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Introducción 

El gran matemático y físico Bernhard Riemann nació en Alema­
nia, en 1826, aunque desde un punto de vista estrictamente his­
tórico sería mucho más correcto decir que nació en el reino de 
Hanóver, un estado independiente que casi medio siglo más tarde 
formaría parte del Imperio alemán. La región de Europa que hoy 
conocemos como Alemania vivía entonces un período de convul­
sión política. En 1806 el ejército napoleónico había conquistado, y 
disuelto, el Sacro Imperio Romano Germánico, una confederación 
milenaria de Estados casi independientes, cuyos orígenes se re­
montaban al reinado de Carlomagno (ca. 742-814). Tras la caída de 
Napoleón, en 1814, los estados que habían formado parte del anti­
guo imperio, políticamente separados pero unidos por una histo­
ria, una cultura y un idioma comunes, se plantearon la necesidad 
de fusionarse en un país unificado, si bien no existía un acuerdo 
unánime acerca de la extensión y de la estructura gubernamental 
que esta nueva nación debía tener. El debate fue largo y turbu­
lento, y la unificación solo se concretaría, casi por la fuerza, en 
1871, después de dos guerras promovidas por el reino de Prusia. 

El padre de Riemann había combatido contra el ejército napo­
leónico, y en 1815, terminada la guerra, contrajo matrimonio y se 
instaló en la pequeña aldea de Breselenz, en el reino de Hanóver, el 
cual había sido golpeado con dureza durante la ocupación francesa 
y atravesaba en consecuencia una situación económica muy difícil. 
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Estas circunstancias afectaron gravemente a los Riemann, quienes 
siempre padecieron serias privaciones. Fue así como la infancia de 
Bernhard y la de sus cinco hermanos, aunque llena de amor, como 
el propio matemático siempre reconocería, quedó marcada por la 
falta de una alimentación suficiente y de cuidados médicos adecua­
dos. Tanto es así que todos los historiadores coinciden en afirmar 
que fue esta probablemente la causa de que Bernhard falleciera a 
la temprana edad de treinta y nueve años y de que ninguno de sus 
hermanos llegara a vivir mucho más allá de esa edad. 

Debido a su prematura muerte, la carrera científica de Rie­
mann duró poco más de diez años: se inició en 1849, cuando co­
menzó a preparar su tesis doctoral bajo la supervisión de Gauss, 
en la Universidad de Gotinga, y finalizó a principios de la década 
de 1860, cuando escribió sus últimos artículos. Pero durante ese 
breve período de tiempo Riemann logró hacer contribuciones 
esenciales a nada menos que cuatro ramas de las matemáticas: la 
topología, la geometría diferencial, el cálculo ( de variable real y 
de variable compleja) y la aritmética. También realizó muchas 
y muy relevantes aportaciones en el ámbito de la física, aporta­
ciones que fueron el germen de la teoría de la relatividad y de la 
cosmología moderna; tanto es así que no sería exagerado afirmar 
que la manera en que actualmente se entiende el espacio-tiempo 
tuvo su origen en las ideas pioneras de Riemann. 

Esta primera aproximación a la carrera de Riemann podría 
hacer pensar que sus principales trabajos científicos están total­
mente desconectados entre sí, ya que algunos de ellos parecen 
pertenecer a «secciones» diferentes de las matemáticas, mientras 
que otros se alejan de esta disciplina y se adentran en el ámbito de 
una ciencia diferente, la física. Pero se trataría de una impresión 
completamente errónea, puesto que ni la ciencia en general ni 
las matemáticas en particular están divididas en compartimentos 
estancos. Topología, geometría diferencial, cálculo y aritmética, 
como veremos más adelante, son materias estrechamente relacio­
nadas. De la misma forma, la matemática y la física, así como la 
biología, la química y otras ciencias se interconectan, se superpo­
nen y se apoyan mutuamente. Para Riemann, la frontera entre las 
matemáticas y la física prácticamente no existía. 
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Por lo que concierne a sus trabajos científicos, hay que decir 
que estos, lejos de estar desconectados entre sí, reflejan dife­
rentes aspectos de lo que podría denominarse el «programa de 
investigación de Riemann», cuyo objetivo último era nada menos 
que comprender el «funcionamiento del universo». Para acercar­
nos a esta conexión, recorreremos algunos de sus trabajos más 
importantes, sobre los que ahondaremos en el desarrollo de este 
libro. 

Así como el pensamiento de Riemann está guiado por un ob­
jetivo global, de manera similar existe un concepto que atraviesa 
todos sus artículos matemáticos: se trata de la idea de función. 
Dicho de una manera sintética, para Riemann una función es esen­
cialmente una «deformación» que se le aplica a una superficie o 
a una curva. Así, por ejemplo, si se tiene una superficie esférica 
y se la deforma hasta transformarla en la superficie de un cubo, 
puede decirse que a la superficie esférica se le ha aplicado una 
función. De manera similar, si se toma una superficie con forma 
de rosquilla perfectamente circular ( superficie que en matemáti­
cas se denomina «toro») y se la estira hasta que su circunferencia 
exterior tenga la forma de una elipse, también se le habrá aplicado 
una función. Y puede deformarse asimismo una superficie esfé­
rica, aplastándola, hasta transformarla en un círculo, o retorcer 
un rectángulo hasta que tenga la forma de una escalera de caracol; 
en realidad, la cantidad y variedad de deformaciones posibles es 
infinita. 

En uno de sus trabajos más importantes, una verdadera obra 
maestra, su tesis doctoral de 1851, Riemann analiza funciones, es 
decir, deformaciones, que se aplican a todo el plano euclídeo que, 
por motivos que veremos en el capítulo 1, podemos llamar plano 
complejo. Dicho de manera muy general, el «cálculo de variable 
compleja» citado anteriormente es el estudio de este tipo de fun­
ciones. 

Ahora bien, una de las dificultades que presenta esta rama de 
las matemáticas es que resulta muy complicado visualizar la de­
formación que se le aplica a una superficie infinita de una manera 
tal vez intrincadísima. Pero en su tesis doctoral Riemann creó una 
«herramienta» que tiene la enorme virtud de permitir «visualizar» 
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muchas de las características de las funciones de variable com­
pleja y que, en consecuencia, facilita el trabajo de compararlas y 
clasificarlas. La idea del matemático consistió en asociar a cada 
función una superficie, hoy conocida como superficie de Riemann 
de esa función. Su tesis también exponía la idea de que al estudiar 
las superficies que corresponden a las diferentes funciones basta 
con limitarse a analizar aquellas propiedades que se conservan 
cuando la superficie es deformada como si fuese de goma, sin ha­
cerle cortes ni ensamblar partes separadas; técnicamente se las 
llama deformaciones bicontinuas. 

A mediados del siglo XIX la topología era una rama de las ma­
temáticas que estaba todavía en ciernes, una rama prometedora 
pero carente de un corpus coherente de éxitos. Sin embargo, a 
partir de la tesis de Riemann, la topología se transforma, precisa­
mente, en el estudio de las propiedades que se conservan ( que son 
invariantes) por la aplicación de las deformaciones bicontinuas. 
Y Riemann fue el primero que aplicó esta forma de pensar la to­
pología -tal y como a partir de entonces se ha hecho una y otra 
vez- al estudio de las propiedades esenciales de las funciones y 
de sus superficies asociadas. 

Hemos hablado del cálculo de variable compleja y de la topo­
logía como ramas diferentes de las matemáticas, que en realidad 
lo son, pero Riemann derivó la topología del cálculo, a la vez que 
usó aquella para profundizar en el estudio de este: 

Cálculo de variable compleja H Topología. 

En 1854 el matemático alemán escribió otro de sus traba­
jos más importantes --que no se publicaría hasta 1868-, una 
nueva obra maestra en la que creó los conceptos fundamentales 
de la geometría diferencial. El problema básico que plantea este 
trabajo podría formularse de la siguiente manera: ¿cómo sabe­
mos que la Tierra es esférica y no plana? Si se piensa con dete­
nimiento, la mayoría de los experimentos que, históricamente, 
permitieron determinar la esfericidad de la Tierra o bien impli­
can observaciones que se «separan de su superficie» ( como, por 
ejemplo, cuando vemos desaparecer antes el casco que el mástil 
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de un barco que se aleja de nosotros, o cuando se observa la 
sombra de la Tierra sobre la Luna durante un eclipse), o bien 
implican recorrer una larga distancia a lo largo de su superficie 
( como sucede cuando se la circunnavega). La verdadera pregunta 
es: ¿sería posible comprobar la esfericidad de la Tierra mediante 
observaciones «locales», que no impliquen que el observador se 
aleje mucho de su posición y que a la vez no supongan «des­
pegarse» de la superficie del planeta? Dicho de otro modo, si 
fuéramos seres bidimensionales que viviéramos confinados en 
la superficie de la Tierra y ni siquiera comprendiéramos la idea 
de una tercera dimensión, ¿seríamos capaces de deducir que la 
Tierra es esférica? 

Riernann le da sentido a esta pregunta redefiniendo, en pri­
mer lugar, la idea de dimensión. ¿Por qué decimos que la parte 
exterior de una esfera, o la de una rosquilla, o la de un cilindro, 
por ejemplo, tienen todas dos dimensiones? Debe considerarse 
en primer lugar que el plano tiene dos dimensiones porque cada 
posición en él queda determinada por dos coordenadas ( corno la 
latitud y la longitud en un mapa). Para Riernann, un «objeto ma­
temático» ( variedad diferencial es el término correcto) tiene dos 
dimensiones si es posible recubrirlo con pequeños recortes del 
plano, que deben ser previamente deformados para ajustarse al 
objeto en cuestión. Estos recortes son denominados técnicamente 
cartas porque, corno las cartas de navegación, permiten ubicar la 
posición de cualquier punto de la superficie. 

En su trabajo de 1854 Riernann respondía afirmativamente 
a la pregunta antes planteada: sí es posible determinar la curva­
tura de una superficie actuando localmente desde «dentro» de la 
misma, sin necesidad de hacer observaciones desde fuera ni de 
realizar largos viajes. Los detalles sobre esta cuestión se verán en 
el segundo capítulo. Debe observarse que las deformaciones que 
se aplican a las cartas son del mismo tipo que aquellas que inter­
vienen en la definición de la topología. Vimos antes que hay una 
vinculación entre el cálculo de variable compleja y la topología, y 
vernos ahora que existe asimismo una vinculación entre este y la 
variedad diferencial, que es el objeto de estudio fundamental de la 
geometría diferencial: 
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Cálculo de variable compleja - Topología -
- Geometría diferencial. 

Pero el aspecto más extraordinario de este trabajo de 1854 
es que, en él, Riemann concibió nuestro propio universo como 
una variedad diferencial de tres dimensiones: así como una es­
fera puede cubrirse con, por ejemplo, cartas circulares deforma­
das, nuestro universo puede llenarse con esferas macizas tridi­
mensionales -que jugarían en este caso el papel de las cartas-. 
Cobra sentido, entonces, la pregunta de si vivimos en un universo 
«plano» o curvado (la palabra «plano» solo se usa aquí como 
opuesta a «curvado»). Es interesante destacar que este problema 
no era para Riemann una cuestión meramente teórica, ya que la 
textura, la curvatura y la forma del universo tienen consecuencias 
directas sobre las leyes de la física. La luz, afirmó Riemann, no se 
propaga necesariamente en línea recta, sino que viaja por las geo­
désicas del espacio, que son los caminos más cortos que conec­
tan dos puntos. Estas geodésicas (concepto creado por Riemann) 
son efectivamente rectas si el universo es plano, pero tomarían 
otras formas en un universo curvo. Esta concepción, de hecho, 
cuestiona una de las ideas centrales de la física de Newton, ya 
que Riemann entendía que el espacio no era meramente el esce­
nario pasivo en el que sucedían los fenómenos físicos , sino que la 
geometría del universo era parte esencial de la explicación de los 
fenómenos físicos. Estas ideas de Riemann constituyen una de las 
bases fundamentales de la teoría de la relatividad general y de la 
cosmología moderna. 

De este modo pasamos del análisis de variable compleja a 
las superficies de Riemann y a la topología, de esta a la geometría 
diferencial y al problema de la curvatura del universo, y de este, a 
su vez, al problema de las leyes fundamentales de la física: 

Cálculo de variable compleja - Topología -
- Geometría diferencial - Física. 

Antes se ha mencionado también la aritmética, esto es, el es­
tudio de los números naturales (O, 1, 2, 3, ... ), su suma, su producto 
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y todos los conceptos y propiedades asociados a ellos. La aritmé­
tica estudia, por ejemplo, propiedades relativas a la divisibilidad, 
los números cuadrados, y se dedica muy especialmente al estudio 
de los números primos. Parece una rama de las matemáticas muy 
alejada de los temas tratados ante1iormente, pero en el siglo xvm 
el gran matemático suizo Leonhard Euler observó la siguiente 
igualdad: 

1 1 1 1 1 1 1 1 1 
l+ -+-+- +-+-···=--·--·-- ·--···· 2s 3s 4s 5s 5s 1 1 1 1 

1- - 1- - 1- - l--
2s 3s 5s 7s 

donde s > 1 y el producto de la derecha va recorriendo todos los 
números primos. 

Riemann retomó la idea de Euler y la llevó más allá al obser­
var que la expresión de la izquierda puede verse en realidad como 
una función de variable compleja cuyo comportamiento da mucha 
información acerca del modo en que se distribuyen los números 
primos. De hecho, en la última de sus obras maestras, un trabajo 
de 1859, Riemann planteó una conjetura acerca de esta función, 
que es conocida como hipótesis de Riemann y que es considerada 
por los especialistas en aritmética como el problema no resuelto 
más importante de esa rama de las matemáticas (sobre él habla­
remos en el capítulo 5). De este modo, ya tenemos las siguientes 
vinculaciones: 

T 1 , Geometría Fí . opo ogia - - s1ca 
Cál ul d . bl 1 . .?' diferencial c o e vana e comp eJa 

\ Aritmética - Hipótesis de Riemann. 

Cabe mencionar otro punto en común que tienen todos los 
trabajos de Riemann y que consiste en el hecho de que este no se 
limita a resolver problemas físicos o matemáticos basándose en 
conceptos ya existentes, sino que constantemente crea «herra­
mientas» nuevas, conceptos inéditos que le sirven para ampliar 
los alcances de los métodos de las matemáticas. Como dijo Carl 
Friedrich Gauss, el príncipe de las matemáticas y uno de sus men-
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tores: «Riemann ofrece pruebas convincentes de que [ ... ] posee 
una mente creadora activa, verdaderamente matemática, y de que 
es dueño de una gloriosa y fecunda originalidad». 

Es imposible ofrecer, en el limitado espacio de este libro, 
una idea cabal del pensamiento de un hombre tan profundo como 
Riemann, pero resulta significativo que para todos aquellos que 
han tomado sus ideas, que han intentado comprender cómo «fun­
ciona» el universo, la búsqueda y el trabajo de Riemann todavía 
perduren. 
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1826 Nace en Breselenz, Alemania, el 17 de 
septiembre, Georg Friedrich Bemhard 
Riemann, hijo de un pastor luterano. 
Desde su infancia muestra una gran 
habilidad para las matemáticas. Siendo 
él todavía un niño, la familia se traslada 
a Quickbom, localidad próxima a 
Hamburgo. 

1840 Ingresa en el Liceo de Hanóver y dos 
años después completa sus estudios 
secundarios en Luneburgo, donde tiene 
su primer contacto con las matemáticas 
superiores. 

1846 Ingresa en la Universidad de Gotinga 
con la intención de estudiar filosofía y 
teología, pero su vocación matemática 
se impone tras asistir a las clases de 
Gauss. 

1847 Riemann pasa dos años en la 
Universidad de Berlín, donde coincide 
con Dirichlet. 

1849 Regresa a Gotinga, donde comienza 
a preparar su tesis doctoral bajo la 
dirección de Gauss. 

1851 Completa su tesis doctoral, una 
de sus obras maestras. En ella define 
las superficies que hoy llevan su 
nombre y da forma moderna a la 
topología. 

1854 Expone su tesis de habilitación, 
en la que establece los conceptos 
fundamentales de la geometría 

diferencial ( una de las bases 
matemáticas de la teoría de la 
relatividad). Completa asimismo la 
investigación en la que define la que 
hoy se conoce como «integral de 
Riemann». Estos dos trabajos se 
publicarán en 1868. 

1857 Publica «Teoría de las funciones 
abelianas», otra de sus obras maestras, 
que es elogiada por matemáticos de 
toda Europa 

1859 Riemann asume la cátedra de 
Matemáticas de Gotinga, plaza que 
antes había estado a cargo de Gauss 
y Dirichlet, sucesivamente. Es elegido 
miembro de la Academia de Ciencias 
de Berlín y de la Royal Society de 
Londres. 

1862 En junio se casa con Elise Koch. 
Un mes después cae enfermo de 
pleuritis, enfermedad puln10nar 
que al poco tiempo deriva en 
tuberculosis. En diciembre viaja 
a Italia en busca de un clima más 
favorable. 

1863 Vuelve a Gotinga, pero su salud decae 
nuevamente y regresa a Italia. Allí nace 
su hija Ida. 

1865 En octubre regresa a Gotinga por 
última vez. 

1866 Muere el 20 de julio en Italia, en la 
ciudad de Selasca. 
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CAPÍTULO 1 

Riemann y la topología 

Bernhard Riemann tuvo una infancia pobre, 
pero feliz. Sus padres y maestros hicieron todo lo 

posible por cultivar su innato talento para las matemáticas, 
del que dio muestras a muy temprana edad. En la 
universidad, fue discípulo de Gauss, quien dirigió 
su tesis doctoral. En ella Riemann desarrolló un 

concepto que hoy en día es fundamental en el 
cálculo de variable compleja, las llamadas · 

«superficies de Riemann». 





Georg Friedrich Bernhard Riemann nació el 1 7 de septiembre de 
1826 en Breselenz, un pequeño pueblo que entonces pertenecía 
al reino de Hanóver, en Alemania. Su padre, Friedrich Bernhard 
Riemann, era un pastor luterano que había combatido contra las 
tropas de Napoleón Bonaparte entre 1806 y 1815, cuando el ejér­
cito francés invadió Alemania. Terminada la guerra, se casó con 
Charlotte Ebell, hija de un modesto abogado, y juntos se insta­
laron en Breselenz, aunque poco tiempo después se mudaron a 
Quickborn. Los Riemann tuvieron seis hijos, dos niños y cuatro 
niñas; Bernhard fue el segundo y el mayor de los varones. 

Riemann recordaría su infancia como una etapa muy feliz de 
su vida, y siempre estuvo muy ligado a sus padres y hermanos, 
a quienes visitaba cada vez que podía. Sin embargo, la vida de 
Bernhard en Breselenz y Quickborn no fue fácil: los ingresos de 
la familia eran escasos y, en consecuencia, los Riemann pasaron 
muchas privaciones. Bernhard tuvo una salud muy frágil, y sus 
biógrafos coinciden en señalar como causa directa de ello la mala 
alimentación que padeció durante aquellos primeros años. 

En un principio, Riemann y sus hermanos no fueron a la 
escuela, sino que recibieron su primera educación en casa, con 
su padre como maestro, quien les enseñó a leer y a escribir, así 
como también aritmética e historia. Pero pronto Bernhard co­
menzó a dar muestras claras de su gran habilidad para las ma-
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temáticas: no solo resolvía perfectamente todos los problemas 
aritméticos que le planteaba su padre, sino que además él mismo 
inventaba problemas cada vez más variados y difíciles. Por ese 
motivo, cuando Bemhard tenía diez años, Riemann padre, segu­
ramente con un gran esfuerzo económico para la familia, con­
trató a un profesor particular para que enseñara a su hijo geo­
metría y aritmética. 

« Su incapacidad [la de Riemann] para darse cuenta de 
la magnitud de su propio talento era tan característica 
de él como su casi patológica modestia.» 
- ERIC TEMPLE BELL, Los GRANDES /lfATE/lfÁTJCOS. 

20 

En 1840, a los catorce años, Bernhard se fue a vivir con 
su abuela a la ciudad de Hanóver para estudiar en el Liceo, al 
que ingresó directamente en el tercer curso. Pero en 1842 su 
abuela falleció, por lo que Riemann tuvo que completar sus es­
tudios secundarios en el Johanneum Gymnasium de Luneburgo, 
ciudad cercana a Quickbom, donde se alojaba en casa de uno 
de los profesores. La cercanía entre Luneburgo y Quickbom le 
permitía viajar a su casa frecuentemente; ello mejoró su ánimo, 
que había decaído en Hanóver, donde extrañaba a sus padres y 
hermanos. Cabe añadir que, además de muy apegado a su fami­
lia, Riemann era tímido y retraído; le era muy difícil hacer nue­
vos amigos y nunca se encontró totalmente cómodo hablando 
en público, ni siquiera años después, cuando ya era profesor y 
algunas de sus conferencias cambiaron el rumbo de las mate­
máticas. 

EL DESCUBRIMIENTO DE LAS MATEMÁTICAS 

Fue en Luneburgo, gracias al director del Johanneum Gymna­
sium, el profesor Schmalfuss, donde Bemhard tuvo su primer 
contacto con las matemáticas superiores. Schmalfuss se percató 
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CARL FRIEDRICH GAUSS (1777·18SS) 

Gauss, nacido en Brunswick (Alemania), 
está considerado unánimemente como 
uno de los tres más grandes matemá­
ticos de todos los tiempos, junto con 
Arquímedes e Isaac Newton, un recono­
cimiento que llegó a recibir en vida . De 
su precocidad da cuenta una anécdota 
que protagonizó con tan solo nueve 
años de edad: el maestro de su escuela, 
de nombre Büttner, para mantener a sus 
alumnos ocupados, les mandó calcular 
la suma de todos los números del 1 al 
100. Gauss halló el resultado correcto en 
pocos segundos gracias a un ingenioso 
razonamiento: imaginó que escribía la 
suma buscada dos veces, primero en orden creciente y luego decreciente, y 
que sumaba los números alineados verticalmente: 

1 + 

100 + 
2 + 

99 + 
3 + .. . + 

98 + + 
99 + 100 

2 + 1 

101 + 101 + 101 + + 101 + 101 

En la última línea aparece el 101 sumado 100 veces, es decir, el resultado de la 
suma «duplicada» es 10100. Por lo tanto, el resultado de sumar cada número 
solo una vez es 5050. 

Los polígonos regulares 
Con tan solo diecisiete años Gauss realizó uno de sus descubrimientos más 
populares, relacionado con los polígonos regulares. Un problema que preo­
cupaba a los geómetras desde la Antigüedad era qué polígonos regulares 
pueden construirse con una regla no graduada y un compás. Usando solo esos 
dos instrumentos, desde el siglo 111 a.c. se conocían métodos para construir 
polígonos regulares de 3, 4, 5, 6, 8, 10, 12, 15, 16 y 20 lados, pero no para los 
valores intermedios, 7, 9, 11, 13, 14, 17 y 19. Gauss demostró que, de todos estos 
últimos polígonos, solo es posible construir con regla y compás el de 17 lados, 
y además explicó cómo hacerlo, en lo que fue el primer avance en los proble­
mas con regla y compás en más de dos mil años. Estaba tan orgulloso de ese 
descubrimiento que, muchos años más tarde, pidió que en su lápida se grabara 
un polígono regular de 17 lados inscrito en una circunferencia. Gauss también 
hizo contribuciones decisivas al cálculo, la aritmética, la geometría clásica, la 
geometría diferencial, la estadística, la física matemática y la astronomía. 
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rápidamente del gran talento de Riemann y le dio libre acceso 
a su biblioteca personal. El primer libro que Riemann eligió de 
esa biblioteca fue el Ensayo sobre la teoría de los números, de 
Adrien-Marie Legendre (1752-1833), un texto de más de ochocien­
tas páginas que Bernhard leyó en tan solo seis días. Otras de las 
lecturas que realizó en aquella época fueron los textos clásicos de 
Arquímedes y Apolonio de Pérgamo. 

En 1846, a los diecinueve años, Riemann completó brillan­
temente sus estudios secundarios e ingresó en la Universidad de 
Gotinga con la intención, por sugerencia de su padre, de estudiar 
filosofía y teología con el fin de convertirse en pastor luterano. 
Pero en aquellos tiempos enseñaba en aquella universidad ale­
mana Carl Friedrich Gauss, llan1ado el príncipe de las matemá­
ticas. Riemann asistió a las clases de Gauss y ya no pudo evitar 
que su vocación se impusiera. Poco tiempo después de llegar a 
Gotinga Bernhard le escribió a su padre pidiéndole permiso para 
dejar la filosofía y la teología, y dedicarse a las matemáticas; Rie­
mann padre no dudó en dárselo. 

Riemann destacó en Gotinga, pero no permaneció allí mucho 
tiempo, ya que en 184 7 acudió a la Universidad de Berlín para 
completar su formación en algunas áreas para las que Gotinga no 
tenía docentes del nivel necesario. En Berlín estudió, entre otros, 
con Gustav Lejeune Dirichlet, también un matemático destacado 
y una de las figuras fundamentales del cálculo diferencial. Tanto 
Gauss como Dirichlet tuvieron gran influencia en el desarrollo del 
pensamiento matemático de Riemann. 

En 1849 Bernhard volvió a Gotinga y comenzó a trabajar en su 
tesis doctoral, bajo la dirección de Gauss. El hecho de que Gauss, 
reconocido en vida como el matemático más grande de su tiempo, 
aceptara dirigir la tesis doctoral de Riemann ya representa por 
sí solo un tributo a la capacidad de este como matemático. El 
trabajo, titulado «Grundlagen für eine allgemeine Theorie der 
Functionen einer veriinderlichen complexen Grosse» ( «Funda­
mentos para una teoría general de las funciones de una variable 
compleja»), fue expuesto ante el tribunal examinador en diciem­
bre de 1851 y aprobado por unanimidad. La evaluación previa que 
Gauss había presentado al tribunal decía: 
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La disertación presentada por Herr Riemann ofrece pruebas convin­
centes de que ha realizado detenidas y penetrantes investigaciones 
en aquellas partes del tema tratadas en la disertación, de que posee 
una mente creadora activa, verdaderamente matemática, y de que es 
dueño de una gloriosa y fecunda originalidad. 

En esta tesis Riemann sentó las bases de la topología mo­
derna; en las siguientes secciones de este capítulo veremos cómo 
lo hizo. 

PETER GUSTAV LEJEUNE DIRICHLET (1805-1859) 

Dirichlet nació en Düren (localidad ale­
mana que entonces pertenecía a Fran­
cia) y desde muy pequeño mostró gran 
interés por las matemáticas, una incli­
nación alentada tanto por sus padres 
como por sus profesores. Cursó sus 
primeros estudios primero en Bonn, y 
luego en Colonia, donde tuvo entre sus 
profesores a Georg Simon Ohm (el des­
cubridor de la famosa ley de Ohm de 
la resistencia eléctrica) . A los dieciséis 
años ya estaba preparado para ingre­
sar en la universidad, pero en aquella 
época los estándares de las institucio­
nes alemanas no eran muy altos, por lo 
que prefirió estudiar en París. Allí cono­
ció, entre otros, a Laplace, Legendre y 
Fourier. Debe señalarse que no muchos 
años después Alemania emprendió una serie de reformas educativas que 
hicieron de sus universidades las mejores de su tiempo, y que el propio Diri ­
chlet jugó un papel muy importante en ese proceso. El matemático regresó 
a Alemania en 182S y tres años más tarde se incorporó como profesor a la 
Universidad de Berlín, donde permaneció hasta 1855, año en que aceptó 
hacerse cargo de la cátedra de Gauss en la Universidad de Gotinga. Como 
matemático hizo contribuciones importantes al cálculo y la aritmética. Entre 
muchos otros, se le debe el teorema que dice que si a y b son números 
enteros cuyo máximo común divisor es igual a 1, entonces la sucesión a +b, 
2a+b, 3a+b, contiene infinitos números primos. 
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LAS COLECCIONES DE NÚMEROS Y LOS NÚMEROS 
COMPLEJOS 

El título de la tesis doctoral de Riemann incluye el concepto de 
«variable compleja», por lo que comenzaremos su análisis ana­
lizando en primer lugar qué son los números complejos. Para 
llegar a ellos, sin embargo, debemos explicar previamente las 
diferentes colecciones en las que se agrupan los números, cada 
una de las cuales contiene a la anterior. La primera de estas co­
lecciones está formada por los números naturales, que son los 
números que se obtienen a partir del O sumando 1 cada vez; es 
decir, los números naturales son los números O, 1, 2, 3, 4, Si 
agregamos los negativos, obtenemos la colección de los núme­
ros enteros, que son, en consecuencia, los números ... , -3, -2, 
-1, O, 1, 2, 3, ... (los puntos suspensivos indican que la colección 
se extiende infinitamente tanto hacia la derecha como hacia la 
izquierda). 

La colección que sigue es la de los números racionales, que 
son aquellos cuya escritura decimal es finita, como es el caso de 
0,24 o de 3,5, o bien es infinita pero periódica, como sucede con 
1,3333 o con O, 1234343434 ( «periódica» significa que hay un blo­
que de cifras que se repite una y otra vez; en el segundo ejemplo 
ese bloque es 34). Otra manera de definir los números raciona­
les es diciendo que son aquellos que pueden expresarse como 
una fracción formada por dos enteros: 0,24 = 6 / 25; -3,5 = - 7 / 2; 
1,333 ... =4/3; 0,1234343434 ... = 611/4950 ... Los enteros son casos 
particulares de números racionales, ya que también pueden escri­
birse como fracción; así, por ejemplo, 5 = 5 / l. 

La colección que sigue a la de los racionales, y que asimismo 
la contiene, es la de los números reales; esta colección se obtiene 
agregando los números irracionales, que son aquellos cuya escri­
tura decimal es infinita y no periódica. Entre los números irracio­
nales están, por ejemplo, n:=3,14159265 ... ; -12= 1,414213562 ... o 
-J3 = -1, 7320508 ... 

Una característica de los números reales es que pueden re­
presentarse en una recta, denominada «recta numérica» o «real». 
A cada punto de la recta le corresponde un número y, recípro-
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camente, a cada número le corresponde un punto, tal como se 
muestra en la figura l. 

o 1 V2 2 2,5 3 e -, ___________________ ___¡ 

Otra de sus características consiste en que al elevar al cua­
drado un número real ( es decir, al multiplicarlo por sí mismo) 
el resultado nunca es un número negativo . Por ejemplo, 
( J2)2 = J2. J2 = 2, mientras que (-J2)2 = c-J2)(-J2) = 2, tam­
bién positivo. Una consecuencia de este hecho es que, entre los 
números reales, es imposible calcular la raíz cuadrada de un nú­
mero negativo; así, ~ o ~, por ejemplo, son operaciones 
«prohibidas» en ese contexto, ya que no existe ningún número 
real que elevado al cuadrado sea igual a -1 o -2. 

Ahora bien, ninguna de las aplicaciones de las matemáticas 
en la vida cotidiana, como por ejemplo en el caso de la medición 
de longitudes, áreas, volúmenes, pesos, distancias o intervalos de 
tiempo, requiere de otros números que no sean los reales. Por ese 
motivo durante siglos se consideró que estos eran los únicos nú­
meros que existían y que operaciones como ~ o ~ carecían 
de todo sentido. 

Sin embargo, en la primera mitad del siglo XVI los matemáticos 
italianos Niccolo Fontana, más conocido como Tartaglia (1499-
1557), y Girolamo Cardano (1501-1576), al desarrollar el método 
para resolver ecuaciones del tipo de x3 + x-10 = O ( es decir, ecua­
ciones en las que la incógnita aparece elevada al cubo), se en­
contraron con que a veces ese método los «obligaba», en medio 
del proceso de cómputo, a calcular raíces cuadradas de números 
negativos, si bien el resultado final del cómputo era un número 
real. Por ejemplo, el método podía pedirles calcular en cierto 
momento 1 + ~ , en otro momento 1-~ , para finalmente 
sumar ambos resultados y obtener así (1+~)+(1-~)=2. 
Tanto Tartaglia como Cardano consideraban que estas raíces 
cuadradas de números negativos representaban números que en 
realidad no existían, motivo por el que los llamaron «números 

RIEMANN Y LA TOPOLOGÍA 



imaginarios», y solo los admitían como «ficciones útiles» que les 
permitían resolver ecuaciones cúbicas. 

El primero en operar abiertamente con estos números «ima­
ginarios» fue, a mediados del siglo XVIII, Leonhard Euler, quien, 
quizá para evitar el choque psicológico que implicaba escribir 
.f:1, introdujo la letra i para referirse a esa expresión mate­
mática (nótese que i 2 = - 1). De este modo, en lugar de 1+.f:1, 
Euler escribía 1 + i, y en lugar de ~ ponía .J2i ( en efecto, 
( .J2i)2 = ( .J2)2(i)2 = 2(-1) = -2, por lo que~ = .J2i ). 

También fue Euler quien bautizó como «números complejos» 
a estas expresiones de la forma a+ bi, donde a y b son números 
reales. Tenemos así que son números complejos, por ejemplo, 

-3 + Si, 3 - Js i y también 8 + Oi. 
5 

Nótese que 8+0i es en realidad 8. De este modo, así como 
los enteros contienen como casos particulares a los naturales, los 
racionales contienen a los enteros y los reales contienen a los ra­
cionales, de la misma forma, los números complejos contienen 
como caso particular a los reales (figura 2). 

Euler operó y trabajó con los números complejos; por ejem­
plo, estableció que (2 + 3i) (2 - 3i) = 2 • 2 - 2 • 3i + 3i • 2 - 3i • 3i = 
=4-6i+ 6i+9= 13. Euler demostró inclusive teoremas referidos a 
los números complejos. Así, por ejemplo, fue en este contexto que, 
en 1748, publicó su famosa fórmula e;" + 1 = O. 

FIG. 2 
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LA FÓRMULA DE EULER 

Euler demostró que si t es un número 
real, entonces e;, es siempre un número 
complejo ubicado en la circunferencia 
centrada en el O y de radio 1, donde t es 
el ángulo, medido en radianes, que ese 
número forma con el eje de los números 
reales positivos (véase la figura) . Cuando 
el ángulo es de 180º, es decir, cuando 
t=1t, el número complejo en cuestión es 
-1. Tenemos en consecuencia que e;,=-1, 
de donde se deduce la famosa fórmula 
e,.'+1 =O. 

' t 
' 1 

Sin embargo, Euler nunca explicó claramente qué represen­
taban estos «nuevos» números, y es por ello que la cuestión de 
si en verdad existían siguió siendo todavía motivo de debate. La 
existencia de los números complejos fue aceptada finalmente en 
1799, año en el que Gauss publicó su tesis doctoral. 

Comencemos por decir que, así como cada posición en un 
mapa puede ser indicada mediante su latitud y su longitud, del 
mismo modo cada punto del plano queda identificado también 
mediante dos coordenadas, llamadas su abscisa y su ordenada 
(figura 3). La idea de Gauss consistió en establecer que cada nú­
mero complejo representa en realidad un punto del plano; más 
concretamente, el número complejo a+ bi, dijo Gauss, representa 
el punto de coordenadas ( a, b ). Fue esta identificación la que final­
mente le dio a los números complejos su «carta de ciudadanía» 
entre los números existentes. 

Obsérvese, además, que el hecho de que los números rea­
les estén incluidos entre los complejos se ve gráficamente en el 
hecho de que la recta real está contenida en el plano complejo 
(figura 4). 

Evidentemente, cuando Riemann comenzó a trabajar en su 
tesis doctoral bajo la tutela de Gauss, esta identificación entre 
números complejos y puntos del plano estaba ya madura en el 
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pensamiento matemático y Riemann pudo hacer libre uso de ella. 
Más aún, como veremos en este capítulo, Riemann no solo usó 
esta idea, sino que la llevó a mayores niveles de profundidad. 

LA IDEA DE FUNCIÓN 

Como en el caso de los números complejos, el primero en hablar 
de funciones en un sentido relativamente moderno fue Leonhard 
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Euler, quien como ya se ha apuntado desarrolló su trabajo a me­
diados del siglo XVIII. Para Euler, una función era una regla que 
a cada número (real o complejo) le asigna, a su vez, un número 
(también real o complejo); y esa regla debía estar expresada nece­
sartamente por una fórmula. Por ejemplo, la fórmula x2- + 2 define 
una función, a la que podemos llamar f. ¿Cómo actúa esta fór­
mula en tanto que regla de asignación? Para calcular, por ejemplo, 
qué número le asigna f al 3 se reemplaza la letra x (llamada la 
variable de la función) por ese número 3; y dado que 32 + 2 = 11, 
entonces!, al número 3, le asigna el ll. Esto también se expresa 
diciendo que la «imagen de 3 por fes ll», frase que Euler resu­
mía, tal como todavía se hace, como fl:3) = ll. Para la expresión 
general de la función, Euler escribía, como también todavía se 
hace,f(x) =x 2 +2. De este modo, son ejemplos de esta función 
f(3) =32 +2 = ll,f(- 1) = (- 1)2+2 =3 o f( J2) = ( J2)2 +2 = 4. 

Pero la variable también puede ser reemplazada por núme­
ros complejos; tenemos así, por ejemplo, quef(2-i) = (2-i)2 + 2 = 
=(2- i)(2- i)+2=4-2i-2i+(-i)2+ 2=4-4i-l + 2=5-4i; es decir, 
la imagen de 2 - i por fes 5- 4i. La tradición matemática indica 
que se use la letra z para las variables que van a ser reemplazadas 
por números complejos, mientras que la letra x se reserva para 
aquellas que serán reemplazadas solo por números reales. De este 
modo,f(z) =z2 +2 es unafunción de variable compleja, que son 
aquellas funciones de las que habla la tesis de Riemann. 

«A Dirichlet le gustaba tener ideas claras sobre una base 
intuitiva, evitando los cálculos largos tanto como fuera posible. 
Riemann adoptó enseguida este método de trabajo.» 
- FELIX KLEIN, LECCIONES SOBRE EL DESARROLLO DE LA .MATEMÁTICA EN EL SIGLO XIX. 

30 

Ahora bien, como acaba de señalarse, para Euler una función 
solo podía estar descrita mediante una fórmula. Sin embargo, más 
de medio siglo después, en un artículo publicado en 1829 y dedi­
cado a un tema relacionado con las series de Fourier (volveremos 
a esta cuestión con más detalle en el tercer capítulo), Dirichlet 
afirmó que era necesario ampliar la clase de las reglas admisibles. 
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LEONHARD EULER (1707-1783) 

Euler nació en Basilea (Suiza) y a los 
catorce años ingresó en la Universi­
dad de esta ciudad con la intención 
de estudiar filosofía para convertirse 
en ministro protestante, al igual que 
su padre. En 1723 se doctoró con una 
tesis en la que comparaba las filosofías 
de Descartes y Newton. Pero Johann 
Bernoulli, famoso matemático de la 
época y profesor de aquella universi­
dad, se dio cuenta del gran talento de 
Euler para las matemáticas y convenció 
al padre de este de que le permitiera 
ded icarse a esa ciencia. Es así como 
inició ·en la misma universidad sus es­
tudios de matemáticas, que completó 
en 1726. Euler pasó la mayor parte de 
su carrera en la Academia de Ciencias 
de San Petersburgo, donde ocupó la cátedra de Física, con la sola excepción 
del periodo comprendido entre 1759 y 1766, durante el cual formó parte de 
la Academia de Ciencias de Berlín, puesto al que renunció por serias discre­
pancias con algunos de sus colegas. Euler fue sin duda el matemático más 
importante del siglo xv111; es también el matemático que más ha escrito en 
toda la historia de esta ciencia y uno de los científicos más productivos de 
todos los tiempos en cualquier área del conocimiento. Hizo aportaciones 
fundamentales a la física, el cálculo, la teoría de ecuaciones diferenciales, 
la aritmética, la geometría y el álgebra, y fue el iniciador de la topología, 
la teoría de grafos y la teoría analítica de números. Trece años antes de 
morir quedó completamente ciego, pero ello no hizo disminuir su ritmo de 
trabajo, ya que tenía una impresionante capacidad para el cálculo mental, 
así como una memoria fotográfica. Cincuenta años después de su muerte 
la Academia de Ciencias de San Petersburgo todav ía seguía publicando sus 
trabajos inéditos. 

Según el matemático, la regla de asignación de números podía 
estar expresada de cualquier manera, siempre que se cumplieran 
dos condiciones: por un lado, la regla debía indicar de un modo 
claro y preciso qué imagen se le asigna a cada número, y por el 
otro, ningún número podía tener dos o más imágenes diferentes. 
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A modo de ejemplo, Dirichlet propuso una función que no estaba 
definida mediante una fórmula; esta función, que llamaremos 
D(x), y que hoy en día es conocida como lafunción de Dirichlet, 
le asigna a cada número racional el 1, y a cada número irracional 
el O. En otras palabras, D(x) = 1 si x es un número racional y 
D(x) = O si x es un número irracional. De este modo, D(2) = 1, 
D(-2,3) = 1 y D( .J2) =O.Al admitir cualquier tipo de regla, Dirich­
let amplió el rango de las funciones admisibles. 

Riemann, que había estudiado con Dirichlet en Berlín, estaba, 
por supuesto, al tanto de estas ideas; más aún, es razonable su­
poner que reflexionó profundamente sobre el problema de qué 
era exactamente una función, ya que en su tesis doctoral logró 
darle a ese concepto ( especialmente a las funciones de variable 
compleja) una interpretación geométrica de tal riqueza que por sí 
sola creó la topología moderna. Veremos a continuación por qué. 
Comencemos por decir que en su tesis Riemann escribió que: 

Cuando a todo valor de z le corresponde un valor determinado w 
[ ... ) entonces a todo punto del plano A le corresponde un punto del 
plano B, a toda línea le corresponde, de forma general, una línea 
y a toda porción conexa de superficie, una porción de superficie 
igualmente conexa. En consecuencia, se puede considerar esta de­
pendencia de la magnitud w de z como una representación del plano 
A sobre el plano B. 

Debe puntualizarse que «conexa» significa aquí que la superfi­
cie está formada por un único sector y no por secciones separadas 
entre sí. 

Para entender la idea que describe Riemann en este párrafo 
consideremos, a modo de ejemplo, la función de variable compleja 
f ( z) = 2iz, es decir, la función que consiste en multiplicar el nún1ero 
complejo z por el número complejo 2i. De este modo, se obtiene, 
entre otros valores posibles, quef(l) = 2i y quef(i) = 2i- i =-2. Rie­
mann afirmaba que una función de variable compleja describía en 
realidad un desplazamiento de los puntos del plano; entonces, en 
el ejemplo anterior, el hecho de que f (1) = 2i significa que la fun­
ción! desplaza al punto (1, O), que es el que corresponde al número 
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complejo 1 = 1 + Oi, a la posición 
(0,2), que es la que corresponde al 
número complejo 2i. 
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De la misma forma, dado que 
f(i) = - 2, entonces f desplaza al 
punto A = (0,1) hasta la posición 
B = (- 2,0). Ahora bien, se puede 
probar que esta función f admite 
una precisa descripción geomé­
trica. Tal como se vio en los ejem­
plos previos, si se piensa en el nú­
mero complejo z como un punto 
del plano y a continuación se consi­
dera el segmento L que conecta ese 
punto con el punto (0,0), lainte1pre­
tación geométrica es la siguiente: el 
hecho de quef(z) = W significa que 
w se obtiene duplicando la longitud 
del segmento L y girándolo después 
90º en sentido contrario al de las 
agujas del reloj (figura 5). 2 --- L -~--- ., 

Para continuar con el ejem­
plo, considérese ahora, en lugar 
de puntos aislados, toda una re­
gión del plano o, en palabras de 
Riemann, «toda porción conexa 
de superficie». Por ejemplo, lla­
memos R al rect.á.ngulo de vértices 
(0,0), (0,1), (2,0) y (2,1); si se aplica 
la función! a todos los puntos que 
forman ese rect.á.ngulo (tanto a los 

o 
-1 

90º 

R 

o 

+--+---
FIG.6 

de su perímetro como a los interiores) entonces el resultado final 
será otro cuadrado R ' cuyos lados miden el doble de los de R y que 
está girado 90º con respecto a este (figura 6). 

Según la idea de Riemann, que él expresó con la frase «a toda 
porción conexa de superficie [le corresponde] una porción de 
superficie igualmente conexa», las funciones representan movi-
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mientos que desplazan y deforman las superficies, como si estas 
estuvieran hechas de goma. Pero Riemann también dijo que «a 
toda línea le corresponde, de forma general, una línea», lo que sig­
nifica que Riemann consideró asimismo deformaciones de cmvas. 
Para ver un ejemplo de esta situación, considérese la frontera del 
cuadrado C vista en el ejemplo anterior (véase la parte izquierda 
de la figura 7). Si z es un número complejo, se llama lzl (y se lee 
«módulo de z») a la distancia del punto z al (0,0); si z =a+ bi se 
puede probar que jzj = .J a 2 + b2

; así, por ejemplo, 11 + il = J2. 
Por otra parte, también puede probarse que si z ~ O entonces 

la distancia de ~ al (0,0) es 1; así, por ejemplo, es la distancia de 
lzl 

l+i 1 1 . 
--=-+-i 
J2 J2 J2 

al (0,0). Considérese entonces la función 

z 
f(z) = lzl' 

que puede calcularse para cualquier z ~ O; si se le aplica esta fun­
ción al cuadrado C de la figura 7, cuyos vértices son de la forma 
(±1, ±1), se obtiene como resultado la circunferencia de centro 
(0,0) y radio l. 

Riemann afirma, entonces, que el cuadrado puede ser defor­
mado, tal como si fuera de goma, hasta transformarse en una cir­
cunferencia. Para comprender por qué estas ideas reformularon 
la topología y la llevaron a la forma que tiene actualmente, debe 
entenderse qué estudia esta rama de las matemáticas. 
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¿QUÉ ES LA TOPOLOGÍA? 

El primero en usar la palabra «topología» fue el matemático ale­
mán Johann Benedict Listing (1808-1882), quien, al igual que Rie­
mann, había sido discípulo de Gauss. Listing utilizó este término 
en un trabajo publicado en 1861. Sin embargo, la topología nació 
en realidad años antes, en 1736, en el artículo en el que Leonhard 
Euler resolvió el problema de los siete puentes de Konigsberg. 
Veamos en qué consiste este problema y cómo se relaciona su 
solución con las ideas de Riemann. 

La ciudad de Konigsberg (antigua capital de Prusia Oriental 
que hoy pertenece a Rusia y que fue rebautizada Kaliningrado 
tras la Segunda Guerra Mundial) está atravesada por el río Pre­
gel. En los tiempos de Euler existían siete puentes que conecta­
ban las márgenes del río con dos islas que había en su centro, 
tal como aparece esquematizado en la figura 8, en la que las islas 
están señaladas con las letras C y D. 

Según cuenta Euler, los habitantes de Konigsberg solían pre­
guntarse si era posible realizar un paseo ( que podía comenzar en 
una de las márgenes o en una de las islas) que cruzara exactamente 
una vez por cada puente, es decir, un camino que los atravesara 
sin repetir y sin omitir ninguno. Por ejemplo, en la figura 9 (página 
siguiente) se muestran dos intentos fallidos: uno falla porque se 
omite un puente; el otro, porque un puente es cruzado dos veces. 

Ahora bien, en el problema de los puentes de Konigsberg, al 
igual que en la figura 7, aparecen cuatro regiones: las regiones A 

FIG. 8 
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y B, que son las márgenes del río, y 
las regiones C y D, que son las islas. 
El único aspecto relevante de la cues­
tión es qué regiones están conecta­
das entre sí y por cuántos puentes, 
sin importar cuál sea su longitud, su 
forma o cualquier otro dato relativo a 
ellos. Por lo tanto, la situación de la 
figura 8 puede resumirse, sin perder 
información, en el esquema de la fi­
gura 10. 

La imagen de dicha figura es un 
grafo, es decir, un dibttjo formado por 
puntos ( que en este caso representan 
a las regiones A, B, C y D) conecta­
dos mediante líneas ( que representan 
los puentes). El problema se trans­
forma, entonces, en la pregunta de 
si es posible trazar, en ese grafo, un 
camino que recorra exactamente una 
vez cada línea sin repetir ni omitir 
ninguna de ellas (no importa cuántas 
veces toque cada punto). 

. .. 
: •---- ---:---··· •",,' 
• : D • 
~ . 

{!. . . . 
' B • •••••••••• 

FIG. 9 

A 

En su artículo de 1736 Euler ob­
servó que la existencia o no de un 
recorrido como el que se busca de-

s pende solo de la cantidad de líneas 
FIG. ,o que sale de cada punto. Convenga­

mos en decir que un punto es par si 
. de él parte una cantidad par de líneas 

e impar si la cantidad de líneas que parte de él es impar; en la fi­
gura 10 todos los puntos son impares. Euler demostró que existe 
un recorrido que pase exactamente una vez por cada línea si y 
solo si la cantidad de puntos impares no es mayor que dos. Ahora 
bien, como en el grafo de los puentes de Konigsberg hay cuatro 
puntos impares, entonces un paseo como el que querían hacer los 
habitantes de la ciudad es imposible. 
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En su artículo, Euler demostró cuál es la condición para que 
el recorrido sea posible y determinó que en el caso del problema 
de Konigsberg esa condición fallaba. Pero puede irse más allá. Así, 
la figura 11 incluye el grafo de la figura 10 (recuadrado), además 
de otros; todos ellos resultan de deformarlo como si estuviera 

· hecho de goma, exactamente el mismo tipo de deformación que, 
según se vio anteriormente, consideró Riemann para las superfi­
cies y las curvas. 

En todos estos nuevos grafos las cantidades de líneas que 
salen de cada punto son siempre las mismas y, en consecuencia, 
tampoco se modifica el hecho de que es imposible hacer un re­
corrido que pase exactamente una vez por cada línea. Riemann 
observó en su tesis que existen ciertas propiedades de las curvas 
y de las superficies que no se alteran cuando se las deforma, como 
si estuvieran hechas de goma. Hoy en día a estas propiedades se 
las conoce como propiedades topológicas o invariantes topoló­
gicas, y se les da este nombre porque la topología es, justamente, 

r----

A 

B 

B 

D 

FIG.11 
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FIG. 12 
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el estudio de las propiedades que no se 
modifican al aplicarse esa clase de de­
formaciones. 

Otra manera de expresar esta idea 
es diciendo que si una superficie ( o 
una cUIVa) se obtiene de otra por una 
deformación de este estilo, entonces 
ambas superficies ( o curvas) tienen 
exactamente las mismas propiedades 
topológicas. Por ejemplo, la figura 7 
(pág. 34) nos muestra que el borde de 

un cuadrado y una circunferencia tienen las mismas propiedades 
topológicas (son topológicamente equivalentes). Entre las pro­
piedades topológicas que ambas curvas poseen se encuentra el 
hecho de que son cerradas y que no se cortan a sí misma. La cUIVa 
de la figura 12, en cambio, sí se corta a sí misma por lo que no es 
topológicamente equivalente a ellas. 

LAS SUPERFICIES DE RIEMANN 

Riemann, en su tesis de 1851, fue el primero en estudiar siste­
máticamente invariantes topológicos, específicamente los inva­
riantes topológicos de las hoy llamadas superficies de Riemann, 
que son superficies que él asoció a ciertas funciones de variable 
compleja. Veamos en qué consiste esta idea. Considérese la fun­
ción de variable real f ( x) = ~ (la raíz cúbica de x ) . Su dominio, 
que es como se llama en conjunto a todos los valores que pueden 
ser reemplazados en la variable, está formado, entonces, por los 
números reales. Por otra parte, sabemos que, por ejemplo, como 
23 = 8, entonces ~ = 2 , es decir, f (8) = 2, y de la misma forma 
f(-64) = ~ = -4 dado que (-4)3=-64. 

La primera pregunta que debemos hacernos es qué sucede 
cuando tratamos de extender el dominio a todo el plano complejo; 
en otras palabras, ¿qué pasa si intentamos calcularf(z), donde z 
es un número complejo? Por ejemplo, ¿qué esf(i) of(l-i)? Este 
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es un problema que también estudió Riemann, tanto en su tesis de 
1851 como en un trabajo de 1854 que describiremos en el próximo 
capítulo, y que consiste en analizar si es posible extender a todo el 
plano complejo el dominio de una función que, en principio, había 
sido planteada solamente para los números reales. Esta cuestión, 
de suma importancia en el cálculo de variable compleja, se co­
noce como el problema de la extensión analítica. 

«Gauss predijo que la topología llegaría a ser uno de los métodos 
más influyentes de las matemáticas, como en efecto ocurrió.» 

- ERJC TEMPLE BELL, Los GRANDES MATEMÁTICOS. 

Ahora bien, como ya se apuntó, cuando se trabaja con nú­
meros reales, entonces 'efs = 2 , porque 23 = 8 y, además, 2 es el 
único número real que elevado al cubo es 8. Esto último asegura, 
como quería Dirichlet, que cada número real tenga solamente 
una imagen. Un problema que surge al pasar a trabajar con nú­
meros complejos es que en este caso cada número complejo ( con 
la única excepción del O) tiene tres raíces cúbicas. Por ejemplo, 
dado que (2 + Oi)3 = 8, (-1 + -./3i )3 = 8 y (-1- -./3i )

3 
= 8 , entonces 

hay, dentro de los números complejos, tres raíces cúbicas de 8, 
que son 2, - 1 + -./3i y - 1- -./3i . El O, pensado como O + Oi, es el 
único número complejo que tiene solo una raíz cúbica ( que es el 
propio número O). 

En consecuencia, al definir f(z) = ½, con z complejo, es­
tamos ante una función ambigua que a casi todos los números 
le asigna más de una imagen. Riemann llamaba funciones mul­
tiformes a aquellas que presentan este tipo de ambigüedad y 
uniformes a las funciones que, tal como debe ser según la defini­
ción de Dirichlet, asignan siempre una sola imagen. En realidad, 
es muy frecuente que, dada una función uniforme de variable 
real, esta se transforme, tal como sucedió con la raíz cúbica, 
en multiforme al extenderla al dominio complejo; la motivación 
de Riemann al definir las superficies que hoy llevan su nombre 
fue resolver este tipo ambigüedades. En sus propias palabras, 
citadas de su tesis: 
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Superficie de 
Rlemann de la 

función raíz 
cúbica. Está 

formada por tres 
coplas del plano 

complejo (dos de 
ellas deformadas), 

unidas por el 
origen de 

coordenadas 

40 

La función multiforme admite en cada punto de una superficie que 
represente el modo de ramificación, un único valor determinado, y 

puede ser vista como una función perfectamente determinada sobre 
esa superficie . 

Este párrafo expresa la idea de ampliar el dominio de 
f(x) = 'efx aún más allá del plano complejo; la función se calcula 
para los puntos de una superficie especialmente definida de tal 
modo que cada uno de ellos tenga solamente una imagen. De esta 
manera, dado que el número complejo z = 8 admite tres raíces 
cúbicas, w 

1 
= 2, w2 = -1 + Jsi y w3 = -1- Jsi , se considera una 

superficie que está formada por tres copias del plano complejo 
(figura 13) y que es la superficie de Riemann de la función raíz cú­
bica. Esta función se calcula, entonces, no en los números com­
plejos, sino en los puntos de esta nueva superficie «tripartita», de 
manera que, por ejemplo, al número 8 de la primera copia se le 
asigna el número wI' al 8 de la segunda copia, el número w2, y al 
8 de la tercera copia, el número w

3
. 

Generalizando esta idea, cada z que no sea O tiene tres raíces 
cúbicas, que se identifican por el ángulo que forman con la parte 

FIG.13 

. +- Copia 1 del plano complejo 

- Copia 2 del plano complejo 

+- Copia 3 del plano complejo 
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w, = -1 +V3i 
ángulo= 120º 

w, = -1-V3 i 
ángulo= 240º 

' ' ' ' 
' 1 

1 

-7 
FIG. 14 

El ángulo se mide con 
respecto a esta recta 

w, = 2 
ángulo= Oº 

------ __ __, 

positiva del eje real; w
1 

es la que tiene el ángulo más pequeño, w2 

es la que sigue y w
3 
es la del ángulo mayor (figura 14). A la versión 

de z que está en la copia 1 se le asigna la raíz w
1
, a la que está en 

la copia 2 se le asigna la raíz w2, y a la versión que está en la copia 
3 se le asigna la raíz w

3
• 

De este modo, en la definición de la función se incluyen las 
tres raíces cúbicas que tiene cada número complejo, pero a la 
vez se logra que a cada punto del dominio ( que en este caso es 
la superficie «tripartita») se le asigne únicamente un valor bien 
determinado. Como el O tiene solo una raíz cúbica, entonces no 
hay tres copias de él; es decir, mientras que hay tres copias del 8 
o de cualquier otro número distinto de cero hay, en cambio, un 
único O, que pertenece entonces a las tres partes de la superficie 
a la vez; ese es el motivo por el que, como se ve en la figura 13, las 
tres copias del plano se conectan en ese punto. 

Puede objetarse que la copia superior y la inferior no son pla­
nas, sino que están deformadas, pero debe recordarse que Rie­
mann hizo un estudio de las propiedades topológicas de estas su-
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perficies, y esas propiedades, corno ya se apuntó, no se alteran si 
las superficies son defom1adas corno si fueran de goma. Riernann, 
entonces, asoció a cada funciónf(z) de variable compleja una su­
perficie, y la importancia de esta asociación reside en que muchas 
de las propiedades def(z) se reflejan en propiedades topológicas 
de su superficie asociada. De este modo, el estudio de la superficie 
permite, por un lado, deducir caracteristicas de la función, y por el 
otro, sirve para descubrir similitudes y diferencias entre las distin­
tas funciones a través del estudio de las similitudes y diferencias 
de sus superficies asociadas. 

En el caso de la raíz cúbica, la posición del O corno «punto 
triple» indica que allí la función tiene un comportamiento «anó­
malo». Para ejemplificar en qué consiste este comportamiento 
volvamos a la función de variable real f(x) = ~- Una función 
de variable real se puede representar gráficamente mediante una 
curva que está dibujada en el plano; en cada punto de esta curva la 
primera coordenada es un valor x del dominio de J, núentras que 
la segunda co9rdenada es la imagen de ese número x. A modo de 
ejemplo, la parte izquierda de la figura 15 muestra el gráfico de la 
función raíz cúbica de variable real. 

Un concepto importante en el cálculo diferencial es el de la 
recta tangente a una curva, que se define del siguiente modo: seaP 
un punto fijo en una curva C y sea X un segundo punto de la curva. 

(O;J(O)) 

0,8 

0,6 

0,4 

0,2 

o 

-0,2 

-0,4 

-0,6 

-0,8 
-, ~ :__ _________ _J 
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Tomemos la recta que pasa por P y X, llamada recta secante a C 
que pasa por P y X. Imaginemos ahora que X se va aproximado a 
P; cuando X y P llegan a coincidir exactamente, la recta secante 
se ha transformado en la recta tangente a la curva C en el punto P. 

En la parte derecha de la figura 15 vemos algunas de las rectas 
tangentes a la curva. La recta tangente da una indicación gráfica de 
la velocidad de crecimiento de la función: cuanto más vertical es 
la recta tangente, más rápidamente crece la función en ese punto. 
En el caso de la funciónf(x) = 'efx, tal como se ve en la figura 15, 
en el punto x = O la recta tangente es perfectamente vertical; esto 
significa que en ese punto, por apenas un instante, la función tiene 
una velocidad de crecimiento infinita. En x = O la función tiene, 
entonces, un comportamiento anómalo; matemáticamente se dice 
que la función no es diferenciable en ese punto. Esta anomalía se 
extiende a la función de variable compleja: la raíz cúbica de va­
riable compleja no es diferenciable en z = O, y esto se refleja en la 
posición especial del O en la superficie de Riemann de la función. 

Ahora bien, ¿por qué el gráfico de una función de variable 
real se dibuja en el plano? Como ya se dijo, los números reales 
se representan en una recta (figura 1, pág. 26), que es un objeto 
geométrico de una sola dimensión. Por lo tanto, para realizar el 
gráfico de una función de variable real se necesita una dimensión 
para representar el dominio y otra más para las imágenes; dos di­
mensiones en total. Los números complejos, en cambio, se repre­
sentan en el plano, que tiene dos dimensiones; en consecuencia, el 
gráfico de una función de variable compleja debería dibujarse en 
un espacio de cuatro dimensiones: dos dimensiones para el domi­
nio y dos para las imágenes. Pero a nosotros, seres humanos, nos 
resulta imposible visualizar cuatro dimensiones físicas, por lo que 
no es posible extender la idea del gráfico de la figura 14 al caso de 
funciones de variable compleja y es necesario recurrir a ideas al­
ternativas. Las superficies de Riemann nos dan, precisamente, un 
modo de mostrar gráficamente las características de la función. 

De hecho, la superficie de Riemann de la función raíz cúbica 
de variable compleja es un poco más complicada que como se la 
muestra en la figura 13 (pág. 40); una representación más ajustada 
a la realidad es la de la figura 16 (pág. siguiente). 
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Superficie de 
Riemann de la 

función raíz 
cúbica, con 

más detalle. 
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Como se ve, hay algunas líneas a lo largo de las cuales la su­
perficie se corta a sí misma; este hecho está vinculado con lo que 
se llama la continuidad de la función. Recuérdese que la distin­
ción entre las raíces w P w2 y w

3 
está dada por el ángulo que forman 

con el eje de los números reales positivos (figura 14, pág. 41). Ima­
ginemos ahora que un número complejo comienza a girar desde 
ese eje aumentando su ángulo, como una aguja de reloj que gira 
al revés. El ángulo aumentará entonces, digamos, hasta 10º, 20º, 
30º, llegará hasta 350º, 359º, pero después de 359º 59' 59" volverá 
a Oº, es decir, al completar el giro se produce un salto instantáneo 
desde 360º a Oº; este tipo de salto brusco se llama discontinuidad 
de la función (volveremos a este tema en el capítulo 3). En la su­
perficie de Riemann esta discontinuidad que existe a lo largo del 
eje de los números reales positivos se manifiesta como una línea 
en la que es posible pasar de una a otra capa de la superficie. 

Otro ejemplo de superficie de Riemann aparece en la figura 17; 
en este caso se trata de la superficie que corresponde a la función 

FIG.16 
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raíz cuadrada. Las similitudes y diferencias entre las superficies de 
las figuras 16 y 17 reflejan las similitudes y diferencias que existen 
entre la raíz cúbica de variable compleja y la raíz cuadrada de va­
riable compleja; por ejemplo, cada número complejo, excepto el 
O, tiene dos raíces cuadradas complejas (mientras que el O tiene 
solo una) y la función no es diferenciable en O. Esto se refleja, de 
manera similar a lo que sucede con la raíz cúbica, en que la su­
perficie que corresponde a la raíz cuadrada tiene dos «capas» (la 
de la raíz cúbica tiene tres) y asimismo se refleja en que el O es un 
punto «doble» ( que está a la vez en las dos capas). Además, como 
se observa en la figura 17, la superficie de la raíz cuadrada también 
se corta a sí misma a lo largo de una línea; la explicación de este 
fenómeno es, por supuesto, la misma que para la raíz cúbica. 

Ahora bien, el tema que estamos tratando es tan rico y pro­
fundo que Riemann, en su tesis, apenas llegó a rozar algunas de 
sus muchas complejidades y ramificaciones. Es así que tres años 
después, en 1854, Riemann retomó la cuestión, aunque desde un 
punto de vista muy diferente. Este trabajo de 1854 es el que abrió 
el camino matemático que, a la larga, condajo a Einstein hasta la 
teoría de la relatividad. 
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CAPÍTULO 2 

La forma del universo 

Terminada su tesis doctoral en 1851, 
Riemann tuvo que realizar una nueva investigación 

matemática por exigencias de la Universidad de Gotinga. 
Presentó tres propuestas a Gauss y este eligió la que 

suponía una revisión de diversos principios de la física de 
Newton. En este trabajo, Riemann creó un nuevo concepto 

matemático, la variedad diferencial. Años después, 
esta noción se transformó en la base matemática 

de la teoria de la relatividad de Einstein y es 
asimismo el fundamento esencial de muchas 

teorias físicas actualmente en desarrollo. 





A principios de la década de 1850, el mayor deseo de Riemann era 
convertirse en profesor de Matemáticas, o de Física, de la Uni­
versidad de Gotinga. En ese sentido, la aprobación de su tesis 
doctoral en diciembre de 1851 había sido un gran paso adelante, 
ya que el doctorado era una exigencia indispensable para poder 
acceder a un puesto académico en Gotinga; existía, sin embargo, 
un importante requisito adicional. Según las reglas vigentes en 
aquella época (y que, de hecho, rigen todavía en Alemania, así 
como en otros países europeos), para poder aspirar a un puesto 
de profesor en una universidad alemana, el candidato, además de 
ser doctor, debía realizar una investigación original diferente de 
aquella que había presentado en su tesis doctoral. 

Este trabajo adicional, conocido como Habilitationsschrift, 
o «trabajo de habilitación», tenía un nivel de dificultad equiva­
lente al de una tesis doctoral, aunque presentaba con respecto 
a esta dos diferencias fundamentales. En primer lugar, mientras 
que la tesis doctoral se presentaba ineludiblemente por escrito, 
en el caso de la Habilitationsschrift, en cambio, la presentación 
escrita era opcional. La única obligación del postulante consis­
tía en exponer oralmente, ante un tribunal nombrado por la uni­
versidad, los resultados de su investigación. El hecho de que la 
publicación no fuese obligatoria aliviaba al candidato de todas 
las complejidades que conlleva la escritura rigurosa de un tra-
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bajo científico, dificultades que a mediados del siglo XIX no eran 
menores si se considera que en aquella época cualquier escrito 
se redactaba a mano, o a lo sumo con unas máquinas de escribir 
muy primitivas. 

Ahora bien, aunque esta primera diferencia constituía un 
verdadero respiro para el candidato, la segunda diferencia traía 
consigo una importante complicación, ya que mientras que en la 
tesis doctoral el candidato acordaba con su director ( que en el 
caso de Riemann, recuérdese, había sido Gauss) cuál era el tema 
de la investigación a realizar, en la Habilitationsschrift, por el 
contrario, el candidato dedicaba varios meses a realizar tres in­
vestigaciones preliminares diferentes, cada una de ellas sobre 
un tema distinto que elegía él mismo. Cuando, a juicio del can­
didato, las tres investigaciones estaban bastante avanzadas, se 
las presentaba al director, quien era el encargado de seleccionar 
cuál de ellas debía ser completada y expuesta ante el tribunal de 
la universidad. 

LOS TRES TEMAS DE RIEMANN 

Riemann comenzó a preparar su trabajo de habilitación a prin­
cipios de 1852, y a medida que pasaban los meses, y las ideas 
encajaban entre sí, lentamente fue sintiendo cómo aumentaba 
su optimismo, así como la certidumbre de poseer la capacidad 
necesaria para las matemáticas, pero también para la física, una 
ciencia por la que también estaba muy interesado. Tanta era su 
confianza en el futuro durante esos meses que, para no quitarle 
tiempo a sus investigaciones, y a pesar de sus permanentes pro­
blemas económicos, rechazó un puesto de ayudante en el Obser­
vatorio Astronómico de Gotinga. Mientras avanzaba en su trabajo 
le escribió a su padre: 

Creo que mi disertación [se refiere a la exposición de su tesis doc­
toral] ha mejorado mis perspectivas; espero también aprender a 
escribir más rápidamente y con mayor fluidez, especialmente si fre-
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cuento los ámbitos académicos y tengo posibilidades de pronunciar 
conferencias. Por eso tengo un buen ánimo. 

Finalmente, en los primeros meses de 1854, después de casi dos 
años de esfuerzo, estuvo en condiciones de comunicarle a Gauss sus 
tres temas para el trabajo de habilitación, los cuales, como era cos­
tumbre, Riemann presentó en orden de preferencia Como primera 
opción, Riemann propuso exponer un nuevo concepto matemático 
desarrollado por él, concepto (hoy conocido como la integral de 
Riemann) que permitía atacar de un modo novedoso un problema 
relacionado con las series de Fourier. Riemann había tenido cono­
cimiento de este problema a través de Dirichlet durante el tiempo 
que había pasado en Berlín entre 184 7 y 1849. El segundo tema con­
sistía en un análisis físico-matemático de la distribución de las car­
gas eléctricas en cuerpos que no son absolutamente conductores ni 
absolutamente no conductores. Finalmente, el tercer tema, muy es­
peculativo, proporúa una reformulación de los principios de la geo­
metría, así como una revisión profunda de algunos de los conceptos 
centrales de la física de Isaac Newton (1643-1727). 

Riemann sabía perfectamente que por una «ley no escrita» 
el director nunca seleccionaba el tercero de los temas propues­
tos, el cual, se suporúa, solo era presentado para completar el 
número de tres que exigía el reglamento. Por ese motivo, como 
tercer punto Riemann había decidido incluir un tema que, en rea­
lidad, no terúa intención de analizar en un futuro próximo y que, 
de hecho, creía que le demandaría algunos años antes de poder 
desarrollarlo en profundidad. 

Pero Gauss vio claramente que esta tercera propuesta conte­
rúa el germen de una idea potente y novedosa; más aún, el propio 
Gauss había reflexionado alguna vez sobre cuestiones similares, 
aunque nunca había llegado a publicar nada al respecto. Por otra 
parte, Gauss confiaba plenamente en la capacidad matemática 
de Riemann. Por estos motivos, para sorpresa de todos, y de 
Riemann antes que nadie, Gauss le indicó que expusiera como 
tema de habilitación la tercera propuesta, la que se refería a la 
reformulación de la geometría. Durante las semanas de intenso 
trabajo que siguieron, Riemann le escribió a su padre: 
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Estoy sumido en la perplejidad porque tengo que ocuparme de 
esta cuestión. [ .. . ) Estoy cada vez más convencido de que Gauss 
ha trabajado en este tema durante años, y que ha hablado de él 
con algunos amigos (Weber, entre otros). Secretamente te escribo, 
pues no quiero parecer arrogante, pero espero que aún no sea de­
masiado tarde para mí y que obtendré el reconocimiento como 
investigador. 

«Nuestra intención es abandonar la anterior concepción de 
los fenómenos cuya base estableció Newton[ ... ] y reformularla 
gradualmente merced a los hechos que no permite explicar.» 
- BERNHARD R!.EMANN, EN SU TRABAJO DE HABILITACIÓN, 
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Pero la confianza de Gauss estaba justificada, porque Rie­
mann logró completar el trabajo en unos pocos meses. La Ha­
bilitationsschrift estuvo lista a principios de mayo, aunque la 
exposición oral se postergó hasta junio, porque Gauss se encon­
traba muy enfermo, tanto que hasta llegó a temerse por su vida 
( de hecho, falleció en febrero del año siguiente). Finalmente, la 
exposición tuvo lugar el 10 de junio de 1854, y el trabajo fue apro­
bado inmediatamente. El matemático e historiador Michael Mo­
nastyrsky escribió que «de entre quienes escucharon a Riemann, 
solo Gauss estaba en condiciones de apreciar la profundidad de 
su pensamiento. La exposición excedió las expectativas de Gauss 
y lo sorprendió gratamente. De regreso del encuentro, hablando 
con Wilhelm Weber, alabó mucho las ideas que Riemann había 
presentado y habló de ellas con un entusiasmo que era muy raro 
en él». 

El trabajo que Riemann expuso en 1854 (y que se publicaría 
años más tarde, en 1868) se titula « Über die Hypothesen welche 
der Geometrie zu Grunde liegen» ( «Sobre las hipótesis que sirven 
de fundamento a la geometría») y, como el gran Gauss había pre­
visto, contiene ideas poderosas que llevaron a la reformulación de 
la geometría y de la física; tanto que llegó a ser, con el correr de los 
años, uno de los pilares matemáticos fundamentales de la teoría 
de la relatividad. 
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EL PROBLEMA DE LA CURVATURA 

Para comenzar a entender el contenido del revolucionario trabajo 
de habilitación de Riemann, acerquémonos en primer lugar al uni­
verso creado por el escritor inglés Edwin Abbott (1838-1926) en 
su novela Flatland ( «Planilandia» ), de 1884. En esa novela, el 
autor nos describe un universo bidimensional habitado por seres 
inteligentes, también bidimensionales. Si colocamos una moneda 
muy delgada sobre una mesa y a continuación nos ubicamos de tal 
modo que veamos solo el canto de la moneda tendremos, dice Ab­
bott, una imagen bastante cercana al modo en que los habitantes 
de Planilandia perciben a sus congéneres y a su entorno. 

Planilandia es, pues, bidimensional y, en consecuencia, así 
como nosotros, seres humanos de tres dimensiones, somos inca­
paces siquiera de visualizar mentalmente una cuarta dimensión 
( o de imaginar una dirección que sea perpendicular simultánea­
mente a las tres direcciones adelante-atrás, derecha-izquierda y 
arriba-abajo), de la misma forma, los habitantes de Planilandia 
son incapaces de imaginar una tercera dimensión. Los planilan­
deses tienen palabras para decir «adelante o atrás», o para decir 
«derecha o izquierda», pero la idea de «arriba o abajo» les resulta 
totalmente inconcebible (figura 1). 

Por otra parte, los habitantes de Planilandia ven su universo 
como si fuera «perfectamente horizontal» y no perciben la exis­
tencia de curvatura alguna. Ahora bien, los seres humanos vivi­
mos sobre la superficie de la Tierra, que es esférica y tiene en 

FIG.1 

Planilandia 

L __ _ 

Eje adelante-atrás 

Eje derecha-izquierda 

l El eje arriba-abajo es 
perpendicular a Planilandia 
y apunta hacia «afuera» 
del universo. 
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consecuencia una superficie curvada; sin embargo, en nuestro 
entorno inmediato, la percibimos como si fuera plana y horizon­
tal. Este «engaño de los sentidos» se debe a que, comparada con 
nuestro propio tamaño, la Tierra es tan grande que su curvatura 
no es perceptible a simple vista. ¿Es posible que los planilandeses 
no vivan, como ellos creen, en un universo plano y horizontal, sino 
en la superficie de una enorme esfera? (figura 2). 

Antes de continuar, es necesario hacer una observación, a fin 
de evitar confusiones, acerca del lenguaje usado a continuación. 
Llamamos «esfera» al objeto matemático tridimensional que está 
formado tanto por su «cáscara» como por su interior; en cambio, 
cuando se habla solo de la «cáscara» ( que es un objeto bidimensio­
nal) se la denomina «superficie esférica» o «superficie de la esfera». 

Retomemos ahora nuestro discurso. Si los planilandeses vi­
vieran en la superficie de una enorme esfera, ¿cómo podrían lle­
gar a darse cuenta de ello? Pero antes de contestar esta cuestión, 
preguntémonos cómo podemos estar seguros nosotros de que 
vivimos sobre una superficie esférica; es decir, ¿cómo podemos 
comprobar que la Tierra es realmente esférica? Una manera 
de comprobarlo consiste en viajar directamente hacia el frente 
sin desviarse; si la Tierra es en verdad esférica, tarde o temprano 
regresaremos al punto de partida. Históricamente, como es bien 
sabido, este procedimiento fue llevado a la práctica por los pri­
meros marinos que circunnavegaron el globo. Pero supongan1os 
que Planilandia es tan inmensamente grande que un método como 
este resultara completamente irrealizable. 

• 

Planilandia como 
la perciben sus 
habitantes. 
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COORDENADAS CARTESIANAS 

El primero en proponer que la posición 
de los puntos del plano podía caracte­
rizarse usando una pareja de coordena­
das fue el matemático y filósofo fran­
cés René Descartes (1596-1650) en un 
trabajo publicado en 1637 bajo el título 
de La Géométrie. Poco tiempo antes el 
también matemático, y abogado, fran­
cés Pierre de Fermat (1601-1665) había 
hecho la misma propuesta, pero su tra­
bajo se publicó unos años después que 
el de Descartes. En aquella época, los 
trabajos c ientíficos solían escribirse casi 

exclusivamente en latín, pero Descartes Retrato de René Descartes pintado 

quería que sus ideas llegaran al mayor hacia 1649. 

número posible de sus conciudadanos, 
y no so lo a los eruditos; por ese motivo, 
aunque conocía perfectamente el latín, escribía en francés. De todos modos, 
sus obras fueron traducidas al latín y en ellas su nombre, latinizado, se trans­
formó en Renato Cartes io. Por ese motivo al sistema de coordenadas que él 
propuso se lo conoce como sistema de coordenadas cartesianas. 

La pregunta, entonces, es si los planilandeses podrían llegar 
a distinguir si su mundo es «perfectamente horizontal» o si es 
«curvado» usando solo procedimientos locales, es decir, mediante 
métodos que no los obliguen a alejarse mucho de la posición en 
la que se encuentren. De nuevo trasladamos esta pregunta al caso 
de la Tierra: ¿cómo podemos comprobar que la Tierra es esfé­
rica mediante procedimientos locales? En realidad, hay una gran 
cantidad de experimentos que permiten comprobar que la Tierra 
es esférica. Vale la pena destacar que todos ellos implican, de un 
modo u otro, observar «por arriba» de la superficie de la Tierra 
y, por lo tanto, no se restringen est1ictan1ente a la superficie del 
planeta, sino que conllevan la idea de una tercera dimensión. 

Un experimento clásico para verificar la curvatura de la Tierra 
consiste en observar que cuando un barco de vela se va alejando 
de la costa, las personas que se quedan en el puerto dejan de ver 
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plirnero el casco del barco y solo posteliormente dejan de ver el 
mástil. Esta observación permite comprobar que la superficie de 
la Tierra es curva, ya que de ser perfectamente horizontal el casco 
y el mástil se verían _ambos a la vez todo el tiempo, aunque, por 
supuesto, cada vez más pequeños (figura 3). 

Este experimento implica una tercera dimensión porque 
presupone que la luz puede separarse de la superficie terrestre 
( el observador levanta la vista para ver alejarse el barco); como 
consecuencia de ello, esta experiencia sería inconcebible para un 
planilandés, ya que Planilandia, a diferencia de la Tierra, no es 
un mundo plano contenido en un universo tridimensional mayor, 
sino que Planilandia es en sí mismo un universo bidimensional. 
La luz viaja dentro de Planilandia de la misma forma que viaja den­
tro de nuestro universo, y si Planilandia fuese curvo, la trayectoria 
de la luz en su interior estaría asimismo forzada a curvarse para 
respetar la forma del universo (figura 4). 

1 

1 

l 

FIG.3 

FIG.4 

// __ , ..... 

•· 

---·············--

.-·· 
Trayectoria de la luz 
dentro de Planilandia. 

Planilandia curva 
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FIGURA 3: 

Cuando el barco 
se aleja de la 
costa la curvatura 
de la Tierra oculta 
primero el casco 
y más tarde el 
mástil. 

FIGURA 4: 

En un universo 
curvo, la 
trayectoria de 
la luz respeta 
esa curvatura. 
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LA REDONDEZ DE LA TIERRA 

Varios pensadores griegos de la Antigüedad sostuvieron que la Tierra es es­
férica: sin embargo, Aristóteles (384-322 a.C.) parece haber sido el primero 
en dar argumentos empíricos a favor de esa idea. Uno de ellos se basaba en 
el hecho de que, al viajar hacia el sur, las constelaciones visibles alcanzaban, 
en el cie lo nocturno, alturas diferentes de las observadas en Grecia. Pero 
el primero en medir la c ircunferencia terrestre fue Eratóstenes de Cirene 
(276-194 a.C.). Mientras trabajaba en Alejandría, donde llegó a ser director 
de la Biblioteca, Eratóstenes recibió informes desde Siena (hoy Asuán), una 
ciudad ubicada unos 800 km al sur de Alejandría, exactamente sobre el 
Trópico de Cáncer, que decían que al mediodía del 21 de junio el sol se re­
flejaba en el agua de los pozos y que una vara colocada verticalmente sobre 
el suelo no producía sombra alguna. Eratóstenes verificó que un palo co­
locado vertica lmente en Alejandría, en ese mismo momento, sí proyectaba 
una sombra b ien definida. Mid iendo esta sombra, Eratóstenes calculó que 
los radios terrestres correspondientes a Alejandría y a Siena formaban un 
ángulo de unos 7º. Conocido este ángulo y la distancia a Siena, Eratóstenes 
dedujo que la circunferencia terrestre era de unos 40 000 km, el valor más 
exacto conocido en la Antigüedad. 

Rayos de sol 
Alejandría 

' 
---.... - - - ~o [ _' ::::­

Siena 

La pregunta, por lo tanto, es: ¿sería posible para un planilan­
dés comprobar si su universo es «horizontal» o si es «curvado» 
mediante algún experimento local que no implique una tercera 
dimensión? Trasladando el problema a la Tierra, ¿podríamos com­
probar que la superficie de la Tierra es curva sin mirar por encima 
o por debajo de ella? Estas son, esencialmente, las cuestiones 
que se formuló Riemann en su famoso trabajo de habilitación y 
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la respuesta, dijo Riemann, pasa por la noción de distancia y por 
las desviaciones que puedan existir con respecto al teorema de 
Pitágoras. Explicaremos estas ideas en las próximas secciones. 

VARIEDADES DIFERENCIALES 

Ya se ha señalado antes que el plano tiene dos dimensiones; in­
tuitivamente esto puede ser obvio, pero ¿cómo se define riguro­
samente en matemáticas la idea de dimensión? Los matemáticos 
dicen que el plano tiene dos dimensiones porque en él, tal como 
vimos en el capítulo anterior, la posición de cada punto queda 
determinada por dos coordenadas. A su vez, que las coordenadas 
necesarias sean dos es consecuencia del hecho de que en el plano 
hay dos direcciones perpendiculares a lo largo de las cuales un 
punto puede moverse (adelante-atrás o derecha-izquierda). Cada 
coordenada indica la posición del punto con respecto a una de 
esas dos direcciones: la primera coordenada indica en qué me­
dida se movió hacia la derecha o hacia la izquierda y la segunda 
coordenada indica en qué medida se movió hacia delante o hacia 
atrás (figura 5). 

FIG. 5 

2 
3 _______ -,• (3,3) 

1 2 3 3 

(3,3,3) 
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Para construir una 
cinta de Mobius se 

toma una tira de 
papel con forma 

de rectángulo, 
cuyos vértices 

llamamos 
A, B, C y D. 

A continuación se 
pegan los bordes 
más cortos, pero 
antes se gira uno 
de ellos de modo 
ta l que el vértice 

A se pegue con el 
e, y el B con el D. 

FIG. 6 

En el mismo sentido, una recta tiene solo una dimensión 
porque la posición de un punto queda determinada por un único 
número; el espacio, por su parte, tiene tres dimensiones porque, 
como también se ve en la figura 5, la posición de un punto queda 
definida por tres coordenadas, ya que en el espacio un punto puede 
moverse en tres direcciones: adelante-atrás, derecha-izquierda y 
arriba-abajo. (Vale la pena aclarar que esta definición de la idea 
de dimensión corresponde a la llamada dimensión topológica de 
un objeto matemático; existen, en realidad, otras definiciones po­
sibles para la dimensión, ,como la dimensión fractal, pero estas 
comenzaron a desarrollarse en el siglo xx y se basan en conceptos 
ajenos a los temas tratados en este libro.) 

Pero, además, solemos decir, y de hecho se ha afirmado en 
el apartado anterior, que la superficie de una esfera también tiene 
dos dimensiones, y lo mismo suele decirse de la «cáscara» de una 
rosquilla (superficie que en matemáticas es conocida como toro). 
De la misma forma, también tiene dos dimensiones una cinta de 
Mobius, tal y como se observa en las diversas fases de su cons­
trucción (figura 6). 

Es sabido que la posición de cada punto de la superficie de 
una esfera (por ejemplo, cada punto de la superficie terrestre) 
queda determinada por dos coordenadas, su latitud y su longitud; 
pero ¿sucede lo mismo en un toro, en una cinta de Mobius o en 
cualquier otra superficie? La respuesta es que sí y, a continuación, 
explicaremos los motivos en el caso del toro ( en otras superficies 
la explicación es prácticamente la misma). 

A D ,------------------------~ 

B e 

~ B C 
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AUGUST FERDINAND MÓBIUS (1790-1868) 

Móbius nació en Schulpforta (Alemania) 
y, siguiendo los deseos de su familia, en 
1809 ingresó en la Universidad de Leip­
zig con la intención de estudiar leyes. 
Pero pronto descubrió que no era esa 
su verdadera vocación y que prefería 
las ciencias. Por ·ese motivo en 1813 se 
matriculó en la Universidad de Gotinga, 
donde estudió astronomía con Gauss y 
matemáticas con Johann Pfaff (quien 
había sido el mentor de Gauss). En Go­
tinga, en 1815, se doctoró con un tra­
bajo sobre astronomía; ese mismo año 
completó su trabajo de habilitación, con 
una investigación sobre matemáticas. 
Fue en una memoria enviada a la Aca­
demia de Ciencias de París, la cual solo 
fue descubierta después de su muerte, 
donde Móbius discutía las propiedades 
de varias superficies, entre ellas la cinta que hoy lleva su nombre. Aunque la 
mayoría de sus trabajos trataron sobre geometría analítica o sobre topolo­
gía, también hizo aportes muy relevantes a la astronomía. 

Imaginemos que «recortamos» una parte circular del plano (la 
forma exacta del recorte en realidad no es importante, porque va­
mos a deformarlo como si estuviera hecho de goma, es decir, 
vamos a aplicarle una deformación topológica como las estudia­
das en el capítulo anterior). Un toro, dice Riemann, puede cu­
brirse completamente usando una cantidad adecuada de copias 
de ese recorte, copias que han sido convenientemente deformadas 
para «encajar» perfectamente con el toro. En la figura 7 (pág.si­
guiente) puede verse que para cubrir al toro es suficiente con cua­
tro de esos recortes deformados ( en la imagen se ha destacado 
uno de ellos). 

Ahora bien, cada una de esas copias lleva consigo las coor­
denadas que tenía en el plano (figura 8). Cada parte P del toro 
cubierta por una de esas copias «hereda» esas coordenadas, las 
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FIG. 7 

1 FIG.8 

cuales sirven para determinar la posición de cualquier punto del 
toro ( al menos de cualquier punto que se encuentre en la parte 
P). Por ejemplo, en la figura 8 vemos el punto que corresponde a 
la posición (1,1). Nótese que estas coordenadas «heredadas» no 
sirven para el toro completo, sino que solo se aplican en la parte 
cubierta por la copia correspondiente; se dice entonces que el 
toro tiene sistemas de coordenadas locales (y no necesariamente 
un sistema de coordenadas global, como sí tiene el plano). 

De hecho, la propia superficie esférica tiene también sistemas 
de coordenadas locales; tal y como muestra la figura 9, podemos 
cubrir esa superficie con dos copias del recorte circular del plano: 
una cubre el «hemisferio norte» de la superficie de la esfera ( des­
tacada en la imagen), y la otra, el «hemisferio sur». 

Cada una de estas copias que cubren el toro o la superficie 
de la esfera se denomina carta ( en el mismo sentido en el que, en 
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otro contexto, se habla de cartas de navegación) y a la colección 
de todas las cartas se la conoce corno el atlas del toro ( o de la 
superficie esférica): un conjunto de mapas que permiten ubicar, 
en cada región, la posición de cada punto. 

Para Riernann, un toro tiene dos dimensiones porque gracias 
a su atlas, que define sistemas de coordenadas locales, la posición 
de cualquiera de sus puntos puede determinarse usando solo dos 
números; y lo mismo sucede con la superficie esférica y con la 
cinta de Móbius. En realidad, todo objeto matemático que pueda 
cubrirse totalmente con círculos convenientemente deformados 
tiene dos dimensiones. En matemáticas a estos objetos se los 
llama variedades diferenciales de dos dimensiones. De la misma 
forma, una circunferencia es una variedad diferencial de una sola 
dimensión, ya que puede cubrirse con dos copias de un segmento, 
es decir, con dos recortes tornados de la recta (figura 10). 

FIG. 9 

FIG.10 
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El estudio de las variedades diferenciales constituye la rama 
de las matemáticas conocida como geometría diferencial. Una 
cuestión interesante es que Riemann estableció que, además de 
las variedades diferenciales de una o dos dimensiones, existen 
también variedades diferenciales de tres dimensiones, o de cuatro 
dimensiones, o de cinco, o de seis ... De hecho, según algunas teo­
rías físicas que actualmente están siendo investigadas, nuestro pro­
pio universo podría ser una variedad diferencial de nueve o diez 
dimensiones; volveremos a esta cuestión en este mismo capítulo. 

Antes de seguir avanzando es necesario mencionar breve­
mente un detalle técnico. Por razones relacionadas con la co­
rrecta definición de las deformaciones que les aplicamos a los 
«recortes», es necesario que estos no incluyan su propio borde; 
en otras palabras, los círculos que recortamos del plano no deben 
incluir la circunferencia que les sirve como borde. Al tomar en 
cuenta esta condición, en la figura 9 el ecuador de la superficie 
esférica queda en realidad sin cubrir, ya que el ecuador es, jus­
tamente, el borde tanto de la carta que cubre el hemisferio norte 
como de la que cubre el hemisferio sur; unos bordes que, si se 
respeta la mencionada restricción técnica, no forman parte de 
ninguna de las dos cartas. Para evitar esta situación, el recorte 
que cubre el hemisferio norte debería extenderse un poco hasta 
cubrir parte del hemisferio sur, y viceversa (figura 11). 

Una situación similar se da en el toro que se muestra en la 
figura 7 (pág. 62), donde, estrictamente hablando, la frontera entre 

FIG. 11 

Como la carta no incluye su 
borde entonces tiene que 
extenderse más allá del 
ecuador de la esfera. 
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cada par de cartas queda sin cubrir y una vez más, para evitar 
esta situación, cada recorte debe superponerse un poco, con sus 
vecinos. En realidad, en casi todas las variedades diferenciales es 
normal que haya cartas que se superpongan. 

Por otra parte, y nuevamente por razones técnicas, al trans­
formar las cartas para adaptarlas a las superficies no es válido 
que la deformación genere «picos» o «dobleces»; las deformacio­
nes, se dice, deben ser «suaves». Concretamente, por ejemplo, 
mientras que una superficie esférica o la superficie de un elipsoide 
(es decir, la superficie de una pelota de rugby) son variedades 
diferenciales, por el contrario, la superficie de un cubo no es una 
variedad diferencial, ya que a lo largo de sus aristas tiene dobleces 
«no permitidas». A la superficie de un cubo, o a la de cualquier 
otro poliedro, se la llama una variedad topológica y su estudio 
no forma parte de la geometría diferencial, sino de la topología. 

De todos modos, dado que aquí estamos hablando solo de 
las ideas generales del trabajo de Riemann, todos estos detalles 
técnicos, aunque sean importantes desde un punto de vista teó­
rico, no tendrán mayor relevancia para nosotros y no volveremos 
a referimos a ellos. 

LA DISTANCIA SEGÚN PIT ÁGORAS 

Volvamos a la pregunta que habíamos planteado inicialmente: 
¿cómo podrían los planilandeses distinguir si la variedad dife­
rencial de dimensión dos que constituye su universo es «plana» 
o «curvada»? Dijimos antes que la res-
puesta de Riemann se relaciona con las 
«desviaciones con respecto al teorema de 
Pitágoras»; veamos a continuación en qué 
consiste esta idea. 

FIG. 12 B 
• 

La distancia entre dos puntos A y B 
del plano es, por definición, la longitud 
del camino rectilíneo que conecta A con 
B (figura 12). Ahora bien, ¿por qué el ca-

A 
En el plano la distancia 
entre A y 8 es la longitud 
del camino rectilíneo 
que los conecta. 
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Centro de la esfera 

mino debe ser rectilíneo? ¿Por qué 
no puede tener otra forma cual­
quiera? La respuesta es que para 
definir la distancia entre A y B se 
elige, de todos los caminos posi­
bles que van de un punto a otro, 
aquel que sea el más corto; y es 
bien sabido que, de todos los cami­
nos posibles que van de A a B, el 
más corto es, precisamente, el que 
va en línea recta. 

En su trabajo de habilitación 
Riemann logró extender esta idea 
de «distancia entre dos puntos» 
a una variedad diferencial cual­

quiera, y para ello introdujo el concepto de geodésica. Así como 
en el plano la recta es el camino más corto entre dos puntos, de la 
misma forma, en el caso de una variedad diferencial cualquiera, 
Riemann llamó «geodésica» al camino más corto de todos los que 
conectan dos puntos de esa variedad ( el camino, por supuesto, no 
puede salir en ningún momento de la variedad); de este modo, las 
rectas son las geodésicas del plano. 

Tomemos ahora, a modo de otro ejemplo, una superficie es­
férica. Puede demostrarse que en este caso las geodésicas son 
los círculos máximos, es decir, las circunferencias cuyo centro 
coincide con el centro de la esfera (figura 13). Dicho en otros 
términos, el camino más corto entre dos puntos de la superficie 
de una esfera es el que se mueve a lo largo de uno de sus círculos 
máximos. 

En el globo terrestre los círculos máximos más conocidos son 
el ecuador y los meridianos; de este modo, por ejemplo, el camino 
más corto entre el polo norte y un punto cualquiera del ecuador 
es aquel que sigue la línea del meridiano que los conecta. (En rea­
lidad, estrictamente hablando, cada meridiano equivale a «medio 
círculo máximo» y solo forma un círculo máximo completo con 
su meridiano opuesto; así, por ejemplo, un círculo máximo está 
formado por el meridiano de Greenwich y el de 180º juntos.) 
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En resumen, la distancia más corta 
FIG.14 

entre dos puntos de una superficie es­
férica es la longitud del arco de círculo 
máximo que los conecta. Generalizando 
esta idea, Riemann dijo que la distancia 
entre dos puntos de una variedad diferen­
cial cualquiera es la longitud del arco de 
geodésica que los conecta. 

a tS:" c2=a2+b2 

e 

b 

Pero ¿cómo calculamos la distancia 
entre dos puntos? En el caso del plano, la respuesta está estrecha­
mente relacionada con el teorema de Pitágoras. Este teorema, uno 
de los más famosos de las matemáticas, dice que en un triángulo 
rectángulo el cuadrado de la hipotenusa es igual a la suma de los 
cuadrados de los catetos (figura 14). 

Para ver cómo se relaciona el teorema de Pitágoras con el 
cálculo de la distancia entre dos puntos del plano, supongamos 
que, siempre en el plano, viajáramos en línea recta desde el punto 
de coordenadas (1,3) hasta el punto (1,1) y que inmediatamente a 
continuación fuésemos desde allí, tan1bién en línea recta, hasta el 
punto ( 4, 1 ), tal y como muestra la figura 15. ¿ Cuál es la distancia 
entre el punto inicial y el punto final de este recorrido? 

FIG.15 
4 

3 A 

2 

e 

o 
-1 o 2 3 4 ' 5 6 

-1 
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EL TEOREMA DE PIT ÁGORAS 

El teorema de Pitágoras ya era cono­
cido por egipcios y sumerios mucho 
antes del nacimiento del sabio griego. 
Se cree. inclusive, que el propio Pitá­
goras (ca. 569-475 a.C.) aprendió el 
teorema de ellos durante sus viajes por 
Egipto y Mesopotamia. Sin embargo, el 
mérito de Pitágoras consistió en haber 
sido el primero en hallar una demostra­
ción, aunque esta no ha llegado hasta 
nosotros (tampoco está claro si la de­
mostración fue realizada por Pitágoras 
en persona o por alguno de sus discípu­
los). Sí es un hecho cierto que a lo largo 
de los siglos que siguieron a Pitágoras, Pitágoras representado por Rafael 

los matemáticos han ido descubriendo en La escuela de Atenas. 

cientos de demostraciones diferentes 
de ese teorema. Tanto es así que en 1927 el estadounidense Elisha S. Loomis 
publicó una recopilación con 370 de ellas, una cantidad de demostraciones 
que no ha sido igualada por ningún otro teorema matemático. 

Es fácil ver que la distancia recorrida en el primer tramo es 
2, y que la del segundo es 3. Por otra parte, corno se ve en la 
misma figura 15, los tres puntos en cuestión son los vértices de 
un triángulo rectángulo y la línea recta que va del punto inicial al 
final es su hipotenusa; por lo tanto, por el teorema de Pitágoras, 
la distancia entre el punto (1,3) y el (4,1) es -J22 +32 = .Jf3 e 3,606. 

MARCO POLO EN PLANILANDIA 

Imaginemos ahora que los planilandeses fueran unos seres muy pe­
queños (de unos pocos centímetros cuadrados de área), mientras 
que todo su universo es la superficie de una esfera similar en tamaño 
a la Tierra; más exactamente, digamos que en Planilandia cada cír­
culo máximo mide en total 40 000 km. En realidad, somos nosotros, 
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seres tridimensionales que vemos Planilandia desde «afuera», quie­
nes sabemos que se trata de una gran superficie esférica; como ya 
se dijo, los propios planilandeses tendrán la sensación de vivir en 
un plano, ya que localmente la superficie de una esfera se parece 
a una parte del plano ( de hecho, a escala humana, la superficie de 
la Tierra parece plana a simple vista). Cada meridiano de ese uni­
verso, y en general cada círculo máximo ( es decir, cada geodésica) 
será percibida por los planilandeses como una línea recta. 

Imaginemos ahora que un explorador planilandés viajara a lo 
largo de uno de los meridianos de su universo desde el polo norte 
N hasta un punto A situado en el ecuador, que luego gira «per­
pendicularmente» hacia el este y que, a continuación, viaja otros 
2 000 km a lo largo del ecuador de Planilandia hasta otro punto B 
situado también en el ecuador. 

Como ya se apuntó, dado que el planilandés se ha movido 
todo el tiempo por las geodésicas de su universo, su percepción 
será que entre los puntos N y A ha viajado en línea recta, y que 
asimismo ha ido en línea recta al ir desde A hasta B. Además, dado 
que en el primer tramo el explorador se movió directamente hacia 
el sur y luego giró hacia el este, su percepción será que, entre un 
tramo y otro del viaje ha girado 90º. En defuútiva, el explorador 
verá los puntos N, A y B como los vértices de un triángulo rectán­
gulo (figura 16). 

' 

N 

A 

' ' \ 
1 

1 

B 

Recorrido real del explorador 
en la Planilandia esférica. 

N 

A B 

Recorrido como lo perc ibe 
el explorador. 

FIG.16 
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Supongamos, además, que el explorador lleva consigo un 
odómetro, es decir, un instrumento que a medida que avanza le 
indica cuál es la distancia que va recorriendo. Evidentemente 
este instrumento le dirá que entre N y A ha viajado 10 000 km 
(la cuarta parte de la circunferencia total de la superficie de la 
esfera) y que entre A y B ha viajado 2000 km. Ahora bien, ¿cuál 
es la distancia entre B y N? El explorador, que sabe geometría, 
podría intentar el cálculo de esta distancia mediante el teorema 
de Pitágoras, tal como se ha hecho en el ejemplo anterior; de este 
modo obtendría que la distancia en «línea recta» entre B y N es 
igual a ✓ 10 0002 + 2 0002 

e 10 198, 04 km. Pero si el explorador viaja 
entre los puntos B y Na lo largo de la geodésica que los conecta, 
el odómetro le dirá que ha recorrido solo 10 000 km; la distancia 
calculada por el teorema es casi un 2 % mayor que la distancia real. 

Esta discrepancia está motivada porque el teorema de Pitágo­
ras solo vale en el plano y falla en cualquier superficie curvada. En 
consecuencia, al hacer los cálculos y mediciones antes descritos, 
el explorador planilandés habrá demostrado, usando medios exis­
tentes dentro de su propio universo, que este es curvo y no plano. 
Por otra parte, el explorador tendría otra clara indicación de que 
su universo es curvo al observar que la geodésica que va de B a N 
es perpendicular a la que va desde A hasta B, mientras que en un 

------------
FIG. 17 
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Recorrido real del explorador 
en la Planilandia esférica. 
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universo plano las dos geodésicas formarían un ángulo menor a 
90º (figura 17). 

De hecho, haciendo las mediciones adecuadas, así como un 
análisis más fino de las discrepancias con el teorema de Pitágoras 
y de los ángulos que forman los lados de los triángulos determina­
dos por las geodésicas, el explorador podría inclusive determinar 
si la forma real de su universo es esférica, o si tiene la forma de un 
toro, la de una cinta de Mobius o la de cualquier otra superficie. 

En teoría, para saber si Planilandia es un universo plano o 
curvo, un científico planilandés solo necesitaría medir los lados 
de un triángulo rectángulo trazado dentro de su universo y com­
probar si esas medidas se corresponden, o no, con las que predice 
el teorema de Pitágoras; en caso afirmativo el universo será plano 
y, en caso contrario, no lo será. En la práctica, sin embargo, esta 
determinación puede ser difícil, ya que cuando la superficie es 
curvada, la discrepancia entre la medida real de la hipotenusa y el 
valor predicho por el teorema de Pitágoras es, en general, propor­
cional al tamaño del triángulo considerado. Si el triángulo no es 
muy grande, entonces la discrepancia puede ser tan pequeña que 
podría llegar a confundirse con simples errores de medición. En el 
caso del explorador planilandés de nuestro ejemplo la discrepan­
cia es tan grande porque el explorador recorrió· nada menos que 
la cuarta parte de la longitud total de su universo. En triángulos 
mucho más pequeños la discrepancia podría ser mucho más difícil 
de detectar; volveremos a esta cuestión más adelante. 

ESFERAS E HIPERESFERAS 

Las reflexiones acerca de cómo determinar «desde adentro» si un 
universo bidimensional es plano o curvado son muy interesan­
tes, pero aún es más interesante observar que, en su trabajo de 
habilitación, Riemann postuló que nuestro universo, el universo 
en el que verdaderamente vivimos, es en realidad una variedad 
diferencial de tres dimensiones y que, en consecuencia, es perfec­
tamente lícito preguntarse si se trata de un universo «no curvado» 
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FIG. 18 

/ 

o de un universo «curvado». Analicemos esta extraordinaria idea 
de Riemann. 

La geometría del espacio que se estudia en la escuela es la 
llamada geometría euclídea, que lleva ese nombre porque sus 
propiedades básicas fueron postuladas, en el siglo m a.C., por 
Euclides de Alejandría. Dijimos antes que, así como la posición 
de un punto del plano queda determinada por dos coordenadas, 
de manera similar la posición de un punto en el espacio euclídeo 
queda determinada por tres coordenadas (figura 5). Un símil geo­
gráfico de esta última situación sería el siguiente: para determi­
nar con toda precisión dónde está ubicado un escalador que va 
subiendo una montaña se necesita conocer, no solo su latitud y 
su longitud, sino también a qué altura se encuentra con respecto 
al suelo. 

Nuestro universo es una variedad diferencial de dimensión 
tres porque localmente se parece a una sección esférica del espa­
cio euclídeo. Por ejemplo, si tomamos al Sol como centro de un 
sistema de coordenadas, entonces la posición de cualquier punto 
del sistema solar ( o del universo cercano) quedará perfectamente 
determinada por sus coordenadas con respecto a esos ejes, los 
cuales forman un sistema local de coordenadas (figura 18). 

' 

Esa gran esfera centrada en 
el Sol sería por lo tanto una carta 
local de nuestro universo, simi­
lar a cada una de las cartas cir­
culares que cubren los universos 

.__ _____ - -- --

planos de las figuras 7 y 9 (págs. 
62 y 63). Ahora bien, dijimos que 
si Planilandia fuese una enorme 
superficie esférica, entonces sus 
habitantes no percibirían a simple 
vista su curvatura, pero sí podrían 
determinarla midiendo las desvia­
ciones locales con respecto al teo­
rema de Pitágoras. Nuestra propia 
situación, como seres tridimen­
sionales, es similar; de este modo, 

72 LA FORMA DEL UNIVERSO 



EL TESERACTO 

Así como una hiperesfera es la versión tetradimensional de una esfera, un 
teseracto es la versión tetradimensional de un cubo. Si unimos dos seg­
mentos mediante otros dos que sean perpendiculares a ellos obtenemos 
un cuadrado; si unimos dos cuadrados iguales mediante cuatro segmentos, 
también iguales, que sean perpendiculares a los cuatro lados del cuadrado, 
obtenemos un cubo. De manera similar, si un imos dos cubos iguales me­
diante ocho segmentos, también iguales, que sean perpendiculares a todas 
las aristas del cubo obtenemos un hipercubo, o teseracto. Esa dirección que 
es perpendicular simultáneamente a todas las aristas del cubo es comple­
tamente inimaginable para nosotros. (En la imagen del teseracto, el cubo 
interior y el exterior son iguales; el del interior se ve más pequeño porque 
está «más lejos» en la cuarta dimensión.) 

Segmento • Cuadrado 

Cubo Teseracto 

cabe la posibilidad de que nuestro universo sea en realidad una 
enorme hiperesfera, una enorme variedad diferencial tridimen­
sional curvada, pero de cuya curvatura no somos conscientes a 
simple vista. 

Así corno una superficie esférica es la «cáscara» de un cuerpo 
tridimensional perfectamente simétrico, una hiperesfera es la 
«cáscara tridimensional» de un objeto de cuatro dimensiones tam­
bién perfectamente simétrico; y aunque es verdad que nos resulta 
imposible visualizar cómo es un objeto de cuatro dimensiones, sí 
podernos hacernos una idea de cómo es realmente una hiperes­
fera gracias a la noción riernanniana de carta local. 

La figura 9, y también la figura 19 (pág. siguiente), muestran 
que una superficie esférica puede visualizarse corno dos círculos 
«pegados por sus bordes», es decir, dos círculos cuyas circunfe-
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rencias han sido empalmadas formando una sola cmva, la cual, a 
su vez, es el ecuador de la superficie esférica. Obsérvese además 
que, antes de ser pegados por sus bordes, estos dos círculos deben 
ser curvados en una dirección perpendicular a su superficie (fi­
gura 19), una diíección inconcebible para un planilandés. 

Siguiendo esta misma idea, para visualizar un universo hi­
peresférico debemos imaginar que dos esferas tridimensionales, 
digamos E

1 
y E

2
, son «pegadas» por sus cáscaras. Esto quiere 

decir que el polo norte de la superficie de E
1 

será, para cualquier 
habitante de ese universo hiperesférico, exactamente el mismo 
pun to que el polo norte de la superficie de E2 ( véase más adelante 
la figura 20). La superficie de E

1
, pegada a la de E

2
, juega el mismo 

papel que juega el ecuador en las figuras 9 y 19. Observemos que 
para que sea posible pegar las esferas del modo que estamos pos­
tulando debe suponerse que E

1 
y E

2 
han sido «cmvadas» en una 

dirección que es inimaginable gráficamente para nosotros, ya 
que es simultáneamente perpendicular a los ejes adelante-atrás, 
arriba-abajo y derecha-izquierda. 

Suponemos, pues, que las dos esferas E
1 
y E

2 
han sido pegadas 

por sus cáscaras, pero sin que se peguen entre sí los puntos inte­
riores, de la misma manera que en la figura 19 los círculos se pegan 
por sus bordes sin que se peguen sus puntos interiores. Un universo 
hiperesférico no es otra cosa que la unión de las dos esferas así 
pegadas, que constituyen las dos cartas locales de ese universo. 

Ahora bien, dijimos antes que si Planilandia fuese una super­
ficie esférica entonces un explorador planilandés que viajara «en 
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línea recta» terminaría por volver al punto de partida. Lo mismo le 
sucederia a un explorador humano en un universo que fuese una 
hiperesfera. En efecto, llamemos P al centro de la esfera E 

1 
y Q al 

centro de E
2 

(figura 20), y supongamos que un explorador parte 
desde el punto P y viaja en línea recta hacia el norte; cuando el 
explorador llegue al punto N entrará inmediatamente en la esfera 
E2 (recuérdese que el punto N de E

1 
y el punto N de E

2 
son exac­

tamente el mismo punto). El explorador no tendrá ninguna sensa­
ción en especial al pasar de E

1 
a E

2
, de la misma forma que noso­

tros no sentimos nada en especial al pasar del hemisferio norte al 
hemisferio sur de la Tierra. Siempre viajando en línea recta, el ex-
plorador atravesará E

2 
hasta el punto S, y _ _ _ ____ _ ...., 

en el camino pasará por Q, que es el punto N F1G. 20 1 

del universo más alejado de P. Al llegar a • 
S volverá a entrar a E 

1 
y finalmente llegará 

al punto de partida. La percepción del ex-
plorador será que ha vuelto al punto inicial 
tras viajar todo el tiempo en línea recta. 

¿Nuestro universo es un espacio tridi­
mensional euclidiano «no curvado»? ¿Ó, 
por el contrario, es una variedad diferen-
cial curvada, ya sea que se trata de una 
hiperesfera, o de una variedad con alguna 
otra forma? En realidad, es imposible res­
ponder estas preguntas mediante el pro­
cedimiento de enviar a un explorador en 
un viaje en línea recta y esperar a ver si 
alguna vez regresa al punto de partida. Por 

- --- - - --

• 
s 

s 
• 

- --- ----

·º 

' 

E, 

' 
1 
1 

un lado, es imposible en la práctica porque 
implicaría recorrer miles de millones de 
años luz, pero, además, sobre todo es im­
posible porque hoy sabemos ( aunque en la 
época de Riemann esto era inimaginable) 
que el universo está en expansión, y que, 
de hecho, hay regiones del mismo que se 
alejan de nosotros a velocidades tales que 
son inalcanzables ni siquiera en teoria. 

.._!.J _E, j 
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LA EXPANSIÓN DEL UNIVERSO 

Hasta principios del siglo xx práctica­
mente todos los científicos sostenían la 
idea de que el universo era, a gran es­
cala, esencialmente estático. Esta idea 
cambió a finales de la década de 1920 
con el descubrimiento de la expansión 
del universo, ya que si este está en ex­
pansión entonces debió haber necesa­
riamente en el pasado un momento en 
que fue mucho más pequeño. Normal­
mente suele atribuirse el hallazgo de la 
expansión del universo al astrónomo 
norteamericano Edw in Hubble (1889-
1953). Sin embargo, investigaciones re­
cientes sugieren que el descubrimiento 
debería atribuirse en realidad al astró­
nomo francés, y también sacerdote ca­
tólico, Georges Lemaitre (1894-1966). 
El trabajo de este último fue publicado 

Georges Lemaitre fotografiado en 
la Universidad Católica de Lovaina 
hacia 1933. 

en francés dos años antes que el de Hubble, pero no tuvo mucha difusión 
y LemaTtre, tal vez por su modestia innata, prefirió no reclamar la prioridad 
del hallazgo. 

Esto significa que las dos esferas de la figura 20 se están «in­
flando» a una velocidad tan grande que es imposible, incluso en 
teoría, que el viajero alcance alguna vez el punto Q porque este se 
aleja de P a una velocidad mayor de la que el viajero es capaz de 
desarrollar. Cabe la posibilidad de que alguna vez la expansión se 
detenga, o inclusive que se revierta y que el universo entre en una 
fase de contracción, en cuyo caso el viaje pasaría a ser realizable 
al menos en teoría; pero tales posibilidades son cuestiones sobre 
las cuales los cosmólogos aún no se han puesto de acuerdo. 

Pero, tal y como ya se apuntó, existe también otro modo de 
determinar si una variedad diferencial es «curvada» o no: el teo­
rema de Pitágoras. De manera similar a lo que antes se comentó 
para las superficies, el teorema de Pitágoras es válido en el es­
pacio euclídeo de tres dimensiones, pero falla en espacios con 
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curvatura. De modo que, en teoría, deberíamos ser capaces de 
determinar si nuestro universo es plano o curvo analizando las 
desviaciones con respecto a ese teorema en triángulos trazados 
entre tres puntos del espacio, mejor todavía si se trata de triángu­
los de gran tamaño. 

«El de Riemann parece ser uno de esos casos en los que 
las ideas más originales y características de un pensador 

aparecen muy pronto.» 
- JOSÉ FERRECRÓS, RIEMANNIANA SELECTA. 

Recientemente se han hecho mediciones de ese estilo, tomando 
triángulos cuyos lados son los rayos de luz emitidos por objetos si­
tuados a enormes distancias ( del orden de los miles de millones de 
años luz). Sin embargo, aun trabajando con triángulos de un orden 
de magnitud tan descomunal, las mediciones no han sido conclu­
yentes; en principio, los valores registrados difieren de los que se 
obtendrían en un universo «plano», pero esa diferencia es tan pe­
queña que no queda claro si se debe al hecho de que el universo es 
realmente curvo, o si está causada por los inevitables errores de 
medición. Por otra parte, esta situación, esta imposibilidad (por el 
momento) de distinguir entre un universo «plano» y uno curvo es 
tomada por algunos cosmólogos como un resultado positivo, ya que 
las teorías sobre el origen del universo actualmente vigentes, con­
cretamente la llamada «teoría inflacionaria», predicen precisamente 
que nuestro universo tiene una curvatura prácticamente nula. La 
cuestión todavía está abierta y su investigación seguramente apor­
tará resultados muy interesantes en los próximos años. 

RIEMANN Y EINSTEIN 

Además del problema que acabamos de describir -la geometría 
global del universo--, Riemann estaba también muy interesado 
en la cuestión de la posible existencia de «curvaturas locales», es 
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La luz que 
pasa por las 

proximidades del 
Sol sufre una 

curvatura debido 
a la gran masa del 

astro, fenómeno 
que hace que 

cambie la posición 
aparente de 

algunas estrellas. 

FIG. 21 

Tierra 
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decir, de pequeñas «arrugas» en la textura del espacio. Para Rie­
mann esta era una cuestión fundamental, ya que él entendía que 
las leyes de la física no debían expresarse, como hacía Newton, 
en términos de fuerzas que actúan instantáneamente entre obje­
tos materiales que pueden estar ubicados a enormes distancias, 
sino que estas leyes debían formularse en términos de la georne­
tría local del universo. Es decir, para Riemann el espacio tenía un 
papel activo en las interacciones físicas, mientras que para New­
ton era solo el escenario pasivo en el que ocurrían los fenómenos. 

Más allá de las insinuaciones en ese sentido que hizo en su 
trabajo de habilitación, Riemann no llegó a desarrollar estas 
ideas; pero hoy se sabe que su modo de pensar la física era esen­
cialmente correcto. Sus ideas fueron retomadas a principios del 
siglo xx por Albert Einstein (1879-1955) y constituyeron una de 
las bases fundamentales de la teoría de la relatividad. Gracias a 
Einstein, hoy sabemos que la materia cUIVa localmente el espacio 
y que la «fuerza de gravedad» no es otra cosa que una consecuen­
cia de esta cUIVatura. 

Así, en 1919, en una famosa observación astronómica, el as­
trofísico británico Arthur Eddington (1882-1944) comprobó que 
la trayectoria de la luz se curva al pasar cerca del Sol ( en rea­

lidad se curva al pasar cerca de 
cualquier objeto físico, pero la 

Posición aparente ~ 
de la estrella y , ,, 

Eclipse total 
de Sol 
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enorme masa del Sol hace que en 
ese caso el efecto sea más visible). 
Durante un eclipse total de Sol (fi­
gura 21 ), Eddington comprobó que 
la desviación de los rayos de luz se 
manifiesta por un desplazamiento 
aparente de las estrellas que se 
ven cerca del Sol. 

Esta desviación se produce 
porque la luz se mueve siempre 
siguiendo las geodésicas del uni­
verso, y como el Sol curva el es­
pacio a su alrededor entonces mo-
difica localmente la forma de esas 



geodésicas y modifica en consecuencia la trayectoria de la luz. Un 
ejemplo todavía más dramático se da en las cercanías de un agu­
jero negro, una estrella «muerta» cuya materia se ha concentrado 
casi en un punto matemático; en este caso la curvatura del espacio 
es tan grande que la luz no puede escapar de él. 

Para Einstein, por otra parte, el universo no era una variedad 
diferencial tridimensional, como suporúa Riemann, sino una varie­
dad tetradimensional; la cuarta dimensión es el tiempo. En otras 
palabras, en el espacio-tiempo einsteniano cada «punto» está de­
terminado por cuatro coordenadas, tres espaciales y una tempo­
ral. Por ejemplo, si un escalador va subiendo por una montaña, 
las primeras tres coordenadas nos dirían su latitud, longitud y su 
altura con respecto al suelo, y la cuarta nos diría en qué momento 
se encuentra en esa posición. 

Más aún, actualmente la teoría de cuerdas, una teoría cuya va­
lidez está todavía en discusión, postula que nuestro universo es en 
realidad una variedad diferencial de diez din1ensiones: una tempo­
ral, como en la teoría de la relatividad, y nueve espaciales. Ahora 
bien, si esto fuese cierto, ¿por qué solo percibimos tres dimen­
siones espaciales? La respuesta que esta teoría propone es que, 
así como una hoja de papel muy delgada tiene tres dimensiones 
pero parece tener solo dos porque su tercera dimensión es muy 
pequeña, de la misma manera, únicamente percibimos tres de las 
nueve dimensiones espaciales porque las otras seis son demasiado 
pequeñas como para ser percibidas «a simple vista». 

Estos ejemplos, y muchos otros que también podríamos dar, 
muestran que el concepto de variedad diferencial sigue siendo 
central en la matemática y en la física. No es exagerado decir 
que la teoría de la relatividad de Einstein, la cosmología moderna, 
la teoría de cuerdas y muchas otras teorías físicas existen en su 
forma actual gracias a aquellas ideas que, por indicación de Gauss, 
Riemann creó, desarrolló e investigó durante los primeros meses 
de 1854. Gauss estaba convencido de que esas ideas eran brillan­
tes y potencialmente muy poderosas y, por supuesto, como solía 
sucederle, no se equivocaba ni siquiera en lo más mínin10. 
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CAPÍTULO 3 

La integral de Riemann 

Cuando Riemann le presentó a Gauss los tres temas 
propuestos para su trabajo de habilitación, el ya anciano 

profesor, contrariamente a la costumbre establecida, eligió 
el que su antiguo alumno había colocado en tercer lugar. 

Pero ¿cuál era el primero de los temas seleccionados 
por Riemann? En él planteaba la solución para un 

problema propuesto por Dirichlet en 1829, 
relacionado con series trigonométricas, 

y que llevó a la definición de la hoy 
llamada integral de Riemann. 





Hacia la segunda mitad del siglo XIX los matemáticos alemanes se 
dividían, a grandes rasgos, en dos escuelas. Una de ellas sostenía 
que en toda investigación matemática se debía dar prioridad al 
rigor lógico y que era erróneo dar cualquier paso, o emplear cual­
quier método, cuya validez no estuviera firmemente establecida 
de antemano. Esta escuela era particularmente dominante en la 
Universidad de Berlín y dos de sus miembros más representa­
tivos fueron Leopold Kronecker (1823-1891) y Karl Weierstrass 
(1815-1897). La otra escuela, por el contrario, ponía el rigor ló­
gico en un segundo plano y destacaba el valor de la creatividad 
y de la intuición. Sus seguidores sostenían que el trabajo de los 
matemáticos consistía sobre todo en plantear nuevos problemas 
y crear nuevos conceptos que permitieran resolver, no solo esos 
mismos problemas, sino también aquellos que hubieran sido 
planteados por las generaciones anteriores; sin que les preocu­
para excesivamente si esos nuevos desarrollos los alejaban del 
más estricto rigor lógico. La siguiente frase, que Georg Cantor 
(1845-1918) incluyó en su tesis doctoral, resume parte del pen­
samiento de esta corriente: «In re mathematica ars proponendi 
pluris facienda est quam solvendi», que significa «En matemáti­
cas el arte de hacer preguntas es más valioso que el de resolver 
problemas» (por «resolver problemas» Cantor entendía «aplicar 
métodos ya conocidos»). 
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Esta segunda escuela, que fue la dominante en Gotinga, tuvo 
entre sus representantes al propio Georg Cantor, si bien este se 
había formado en Berlín con Kronecker y W eierstrass, y a Richard 
Dedekind (1831-1916), quien fue amigo de Riemanny, como él, dis­
cípulo de Gauss. En cuanto a Gauss, el más grande de todos, fue 
probablemente el único matemático con la capacidad suficiente 
como para satisfacer al mismo tiempo las exigencias de una y otra 
escuela: no solo planteó problemas nuevos y creó conceptos ori­
ginales, sino que supo dotarlos de un rigor lógico irreprochable. 

«El método de Weierstrass era aritmético; el de Riemann, 
geométrico e intuitivo. Decir que uno es mejor que otro carece 
de sentido, pues ambos no pueden ser examinados desde un 
punto de vista común.» 
- ERIC TEMPLE BELL, Los GRANDES MATEMÁTICOS. 
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Los trabajos de Riemann comentados en los dos capítulos 
previos muestran que su pensamiento estaba claramente orien­
tado hacia la segunda escuela. Tanto en su tesis doctoral como en 
su Habilitationsschrift creó conceptos y planteó problemas que 
eran completamente nuevos para su tiempo. Hay que decir, por 
otra parte, que en todos sus artículos siempre optó por dar expli­
caciones que estuvieran basadas en la intuición, o incluso en expe­
rimentos de la física, más que en algún encadenamiento de ideas 
puntillosamente riguroso. Este estilo informal le atrajo las críticas 
de diversos matemáticos de la primera escuela, especialmente de 
W eierstrass, quien incluso llegó a cuestionar la validez de algu­
nos de los teoremas demostrados por Riemann. Muchos años más 
tarde, sin embargo, el también matemático alemán David Hilbert 
(1862-1943) reformuló los razonamientos de Riemann de modo 
que satisficieran las exigencias de rigor de W eierstrass, y logró 
de ese modo justificar, más allá de toda duda, que los teoremas 
demostrados por Riemann eran realmente correctos. 

La investigación que Riemann expuso en su trabajo de ha­
bilitación (que, recordemos, era el tercero de los temas que él le 
había propuesto a Gauss) lo ubica en la misma escuela de Dede-
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kind y Cantor, pero ¿puede decirse lo mismo del primero de los 
temas que Riemann había elegido, aquel que era su favorito? La 
respuesta, una vez más, es afinnativa, ya que la primera propuesta 
de Riemann consistía en crear un nuevo método, el cual ampliaba 
enormemente los alcances de otro creado, a fines del siglo xvn, por 
Isaac Newton (1643-1727) y Gottfried Wilhelm von Leibniz (1646-
1716), con el propósito de resolver un problema planteado por 
Dirichlet, y del que Riemann tomó conocimiento cuando ambos 
coincidieron en Berlín entre 1847 y 1849. Así pues, Riemann pro­
ponía crear un nuevo concepto con la intención de resolver un 
problema recientemente planteado, una intención claramente 
guiada por los postulados de la segunda escuela. 

EL TEMA FAVORITO DE RIEMANN 

Durante el tiempo que dedicó a la preparación de su Habilita­
tionsschrift, entre 1852 y 1854, Riemann tenía la absoluta con­
vicción de que Gauss iba a elegir el primero de los temas que él 
pensaba proponerle. Como consecuencia de ello, fue a este tema 
al que dedicó la mayor parte de su tiempo. En ese sentido, ade­
más, contó con una inesperada ayuda, ya que durante el otoño de 
1852 Dirichlet, la persona que había planteado el problema que 
Riemann intentaba resolver, visitó Gotinga durante algunas sema­
nas. Por esa época Riemann le escribió a su padre: 

A la mañana siguiente [ después de una fiesta] Dirichlet estuvo con­
migo durante dos horas. Me facilitó las notas que necesitaba para mi 
trabajo de habilitación, que de otro modo me hubieran consumido 
muchas horas de estudio laborioso en la biblioteca. Leyó también 
mi disertación y se mostró muy amigable, mucho más de lo que yo 
podía esperar si considero la gran distancia que existe entre noso­
tros. Espero que me recordará más adelante. 

Nótese que Riemann dice que «Me facilitó las notas que ne­
cesitaba para mi trabajo de habilitación», y no «mi posible trabajo 
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de habilitación». Sin embargo, tal y como se vio en el capítulo an­
terior, Gauss, contra todo pronóstico, eligió la tercera propuesta, 
por lo que Riemann no tuvo la oportunidad de exponer su solu­
ción para el problema de Dirichlet. Más aún, por motivos que se 
desconocen, ni siquiera intentó publicarla. Fue Dedekind, en 1867, 
quien finalmente tomó las notas de Riemann y las transformó en 
un artículo científico que fue publicado al año siguiente, bajo la 
firma de Riemann, con el título de «Ueber die DarsteUbarkeit einer 
Function du~ch eine trigonometrische Reihe» ( «Sobre la posibi­
lidad de representar una función mediante una serie trigonomé­
trica»). En la primera página de este artículo aparece una nota al 
pie, fechada enjulio de 1867 y firmada por Dedekind, que dice: 

Esta memoria fue presentada por su autor, en 1854, a la Facultad de 
Filosofía, para obtener su Habilitación en la Universidad de Gotinga. 
Aunque el autor no parece haber tenido intención de publicarla, la 
impresión de este trabajo sin cambio alguno nos parece más que 
justificada, tanto por el considerable interés del tema en sí, cuanto 
por la forma en la que son tratados los principios más importantes 
del cálculo. 

SENO Y COSENO 

Tal y como se dijo en el primer capítulo, una función es una regla 
que a cada número le hace corresponder, a su vez, otro número 
(aclaremos que, a diferencia de lo que hicimos antes, en este capí­
tulo solo consideraremos números reales y no números comple­
jos). Recordemos asimismo que la primera definición moderna de 
función fue dada, a mediados del siglo xvm, por Leonhard Euler, 
quien consideraba que esa regla debía estar expresada necesaria­
mente mediante una fórmula, tal como es el caso, por ejemplo, de 
f(x) = l+x+x 2

• 

Existen, desde luego, infinitas funciones distintas, pero de 
todas ellas hay una familia en particular relacionada con el ar­
tículo de Riemann; se trata de las llamadas funciones trigono-
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métricas, de las cuales las dos más importantes son el seno y el 
coseno. Estas dos funciones se estudian habitualmente aplicadas a 
los ángulos interiores de un triángulo rectángulo; de ahí el nombre 
de «trigonométricas», palabra que significa, precisamente, «medi­
ción de triángulos» ( el término proviene de las palabras griegas 
trígonos, «triángulo», y metrom, «medida»). Sin embargo, en este 
capítulo daremos una definición alternativa, una definición que 
es usada en matemáticas superiores y que, de hecho, resulta más 
conveniente para nuestros fines. Para ello, consideremos un sis­
tema de coordenadas en el plano (figura 1) y tracemos, con centro 
en el origen del sistema, una circunferencia de radio l. 

A continuación imaginemos un punto, al que llamaremos P, 

,----- que se va moviendo a lo largo de la circun­
ferencia. Este punto P comienza su reco­
rrido en la posición (1,0) y se desplaza a 
velocidad constante en sentido contrario 
al de las agujas del reloj mientras recorre 
la circunferencia completa una y otra vez 
(figura 1). Las funciones seno y coseno se 
definen a partir de ese movimiento de la 

1 FIG. 1 

FIG. 2 
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(0,1) 
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siguiente manera: si t es la distancia que 
en determinado momento ha recorrido 
el punto P, llamaremos cos(t), que se lee 
«coseno de t», a la primera coordenada 
de la posición que ocupa el punto P en 
ese instante, y sen(t), que se lee «seno de 
t», a la segunda coordenada (figura 2). 

Por ejemplo, supongamos que el 
punto P ha recorrido la cuarta parte de 
la circunferencia y que se encuentra, por 
lo tanto, en la posición (0,1). Dado que la 
longitud recorrida por P en ese caso es 

2n n 
-=-
4 2 

(ya que la longitud total de la circunfe­
rencia es 2n), entonces 



cos ( i) = O Y sen ( i) = l. 

En el primer capítulo se vio que toda función de variable real 
se puede representar mediante una curva que, agregamos ahora, 
es conocida como el gráfico de esa función. Recuérdese que este 
gráfico se dibuja en el plano, tan1bién en el contexto de un sistema 
de coordenadas, de tal modo que la primera coordenada de cada 
punto de la curva es un número real t, mientras que la segunda 
coordenada es la imagen de t ( el valor que la función le asigna a 
t). Basada en esta idea, la figura 3 muestra los gráficos que corres­
ponden al seno y al coseno. (Los valores negativos de t corres­
ponden, por convención, a las distancias recorridas por el punto 
P c;uando este gira en el sentido de las agujas del reloj, sentido de 
giro que es conocido, precisamente, como negativo.) 

Cada una de estas dos curvas tiene la forma de una onda, es 
decir, una forma que es similar esencialmente a la que tienen las 
olas que se forman en la superficie de un estanque. Dos de las ca­
racterísticas fundamentales de una onda son su período y su am­
plitud. El período es el tiempo que tarda la onda en repetirse, que 
en el caso de las olas es el tiempo que estas tardan en volver una y 
otra vez a la misma altura; la amplitud, por su parte, es la distancia 
que hay entre el nivel del agua tranquila y la altura del pico más 
alto de la ola. En el caso del seno y del coseno, se asume que el 
punto P se mueve a la velocidad necesaria para recorrer por cada 
segundo transcurrido una longitud exactamente igual al; en otras 

Representación 
gráfica de las 
funciones seno 
y coseno .. 

r-- -- -- -------------
1 FIG. 3 

----- --------
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HISTORIA DE LAS PALABRAS 

L a pa labra «trigonometría» fue 

usada por primera vez en la 
obra Trigonometría: sive de so­
lutione triangulorum tractatus 
brevis et perspicuus, un tratado 
publicado en 1595 por el mate­
mático, astrónomo y teólogo 
polaco Bartolomé Pitiscus 
(1561-1613). En cuanto al nom-
bre de la función seno; a la 
cuerda correspond iente al arco 
de una circunferencia se la lla-
maba, en latín, inscripta corda o, 
simp lemente, inscripta. A la mi­
tad de esa cuerda (que, como 
se ve en la imagen, es el seno) se 
la llamaba semis inscriptae que 

seno 

cuerda 

l_ 
se abreviaba s. ins., abreviatura que se unificaba como sins y se latinizaba 
como sinus, que en español se transforma en «seno». La palabra «coseno», 
por su parte, proviene de la abreviatura de complementi sinus, es decir, 
«seno del complemento»; ya que, efectivamente, si a es un ángulo entre O 
y n/2 su complemento es el ángulo que mide n/2 - a y se tiene que 
cos(a)=sen(n/2 - a); es decir, el coseno de un ángulo es, efectivamente, el 
seno de su complemento. 

palabras, se supone que el punto P tarda 2n segundos en reco­
rrer la circunferencia completa y en volver a repetir, consecuente­
mente, una y otra vez las mismas posiciones. Bajo esta suposición 
el periodo del seno y del coseno seria 2n. En cuanto a la amplitud, 
la figura 3 muestra que esta es igual a 1, que es la distancia entre el 
eje horizontal y la mayor altura que alcanza la onda, que es l. 

Pero tanto el periodo como la amplitud pueden alterarse: las 
aguas se pueden agitar de modo que las olas sean más altas o más 
bajas, o para que se sucedan más lenta o más rápidamente. En 
cuanto al seno o al coseno, si el punto P se desplazara al doble de 
velocidad, el periodo de las ondas de la figura 3 se reduciría a la 
mitad (porque el punto tardaria la mitad del tiempo en completar 
un giro). Por otra parte, si el punto P se moviera a lo largo de una 

LA INTEGRAL DE RIEMANN 



--------
FIG_ 4 

y 

- ----- ----------------' 

circunferencia de radio 2, en lugar de una de radio 1, la amplitud 
se duplicaría. La figura 4 es un ejemplo de una de estas «ondas 
modificadas» y muestra la onda resultante de duplicar su amplitud 
y al mismo tiempo dividir por 3 el período del coseno. 

En lo que sigue, llamaremos ondas básicas tanto al seno y al 
coseno como a todas las ondas que se obtienen modificando su 
período y/o su amplitud. Estas ondas básicas, como veremos en 
este mismo capítulo, juegan un papel central en el problema de 
Dirichlet que resolvió Riemann. 

SUMAS INFINITAS 

Dijimos antes que Euler consideraba que una función debía estar 
expresada necesariamente por una fórmula. ¿Puede afirmarse 
que las funciones seno y coseno, tal como las hemos descrito, 
están definidas de ese modo? A primera vista parece que la res­
puesta debería ser negativa, ya que ambas definiciones se refieren 
a las posiciones que va ocupando un punto que se desplaza por 
una circunferencia, y no parecen involucrar ninguna clase de fór­
mula. Sin embargo, Euler demostró que, a pesar de las aparien­
cias, los valores del seno y del coseno sí pueden ser calculados 
mediante una fórmula, aunque hay que decir que esta involucra 
una suma infinita. Concretamente, Euler demostró que los valo-
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res que toman las funciones seno y coseno pueden calcularse de 
esta manera: 

x 3 x 5 x 7 x 9 x 11 

sen(x) = x - -+ - - -+ - - -+ ... 
3! 5! 7! 9! 11! 

x 2 x 4 x 6 x 8 x 10 

cos(x) = 1- - +- - -+ - - -+ ... 
2! 4! 6! 8! 10! 

Los puntos suspensivos indican que la suma sigue indefini­
damente. (Si n es un número entero mayor o igual que 1 se llama 
factorial den, y se escriben!, al producto de todos los números 
enteros entre 1 y n. Así, por ejemplo, 2! = 2 • 1 = 2; 3! = 3 . 2 . 1 = 6; 
4!= 4 • 3 • 2 • 1 = 24, y así sucesivamente.) 

En matemáticas, a una suma formada por infinitos términos se 
la llama «serie»; pero ¿qué significa realmente sumar ir,jinitos nú­
meros? En el siglo XVIII las operaciones relacionadas con el infinito 
todavía no estaban claramente definidas y para Euler, así como para 
todos sus contemporáneos, sumar infinitos números no era muy di­
ferente de simplemente sumar muclws números: sumar dos, cien, 
mil o infinitos números no eran operaciones esencialmente diferen­
tes en sus propiedades ( solo se diferenciaban en la dificultad del cál­
culo). Sin embargo, como el propio Euler no tardó en percibir, tratar 
a las series de una manera tan «ingenua», es decir, operar con ellas 
de la misma manera que como se opera con las sumas habituales 
( que involucran siempre finitos sumandos), conduce en realidad a 
extrañas paradojas. Mostremos un ejemplo, debido ·al propio Euler. 

Consideremos, dijo Euler, la suma infinita 1 +x +x 2 +x 3 +x 4 + ... 
y multipliquémosla por 1 - x; es decir, calculemos el resultado de 
(l-x)(l+x+x2+x 3 +x 4 + ... ). Este resultado se obtiene multipli­
cando cada término del primer paréntesis por cada uno de los 
infinitos términos del segundo: 

(1-x) (1 +x +x 2 +x 3 +x 4 + ... ) = 
=l +x +x 2 +x3 +x 4 + ... - x-x 2 - x 3- x 4 

- ... = l. 

Tenemos así que (l-x)(l+x+x 2 +x 3 +x 4 + ... ) es, sorpren­
dentemente, igual al; y de ello se deduce que: 
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(l-x)(l+x+x 2 +x3 +x4 + ... ) = l. 

2 3 4 1 l +x+x +x +x + ... = --. 
l - x 

En esta última expresión, dijo Euler, tomemos x = 2. Obtene­
mos así que: 

1 + 2 + 22 + 23 + 24 + ... = _l _ = - 1. 
1- 2 

La conclusión es que 1 + 2 + 4 + 8 + 16 + ... = -1, en otras pala­
bras, la suma de una cantidad infinita de números positivos daría 
como resultado el número negativo - l. Sin embargo, la intuición 
y el sentido común nos dicen que el verdadero resultado de la 
suma 1 + 2 + 4 + 8 + 16 + ... tiene que ser, simplemente, infinito. 
Euler trató de justificar este resultado paradójico defendiendo 
que, bajo ciertas circunstancias, un número negativo puede tener 
un valor infinito, aunque, desde luego, no llegó a ninguna conclu­
sión satisfactoria. 

Con el correr del tiempo, la aparición de otras paradojas 
similares hizo que los matemáticos llegaran gradualmente a la 
conclusión de que las series no pueden ser tratadas simplemente 
como «sumas muy largas», sino que se rigen por reglas que son 
diferentes de las sumas que solo involucran una cantidad finita de 
sumandos. Por este motivo, a lo largo del siglo XIX, las investiga­
ciones de diversos matemáticos estuvieron dedicadas a establecer 
cuáles son, exactamente, las «leyes» que rigen el comportamiento 
de las series. 

Por ejemplo, el matemático noruego Niels Henrik Abel estu­
dió las llamadas series de potencias, es decir, las sumas infinitas 
de potencias de x, tal como es el caso de 1 + x + x2 + x3 + x4 + ... , o 
también de las sumas que definen al seno y al coseno. Concre­
tamente, Abel estableció que en estas sumas la x no puede ser 
reemplazada, en principio, por cualquier número, sino que para 
cada serie existe un rango muy específico de números que pueden 
ser reemplazados por la x . En el caso de 1 +x+x 2 +x 3 +x4 + .. . , 
por ejemplo, este rango abarca todos los números entre - 1 y el 
1 (ambos no incluidos), de modo que, si bien en esa serie tiene 
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sentido reemplazar x por 0,5, en cambio no tiene sentido reem­
plazarla por 2, dado que este número se encuentra fuera del rango 
establecido. 

Esta reflexión resuelve la paradoja mostrada ant~riormente; 
la respuesta es que en la igualdad 

1 2 3 4 1 +x+ x +x +x + ... =--
l- x 

simplemente no tiene sentido tomar x = 2. En el caso de las se­
ries que calculan el seno y el coseno puede demostrarse que sus 
rangos abarcan todos los números reales, por lo que en estas 
series la variable x sí puede ser reemplazada por cualquier nú­
mero. Ahora bien, el trabajo de Riemann demuestra una propie-

NIELS HENRIK ABEL (1802-1829) 

La infancia del matemático noruego Abel 
estuvo marcada por la pobreza, situación 
que se vio agravada por las malas circuns­
tancias políticas y económicas que atra­
vesaba entonces su país (en esa época 
Noruega estaba bajo el control político 
de Dinamarca) . La falta de recursos le 
habría impedido cursar estudios univer­
sitarios, pero Abel contó con la ayuda 
del matemático Bernt Michael Holmboé 
(1795-1850), quien fue su profesor en el 
colegio y reconoció su talento para las 
matemáticas. Holmboé recomendó a Abel 
y, gracias a ello, este obtuvo una beca 
para estudiar en la Universidad de Chris­
tiania, en Copenhague, donde ingresó 
en 1821. A pesar de que vivió solamente 
veintiséis años, Abel logró hacer contri-
buc iones esenciales al álgebra y al cálculo. Así, por ejemplo, demostró, al 
mismo tiempo que Évariste Galois (1811-1832), la imposibilidad de resolver 
las ecuaciones de grado cinco; estudió las llamadas «integrales elípticas» y 
también contribuyó a la fundamentación lógica del cálculo. Abel falleció de 
tuberculosis en 1829. 
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dad muy extraña de las sumas infinitas. Corno es bien sabido, 
sumar 1 + 2 + 3 + 4 + ... + 100 da el mismo resultado que sumar 
2+ 1 +4+3+ ... + 100+99, o 100+97 +99+98+ ... +3+ 1; en otras 
palabras, el resultado de la suma es siempre el mismo, no importa 
en qué orden se escriban los sumandos. Sin embargo, Riernann de­
mostró que esta propiedad no se extiende a las sumas infinitas, al 
menos no a todas ellas, puesto que algunas series dan resultados 
diferentes según en qué orden se escriban sus términos. Vean1os 
un ejemplo. 

Puede probarse que la suma 

da corno resultado el logaritmo natural de 2 (aproximadamente 
0,693147 ... ). Ahora bien, para desarrollar nuestro ejemplo reor­
denamos los términos de la serie de esta forma: 

Calculemos ahora el resultado de la suma reordenada: 

1+(-½)+(-¼)+½+(-½)+ (-½)+¼+(-:o)+: .. = 

= 1+(-½)+(-¼)+[½+(-½)]+ (-½)+[¼+(-:o)]+· ·· = 

Es decir, el reordenarniento mostrado nos da un resultado 
que es la mitad del de la suma original. Al can1biar el orden de los 
sumandos, el resultado final de la suma ha cambiado; más aún, 
Riernann demostró que, dado cualquier número real S, siempre es 
posible reordenar la suma 
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de modo tal que su resultado sea el número S elegido. Por ejem­
plo, es posible reordenar los sumandos de tal modo que la suma 
sea, si se quiere, igual a O, igual a -287 o igual a n. 

Destaquemos que, corno ya se dijo antes, esta rara propiedad 
no vale para todas las series; hay muchas de ellas cuyo resultado 
no cambia aun cuando se reordenen sus términos. Esto sucede, 
por ejemplo, si todos los números sumados son positivos, o si 
todos son negativos. En el caso de que hubiera términos positivos 
y términos negativos «mezclados», el resultado tampoco cambia 
si la serie cumple esta propiedad: al transformar todos los signos 
«negativos» en «positivos» se obtiene una serie cuya suma total 
es un número finito. 

Por ejemplo, la serie 

dará siempre el mismo resultado (que es 2/3), no importa cómo 
se reordenen sus términos. Esto se debe a que, a su vez, la suma 
1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ... da un resultado finito (que 
es 2). Obviamente, esto no sucede en el ejemplo que mostrarnos 
antes ( de suceder, la suma no cambiaría al ser reordenados los 
términos); en otras palabras, estamos diciendo que el resultado 
de sumar 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... es exactamente +oo. 

FOURIER Y LOS FENÓMENOS ONDULATORIOS 

¿Qué significa entonces «serie trigonométrica»? Una «serie» es 
una suma con infinitos términos; «trigonométricas» son las fun­
ciones seno y coseno, y también, por extensión, todas las ondas 
básicas. Una serie trigonométrica es así una suma formada por 
infinitas ondas básicas; por ejemplo: 
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1 1 1 
cos(x)+-cos(2x) +-cos(3x)+-cos( 4x) + ... 

2 3 4 

Ahora bien, dijimos antes que los gráficos de las ondas bási­
cas recuerdan la forma de las olas que se producen en la super­
ficie de un estanque. En realidad, este símil no es casual, sino 
que refleja el hecho de que todos los fenómenos ondulatorios, o 
periódicos, pueden describirse matemáticamente mediante una 
combinación adecuada de ondas básicas. 

El primero en observar la relación entre los fenómenos ondu­
latorios y las ondas básicas fue el físico y matemático francés Jo­
seph Fourier. En un trabajo publicado en 1808, Fourier demostró 
que cualquier función periódicaf(x), es decir, cualquier función 
cuyos valores se repiten cíclicamente una y otra vez, puede es­
cribirse como la suma de una cantidad, finita o infinita, de ondas 
básicas. Esta escritura actualmente se conoce como la descompo­
sición de f( x) en serie de Fourier; o, también, la descomposición 
def(x) en una serie trigonométrica. 

En cierto sentido, la idea de Fourier no era completamente 
nueva. En el siglo rv a.c. Aristóteles había afirmado que los plane­
tas (que para él eran el Sol, la Luna, Mercurio, Venus, Marte, Júpi­
ter y Saturno) giraban alrededor de la Tierra en órbitas de forma 
circular. Aristóteles justificaba este hecho mediante el siguiente 
argumento filosófico: como en aquella época se creía que los obje­
tos celestes estaban constituidos por una materia pura e impoluta, 

n - ---
REC~ROCOSDELOSCUADRADOS 

Euler demostró muchos resultados relacionados con sum as de series; uno 
de ellos es la representación de l seno y del coseno com o series de poten­
c ias, tal y como se muestra en el texto. Otro resultado muy curioso, también 
demostrado por Euler, se relaciona con la suma de los recíprocos de los 
números cuadrados; en ese sent ido Euler probó que: 

1 1 1 1 n2 

1+-+ - +-+-+···=-
4 9 16 25 6 
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Para Ptolomeo los 
movimientos 

planetarios eran 
el resultado 

de combinar 
movimientos 

circulares. 

98 

su movimiento tenía que ser necesariamente circular, porque 
el círculo es la «curva perfecta». Sin embargo, en el siglo rr d.C., el 
matemático y astrónomo Claudio Ptolomeo observó que una órbita 
circular no podía explicar todas las complejidades del movimiento 
planetario, y afumó que ese movimiento terúa que ser el resultado 
de combinar varios movimientos circulares simultáneos (figura 5). 

Cuando, siglos más tarde, Nicolás Copérnico (1473-1543) pos­
tuló que todos los planetas, incluida la Tierra, giraban alrededor 
del Sol, conservó igualmente la idea de que los movimientos pla­
netarios resultaban de la combinación de varios movimientos 
circulares (aunque eran necesarios menos círculos que en el caso 
de Ptolomeo ). Dado que las ondas básicas describen en realidad 
movimientos circulares ( el movimiento del punto P alrededor de 
una circunferencia), puede decirse que tanto Ptolomeo como Co­
pérnico sosterúan que el movimiento periódico de los planetas 
era, como diría más adelante Fourier, el resultado de combinar 
una cantidad finita de ondas básicas. 

La innovación de Fourier consistió en demostrar, por un lado, 
que cualquier fenómeno periódico ( no solo los movimientos plane­
tarios) es la suma de ondas básicas, y por el otro, que esta suma 
podía involucrar eventualmente una cantidad infinita de sumandos. 

' ' 
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Para mostrar un ejemplo de descomposición en serie de 
Fourier, tomemos la funciónf(x ) cuyo gráfico se muestra en la 
figura 6. Podemos imaginar que esta función describe la altura 
que alcanza un punto que sube y baja a velocidad constante por 
un segmento vertical de longitud l. El punto sube hasta la altura 
1, luego baja hasta la altura O, luego vuelve a subir y a bajar, y así 
sucesivamente una y otra vez. 

Puede probarse que la descomposición en serie de Fourier de 
esta función, es decir, su escritura como suma de ondas básicas, es: 

1 4 4 4 
f ( x) = - - - cos( :rrx) - - cos(3:rrx ) - --, cos(5:rrx) -

2 n2 9n2 25n· 
4 

- --
2 

cos(7 :rrx) - .. . 
49n 

Como se ve, la suma en realidad contiene un número fijo ( en 
este caso 1/2) y la resta de una cantidad infinita de ondas básicas, 
todas ellas de la forma 

4 
22cos(nn· x ) 
n n 

con n impar. Por otra parte, en la descomposición no aparece nin­
guna onda básica asociada a la función seno; esto último es solo 
una peculiaridad de esta función, ya que en otras pueden aparecer 
perfectamente al mismo tiempo ondas del seno y del coseno. 

FIG.6 y 

-···- 7-·-- --- - . -t-- -- i _ 1,5 

¡-2,5 -2 :-1 .5 ;-1 -o,5 o 
-~-~___, _______ ; ___ ' __ _l -o,s 
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JEAN BAPTISTE JOSEPH FOURIER (1768-1830) 

Nacido en Auxerre (Francia), el primer 
interés de Fourier fue la literatura, pero 
a los catorce años descubrió el tratado 
de matemáticas de Étienne Bézout 
(1730-1783), cuyos seis volúmenes estu­
dió en poco tiempo, y desde entonces 
hizo de las matemáticas su gran voca­
ción . Fourier fue uno de los muchos 
científicos de los que se rodeó Napo­
león Bonaparte durante su carrera ; y 
como consecuencia de este vínculo 
ocupó diversos cargos políticos, ade­
más de científicos. Como prefecto del 
departamento de lsere, Fourier descu­
brió el interés de Jean-Fran~ois Cham­
pollion (1790-1832) por los jeroglíficos 
egipcios y lo alentó a intentar descifrar-
los, objetivo que Champollion efectivamente alcanzó. Fourier hizo importan­
tes aportes a la física y a las matemáticas, tanto puras como aplicadas, 
dentro del área del cálculo y el álgebra. 

LA INTEGRAL DE CAUCHY 

Cualquier función periódica, dijo Fourier, puede escribirse como 
la suma (de una cantidad finita o infinita) de ondas básicas; pero 
¿cómo puede saberse exactamente cuáles son las ondas básicas 
que hay que sumar? El procedimiento para responder a esta pre­
gunta es demasiado técnico para el propósito de este libro, pero 
sí puede decirse, y ese es el punto que nos interesa aquí, que el 
procedimiento involucra el cálculo de varias integrales. 

El concepto de integral, uno de los más importantes del cál­
culo, fue desarrollado a finales del siglo XVIII simultánea e indepen­
dientemente por Isaac Newton y Gottfried Wilhelm von Leibniz. 
Planteado en términos modernos, el problema que motiva la de­
finición de la integral es el de calcular cuál es el área de la región 
comprendida entre el eje horizontal y el gráfico de una cierta fun-
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ciónf(x). Por ejemplo, ¿cuál es el área de la región sombreada en 
cada uno de los dos gráficos mostrados en la figura 7? 

En la figura 7 a, la región sombreada es simplemente un trián­
gulo, y su área, en consecuencia, puede calcularse sin dificultades 
mediante una fórmula bien conocida Sin embargo, en la figura 7b, 
donde la curva que aparece es la del coseno, el cálculo es mucho 
más complejo y escapa totalmente a la geometría tradicional. ¿Cómo 
puede calcularse, entonces, un área como la de la figura 7b? 

Para resolver este problema, Newton y Leibniz imaginaron 
que la región cuya área se quiere calcular estaba formada por infi­
nitos rectángulos colocados uno al lado del otro. Según esta idea, 
cada uno de esos rectángulos tenía como base un segmento infini­
tamente pequeño, pero con una longitud distinta de cero; la altura 
de cada rectángulo, por su parte, estaba dada por la propia función 
(en realidad, ni Newton ni Leibniz hablaban de «funciones», sino 
simplemente de curvas, pero traducimos aquí sus ideas a concep-

FIG. 7 a 

-0,5 

FIG. 8 

• Base= dx 
(cantidad infinitamente 
pequeña pero no nula) 

b 
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tos modernos); este planteamiento se ilustra en la figura 8, donde 
f(x) es una función cualquiera. 

El área buscada se calculaba como la suma de las áreas de 
esos infinitos rectángulos. Ahora bien, Leibniz llamaba dx a la 
longitud «infinitamente pequeña» de las bases de los rectángulos, 
mientras que su altura, como ya se dijo, está dada por f(x); por lo 
tanto, el área de cada rectángulo se calcula como f ( x) dx. En con­
secuencia, para expresar la suma de las áreas de los rectángulos, 
que es el área de la región bajo la curva def(x), Leibniz escribía: 

b 

f f(x)dx. 
a 

Este símbolo se llama en matemáticas «integral de f(x)» y 
todavía hoy se usa para expresar el área de la región compren­
dida entre el eje horizontal y el gráfico dej{x). La parte izquierda 
del símbolo es simplemente una letra S deformada, la inicial de 
summa, que en latín significa «suma». (Técnicamente, aunque es 
un detalle que no debe preocupamos, cuando el gráfico está por 
debajo del eje horizontal, la integral le «agrega» al área un signo 
negativo; por ejemplo, si el área de la región fuera 8, la integral 
daría como resultado -8.) 

Pero ¿qué es en realidad un número positivo «infinitamente 
pequeño pero distinto de cero»? Se trata de un concepto muy di­
fícil de entender; peor aún, es un concepto que, cuando se intenta 
definir con precisión, acaba siendo contradictorio consigo mismo. 
Una definición razonable sería que se trata de «número positivo 
menor que cualquier número positivo», pero esto llevaría a decir 
que es menor que sí mismo, o menor que su mitad. 

Newton y Leibniz eran perfectamente conscientes de que su 
integral estaba sustentada en una base lógica muy endeble; sin 
embargo, si se aceptaba la existencia de esos rectángulos de base 
«infinitamente pequeña», las fórmulas que se deducían de esa idea 
permitían calcular correctamente áreas que de otro modo resulta­
ban imposibles de hallar. Más aún, con el correr de las décadas, se 
fueron encontrando otras aplicaciones para las integrales; entre 
ellas, el cálculo de volúmenes y de longitudes de curvas, la re­
solución de ecuaciones diferenciales y, como ya se apuntó, la 
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determinación de qué ondas básicas son las que deben aparecer 
en las series de Fourier. 

Ahora bien, a medida que se hallaban más y más aplicacio­
nes para la integral, fue creciendo paralelamente la necesidad de 
dotarla de una fundamentación lógica rigurosa; y el primero en 
lograrlo, el primero en dar una definición clara y concreta de la 
integral, fue el matemático francés Augustin Louis Cauchy en su 
libro Cours d'Analyse («Curso de análisis»), de 1817. 

La idea de Cauchy para eludir los números «infinitamente 
pequeños» fue calcular el área bajo una curva mediante aproxi­
maciones sucesivas. De este modo, modificó la idea de Newton 
y Leibniz cambiando los rectángulos de base dx por rectángulos 
que tuvieran una base pequeña (pero no infinitamente pequeña) 
para luego imaginar que esas bases se van reduciendo cada vez 
más (figura 9). A medida que las bases de los rectángulos se hacen 
cada vez más pequeñas (y el número de rectángulos va aumen­
tando), se obtienen aproximaciones cada vez más exactas del área 
buscada. 

Las fórmulas para calcular áreas que se deducen de la defi­
nición de Cauchy son, en realidad, exactamente las mismas que 
las que se deducen de la definición de Newton y Leibniz, por lo 
que en la práctica no hay ninguna diferencia entre una y otra. Sin 
embargo, la definición de Cauchy omite hablar de «números infi­
nitamente pequeños», y en consecuencia, desde un punto de vista 
lógico, resulta ser mucho mejor. A pesar de esta superioridad, la 
idea de Cauchy comparte con la de Newton y Leibniz un impor­
tante «punto débil», ya que ninguno de los tres consideraba que 

- -- ------------
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A medida que sus 
bases se hacen más 
pequeñas, la suma 
de las áreas de los 
rectángulos se parece 
cada vez más al área 
bajo la curva. 

FIG.9 1 

103 



104 

AUGUSTIN LOUIS CAUCHY (1789-1857) 

Cauchy nació en París con la buena es­
trella de que los famosos matemáticos 
franceses Pierre-Simon Laplace (1749-
1827) y Joseph-Louis Lagrange (1736-
1813) fueran amigos de su padre y visi­
tantes frecuentes de su casa. Ambos 
matemáticos descubrieron temprana­
mente el talento de Cauchy, cuya voca­
ción quedó así marcada desde sus pri­
meros años. En 1805 ingresó en la École 
Polytechnique, donde se graduó en 
1807, y ese mismo año ingresó en la es­
cuela de ingeniería, donde destacó 
tanto por sus conocimientos teóricos 
como prácticos. Cauchy fue pionero en 
la búsqueda de una fundamentación ri­
gurosa para el cálculo; por ejemplo, fue el primero en hacer un estudio sis­
temático de las condiciones bajo las cuales una serie da como resultado una 
suma finita, y asimismo, fue el primero en dar una definición rigurosa de la 
integral. Fue también uno de los precursores del análisis complejo. 

pudieran existir funciones discontinuas, y es por este motivo 
que cuando Dirichlet las introdujo en 1829, la integral de Cauchy 
quedó, en gran medida, obsoleta. 

EL PROBLEMA 

¿Qué es una función discontinua? Es una función cuyo gráfico 
presenta, al ser trazado, «saltos abruptos» o «discontinuidades». 
A modo de ejemplo obsérvese el gráfico de la figura 10, el cual está 
formado por una sucesión de segmentos desconectados entre sí. 
Evidentemente, si intentamos dibttjarlo comenzando desde el punto 
(0,0), nos encontraremos con que al llegar al (1, O) el lápiz debe «sal­
tar bruscamente» hacia arriba hasta el punto (1, 2); es decir, en el 
(1,0) encontramos una interrupción, una discontinuidad. 
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Ahora bien, la imagen que aparece en la figura 10 ¿es real­
mente el gráfico de una función? La respuesta que Euler habría 
dado a esa pregunta es que no, porque, a priori, no parece que 
ese dibujo pueda ser generado mediante una única fórmula. Sin 
embargo, en 1829 Dirichlet probó que este gráfico puede obte­
nerse como el resultado de la suma de infinitas ondas básicas; en 
otras palabras, la imagen de la figura 10 es el gráfico de una serie 
trigonométrica, y por lo tanto es el gráfico de una función. Como 
consecuencia de ello, tal y como ya se adelantó en el capítulo 1, 
Dirichlet estableció que había que ampliar la definición de función 
para abarcar a cualquier regla de asignación de números, estu­
viera esta, o no, expresada mediante una fórmula. Ninguna regla 
debía ser excluida a primi. 

«Dedekind solía referirse a Riemann como su modelo en cuanto 
a metodología matemática.» 

- JOSÉ FERREIRÓS, THEORJA. REVISTA DE TEORÍA, HISTORIA Y FUNDAMENTOS DE /,A CIENCIA. 

De hecho, hoy en día funciones como las de la figura 10 son 
muy usadas en muchas ramas de la ingeniería. Para los ingenie­
ros actuales, el gráfj.co de la figura 10 podría representar una su­
cesión de señales: durante el primer segundo hay silencio, luego 
una señal de intensidad constante que dura un segundo, luego 
otra vez silencio, luego otra señal de un segundo y así sucesiva­
mente. La descomposición en serie trigonométrica de las señales 
tiene numerosísimas aplicaciones prácticas, que abarcan desde 
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las transmisiones de radio hasta el diseño de los tomógrafos usa­
dos en medicina. 

Sin embargo, el hecho de que una función como la de la fi­
gura 10 pudiera descomponerse en serie trigonométrica colocó 
a Dirichlet frente al problema de cómo determinar cuáles son las 
ondas básicas que deben intervenir en esa serie. La respuesta, 
como ya se dijo, es que la descomposición en serie de Fourier de 
una función periódica se obtiene mediante el cálculo de varias 
integrales. Pero en 1829 la única integral bien definida era la de 
Cauchy, y esta no es válida cuando se trabaja con funciones dis­
continuas. Cuando se intenta aplicar la definición de Cauchy a 
funciones como las de la figura 1 O el resultado que se obtiene para 
la integral no siempre representa el valor correcto del área. Diri­
chlet planteó entonces el problema de modificar la definición de 
la integral de tal modo que pudiera aplicarse aun en los casos en 
que hubiera discontinuidades. Este es el problema que Riemann 
tomó como primer tema de investigación en 1852. 

LA SOLUCIÓN DE RIEMANN 

Riemann se enfrentó al problema planteado por Dirichlet y halló 
una definición de integral que tenía sentido aun cuando la fun­
ción presentara «saltos» o «discontinuidades». Para ello, retomó 
la idea de las aproximaciones sucesivas pero, a diferencia de Cau­
chy, propuso tomar dos aproximaciones para el área, una aproxi­
mación por exceso y otra por defecto (figura 11). 

Es decir, Riemann propuso usar dos familias de rectángulos 
para aproximar el área. Los rectángulos de una de las familias 
(parte derecha de la figura) están por debajo de la curva, por lo 
que sus áreas son siempre un poco menores que la que se quiere 
calcular; estos rectángulos nos dan la aproximación por defecto. 
Los rectángulos de la otra familia, por su parte, están siempre por 
arriba de la curva (parte izquierda de la figura) y nos dan la apro­
ximación por exceso (un área que es un poco mayor que la que 
se quiere calcular). A medida que los rectángulos van reduciendo 
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FIG. 13 
sus bases, las dos aproximaciones 
se acercan cada vez más al valor del 
área buscada. 

Hay que precisar que, al dar su 
definición de integral, Riemann es­
taba retomando una idea que ya había 
sido empleada en el siglo rv a.c. por 
el geómetra griego Eudoxo de Cnido 
para calcular el área del círculo. 
Para hacer ese cálculo Eudoxo había 
usado polígonos regulares inscritos y 
circunscritos a la circunferencia; los 
polígonos inscritos dan una aproxi­
mación por defecto del área, mien-

tras que los otros dan una aproximación por exceso (figura 12, 
pág. anterior). A medida que crece la cantidad de lados de los 
polígonos, las dos aproximaciones se acercan cada vez más al 
área buscada. 

En el trabajo de Riemann publicado por Dedekind, el ma­
temático dio esta nueva definición para la integral, estudió las 
propiedades resultantes de este nuevo concepto y demostró que 
poseía un alcance mayor que la integral que había definido Cau­
chy. Porque, tal como Dirichlet pedía, la definición de Riemann, 
que es, de hecho, la que hoy en día se usa en todas las aplicacio­
nes prácticas, tanto en física como en ingenieiia, tiene sentido y 
da el valor correcto del área aun cuando la función tenga «saltos» 
(figura 13). Por lo tanto, la integral de Riemann, que es como ac­
tualmente se la conoce, permite hallar la descomposición en serie 
de Fourier de funciones como la que se muestra en la figura 10. 

Es verdad que décadas más tarde se encontraron, a su vez, 
limitaciones para la integral de Riemann, ya que, así como la 
integral de Cauchy «falla» en las funciones discontinuas, la de 
Riemann «falla» asimismo cuando la cantidad de saltos es «de­
masiado grande». Y si bien funciones de este último tipo nunca 
aparecen en las aplicaciones prácticas, el francés Henri Lebesgue 
(1875-1941) amplió en 1901 la definición de Riemann con el fin de 
abarcar una clase aún mayor de funciones. 
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CAPÍTULO 4 

Riemann y la física 

Bemhard Riemann se consideraba a sí mismo 
tanto físico como matemático. De hecho, más allá 

de que muchos de sus trabajos matemáticos tengan 
fuertes implicaciones físicas, hay además una parte muy 

significativa de su obra que está dedicada exclusivamente 
al análisis de fenómenos físicos, en especial los 

fenómenos asociados al flujo de corrientes 
eléctricas o a la propagación de la luz. 





Después de exponer su trabajo de habilitación y tras pasar una 
temporada de descanso en Quickbom, donde seguían viviendo 
sus padres y algunos de sus hermanos, en septiembre de 1854 
Riemann comenzó a trabajar en la Universidad de Gotinga como 
docente remunerado. De este modo, no solo lograba alcanzar un 
objetivo largamente perseguido, sino que además, aunque el di­
nero que ganaba no era mucho, le fue posible ayudar económica­
mente a su familia. Hay que decir que, debido a su natural timidez, 
inicialmente el ejercicio de la docencia no le resultó fácil; sin em­
bargo, en poco tiempo logró adaptarse, tanto es así que a finales 
de 1854 le escribía a su hermana Ida: 

He sido capaz de mantener regularmente mis clases. Mi primera des­
confianza ha ido disminuyendo cada vez más, y me he habituado a 
pensar más en los oyentes que en nú mismo y a leer en sus expresiones 
si debo pasar a otros puntos o explicar más detenidamente la cuestión. 

En esa misma carta se congratulaba además por el éxito de 
su primer curso académico y por el inesperado gran número 
de oyentes: ocho personas, cuando él no esperaba más que dos. 
Poco tiempo después, el 23 de febrero de 1855, falleció Gauss, y 
es muestra del respeto que Riemann se había ganado en Gotinga el 
que hubiera quienes lo propusieran como candidato para suceder 
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WILHELM WEBER (1804-1891) 

Weber nació en Wittenberg (Alemania) 
e ingresó en la Universidad de Halle en 

1822, donde cuatro años más tarde se 
doctoró en física con una tesis sobre 
los mecanismos por los que se pro­
duce la voz humana . Al año siguiente 
expuso su Habilitationsschrift con una 
investigación relaci onada con el mismo 
tema; la cual amplió en una serie de ar­
tículos publicados entre 1828 y 1830 en 
la revista Annalen der Physik und Che­
mie («Anales de física y química»). A 
partir de 1828 su prestigio académico 
comenzó a crecer rápidamente, sobre 
todo después de que ese mismo año 
Gauss asistiera a una de sus conferen­
cias y manifestara la gran capacidad 
de aquel joven físico. En ese momento 
Gauss estaba muy interesado en el 
estudio del magnetismo terrestre y le 
ofreció a Weber un puesto en Gotinga 
para trabajar con él en esa investiga­
ción; ambos científicos colaboraron es­
trechamente entre 1831 y 1837. Aparte 
de su capacidad científica, Weber tenía una gran reputación como exposi­
tor. Durante sus conferencias, que eran muy apreciadas, solía realizar expe­
rimentos para ilustrar los temas tratados, una práctica muy novedosa para 
la época. También sostenía, y asimismo fue pionero en esta idea, que para 
aprender mejor, los estudiantes debían realizar los experimentos físicos po r 
sí mismos en lugar de solo observar al profesor hacerlos. A lo largo de su 
vida Weber recibió muchos premios y honores; por ejemplo, en 1850 fue 
elegido miembro de la Real Sociedad de Londres; en 1874, miembro de la 
Real Sociedad de Edimburgo, y en 1879, miembro de la Academia Nortea­
mericana de Artes y Ciencias. En 1935 se le dio el nombre de «weber» a la 
unidad de flujo magnético. 

a Gauss en su cátedra. Sin embargo, las autoridades de la universi­
dad consideraron que era demasiado joven para un puesto de esa 
importancia y finalmente la cátedra fue ofrecida a Dirichlet, quien 
la aceptó y se trasladó desde Berlín para hacerse cargo de ella. 
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JAMES CLERK MAXWELL (1831-1879) 

La capacidad del escocés James Clerk 
Maxwell para las matemáticas se ma­
nifestó muy pronto; así, por ejemplo, 
en 1846 escribió un articulo sobre cur­
vas ovales, que él definía como el lugar 
geométrico de todos los puntos para los 
cuales la suma de m veces la distancia a 
un foco F, más n veces la distancia a un 
foco F

2 
es constante (véase la figura). En 

ese artículo, además, estudiaba curvas 
con tres o más focos. Maxwell expuso 
este trabajo, titulado «Sobre la descrip­
ción de las curvas ovales y de aquellas 
con una pluralidad de focos», ante la Real 
Sociedad de Edimburgo el 6 de abril de 
1846; y aunque muchas de las ideas con­
tenidas en el artículo no eran completa­
mente originales, ya que Descartes había 
estudiado temas similares casi dos siglos 

---------

antes, no deja de ser notable que al escribirlo, y al exponerlo, Maxwell tuviera 
solo catorce años de edad. Maxwell se doctoró en matemáticas en 1854 en la 
Universidad de Cambridge, donde además trabajó como docente e investi­
gador durante toda su carrera. Como científico, sus trabajos más importantes 

md, + nd2 = constante ..-------
giraron en torno de la teoría 
de la electricidad y el magne­
tismo. Estas investigaciones 
llegaron a su punto culminante 
en 1873 con la publicación de 
sus famosas ecuaciones sobre 
la relación entre el campo mag­
nético y el campo eléctrico, uno 
de los pilares fundamentales de 
la física moderna, y que hoy son 
conocidas como ecuaciones de 
Maxwell. 

Pero ahora volvamos un poco atrás en el tiempo, hasta 1849. 
En ese año, recordemos, Riemann regresó a Gotinga después de 
haber pasado dos años en Berlín y comenzaba a preparar su tesis 
doctoral. A la vez que preparaba su tesis, Riemann asistía al semi-
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nario de física que dictaba, también en la Universidad de Gotinga, 
Wilhelm Weber, quien había trabajado en estrecha colaboración 
con Gauss (ya mencionamos a Weber en el segundo capítulo a 
propósito de la exposición de Riemann de su trabajo de habilita­
ción, en junio de 1854). 

Hay que decir que el seminario de Weber no consistía sola­
mente en una serie de clases avanzadas, sino que era un verda­
dero laboratorio de investigación en el que se formulaban nuevas 
teorías, especialmente sobre electromagnetismo, y se realizaban 
los experimentos necesarios para ponerlas a prueba. En este úl­
timo sentido puede mencionarse, a modo de ejemplo, que en 1856 
Weber y su colaborador Rudolf Kohlrausch midieron la razón entre 
la carga electrostática y la carga electrodinárrúca de una partícula y 
encontraron que era de 3,107 4 • 108 m/seg. Fue Riemann, que estaba 
presente al realizar esas mediciones, quien observó que este valor 
se aproxima al de la velocidad de la luz y dedujo de ello que debía 
de haber una relación muy estrecha entre la propagación de la luz 
y los fenómenos electrodinárrúcos y electrostáticos, conexión que 
sería confirmada en 1905 por Einstein en su artículo «Sobre la elec­
trodinárrúca de los cuerpos en movimiento», en el que presentó por 
primera vez la teoría de la relatividad. 

Por otra parte, el dato experimental obtenido por Weber y 
Kohlrausch fue crucial para que James Clerk Maxwell desarro­
llara, en 1873, la teoría que explica la relación entre la electricidad, 
el magnetismo y la propagación de la luz. Es asimismo interesante 
notar que fue en el artículo que da cuenta de ese experimento 
donde se usó por primera vez la letra «c» para referirse a la velo­
cidad de la luz, tal como se hace todavía en la actualidad. 

EL CAMPO UNIFICADO 

En realidad, Riemann siempre estuvo muy interesado en la física, 
tanto es así que de los catorce artículos científicos que escribió 
(cuatro de los cuales se publicaron póstumamente), cinco están 
dedicados exclusivamente a la explicación de fenómenos físicos, 
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mientras que casi todos los demás, aun cuando en principio ha­
blan de temas matemáticos, tienen asimismo importantes conse­
cuencias dentro del terreno de la física ( entre estos últimos se 
cuenta, por ejemplo, el trabajo sobre geometría diferencial del que 
hablamos en el segundo capítulo). 

Cuando en 1852 Riemann empezó a realizar las investigacio­
nes preliminares para su trabajo de habilitación, seguía todavía 
asistiendo regularmente al seminario de Weber, aunque ahora en 
calidad de ayudante no remunerado. Pero además, en paralelo, 
se planteaba a sí mismo una serie de cuestiones relacionadas con 
el problema de hallar una teoría que permitiera explicar simul­
táneamente todas las fuerzas de la naturaleza, que por entonces 
se creía que eran la gravedad, la electricidad, el magnetismo y el 
calor. Tal intensidad de trabajo acabó por perjudicar su salud, que 
en verdad nunca fue muy sólida, y es por eso que a principios de 
1854 le escribía a su hermana Ida: 

He estado tan absorbido en mi investigación sobre la unidad de 
todas las leyes físicas, que cuando me fue entregado el tema para 
mi conferencia [su Habilitationsschrift], no pude abandonar la in­
vestigación. Luego, en parte como resultado de las meditaciones, 
en parte por mi permanencia constante en lugares cerrados durante 
esta mala estación, caí enfermo; mis viejos males se repitieron con 
gran frecuencia y no pude continuar mi labor. Varias semanas más 
tarde, al mejorar el tiempo, comencé a sentirme mejor. 

Hasta donde se conoce, Riemann fue el primero en plantear 
el problema de reunir la descripción de todas las fuerzas de la na­
turaleza bajo una misma teoría, cuestión que más tarde Einstein 
denominaría «el problema del campo unificado»; y aunque Rie­
mann nunca llegó a una conclusión definitiva sobre esta materia, 
las reflexiones, tanto físicas como filosóficas, que hizo al respecto 
entre 1852 y 1866 fueron recopiladas y publicadas en el Annalen 
der Physik und Chemie en 1867 bajo el título de Una contribu­
ción a la electrodinámica. 

Además de la observación, ya mencionada, de que una teoría 
de la electricidad y el magnetismo tiene que ser muy cercana a una 
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teoría de la propagación de la luz, el artículo presenta la idea de 
Riemann de que cualquier fuerza que actúe entre dos partículas 
debe propagarse necesariamente a una velocidad finita, concep­
ción que contradecía la teoría newtoniana dominante en aquella 
época según la cual existía una acción instantánea, no importa 
cuál fuese la distancia. Riemann, además, identifica esa velocidad 
de propagación con la de la luz, predicción que sería corroborada 
décadas más tarde por Einstein y que es uno de los pilares de la 
teoría de la relatividad. 

«En cualquier región matemática donde comenzara a investigar 
[Riemann], el cosmos matemático comenzaba a lucir con un 
brillo jamás visto.» 
- EGMONT COLERUS, BREVE HISTORIA DE LA JIATEJIÁTICA. 
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En cuanto al problema del campo unificado en sí, hoy se sabe 
que las fuerzas fundamentales de la naturaleza son efectivamente 
cuatro, pero no las que se creía a mediados del siglo XIX, sino la 
fuerza electromagnética, la gravedad y otras dos fuerzas que ac­
túan a nivel subatómico conocidas como la fuerza nuclear fuerte y 
la fuerza nuclear débil. Sin embargo, aunque se han hecho muchos 
avances parciales en el problema de unificarlas bajo una misma 
teoría (por ejemplo, se ha logrado unificar a la fuerza electromag­
nética con la nuclear débil) al momento de escribir estas líneas el 
problema del campo unificado permanece todavía sin solución. 

EL SEGUNDO TEMA 

El capítulo anterior estuvo dedicado a la primera opción que Rie­
mann le propuso a Gauss como tema para desarrollar en su tra­
bajo de habilitación. Se trataba, recordemos, de la solución de un 
problema planteado por Dirichlet sobre series de Fourier; solu­
ción que, a su vez, condujo a Riemann a la definición de la integral 

RIEMANN Y LA FISICA 



que hoy lleva su nombre. En el segundo capítulo, por su parte, se 
explicó el contenido de la tercera opción de Riemann, aquella que 
Gauss finalmente le pidió que expusiera ante el tribunal examina­
dor; este tema contenía nada menos que las definiciones de los 
conceptos fundamentales de la geometría diferencial. Queda, por 
tanto, analizar la segunda opción que Riemann le propuso a Gauss 
como tema para su Habilitationsschrift. 

Comencemos por decir que se le atribuye al gran matemá­
tico y astrónomo Tales de Mileto el descubrimiento de la electri­
cidad, o más exactamente, de la electrostática. Tales habría sido 
el primero en observar que al frotar una varilla de ámbar con un 
paño de lana se lograba que aquel atrajera objetos pequeños, y 
que si se frotaba con más energía durante el tiempo suficiente 
entonces se producía una chispa. De hecho, la palabra «electri­
cidad» proviene de la palabra electrón, que en griego significa 
«ámbar». 

Sin embargo, a pesar de este descubrimiento tan prematuro, 
durante muchos siglos no se hicieron investigaciones relativas 
a los fenómenos eléctricos más allá de algunas observaciones 
aisladas, y solo fue a principios del siglo XVIII que empezaron a 
ser estudiados sistemáticamente. En este contexto, en octubre 
de 1745 el holandés Pieter van Musschenbroek (1692-1761), de 
la Universidad de Leiden, y el alemán Ewald Georg von Kleist 
(1700-1748), desarrollaron simultánea e independientemente el 
dispositivo al que más adelante ( debido a la mayor fama de la 
que gozaba Van Musschenbroek) se le dio el nombre de botella 
de Leiden. 

Esta botella es un mecanismo capaz de almacenar cargas 
eléctricas. Su diseño original consistía en un recipiente de vidrio 
cerrado, parcialmente lleno de agua, y con un clavo que sobre­
salía de la tapa a la vez que estaba en contacto con el líquido. La 
botella era cargada poniendo en contacto el extremo exterior del 
clavo con una fuente de electricidad electrostática (normalmente 
generada por fricción) . El dispositivo era capaz de retener las 
cargas durante varias horas y producía un fuerte shock al entrar 
en contacto con un cuerpo humano ( el propio experimentador, 
normalmente). 
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TALES DE MILETO (CA. 624-547 A.C.) 

Hay muy pocas certezas acerca de la vida de Tales de Mileto dado que las 
referencias escritas más antiguas que hablan de su vida o de su obra provie­
nen de autores que vivieron siglos más tarde. Tales nació y murió en Mileto, 
Asia Menor, actualmente Turquía, ciudad que en aquella época era una co­
lonia griega. Hasta donde se sabe, Tales fue político, filósofo, matemático 
y astrónomo, y uno de los siete sabios de la Grecia antigua. Se le atribuye 
la idea de que los fenómenos naturales no eran provocados por seres divi­
nos, sino que tenían explicaciones racionales que podían ser deducidas por 
la observación y el pensamiento. Asimismo, se le atribuye la idea de que 
la verdad de las afirmaciones matemáticas debía ser demostrada mediante 
razonamientos generales. Gracias a sus conocimientos astronómicos pudo 
predecir el eclipse total de sol que fue observado en Grecia en el año S85 
a.c. Tales también habría calculado la altura de la gran pirámide de Keops 
usando solamente una varilla vertical y sus conocimientos de geometría. 
El planteamiento para resolver esta cuestión era el siguiente: tenemos que 
a/h = A/H, donde a y h son conocidos, y A puede calcularse conociendo L 
y la longitud de la sombra de la pirámide (véase la figura). Con estos datos 
puede calcularse H, la altura de la pirámide. 

a (sombra de 
la varilla) 

RIEMANN Y LA FÍSICA 

L (lado de la base 
de la pirámide) 
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FIG. 2 

En diseños posteriores, el agua fue reemplazada por placas 
metálicas (figura 1) que revestían tanto el interior como el exte­
rior del recipiente. Una vez cargado el dispositivo se tomaba un 
alambre en forma de arco, uno de cuyos extremos se ponía en 
contacto con la lámina externa (figura 2). Cuando el otro extremo 
del arco se acercaba a la cabeza del clavo se producía entonces 
una descarga en forma de chispa. 

El punto que nos interesa aquí es que si, después de ser descar­
gada, se deja reposar la botella durante unos minutos, esta recu­
pera espontáneamente parte de su carga anterior y de este modo es 
posible obtener (sin recargar la botella) una segunda chispa. Muy 
frecuentemente este fenómeno de «recarga espontánea» puede re­
petirse hasta cuatro o cinco veces consecutivas. ¿Por qué la botella 
se recarga de esta manera? Este es el problema que Riemann se 
planteó como segunda investigación para su Habilitationsschrift. 
En ese sentido en 1854 le escribía a su hermana Ida: 

Weber y algunos de sus colaboradores han hecho mediciones muy 
exactas de un fenómeno que hasta ahora no había sido explicado: 
la carga residual en una botella de Leiden. Les comuniqué mi teoria 
sobre este fenómeno, que he elaborado especialmente para este fin. 
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El funcionamiento 
de una botella de 
Leyden es muy 
sencillo. Para 
cargar el 
dispositivo se 
frota el extremo 
exterior de la 
varilla con un 
pa~o. Para 
descargarlo, tal 
como se muestra 
en la figura 2, se 
emplea una pieza 
metálica que 
ponga en 
contacto el 
extremo de la 
varilla con el 
revestimiento 
exterior de la 
botella. 

119 



He encontrado la explicación mediante mis investigaciones acerca 
de la relación entre electricidad, luz y magnetismo [se refiere a la 
investigación sobre el campo unificado]. Esta cuestión era muy im­
portante para mí, pues es la primera vez que he podido aplicar mi 
trabajo a un fenómeno aún desconocido, y espero que la publicación 
contribuirá a que mi obra sea recibida favorablemente. 

Riemann tituló el trabajo en el que analiza este fenómeno 
«Sobre las leyes de distribución de las tensiones eléctricas en 
cuerpos ponderables, cuando estos no pueden ser considerados 
como absolutamente conductores o no conductores» y lo expuso 
ante la Real Sociedad de Ciencias de Gotinga en septiembre de 
1854. Más tarde lo envió a la revista Annalen der Physik und 
Chemie, pero en realidad nunca llegó a publicarse, porque Rie­
mann no aceptó algunas modificaciones que los editores le in­
dicaron; en consecuencia, las únicas referencias escritas sobre 
este trabajo son las que aparecen, resumidas, en las actas de la 
Sociedad. 

En este trabajo Riemann rechaza la teoría dualista de la 
carga, que era sostenida por Weber y que afirma que la electrici­
dad es el flujo de dos tipos de partículas, unas positivas y otras 
negativas. Por el contrario, Riemann adopta la hipótesis unita­
ria, propuesta por Benjamin Franklin (1706-1790), según la cual 
hay un único tipo de partícula eléctrica, cuya carga es negativa. 
Hoy sabernos, de hecho, que esta última es la hipótesis correcta. 
Para la explicación del fenómeno en sí, Riemann postuló la exis­
tencia de una tendencia de los cuerpos a persistir en su estado 
eléctrico, una suerte de «inercia eléctrica de la materia». 

Debe decirse finalmente que, a pesar de que el artículo de Rie­
mann contiene muchas ideas correctas ( como la ya mencionada 
defensa de la hipótesis unitaria de Franklin), la explicación que 
actualmente se acepta para la carga residual de una botella de 
Leiden es bastante diferente de la que Riemann propuso. Cuando 
la botella se carga, las moléculas de las lárrúnas de metal (molé­
culas que actúan a estos efectos como pequeños imanes) orientan 
sus polos en la misma dirección; pero al descargarse la botella, no 
todas las moléculas «pierden» esa alineación, sino que un número 
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significativo de ellas permanece orientado de la misma manera; 
son estas moléculas que «persisten en estar alineadas» las que 
producen la carga residual. 

MÁS ALLÁ DE LA HABILITACIÓN 

En el período posterior a la exposición de su H abilitationsschrift 
Riemann continuó con sus investigaciones físicas, y en 1855 pu­
blicó en el Annalen der Physik und Chemie el artículo titulado 
«Sobre la teoría de los anillos de color de Nobili». Leopoldo No­
bili fue un físico italiano que nació en 1784 en Trassilico, Tos­
cana, y falleció_ en 1835 en Florencia. Entre otros logros, inventó 
una serie de instrumentos que fueron de gran utilidad para la 
investigación de la termodinámica y la electroquímica, entre ellos 
un galvanómetro que lleva su nombre (un galvanómetro es un ins­
trumento que sirve para detectar y medir la corriente eléctrica). 
También se le atribuye el descubrimiento de los anillos que llevan 
su nombre y que son los que aparecen en el título del trabajo de 
Riemann. Para obtener los anillos, se conecta una placa de oro, 
o de plata, al polo negativo de una pila mediante un alambre de 
platino; a continuación, la placa es colocada perpendicularmente 
en una solución de sulfato de cobre (o de acetato de plomo), y 
finalmente el circuito se cierra. Se observa entonces que en la 
placa se forman varios anillos concéntricos de diversos colores, 
todos muy intensos, que varían según sea la composición de la 
solución o de la placa. 

En su trabajo, Riemann ofrece una explicación para el fenó­
meno fundada en un estudio teórico desarrollado por él sobre 
la propagación y la distribución de una corriente eléctrica en un 
conductor. Para ello se basó, a su vez, en los trabajos previos 
del físico francés Emil du Bois-Reymond (1818-1896), mejorando 
sus cálculos y discutiendo las hipótesis consideradas por este 
autor. En referencia a este estudio, el 9 de octubre de 1854 Rie­
mann le escribía a su hermana Ida: «Este tema es importante 
porque se pueden hacer mediciones muy exactas en relación con 
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él y comprobar las leyes de acuerdo a las cuales la electricidad 
se mueve». A la larga, sin embargo, el trabajo no produjo mayor 
impacto en las teorías sobre la propagación de las corrientes 
eléctricas. 

En 1856, poco tiempo después de la publicación de su artículo 
sobre los anillos de Nobili, el exceso de trabajo volvió a afectar 
su salud. Riemann sufrió un colapso nervioso y, por consejo mé­
dico, se trasladó durante algunos meses a la región montañosa de 
Hartz, situada a unos 30 km al noreste de Gotinga. Allí se dedicó a 
pasear con algunos amigos; sin embargo, muchos de estos, entre 
ellos Dedekind, eran colegas de la universidad, por lo que Rie­
mann continuó discutiendo con ellos sus teorías físicas. 

Pasado este período de descanso, Riemann se reincorporó a 
la universidad en 1857 y al año siguiente realizó un trabajo sobre 
electrodinámica. En referencia al mismo le escribió a su hermana 
Ida: 

Mi descubrimiento está relacionado con la íntima conexión que 
existe entre la electricidad y la luz. Lo he enviado a la Real Sociedad 
[de Gotinga]. Por lo que he oído, Gauss ideó otra teoría, respecto a 
esta íntima relación, diferente de la mía, pero solo la comunicó a sus 
amigos más íntimos. Sin embargo, estoy plenamente convencido 
de que mi teoría es la exacta, y que en pocos años será reconocida 
como tal. 

No obstante, a pesar del optimismo que muestra en su carta, 
la teoría de Riemann fue desechada. Más adelante, en 1859, ex­
puso, otra vez ante la Real Sociedad de Ciencias de Gotinga, el 
trabajo titulado «Sobre la propagación de ondas de aire planas 
con amplitudes de oscilación finitas», que fue publicado en 1860. 
Se trata de un artículo de 22 páginas, uno de los más extensos 
de los que escribió, en el que resolvía las ecuaciones que descri­
ben los movimientos de los gases bajo diferentes condiciones de 
presión y temperatura. 

El último trabajo que mencionaremos en esta sección, tam­
bién del período posterior a 1854, y dedicado asimismo a la ex­
plicación de un fenómeno físico, es « Una contribución a la in-
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vestigación del movimiento de un 
fluido uniforme en un elipsoide», 
publicado, como el anterior, en 
1860. 

Un elipsoide es un cuerpo que 
puede describirse como una esfera 
que ha sido achatada, o alargada, 
en algunas direcciones (figura 3) y 
que no es muy diferente a una pe­
lota de rugby ( otra forma de des­
cribirlo es como la «versión tridi­
mensional» de una elipse; de ahí, 
de hecho, su nombre). 

En su artículo Riemann analizó elipsoides hechos de un gas 
homogéneo (el «fluido uniforme» del título), el cual a su vez 
consideró como formado por partículas puntuales aisladas su­
jetas a la fuerza de gravedad. En particular, Riemann estudió la 
evolución de los ejes del elipsoide, es decir, la variación de sus 
longitudes a lo largo del tiempo, así como la rotación alrededor 
de ellos de los diferentes componentes del cuerpo. La idea de 
considerar a los gases como formados por partículas puntua~ 
les anticipa la que, muchos años más tarde, sería una de las 
hipótesis fundamentales de la mecánica estadística de Ludwig 
Boltzmann. 

Ahora bien, toda nube de gas o de polvo que gira sobre sí 
misma en el espacio, y que en reposo tendría forma esférica, 
adopta, por efecto de la mal llamada fuerza centrífuga ( que 
no es otra cosa que la inercia «en acción»), la forma de un elip­
soide, y es por eso que las estrellas son, de hecho, elipsoides en 
rotación. Pero también sucede que los planetas se han formado 
por la condensación de nubes de gas y polvo de forma elip­
soidal, y que, de hecho, los cúmulos estelares tienen la misma 
forma (a ese nivel puede considerarse que cada estrella actúa 
como una partícula aislada). No es sorprendente, pues, que este 
trabajo de Riemann tuviera importantes aplicaciones a la hora 
de analizar la forma de los cuerpos celestes y de los cúmulos 
estelares. 
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LUDWIG BOLTZMANN (1844-1906) 

Boltzmann nació en Viena y se doctoró 
en física en la universidad de esta ciudad 
en 1866. Boltzmann es recordado prin­
cipalmente por su invención, en la dé­
cada de 1870, de la mecánica estadística, 
cuya hipótesis central es que los gases, 
y otras sustancias, se componen de par­
tículas que se mueven aleatoriamente, 
y que el comportamiento azaroso de 
estas partículas es el que determina las 
propiedades de la materia. Estas ideas 
fueron rechazadas por la comunidad 
científica en general, ya que implicaban 
la reversibilidad de ciertos fenómenos 
que se consideraban como completa­
mente irreversibles. Por ejemplo, si de­
jamos un frasco de perfume sin tapa en 
una habitación cerrada y dejamos que el 
perfume se evapore, la mecánica estadística de Boltzmann dice que existe la 
posibilidad (aun cuando la probabilidad de que esto ocurra sea pequeña) de 
que las moléculas de perfume, en su movimiento aleatorio, regresen espon­
táneamente a la botella y esta vuelva a llenarse. Conclusiones de este tipo 
se consideraban absurdas, por lo que los ataques a su teoría continuaron 
durante muchos años. Finalmente, el 5 de octubre de 1906 Boltzmann, quien 
siempre había sido propenso a la depresión, se suicidó. Aparentemente nunca 
llegó a saber que pocos meses antes Albert Einstein había publicado un ar­
tículo sobre el movimiento browniano que demostraba matemáticamente la 
consistencia de sus hipótesis, las cuales, además, fueron verificadas experi­
mentalmente en la década siguiente gracias el desarrollo de la teoría atómica. 

LA CURVA BRAQUISTÓCRONA 

Además de los citados anteriormente, en el período posterior a su 
Habilitationsschrift Riemann escribió dos trabajos que destacan 
por la gran trascendencia que tuvieron a lo largo de las décadas 
posteriores. El primero, publicado en 1857, es un artículo sobre 
funciones abelianas; el segundo, de 1859, plantea un problema 
relativo a la que hoy se conoce como lafunción zeta de Riemann. 
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JOHANN BERNOULLI (1667-1748) 

Bernoulli nació en Basilea, Suiza, y en 
1683 ingresó en la universidad de esa 
ciudad con la intención de estudiar me­
dicina; sin embargo, por influencia de su 
hermano mayor Jacob (también mate­
mático de renombre) fue interesándose 
cada vez más por las matemáticas hasta 
que finalmente estas se transformaron 
en su profesión. De todos modos, su 
tesis doctoral y sus primeros trabajos 
lograron combinar ambos intereses, ya 
que trataron de aplicaciones matemáti­
cas en la medicina. A lo largo de su vida 
hizo notables avances en el desarrollo 
del cálculo diferencial, que en aquella 
época era un descubrimiento reciente; 
amplió sus métodos y los aplicó a la re-
soluc ión de problemas físicos y astronómicos de modo tan brillante que 
llegó a ser conocido internacionalmente como «El Arquímedes de la era», 
expresión que aparece en su epitafio. 

Hablaremos a continuación del primero de ellos y dejaremos el 
segundo para el próximo capítulo. 

El trabajo sobre funciones abelianas se titula, precisamente, 
«Teoría de las funciones abelianas» («Theorie der Abel'schen 
Functionen», en el original), y fue publicado en las páginas 101 a 
155 del volumen 54 (año 1857), del muy prestigioso Journalfür 
die reine und angewandte Mathernatik ( «Revista de matemáticas 
puras y aplicadas», más conocida como Journal de CreUe, por ser 
su fundador el matemático alemán August Leopold Crelle). 

Aunque las funciones abelianas reciben su nombre de Niels 
Henrik Abel, de quien hemos hablado en el capítulo anterior, su 
historia, sin embargo, empieza más de un siglo antes del naci­
miento de este matemático noruego. Su origen se remonta a fines 
del siglo :xvrr, época en la que Newton formuló la ley de la gravedad 
y las leyes fundamentales del movimiento, y en la que creó, al 
mismo tiempo que Leibniz, el cálculo diferencial, «herramienta» 
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matemática que rápidamente se transformó en esencial para des­
cribir las leyes físicas de Newton, así como sus consecuencias. 
A partir de estos descubrimientos muchos matemáticos se abo­
caron a la tarea de plantear y resolver diversos problemas físi­
cos relacionados con el movimiento, tanto de objetos terrestres 
como astronómicos. De este modo, se calcularon las órbitas de 
los cometas con una precisión nunca antes soñada, se resolvieron 
problemas de balística y muchísimos otros. 

Fue en ese contexto que en 1696 el matemático suizo Johann 
Bernoulli formuló el problema de la braquistócrona (palabra que 
proviene del griego brachistos, que significa «breve», y chronos, 
«tiempo»). Este problema plantea determinar qué forma debe 
tener una pendiente para que el tiempo que tarda en caer un ob­
jeto a lo largo de ella sea el mínimo posible ( sin tomar en cuenta el 
rozamiento que pueda existir). En otras palabras, ¿qué trayectoria 
debe seguir un cuerpo para llegar desde A hasta B (figura 4) en 
el menor tiempo posible si solamente actúa sobre él la fuerza de 
gravedad? 

En realidad, el problema ya había sido planteado siglos antes 
por varios matemáticos y físicos, entre ellos por ejemplo Galileo 
Galilei (1564-1642), quienes no habían podido encontrar una res­
puesta; sin embargo, Bernoulli consideraba que, tras los descu­
brimientos de Newton y Leibniz, 
la física y la matemática ya habían 
«madurado» lo suficiente como 
para que el problema pudiera ser, 
finalmente, resuelto. 

A primera vista podría creerse 
que el camino entre A y B debería 
ser rectilíneo, ya que, después de 
todo, es el camino más corto; y, 
esta sería la respuesta si, al caer, 
el objeto lo hiciera siempre a la 
misma velocidad. Sin embargo, 
la realidad es que en la caída la 
velocidad va aumentando y que 
lo hace más rápidamente cuanto 

A 
FIG. 4 

B 
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La cicloide y, 
debajo, la solución 
del problema de la 

braquistócrona. 

1 

FIG. S 

más pronunciada es la pendiente. Por lo tanto, la mejor estrategia 
es tener una curva que sea «más empinada» al comienzo, con el 
objeto de ganar rápidamente velocidad, y que solo gradualmente 
se vaya dirigiendo hacia el punto final. Esta es la idea general de 
la solución, pero el problema pedía en realidad la descripción ma­
temática exacta de la curva en cuestión (de hecho, Galileo creía, 
erróneamente, que la solución era un arco de circunferencia). 

Cuando Bemoulli, en 1696, lanzó esta cuestión a modo de de­
safío abierto a todos los matemáticos europeos no esperaba obte­
ner una respuesta rápida; sin embargo, para sorpresa de todos, el 
problema fue resuelto en muy poco tiempo por Isaac Newton. En 
realidad, el inglés Newton estaba resentido con los matemáticos 
del resto de Europa porque estos habían apoyado a Leibniz en la 
controversia que ambos sostuvieron por la prioridad del descu­
brimiento del cálculo diferencial (hoy en día, corno ya se dijo, se 
acepta que ambos hicieron el descubrimiento de manera indepen­
diente). A causa de ello Newton optó por presentar su solución 
de manera anónima, pero Bernoulli identificó sin dificultades al 
autor del brillante razonamiento; «se reconoce al león por sus 
garras» fue la famosa frase que Bemoulli dijo al respecto. 

La respuesta al problema es que la curva que hace que la caída 
tarde el menor tiempo posible es un arco de cicloide, que es la 
curva que dibuja un punto fijado en el borde de una rueda cuando 
esta gira sobre un camino plano sin deslizarse (figura 5). 

A 

L __ _ 
• 

- - ------ --------
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Es interesante observar que esta respuesta tiene en la actua­
lidad aplicaciones prácticas muy concretas; por citar solo una de 
ellas, digamos que los toboganes que sirven para evacuar los avio­
nes tienen forma de arco de cicloide, precisamente para ahorrar 
segundos vitales en una situación de emergencia. 

LAS FUNCIONES ABELIANAS 

¿Cómo se relaciona el problema de la braquistócrona con las 
funciones abelianas? Tal y como se dijo en el capítulo anterior, 
los matemáticos del siglo XIX, entre ellos Niels Abel, hicieron una 
profunda revisión de los métodos del cálculo diferencial, estable­
ciendo de manera rigurosa sus alcances y sus aplicaciones reales. 
Es así que Abel en 1826 reformuló el razonamiento que usó New­
ton para resolver el problema de la braquistócrona con el fin de 
ajustarlo mejor a los nuevos estándares de rigor de la época, y 
para ello planteó el problema a través de una ecuación integral. 

En el capítulo anterior hemos hablado del concepto de inte­
gral. Recordemos que sif (x) es una función de variable real cuyo 
gráfico está por arriba del eje horizontal, entonces la integral de 
f(x) calcula el área de la región limitada entre ese eje horizontal 
y el gráfico de la función. 

Imaginemos ahora quef(x) es una función que es descono­
cida, pero de la que sí sabemos de qué manera va cambiando el 
área bajo su gráfico a medida que au­
menta el valor de x (figura 6). 

--------- ., 

Al problema de hallar una función 
desconocidaf(x) conocido el modo en 
que varía su integral se lo conoce como 
el problema de resolver una ecuación in­
tegral. Ahora bien, como ya se dijo antes, 
Abel reformuló la solución del problema 
de la braquistócrona y lo hizo mediante 
el planteamiento de una ecuación inte-

FIG.6 1 

ª X b gral. Más tarde, a integrales similares a L _____________ __, 
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las que planteó Abel, y que resultaron tener otras importantes apli­
caciones, tanto en física como en matemáticas puras, se las llamó 
integrales abelianas y a sus soluciones,funciones abelianas. 

«Parece muy probable que de haber vivido veinte o treinta años 
más Riemann hubiera llegado a ser el Newton o el Einstein 
del siglo XIX.» 

- ERIC TEMPLE BELL, Los GRANDES AfATE.tfÁTICOS. 

Hay que decir que ei problema de la braquistócrona se en­
marca en realidad dentro de una familia mucho más amplia de 
problemas, en todos los cuales se busca la curva, o la superficie, 
que logre que cierta cantidad sea mínima; en el caso de la bra­
quistócrona, por ejemplo, se busca que sea mínima la cantidad de 
tiempo que tarda en caer el objeto entre el punto A y el punto B 
de la figura 4 (pág. 127). 

Otro famoso problema de este tipo, por ejemplo, pide hallar, 
de todas las superficies que encierran un volumen dado, aquella 
cuya área sea mínima. En términos más concretos, la pregunta 
podría formularse así: si quisiéramos diseñar una botella de un 
litro de capacidad, ¿qué forma debería tener para que la cantidad 
de material sea la mínima posible? La respuesta a esta pregunta 
es que para lograr ese objetivo la botella debe tener forma esfé­
rica: la superficie de menor área capaz de encerrar un volumen 
fijado de antemano es siempre la superficie de una esfera. Es im­
portante decir que esta solución explica por qué las pompas de 
jabón tienen forma de esfera. Esto se debe a que la pompa tiende 
a minimizar la tensión superficial, y esto se logra, precisamente, 
minimizando el área de la película de jabón. 

En su trabajo de 1857, Riemann retomó las ecuaciones de 
Abel y las utilizó para plantear nuevos problemas de minimiza­
ción, los cuales resolvió mediante una hábil combinación de razo­
namientos físicos y matemáticos. Riemann hizo uso en sus razo­
namientos de lo que él denominó el principio de Dirichlet, y que 
dice, básicamente, que todos los fenómenos físicos siempre evolu­
cionan en la dirección de «hacer el menor esfuerzo posible» (por 
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ejemplo, las pompas de jabón minimizan la tensión superficial, la 
luz viaja por el camino más corto, etc.). Hay que decir, para evitar 
confusiones, que solo Riemann usó el nombre de «principio de 
Dirichlet» para referirse a esta afirmación y que, de hecho, jamás 
se le ha vuelto a poner ese nombre. 

Aunque en su trabajo, Riemann no resolvió el problema de la 
superficie mínima que encierra un volumen dado, podemos usarlo 
de todos modos para ejemplificar su modo de pensar. De haber 
tratado el problema de la superficie mínima, Riemann habría plan­
teado las ecuaciones que describen el problema y habría obser­
vado que este es equivalente al problema de minimizar la tensión 
superficial en una pompa de jabón, y dado que estas siempre tie­
nen forma esférica, habría concluido que la solución del problema 
es, en efecto, una esfera. Es decir, habría empleado la observación 
física sobre la forma de la pompa para deducir la solución mate­
mática del problema. 

Es importante remarcar en que hemos dado una versión ex­
tremadamente simplificada de las ideas contenidas en el trabajo 
de Riemann, las cuales, además, sacaban partido de las ideas to­
pológicas que él mismo había desarrollado en su tesis doctoral. 
Por otra parte, los fenómenos físicos con los que Riemann trabajó 
en su artículo estaban, en la misma línea que muchos de sus otros 
trabajos, relacionados con la distribución de cargas eléctricas. De 
hecho, Riemann descubrió muchos de los teoremas de la teoría de 
funciones abelianas pensando en experimentos simples sobre el 
flujo de corrientes eléctricas en placas delgadas. 

Riemann logró desplegar en su trabajo toda la originalidad 
y la profundidad de su pensamiento, tanto es así que en su libro 
Desarrollos matemáticos en el siglo x1x, el matemático Felix Klein 
(1849-1925) escribió: 

Cuando Weierstrass envió a la Academia de Berlín en 1857 un pri­
mer estudio general de las funciones abelianas, el artículo de Rie­
mann sobre el mismo tema ya había sido publicado en el Journal de 

Crelle, volumen 54. Este contenía tantos conceptos nuevos e ines­
perados que Weierstrass retiró su artículo y, de hecho, no publicó 
ningún otro sobre el mismo tema. 
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CAPÍTULO 5 

La hipótesis de Riemann 

En 1900, en la conferencia inaugural del Segundo 
Congreso Internacional de Matemáticas, David Hilbert 
planteó los 23 problemas que a su juicio iban a guiar 

la investigación matemática a lo largo del siglo xx. Uno 
de ellos es conocido como la hipótesis de Riemann, ya 
que fue planteado por Bemhard Riemann en 1859. Este 

problema, que aún hoy no ha sido resuelto, es una 
de las claves fundamentales para demostrar 

muchas conjeturas relacionadas 
con los números primos. 





Gustav Lejeune Dirichlet falleció el 5 de mayo de 1859 y su cá­
tedra en Gotinga, la misma que hasta 1855 había sido ocupada 
por Gauss, volvió a quedar vacante. Recordemos que en 1855 las 
autoridades de la universidad habían considerado que Riemann 
no tenía la madurez suficiente como para hacerse cargo de ese 
puesto. Sin embargo, en 1859 la situación había cambiado radical­
mente, porque con la publicación, dos años antes, de su trabajo 
sobre funciones abelianas Riemann había saltado a la fama dentro 
del mundo de las matemáticas europeas. Las autoridades de Go­
tinga cambiaron, en consecuencia, la opinión que tenían acerca 
de Riemann y finalmente este, el 30 de julio de 1859, se convirtió 
en profesor titular de matemáticas de la Universidad de Gotinga. 

Pero este nuevo cargo en la universidad no fue el único logro 
académico de Riemann en aquel año, porque poco después fue 
elegido miembro de la Academia de Ciencias de Berlín. Entre 
quienes lo habían recomendado para recibir ese honor se encon­
traba Karl W eierstrass, quien en su propuesta escribió: 

Antes de la aparición de su más reciente obra [la «Teoría de fun­
ciones abelianas»], Riemann era casi desconocido para los mate­
máticos. De alguna manera, esta circunstancia excusa de la nece­
sidad de un examen más detallado de sus obras como base de esta 
presentación. Consideramos nuestro deber llamar la atención de la 
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Academia hacia nuestro colega, a quien recomendamos no como 
un joven talento con grandes esperanzas, sino como un investiga­
dor completamente maduro e independiente en nuestra área de la 
ciencia, cuyo progreso ha sido en gran medida promovido por él. 

Puede parecer extraño que Weierstrass dijera que Riemann 
era «casi un desconocido» y que no hiciera referencia a su trabajo 
sobre geometría diferencial ni a aquel en el que definió la integral 

KARL WEIERSTRASS (181S-1897) 

Weierstrass nació en Ostenfelde (Ale­
mania) y mientras cursaba sus estudios 
secundarios ya dio muestras de una 
capacidad extraordinaria para las ma­
temáticas; leía regularmente el Journal 
de Crelle (la prestigiosa revista de ma­
temáticas superiores) y daba clases 
complementarias a todos sus hermanos. 
Sin embargo, su padre deseaba que es­
tudiara economía y fue por eso que en 
1834 ingresó en la Universidad de Bonn 
para estudiar leyes, finanzas y economía. 
Sin embargo, su vocación por las mate­
máticas era más fuerte y Weierstrass 
abandonó la universidad y se dedicó a 
estudiar esta materia de modo autodi­
dacta, leyendo las obras de Laplace, Ja­
cobi y otros matemáticos de renombre. 
Finalmente, tras conseguir el permiso 
paterno, en 1839 ingresó en la Acade­
mia de Teología y Filosofía de Münster 
para convertirse en profesor de nivel se-
cundario de matemáticas. Weierstrass comenzó a trabajar como maestro en 
1842, a la vez que iniciaba su carrera como investigador enviando una serie 
de artículos al Journal de Cre//e. El éxito de sus trabajos fue tal que, a pesar 
de no poseer un doctorado, en 1856 se le ofreció un puesto de profesor en 
la Universidad de Berlín, cargo que Weierstrass aceptó inmediatamente. Sus 
trabajos, en los que hizo contribuciones esenciales a la fundamentación del 
cálculo, siempre se destacaron por sus altas exigencias de rigor lógico. 
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de Riemann, pero hay que recordar que, aunque ambos artículos 
fueron completados en 1854, solo serían publicados en 1868. 

Al año siguiente de este nombramiento, en 1860, Riernann 
viajó a París, donde conoció a diversos matemáticos franceses de 
renombre, entre ellos a Charles Herrnite (1822-1901), quien elogió 
sus trabajos. En aquella época, además, fue nombrado miembro 
de la Academia Francesa de Ciencias, así corno de la Real Socie­
dad de Londres. 

De este modo, Riernann finalmente comenzaba a obtener el 
reconocimiento que merecía. En el plano personal, por otra parte, 
el futuro también se mostraba prometedor. Por un lado, el au­
mento de salario que implicaba su nuevo cargo le permitió incre­
mentar la ayuda económica que enviaba a su familia. Por otro, en 
junio de 1862 contrajo rnatrin10nio con Elise Koch, una amiga de 
sus hermanas, y un año después nació su hija, a la que llamaron 
Ida en homenaje a la hermana mayor de Bernhard. La década de 
1860 comenzaba con los mejores augurios para Riernann, pero 
lamentablemente esa felicidad iba a durar muy poco tiempo. 

SUS ÚLTIMOS AÑOS 

Tanto Riernann corno todos sus hermanos tuvieron siempre una 
salud muy frágil; corno ya se apuntó, los historiadores suelen 
atribuir esta circunstancia a la mala alin1entación y a la falta de 
cuidados médicos que todos ellos padecieron durante la infancia. 
Pero fuese cual fuese el motivo, la verdad es que ninguno de los 
cinco hermanos de Riernann logró alcanzar una edad avanzada. 
De hecho, la única hermana que lo sobrevivió fue Ida. Su hermana 
Clara murió en 1855, su hermana María y su único hermano varón 
( que era empleado de correos en Brernen y, por tanto, constituía 
otro de los sostenes económicos de la familia) fallecieron an1bos 
en 1857, y su hermana Elena, en 1864; todos ellos alrededor de los 
cuarenta años de edad. 

En cuanto a Bernhard, un mes después de haberse casado, 
en julio de 1862, cayó enfermo de pleuritis (una inflamación de 
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los pulmones), que poco tiempo después se transformó en tuber­
culosis. Y como los meses pasaban y la situación no mejoraba, en 
diciembre, al acercarse el invierno, los médicos le aconsejaron 
que viajara a Italia, con la esperanza de que el clima más benigno 
de ese país lo ayudara a recuperarse. La situación económica de 
Riemann, aunque mucho mejor que la de años anteriores, no le 
permitía concederse lujos semejantes y el viaje solo fue posible 
gracias a la ayuda de algunos amigos que le prestaron el dinero 
necesario. 

«La hipótesis de Riemann no es un simple problema, es "el" 
problema, el más importante de los problemas de las 
matemáticas puras.» 
- ENRICO BmmIERI, MATEMÁTICO DEL INSTITUTO DE ESTIIDIOS AVANZADOS DE PRINCETON. 
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El clima más cálido logró que Riemann se sintiera mejor 
y, en consecuencia, en marzo de 1863 regresó a Gotinga con la 
intención de reintegrarse a sus deberes académicos; pero a los 
pocos meses sufrió una recaída y en agosto tuvo que volver a Ita­
lia, donde nació su hija Ida. Su situación económica volvía a ser 
complicada y, a modo de ayuda, la Universidad de Pisa le ofreció 
una cátedra, pero le fue imposible aceptarla debido a su lastimoso 
estado de salud. Afortunadamente, gracias a la intervención de 
sus amigos alemanes, la Universidad de Gotinga aceptó enviarle 
una importante suma de dinero, ayuda que le permitió alquilar una 
casa en el campo. 

Dos años más tarde, en octubre de 1865, Riemann regresó 
por última vez a Gotinga. Allí se reunió con algunos colegas y 
puso en orden sus papeles; poco después volvió a Italia. Por ese 
tiempo Dedekind escribió: «Sus fuerzas declinaban rápidamente 
y comprendía que el final estaba próximo». En esta nueva esta­
día italiana Riemann se instaló en la ciudad de Selasca, al norte 
del país. Allí murió, acompañado por su esposa, el 20 de julio de 
1866, a la edad de treinta y nueve años. Su epitafio, redactado por 
sus amigos italianos, destaca el aspecto religioso de la vida de 
Riemann por encima del aspecto científico (Riemann siempre fue 
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muy creyente). El texto del epitafio es: «Todas las cosas trabajan 
para el bien de los que aman al Señor». 

Hoy en día Riemann sigue vivo en sus escritos, en las ideas 
que concibió y en todo lo que estas produjeron, y también en los 
problemas que planteó, muy especialmente en uno de ellos, una 
cortjetura tan trascendente que para muchos de los matemáticos 
de los últimos 150 años ha sido, y es todavía, el más importante 
de todos los problemas matemáticos aún no resueltos. Se trata de 
la cuestión conocida como la hipótesis de Riemann, que resulta 
ser la clave para desentrañar el misterio de la distribución de los 
números primos. 

LOS NÚMEROS PRIMOS 

Como ya se apuntó, en 1859 Riemann fue elegido miembro de la 
Academia de Ciencias de Berlín. En aquella época era costumbre 
que cada nuevo miembro de la Academia expusiera ante sus co­
legas el resultado de alguna investigación propia y original, y, ob­
viamente, Riemann cumplió con este requisito. Su exposición, que 
quedó registrada en el informe mensual de la Academia correspon­
diente a noviembre de aquel año, lleva por título « Ueber die Anzahl 
der Primzahlen unter einer gegebenen Grosse» («Sobre el número 
de primos por debajo de un determinado valor») y en él planteó 
la famosa hipótesis de Riemann. Para entender de qué trata este 
problema, comencemos hablando de los números primos. 

Se llaman primos a todos los números naturales que solo son 
divisibles por 1 y por sí mismos. Por ejemplo, 3 es primo porque 
solo es divisible por 1 y por 3, mientras que 9 no lo es porque, 
además de por 1 y por 9, también es divisible por 3. Los prime­
ros números primos son 2, 3, 5, 7, 11, 13, 17, 19, 23, ... Debido a 
razones técnicas ni el 1 ni el O son considerados primos. Por otra 
parte, existen también primos negativos, que son los números -2, 
-3, -5, -7, -11, -13, - 17, -19, -23, ... , pero no nos ocuparemos de 
ellos debido a que, como puede verse, solo son el «reflejo» de los 
primos positivos. 
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Una primera pregunta que puede hacerse es si terminan al­
guna vez; en otras palabras, ¿existe un último número primo o, 
por el contrario, estos siguen indefinidamente? El primero en dar 
una respuesta rigurosa a esta pregunta fue, hasta donde se sabe, 
Euclides de Alejandría en el siglo III a.c. En el teorema 20 del Libro 
IX de su obra más famosa, los Elementos , Euclides demuestra que 
existe una cantidad infinita de números primos, es decir, que los 
primos nunca terminan. Por otra parte, una de las característi­
cas más importantes de los primos consiste en que son los «ladri­
llos básicos» de los números naturales, en el sentido de que todo 
número natural mayor que 1, o bien es primo, o bien se escribe 
de manera única como producto de primos; por ejemplo, 6 = 2 -3 
y esa es la única forma de escribirlo como producto de primos 
( dejando de lado el hecho obvio de que también puede escribirse 
corno 6=3-2). Otros ejemplos son 8=2-2-2; 15=3-5 y 21 =3-7. 

La propiedad de los números primos que más ha atraído el 
interés de los matemáticos durante siglos es su comportamiento 
aparentemente «caótico» y «aleatorio». ¿Qué significa esto exac­
tamente? Comencemos por decir que se llama [,aguna de primos a 
cualquier secuencia formada por números naturales consecutivos 

EXISTEN INFINITOS PRIMOS 

Dada cualquier cantidad finita de números primos, siempre existe un primo 
más (lo cual implica, por supuesto, que no existe un último número primo). 
Tomemos una cantidad finita de primos, digamos, P,, p

2
, .. . p n, y definamos 

a continuac ión el número N como el resultado de sumar 1 al producto de 
todos ellos: N=p, ·p

2
· •.. ·pn +l. Observemos que si dividimos a N por P, el 

resto es 1, y que lo mismo sucede si lo dividimos por cualquiera de los otros 
números p

2
, . .. Pn· Ahora bien, el número N, como todo número natural, tiene 

algún div isor primo (si N es primo, el divisor es el propio número N). Llame­
mos q a un divisor primo de N. ¿puede ser q = p ,? No, porque q es divisor 
de N mientras que P, no lo es (porque N dividido por P, da resto 1). Por la 
misma razón, q no puede ser ninguno de los números p

2
, .. . p n; es decir, q es 

un primo diferente de todos los que teníamos al principio. De este modo, 
queda probado que, dados los primos P,, p

2
, ... Pn existe un primo q que es 

distinto de todos ellos. 
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en los que no aparece ningún primo (figura l); es decir, secuencias 
que implican, precisamente, una «laguna» o una interrupción en la 
sucesión de los números primos. Una de estas lagunas, por ejem­
plo, está formada por los números 90, 91, 92, 93, 94, 95, 96 (ubicada 
justo entre los primos 89 y 97), y que es, de hecho, la p1imera laguna 
de longitud 7 que aparece en la secuencia de los números naturales. 

Ahora bien, puede probarse que, dado cualquier número N, no 
importa lo grande que sea, siempre existe una laguna cuya longitud 
es al menos igual que N. En otras palabras, hay pares de primos 
consecutivos tan alejados entre sí como se quiera. La distancia 
entre 89 y 97 es 8, pero hay primos consecutivos cuya distancia es 
mayor a un millón, o a mil millones, o a un trillón. 

Al mismo tiempo, sin embargo, se cree que existe una can­
tidad infinita de parejas de primos gemelos; es decir, infinitas 
parejas de primos cuya diferencia es exactamente igual a 2. Son 
pares de primos gemelos, por ejemplo, (3,5), (5, 7), (11, 13), (71, 73) 
y también (2 003 663 613. 2195000 - l; 2 003663613. 2195000 + 1), estos 
dos últimos son números de más de 58 000 cifras cada uno. Los 
primeros 15 pares de primos gemelos son los siguientes: (3,5), 
(5,7), (11,13), (17,19), (29,31), (41,43), (59,61), (71,73), (101,103), 
(107,109), (137,139), (149,151), (179,181), (191,193), (197,199). 

Estos dos hechos reunidos ejemplifican lo que hemos llamado 
el «comportamiento caótico» de los números primos. Por un lado, 
en la secuencia de los primos existen términos consecutivos tan 
alejados entre sí como se quiera (a millones y millones de núme­
ros de distancia, por ejemplo), a la vez que, según se cree, existen 
infinitas parejas de primos cuya distancia es solamente 2. Más 
aún, no existe, en principio, ningún modo de saber si un primo 

-· --------
FIG.l l 

Laguna de primos 

• 1 
Hay lagunas de primos tan largas como se quiera 

1 
--' 
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dado marca el inicio de una laguna larguísima de cientos de millo­
nes de números, o una muy breve de solo unos pocos. 

CONJETURAS 

Como ya se apuntó, este comportamiento «extraño» de los núme­
ros primos ha fascinado durante siglos a los matemáticos, quienes 
han formulado decenas de problemas relacionados con ellos, mu­
chos de los cuales permanecen todavía sin resolver. En general, 
estos problemas están enunciados en la forma de una conjetura, 
que es una afinnación matemática de la que se cree que és verdad, 
pero que nadie ha podido aún demostrar ni refutar. 

Por ejemplo, antes se ha mencionado la conjetura de los pri­
mos gemelos, que dice que existen infinitas parejas de primos 
cuya diferencia es 2. Es interesante señalar que, aunque el pro­
blema no ha sido resuelto, se han hecho algunos avances en esa 

LAGUNAS DE PRIMOS 

Dado cualquier N, es siempre posible encontrar N números consecutivos 
ninguno de los cuales es primo (es decir, existe una laguna de primos de 
longitud N). Para ello recordemos que si M es un número entero mayor 
que 1 se define como M! (se lee «factorial de M») al producto de todos los 
números naturales entre 1 y M, es decir, M! = 1 · 2 · 3 · ... · M. Dado N, considere­
mos la secuencia formada por los N números consecutivos que se obtienen 
sumando al factorial de N + 1 los números 2, 3, 4, ... N + l. Es decir, tomamos 
la secuencia: (N+1)!+2, (N+1)!+3, (N+l)!+4, ... (N+l)!+(N+l). La secuencia 
está formada, como ya se dijo, por N números y además ninguno de ellos 
es primo: (N+1)!+2 no es primo porque es divisible por 2, (N+1)!+3 no es 
primo porque es divisible por 3 y así sucesivamente. Aunque acabamos de 
mostrar el modo de hallar una laguna de longitud N, la que hemos hallado 
no es la única laguna posible. Por ejemplo, si buscáramos una laguna de 
longitud 7 el método nos diría que es la que va desde 8! + 2 = 40 322 hasta 
8! + 8 = 40 328; sin embargo, otra laguna de la misma longitud es la que va 
desde el número 90 hasta el 96. 
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dirección. En 1973 el matemático chino Chen Jingrun (1933-1996) 
demostró que existen infinitos números primos p tales que p + 2 
es, o bien primo, o bien el producto de dos números primos. Es 
decir, existen infuútas parejas en las que uno de los dos «gemelos» 
es un número primo mientras que el otro es, o bien un primo, o 
bien tan «parecido» a un primo como es posible. 

En otro sentido, en mayo de 2013 el también matemático 
chino Yitang Zhang (n. 1955) demostró que existen infinitos 
pares de primos que están separados por una distancia menor a 
70 000 000; en otras palabras, que existen infinitas lagunas cuya 
longitud es menor que esa cantidad. Poco tiempo después, este 
resultado fue mejorado cuando se demostró que existen infinitos 
pares de primos separados por una distancia menor a 10 206. 

Dado que el problema pide demostrar que existen infinitos 
pares de primos cuya distancia es igual a 2, tal vez parezca un 
logro muy inferior el haber probado que hay infinitos pares de 
primos cuya distancia es menor a 10 206. Pero la verdad es que 
se trata de un avance enorme, ya que antes de que Yitang Zhang 
demostrara su teorema no se sabía si había infinitos pares de pri­
mos a una distancia.finita, no importa cuál fuera esta. Bien po­
dría haber sucedido que a partir de algún momento las distancias 
entre primos consecutivos crecieran indefinidamente, pero ahora 
sabemos que hay infinitos pares de primos a una distancia fija 
y finita, y no es imposible imaginar que en algún momento esa 
distancia pueda ser reducida de 10206 a 2 (aunque no necesaria­
mente usando los mismos métodos que Yitang Zhang). 

Otro problema famoso relativo a los números primos es la 
conjetura de Goldbach, llamada así porque fue fom1ulada por pri­
mera vez por el matemático alemán Christian Goldbach (1690-
1764) en una carta enviada aLeonhard Euler el 7 de junio de 1742. 
Esta conjetura dice, simplemente, que todo número par mayor 
que 2 es la suma de dos números primos; por ejemplo: 4 = 2 + 2, 
6 =3+3, 8=3+5, 10=3+7, 12 = 5+7 ... 

Se ha comprobado que todo número par menor que 1018 (un 
1 seguido de 18 ceros) es la suma de dos números primos, pero 
todavía no se ha podido demostrar que esto sea cierto para todos 
los infuútos números pares que existen, así como tampoco se ha 
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encontrado un número par para el cual la afirmación falle. Sí se 
han podido demostrar algunas afirmaciones relacionadas con esta 
conjetura; así, por ejemplo, en 1937 el matemático ruso Iván Vino­
gradov (1891-1983) probó que «casi todos» los números impares 
mayores que 5 son suma de tres números primos. Este «casi todos» 
significa que si la afirmación falla para algunos números impares, 
entonces solo puede fallar para una cantidad finita de ellos. 

- - -

LA «OTRA» CONJETURA DE GOLDBACH 

Goldbach hizo diversas aporta­
ciones a la aritmética, la mayoría 
de las cuales aparecen expuestas 
por primera vez en la correspon ­
dencia que sostuvo con su amigo 
Leonhard Euler entre 1729 y 1764 
(entre ambos escribieron más de 
150 cartas). Fue en una de esas 
cartas, fechada en junio de 1742, 
donde Goldbach formuló la con­
jetura que lleva su nombre, pero 
no fue la única. En una carta pos­
terior, fechada el 18 de noviembre 
de 1752, Goldbach afirmaba que 
todo número impar mayor que 3 
puede escrib irse como la suma 
del doble de un cuadrado más un 
primo; por ejemplo: 

5=2·l2+3 
7=2·l2+5 
9 = 2·l2+7 
11 = 2 . 22 + 3 

17 = 2 . 0 2 + 17. 

Fragmento de la carta de Goldbach a Euler 
en la que formuló su famosa conjetura. 

Tanto Euler como Goldbach estaban convencidos de que esta conjetura 
era cierta; sin embargo, resulta que es falsa. En 1856 Moritz Abraham Stern 
(1807-1894), profesor de matemáticas de Gotinga, comprobó que la conje­
tura falla para los números 5 777 y 5 993, ya que ninguno de los dos puede 
escribirse como la suma del doble de un cuadrado más un primo. Hasta el 
día de hoy son los dos únicos números que se conocen para los cuales la 
conjetura no se cumple. 

- -" " -
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El último problema no resuelto que vamos a comentar se re­
laciona con los primos de Mersenne, así llamados en homenaje al 
matemático y monje francés Marin Mersenne, quien los estudió a 
principios del siglo xvn. Se llama «primo de Mersenne» a cualquier 
número primo que sea de la forma 2" - 1; es decir, cualquier primo 
que se obtenga restando 1 a una potencia de 2. Por ejemplo, son 
primos de Mersenne: 3 = 22 - 1; 7 = 23 - 1; 31 = 25 - l . .. 

En este caso la conjetura dice que la cantidad de primos de 
Mersenne es infinita; es decir, que nunca se terminan. Al mo­
mento de escribir estas líneas se conocen 48 números que son 
primos de Mersenne, el mayor de los cuales tiene más de 17 mi­
llones de cifras. Sin embargo, todavía no se sabe si hay, o no, una 
cantidad infinita de ellos. 

Muchos de los problemas que hemos mencionado, así como 
muchos otros relacionados con los números primos, podrían re­
solverse si se conociera con precisión cómo es la distribución 
de los números primos. ¿Qué significa esto? Dicho brevemente, 
dados dos números naturales n y m, el problema de la distribu­
ción de los números primos pide determinar cuántos primos hay 
en el intervalo que va entre n y m. Esta cantidad, obviamente, 
depende de cuáles sean exactamente los números n y m; dado el 
comportanúento «errático» de los números primos, esa cantidad 
va variando de una manera muy compleja. 

Nótese, por ejemplo, que tener un conocimiento preciso de 
cómo es la distribución de los números primos nos daría una in­
formación muy valiosa para resolver el problema de los primos 
gemelos, ya que este puede reformularse de esta manera: ¿existen 
infinitos números impares n tales que en el intervalo que va entre 
n y n + 2 (inclusive) hay exactamente dos primos? 

LA FUNCIÓN PI 

Sin es un número natural, suele llamarse n(n) a la cantidad de 
primos que hay entre 1 y n inclusive; por ejemplo, n(9) = 4, ya que 
entre 1 y 9 hay cuatro primos: 2, 3, 5 y 7, mientras que n(ll) = 5, 
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MARIN MERSENNE (1588-1648) 

Mersenne nació en Oizé (Francia) y 
estudió en la escuela jesuítica de La 
Fleche, que recibía niños indepen­
dientemen te del nivel económico 
de sus padres, que en su caso eran 
muy pobres. En esa escuela conoció 
a René Descartes, que también estu ­
diaba allí, y con quien mantuvo una 
larga amist ad. Mersenne completó 
su educación en el Collége Royale de 
París, donde se graduó en filosofía y 
teología; inmediatamente después, 
en 1611, ingresó en un monasterio de 
la Orden de los Mínimos, orden cuyos 
miembros se dedican al estudio y la 
enseñanza. En 1616 fue designado su­
perior de uno de los monasterios de 
París, donde permaneció, excepto 
por algunos viajes muy breves, hasta 
su muerte en 1648. En 1623 comenzó 
a relacionarse con una larga serie de 

Retrato de Mersenne por el pintor 
y grabador francés Balthasar 
Moncornet (1654). 

sabios de toda Europa, con quienes mantuvo una intensa correspondencia 
y tamb ién algunos encuentros en París. Entre ellos estaban René Descar­
tes, Gilles de Roberval, Pierre de Fermat, Christiaan Huygens, Galileo Gali­
lei, Thomas Hobbes, Étienne Pascal y su hijo Blaise Pascal. Mersenne actuó 
como nexo entre ellos para la discusión de cuestiones científicas y filosófi ­
cas, y especialmente matemáticas, ya que esta última ciencia jugó un papel 
muy importante en su vida desde el principio de su estadía en París. En este 
último terreno, publicó estudios, entre otros temas, sobre las propiedades 
de la cicloide y sobre los primos que llevan su nombre. También estaba muy 
interesado en la música y dedicó mucho tiempo a hacer investigaciones 
sobre la generación y la medición de la velocidad del sonido. En este sen­
tido, en 1627 publicó uno de sus trabajos más famosos, La armonía universal, 
siendo el primero en publicar las leyes que rigen el comportamiento de las 
cuerdas vibrantes. Mersenne envió este trabajo a Christiaan Huygens, quien 
lo tomó como base para su teoría de la música y su teoría ondulatoria de la 
luz. En octubre de 1644 viajó a Italia donde conoció a Evangelista Torricelli 
y supo de sus investigaciones con el barómetro. De regreso en París, Mer­
senne difundió el experimento por toda Francia y alentó a los investigadores 
franceses a reproducirlo. En su testamento legó su cuerpo para que fuera 
usado en experimentos biológicos. 
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1T(n) Cantidad de primos entren y m 

ya que a los cuatro anteriores se agrega el ll. Como se muestra 
en la figura 2, si para cada natural n se conoce el valor exacto de 
n(n) entonces puede saberse la cantidad de primos que hay entre 
nym. 

En principio, el valor de n(n) puede calcularse simplemente 
contando uno por uno cuántos primos hay entre 1 y n, tal y como 
hemos mostrado para n(9) y n(ll) . El problema es que ese mé­
todo resulta completamente inviable en la práctica. Digamos, por 
ejemplo, que nos preguntamos cuánto vale n(l0100

), donde 10100 es 
un 1 seguido de 100 ceros, y que vamos a responder la pregunta 
tomando uno por uno todos los números entre 1 y 10100

, determi­
nando en cada caso cuál es primo y cuál no lo es. Supongamos 
finalmente que fuéramos capaces de determinar en solo un se­
gundo si el número considerado es primo o no. Bajo todas estas 
suposiciones tardarían1os 10100 segundos en determinar el valor de 
n(l0100

), un tiempo que equivale a algo más de 3. 1092 años. Para 
intentar comprender qué tan impresionantemente enorme es ese 
lapso de tiempo, téngase en cuenta, a modo de comparación, que 
la vida total del universo no llega a 2 . 101º años. 

Es necesario, por lo tanto, un modo más «inteligente» de cal­
cular el valor de n(n). En ese sentido, varios matemáticos de los 
siglos XVIII y xrx, entre ellos Gauss, conjeturaron que una buena 
aproximación del valor de n(n) está dada por la fórmula n / ln(n), 
donde ln(n) es el «logaritmo natural» den. Este hecho, conocido 
como el teor€nna de los números primos, fue probado posterior­
mente, en 1896, de manera independiente por los matemáticos 

LA HIPÓTESIS DE RIEMANN 147 



franceses Jacques Hadamard (1865-1963) y Charles-Jean de la Va­
llée Poussin (1866-1962). Esta aproximación nos dice que Jt(l0100) 

vale aproximadamente 4,34 -1097• 

La tabla siguiente nos muestra algunos valores de Jt (n) con 
las aproximaciones que da la fórmula n/ln(n). Sin embargo, la 
aproximación que proporciona esta fórmula, aunque muy buena, 
no es la única ni necesariamente la mejor. 

n (n) 
n 

n ln(n) 

10 4 4,34 

100 25 21 ,71 

1000 168 144,76 

10000 1229 1085,74 

Existen, pues, muchas maneras de aproximar la cantidad de 
primos que hay entre 1 y n ; la fórmula nlln(n) es una de ellas, 
pero en su trabajo de 1859 Riemann ofreció una estimación mucho 
mejor, y para ello partió de una igualdad que había sido planteada 
un siglo antes por Euler: 

1 1 1 1 1 1 1 1 1 
l+-+-+-+-+-···=--·--·--·--···· 

2s 3s 4s 5" 5s 1 1 1 1 1- - 1- - 1- - l- -
2s 3s 5s 7s 

A la izquierda aparece una suma infinita similar a las que ana­
lizamos en capítulos previos, mientras que lo que se ve a la dere­
cha es un producto infinito cuyos factores contienen a todos los 
números primos (2, 3, 5, 7, ... ). Euler, de hecho, usó esta igualdad 
para dar una demostración de la existencia de infinitos primos, 
una demostración diferente de la que en su momento ofreció 
Euclides. En su razonamiento, Euler toma s = 1 en la igualdad an­
terior, de donde obtiene: 

11111 1 1 1 1 
l+-+-+-+-+-·· ·=--·--·--·-- ·· ·· 

2 3 4 5 6 1-.!. 1-.!. 1-.!. 1-.!. 
2 3 5 7 
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Si solo existiera una cantidad finita de números primos, el 
producto de la derecha daría necesariamente un resultado finito 
(porque sería el producto de una cantidad.finita de números). 
Pero el producto es igual a la suma 

1 1 1 1 1 
l+ - +- +-+-+-··· 

2 3 4 5 6 

cuyo resultado, según dijimos en el capítulo 3, es infinito. En con­
secuencia, el siguiente producto: 

1 1 1 1 
1 . 1 . 1 . 1 .... 

1-- 1- - 1- - 1- -
2 3 5 7 

da como resultado «infinito» y, por lo tanto, debe involucrar una 
cantidad infinita de factores; en conclusión, existen infinitos nú­
meros primos. 

Ahora bien, mientras que Euler solo consideraba a s como 
un número real mayor que 1, Riemann, en cambio, extendió la 
idea a todo el plano complejo; y de este modo definió la que hoy 
es conocida como la función zeta de Riemann ( ;<zeta» es aquí 
el nombre de la letra griega t). En efecto, si s es un número real 
mayor que 1 (el caso que consideraba Euler), entonces s(s), que 
se lee «zeta de s», se define como el resultado de la suma infinita 
que antes escribimos: 

1 1 1 1 1 
(;(s) = l+-+ - +-+ - +-··· 2s 3s 4s 5s 5s 

Por ejemplo, s (3) es el resultado de 

1 1 1 1 1 
l + 3+ 3+ 3 +3+ 3 ... 

2 3 4 5 6 

que vale aproximadamente 1,202056903 ... Para extender la fun­
ción a todo el plano, Riemann se basó en los teoremas sobre fun­
ciones de variable compleja que había demostrado en su tesis 'de 
1851. Estos teoremas le permitieron probar que la función s ( s) 
puede, en realidad, calcularse para cualquier número real o com­
plejo. Es decir, sis es un número real o complejo entonces s(s) 
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FIG. 3 
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dará siempre como resultado un número asimismo real o com­
plejo ( excepto cuando s = 1 en cuyo caso la función, como ya diji­
mos, «vale infinito»). 

Ahora bien, sucede que el comportamiento de una función 
de variable compleja queda muy determinado por el valor de sus 
raices, que es el nombre que se les da a los números donde la fun­
ción vale O. Por ejemplo, las raíces de la funciónf(z) = 1 + z2 son i 
y - i, ya quef(i) = 1 +i 2 = 1 + (- 1) =Ü y f(-i) = 1 + (- i)2= 1 + (- 1) =0. 

¿Qué sucede con las raíces de la función zeta? Se puede pro­
bar que esta función vale O en todos los números enteros negativos 
pares; en otras palabras, ocurre que e; (- 2) = O, e; (-4) = O, e; (- 6) = O, 
etc. Los números pares negativos son las raíces triviales de la 
función zeta, ya que son todos bien conocidos. Pero existe tam­
bién una cantidad infinita de raíces no triviales; es decir, otros in­
finitos números complejos en los que la función vale cero y cuyos 
valores no son completamente conocidos. 

Como dijimos antes, el comportamiento de la función zeta 
está determinado por sus raíces; por otra parte, la función zeta, 
como también vimos, se relaciona estrechamente con los números 

primos. Por lo tanto, conocer exactamente 
cuáles son todas las raíces de la función zeta 
nos daría mucha información acerca de la 
distribución de los números primos. Por 
ejemplo, según demostró Riemann, n (n) 
puede calcularse de manera exacta como 
R(n) - (R(n,.1)+R(n'"2)+R(n,.3)+ ... ), donde 
R es una función conocida y r L' r2, r

3
, son las 

raíces de la función zeta. 

1 

2 

t 
1 
1 

1 

J 

En su trabajo de 1859 Riemann demos­
tró que todas las raíces no triviales están 
ubicadas en la franja vertical del plano com­
plejo comprendida entre O y 1 (figura 3). 

Sin embargo, la mayoría de las aplica­
ciones de la función zeta a los problemas 
relacionados con los números primos re­
quieren una información más precisa; de 
hecho, requieren que todas esas raíces no 
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triviales estén en la recta vertical que hace de eje de simetría de 
la franja. En su trabajo de 1859 Riemann conjetura que esto es 
cierto y es esta cor\jetura la que constituye el famoso problema 
de la hipótesis de Riemann. 

Hipótesis de Riemann (problema aún no resuelto): todas las raíces 
no triviales de la función zeta están en la recta vertical que corres­
ponde al valor 1/2. 

En la actualidad no se sabe todavía si la hipótesis es verda­
dera o falsa. Mediante el uso de computadoras se han encontrado 
más de 150 millones de raíces no triviales de la función zeta, todas 
ellas ubicadas en la recta vertical «correcta»; sin embargo, no se 
ha podido demostrar que todas ellas estén allí, ni tampoco se ha 
encontrado ninguna raíz no trivial fuera de esa recta. 

¿Por qué la hipótesis de Riemann es un problema tan re­
levante? Como ya se apuntó anteriormente, ello se debe a que 
muchos de los problemas relacionados con la distribución de los 
números primos están asociados con ella. Por ejemplo, puede 
probarse que hay una relación directa entre el tamaño de las 
regiones del plano complejo «libres de raíces» y las lagunas de 
primos; más concretamente, conocer la distancia entre dos raí­
ces no triviales que sean consecutivas en la recta «crítica» da 
información directa sobre los tamaños posibles de las lagunas 
de primos. 

Otro ejemplo de la importancia de la hipótesis de Riemann 
es el hecho de que en 1997 se probó que si una versión de la hipó­
tesis de Riemann es cierta (versión conocida como la hipótesis 
de Riemann generalizada) entonces todo número impar mayor 
que 5 sería suma de tres primos (y no solo «casi todos», tal como 
demostró Vinogradov). 

Hay otros ejemplos, pero la mayoría de ellos son muy técni­
cos. Agregaremos solamente que se ha demostrado que si p y q 
son primos consecutivos, y la hipótesis de Riemann es cierta, en­
tonces la diferencia q-p ( que es la distancia entre p y q) es siem­
pre menor a Jp ln(p) ; resultado que, una vez más, da información 
sobre las longitudes posibles de las lagunas de primos. 
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Por todo lo dicho, la hipótesis de Riemann es el más impor­
tante de todos los problemas no resueltos relacionados con la 
aritmética, y es, de hecho, uno de los problemas no resueltos 
más importantes de todas las matemáticas. En este sentido, es 
importante mencionar dos hechos. En el año 1900 se desarrolló 
en París el Segundo Congreso Internacional de Matemáticas; la 
conferencia inaugural de ese congreso estuvo a cargo de David 
Hilbert, quien planteó en ella los 23 problemas que, a su juicio, 
iban a guiar la investigación matemática a lo largo del siglo :xx. El 
octavo problema de la lista de Hilbert era la hipótesis de Riemann. 

«Un periodista le preguntó a David Hilbert cuál seria su primera 
pregunta si pudiera resucitar 500 años después de su muerte, 
a lo que este respondió sin titubeos: "¿Ha demostrado alguien 

la hipótesis de Riemann?"». 
- JOSÉ MANUEL SANCH.EZ MUÑoz, HISTORJAS DE llfATE/lfÁTJCOS, RIE/lfANN y LOS NÚllfEROS PRIMOS. 

Un siglo más tarde, en el año 2000, el Instituto Clay de Mate­
máticas de Cambridge, Massachusetts, siguiendo el ejemplo de 
Hilbert, planteó los que llamó los siete problemas del milenio, los 
siete problemas no resueltos más importantes de las matemáti­
cas, y ofreció además un premio de un millón de dólares a quien 
resolviese uno de ellos. La hipótesis de Riemann es el cuarto de 
esos problemas. 

El problema lleva 150 años sin respuesta, pero en este mismo 
instante hay investigadores que están trabajando en su búsqueda. 
Porque, si hay algo que puede decirse de los matemáticos, es que 
son tenaces y que nunca se dan por vencidos. 

REFLEXIONES FINALES 

Durante su carrera científica, Riemann, entre otros logros, le dio 
un impulso hasta entonces desconocido a la topología (actual-
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mente una de las ramas más fecundas de las matemáticas), sentó 
una de las bases matemáticas de la teoría de la relatividad y de la 
cosmología moderna, formuló el concepto de integral que se usa 
actualmente en las actividades prácticas ( en física e ingeniería, 
por ejemplo), anticipó muchos de los conceptos centrales vincu­
lados a la luz, la electricidad y el magnetismo, y planteó uno de los 
«problemas del milenio», el cual, de ser resuelto, daría una clave 
fundamental para comprender cómo se distribuyen los números 
primos. Esta serie de éxitos serían notables en el caso de cual­
quier científico, pero lo son muchísimo más si tenemos en cuenta 
la brevedad de la carrera de Riemann. 

Es imposible especular sobre qué otros triunfos podría haber 
alcanzado Riemann de haber gozado de una vida más larga. No 
solo imposible, sino además completamente innecesario, porque 
en lugar de lamentarnos por lo que no llegó a hacer, debemos, 
con toda justicia, celebrar todo aquello que Riemann nos legó, las 
ideas que desarrolló y los conceptos que creó, en todas aquellas 
que fueron sus victorias intelectuales y en las que Riemann toda­
vía vive. 
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