación que pudiera rivalizar con 
la suya. En un nuevo anagrama escondía su propia solución: a a a 
a a a a c c c c c de e e e e g h i i i i i i i 1111 mm n n n n n n n n no 
o o o p p q r r s t t t t t u u u u u «para que en el caso de que alguien 
estime que encontró lo mismo que yo, tenga tiempo de darlo a cono­
cer y así no se pueda decir que se apropió de una idea mía, ni que yo 
me apropié de la suya». Su desafío, secundado por el espectacular 
anuncio de Titán, reavivó el interés por un rompecabezas que había 
dejado fuera de combate al mismísimo Galileo. 

«Hasta el momento Saturno engaña a los astrónomos o, más 
bien, se burla de ellos, ya sea por odio o por malicia.» 

- JOHANN GEORG LOCHER, ESTUDIANTE DE LA ACADEMIA JESUITA DE INGOLSTADT. 

A pesar de la expectación levantada, ningún astrónomo dio 
con la verdadera respuesta. Como en una vieja novela policial, 
después de escuchar las explicaciones insatisfactorias al misterio, 
llegó el turno de Huygens. Absorto en la constrncción del primer 
reloj de péndulo, se hizo de rogar hasta el verano de 1659, mo­
mento en el que publicó su Systema Saturnium. En él se ofrecía 
la solución al anagrama: Annulo cingitur, tenui, plano, nusquam 
cohaerente, ad eclipticam inclinato ( «Lo rodea un anillo plano y 
delgado, que no lo toca en ningún punto, inclinado respecto a la 
eclíptica»). La eclíptica es un punto de referencia astronómico 
que define el plano de la órbita terrestre. 

Ya en sus primeras observaciones de marzo de 1655 Huygens 
había recogido una pista crucial. Aunque entonces las asas apenas 
fueran visibles, no se acortaban a medida que se hacían más finas. 
Esto le hizo sospechar que la diferencia entre los tres cuerpos o 
las asas no se debía al desplazamiento de ninguna masa en tomo a 
Saturno. El grueso de su argumento se apoyaba en un paralelismo 
entre los sistemas Luna-Tierra y Titán-Saturno. 

La Tierra invierte un día en su movimiento de rotación, 
mientras que la Luna tarda veintinueve días en completar una 
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LAS RESPUESTAS AL DESAFIO 

El primero en recoger el guante arrojado por Huygens en De Saturni luna ob­
servatio nova fue el ilustre astrónomo polaco Johannes Hevelius. Propuso que 
el cuerpo de Saturno era un ovoide, al que se fijaban dos extensiones laterales 
en forma de luna creciente y luna menguante. El conjunto, de lado, ofrecía a la 
vista un contorno circular. Al rotar, tal como se muestra en la figura, se suce­
dían con facilidad las encarnaciones de la esfera aislada y el cuerpo con asas. 
¿Qué ocurría con las tres esferas que había distinguido Galileo? Según Hevelius 
se podían descartar como una mera ilusión: «Admitimos, por consiguiente, que 
aunque las esferas adyacentes a Saturno de hecho nos parezcan redondas, 
de todos modos no lo son en absoluto». Una paradoja que no convenció a 
quienes pasaban las horas de la noche con la mirada fija en el planeta y, por 
mucho que se frotaran los ojos, no dejaban de encontrar los viejos sirvientes 
de Saturno tan redondos como su amo. 

Tan lejos, tan cerca 
Otras teorías, como la del jesuita alemán Christoph Scheiner, lograban justificar 
la aparición de las tres esferas o de una solitaria, pero recurrían a argumentos 
bastante forzados para las asas. El matemático francés Gilles de Roberval 
concibió una de las teorías más ingeniosas. Para explicar la sorprendente 
plasticidad de Saturno recurrió a una materia más dúctil que la que compone 
los planetas y satélites. Del ecuador de Saturno surgirían chorros de vapor que 
solo resultaban visibles a medida que se iban espesando. En los momentos 
en los que una densa nube se concentraba en torno al ecuador, de lejos el 
conjunto adquiría el aspecto de un elipsoide. Al irse disipando las tinieblas en 
torno a la c in tura del planeta, se abrían los huecos que dibujaban el perfil de 
las asas. Entre esta sucesión de tanteos, el arquitecto inglés Christopher Wren 
casi dio en la diana. Propuso que una corona muy delgada, en forma de elipse, 
rodeaba a Saturno y lo cortaba en dos puntos del ecuador. 

vuelta alrededor de nuestro planeta. Huygens extrapoló esta di­
ferencia de tiempos y consideró que la rotación de Saturno en 
tomo a su eje también debía ser mucho más breve que el pe­
ríodo de su satélite. Si Titán tardaba dieciséis días en dar una 
vuelta alrededor de Saturno, este debía demorarse solo unas 
trece horas en girar sobre sí mismo. Cualquier porción de mate­
ria situada en el espacio entre el planeta y el satélite giraría en 
una órbita de período intermedio. 
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Por tanto, la masa que acompañaba a Saturno, al margen de 
qué forma adoptase, tenía que desplazarse a su alrededor en ciclos 
periódicos que durasen menos de dieciséis días. Sin embargo, el 
planeta tardaba mucho más en completar sus mutaciones cono­
cidas: unos catorce años. Huygens se convenció entonces de que 
si Saturno giraba como una peonza ante sus ojos cada noche, sin 
que fuera capaz de percibir ningún cambio en las asas, su masa 
debía de repartirse simétricamente alrededor del eje de rotación. 
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Resulta fácil detectar el giro de un cuerpo asimétrico, como la 
mano de una persona. Por contra, el contorno de una esfera o de 
un cilindro sin marcas en su superficie no ofrece ningún indicio 
sobre si gira o permanece inmóvil. 

Entre las figuras que presentan simetría rotacional, la que 
mejor cuadraba con la imagen borrosa de las asas era un anillo. 
Quedaba una dificultad por vencer. Si el anillo solo invertía unas 
horas en girar con un movimiento simétrico que los telescopios 
terrestres no detectaban, ¿a qué obedecían las mutaciones que se 
producían cada catorce años? La respuesta había que buscarla en 
la inclinación del anillo. 

El plano que contiene al anillo de Saturno forma un ángulo de 
26, 73° con el plano de su órbita (figura 1 ), un ángulo muy parecido 
al que forma el ecuador de la Tierra con su plano orbital (23,44°). 
Visto con lentes de diversa calidad y resolución, un simple anillo 
sesgado podía justificar la mayoría de las figuras que habían regis­
trado los astrónomos. 

Quedaba por explicar en qué orden se sucedían las figuras y 
la desaparición regular del anillo. El Sol ofrece una perspectiva 
privilegiada para hacerlo. Para nuestra estrella, Saturno muestra 
un comportamiento orbital similar a la Tierra, aunque describa 
una curva mucho más amplia. El eje de rotación de ambos plane-

------, 
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tas se inclina en un ángulo que se mantiene constante a lo largo 
de la trayectoria. 

Esto hace que, para un habitante del Sol, el eje a veces se 
muestre con el polo norte echado hacia tlelante; otras, hacia atrás, 
y otras, de costado (figura 2). La misma circunstancia motiva el 
paso de las estaciones terrestres. La inclinación del eje también 
depara a Saturno sus inviernos y veranos, primaveras y otoños. A 
causa de las diversas inclinaciones, los habitantes del Sol verían 
el anillo desde abajo en la posición C; lo observarían desde arriba 
en la posición A. En las posiciones By D, un anillo muy fino visto 
de canto resultaría invisible. 

Dada la enorme distancia que separa a Saturno del Sol y la 
Tierra, desde su punto de vista están prácticamente juntos. Por 
tanto, en líneas generales, lo que vale para un habitante del Sol 
vale también para uno terrestre. Con todo, la equivalencia no es 
completa. En primer lugar, como ya sabemos, el eje de rotación de 
la Tierra también está ladeado. Se puede considerar casi paralelo 
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FIG.3 

al de Saturno, así que apreciamos un grado de inclinación mucho 
menor. En segundo lugar, los planos que contienen las órbitas de 
la Tierra y de Saturno no coinciden, lo que nos sitúa a veces «por 
encima» de Saturno y otras, «por debajo» (figura 3). 

Todos estos efectos, sumados a la escasa resolución de los 
telescopios, dan cuenta de las mutaciones de Saturno. Huygens 
insertó al final del Systema Saturnium un diagrama que ilustra 
con maestría su hipótesis (se muestra en la página 67). Un miope 
podría ver las apariciones que faltan, como los tres cuerpos, las 
asas de Galileo o el huevo tumbado con manchas, contemplando 
los dibujos sin gafas. 

LA RESACA DEL TRIUNFO 

A pesar de que Huygens había desentrañado el enigma de las apa­
riciones de Saturno mediante una cadena de razonamientos, atri­
buyó su éxito a la superioridad técnica de su telescopio: 

En esta investigación solicitamos que se nos conceda que, puesto 
que fuimos los primeros en detectar con nuestros telescopios al com­
pañero de Saturno, y también en verlo con claridad siempre que así 
lo deseamos, nuestros telescopios se consideren superiores a los de 
aquellos que, a pesar de observar a Saturno a diario, fueron sin em­
bargo incapaces de dar con la estrella (Titán]; y que por la misma 
razón los resultados de nuestras observaciones acerca de la forma 
del planeta se juzguen más fidedignos, en todos los casos en que las 
diferentes apariencias fueron observadas por nosotros y por ellos. 
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FOTOS SUPERIORES 
IZQUIERDA, 
Diagrama del 
modelo de 
Christoph 
Scheiner, en su 
Tractatus de Tubo 
Optico (arriba), 
y maqueta del de 
Christopher Wren 
reproducida en 
su De Corpore 
Saturní. 

FOTO SUPERIOR 
DERECHA 
Grabado dedicado 
a Huygens. 

FOTO INFERIOR 
Esquema de 
Huygens que 
describe el ciclo 
completo de las 
apariciones de 
Saturno. Desde 
la perspectiva 
terrestre, el 
anillo a veces se 
observa desde 
arriba, otras, 
desde abajo. 
Entre medias, se 
muestra de canto, 
momento en el 
que c<desaparece». 
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Esta pretensión era manifiestamente falsa, por dos razones 
como mínimo. Para empezar, los astrónomos habían registrado 
la presencia de Titán cuando Huygens era un niño, aunque no re­
conocieran que se trataba de un satélite. Su acierto aquí no fue 
instrumental. En segundo lugar, por irónico que fuera, Huygens 
resolvió el problema en un momento en que los anillos no resul­
taban visibles y, por tanto, cuando su telescopio no interpretaba 
papel alguno. 

¿Por qué se marcó entonces el farol? La hipótesis del anillo 
descansaba en gran medida en los registros astronómicos acumu­
lados a lo largo de cuatro décadas. Huygens tuvo que descartar 
muchas de las observaciones, que atribuía con razón a la imper­
fección de las lentes ajenas. Sin embargo, las habían publicado 
astrónomos de renombre y con más experiencia que él. Trató de 
imponer la autoridad que necesitaba a través de la superioridad 
de su telescopio, que parecía avalar el descubrimiento de Titán. 
La estrategia no alcanzó el éxito esperado. Muchas de las suspica­
cias que despertó su hipótesis del anillo no respondían a motivos 
científicos sino al amor propio. Procedían de astrónomos y arte­
sanos cuyo prestigio y cuyo sustento dependían de la calidad de 
sus instrumentos. Fue el caso de Divini, considerado por muchos 
como el mejor fabricante de telescopios de Europa, y de Johan­
nes Hevelius. Divini puso en tela de juicio las observaciones de 
Huygens, atribuyéndolas a defectos ópticos. Llegó a comentar con 
soma que le hubiera ido mejor de haber comprado uno de sus ins­
trumentos. Hevelius reaccionó airado: «¿Acaso supone Huygens 
que yo, u otros, somos incapaces de distinguir entre lo esférico 
y lo elíptico, o que [lo que vi] fue una invención de mi mente ... o 
quizá que lo soñé? ¡No, por Hércules!». 

Huygens dio con la geometría correcta del anillo, pero no 
con su estructura. En su opinión se trataba de un disco sólido, 
continuo y de un grosor apreciable. ¿ Cómo si no podía arrojar una 
sombra sobre la superficie del planeta? Hasta el final de su vida le 
atribuyó una sección de casi 4 000 km. Cuando le plantearon cómo 
el canto de un aro de ese calibre podía desvanecerse bajo la ilumi­
nación directa del Sol, Huygens arguyó que estaba formado por un 
material absorbente que no reflejaba la luz. Christopher Wren, que 
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SUPERTELESCOPIOS 

Los grandes telescopios no cons­
tituyen una prerrogativa del siglo 
xx. Cuanto menos pronunciada sea 
la curvatura de una lente esférica, 
menos patente se hace la aberra­
ción cromática. Ya hemos visto que 
al rebajar la curvatura, los rayos de 
luz se desvían menos y más lejos 
cae el foco de la lente. Por esta ra­
zón, los fabricantes de telescopios 
enseguida trataron de consegu ir 
grandes distancias focales, lo que 
implicaba separar, en la medida de 
lo posible, el objetivo del ocular. Se 
inició así la carrera por montar te­
lescopios cada vez más largos. La 
resistencia y la manejabilidad de 
los tubos parecían, sin embargo, 

F 

" , 
1 l , 

imponer un límite. Si descansaban Diseño de uno de los «telescopios aéreos» 

en un solo apoyo, terminaban por de Huygens. 

doblarse o se partían con facilidad, 
y se mostraban extremadamente sensibles a los golpes de viento. Huygens 
cortó el nudo gordiano eliminando el tubo. En la imagen puede apreciarse el 
diseño de uno de sus «telescopios aéreos». El objetivo y el ocular se encajan 
en dos cilindros cortos de metal, unidos por una cuerda tensa. La altura del 
poste donde se sitúa el objetivo se podía ajustar tirando de una cuerda. La 
pieza que sostiene en alto la lente se mantiene estable mediante un contra­
peso. De noche, Huygens se servía de una linterna para localizar la posición 
del objetivo, buscando el reflejo de la luz en el cristal. 

había imaginado una teoría incorrecta, sí supo dar en cambio con 
la razón de su invisibilidad: el disco es tan delgado que «no ofrece 
grosor suficiente para que lo puedan apreciar los habitantes de la 
Tierra y por este motivo la corona [ el anillo] se puede considerar 
como una mera superficie». 

Siguiendo las huellas de su admirado Galileo, Huygens dedicó 
el Systema Saturnium a un distinguido miembro de la familia 
Médici, en su caso a Leopoldo, hijo de Cosme II. Lo último que 
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se podía esperar era que el príncipe italiano le diera la callada 
por respuesta. Un desaire que no obedeció a la falta de cortesía: 
Huygens acababa de ponerle en un brete. El Saturnium, como 
en su día el Sidereus, pertenecía a un género literario (el ensayo 
heliocéntrico) que levantaba escasas pasiones en el Vaticano. 
Leopoldo tenía su corte en Florencia, que caía mucho más cerca 
de Roma que el domicilio de Huygens en La Haya. Aunque la Igle­
sia no hubiera adoptado una postura oficial en contra del anillo, 
un jesuita influyente, Honoré Fabri, había desarrollado una so­
lución alternativa dentro de un marco geocéntrico. Contaba con 
la colaboración de Eustachio Divini, molesto con Huygens por 
haber cuestionado la supremacía de sus telescopios. Ambos re­
dactaron un tratado que enmendaba la plana al holandés desde la 
cubierta (se titulaba Brevis annotatio in Systema Saturnium) 
y que dedicaron a Leopoldo de Médici. Como cabía esperar, la 
teoria de Fabri ofrecía un perfil conservador y recurria a un juego 
de satélites. En su primera versión, cuatro lunas acompañaban a 
Saturno, dos pequeñas, opacas, y dos medianas, reflectan tes. No 
orbitaban en tomo al planeta, sino alrededor de puntos situados a 
su espalda. Para explicar las observaciones conocidas ejecutaban 
toda suerte de malabarismos orbitales que hubieran dejado sin 
aliento a Ptolomeo. En el proceso de superar algunas objeciones 
de Huygens, Fabri añadió dos satélites más. 

Así, Leopoldo se vio en un fuego cruzado de dedicatorias. 
La de Fabri acompañaba una teoría alambicada y geocéntrica, que 
defendía un respetable miembro de la Iglesia; la de Huygens ser­
vía de preámbulo a una sobria y sugestiva propuesta copemicana, 
que desprendía un sospechoso tufo calvinista, ya que procedía de 
Holanda. Si bien Huygens apelaba solo al rigor de sus observacio­
nes y razonamientos, los italianos desplegaron otras técnicas de 
persuasión: su teoria estaba de acuerdo con las Sagradas Escritu­
ras y con la doctrina de la Iglesia. En el texto de Fabri, además, se 
hacían veladas alusiones al proceso de Galileo. El principe salió 
del apuro sacando partido de su patrocinio de las ciencias. Para 
algo se había molestado en fundar una de las primeras sociedades 
científicas de Europa, la Accademia del Cimento. Dejó, pues, que 
fueran los expertos quienes se mancharan las manos. 
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Cumpliendo las órdenes de Leopoldo y haciendo honor a su 
propio nombre ( en italiano el verbo cimentare significa «poner a 
prueba»), la Accademia constituyó una comisión para examinar 
las dos alternativas. Construyeron una maqueta a escala de cada 
modelo, el de Huygens y el de Fabri, y los estudiaron desde largas 
distancias con telescopios de diversa resolución. Para no dejarse 
influir por ideas preconcebidas, encargaron a personas ajenas al 
experimento que describieran qué figuras observaban. El modelo 
de Fabri solo reflejó con acierto las apariciones solitaria y de tres 
cuerpos, dando lugar a configuraciones que no se apreciaban en el 
firmamento. El modelo de Huygens tropezó con un único escollo. 
Por más que untaron el borde exterior del anillo con una infinidad 
de sustancias absorbentes, se resistía a desaparecer cuando lo 
iluminaban con un falso Sol. Solo al hacer el disco muy fino se 
ocultaba a la vista, puesto de canto. Así, un sencillo modelo me­
cánico daba la razón a Wren. Precisamente porque la prueba se 
saldó a favor de Huygens, la Accademia del Cimento nunca hizo 
públicas sus conclusiones. 

«Un hombre que opine como Copérrúco, que esta Tierra 
nuestra es un planeta conducido alrededor del Sol y alumbrado 
por él como los demás, no podrá evitar que le asalte alguna vez 
la fantasía [ ... ] de que el resto de los planetas tienen su propio 

vestido y su mobiliario, incluso unos habitantes, 
al igual que esta Tierra nuestra.» 

- CHRISTIAAN liUYGENS. 

Con pequeños ajustes a su modelo, Huygens consiguió pre­
decir las siguientes mutaciones de Saturno con una exactitud sin 
precedentes. Hasta Fabri terminó reculando. Antes de hacerlo tuvo 
la generosidad de reconocer que después de leer el Systema Sa­
turnium le costaba no ver un anillo cada vez que observaba a Sa­
turno. Al ampliar el campo de las expectativas visuales, la obra de 
Huygens facilitó que la mente humana distinguiera por fin anillos 
en el firmamento. Divini fue menos receptivo y se negó a aceptar 
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el anillo hasta. que lo contempló con sus propios ojos, a través de 
un telescopio fabricado por su hermano. 

El Systema Saturnium se puede considerar como una digna 
continuación del Sidereus nuncius de Galileo. A pesar de lo que 
el título pudiera sugerir, no se circunscribe a Saturno. Huygens 
fue el primero en apreciar rasgos en la superficie de Marte. Al 
seguir el desplazamiento de la mancha de Syrtis Major-una ex­
tensa región de roca volcánica- , advirtió que el planeta. rotaba al~ 
rededor de un eje y pudo establecer la duración del día marciano. 
También aportó nuevas observaciones de Júpiter y de la nebulosa 
de Orión, donde distinguió tres de las estrellas que forman en su 
centro el cúmulo del Trapecio. Describió la nebulosa como «una 

HACIA UN TELESCOPIO MEJOR 

Dado que el objetivo proyecta una imagen en el interior del telescopio, esta 
se puede manipular antes de que la amplíe el ocular. Huygens aprovechó 
esta circunstancia para introducir dos importantes mejoras en el instrumento. 
Galileo ya se había percatado de que al tapar con un disco de papel el borde 
del objetivo (donde se acumulaban los defectos de manufactura y de la abe­
rración esférica) se obtenía una imagen menos luminosa, pero más definida. 
Dedujo las dimensiones óptimas del disco a base de pruebas. Huygens las 
calculó matemáticamente y, además, descubrió la ventaja de insertar el disco 
no en el objetivo directamente, sino en la imagen que genera. De esta forma 
también se corregía en parte la aberración cromática. 

El micrómetro 
En los primeros años de la década de 1640, el astrónomo aficionado William 
Gascoigne quedó perplejo ante un misterioso filamento que cruzaba el campo 
de visión de su telescopio. Se perfilaba con absoluta nitidez, pero al alzar la 
vista del ocular se desvanecía en el espacio que se abría delante de él. Una 
inspección más atenta reveló que una araña había tejido su tela justo en el 
plano donde el objetivo proyectaba la imagen. El ocular había aumentado 
hilo e imagen a la vez, fundiéndolos. A partir de este afortunado accidente, a 
Gascoigne se le ocurrió sustituir la tela de araña por un dispositivo con dos 
barras verticales, separadas por una d istancia graduable (véase la imagen). 
Con él podía realizar medidas sobre las imágenes que mostraba el telescopio. 
Acababa de inventar el micrómetro. Huygens concibió un mecanismo similar. 
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grieta en el cielo, que permite atisbar una región más luminosa 
en lo profundo». El Systema Saturnium también contiene una 
asombrosa estimación de las dimensiones del sistema solar. 

LA GRANDEZA DEL MUNDO 

El monumental trabajo astronómico de Copérnico y Kepler permi­
tió cartografiar con bastante exactitud los dominios del Sol y de 
los seis planetas entonces conocidos: Mercurio, Venus, la Tierra, 
Marte, Júpiter y Saturno. Las proporciones del mapa que trazaron 

Para hacerlo no necesitó el concurso de ninguna araña: le bastó su profundo 
conocimiento de la dióptrica. El m icrómetro convirtió el telescopio en un 
instrumento de precisión. Hasta entonces los astrónomos solo ofrecían esti­
maciones subjetivas sobre los tamaños de los cuerpos celestes y los valores 
variaban demasiado de un autor a otro. El micrómetro proporcionó un patrón. 
William Gascoigne murió en la batalla de Marston Moor, durante la guerra civil 
inglesa, antes de que pudiera divulgar su hallazgo. Fue la descripción que hizo 
Huygens de su micrómetro en el Systema Saturnium la que lo dio a conocer 
y lo incorporó a la práctica astronómica. 

Objetivo 

o 

Efecto 
cámara 

fotográfica 

Imagen 

Micrómetro 

Efecto 
lupa 

Ocular 
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eran correctas, pero no supieron definir la escala. Todas las longi­
tudes quedaban expresadas en función de una incógnita, la distan­
cia entre el Sol y la Tierra, que, según Huygens, los astrónomos no 
habían logrado despejar de un modo satisfactorio: 

[ ... ] a la hora de estimar la distancia entre la Tierra y el Sol difieren 
mucho unos de otros, lo que no es de extrañar, ya que todavía no se 
ha encontrado un método aceptable de medir dicha distancia. Ya 
traten de determinarla mediante eclipses o dicotomías de la Luna, 
resulta fácil demostrar que sus esfuerzos son en vano. 

¿Qué hacer entonces? Huygens ensayó un ataque oblicuo a 
la cuestión. Sirviéndose de su micrómetro, calculó el diámetro 
angular de los planetas. Esta magnitud corresponde al ángulo des­
parejado de un triángulo isósceles, cuyos lados iguales son las 
distancias desde el observador a los extremos del planeta. El ter­
cer lado lo forma su dián1etro. Con más sencillez, se puede definir 
como la apertura de una pinza imaginaria con la que el observador 
sujetara el cuerpo celeste (figura 4). 

Huygens comenzó con Saturno, para el que obtuvo un diá­
metro angular de 68". Consultando el mapa sin escalas del sis-

FIG.4 

l..------
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tema solar, comprobó que la distancia más corta entre Saturno 
y la Tierra equivalía a ocho veces la distancia media que nos 
separa del Sol. Dedujo entonces que si sacáramos a Saturno de 
su órbita y lo colocáramos junto al Sol lo veríamos ocho veces 
más grande. Este cambio de ubicación también multiplicaría 
por 8 el diámetro angular que había medido: 68" • 8 = 544" = 9' 4". 
Desde la Tierra, el diámetro angular del Sol es 30' 30". Con estos 
dos valores, uno real ( el del Sol) y otro ficticio ( el de Saturno 
desplazado), que corresponden a los ángulos que se medirían 
para la estrella y el planeta alejados a la misma distancia, pudo 
comparar sus tamaños: 

ª Sat = 9 
1
4

11 
= 9 . 60 11+ 4 11 = 544 11 

} ª Sat 544 11 11 
U Sol = 30 130 11 = 30 . 60 11+ 30 11 = 1830 11 a Sol = 1830 11 e 37 . 

Teniendo en cuenta que para ángulos pequeños y cuerpos si­
tuados a la misma distancia, la relación entre los diámetros linea­
les es la misma que entre los angulares, concluyó que el diámetro 
de Saturno era 11/37 veces el diámetro del Sol. En sus cálculos 
había incorporado el anillo; después de descontarlo la fracción se 
redujo a 5/37. Realizó las mismas operaciones con Venus, Marte 
y Júpiter: 

º Sol 1 

1 
D Venus -

84 

1 
D Marte 

-
166 

2 
D Júpiter 

-
11 

5 
O Saturno 

-
37 

No incluyó valores de Mercurio porque las condiciones de 
observación no se lo permitieron. 

Esta secuencia contradecía la creencia arraigada de que el 
volumen de los planetas crecía con la distancia al Sol y que, por 
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En el Systema 
Saturníum 

Huygens reflejó 
los tamaños 

relativos del Sol y 
los planetas en un 
gráfico innovador. 

76 

J'L 

tanto, Venus debía ser mayor que 
Mercurio; la Tierra, mayor que 
Venus, y así sucesivamente. De 
nuevo, se trata de tamaños re­
lativos, expresados en relación 
con el diámetro del Sol, cuyas 
dimensiones absolutas se ignora­
ban. Seguía faltando el factor de 
la escala. Huygens había llegado 
demasiado lejos ahora para de­
tenerse. El precio por continuar 
adelante fue recurrir a un razona­
miento algo caprichoso: 

Con el fin de conservar la armonía de 
todo el sistema en la medida de lo 
posible, parece que, después de todo, 

resulta de lo más razonable admitir que, puesto que la Tierra se en­
cuentra situada entre Marte y Venus en lo que respecta a las distan­
cias, también ocupe una posición intermedia con relación a los ta­
maños. Hemos dicho que el diámetro de Marte es 1/166 el diámetro 
del Sol, y que el de Venus, 1/84. Por tanto, si tomamos para el diáme­
tro de la Tieffa la media de estos dos diámetros, hallamos que co­
ffesponde a 1/111 el del Sol. 

1 
DMar = --DSol" 

166 
1 

Luego DTie = -DSo,. 
111 

1 1 
- +--

La media: 84 166 =" _l_ 
2 111 

Al recurrir a «la armonía de todo el sistema» estaba abando­
nando el terreno de la demostración científica, para perderse en 
una conjetura. Él mismo reconocía que a partir de aquí sus argu­
mentos descansaban «sobre una base resbaladiza». Apoyándose 
en ella obtuvo que el diámetro del Sol era 111 veces el de la Tierra. 
Se trata de una excelente aproximación. Según los cálculos actua-
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LA ESCALA DEL SISTEMA SOLAR 

Huygens había determinado los tamaños relativos de los planetas con respec­
to al Sol. Con la ecuación O soi = 111 · Or;c• que ligaba el diámetro de nuestra es­
trella con el diámetro de la Tierra, pudo transformarlos en tamaños absolutos. 
Para comprender por qué esta relación encerraba la clave para llevar a cabo 
la misma operación con las distancias, aplicamos el esquema del diámetro 
angular, que aparece en la página 74, a un observador terrestre que contempla 
al Sol. A partir de la imagen, vemos que una sencilla igualdad trigonométrica 
relaciona TS (la distancia de la Tierra al Sol) con a y con 0

501
. 

0 so1 
a - 2 D 

sen--~, TS= sol . 

2 TS 2sen(i) 

Introduciendo el valor a = 30' 30": TS = 113 · 0
50

,. Apelando a la armonía celeste, 
Huygens había logrado establecer que O soi = lll · One· Luego: 

TS = 113 · O = 113 · 111 · O . = 12 543 · O . . Sol T1e T1e 

Como el radio de la Tierra se había estimado con suficiente exactitud, esta 
última ecuación proporciona el factor de escala buscado para el mapa del 
sistema solar de Kepler y Copérnico: la distancia entre el Sol y la Tierra. 

Sol 

Osol 

2 

les la cifra correcta es 109. En los tiempos de Huygens se contaba 
ya con una medida bastante aceptable del diámetro terrestre. Este 
valor le permitió transformar todas las distancias y tamaños rela­
tivos en absolutos y fijar la escala, expandiendo el sistema solar 
hasta sus colosales dimensiones. 
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En sus cálculos intervino la suerte, equilibrando varios erro­
res que se cancelaron entre sí. La aberración cromática dispersa el 
contorno de los cuerpos celestes, dilatando su diámetro angular. 
Un exceso que se compensa al atribuir a la Tierra un tamaño más 
pequeño del que le corresponde, ya que es más grande que Marte 
y que Venus. Pero no deja de resultar impresionante lo certero del 
resultado. 

Huygens también se permitió algún tic medieval, como otros 
fundadores de la ciencia moderna. Kepler entrevió una suerte de 
muñeca rusa de figuras geométricas para el sistema solar, donde 
las órbitas de los planetas encajaban sucesivamente dentro de una 
esfera y de los cinco sólidos platónicos. Newton vivió entregado a 
extrañas obsesiones, como averiguar las proporciones del templo 
de Salomón. El Systema Saturnium contiene un vaticinio nume­
rológico algo desconcertante, que gira en tomo al número 6, un 
número perfecto, puesto que es igual a la suma de sus factores 
primos (6 = 3- 2- l; 6 = 3 + 2 + 1). Huygens pronosticó que ya no se 
descubrirían nuevos satélites, puesto que tenían que ajustarse a 
la misma regla de perfección que sus hem1anos mayores, los pla­
netas. De igual modo que existía media docena de planetas, seis 
debían ser las lunas. La Tierra aportaba la suya, Galileo había des­
cubierto cuatro satélites de Júpiter y Huygens había cerrado la 
cuenta con Titán. Cassini desbarataría esta armonía aritmética al 
señalar un séptimo satélite en el cielo, también de Saturno: Japeto. 

EL ANILLO SE ROMPE 

El principal obstáculo para el disco sólido que abanderaba 
Huygens es su estabilidad. La fuerza de la gravedad decrece de 
acuerdo con la inversa del cuadrado de la distancia entre masas 
( es proporcional a 1/r 2, siendo r la distancia). Imaginemos un pla­
neta P frente al que se alinean dos esferas iguales, a y b, separadas 
por una cierta distancia (figura 5). En este caso r 2 es mayor que r

1
, 

luego la atracción entre P y a será mayor que entre P y b y las dos 
masas tenderán a separarse. 
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Si las dos esferas formaran 
parte de la masa de un mismo 
cuerpo, esta asimetria de las fuer­
zas tenderia a deformarlo. La de­
pendencia de la gravedad con la 
inversa del cuadrado de la dis­
tancia (1/r 2) también hace que la 
diferencia de tensiones aumente a 
medida que un cuerpo se aproxima 
a un planeta. La intensidad de la 
fuerza es particularmente sensi­
ble a las variaciones de distancia 
cuando r es pequeño, como se ob­
serva en la figura 6. 

La curva representa valores 
de 1/r2• A la izquierda, cerca del 
origen, el cociente arroja valores 
grandes, que varian mucho de un 
punto a otro. Entre los extremos 
de la esfera a, llr 2 pasa de valer 
4 a valer l. Una diferencia de 3. 
A la derecha, lejos del origen, el 
cociente adquiere valores peque­
ños. Entre los extremos de b, se­
parados la misma distancia que los 
extremos de a, 1/r2 pasa de valer 
0,0178 a valer 0,0156. Una diferen­
cia de apenas 0,0022. 

Por tanto, aunque a y b ten­
gan el mismo tamaño, la variación 
en la intensidad de la fuerza que 
experimentan sus extremos da un 
salto considerable en el lado iz-

FIG. 5 

p 

r, 

a b 
o 

Po a b 
-o-o 

F1 F, 

FIG.6 

b 
o-

r28 ~ J~ -r~ ¡_ 

: -:-~1 .-L-1 1 

4 ~T 1 +L--1-1 
~--

3 r +--r- t -T--• !-

2 - -~ _1 --1 l-
1 

L----====-.... ---0-0-- , 
1 2 3 4 5 6 7 8 9 

• o 
a b 

quierdo de la gráfica, donde r es pequeño ( cuando la esfera está 
muy cerca del planeta), mientras que apenas se aprecia en el lado 
derecho (cuando la esfera está lejos). Por tanto, la esfera apenas 
«sentirá» la presencia de P mientras se mantenga alejada, pero 
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sufrirá una tensión disgregadora si se aproxima demasiado. Po­
demos visualizar el proceso en una secuencia en la que una esfera 
elástica se acerca al planeta P. A medida que se aproxima cede a 
tensiones cada vez mayores. La esfera se transforma primero en 
un huevo, que se estira y achata hasta que las fuerzas de cohesión 
pierden la partida y se rompe. 

La distancia a la que se produce la rotura de un cuerpo por las 
disensiones entre las fuerzas gravitatorias a las que se ve sometido 
se llama «límite de Roche». La principal resistencia a la deforma­
ción la presentan las fuerzas electromagnéticas que atraen entre 
sí las partículas que componen la masa del cuerpo (interaccio­
nes químicas). Su labor de cohesión resulta más efectiva cuanto 
menos voluminoso sea el cuerpo. Así, un astronauta o los satélites 
de comunicaciones que orbitan la Tierra caen dentro del límite de 
Roche, pero sus reducidas dimensiones los protegen de la frac­
tura. La gravedad, por tanto, levanta una frontera en torno a los 
planetas que impide la supervivencia de cuerpos de una cierta 
envergadura en sus inmediaciones. El radio de la órbita de los sa­
télites grandes, como la Luna, siempre supera el límite de Roche. 
Entre los planetas del sistema solar, Júpiter ostenta el título de 
máximo «cascanueces», como tienen ocasión de comprobar los 
cometas que se internan demasiado en sus dominios. 

Frente a fuentes gravitatorias extremadamente intensas, la 
deformación ni siquiera respeta a los objetos pequeños. Un agu­
jero negro puede suscitar tensiones tan desiguales entre los pies 
y la cabeza de una persona en su proximidad como para desinte­
grarla. Es lo que se conoce de manera inforn1al como «espague­
tización». 

Los anillos de Saturno están formados por un colosal enjam­
bre de polvo y fragmentos de hielo que orbitan a su alrededor a di­
versas velocidades, dibujando mil círculos concéntricos. El tirón 
gravitatorio de los grandes satélites abre zanjas y divisiones que 
le dan su aspecto de disco fonográfico. Las cuatro franjas princi­
pales, visibles desde la Tierra, se designan mediante las letras A, 
B, C y D (figura 7). Su orden alfabético refleja el de su descubri­
miento y también su disposición, desde el borde exterior hacia 
el centro. Las sondas espaciales aumentaron la jurisdicción de 
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FIG. 7 

Anillo A (14 600 km de ancho) 

Anillo B (25 600 km de ancho) 

Anillo O (7600 km de ancho) 

136780 km 

los anillos al localizar tres nuevas bandas, F, G y E, más amplias 
y difusas. Para ofrecer una idea de las dimensiones del sistema, 
podemos señalar que el borde externo de A se extiende hasta algo 
más de dos veces el radio de Satwno. La franja mayor, E, mide 
unas ocho veces el radio del planeta. 

Wren tenía razón, el disco es extremadamente fino, ape­
nas de 1 km de espesor, aunque se despliega a lo largo de una 
superficie que, si incluyera las regiones exteriores más tenues, 
cubriría la órbita de la Luna. Si se pudieran reducir las cuatro 
franjas principales al diámetro de un CD, su grosor correspon­
dería al de una membrana celular. Al margen de dónde proceda 
su masa ( de un satélite, de una sucesión de cometas capturados 
por la gravedad o de la materia primigenia del sistema solar que 
alimentó al resto de planetas), la razón última de su existencia 
hay que buscarla en el límite de Roche, puesto que la porción 
más densa cae dentro de sus fronteras. La figura 8 ( en la página 
siguiente) permite apreciar con claridad esta situación. Las dis­
tancias se miden a partir del centro de Saturno y cada unidad es 
un radio del planeta. 

La propuesta de que el anillo sólido en realidad estaba hecho 
añicos es casi tan antigua como la hipótesis de Huygens. Un año des-
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pués de que se imprimiera el Sys­
tema Saturnium ya la adelantó el 
poeta Jean Chapelain. En 1845, un 
joven estudiante de matemáticas 
de la Universidad de Cambridge, 
John Couch Adams, después de 
analizar ciertas irregularidades en 
la órbita de Urano, concluyó que 
se debían a las perturbaciones gra­
vitatorias inducidas por la masa de 
un planeta desconocido. Sus vatici­
nios fueron ignorados por George 
Airy, astrónomo real y director del 
observatorio de Greenwich. Airy 
estimaba los argumentos matemá­
ticos demasiado volátiles y se negó 
a orientar sus telescopios hacia 
las coordenadas señaladas por 
Adams. De modo que fue otro ma­

temático de mente volátil, el francés Urbain Le Verrier, quien se 
apuntó el tanto y figura en las enciclopedias como descubridor de 
Neptuno. 

Para conmemorar el ejercicio de clarividencia bien informada 
y olímpicamente despreciada de Adams, la Universidad de Cam­
bridge instauró un premio en su honor. En 1856 se propuso como 
problema desentrañar si el anillo de Saturno era sólido, fluido o 
se componía de «muchas piezas separadas de materia». El único 
que se mostró a la altura del desafío fue un joven James Clerk 
Maxwell. Todavía faltaban unos años para que revolucionara la 
termodinámica y el electromagnetismo, pero ya enseñó sus ga­
rras. Maxwell sometió al anillo a un asedio matemático de dos 
años, con armas mucho más sofisticadas que las que tenían a su 
alcance los científicos del siglo xvrr, gracias a un cálculo dif eren­
cial plenamente desarrollado. Encontró que un anillo sólido solo 
sería estable si concentraba 9/2 de su masa en un solo punto, una 
configuración extravagante que no se observaba. Así resumía sus 
conclusiones: 
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[ ... ] el único sistema de anillos que puede existir es uno que se com­
ponga de un número indefinido de partículas independientes, que 
giran alrededor del planeta con velocidades distintas en función de 
sus respectivas distancias. Estas partículas pueden disponerse en 
una serie de anillos estrechos, o se pueden desplazar y entrecruzar 
sin orden ni concierto. En el primer caso la destrucción del sistema 
será muy lenta; en el segundo caso será más rápida, pero podría 
manifestarse en las partículas una tendencia a ordenarse en anillos 
estrechos, que ralentizaría el proceso. 

Curiosamente, cuando Airy leyó la obra de Maxwell comentó: 
«Que yo tenga noticia, se trata de una de las aplicaciones más 
notables de las matemáticas a la física». En Sobre la estabilidad 
del movimiento de los anillos de Saturno se perciben ecos del 
espíritu de Huygens. Si este advirtió el anillo antes que ningún 
telescopio, gracias a los ojos de la razón, Maxwell también vis­
lumbró con ellos la dinámica de sus partículas, con un detalle que 
no se pudo registrar hasta casi cuarenta años después, mediante 
análisis espectrales. 

Pocos científicos serían capaces de recorrer la senda que con­
dujo a Huygens desde su primitivo interés por la refracción al des­
cubrimiento de Titán y del anillo de Saturno. A lo largo del camino 
dilató el marco de la dióptrica con su disección matemática de 
las lentes. Introdujo mejoras en el telescopio, corno el ocular que 
lleva su nombre, el diafragma o el micrómetro, que emanaban di­
rectamente de las leyes de la geometría. También aprendió a pulir 
lentes; diseñó y construyó un torno para facilitar la tarea y montó 
un telescopio que, si bien no obedecía a su pretensión de ser el 
mejor del mundo, tampoco desmerecía a los que producían los 
fabricantes más hábiles de la época. Con él reconoció un satélite 
que los demás no veían, aunque durante años lo tuvieran ante sus 
ojos. Mientras Saturno exhibía el anillo en todo su esplendor nin­
gún astrónomo fue capaz de reconocerlo, Huygens lo hizo cuando 
Saturno lo ocultaba. De propina, calculó el período de Marte y 
estimó por primera vez las dimensiones del sistema solar. 

Ante esta exhibición de facultades, que ponía en evidencia a 
matemáticos, artesanos y astrónomos, no quedaba otra reacción 
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que enmudecer de asombro. En su primer contacto con la luz, 
esta se había manifestado como un entramado de líneas rectas. 
A medida que Huygens se adentrara más y más en su naturaleza 
iría descubriendo otros rostros de la luz, tan cambiantes y contra­
dictorios como los de Saturno. Los mayores enigmas aún estaban 
porvenir. 
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CAPÍTULO 3 

La esencia escurridiza de la luz 

Cuanto más se investigaba 
la luz, más facetas contradictorias revelaba. 

De describir matemáticamente su comportamiento, 
Huygens pasó a preguntarse acerca de su verdadera 

naturaleza. Sus primeras respuestas pusieron los cimientos 
de la moderna teoría ondulatoria de la luz. La puerta de 

acceso al célebre principio que lleva su nombre se 
presentó bajo la forma de uno de esos 

rompecabezas físicos que tanto le 
gustaban: la doble refracción 

del espato de Islandia. 





En la década de 1660 encontramos a Huygens convertido en uno 
de los principales actores en el teatro de la ciencia europea. Al 
mismo tiempo se estaban levantando los escenarios donde se es­
trenaría gran parte de los éxitos científicos de la época: la Royal 
Society de Londres y la Real Academia de Ciencias de París. Estas 
instituciones actuaron como catalizadores en la expansión del co­
nocimiento y a su amparo surgieron las primeras revistas cientí­
ficas, las Philosophical Transactions y el Journal des S<;avans. 
Huygens las aprovecharía como vehículo para difundir sus ideas, 
al margen de sus siempre laboriosos tratados. En ambas organiza­
ciones fue admitido con una mezcla de admiración, por su talento, 
y de reserva, por su condición de extranjero. 

Huygens viajó a Londres en 1661, formando parte de una 
comitiva diplomática que asistía a la coronación de Carlos II. El 
Gresham College, que presume de ser el centro de educación su­
perior más antiguo de la ciudad y que constituiría una especie de 
ensayo general para la Royal Society, fue una de sus visitas obliga­
das. Si no se había llevado una primera impresión de París dema­
siado halagüeña, el Londres arrasado por los tumultos que habían 
precedido a la Restauración tampoco despertó su entusiasmo. 
Tras la muerte de Cromwell, el Gresham College había servido 
de cuartel y, según escribía el obispo de Rochester a Christopher 
Wren, los soldados se habían comportado como unos inquilinos 
de pesadilla: 

LA ESENCIA ESCURRIDIZA DE LA LUZ 87 



88 

Hallé el lugar en un estado tan asqueroso, tan sucio y apestaba de 
un modo tan infernal, que si vinieras ahora a utilizar tu telescopio, 
serías como el rico que observa el cielo desde el infierno. 

Cuando se pudieron reanudar las actividades ordinarias en 
el college, al nuevo rey le parecieron una comedia del absurdo. 
Según anota Samuel Pepys en su diario, Carlos II se había reído 
«con ganas en el Gresham College al ver que se perdía el tiempo 
en pesar el aire y que no se hacía otra cosa en todo el tiempo que 
estuvo allí». 

Huygens no compartía el sentido del humor regio y asistió 
con entusiasmo a los experimentos con el vacío que desarrolla­
ban Robert Boyle y Robert Hooke, inspirados por la obra pionera 
de Otto von Guericke. En el verano, de regreso en La Haya, se 
propuso fabricar su propia bomba. Hacia finales de año ya pre­
sumía de haber mejorado el diseño de Boyle. Los ingleses no die­
ron crédito a sus resultados, quizá porque no fueron capaces de 
igualarlos. Huygens ocultó los detalles de su modelo por temor a 
que lo plagiaran y no fue hasta junio de 1663 que se presentó en 
Londres dispuesto a demostrar la superioridad de su bomba de 
aire. Para no presenciar la exhibición, Boyle se marchó a Essex 
con el pretexto de visitar a su hermana, la condesa de W arwick. 
Solo después de que Hooke le advirtiera de que el artefacto del 
holandés tampoco aventajaba tanto al suyo, Boyle se dejó caer 
por el Gresham College. 

VIDA EN PARÍS 

El único lugar del mundo que podía rivalizar con Londres en una 
atmósfera estimulante y propicia a la investigación y al inter­
cambio de ideas científicas era París. Huygens, además, sentía 
una mayor afinidad hacia la cultura francesa. Antes de viajar a 
Londres había disfrutado de una segunda estancia a orillas del 
Sena. En casa de Montmor había retomado las tertulias que tanto 
echaba de menos en La Haya: «Cada martes se celebra una reu-
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nión, donde coinciden veinte o treinta hombres ilustres. Nunca 
me la pierdo». 

No solo los hombres ilustres atraían su atención. También 
en París se enamoró de Marianne Petit, la hija de un ingeniero. 
La relación tropezó con barreras insalvables desde el comienzo. 
Hasta el retrato que Huygens intentó esbozar de la joven se le 
resistió. O quizá era un pretexto para alargar las visitas. Parece 
que la vocación de Marianne era acabar en un convento, y que un 
hereje protestante no era el mejor interlocutor para disuadirla del 
empeño. El fracaso en el cortejo pesó en el ánimo de Huygens du­
rante meses. Cuando su hermano Constantijn le enviaba juegos 
de palabras que escondían mensajes picantes, él respondía con 
otros sobre astronomía. 

«Es cierto que no podría vivir en ningún otro sitio más feliz que 
en esta ciudad [París]. Sus exquisitos habitantes y su singular 

amabilidad me ligan a ella cada vez más.» 
- CHRISTIAAN HUYGENS. 

Si Huygens buscaba un pretexto para instalarse en París, 
pronto recibió una invitación formal. El Rey Sol parecía decidido 
a transformar la capital de su reino en la capital del mundo entero. 
Una ambición desmesurada que también comprendía el ámbito del 
conocimiento. Por desgracia, en el momento de la fundación de la 
Real Academia de Ciencias, que había de convertirse en la máxima 
institución científica de Francia, la muerte conspiraba para llenar 
su panteón de hombres ilustres. Descartes había fallecido en 1650, 
Pascal en 1662 y Fermat en 1665. Huygens había aquilatado ya un 
enorme prestigio, que permitía compensar en parte las bajas. A 
pesar de ser extranjero se expresaba en un perfecto francés y su 
actitud cortesana resultaba tan familiar como aceptable en los cír­
culos de París. Su nombre sonaba en todas las quinielas. 

Una de las pocas tachas que podían comprometer su desig­
nación procedía, inesperadamente, de su padre. Desde 1650 la re­
pública holandesa había quedado sin estatúder. Viendo su estrella 
declinar a la sombra de los Orange, Constantijn explotaba el brillo 
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de Christiaan para mantenerse en el candelero, ya que seguía ha­
ciendo gestiones en favor de sus viejos patrones. Con frecuencia, 
para distender el ambiente de una negociación, organizaba una 
exhibición con los instrumentos científicos que fabricaba su hijo. 
Huygens experimentaba un rechazo visceral hacia estos monta­
jes. Aunque nunca se opuso a ellos abiertamente, los boicoteaba 
a su manera. Con motivo de una linterna mágica que Constantijn 
le había encargado, le escribía a su hermano pequeño Lodewijk: 

Como le he prometido que le enviaria la linterna, tendré que hacerlo. 
No he sido capaz de encontrar una buena excusa para librarme. Pero 
cuando llegue, tú podrías, si te parece, evitar fácilmente que funcio­
ne. Tienes que quitar una de las tres lentes que vienen juntas. Yo me 
comportaré como si no tuviera la menor idea de qué es lo que falla 
y la explicación subsiguiente causará justo el retraso necesario. Todo 
sería por su propio bien porque, en mi opinión, no resulta apropiado 
que nuestro padre se entregue a semejante juego de títeres en el 
Louvre, y estoy seguro de que tú tampoco querrás ayudarle. 

No sabemos si Luis XIV disfrutaba con los divertimentos que 
aderezaban las maniobras diplomáticas de Constantijn. Desde 
luego no debía de hacerle demasiada gracia colocar al frente de 
su rutilante academia al hijo de un holandés con una presencia 
política tan fuerte. Máxime, cuando la república se interporúa en 
sus planes de expansión territorial. No obstante, después de cier­
tas vacilaciones, a Huygens le ofrecieron el puesto de director 
científico de la Academia en junio de 1665. Se mostró encantado: 

Es mejor y resulta más satisfactorio que me sienten en un caballo y 
me pague un rey, que permanecer ocioso en este país durante el 
resto de mis días. 

El solemne acto de fundación se celebró un año después. En 
él participaron muchos de los científicos que habían acogido a 
Huygens en su primer viaje a París, como Auzout o Roberval. En 
el término de una década el orden jerárquico se había subvertido. 
De ser un joven prometedor, Ismael Boulliau lo nombró «cabeza 
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suprema» del grupo. En agosto, Huygens se instaló en la Biblio­
teca del Rey, donde se había establecido la sede de la academia, 
así que podía asistir a las reuniones sin salir de casa. Recibió un 
salario de 6 000 libras, que cuadruplicaba el de los miembros or­
dinarios. Hasta entonces se había mantenido a expensas de una 
generosa asignación paterna. La primera reunión oficial de la Real 
Academia de Ciencias tuvo lugar tres días antes de Navidad. 

Huygens fijaría su residencia en París durante un largo pe­
ríodo de quince años, en el que habría que descontar varias re­
tiradas a La Haya, motivadas por problemas de salud, brotes 
depresivos y un enrarecimiento paulatino de la atmósfera política. 
Si en el siglo XVII Francia e Inglaterra parecían los destinos natu­
rales para cualquier físico o matemático, no lo eran en absoluto 
para un holandés. La misma prosperidad que impulsaba la ciencia 
henchía las pretensiones geoestratégicas. 

En una de las etapas más productivas de Huygens, entre 1652 
y 1674, se declararon hasta tres guerras entre Inglaterra y Holanda 
por la hegemonía naval. En 1672, cuando Francia se incorporó a 
las hostilidades, sonó la hora del regreso de la casa de Orange. Que 
era decir lo mismo que la de los dos Constantijn, padre e hijo. El 
hermano de Huygens pudo interpretar por fin el papel que llevaba 
ensayando casi dos décadas y fue nombrado secretario del nuevo 
estatúder, Guillermo ID. Constantijn, a los setenta y siete años, re­
cuperó todo el pulso de su influencia. La decisión de Luis XIV de 
declarar la guerra a Holanda colocó a Huygens en una situación 
delicada. Ahora vivía en una nación hostil. Los franceses podían 
elegir entre verlo corno un ilustre hombre de ciencia, ciudadano del 
mundo, o corno un espía evidente, ya que estaba emparentado con 
los principales consejeros del enemigo. Una disyuntiva bastante 
fácil de resolver para la mayoría. 

EL CIENTÍFICO HIPERACTIVO 

La obra científica de Huygens que hemos repasado en los capítu­
los anteriores abarca un lustro, desde 1651 a 1656. Su abundan-
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cia resulta engañosa. En realidad, en ese período acometió con 
éxito muchas más empresas. En concreto, el año 1652 provoca 
una sensación de vértigo. En doce meses enmendó la plana una 
vez más a Descartes y desarrolló su propia teoría sobre la mecá­
nica de las colisiones, en la que estableció la conservación de la 
energía, estudió las aureolas del sol, inició su fértil investigación 
en dióptrica y produjo resultados en álgebra y geometría. Casi 
parece una broma cuando se dirige a Van Schooten y le confiesa 
que sufre una jaqueca paralizante: «Por el momento, sin embargo, 
debo privarme de estudiar, salvo que mi fuerza de voluntad pueda 
combatir el dolor». 

La curiosidad hiperactiva de Huygens dejaba muchos fren­
tes abiertos. Podía saltar de un asunto a otro en función de su 
interés o de los apremios de los demás. Sus investigaciones tan 
pronto avanzan como se detienen, se simultanean o se entorpecen 
unas a otras. Dos impulsos contradictorios contribuyen al estan­
camiento: su resistencia a dar un proyecto por zanjado y su faci­
lidad para comprometerse con otros nuevos. Huygens compartía 
la excitación del cazador. Una vez pasada la euforia del descubri­
miento, sentarse a escribir y organizar un tratado de acuerdo a 
una estructura lógica de hipótesis y deducciones resultaba menos 
tentador que lanzarse a una nueva pesquisa. De entre el denso 
tejido de inquietudes que progresan con frenazos y acelerones a 
lo largo de los años, componiendo una obra intrincada y diversa, 
en este capítulo vamos a seguir el hilo de la luz hasta el final. Fue 
el asunto que cautivó su curiosidad científica durante más tiempo, 
su empresa más sostenida. 

Tras la publicación del Systema Saturnium, Huygens man­
tenía intacta su obsesión por dar con el diseño del telescopio 
perfecto. A partir de 1665 invirtió gran parte de sus energías en 
erradicar la aberración esférica. Recordemos que en ese mismo 
año había hallado una configuración de lentes donde un ocular 
cóncavo corregía la aberración de un objetivo convexo. Esta dispo­
sición correspondía, sin embargo, a un anteojo o telescopio terres­
tre. Huygens buscaba una solución apropiada para un instrumento 
astronómico. Ensayó la misma táctica de emparejar lentes esféri­
cas de modo que cancelaran mutuamente sus aberraciones. 
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Sus esfuerzos culminaron el 1 de febrero 
de 1669. En lugar de actuar sobre el ocular, 
optó por duplicar las lentes del objetivo. El 
sistema de una lente bicóncava y una pla­
noconvexa (figura 1) se comporta como un 
objetivo hiperbólico libre de aberración es­
férica. La clave de la receta radicaba en la 
relación entre el radio de las curvaturas, que 
Huygens estableció con exactitud. 

El diseño llevaba el sello de Huygens: 
una elegante aleación de física y geometría, 
donde la materia corregía sus defectos si­
guiendo instrucciones matemáticas. Huygens 
había culminado por fin su monumental obra 
en dióptrica, al resolver el problema de la 
aberración. Ya estaba en condiciones, bajo 
su exigente punto de vista, de componer el 
gran tratado sobre la luz que le verúan deman­
dando desde hacía más de una década. Sin 
embargo, su mente volvió a dispersarse por 
culpa de otros asuntos. 

En octubre de 1669, Isaac Barrow, primer 
titular de la Cátedra Lucasiana de Cambridge, 
daba a la imprenta sus Lectiones XVIII. En 
ellas aplicaba la ley de Snell a desentrañar el 
comportamiento de las lentes esféricas, cum­
pliendo el viejo sueño de Kepler. Huygens ha­
bía completado la misma tarea quince años 
antes, pero había guardado tanto tiempo la 
fruta en el cajón que se le había terminado 
pasando. Se consoló considerando que, des­
pués de todo, esta pérdida de atribución no 

resultaba tan grave. Acababa de resolver un problema mucho más 
ambicioso, que exhibía un absoluto dominio de los resultados pu­
blicados por Barrow. Decidió retomar su dióptrica en un nuevo 
tratado que coronaría con su receta para curar el mal de las abe-
rraciones. 
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NEWTON CONTRA HUYGENS 

Huygens había escrito al lado de su diseño de 1669 el grito de gue­
rra de Arquímedes: «¡Eureka!». Así solía reflejar en su cuaderno 
de notas el júbilo de cada descubrimiento. Cinco años después lo 
tachaba. ¿El motivo? Tenía nombre y apellido: Isaac Newton. En 
el primer curso que dictó como sucesor de Barrow en la Cátedra 
Lucasiana, Newton reconocía el enorme progreso que se había 
producido en el campo de la dióptrica, al tiempo que señalaba una 
pequeña grieta que amenazaba con derrumbar el edificio levan­
tado por sus precursores: 

Sin embargo han dejado algo - de la máxima importancia, ade­
más- para que puedan descubrirlo quienes han seguido sus pasos; 
a saber, encuentro en las refracciones una cierta irregularidad que 
lo trastorna todo[ ... ]. Por esta razón, me interno en la dióptrica no 
para ofrecer un nuevo tratamiento sistemático, sino para, de entra­
da, examinar a fondo esta propiedad en la naturaleza de la luz y 
después mostrar hasta qué punto mina la perfección de la dióptrica 
y cómo se puede evitar, hasta donde la naturaleza lo pernüte, este 
obstáculo. Voy a describir aquí diversos aspectos relacionados con 
la teoría y práctica de los telescopios y microscopios, para demos­
trar que el perfeccionamiento definitivo de la óptica -en contra de 
la opinión establecida- debe buscarse en una combinación de dióp­
trica y catóptrica. 

La propiedad de la naturaleza a la que se refería Newton era 
su famosa descomposición de la luz solar al atravesar un prisma. 
Las líneas negras que trazaba la óptica geométrica escamotea­
ban un fenómeno óptico insoslayable: la luz blanca aúna rayos 
de diversos colores, que se desvían en ángulos distintos al atra­
vesar un medio transparente. Por tanto, la lente convierte cada 
punto de un objeto en un borrón policromo, lo que origina una 
imagen distorsionada. Este defecto recibe el nombre de aberra­
ción cromática. Newton consideraba que tenía mucho más peso 
en la formación de imágenes que la aberración esférica y que, de 
hecho, arruinaba el futuro de cualquier telescopio compuesto solo 
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de lentes (dióptrica). La solución residía en un nuevo diseño, el 
telescopio de reflexión, que utilizaba espejos (catóptrica). 

De hallarse Newton en lo cierto, la ambición de Huygens de 
perfeccionar el telescopio mediante sutiles arreglos de lentes 
estaba condenada al fracaso. De modo progresivo, Huygens fue 
tomando conciencia del terremoto que se avecinaba. En primer 
lugar leyó el artículo que Newton publicó en febrero de 1672 en 
las Philosophical Transactions. Su reacción inicial fue de cautela: 

En lo que respecta a su nueva teoría de los colores, la encuentro 
bastante ingeniosa, pero tendrá que verse si resulta compatible con 
todas las experiencias. 

UN TELESCOPIO DE ESPEJOS 

En la primera mitad del siglo xv11, en plena expansión de la industria óptica, la 
idea del telescopio de reflexión estaba en el aire. Fue apuntada entre otros por 
Descartes. Tras comprender que las lentes producían imágenes ampliadas al 
desviar el curso de los rayos luminosos, resultaba natural pensar en las posibi­
lidades que ofrecían los espejos. En 1663, el escocés James Gregory propuso 
un primer diseño operativo, con dos piezas, una de sección parabólica y otra 
elipso idal (figura 1). Lograr, sin embargo, que una superficie metálica bien 
pulida adoptase estas curvaturas suponía desafíos técnicos semejantes a que 
lo hicieran las lentes. Gregory, como en su día Descartes, terminó desistiendo. 

FIG. l 

Espejo 
elipsoidal 

-Elipse 

LA ESENCIA ESCURRIDIZA DE LA LUZ 

\ 

\ 

I 

Espejo 
paraboloide 

Lente del 
ocular 

, Parábola 



Desde luego, Huygens no compartía el negro futuro que 
Newton había pintado para los telescopios de refracción. Había 
pasado demasiados años trabajando con ellos: 

También tiene que reconocer, por tanto, que esta dispersión de los 
rayos no perjudica a las lentes tanto como él parece haber deseado 
que se crea, cuando propuso espejos cóncavos como la única espe­
ranza de perfeccionar el telescopio. 

Sospechaba que la crítica demoledora del inglés respondía 
en parte a una estrategia para realzar su propia propuesta de un 
telescopio de reflexión. En un plano menos utilitario, le pareció 

En el espíritu de Huygens, de operar con los elementos que eran capaces de 
producir los artesanos, Newton desarrolló un prototipo más simple, a partir 
de un espejo plano y otro de corte esférico (figura 2). Diseñó sus propias 
herramientas y también preparó la aleación del espejo. El telescopio reflector 
ofrecía ventajas incuestionables. De entrada acusaba menos la aberración 
esférica. Como la luz no atraviesa en él ninguna frontera entre medios, tam­
poco sufría pérdidas de luminosidad ni la imagen se deformaba a causa de 
las irregularidades del vidrio o la presencia de burbujas. Por la misma razón se 
veía libre por completo de la aberración cromática. Su punto débil radicaba en 
el material reflectante. Su comportamiento debía aproximarse, hasta donde 
fuera posible, al de un espejo ideal y mantener sus propiedades sin nublarse 
al reaccionar químicamente con la atmósfera. 

FIG. 2 Lente del ocular 
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que Newton introducía demasiados colores en su teoría. En su 
opinión, bastaba con dos: el azul y el amarillo. A la hora de respon­
der a Huygens, Newton moderó su condena a la refracción, pero 
desmontó sus argumentos de una luz blanca integrada por una 
pareja de colores. Llegados a este punto, el cortesano Huygens 
estimó que el entusiasmo de Newton en llevarle la contraria resul­
taba incompatible con los buenos modales. A través del secretario 
de la Royal Society, Henry Oldenburg, anunció que se retiraba de 
la polémica: « Ver que sostiene sus opiniones con tanto ardor, me 
quita las ganas de seguir discutiendo». Sin embargo, dio al César 
lo que correspondía al César. En su cuaderno de notas tachó el 
«eureka» y escribió al lado: «Esta invención resulta inútil, debido 
a la aberración newtoniana que produce colores». 

F/int 
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Al final, la aberración cromá-
tica (figura 2) no enterró al teles­
copio de lentes. En torno a 1730, 
Chester Moor Hall, abogado inglés 
y científico aficionado, introdujo 
un nuevo enfoque donde pesaban 
tanto los ingredientes físicos como 
los geométricos. Su solución com­
binaba lentes de secciones diferen­
tes, pero también de materiales 
distintos (figura 3). Así, por ejem­
plo, el ángulo de refracción de la 
luz cambia al atravesar un vidrio 
crown o un vidrio fiint. 

La publicación de los trabajos 
de Barrow sobre óptica y la teoría 
de Newton sobre la descomposi­
ción de la luz habían desbaratado 
en el plazo de unos meses una em­
presa científica de casi dos décadas. 

La curiosidad múltiple e infa­
tigable de Huygens a veces se 
convertía en el mayor enemigo de 
su obra. Era responsable de una 



dispersión que lo distraía constantemente de su objetivo y que 
dilataba sin cesar el momento de dar a conocer sus descubrimien­
tos. También era su principal virtud. La curiosidad lo distraía de 
los fracasos e incluso le hacía ver en ellos la ape1tura de nuevos 
campos de exploración. Huygens había objetado a la teoría de los 
colores de Newton que: «incluso si fuera cierto que los rayos lu­
minosos en origen fueran algunos rojos, otros azules, etc., todavía 
quedaría la gran dificultad de explicar mediante la física, en qué 
consiste la mecánica de esta diversidad de colores». Una puntua­
lización justa, pero aplicable también a toda su interpretación de 
la dióptrica. La óptica geométrica había conocido su momento 
de esplendor durante la juventud de Huygens, pero había quedado 
superada por los acontecimientos. Incapaz de justificar los nue­
vos fenómenos, sus principios siguieron siendo de utilidad para 
el óptico y el artesano, pero debían abandonar la vanguardia de 
la física. Este vacío colocó a Huygens en la rampa de lanzamiento 
para una nueva investigación. El empujón definitivo, que le permi­
tió encauzar sus inquietudes, llegó bajo la forma de uno de esos 
rompecabezas físicos que tanto le gustaban. 

LA ROCA MISTERIOSA 

A mediados del siglo xvn Islandia se hallaba bajo dominación 
danesa. En la primavera de 1668 el rey Federico III ordenó una 
expedición geológica que debía encaminarse a la costa oriental 
de la isla, hasta Helgustadir. Su objetivo era recoger muestras de 
una variedad de calcita que exhibía una transparencia fuera de lo 
común. Erasmus Bartholinus, profesor de geometría y medicina 
de la Universidad de Copenhague, estudió las propiedades ópticas 
del mineral y halló algo sorprendente. Cuando un rayo de luz in­
cide contra una de las caras del espato de Islandia se divide en dos 
(figura 4). En su travesía a través del cristal los rayos divergen, 
hasta que vuelven a cruzar la frontera. Una vez en el aire, siguen 
su canúno en paralelo. Esta duplicación de los rayos explica que 
si se mira a: través del espato se observen imágenes dobles. 
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~------- -- Los dos rayos exhiben un 
FIG.4 comportamiento distinto. Uno se 

ajusta a la ley de Snell y en con­
secuencia recibe el nombre de 
«rayo ordinario». El otro se llama 
«extraordinario» y sus ángulos de 
entrada y salida no cumplen la re­
lación de los senos. 

En 1671, el astrónomo Jean 
Picard, miembro de la Real Aca­
demia de Ciencias, viajó a Copen­
hague y, a su regreso a París, llevó 
consigo varias muestras de espato. 
Haciendo gala de su obsesiva me­

ticulosidad, Huygens las sometió a un examen escrupuloso y des­
cubrió fenómenos que Bartholinus había pasado por alto. El más 
chocante se producía al situar dos cristales uno a continuación 
del otro. La luz, al incidir sobre el primero, se partía en dos. Sin 
embargo, al seguir su camino e incidir sobre el segundo, los rayos 
no se dividían. ¿ Qué le ocurría a la luz en su viaje a través de la cal­
cita? Además de desviarse, algo alteraba su naturaleza Aquí Huy­
gens había tropezado con un rasgo insospechado de la luz, puesto 
que el ojo humano no es capaz de percibirlo: la polarización. Mu­
chos insectos y cefalópodos sí son sensibles a ella. 

Como las apariciones de Saturno, la doble refracción reve­
laba un fenómeno natural que desafiaba el marco conceptual es­
tablecido. Si la luz se redujera a la óptica geométrica, algo como 
la calcita de Helgustadir no debería existir. Y, no obstante, la aca­
baban de extraer de una cantera. La determinación de Huygens 
de explicar la doble refracción lo empujó más allá de los límites 
de la dióptrica. Emprendió un primer asalto a la cuestión en 1672, 
sin éxito. Cinco años después, durante un prolongado retiro en 
La Haya, consumó el ataque definitivo. El 6 de agosto de 1677 
escribió en su cuaderno de notas un nuevo eureka que esta vez 
nadie le obligaría a tachar. En octubre, escribía a Jean-Baptiste 
Colbert-el influyente ministro de Luis XIV- para anunciarle que 
había resuelto el rompecabezas: «No es una maravilla pequeña 
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de la naturaleza, ni resultó fácil de desentrañar». A mediados de 
1679 hizo una presentación ordenada de su teoría ante la Real 
Academia de Ciencias, que conformaría el grueso de su Traité de 
la lumiere (Tratado sobre la luz). Este, siguiendo su costumbre, 
no lo publicó hasta diez años después. 

«Mientras los geómetras demuestran sus proposiciones 
mediante principios incontestables, aquí los principios son 

corroborados por las conclusiones que pueden extraerse de 
ellos; la naturaleza de la materia tratada no permite otra cosa.» 

- CHRISTlAAN HUYGENS, TRAITÉ DE LA LUMIERE . 

En la óptica geométrica todo lo que había que tener en cuenta 
era la curvatura de las lentes y la ley de la refracción. Simplemente 
con conocer la relación matemática entre a y ~ y asumiendo una 
propagación rectilínea de la luz su comportamiento se reducía 
a un problema de geometría. Empero, no se decía nada acerca 
de la naturaleza de la propia luz. ¿Cuál era el motivo de la ley de 
los senos? ¿Qué es realmente un rayo luminoso? ¿Se compone 
de partes o constituye una unidad elemental? ¿Cómo funciona el 
mecanismo de su propagación? Para Huygens había llegado el mo­
mento de abordar estas cuestiones: 

En óptica, como en cualquier otra ciencia donde la geometría se 
aplique a la materia, las demostraciones se apoyan en hechos expe­
rimentales; por ejemplo, que la luz viaja siguiendo líneas rectas, que 
los ángulos de incidencia y reflexión son iguales o que los rayos de 
luz se refractan de acuerdo con la ley de los senos [ ... ]. La mayoria 
de los autores que tratan la materia se contentan con asumir estos 
hechos. Sin embargo otros, con una mente más inquisitiva, han tra­
tado de hallar su origen y su causa, considerándolos en sí mismos 
como fenómenos naturales dignos de interés. Y aunque han llegado 
a plantear algunas ideas ingeniosas, no bastan para que los lectores 
más inteligentes no deseen explicaciones más profundas que los 
dejen plenamente satisfechos. 
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Encontramos una prueba de la grandeza de Huygens en que, 
después de dedicar un cuarto de siglo a comprender la luz, de 
ver cómo otros le arrebataban sus hallazgos o cómo sus obje-

LA POLARIZACIÓN DE LA LUZ 

Existen otros procedimientos para propagar una perturbación física sin recurrir 
a las coli siones que Huygens introduce en su modelo de la luz. Encontramos 
un ejemplo senci llo en una cuerda donde uno de sus extremos se agita arriba 
y abajo, mientras el otro permanece sujeto. La perturbación opera en vert ical, 
pero se propaga a lo largo de la cuerda en horizontal (figura 1). El concepto 
de «polarización» se puede aplicar a esta cuerda. Señalaría la dirección en que 
se ag ita la mano: arriba y abajo. Diríamos, en este caso, que la perturbación 
posee una polarización vert ical. También podría presentar una polarización 
transversal, de derecha a izquierda (figura 2). Combinando desplazamien­
tos transversales y verticales, la mano puede trazar un sinfín de trayectorias 
sin salirse del plano perpendicular a la dirección de propagación fijada. En 
lenguaje técnico se diría que la polarización de la cuerda muestra entonces 

FIG.2 ~ s-
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tivos científicos se frustraban, fue capaz de producir por fin su 
obra maestra sobre la materia aplicando un enfoque del todo 
inesperado. 

una mezcla de componentes transversa les y verticales. A tribuimos a la luz un 
rasgo semejante, puesto que al cruzarse con una partícula cargada -como 
un electrón- es capaz de agitarla en una dirección perpendicular a la que 
sigue su propia trayectoria. La luz solar ofrece una mezcla de componentes 
transversales y vertical es, pero la disposición espacial de los átomos en el 
espato de Islandia introduce una asimetría en la respuesta de sus electrones: 
unos pueden oscilar solo en vertical y otros, solo en sentido transversal. Cuan­
do la luz del sol incide sobre ellos con su batiburrillo de polarizaciones, los 
electrones de un grupo solo responden a su componente transversal y los del 
otro, solo a la vertical. Cada clase desvía la luz en una dirección distinta y así 
se generan dos rayos: uno queda polarizado en vert ical y el otro, en sentido 
transversal. Si a continuación se interpone en su camino un segundo cristal, 
los rayos ya no volverán a dividirse, ya que los electrones de cada grupo solo 
podrán responder a una de las dos polarizaciones (figura 3). 

FIG. 3 
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ONDAS O PARTÍCULAS 

Los científicos del siglo XVII trataron de atrapar la esencia de la 
luz en dos esquemas conceptuales que idealizaban fenómenos 
cotidianos: ondas y partículas. Ambos explicaban la propagación 
luminosa en todas direcciones y con velocidad finita, aunque recu­
rrían a procedimientos incompatibles. Hasta el punto de que una 
de las versiones ondulatorias que se anticipó a la formulación de 
Huygens, debida al jesuita Ignace Gaston Pardies, se planteaba 
como un claro desafío al atomismo. 

Las partículas, como las balas, no afectan a todo el espacio 
que atraviesan y la interacción con ellas responde al principio del 
todo o nada. O se choca contra una partícula o se evita. Las ondas 
exhiben un carácter menos radical. No se concentran en puntos o 
trayectorias lineales, se desparraman y barren el espacio de forma 
gradual, sin dejar huecos. Cada propuesta tenía sus ventajas e in­
convenientes. Huygens veía una traba insalvable en el modelo 
corpuscular: 

[ ... ] la luz consiste en un movimiento de la materia entre nosotros y 
el cueIJ)o luminoso. Si además tenemos en cuenta y consideramos 
la extraordinaria velocidad con que la luz se esparce en todas direc­
ciones y también el hecho de que procediendo, como lo hace, de 
direcciones muy diferentes y en verdad opuestas, los rayos se inter­
penetran sin obstruirse unos a otros, entonces podernos comprender 
que siempre que vemos un objeto luminoso, no puede ser debido a 
la transmisión de la materia que nos llega del objeto, como por ejem­
plo un proyectil o una flecha que vuela en el aire [ ... ] 

En otras palabras, si la luz fuera una ráfaga de partículas, al 
cruzarse dos rayos, rebotarían. La experiencia dicta que dos haces 
de linterna se ignoran, como si ninguno advirtiera la presencia 
del otro. Sin embargo, la visión de Huygens se apartaba de la de 
Pardies, ya que no renunciaba a los átomos. En su modelo, las par­
tículas interpretan el papel de mediadores. No se propagan, lo que 
se propaga es la perturbación que las sacude. Poco después de 
cumplir su papel transmisor, podemos encontrarlas más o menos 
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en el mismo lugar y estado, mientras la perturbación que las agitó 
progresa para afectar a otras partículas remotas. Se puede pensar 
en el coche que embiste a otro en un atasco y genera una sucesión 
de choques en cascada. La acción del primer vehículo termina 
desplazando al último de la fila sin haberlo tocado. En realidad, 
cada vehículo apenas se mueve, pero transmite el impulso dece­
nas de metros. 

Según Huygens las partículas de un cuerpo luminoso se agi­
tan y colisionan contra las partículas de éter de su entorno inme­
diato, comunicándoles su agitación. Esta agitación será la luz, que 
se transmitirá en una cadena de colisiones hasta sacudir las célu­
las de nuestros ojos. Huygens no se pierde demasiado en el jardín 
del éter. Recurrió a él porque los experimentos de Robert Boyle 
y Evangelista Torricelli ya habían establecido que el sonido no 
se propaga en el vacío, mientras que la luz sí. La materia común, 
como el aire, no podía por tanto difundir ambas. Huygens postuló 
entonces la existencia de una materia sutil e invisible, el éter, inte­
grada por partículas «que se aproximan a una dureza casi perfecta 
y que poseen una elasticidad tan pronta como se quiera». Ocupan 
todo el espacio que dejan los átomos que componen los sólidos, 
gases y líquidos. Huygens contempla la posibilidad de que el éter 
no penetre en los cuerpos, aunque él se inclina por que sí lo haga. 
En este sentido parece considerar la materia como una espor\ja, 
por cuyos orificios y recovecos se cuelan las partículas de éter. 

Partiendo de una fuente luminosa, la agitación local de sus 
partículas promueve una cadena de colisiones, cuyo efecto, visto 
desde la distancia, se traduce en la dilatación de un frente esférico 
que crece en torno, como en la disposición de fichas de dominó 
de la figura 5 ( en la página siguiente), donde la caída de las piezas 
centrales se propaga en una cascada circular. 

Este modelo de la luz aclara por qué dos rayos se atraviesan 
sin interferirse. Las partículas pueden bailar al compás combi­
nado de dos cadenas de colisiones: «La misma partícula de ma­
teria puede servir a multitud de ondas que procedan de distintos 
frentes o incluso de sentidos opuestos». Recuperando el símil del 
coche atrapado en un atasco, este es capaz de transmitir los im­
pactos de varios vehículos que vengan contra él desde cualquier 
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FIG. 5 

1 FIG. 6 

........................ • 

dirección, aunque se produzcan de 
manera simultánea. 

Igual que en el ejemplo del do­
minó, cada ficha que cae no solo 
transmite su impulso en una direc­
ción estrictamente radial, sino que 
lo difunde en un abanico más am­
plio, siempre hacia delante. En las 
fichas se debe a su particular dispo­
sición, de modo que al caer arras­
tran a más de una. Huygens recrea 
el mismo efecto mediante colisiones 
(figura 6). 

L ________ _ 

[ ... ] cuando una esfera, como sucede 
aquí con A, se halla en contacto con va­
rias esferas similares CCC, recibe el im­
pacto de otra esfera B, de tal modo que 
ejerza un impulso sobre todas las esferas 
CCC que la tocan, les transmitirá la tota­
lidad de su movimiento, tras lo cual per­
manecerá inmóvil, como la esfera B. 

106 

A escala microscópica, el modelo de Huygens despliega un 
colosal juego de billar en tres dimensiones, donde cada bola 
transmite el golpe que recibe y se detiene. Al menos en prome­
dio. Cada partícula mantiene una cierta libertad de movimientos, 
igual que los coches que avanzan poco a poco en un atasco, pero, 
en lo que respecta a la luz, se comporta como un corredor de 
relevos que enseguida entrega el testigo. 

EL PRINCIPIO DE HUYGENS 

Aunque en muchas ocasiones se considere a Huygens fundador 
de la moderna teoría ondulatoria de la luz, hay que tener cuidado 
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con el significado que él atribuía a la palabra «onda», porque no 
coincide con el que asumieron científicos posteriores al extender 
sus ideas. La intuición física que guiaba a Huygens para visualizar 
cómo «se transmite sucesivamente» la luz se basaba en el sonido: 

(La luz,] como el sonido, debe propagarse en superficies esféricas u 
ondas; las llamo ondas a causa de su analogía con las que vemos 
formarse en el agua cuando arrojamos en ella una piedra y a causa 
de que nos permiten observar una semejante y gradual propagación 
en círculos, aunque responden a una causa diferente y solo se for­
man en una superficie plana. 

Huygens torna de las ondas en el agua la «propagación gra­
dual en círculos», pero advierte que «responden a una causa dife­
rente». En particular, las ondas de un estanque son transversales: 
se propagan en una dirección perpendicular a la perturbación que 
las origina. La piedra cae en vertical, los círculos concéntricos se 
despliegan en h01izontal. Las partículas del éter de Huygens trans­
miten la luz básicamente en la dirección de su movimiento, aunque 
abran su radio de influencia en abanico. En ningún caso menciona 
atributos característicos de un modelo ondulatorio clásico, corno 
son la longitud de onda, la fase y la interferencia. 

La pieza clave de su construcción es el llamado «principio de 
Huygens»: cada partícula afectada por un frente luminoso se trans­
forma a su vez en el origen de un nuevo frente. En la analogía del 
dominó, la propagación se inicia con una ficha al caer, y cada ficha 
que cae derriba otras, extendiendo la perturbación en abanico. En 
tres dimensiones, las colisiones lo hacen en una sección de circun­
ferencia: 

[ ... ] cada partícula de una porción de materia en la que se propaga 
una onda, no debería de transmitir su movimiento solo a la siguien­
te partícula que se encuentre en una línea recta dibujada desde la 
fuente luminosa, sino que también comunica necesariamente una 
parte a todas las demás que la tocan y que se oponen a su movimien­
to. Por tanto, se sigue que alrededor de cada partícula se desarrolla 
una onda de la cual esa partícula es el centro. 
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FIG. 7 

FIG. 8 

El principio establece que si conocemos cómo es el frente 
de la perturbación en un momento dado (t

1
), podremos detenni­

narlo con exactitud en cualquier instante posterior (t2). Basta con 
considerar cada punto del viejo frente (F

1
) como fuente de nue­

vos frentes esféricos, secundarios, que se expanden progresiva­
mente hacia fuera con un radio r=v(t

2
-t

1
). El frente resultante 

(F2) será la superficie que envuelva todas las esferas a la vez en 
el estado en el que se encuentren en cada momento (figura 7). En 

Ondas 

f = V·(trt1) 

cierto modo, el trasfondo de par­
tículas de éter con sus colisiones 
sirve de coartada física para un 
método de construcción geomé­
trico, un juego de regla y compás 
que permite dibujar cómo evolu­
ciona la perturbación. La física, 
por supuesto, determina los pará­
metros de la composición, como 
la apertura del compás. 

Los frentes secundarios no se 
propagan exactamente como la 
perturbación original. Las peque­
ñas esferas no se expanden hacia 
el interior, en dirección a la fuente 
luminosa O. Desde cada punto del 
frente F

1 
solo se genera la onda 

secundaria hacia fuera, para com­
poner F

2
• La onda hacia dentro que 

daría lugar a F'
2 

no se produce (fi­
gura 8). 

Conviene precisar que el efec­
to no es acumulativo. A medida 
que el frente avanza no va engor­
dando con las aportaciones de es­
feras que progresan desde todos 
los puntos interiores. De ser así, 
al encender y apagar una bombilla 
se desataría una onda expansiva 
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de luz cada vez más intensa que nos cegaría. Como en la analo­
gía de las fichas de dominó, la causa inicial solo barre cada punto 
una vez. Si se enciende y apaga la fuente, vemos la luz un instante 
y luego se desvanece. 

Los casos más sencillos a los 
que puede aplicarse el principio 
de Huygens son la propagación de 
ondas planas y esféricas (figuras 9 
y 10). Las líneas perpendiculares 
al frente de ondas (los radios en 
el caso de la esfera) conforman 
los rayos luminosos de la óptica 
geométrica. 

A la vista de los ejemplos, la 
construcción de Huygens parece 
algo barroca y hasta innecesaria 
¿Por qué para averiguar el aspecto 
del nuevo frente no se dibuja sen­
cillamente una línea recta detrás 
de otra o un círculo cada vez más 
amplio, a la distancia que corres­
ponda en función de la velocidad 
de propagación? 

La razón de ser del principio 
estriba en que resuelve la construc­
ción de los frentes en situaciones 
menos obvias. Permite derivar, por 
ejemplo, la ley de Snell, llegando a 
determinar el valor de la constante 
numérica como cociente de las 
velocidades de la luz en cada uno 
de los medios. Para comprobarlo, 
vamos a situarnos en una frontera 
plana entre el aire y el vidrio (fi­
gura 11, en la página siguiente). El 
principio de Huygens se aplica en 
ambos medios, pero la luz viaja a 

FIG. 9 

Cada punto 
del frente en 

t1 es fuente 
de ondas 
esféricas 

Frente en t1 

FIG.10 

Envolvente 
de las 

esferas 

Frente en t2 
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FIG. 11 

rv . 

rv \ 

" \ Rayo de luz 
1 Frente en el vidrio en el vidrio 

[_ Frente en el aire 

" Rayo de luz 
en el aire 

L __ _ _____________________ ___,, 

mayor velocidad en el aire (v) que en el vidrio (v). Para esta di­
ferencia, Huygens propone la siguiente explicación: 

Siendo la rarefacción de los cuerpos transparentes tal como se ha 
dicho, uno concibe con facilidad que las ondas se podrían transmi­
tir en la materia etérea que ocupa los intersticios entre partículas. 
Y, por otra parte, uno puede concebir que la progresión de estas 
ondas debe ser un poco más lenta en el interior de los cuerpos, en 
virtud de los pequeños desvíos que las mismas partículas provocan. 

Las partículas de éter transmiten la perturbación con más ce­
leridad en la escasa densidad del aire, donde apenas encuentran 
tropiezos, que cuando se pierden en el esponjoso laberinto de la 
materia transparente. Para incorporar en nuestra construcción la 
disparidad de velocidades ( vª y v), las ondas secundarias esféricas 
tendrán un radio mayor en el aire (r) que en el vidrio (r). En otras 
palabras, la apertura del compás será mayor en un medio que en 
el otro. Podemos asumir que en el aire: rª = vª · t; mientras que en el 
vidrio: rv=Vv. t, donde va> vv y, por tanto, para intervalos de tiempo 
iguales: ra > rv. 

De nuevo, los rayos de luz de la óptica geométrica son líneas 
perpendiculares al frente de ondas. En cuanto un frente luminoso 
toque un punto A de la frontera, la colisión entre las partículas de 
éter desencadenará la propagación en el vidrio. Un intervalo de 
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LA LEY DE SNELL REVISIT ADA 

La relación entre los ángulos a y B se deriva con facilidad con ayuda de dos 
triángulos (figura 1). El primero une A y O con un tercer punto E, que se ubica 
trazando una recta perpendicular al frente en el aire, que acabe en O. El segun­
do triángulo une A y O con un tercer punto F, que se sitúa trazando desde A 
una perpendicular al frente en el vidrio. A partir del diagrama se deduce que: 

3r 3r sena=-ª sen.,_ __ v . 
L ' "' L 

Dividiendo los dos senos: 

sen a=~ª V8 · t = V8 

senB rv vv · t vv 

Queda por ver si estos ángulos a F1G. 1 

y B son los mismos que trazába­
mos en los diagramas de la ópti­
ca geométrica, donde siempre se 
tomó como referencia una línea 
vert ical y no la frontera horizon-
tal. Basta recordar que dos rectas 
forman entre sí el mismo ángulo 
que sus perpendiculares. En la 
figura 2, el ángulo y entre las rec-
tas a y b es el mismo que forman 
sus respectivas perpendiculares 
e y d. Por tanto, el ángulo a entre 
las rectas AE y AD es el mismo 
que el que forman sus perpendi­
culares. La perpendicular a AE es 
el rayo 1 y la perpendicular a AD 
es una línea vertical. Luego es el 
mismo a de la óptica geométrica. 
El ángulo B se forma entre las rec­
tas AD y FO. Sus perpendiculares 
son una recta vert ical y el rayo 2. 

tiempo después, el frente en el aire avanza un trecho de longitud 
r , y alcanza un punto de la frontera E, desatando en él un segundo 

a 
frente de ondas esféricas. Entre tanto el frente esférico de A se 
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ha expandido dentro del vidrio con un radio más pequeño, rv. Lo 
mismo sucede cuando el frente toca los puntos C y D. En cada 
inteIValo de tiempo el frente en el aire avanza r

0
_ y los frentes en 

el vidrio crecen rv. 

EL INTENTO DE GALILEO 

El dato de que la luz recorre en el vacío 
300 000 km en 1 s nos resulta familiar. 
Sin embargo, este número tan extraordi­
nario permaneció durante siglos fuera del 
alcance de la tecnología y hasta la épo­
ca de Huygens muchos tuvieron razones 
para pensar que se transmitía de forma 
instantánea. Galileo ideó un experimento 
para medir su velocidad, cuyo resultado 
pone de manifiesto lo arduo de la empre­
sa. Consistía en situar a dos observadores, 
en una noche cerrada, en lo alto de dos 
colinas, separadas varios kilómetros. Am­
bos (el propio Galileo y un ayudante) por­
taban lámparas, provistas de una mirilla 
que se abría y cerraba, para encenderlas Retrato de Galileo atribuido a Francesco 

y apagarlas. Al comienzo del experimento Apollodoro. 

permanecían apagadas. En el momento 
en el que Galileo encendía la suya ponía 
en marcha un cronómetro. La luz debía recorrer entonces la distancia entre 
colinas. En cuanto divisara la señal, el ayudante debía responder encendiendo 
la segunda linterna. Su luz emprendería el camino de vuelta hasta alcanzar a 
Galileo, momento en el que este detendría su reloj. Como conocía la distancia 
d entre colinas, le bastaba dividir 2d entre el tiempo registrado para obtener la 
velocidad que buscaba. 

Una medición imposible 
Galileo fue incapaz de medir tiempo alguno. Tan pronto levantaba la mirilla 
de su linterna, divisaba un fulgor en la colina de enfrente. Los únicos retrasos 
apreciables cabía atribuirlos a los tiempos de reacción de los dos experimen­
tadores. La luz se escurría como una anguila a través de las redes que Galileo 
había tendido para atraparla. Si su reloj hubiera podido medir décimas de se­
gundo, los observadores se tendrían que haber separado una distancia mayor 
que el diámetro de la Tierra para provocar un retardo detectable. 
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El frente en el vidrio, en cada instante, es la superficie que 
envuelve a todas las esferas ( círculos en la figura). Esta construc­
ción ya nos permite calcular el ángulo entre la dirección de propa­
gación de la luz incidente y la que se transmite en el vidrio. 

La teoría corpuscular de Newton también atribuía la causa de 
la refracción a la disparidad en las velocidades de propagación, 
aunque el escenruio microscópico que planteaba predecía justo 
el efecto contrario: que la luz viaja más rápido en los materiales 
más densos. Según la interpretación de Newton, la luz es una co­
rriente de partículas. Cuando se aproximan a la frontera entre dos 
medios, su masa experimenta una mayor atracción neta hacia el 
material más denso, que las acelera. Esa aceleración se produce 
solo en la dirección perpendicular a la frontera, lo que cierra el 
ángulo de propagación hacia dentro. 

La discrepancia entre ambas predicciones ofrecía, a priori, 
una manera de fallar en favor de una u otra teoría a través de un 
experimento, pero en el siglo XVII no se disponía de medios téc­
nicos pru·a medir la velocidad de la luz en el aire o el vidrio. Solo 
se había logrado acotru· en el espacio, mediante observaciones 
astronómicas, que correspondían a su propagación en el vacío. 
Hasta un siglo después de la muerte de Newton, el f'1Sico francés 
Léon Foucault no determinó en un laboratorio que la luz viaja más 
despacio en el agua que en el aire. Para entonces la teoría cor­
puscular atravesaba uno de sus peores momentos. No levantaría 
cabeza hasta que Einstein introdujo los fotones en su descripción 
mecánico-cuántica de la luz. 

LAS RAZONES DEL RAYO EXTRAORDINARIO 

El principio de Huygens también describe la reflexión de la luz, 
pero, sin duda, el gran golpe de efecto vino de su análisis elegante 
de la doble refracción. Después de mucho bregar para encajar el 
fenómeno en el marco corpuscular, Newton solo consiguió expre­
sarse en términos bastante arcanos, viendo en cada rayo de luz 
«cuatro lados o cuartos, dos de los cuales ocasionan la propiedad 
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CRONOMETRAR LA LUZ 

Vamos a plantear un experimento algo 
artificioso. Una máquina, en un punto A , 
dispara hacia delante una pelota con una 
velocidad constante v cada 10 segundos. 
Una persona 8 que se coloca frente a ella, 
a una distancia de varios metros, recibe la 
pelota poco tiempo después; pongamos 
que pasados 2 segundos. Si 8 permane­
ce en su sitio, recogerá las pelotas con la 
misma frecuencia con que A las arroja: 
cada 10 segundos. No llegan de forma 
instantánea, pero como invierten el mis­
mo tiempo en cada viaje, la regularidad 
de A se reproduce en 8. ¿Qué ocurre si 8 
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se empieza a alejar en línea recta de A? Ole R0mer. 

La acción de la máquina seguirá siendo 
regular, pero para cada nuevo lanzamiento la distancia que debe recorrer la 
pelota habrá aumentado y, por tanto, también el tiempo que invierte en com­
pletar el viaje. Ya no llegará a 8 a los 2 segundos, sino a los 2,S segundos, por 
ejemplo, a los 3 segundos, a los 3,5 segundos ... Si 8 no fuera consciente de su 
desplazamiento se llevaría la impresión de que la pelota se retrasa. En cuanto 
se detenga, se reestablecerá la regularidad . Si, transcurrido un tiempo, 8 se 
pone de nuevo en marcha, ahora para acercarse a la máquina, la pelota tendrá 
cada vez que recorrer menos distancia. A medida que se reducen los tiempos 
entre una entrega y la siguiente, la llegada de la pelota se adelanta. 

La caza de la luz 
El astrónomo danés Ole R0mer observó el mismo fenómeno entre 1671 y 
1676. En su caso el proceso regular que estudiaba no era el lanzamiento de 
una pelota, sino la ocultación de ío, uno de los satélites de Júpiter, detrás del 
planeta. Como el período de la órbita es perfectamente regular, la desapari­
ción debía repetirse tras intervalos de tiempo iguales. Sin embargo, R0mer 
encontró que durante la mitad del año el eclipse se adelantaba y durante la 
otra mitad, se retrasaba. En otras palabras, a lo largo de seis meses la Tierra, 
en su periplo alrededor del Sol, se acercaba a ío, y a lo largo de los seis meses 
siguientes, se alejaba. A la luz le sucedía lo mismo que a la pelota que parte 
desde A hasta 8 : su tiempo de vuelo dependía de la distancia a una Tierra en 
movimiento. Parece que Huygens fue la primera persona que aprovechó los 
tiempos medidos por R0mer para calcular la velocidad de la luz, que estimó en 
214 000 km/s. Una razonable aproximación, teniendo en cuenta la imprecisión 
en los valores que se manejaban entonces para las distancias interplanetarias. 
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de la que depende la refracción extraordinaria, mientras los otros 
dos lados opuestos no se relacionan con ella». 

El principal logro de Huygens fue que aunque el rayo extraor­
dinario no respete la ley de Snell, sí se somete a su principio, des­
pués de introducir una serie de adaptaciones razonables. Vamos 
a considerar un fragmento de espato que refleje la distribución es­
pacial de sus átomos, responsables de sus peculiares propiedades 
ópticas. Obtenemos así un romboedro de seis caras iguales. Cada 
una de ellas presenta un rombo con dos ángulos obtusos de 102º y 
dos ángulos agudos, de 78º. Se disponen de modo que tres ángulos 
obtusos coincidan en dos vértices opuestos. En el resto de vértices 
se encuentran dos ángulos agudos y uno obtuso. 

Para construir el rayo extraordinario, Huygens se apoya en un 
elemento de simetría del cristal: su eje óptico. En realidad, más 
que un eje, se trata de una dirección: la única en la que la luz no se 
divide al incidir sobre una cara del mineral. Para localizarla en la 
práctica, basta con rotar el cristal frente a un rayo luminoso, hasta 
que quede orientado de manera que desaparezca uno de los dos 
rayos que lo atraviesan. También se puede determinar recurriendo 
a la geometría. Se parte de uno de los vértices donde coinciden 
tres ángulos de 102º y se traza una línea imaginaria que forme el 
mismo ángulo con las tres aristas que coinciden en el vértice. El 
caso más sencillo se da cuando todos los lados del cristal son 
iguales (figura 12). Entonces basta con trazar una recta que una 
las dos esquinas opuestas de tres ángulos obtusos. 

FIG. 12 

e Carbono 

O Oxígeno 

O calc io 

Eje óptico 
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FIG. 13 

Eje menor 
y diámetro 

FIG. 14 

: Eje óptico 

Eje mayor 

Rayo extraordinario 

Una vez identificado el eje 
óptico del cristal, disponemos de 
todos los elementos necesarios 
para producir los frentes, invo­
cando el principio de Huygens. La 
principal novedad consiste en que 
cada punto del cristal que reciba 
la perturbación del frente lumi­
noso se convertirá en generador 
de dos clases de frentes secunda-
rios, que se expandirán hacia de­
lante. Uno de ellos será esférico 
y dará cuenta del rayo ordinario. 
El segundo adoptará la forma de 
un huevo o, con más precisión, 
de un elipsoide. 

Referencia , Los elipsoides presentan 
menos simetría que las esferas: 
su aspecto cambia en función 
de cómo se orienten. ¿En qué di­
recciones hay que disponer sus 
ejes? La respuesta viene dada por 
las propiedades geométricas del 
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eje óptico~ 

FIG. 15 Rayo ordinario 

cristal. Los elipsoides se orientan 
de modo que su eje menor quede 
paralelo al eje óptico. La longitud 
de este eje menor coincide con el 
diámetro de las esferas, puesto 
que la velocidad de propagación 
de ambos frentes es la misma a 
lo largo del eje óptico. En los di­
bujos, bidimensionales, el frente 
ordinario vendrá dictado por cír-
culos crecientes y el secundario, 
por elipses (figura 13). 

Vamos a seguir paso a paso la evolución del rayo extraor­
dinario (figura 14). Como en el caso de la refracción normal, el 
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frente de ondas que llega desde el aire toca en un primer punto A 
la superficie del cristal, desatando un frente secundaiio. Cuando 
el frente en el aire alcanza B, en A ha crecido un elipsoide, cuyo 
eje menor es paralelo al eje óptico. Para una mayor claridad se 
han dibujado las elipses completas, pero la parte que queda en el 
aire no juega ningún papel. Como en la refracción ordinaria, los 
frentes secundarios solo crecen en el interior del cristal. Para de­
tem1inar el aspecto del frente extraordinario en un instante dado, 
basta con generar la superficie que envuelve todos los elipsoides. 
La dirección del rayo será perpendicular al frente, como siempre. 
En las figuras 14 y 15 se muestra en paralelo la construcción de 
los dos frentes. 

Llama la atención todo el espacio que dedica Huygens a des­
cribir la construcción geométrica de estos dos frentes en el Traité 
de la lumiere y el poco que reserva a su justificación física. ¿Por 
qué se genera en el espato de Islandia un segundo frente elipsoi­
dal y no en el resto de materiales transparentes conocidos hasta 
entonces? Huygens se limita a apuntar lo siguiente: 

Me parece que la disposición, o el orden regular, de estas partículas 
[que componen el cristal] contribuye a la formación de las ondas 
esferoidales (no se requiere nada más, para ello, que el movimiento 
sucesivo de la luz se propague un poco más deprisa en una dirección 
que en otra) y apenas albergo dudas de que en el cristal exista una 
disposición tal de partículas iguales y semejantes, debido a su forma 
y a sus ángulos de medida definida e invariable. 

Las esferas corresponden a un desplazamiento de la luz igual 
en todas las direcciones. La ruptura de esta simetría defom1a la 
esfera, estirándola en las direcciones del cristal donde la luz se 
propaga más deprisa y generando el elipsoide. Pero de nuevo: 
¿por qué el espato de Islandia da lugar a esta asimetría? Huygens 
sugiere que la respuesta hay que buscarla en la disposición de las 
partículas que forman el cristal, pero tampoco ofrece más pistas. 
Desde luego, él era consciente de que su propuesta no proporcio­
naba una solución completa. Huygens cierra su estudio del es­
pato haciendo referencia a cómo la doble refracción desaparece 
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cuando la luz se hace pasar por un segundo cristal. En un rasgo 
de honestidad científica presenta el fenómeno como un problema 
abierto: 

Aunque no he sido capaz hast.a ahora de hallar la causa, no por esa 
razón me resisto a describirlo, para ofrecer a otros la oportunidad 
de investigarlo. 
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CAPÍTULO 4 

El tiempo en sus manos 

El tiempo acabó siendo una de las 
conquistas más sutiles y fundamentales de 

la revolución científica del siglo XVII. Huygens fue 
el primero en construir un reloj con la suficiente precisión 

para merecer el calificativo de instrumento científico. 
El diseño de su reloj de péndulo presenta otra 

perfecta simbiosis de geometría, 
física y mecánica. 





París ofreció a Huygens todo lo que había ido a buscar: quince 
años de intensa actividad en uno de los centros neurálgicos de la 
ciencia institucional. El precio que tuvo que pagar a cambio fue 
una dosis considerable de su cordura. En enero de 1670, después 
de una fuerte helada, sufrió una indisposición que en principio se 
atribuyó a un enfriamiento. La naturaleza de su mal, sin embargo, 
pronto reveló raíces más profundas. No solo había enfermado 
el cuerpo, también el espíritu. Un mes después, Francis Vemon, 
secretario del embajador inglés, lo visitó y lo encontró postrado 
en la cama, rodeado de manuscritos, desplegados sobre las sába­
nas. Eran las obras que durante décadas no había tenido prisa por 
completar. Vemon detectó en Huygens síntomas alam1antes: 

Su debilidad y la palidez de su rostro dejaban bien claro hasta qué 
punto la enfermedad había menoscabado su salud. Y, no solo eso, 
observé algo peor, algo que ningún ojo alcanza a penetrar y ningún 
sentido a discernir. Se trataba de una disolución del espíritu, de una 
increíble necesidad de dormir, que él entendía tan poco como quienes 
le atendían. Al no saber a qué atenerse, se ha preparado para lo peor. 

Convencido de que se hallaba a las puertas de la muerte, 
Huygens había reunido todos los descubrimientos de valor que 
no había publicado y le rogó a Vemon que los hiciera llegar a la 
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Royal Society. Al dar este paso, dejaba claro que sus compañeros 
de la Acaderrúa no le merecían demasiada confianza. Quizá el se­
cretario del embajador inglés pecó algo de chauvinismo y exageró 
las opiniones de Huygens. Quizá no: 

Dijo que auguraba la desintegración de la Academia, porque la veía 
contaminada con todos los matices de la envidia, porque se susten­
taba en las expectativas de beneficio, porque dependía por comple­
to del humor de un principe y del favor de un ministro. En caso de 
que cualquiera de ellos viera remitir su entusiasmo, la estructura 
entera del proyecto de la asamblea quedaría condenada. 

La incertidumbre sobre el desenlace de la enfermedad se 
alargó durante semanas. Huygens se mostraba bajo la influencia 
de su planeta talismán, Saturno, a quien la tradición atribuía el 
humor melancólico. Recibió la visita de Antaine Vallot, el médico 
real, pero, tres siglos antes de que se sintetizara el Prozac, el único 
remedio contra la depresión consistía en evitar la leche entera, 
que, al parecer, agravaba la tristeza. En cuanto se vio con fuerzas 
para resistir el largo viaje de regreso a casa, dejó atrás el norte de 
Francia y se recluyó en su vieja casa de La Haya. Allí pasó lo que 
quedaba de invierno. La atmósfera farrúliar y el cariño de sus pa­
rientes y arrúgos conjuraron poco a poco la sombra que lo cubría 
y hacia finales de año pudo pensar en retomar su vida. 

UN HOLANDÉS EN PARÍS 

A su regreso a París Huygens halló cualquier cosa menos sosiego. 
El año de 1672 pasaría a la historia como «el año del desastre» 
para los holandeses. Tuvieron que encarar una guerra que parecía 
imposible ganar, que les estalló en cuatro frentes, contra Fran­
cia, Inglaterra, Münster y Colonia. Al asomarse a la ventana de 
su dorrúcilio parisino, Huygens escuchaba los vítores, el estrépito 
de los carros y de los soldados enardecidos que se dirigían a su 
tierra para conquistarla. En un gesto que muchos compatriotas no 
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le perdonaron, dedicó la que consideraba su obra magna, el Ho­
rowgium oscillatorium, a Luis XIV. El tratado, que gira en torno 
al reloj de péndulo, salió de prensas francesas meses después de 
que se iniciaran las hostilidades y se abre con un encendido elogio 
al monarca. Cuando los holandeses que residían en Francia reci­
bieron la orden de abandonar el país, se hizo una excepción con 
Huygens. El otoño trajo hasta la puerta de la Biblioteca del Rey 
a un joven de veintiséis años, llamado Gottfried Wilhelm Leibniz, 
que quería aprender matemáticas. Huygens aceptó el encargo de 
instruirlo y así se inició una amistad en la que no tardarían en 
invertirse los papeles de maestro y alumno. 

Huygens hallaba en la ciencia un espacio donde refugiarse 
de los rigores del mundo, pero el placer que extraía de ella le aca­
rreaba cada vez más efectos secundarios. Ya no era el joven pro­
metedor que se dejaba guiar únicamente por la curiosidad, que se 
enfrascaba durante horas en el pulido de lentes, a solas o con su 
hermano, y al que los astrónomos y matemáticos animaban, sin 
considerarlo un rival. El ejercicio profesional de la ciencia y la 
dirección de una institución que debía responder ante un rey y sus 
ministros lo expusieron a intrigas, pugnas académicas y envidias 
que lo desequilibraban profundamente. En París, como represen­
tante de una nación enemiga que cobraba un sueldo exorbitado, 
estaba sometido a la presión añadida de obtener resultados que 
justificaran su posición. El afán por ocupar su puesto o las in­
quinas personales encontraron entonces una expresión aceptable 
si sabían disfrazarse bajo el rechazo al extranjero, al espía o al 
hereje. Para completar el cuadro, en la década de 1670 se vio en­
vuelto en una serie de polémicas agrias, con adversarios que des­
tacaban poco por su diplomacia o su carácter contemporizador. 
Entre ellos figuraba uno de los miembros más sobresalientes de la 
Academia, Gilles de Roberval, autor de la hipótesis de que los ani­
llos de Saturno se debían a vapores que emanaban de su ecuador. 
Descrito como un hombre de «genio irreflexivo, irascible e impa­
ciente en la discusión», atacó las ideas de Huygens sobre gravi­
tación. El prolífico y suspicaz Robert Hooke también lo convirtió 
en el blanco de sus burlas, cuando estimó que pretendía arreba­
tarle el descubrimiento del reloj de muelle. La misma invención lo 
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enfrentó al relojero real, Isaac Thuret, que, después de introducir 
mejoras en su diseño original, quiso apropiárselo. Huygens era un 
científico que disfrutaba del esfuerzo por desentrañar, que vivía 
enganchado a la emoción del hallazgo, pero sentía pereza ante el 
proceso de publicación y aborrecía los conflictos derivados de su 
actividad corno investigador. 

En el ámbito privado tampoco le faltaban motivos para la me­
lancolía. A medida que pasaban los años, la singularidad que exhi­
bía su genio científico se extendía a la vida doméstica. Fue viendo 
cómo uno tras otro sus hermanos formaban una familia. En 1660 
se casó Susanne; en 1668, Constantijn; y en 1674, Lodewjjk. A este 
último Huygens le refirió así el descubrimiento del reloj de muelle: 

Tú tienes un hijo hermoso y yo, una hija invención, que es hermosa 
a su manera. Gozará de una larga vida, en compañía de su hermana 
mayor, el péndulo, y su hermano el anillo de Saturno, como los hijos 
del buen Epaminondas. 

El general griego al que aludía tampoco se casó ni tuvo hijos, 
circunstancia que le afearon los tebanos, por privar al Estado de la 
riqueza de sus genes. A diferencia de Eparninondas, a Huygens la 
cuestión sí parecía preocuparle. A través de su correspondencia, 
se entreven diversas relaciones sentimentales, donde no faltan 
varios conatos de matrimonio que, corno muchas de sus obras, 
nunca llegó a rematar. Al final de su vida, la soledad sería para él 
una condena. 

Si la primera depresión atacó por sorpresa, se acumulaban 
los pretextos para una recaída. Su situación en Versalles se volvía 
más delicada conforme Francia veía alejarse la posibilidad de in­
vadir los Países Bajos. Corno tantas guerras que se eternizan, esta 
se había iniciado con Ía confianza en un triunfo fácil. Sin embargo, 
los holandeses habían tornado buena nota de las enseñanzas de 
Sirnon Stevin. Abrieron las esclusas para convertir el país en una 
isla inexpugnable y mostraron su maestría en el arte de construir 
fortificaciones. 

Hasta qué punto el conflicto alentó la animadversión gala 
contra la patria de Huygens se aprecia en la huella que dejó en su 
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EL TELESCOPIO INVERSO 

La microscopía fascinó a Constantijn Huygens padre, que presumía de llevar 
siempre encima una poderosa lente de aumento, hábito en el que lo había 
iniciado el inventor Cornelijs Drebbel, durante su etapa como embajador en 
Londres. Su principal contribución en este campo fue difundir, con la ayuda 
de su hijo Christiaan, la obra de su compatriota Antoni van Leeuwenhoek, que 
no sabía latín. Leeuwenhoek, de formación autodidacta, poseía una asombro­
sa destreza para confeccionar microscopios de una sola lente con diámetros 
milimétricos. Su curiosidad perspicaz y di'sciplinada lo convirtió en el primer 
gran explorador de la vida a una escala diferente de la humana (con permiso 
de Robert Hooke). En los charcos, en la saliva, en el semen, sorprendió una 
miríada de criaturas diminutas, de «animálculos», como él los llamaba, que 
exhibían insólitos diseños naturales. El más llamativo de sus descubrimientos 
fueron los espermatozoides, que revolucionaron las teorías sobre el mecanismo 
de generación de los seres vivos. Huygens no se podía conformar con traducir 
los textos de Leeuwenhoek y copiar sus dibujos. Aplicó sus estudios sobre la 
aberración esférica y su conocimiento matemático de la refracción a mejorar las 
configuraciones de lentes de los microscopios y la iluminación de las muestras. 
También observó infusorios (organismos unicelulares acuáticos) y bacterias. 
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Microscopios diseñados por Leeuwenhoek. 
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folclore. En el sitio de Maastricht mmió D'Artagnan ( el personaje 
de Dumas y el capitán de la guardia de mosqueteros que lo ins­
piró) y la guerra dio origen a una canción popular, que se canta 
aun hoy en día, Aupres de ma blande («Al lado de mi rubia»), 
donde una joven llora a su marido, que «se llevaron los holande­
ses». En un juego de asociaciones libres era muy posible que al 
ofr la palabra «Huygens» cualquier francés respondiera «Orange» 
y Luis XIV debía de ver al director holandés de su muy regia Aca­
demia cada vez con menos simpatía. En gran medida, si Huygens 
pudo permanecer en París fue gracias a la tutela de Colbert. 

A finales de febrero de 1676, Constantijn hace sonar de nuevo 
las alarmas, en una carta a un amigo: «No me abandona una gran 
inquietud por la afección melancólica que mi querido hijo viene su­
friendo desde hace algún tiempo en París». Una semana más tarde 
se desespera: «No sé qué se supone que debo pensar de esta do­
lencia. No tiene fiebre y los médicos me aseguran que no tengo por 
qué temer nada grave. Pero la enfermedad ha calado hondo [ . .. ] ». 

EL REGRESO A HOLANDA 

En marzo, Huygens se apresuró a volver a La Haya. Esta vez alargó 
cuanto pudo la convalecencia, dominado por las dudas acerca de 
la conveniencia de su regreso. Quizá el reencuentro con las viejas 
herramientas que había utilizado en la fabricación de telescopios 
reavivó su fascinación por la dióptrica, y trató de mantener a raya 
sus fantasmas entregándose al diseño de microscopios. 

Huygens no reunió el ánimo suficiente para volver a París hasta 
junio de 1678. La depresión se le había pegado igual que una som­
bra, o una suerte de fiebres tercianas, que tan pronto se aplacaban 
como resurgían. Cada invierno el frío y la falta de luz precipitaban 
la crisis. A comienzos de 1681 emprendió la enésima retirada. En 
su lenta recuperación solo le confortó una certidumbre: «No quiero 
permanecer en Francia, porque allí he caído enfermo en tres oca­
siones y temo volver a hacerlo». Quizá Huygens había entrevisto 
una secreta relación entre París y su padecimiento, una intuición 
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ominosa de que si volvía sería para morir a orillas del Sena. En 
cualquier caso los franceses parecían tan interesados como él en 
ahorrarle ese trance. La muerte de uno de sus principales valedo­
res, Colbert, en 1683, y la revocación, dos años después, del edicto 
de Nantes, que amparaba la libertad religiosa de los súbditos pro­
testantes, liquidaron su atormentado idilio con Francia. 

«Dedico una parte del poco tiempo que me queda a dejar 
resueltos los asuntos de mi querido Arquímedes.» 

- CONSTANTIJN HUYGENS, EN UNA CARTA A HENRI DE BERINGHEN. 

En abierto contraste con la fragilidad de Huygens, su padre 
parecía indestructible. A los ochenta años había orquestado un re­
tiro gradual de la vida pública, después de ceder el testigo a su hijo 
mayor. La gota le impedía tocar instrumentos musicales y se con­
solaba añadiendo versos a un torrencial poema sobre la vejez, en 
el que daba la impresión de conversar más con los muertos ( «las 
sombras sin lengua», como él los llamaba) que con sus últimos 
amigos. Seis décadas de actividad frenética velando por los intere­
ses de reyes y príncipes le habían dejado un poso amargo, que se 
trasluce en el epitafio que compuso a la muerte de su perro: «Ojalá 
(y si fuera así, el mundo no sería peor) mi perrito estuviera vivo, 
y todos los grandes del mundo, muertos». Su preocupación había 
pasado de los asuntos de Estado al bienestar de su hijo Christiaan. 
Le ofreció el cargo que ocupaba al servicio de Guillermo III, pero 
Huygens estaba harto de la esclavitud de la corte. En el mismo 
mar de intereses, estrategias y maniobras donde su padre toda­
vía se desenvolvía como pez en el agua, él se ahogaba. Entonces 
Constantijn se aseguró de que recibiera una parte del estipendio 
que le aportaba la casa de Orange. 

Lúcido hasta el final, Constantijn Huygens no llegó a celebrar 
su noventa y un cumpleaños. Murió el Viernes Santo de 1687. Para 
el cortejo fúnebre se engancharon quince coches enlutados, que 
colapsaron el tráfico de La Haya, en lo que parecía un funeral de 
Estado. En el reparto de la herencia, la casa de la Het Plein fue a 
parar a manos del hijo mayor y Huygens se trasladó a Hofwijck, 
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la residencia familiar de verano, donde se retiró a sobrellevar su 
duelo. A los cinco días de instalarse allí, sintió la mudanza como 
un destierro: 

Durante este tiempo todavía no he ido a La Haya, ni he recibido no­
ticias de la ciudad. Lo que me ha proporcionado un anticipo de la 
existencia solitaria a la que me debo ir acostumbrando. 

LOS «PRINCIPIA» Y EL VIAJE A LONDRES 

Huygens alivió el rigor de la soledad con la lectura de un volumi­
noso best seller: los Philosophiae naturalis principia mathema­
tica ( «Principios matemáticos de la filosofía natural») de Newton. 
Antes de que Edrnund Halley le hiciera llegar un ejemplar, ya le 
habían prevenido de que Newton se atrevía a cuestionar a Des­
cartes. Poco le podía inquietar a Huygens que otros incurrieran 
en uno de sus vicios favoritos: «Me da igual que no sea cartesiano, 
siempre y cuando no nos venga con supercherías tales como la 
atracción». Se refería a la noción de acción a distancia, es decir, 
a la posibilidad de que dos cuerpos puedan influirse mutuamente 
sin que medie un intercambio mecánico, como una colisión. Huy­
gens se desvaneció de la faz de la tierra durante meses. Cuando 
retomó su correspondencia en noviembre, fue para anunciar a su 
hermano Constantijn un pequeño cambio de aires: 

He pasado todo el invierno en Hofwijck, lo que me ha deparado unas 
cuantas noches miserables cuando el tiempo era malo. Pero uno se 
termina acostumbrando a todo[ ... ]. Me gustarla visitar Oxford [Cam­
bridge, en realidad], aunque solo sea para conocer a Newton. Des­
pués de leer la obra que me envió, siento una gran admiración hacia 
sus excelentes descubrimientos. 

Newton y Huygens podían no ponerse de acuerdo en asun­
tos científicos, pero se respetaban. Newton elogiaba sobre todo 
la geometría física de Huygens, su manera de hacer. Cuando Ri-
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chard Bentley, insigne humanista de la Universidad de Oxford, le 
pidió consejo antes de sumergirse en la lectura de los Principia, 
le hizo la siguiente observación: «Si puede conseguir un ejemplar 
del Horologium oscillatorium de Huygens, su examen cuida­
doso le dejará mucho más preparado». Según Henry Pemberton, 
responsable de la tercera edición de los Principia, Newton «le 
consideraba el más elegante entre los escritores matemáticos mo­
dernos y el más perfecto seguidor de los antiguos» . 

En la obra de Newton, Huygens apreciaba una soberbia des­
cripción matemática, a la que no terminaba de encontrar sentido fí­
sico. ¿De dónde surgía, por ejemplo, la gravitación? A este respecto, 
él se consideraba mucho más próximo al enfoque de Descartes, 
que había tratado de explicarla mediante la colisión de partículas 
de éter, que desviaban los cuerpos, aproximándolos. Para Huygens 
resultaba inconcebible que la materia ejerciera una atracción de 
forma instantánea por su mera presencia, sin ningún proceso de 
propagación. Era como el sortilegio de un mago que agita su varita 
y hace levitar a un ayudante. Cualquier perturbación física tenía 
que transmitirse mediante el contacto directo entre masas, como 
ocurría en su teoría de la luz. En su juicio sobre los Principia se 
mezclan en la misma medida admiración y discrepancia: 

Tengo en alta estima su discernimiento y su sutileza, pero creo que 
el autor los aplica a un fin equivocado en la mayor parte de la obra, 
allí donde estudia asuntos de escasa utilidad o cuando se apoya en 
el improbable principio de atracción. 

En todos los sentidos, el libro le parecía un derroche de inte­
ligencia. «No se ha producido nada mejor ni más astuto en tomo 
a estas materias», reconoció. 

Cuando llegó a Londres a mediados de junio, se sintió más 
en casa que en ninguno de sus anteriores viajes al extranjero. Dos 
meses atrás, un natural de La Haya, Guillermo III, había sido co­
ronado rey de Inglaterra en la abadía de W estminster y entre su 
séquito importado de Holanda destacaba su hermano Constantijn. 
Sin ninguna exigencia institucional a la que someterse, Huygens 
disfrutó a fondo de la visita. En el Gresham College tuvo lugar una 
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de las sesiones más singulares e irónicas en la historia de la cien­
cia. Huygens dictó una conferencia sobre la gravedad y Newton 
correspondió con otra sobre la doble refracción del espato de 
Islandia. Ambos tuvieron oportunidad de hablar largo y tendido 
durante el verano, aunque no conocemos los detalles de sus con­
versaciones. Más tarde, Huygens mencionaria de pasada a Leibniz 
que Newton le había referido «unos cuantos experimentos esplén­
didos». Huygens intentó aprovechar la influencia de su familia en 
el nuevo rey para promocionar a Newton al puesto de director del 
King's College de Cambridge, sin éxito. También se reencontró 
con Boyle, que le recibió con todos los honores en su laboratorio. 

EL CÁLCULO INFINITESIMAL 

La estancia en Londres, en compañía de una de las sociedades 
científicas más brillantes, volvió intolerable la austeridad de Hof­
wijck. «Me resulta imposible pasar el invierno aquí, en esta sole­
dad», se apresuró a escribir a Constantijn. El ánimo de Huygens 
vacilaba entre Escila y Caribdis. Era incapaz de soportar las ten­
siones y servidumbres de la Academia, pero tampoco se avenía 
con la vida de ermitaño. No halló la paz de espíritu ni en Versa­
Hes ni en la campiña holan<;iesa. A finales de año, trató de buscar 
un nuevo equilibrio, alquilando un apartamento en la calle Noor­
deinde, en La Haya. A partir de entonces pasaria la mitad del año 
en el campo y la otra mitad, en la ciudad. 

En febrero de 1690 retomó su correspondencia con Leibniz 
para enviarle el Traité de la lumiere. Encontró a su antiguo pu­
pilo en plena forma y convencido de que había inventado una he­
rramienta matemática revolucionaria: el cálculo infinitesimal. Al 
principio, con sinceridad, Huygens consideró el procedimiento 
«bastante oscuro». Sin embargo, había logrado despertar su curio­
sidad. Para satisfacerla, Leibniz le dictó un cursillo acelerado por 
correo. Cuando dejó de parecerle oscuro, no le encontró la gracia. 
Huygens fue capaz de resolver cualquier problema que Leibniz le 
planteara para demostrar la superioridad del cálculo mediante sus 
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refinados despliegues geométricos. En respuesta a una carta del 
matemático francés Guillaurne de L'Hópital, que discutía la misma 
cuestión, comentó: «No veo necesario el método de cálculo del 
señor Leibniz en este asunto y tampoco creo que sea tan útil corno 
él parece pretender». Para quienes carecían del virtuosismo de 
Huygens, sin embargo, este nuevo lenguaje, en el que se iba a ex­
presar el grueso de la física hasta el siglo xx, llegó corno llovido del 
cielo. Huygens desarrollaba una estrategia original a la medida de 
cada problema, mientras que el cálculo ofrecía una técnica para 
tratarlos y resolverlos de forma sistemática. El invento de Leibniz 
(y también de Newton, que desató una verdadera guerra de atribu­
ción) dio un impulso extraordinario a la física matemática. Permi­
tió derivar con sencillez resultados que de otro modo dependían 
de análisis laboriosos o de un golpe de genio. Su principal virtud 
para la mayoría suponía el principal defecto para Huygens, porque 
a su juicio, al suministrar fórmulas prefabricadas, entorpecía la 
relación entre su intuición física y los fenómenos. 

EL «COSMOTHEOROS» 

Mientras su mente se mantuvo lúcida, siguió alin1entando su cu­
riosidad científica. Quizá para conjurar una Tierra que cada vez 
le resultaba más inhóspita, en su última obra Huygens proyectó 
su imaginación más allá de las nubes. En el Cosmotheoros se em­
barcó en un recorrido cósmico, en el que los humanos, con sus 
miserias, quedaban relegados a un plano muy secundario. Sus 
páginas contienen un ameno repaso de sus descubrimientos as­
tronómicos. También plasmó en ellas su visión física del mundo, 
aprovechó una vez más para criticar a Descartes y, finalmente, se 
entregó al puro placer de la especulación. Aceptó que había vida 
inteligente en el resto de planetas y trató de deducir su anatomía y 
cómo se organizarían sus sociedades. Soñó con animales que mul­
tiplicaban por quince el tamaño de los elefantes y que atravesaban 
las planicies de Júpiter, y con habitantes de Venus con mejores 
aptitudes musicales que los hun1anos. Con el Cosmotheoros Huy-
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gens anticipó el tono de la ciencia ficción «dura», ya que sometió 
su fantasía a los límites de los conocimientos de la época. El libro 
adopta el formato de dos cartas extensas dirigidas a su hermano 
Constantijn. Al leerlas, se tiene la sensación de asistir a una de las 
conversaciones que debieron de mantener en su juventud, en una 
noche estrellada cualquiera, mientras escudliñaban el cielo con 
los telescopios que habían fablicado juntos. 

«Por decirlo en pocas palabras, fue uno de los grandes 
ornamentos de nuestro tiempo.» 
- ELOGIO DE LEIBNIZ A HUYGENS. 

132 

A su regreso de Londres, Huygens se había visto abrumado 
por la sensación de que clausuraba una gira de despedida. Anotó 
en un cuaderno una especie de diálogo interior, donde reflejaba 
parte de sus inquietudes: 

¿Te gustaría ser inmortal? ¿Por qué no, siempre y cuando se te con­
ceda un cuerpo fuerte y sano y una mente fuerte y sana? Pero si la 
vejez trae consigo decadencia física y debilidad mental, ¿no preferi­
rías entonces morir o bien procurarte una salida por tus propios 
medios? 

A sus sesenta y cinco años, Huygens no albergaba ya ningún 
anhelo de inmortalidad. La mala salud le iba arrebatando cada vez 
más horas y más días. Un despojamiento progresivo que aceptaba 
con resignación: «Veo que uno termina por acostumbrarse a todo 
esto». Su inteligencia, su plincipal aliada frente a los infortunios, 
se acabó convirtiendo en su peor enemiga: «La mente infecta todo 
lo que toca de una miserable enfermedad». En marzo de 1695 
mandó llamar a un abogado para dejar listo su testamento. En él 
manifestó su deseo de que Constantijn se hiciera cargo de la publi­
cación del Cosmotheoros. Asumía que ya nunca vería el libro im­
preso. Mediada la primavera, su hermano abandonó el palacio de 
Whitehall y cruzó el mar para visitarlo en el piso de la Noordeinde, 
en La Haya. En los últimos momentos, Huygens vivió atormentado 
por el miedo a perder la razón. Se convenció de que trataban de 
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envenenarlo y se autolesionaba con cristales rotos. En la noche 
del 9 de julio, al fin, pudo descansar. 

LA DIVISIÓN DEL TIEMPO 

En su afán de retratar físicamente el movimiento de los cuerpos, 
Galileo se enfrentó al problema de medir el tiempo. Necesitaba re­
gistrar posiciones en instantes sucesivos, con suficiente precisión 
para luego ajustar las observaciones a patrones matemáticos. Las 
distancias se podían establecer con razonable exactitud, pero la 
variable temporal mostraba un comportamiento más escurridizo. 
Se pueden practicar en una vara muescas a distancias iguales, 
pero ¿qué método sirve para marcar intervalos semejantes en algo 
tan intangible como el tiempo? ¿Qué fenómenos de la naturaleza 
ofrecían la regularidad requerida para servir de escala? 

Quizá no sea casualidad que, dentro de la mecánica, los gran­
des avances de los antiguos se restringieran al campo de la está­
tica y al estudio de situaciones de equilibrio, donde los sistemas 
no cambian con el transcurso del tiempo. Los historiadores de la 
ciencia han polemizado sobre qué relojes pudo manejar Galileo 
para deducir las primeras leyes de la dinánüca. Hay quien sospe­
cha que utilizaba clepsidras, o relojes de agua; otros defienden 
que, siendo un intérprete consun1ado de laúd, se servía de ritmos 
musicales para generar intervalos de tiempo muy cortos aproxi­
madamente iguales. Tampoco faltó quien pusiera en duda que rea­
lizara experimento alguno, afirmando que sus leyes eran el fruto 
de especulaciones afortunadas. 

En 1961 un estudiante de doctorado de la Universidad de Cor­
nell, Thomas Settle, reprodujo en el salón de su apartamento com­
partido los experimentos que Galileo había descrito en la jornada 
tercera de los Discorsi. Cronometró el descenso de una bola de 
billar a lo largo de un plano inclinado, sirviéndose de un rudimen­
tario reloj de agua, que había fabricado con una maceta y un tubo. 
Recogió una colección de datos que no llegaban a desviarse una 
décinla de segundo de los valores teóricos. 
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Regresando al siglo XVII, el progreso en mecánica, y también 
en astronomía, demandaba relojes cada vez más precisos. Los 
gobernantes, libres en principio de toda inquietud científica, to­
maron cartas en el asunto por sus implicaciones náuticas y ofre­
cieron cuantiosas recompensas para incentivar la investigación. 
En un período en el que los barcos ya recorrían rutas comerciales 
aventuradas, cruzaban el océano Atlántico o bordeaban África 
para llegar hasta la India, los marineros todavía carecían de un sis­
tema fiable para localizar su posición en alta mar. Con frecuencia 

CRONOMETRANDO EL ESPACIO 

Para ubicar un punto cualquiera P sobre la superficie terrestre bastan dos 
números. El primero se obtiene cortando el planeta en una serie de rodajas 
paralelas al plano del ecuador. Cada rodaja se identifica mediante un ángulo 
que se llama latitud. Una vez que se selecciona una rodaja, ya solo queda 
establecer en qué punto de su circunferencia se sitúa P. Para ello se recurre 
a un segundo ángulo, la longitud. En el caso de la latitud, el ecuador sirve 
de referencia natural para medir los ángulos. Para la longitud hay que fijar 
una referencia convencional, el meridiano de Greenwich, que es un arco de 
circunferencia que va de polo a polo cruzando una localidad inglesa cercana 
a Londres. Sobre una esfera llena de accidentes geográficos que sirven de 
orientación y con ayuda de un buen mapa, resulta difícil extraviarse. Es lo que 
sucede en t ierra. El problema surge en una superficie desnuda, libre de puntos 
de referencia, como el mar. ¿cómo averiguan los marineros su posición a lo 
largo de una travesía prolongada y rica en percances? 

Latitud y longitud 
La rotación de la Tierra proporciona un norte y un sur (un eje) y un ecuador 
naturales. Su movimiento hace que los cuerpos celestes se desplacen para 
los observadores terrestres, marcando referencias. Al medir el ángulo entre el 
horizonte y el Sol (de día) o la Estrella Polar (de noche, en el hemisferio norte; 
en el austral, la Cruz del Sur), se puede determinar la latitud. Con la longitud 
hay que proceder de otro modo. La Tierra completa una vuelta alrededor de 
su eje cada 24 horas, así que cada hora rota 15º (24 h -15º/h = 360º). Si nos 
situamos sobre el polo Sur, veremos que la Tierra se comporta igual que una 
ruleta que gira 15º cada hora en el sentido de las agujas del reloj. Podemos 
iniciar la observación en el momento en que Greenwich (G) enfrenta al Sol. En 
ese instante allí será mediodía y para sus habitantes el Sol se encontrará en 
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se perdían, enfrentado a la tripulación a la muerte por inanición, 
por escorbuto o al naufragio. La solución práctica al llamado «pro­
blema de la longitud» parecía residir en la medición del tiempo, 
con instrumentos que fueran capaces de arrostrar, como las brú­
julas, cualquier zozobra que comprometiera la travesía. 

Huygens se aproximó a los relojes con el mismo ánimo con 
el que había abordado los telescopios: el de construir un instru­
mento perfecto. Para ello examinó la cuestión bajo todos los án­
gulos, tanto técnicos como físicos y matemáticos. Tampoco pudo 

el punto más alto respecto al horizonte. A cada hora que pasa, Greenwich se 
aleja del punto de mediodía 15º. A medida que progresa la rotación, todos los 
puntos de la Tierra irán experimentando su mediodía (despreciamos aquí 
los efectos que introduce la inclinación del eje). Para el punto A, que está a 15º, 

ocurre una hora después que en G; en B, a 30º, a las dos horas; en Ñ, a 225º, 

quince horas después. Por ello, un marinero que navegue con un reloj que 
mantenga la hora local de Greenwich, podrá determinar su posición. Cuando 
el Sol alcance el punto más alto sobre el horizonte (su mediodía) un vistazo 
al reloj le indicará la diferencia horaria con Greenwich y con ella, los grados 
que lo separan de este meridiano: su longitud. 

Tierra 105º 90 º 75º 
120º 60º 

240º 
p Q R 

300º 

255º 270º 285° 

Dirección 
al Sol 
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evitar que, a lo largo del camino, su curiosidad divagara y lo detu­
viera a examinar con más detalle muchos aspectos accesorios. Y 
a la inversa, en el proyecto también aplicó resultados de investiga­
ciones previas, como su estudio del movimiento circular. 

Los relojes que marcaron las horas y los minutos de los fa­
raones o los césares aprovechaban fenómenos naturales que 
progresan a un ritmo regular, como el movimiento del Sol o la 
consunción de una vela, o cuya constancia propicia acciones con 
la misma duración -como la caída de un puñado de arena de un 
recipiente a otro bajo el influjo de la gravedad-. El reloj de pén­
dulo llevó a cabo la transición hacia un planteamiento más so­
fisticado: la explotación de fenómenos periódicos, cuya esencia 
consiste en repetir un mismo proceso ciclo tras ciclo. 

Identificar un fenómeno periódico es como encontrar una 
regla en la naturaleza que ya trae marcadas las divisiones tem­
porales iguales. La frecuencia de la luz o del sonido constituye 
un buen ejemplo. La escala atómica ofrece un catálogo completo 
de fenómenos periódicos, inaccesibles para la tecnología humana 
hasta el siglo xx. Hoy en día, la mayoría de los relojes sigue el 
ritmo que marcan las vibraciones de un cristal de cuarzo sometido 
a un pequeño voltaje. 

Los científicos del siglo XVII tuvieron que ganarse los movi­
mientos periódicos con el sudor de su frente. Cuenta la leyenda 
que en sus tiempos de estudiante, asistiendo a una misa en la ca­
tedral de Pisa, Galileo se fijó en el vaivén de una lámpara que 
colgaba del techo y que acababan de encender. Valiéndose de su 
propio pulso -otro fenómeno natural más o menos periódico­
como cronómetro, llegó a la conclusión de que el tiempo invertido 
en cada oscilación era el mismo, a pesar de que el rozamiento con 
el aire iba acortando la amplitud de las oscilaciones. Galileo tar­
daría décadas en relacionar este episodio con los relojes. Según su 
discípulo Vincenzo Viviani, el chispazo de inspiración le sobrevino 
en el último año de su vida: 

Recuerdo que un día de 1641, mientras vivía con él en la villa de 
Arcetri, se le ocurrió la idea de adaptar el péndulo a un reloj con 
pesos o resortes( ... ]. Él esperaba que el movimiento natural y muy 
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regular del péndulo paliara cualquier defecto en el arte de los relojes. 
Sin embargo, como su ceguera le impedía llevar a cabo los dibujos 
y modelos necesarios, y como su hijo Vincenzo vino un día desde 
Florencia a Arcetri, Galileo le contó la idea y varias conversaciones 
siguieron. 

Se desconoce el alcance exacto de estas discusiones. Según 
parece, Vincenzo Galilei intentó llevar a la práctica el proyecto de 
su padre. De ser el caso, no logró un mecanismo que funcionara 
de modo satisfactorio, puesto que no lo divulgó. El propio Huy­
gens trató de zaajar el debate sobre la prioridad en la introducción 
de su Horologium oscillatorium: «A pesar de los rumores que 
cualquiera puede difundir, el desarrollo y construcción de estos 
[relojes] debe por entero su origen y perfeccionamiento a mis cui­
dadosas reflexiones». 

¿En qué consistía la invención en disputa? Vamos a comenzar 
con el diseño de un reloj extremadamente rudimentario. Consta 
de un tambor, al que enrollamos una cuerda atada a un peso. Se 
puede insertar una manecilla en el eje o en otro disco que se aco­
ple al cilindro mediante engranajes. Al soltar el peso, la gravedad 
tirará de él y pondrá el tambor en movimiento, haciendo girar la 
manecilla. La vida de este reloj resultará ef'unera, puesto que la ro­
tación se detendrá en cuanto el peso alcance el suelo o la cuerda 
se desenrolle del todo. 

Una primera mejora, por tanto, consiste en ralentizar la caída. 
Se puede recurrir a uno de los sistemas de freno más elementales: 
la fricción. Sin embargo, resulta difícil de ajustar de modo que el 
tambor complete una vuelta justo cada minuto, por ejemplo. Por 
otro lado, el propio rozamiento introduce un desgaste severo en 
el mecanismo que, de todos modos, tampoco operaría de manera 
uniforme, ya que es muy sensible a las condiciones atmosféricas, 
como la temperatura y la humedad. 

A finales del siglo XIII los relojeros incorporaron un refina­
miento técnico que permitía frenar la caída del peso y dotar a 
la rotación del tambor de un ritmo acompasado: el escape. Hay 
quien atribuye su invención a Villard de Honnecourt, un personaje 
envuelto en brumas de leyenda. La única fuente de información 
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acerca de su vida se reduce a un puñado de comentarios sueltos 
en treinta hojas de pergamino, que acompañan diseños de autó­
matas y máquinas de movimiento perpetuo. El escape primitivo se 
compone de una rueda dentada, la corona, y un eje con dos pale­
tas, sobre el que se arma un bastidor horizontal o balancín del que 
cuelgan dos contrapesos (figura 1). Las paletas forman un ángulo 
de unos 90º, de modo que solo una de ellas entra en contacto cada 
vez con la corona. La corona y el eje giran en direcciones perpen­
diculares. Ambos elementos se comunican a base de golpes. El eje 
vertical va alternando su sentido de giro, a impulsos de los bofeto­
nes sucesivos que le propinan los dientes a las paletas, mientras el 
peso progresa siempre hacia abajo, arrastrando el cilindro. Cada 
impacto de un diente contra una paleta, a su vez, frena momentá­
neamente el giro de la corona y, por tanto, del cilindro. 

FIG. l 

EL TIEMPO EN SUS MANOS 

Oscilación del eje 
con los contrapesos 



Los dientes de la corona presentan un canto recto y otro 
curvo. Los rectos son los que mantienen el vaivén del eje. Al gol­
pear la paleta superior, lo impulsan en un sentido y al golpear 
la paleta inferior, en el contrario. El mismo impacto que aparta 
una paleta del camino de la corona, interpone la otra en el ex­
tremo opuesto. El papel de los contrapesos es frenar la inercia 
de estos giros, para que no se disipe demasiada energía en los 
impactos. El mecanismo de escape ejecuta dos trabajos a la vez: 
mantiene el eje en movimiento y frena con impulsos intermitentes 
la rotación del tambor. La gravedad -y la mano que vuelve a subir 
el peso cuando se desenrolla toda la cuerda- suministra toda la 
energía que precisa el reloj: tira del tambor, mueve la corona y las 
paletas, y atempera la oscilación del eje. 

Este ingenioso mecanismo obra una discretización del tiempo, 
que viene dictada por la sucesión de impactos de las paletas. En 
otras palabras, proporciona un tictac Iitmico al reloj. Sin embargo, 
no genera una regla temporal muy precisa, con divisiones equidis­
tantes. Cualquier desgaste en los dientes -frecuente, a causa de los 
impactos- o el mínimo desequilibrio entre los contrapesos hace 
que la entrada y salida de las paletas al interferir en el giro de la 
rueda no se produzca a intervalos exactos y regulares. Cada golpe 
también provoca un retroceso algo azaroso en la corona, difícil de 
regular. El mejor reloj con este modelo de escape, llan1ado de rueda 
catalina y foliot, operaba con un error de 15 minutos al día. 

EL MAESTRO RELOJERO 

La pauta del reloj de Huygens no surge del diálogo imperfecto 
entre dos componentes de su mecanismo. La adquiere de un 
agente externo: el péndulo. Este ofrece, por su propia naturaleza 
física, un fenómeno periódico puro, que introduce una división 
nítida e igual del tiempo. El péndulo comunica la regularidad de 
su movimiento a las entradas y salidas de las paletas. Además, co­
rrige sus asimetlias. Si, corno pensaba Galileo, la amplitud de las 
oscilaciones no afecta al peliodo, este no se verá afectado aunque 
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FIG. 2 

FIG. 3 

Período 1 

reciba de los dientes de la corona impactos de distinta intensidad, 
que tiendan a modificar la amplitud. El péndulo también permite 
un movimiento más suave que el vaivén de los contrapesos, lo 
que reduce el desgaste de los engranajes. Las orientaciones de 
la corona y el eje cambian, pero siguen girando en direcciones 
perpendiculares (figura 2). 

Como en el modelo de escape anterior, el golpeteo de los 
dientes suministra al péndulo la energía que pierde en la fricción 
con el aire. Los relojes de péndulo dosifican la caída de un cuerpo 

Período 2 

bajo la acción de la gravedad a in­
tervalos regulares. En un alarde 
de diseño, esa regulación también 
se alimenta de la propia gravedad. 
El principal problema que deben 
afrontar es que, en contra de lo 
que suponía Galileo, el período 
de oscilación de un péndulo sí de­
pende de la amplitud (figura 3). 

En otras palabras, el peso tar­
da más tiempo en completar una 
oscilación cuando el ángulo a es 
grande que cuando es pequeño. 
Es cierto que esta dependencia de­
saparece prácticamente para ángu­
los reducidos, pero el mecanismo 
de escape exigía oscilaciones hol-
gadas para funcionar. Huygens 
asumió esta imposición práctica 
y se propuso construir un péndulo 
cuyo período no dependiera de la 
amplitud de las oscilaciones, ya 
fueran grandes o pequeñas. 

En el péndulo, el compromiso 
entre el tirón vertical de la grave­
dad, que tiende a arrastrar el peso 
hasta el suelo, y la resistencia de la 
cuerda, que no le deja alejarse más 
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allá de su longitud, le obliga a trazar un arco de circunferencia. 
Contamos por tanto con dos elementos: la gravedad y una restric­
ción que imponemos a la trayectoria natural del peso. De ambos, 
el más sencillo de manipular es el segundo. Nos podemos olvidar 
por un momento de la cuerda, con la esperanza de que sabremos 
idear otro procedimiento que limite el movimiento del peso y lo 
obligue a oscilar en un camino que no sea circular. Se podría en­
sartar, por ejemplo, en un alambre bien engrasado o hacerlo rodar 
por una rampa curva. Por tanto, examinando la situación con ab­
soluta libertad, ¿podemos imponer al peso una trayectoria cíclica, 
que recorra bajo el impulso de la gravedad, y que no dependa de 
la amplitud? 

Desde un punto de vista físico, la pregunta se puede plantear 
de otro modo: ¿Existe alguna trayectoria a lo largo de la cual un 
cuerpo, al caer, tarde lo mismo en alcanzar su punto más bajo, in­
dependientemente de a qué altura inicie el descenso? La intuición 
parece señalar que no. En la ficción de Moby Dick, el protago­
nista, Ismael, tropieza con la respuesta por azar, mientras limpia 
por dentro una olla inmensa, donde se refina la grasa de ballena. 
Descubre que no importa desde qué altura se le caiga el jabón, 
siempre tarda lo mismo en resbalar hasta el fondo. ¿Qué patrón 
matemático seguía la curvatura de las ollas del Pequod? Doscien­
tos años antes que Ismael, en diciembre de 1659, Huygens descu­
brió que se trataba de una cicloide invertida. 

La cicloide era una de las curvas mejor conocidas por los ma­
temáticos de la época. Llegó a ganarse el apelativo de «Helena de 
los geómetras» o «manzana de la discordia», por las polémicas 
que generó su estudio. Se cuenta que Pascal comenzó a pensar en 
ella para distraer un dolor de muelas. Como el recurso funcionó, 
lo interpretó como una señal divina de que debía profundizar en 
sus propiedades. Galileo surge, una vez más, en este punto de 
la historia, puesto que fue él quien le otorgó el nombre de «ci­
cloide», después de admirar «su airosísima curvatura, adaptable 
a los arcos de un puente». 

El método más sencillo para trazar una cicloide consiste en 
marcar un punto en una circunferencia y hacer que ruede sin des­
lizamiento. La trayectoria que sigue el punto dibuja la cicloide 
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ERRORES CIRCULARES 

La figura 1 muestra un péndulo simple y en ella se señalan los principales res­
ponsables de su movimiento: el peso, P, debido a la gravedad, y la tensión de 
la cuerda, T. En un análisis clásico newtoniano, el peso se descompone en la 
suma de dos fuerzas, una perpendicular a la trayectoria (PP = P · cosa) y otra 
tangencial (P, = P ·sena). Esta divis ión conduce a dos ecuaciones. En una de 
ellas, P0 se igua la a la tensión (Pp = T) en los dos extremos de la oscilación. Si 
P0 fuera mayor que T daría de sí la cuerda hasta romperla. Si fuera más débil, 
la cuerda tiraría de la masa m. Dado que L se mantiene constante, esta pri ­
mera ecuación confina el movimiento del peso a un arco de circunferencia. 
La segunda ecuación describe su dinámica: cómo se acelera y se frena una 
vez instalado en el círculo, a lo largo de las oscilaciones: m •a,= P, = -P • sen a 
(siendo a, la aceleración tangencial). Se introduce un signo negativo porque 
cuando a es positivo (sen a, también positivo para a< 180º) la fuerza apunta 
hacia la izquierda, sentido que consideramos negativo. Y a la inversa. De­
sarrollando un poco la expresión: 

d 2s 
m · -- = -m · g · sena, 

dt2 

dondes representa el espacio recorrido a lo largo de la circunferencia (s = L · a). 

d 2s 
-- = -g · sena, 
dt2 

d 2s s 
-= - g · sen - . 
dt 2 L 

La solución de esta ecuación es una función s(t), que da para cada instante t 
la posición s de la masa: define su trayectoria . En general, no es una función 
periódica. Cuando a es muy pequeño (es decir, cuando L es mucho mayor 
que s) el seno y el ángulo se vuelven prácticamente iguales (a - sena) y la 
ecuación se simplifica: 

d 2s s 
- =-g·­
dt2 L. 

La solución de esta ecuación sí que corresponde a una función periódica: 

s(t) = smáx ·sen(~- t). 

Cuanto mayor sea el ángulo a, más se apartará su valor del seno y peor será la 
aprox imación periódica. Esta discrepancia se conoce con el nombre de error 
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circular. En la figura 2, la curva negra representa la función sen a y la recta 
gris, la función a. Se ve que coinciden solo para ángulos pequeños. A partir 
de unos 15º, aproximadamente, comienza la divergencia. 

FIG.1 
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FIG. 4 

FIG.5 

(figura 4). La curva mantiene una 
relación muy especial con la gra­
vedad. En 1696, Jacob Bemoulli 
planteó el siguiente desafío a la co­
munidad científica: si se unen dos 
puntos A y B mediante un alambre 
y en él se inserta una cuenta, ¿qué 
forma debe adoptar el alambre 
para que la cuenta tarde el menor 
tiempo posible en ir desde A hasta 
B? La respuesta, de nuevo, es una 
cicloide invertida. 

El rasgo de la curva que inte­
resaba a Huygens era su isocrorúa: 
da igual desde qué altura se suelte 
un cuerpo, si cae siguiendo una 
cicloide siempre tardará lo mismo 
en alcanzar el punto más bajo. 
Ahora bien, las caídas constituyen 

la mitad del movimiento pendular, porque una vez que el cuerpo 
alcanza el punto más bajo, el impulso que ha ganado le obliga a 
remontar. Si la restricción que condiciona el ascenso es simétrica 
respecto a la que limita la bajada (y despreciamos el rozamiento), 
subirá hasta alcanzar la misma altura desde la que cayó, y desde 
ella volverá a descender en sentido contrario. Tiempos de caída 
iguales para todas las alturas se traducen así en tiempos de as­
censo iguales. El período es la suma de dos bajadas y dos subidas 
simétricas. Si todos los tiempos son independientes de las alturas, 
el período también será independiente de la amplitud. 

Huygens había hallado la solución teórica a su problema: un 
péndulo ideal que oscilase siguiendo una cicloide. Ahora debía 
implementarla con los elementos que terúa a su disposición. Llevó 
el agua a su molino y transformó el problema físico en uno geomé­
trico. Terúa que arreglárselas para componer una cicloide con una 
sucesión de trazos de compás, puesto que el péndulo describe 
arcos de circunferencia. Para lograr su objetivo jugó con el largo 
de la cuerda. Bastaba con interponer en su camino un clavo, que, 
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a partir de ese punto, produciría un 
movimiento pendular de longitud 
menor. Si disponía una serie de cla­
vos, uno a continuación de otro y 
a diferentes alturas, cada uno obli­
garía al peso a trazar una circunfe­
rencia de radio más pequeño, que 
volvería a cortar el clavo siguiente, 
que a su vez impondría una circun­
ferencia menor. Y así sucesivamente 
(figura 5). 

Desde un punto de vista mate­
mático, cualquier curva se puede 
trocear para, a continuación, aproxi­
mar cada uno de sus fragmentos 
mediante un brevísimo arco de cir­
cunferencia. Los trozos presentarán 
diversos grados de curvatura. Allí 
donde sea pequeña, hay que abrir 
mucho el compás para acomodar el 
trazo a la curva. Donde la curvatura 
sea pronunciada, por el contrario, 
hay que cerrarlo (figura 6). 

Si uno lleva a cabo la operación 
sobre un folio, repasando el con­
torno de la curva a base de trazos 
de compás, descubre que durante 
el proceso va creando una serie de 
puntos: los agujeros que va dejando 
la punta del compás al hincarse en el 
papel. Al unir estos puntos se dibuja 
una segunda curva, relacionada con 
la primera, que se llama su «evoluta» 
(figura 7). Huygens obtuvo el sor­
prendente resultado de que la evo­
luta de una cicloide es otra cicloide 
(figura 8). 

FIG. 6 
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Por tanto, si se cuelga un péndulo del punto C
1 

y se fijan cla­
vos en los puntos que van desde C

2 
hasta C

6
, la trayectoria circular 

natural del peso P se verá rectificada cinco veces, obligándole a 
ajustarse a una cicloide. La aproximación será mejor cuantos más 
clavos se sitúen a lo largo de la cicloide evoluta. En la práctica, 
en lugar de una hilera de clavos, Huygens utilizó dos chapas me­
tálicas que combó siguiendo dos arcos de cicloide. De ese modo 
condicionaban la oscilación del péndulo, acortando y alargando 
la cuerda en función de la amplitud. 

Huygens jugó matemáticamente con la naturaleza con el fin 
de forzar un verdadero movimiento periódico donde no lo había. 
Fue un hito en la historia de la ciencia. A su viejo maestro Van 
Schooten le hizo partícipe de su entusiasmo: «Sin duda se trata de 
mi mejor descubrimiento». 

Podemos contemplar el funcionamiento del péndulo de Huy­
gens bajo otra perspectiva. En un péndulo clásico, el peso, en 
su vaivén, traza arcos de circunferencia. Su período, a partir de 
un cierto ángulo, empieza a acusar la dependencia con la ampli­
tud. Cuanto mayor se haga el ángulo, mayor será el período. Por 
otra parte, Galileo ya había señalado que la longitud de la cuerda 
afecta también al tiempo que el peso invierte en completar cada 
ciclo. Cuanto más larga sea la cuerda, mayor será el período. Aquí 
se manifiestan, por tanto, dos tendencias opuestas. Aumentar 
la amplitud alarga el período. Reducir la longitud de la cuerda 
lo disminuye. ¿Qué sucede si a medida que crece el ángulo se 
acorta la cuerda, de manera que an1bos efectos sobre el período 
se contrarresten? Exactamente ese es el cometido de la chapa 
de cicloide. 

En el grabado de la página 149 se muestra el diseño completo 
del reloj de Huygens, tomado de la primera parte del Horologium. 
El péndulo oscila con un período constante e independiente de la 
amplitud, que provee a la corona de un tictac uniforme. En sumo­
mento, el reloj de Huygens estableció un récord absoluto de pre­
cisión, con un error de menos de un minuto al día. Desde luego, 
su propuesta no señaló la única vía de progreso en la industria de 
los relojes. Alternativas más prosaicas pronto volvieron excesivo 
su alarde de ingenio. Entre 1670 y 1680 se desarrollaron el escape 
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de áncora y el de Graham, capaces de operar con las oscilaciones 
pequeñas de un péndulo normal. 

En principio, el Horologium oscillatorium iba a limitarse a 
la descripción de un instrumento científico, pero se fue enrique­
ciendo y evolucionando a lo largo de los años, al más puro estilo 
Huygens, hasta convertirse en un compendio de tratados de diver­
sas disciplinas. Igual que había hecho para perleccionar el telesco­
pio a través de la dióptrica, a la hora de diseñar su reloj se propuso 
comprender a fondo todos los fenómenos físicos implicados. El 
motor del reloj era la gravedad, así que Huygens emprendió un 
análisis completo sobre la caída de los cuerpos. Hizo lo propio 
con el movimiento circular, ya que en el corazón del mecanismo 
latía un péndulo. 

«Lo leí con gran satisfacción, encontrándolo lleno 
de especulaciones muy ingeniosas y útiles, 

muy dignas de su autor.» 
- RESPUESTA DE NEWTON TRAS RECIBIR UN EJ.EMPLAR DEL HOROLOGIUM. 

La quinta parte del Horologium se cierra con trece teoremas 
sin demostración sobre la fuerza centrífuga. De ellos se deduce 
que la aceleración que rectifica constantemente la tendencia de un 
cuerpo a seguir una línea recta y lo obliga a trazar una circunfe­
rencia, tirando de él hacia su centro, vale v2/r ( donde v es la velo­
cidad del cuerpo, y r, el radio de la circunferencia). Newton llegó 
a la misma conclusión por otra vía, pero no publicó el resultado, 
así que por una vez fue Huygens quien se llevó el gato al agua. 

El Horologium también contiene un pequeño tratado de geo­
metría. Después de tropezar con el campo de las evolutas, la tenta­
ción de esbozar una teoría general era irresistible y, por supuesto, 
Huygens cayó en ella. Desarrolló métodos para definir la evoluta de 
una curva cualquiera, que aplicó a la parábola, la elipse y la hipér­
bola. También relacionó la cuadratura de curvas con sus evolutas. 

La medición del tiempo se fue apoderando de la imaginación 
de Huygens, hasta erigirse en su segunda gran obsesión científica. 
El reloj de péndulo funcionaba admirablemente en los salones de 
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Luis XIV, pero para ayudar a un capitán de barco a determinar su 
posición después de una tempestad, su mecanismo debía resis­
tir zarandeos y sacudidas constantes. No superaron la prueba. La 
mayoría acababa parándose o se estrellaban contra el suelo, por 
mucho que se anclaran a una viga del techo. La frustración ante la 
vulnerabilidad de los péndulos en las travesías marítimas impulsó 
a Huygens a replantear su estrategia. Sabiendo que un buen reloj 
necesita de un movimiento periódico que lo gobierne, ensayó un 
procedimiento distinto, donde el giro de la corona venía acompa­
sado por la compresión y expansión de un resorte metálico enro­
llado en espiral. Este modelo ofrecía otro atractivo: permitía la 
fabricación de relojes de bolsillo, algo impensable hasta entonces. 
La euforia por el invento se vio empañada cuando su tentativa 
de patentarlo en Inglaterra lo expuso a las iras de Robert Hooke. 
Hooke exhibía una prolífica versatilidad, que en ocasiones pro­
vocaba pasmo y en otras encamaba a la perfección el refrán de 
que quien mucho abarca poco aprieta. A menudo entreveía posi­
bilidades que luego no acertaba a concretar, por falta de tiempo 
o porque su destreza matemática no estaba a la altura de su intui­
ción física. Hooke proclamó a los cuatro vientos que él había des­
cubierto el reloj de muelle dieciséis años atrás y que el resorte de 
Huygens «no valía un penique». Huygens se mostró escandalizado 
ante los términos de la reclamación y con fastidio se quejó de la 
«egocéntrica pretensión» de Hooke «de haberlo inventado todo». 

LA TERRIBLE SIMETRÍA 

Para cerrar este repaso a la ciencia de Huygens vamos a retroce­
der cuatro décadas, a fin de examinar una de sus obras primeri­
zas, en la que brilla con singular claridad la elegancia de su estilo. 
Contaba entonces con veintitrés años y ni el tiempo, ni el pulido 
de lentes, ni la luz habían captado todavía su atención. A pesar de 
su juventud, ya se había hecho notar como un alumno aventa­
jado de Arquímedes, con su análisis de la estabilidad de los cuer­
pos en el agua y el virtuosismo matemático de sus cuadraturas. 
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Estrenando una actitud que pronto se convertiría en costumbre, 
el punto de partida fue una refutación a la ciencia de Descartes, 
en particular a sus leyes sobre la colisión elástica entre cuerpos. 
Su modo de proceder se ajustaría a las pautas habituales. Obtuvo 
los primeros resultados importantes en 1652, que no publicó, con 
vistas a completar un proyecto más ambicioso, que abandonaría 
y retomaría a lo largo de los años. Esbozó un tratado en 1656, 
que alcanzaría su forma definitiva en 1667 (De motu corporum 
ex percussione, «Sobre el movimiento de los cuerpos en coli­
sión»). El texto vería la luz póstumamente. Huygens divulgó con 
cierta precipitación parte de sus resultados, sin demostraciones, 
en 1669, primero en el Journal des S9avans y luego en las Philo­
sophical Transactions, después de enterarse de que John Wallis 
y Christopher Wren habían publicado en enero un artículo sobre 
el mismo tema. Como en otras ocasiones, de tanto retener lamer­
cancía, se le acabó enranciando. 

Descartes había enunciado sus leyes sobre la colisión entre 
cuerpos en sus Principia philosophiae de 1644. Constituían una 
de las vigas maestras de su concepción mecanicista, dado que re­
ducía las diversas interacciones físicas, como la gravedad, la luz o 
el magnetismo, a choques entre partículas de éter. Como autor de 
un magno sistema capaz de explicar el mundo, el filósofo francés 
tenía una idea muy definida de cómo debía comportarse la natura­
leza. Cuando un experimento le llevaba la contraria, simplemente 
pasaba por alto la impertinencia: 

Las demostraciones de todo esto son tan ciertas que aun cuando la 
experiencia parezca demostrar lo contrario, sin embargo, estamos 
más obligados a dar crédito a nuestra razón que a nuestros sentidos. 

Un espíritu más propio de los seguidores de Aristóteles, a los 
que combatía, que a lo que solemos entender por pensamiento 
cartesiano. Fruto de esta postura ensimismada, la naturaleza que 
presenta Descartes tiene algo de fantasioso, circunstancia que lle­
vó a Leibniz a calificar los Principia de «una bonita novela de 
física». El libro prescribe ocho reglas para desentrañar el meca­
nismo de las colisiones que, ciertamente, terminan por describir 
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algunos fenómenos sorprendentes. Una de ellas establece que 
cuando un cuerpo choca contra otro mayor que él, que se halla 
en reposo, rebota con la misma velocidad que traía sin desplazar 
un solo centímetro al más grande. Este enunciado, de ser cierto, 
impediría que los niños tirasen al suelo a los adultos cuando, en 
plena carrera, tropiezan con ellos. 

Podemos imaginar a Huygens alzando una ceja mientras leía 
los Principia. En enero de 1652 expresó sus dudas a un científico 
de Lovaina, Gerard van Gutschoven. Aguardó nueve meses más, 
hasta estar bien seguro, antes de confiar sus inquietudes a su men­
tor, Van Schooten, acérrimo cartesiano. El profesor de la Universi­
dad de Leiden le recomendó que no perdiera el tiempo ahondando 
en semejantes herejías. Huygens se mantuvo en sus trece: 

Si todas las reglas de Descartes, excepto la primera, no son erróneas, 
entonces, obviamente, ya no soy capaz de señalar la diferencia entre 
lo que es correcto y lo que es falso. 

Pero Huygens, desde luego, era muy capaz de realizar esa 
distinción. En lugar de prestar oído a Van Schooten, se atuvo al 
consejo de su primer maestro, Jan Stampioen, y trató de llegar 
a sus propias conclusiones, sin dejarse condicionar por las aje­
nas. Su manera de abordar el problema combina modos antiguos 
y modernos. Antiguos porque se vale de una física que todavía 
no había sido remozada por Newton, y modernos porque en gran 
medida su argumentación gira en torno a la simetría, una actitud 
muy del gusto físico contemporáneo. Huygens basó su análisis en 
un principio que Galileo había descrito en sus célebres Discorsi 
de 1638. El científico italiano había observado que una persona 
instalada en la bodega de un barco sin escotillas es incapaz de 
decidir, mediante un experimento mecánico, si está en reposo o se 
mueve con velocidad constante. Es decir, mientras la nave no ace­
lere, su desplazamiento no afecta a la dinámica de los elementos 
que se encuentran en su interior. En su estudio de las colisiones, 
Huygens cambia constantemente de perspectiva, pero como todas 
ellas se relacionan entre sí mediante velocidades constantes, la 
esencia de la interacción que está examinando no sufre ninguna 
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alteración. Su instinto físico le llevó a percibir que lo que de ver­
dad importa en un choque es la velocidad relativa entre los cuer­
pos: aquella con la que cada uno advierte que se aproxima el otro, 
algo que no cambia bajo ningún punto de vista. 

Las colisiones que consideró eran elásticas, lo que quiere 
decir que el impacto no roba energía al movimiento de los cuer­
pos. Estos rebotan y no se adhieren ni se incrustan. Huygens par­
tió de la única regla de Descartes que salvó de la quema: si dos 
masas iguales chocan con la misma velocidad, rebotan invirtiendo 
sus velocidades. La fuerte simetría de la situación ofrece un de­
senlace intuitivo. Llamaremos a las masas de los cuerpos m

1 
y m

2 
y asumiremos como positivas las velocidades dirigidas hacia la 
derecha ( - ) y como negativas, las de sentido contrario ( +-) . Al 
invertir su velocidad, m

1 
pasa de v a -v y m

2 
pasa de -v a v. 

A partir de aquí, Huygens buscó la simetría de esta colisión 
elemental en todas las demás. Ahora bien, para revelarla, había 
que adoptar el punto de vista adecuado. Es como cambiar de bu­
taca al asistir a un espectáculo. Se pretende adquirir un ángulo 
más favorable que permita apreciar una simetría que pasa desa­
percibida para el resto de espectadores, pero esa posición privi­
legiada no altera la naturaleza de la representación. Todos los 
cambios de punto de vista que maneja Huygens entrañan veloci­
dades constantes. 

Lo podemos ver mediante un par de ejemplos. Situemos, por 
ejemplo, el segundo cuerpo m

2 
en reposo, mientras la masa m

1 
se 

dirige a su encuentro con una velocidad v. ¿ Cuál será el resultado 
de esta colisión? ¿La masa m

1 
invertirá su velocidad y rebotará 

con - v? ¿Se detendrá y comunicará toda su velocidad a m
2
? ¿Solo 

le cederá una parte de su impulso y las dos avanzarán hacia la 
derecha con distintas velocidades? 

De entrada se ha perdido la simetría del caso anterior, lo que 
limita la intuición sobre lo que va a suceder. Huygens contempla 
entonces el impacto a bordo de un vehículo que se desplaza hacia 
la derecha con velocidad v/2. Para aclarar la situación, recurre a 
dos observadores, uno en reposo (Or), que ubica en la orilla de un 
canal, y otro subido en una barca ( Ob) que navega en el sentido de 
m

1 
con velocidad constante v/2. 
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Ob se mueve con la barca, así que 
para él la masa m 2 ya no permanece 
quieta: sale a su encuentro con velocidad 
v/2. Por otro lado, como Ob se mueve 
en el mismo sentido que m

1
, verá a esta 

masa moverse más despacio. Es el mismo 
efecto que se aprecia al viajar en coche. 
Los postes de la luz, en reposo, vienen 
hacia nosotros con la velocidad que lleva 
el vehículo y los coches que comparten la 
carretera en nuestro sentido parecen co­
rrer más despacio que si los contemplá-

m, 

• -V 

~ Or 

-
v/2 

m, 

• 

ramos desde el arcén. Por tanto, Ob asiste a la siguiente colisión: 

- --v/2 - v/2 

Con esta perspectiva, nuestra intuición ya sabe resolver el 
choque: se invierten las velocidades de cada masa. 

-- -- v/2 v/2 

Desde el punto de vista privilegiado de Ob se aprecia la sime­
tría. Para saber qué es lo que observaría Or hay que despojar a 
cada masa de la parte del movimiento debida al desplazamiento 
de la barca. Recuperando el símil del coche, al detenernos en el 
arcén, los vehículos que circulaban en nuestro mismo sentido ga­
narán la velocidad que llevábamos y los que corrían en sentido 
contrario la perderán. Por tanto, m

2 
y m

1 
ganarán y perderán v/2, 

respectivamente. Es decir, después de que se haya producido la 
colisión, Or verá cómo m 1 queda en reposo y cómo m

2 
se aleja 

hacia la derecha con velocidad v. 
La estrategia que se ha aplicado en este caso particular re­

suelve con facilidad cualquier choque entre dos cuerpos de masas 
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iguales que se muevan con distintas velocidades. ¿Qué ocurre 
cuando las masas también son diferentes? Esta nueva condición 
parece romper definitivamente la simetría, pero Huygens logró 
restablecerla. Existe una velocidad para la barca que traslada a un 
punto de vista exclusivo donde cada cuerpo invierte su velocidad 
después del impacto. Es: 

En el numerador de la expresión se multiplican velocidades 
por masas, dando lugar a una magnitud f'ISica que recibe el nom­
bre de «momento» ( el momento, p, de un cuerpo de masa m es: 
p = m · v). Al volver a dividir por una masa se obtiene una velocidad. 

Tomemos la situación: 

-
orilla 

canal 

Ahora las masas son distintas: m 2 es mayor que m
1

• Para defi­
nir mejor la colisión, asumiremos que v

1 
es mayor que v2 (o mejor 

todavía: m
1 

• v 
1 
> m

2 
• v

2
) . Si asistimos al choque desde una barca 

que se desplaza hacia la derecha con una velocidad constante: 

esto es lo que observaremos: 
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- -
Como m 2 es mayor que ml' para un espectador montado en la 

barca la masa pequeña correrá más deprisa que la grande. Desde 
su atalaya simétrica, Ob advertirá que m

1 
invierte su velocidad 

después del impacto, igual que m
2

: 

- ---

Para averiguar qué escena contempla Or, plantado en la ori­
lla, hay que sumar 

a la masa que se desplaza en el sentido de la barca, m2 , y sustraer 
la misma velocidad a la masa que corre en sentido contrario, m

1
. 

Así se obtiene un resultado que dista mucho de ser intuitivo: 

- ---
(m2 -m1)v1 +2m2v2 2m1v1 +(m1 -m2 )v2 

1n1 +m2 m 1 +m2 

Al ojo atento de Huygens no se le escaparon dos nuevas si­
metrías. Aunque en el proceso de choque se modifiquen las velo-
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cidades de los cuerpos, existen otras magnitudes que permanecen 
inalterables. La más evidente es la masa. Menos obvia resulta la 
suma del producto de cada masa por su velocidad ( el momento), 
antes y después del in1pacto. Es decir: 

m ·V +m •V = m •V +m •V 1 1 antes 2 2 antes 1 1 después 2 2 después 

p I antes + p 2 antes = PI después + P 2 después 

EL DEMONIO ESTÁ EN LOS DETALLES 

La expresión, en apariencia algo arbitraria, de la velocidad de la barca corres­
ponde al llamado «centro de masas». Se trata de una entidad abstracta, útil 
para investigar el comportamiento de numerosos sistemas físicos. Para dos 
cuerpos como m 1 y m 2, situados en x, y x

2
, se ubica en un punto que descansa 

en la línea que los une. Su posición x cm viene dada por: 

El centro de masas señala un punto de equilibrio. En él se podría apoyar un 
tablón que contrabalancearía los dos cuerpos (véase la figura) . Si las masas 
se mueven, en general también lo hará el punto x cm · Su ve locidad vendrá 
dada por: 

Cambiando el signo a v
2 

para reflejar que esta masa se desplaza hacia la iz­
quierda, se obtiene la expresión para la velocidad de la barca que, por tanto, 
se sitúa en el centro de masas. Este es el punto privilegiado desde el que se 
aprecia la simetría del impacto. Teniendo en cuenta la conservación del mo-

o x, Xcm 
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Esta simetría se puede asumir en otros contextos físicos, al 
margen de las colisiones. Hasta tal punto cabe generalizarla que 
constituye uno de los pilares de la física: el principio de conserva­
ción del momento. Huygens también reparó en la constancia de 
otra cantidad, la suma del producto de cada masa por el cuadrado 
de su velocidad, antes y después de la colisión: 

m 2 2 2 2 
1. VI antes + m2. V2 antes = mi. VI después + m 2 . V2 después 

mento, se deduce que en la colisión no varía la velocidad del centro de masas. 
Podemos ver con un poco más de detalle cómo cambian las velocidades para 
los observadores de la barca y de la ori lla. Definimos las variables v,ba (veloci­
dad de la masa m, tal como se percibe desde la barca antes del choque), v

2
ba 

(velocidad de la masa m
2 

desde la barca antes del choque), v,"" (velocidad de 
la masa m, tal como se percibe desde la orilla antes del choque), v2"" (velocidad 
de la masa m

2 
desde la orilla antes del choque) y vb (velocidad de la barca). 

Desde Ob, antes del impacto, las velocidades de los cuerpos son: 

A partir de estas expresiones se deduce una de las claves de la simetría 
en el centro de masas: en él ambos cuerpos muestran el m ismo momento 
(m, · v,ba = m

2 
• v2b). Después del impacto se invierten las velocidades, luego: 

m2·(v1+v2) 
Vlbd = --~-~, 

m1+m2 

m1 · (v1 +v2) 
V2bd = -~-~, 

m1+m2 

donde el subíndice d sustituye ahora al a, para indicar que estas son las ve­
locidades después del choque. Para resolver las velocidades desde la orilla, 
basta con deshacer el primer cambio: 

(m2 -m1)-v1 +2 · m 2 · v2 

m1+m2 
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donde no cuesta reconocer una manifestación del principio de 
conservación d e la energía, en este caso, de la energía cinética. 

Hay que recalcar que Huygens se desenvolvió en un marco 
conceptual prenewtoniano. No empleó en ningún momento la no­
ción de fuerza, ni habló, por tanto, de fuerzas de acción y reacción 
para justificar los cambios de velocidad que experimentan los 
cuerpos. Hoy en día las colisiones elásticas se resuelven a un nivel 
de física elemental, casi sin pensar, asumiendo como axiomas los 
principios de conservación, que proporcionan dos ecuaciones con 
dos incógnitas (las velocidades finales). Huygens procedió a la 
inversa. En el siglo XVII las leyes de conservación no estaban clara­
mente establecidas, aunque se hallaban ya en proceso de madura­
ción. En cierto sentido Huygens convirtió un problema dinámico 
en estático. Los cuerpos que chocan desde luego se mueven, pero 
los contempló desde una perspectiva tan simétrica y predecible 
como si nunca salieran de una situación de equilibrio. 

El análisis de las colisiones de Huygens se puede considerar 
revolucionario, ya que marca el nacimiento de la física matemá­
tica. A la hora de imaginar a un físico en plena faena, ya sea Albert 
Einstein o Sheldon Cooper, a uno le viene de inmediato a la mente 
una pizarra llena de ecuaciones. No siempre fue así. Galileo había 
expresado verbalmente las leyes sobre la caída de los cuerpos, 
apoyándose en figuras geométricas, como había hecho antes que 
él Arquímedes y cuantos le precedieron en el estudio de la natu­
raleza. Hasta Girolamo Cardano resolvió la ecuación cúbica con 
buena prosa y visualizando cada término como un cubo tridimen­
sional, que se podía plasmar en un dibujo. A partir de la obra de 
Frani;ois Viete, el álgebra cuajó como un lenguaje flexible y con­
ciso, que operaba con más potencia que las palabras en el ámbito 
matemático. Casi acto seguido, Descartes tendió un puente entre 
las imágenes de la geometría y las ecuaciones. El aspecto de los 
libros de mecánica o astronomía sufrió entonces una metamorfo­
sis radical. De una colección de párrafos apretados, que solo se 
interrumpían para dejar espacio a una serie de láminas plagadas 
de rectas, parábolas y círculos, las páginas se llenaron de expre­
siones algebraicas, de líneas sueltas, como versos, donde se inter­
calaban las letras y los símbolos de las operaciones. Este punto 
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de inflexión en la representación y en el modo de pensar y de 
manipular matemáticamente los conceptos físicos se produce con 
Huygens. Casi con seguridad, las grandes hojas en las que apuntó 
sus cálculos sobre colisiones, en 1652, registran la primera vez 
que alguien escribió ecuaciones donde las variables encarnaban 
velocidades y masas, en suma, entidades físicas. Por supuesto, la 
transición aconteció de forma gradual. El propio Huygens, como 
Newton, prefirió la mayoría de las veces la manera tradicional de 
Arquímedes. 

Los cambios de perspectiva que animan De motu corporum 
ex percussione desprenden un fuerte aroma relativista. Un detalle 
que Einstein no pasó por alto. En la relatividad especial los puntos 
de vista reciben el nombre de «sistemas de referencia». Aquellos 
que permanecen en reposo o se desplazan con velocidad cons­
tante respecto a otros se llaman «inerciales». En 1954, Einstein 
escribía a su amigo, el ingeniero suizo Michele Besso: 

La teoría de la relatividad especial en el fondo no hace más que adap­
tar la noción de sistema inercial a la firme certidumbre, dictada por 
la experiencia, de la constancia de la velocidad de la luz, para cual­
quier sistema inercial. No puede prescindir del concepto de sistema 
inercial, que es insostenible desde un punto de vista epistemológico 
([Emst] Mach puso de manifiesto la inconsistencia del concepto con 
claridad, aunque ya había sido entrevista por Huygens y Leibniz). 
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