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| es una de los figuras fundomentales en el panorama
cientifico de mediados del siglo xix. En su corta carrera llevé a cabo contribuciones
primordiales en diversos campos del entramado matemdtico, como lo geometria
diferencial o la hipdtesis que lleva su nombre, considerada la conjetura no resuelto
mds importante a la que se enfrenta hoy la matemdica. Sus aporfaciones se exfien-
den asimismo al terreno de la fisica, sefiolando el camino que seguiria Einstein hasta
vislumbrar su teoria de la relatividad general. La muerte prematura del pensador
alemdn truncé su «programa de investigacion», cuyo fin dlfimo era nado menos que
lo comprension del funcionamiento del universo.
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Introduccion

El gran matematico y fisico Bernhard Riemann naci6 en Alema-
nia, en 1826, aunque desde un punto de vista estrictamente his-
torico seria mucho més correcto decir que nacié en el reino de
Hanéver, un estado independiente que casi medio siglo més tarde
formaria parte del Imperio aleméan. La regién de Europa que hoy
conocemos como Alemania vivia entonces un periodo de convul-
sién politica. En 1806 el ejército napoleénico habia conquistado, y
disuelto, el Sacro Imperio Romano Germanico, una confederacién
milenaria de Estados casi independientes, cuyos origenes se re-
montaban al reinado de Carlomagno (ca. 742-814). Tras la caida de
Napoleén, en 1814, los estados que habian formado parte del anti-
guo imperio, politicamente separados pero unidos por una histo-
ria, una cultura y un idioma comunes, se plantearon la necesidad
de fusionarse en un pais unificado, si bien no existia un acuerdo
unanime acerca de la extensién y de la estructura gubernamental
que esta nueva nacién debia tener. El debate fue largo y turbu-
lento, y la unificacién solo se concretaria, casi por la fuerza, en
1871, después de dos guerras promovidas por el reino de Prusia.
El padre de Riemann habia combatido contra el ejército napo-
lednico, y en 1815, terminada la guerra, contrajo matrimonio y se
instald en la pequefia aldea de Breselenz, en el reino de Hanéver, el
cual habia sido golpeado con dureza durante la ocupacién francesa
y atravesaba en consecuencia una situacién econémica muy dificil.



Estas circunstancias afectaron gravemente a los Riemann, quienes
siempre padecieron serias privaciones. Fue asi como la infancia de
Bernhard y la de sus cinco hermanos, aunque llena de amor, como
el propio matemético siempre reconoceria, quedé marcada por la
falta de una alimentacién suficiente y de cuidados médicos adecua-
dos. Tanto es asi que todos los historiadores coinciden en afirmar
que fue esta probablemente la causa de que Bernhard falleciera a
la temprana edad de treinta y nueve aiios y de que ninguno de sus
hermanos llegara a vivir mucho mas alld de esa edad.

Debido a su prematura muerte, la carrera cientifica de Rie-
mann duré poco mis de diez afios: se inici6 en 1849, cuando co-
menzo a preparar su tesis doctoral bajo 1a supervision de Gauss,
en la Universidad de Gotinga, y finalizé a principios de la década
de 1860, cuando escribié sus ultimos articulos. Pero durante ese
breve periodo de tiempo Riemann logré hacer contribuciones
esenciales a nada menos que cuatro ramas de las matematicas: la
topologia, la geometria diferencial, el célculo (de variable real y
de variable compleja) y la aritmética. También realiz6 muchas
y muy relevantes aportaciones en el Ambito de la fisica, aporta-
ciones que fueron el germen de la teoria de la relatividad y de la
cosmologia moderna; tanto es asi que no seria exagerado afirmar
que la manera en que actualmente se entiende el espacio-tiempo
tuvo su origen en las ideas pioneras de Riemann.

Esta primera aproximacion a la carrera de Riemann podria
hacer pensar que sus principales trabajos cientificos estan total-
mente desconectados entre si, ya que algunos de ellos parecen
pertenecer a «secciones» diferentes de las matematicas, mientras
que otros se alejan de esta disciplina y se adentran en el &mbito de
una ciencia diferente, la fisica. Pero se trataria de una impresién
completamente errénea, puesto que ni la ciencia en general ni
las matemaéticas en particular estan divididas en compartimentos
estancos. Topologia, geometria diferencial, clculo y aritmética,
como veremos mas adelante, son materias estrechamente relacio-
nadas. De la misma forma, la matematica y la fisica, asi como la
biologia, la quimica y otras ciencias se interconectan, se superpo-
nen y se apoyan mutuamente. Para Riemann, la frontera entre las
matematicas y la fisica practicamente no existia.
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Por lo que concierne a sus trabajos cientificos, hay que decir
que estos, lejos de estar desconectados entre si, reflejan dife-
rentes aspectos de lo que podria denominarse el «programa de
investigacién de Riemann», cuyo objetivo dltimo era nada menos
que comprender el «funcionamiento del universo». Para acercar-
nos a esta conexion, recorreremos algunos de sus trabajos mas
importantes, sobre los que ahondaremos en el desarrollo de este
libro.

Asi como el pensamiento de Riemann est4 guiado por un ob-
jetivo global, de manera similar existe un concepto que atraviesa
todos sus articulos matematicos: se trata de la idea de funcidn.
Dicho de una manera sintética, para Riemann una funcién es esen-
cialmente una «deformacién» que se le aplica a una superficie o
a una curva. Asi, por ejemplo, si se tiene una superficie esférica
y se la deforma hasta transformarla en la superficie de un cubo,
puede decirse que a la superficie esférica se le ha aplicado una
funcién. De manera similar, si se toma una superficie con forma
de rosquilla perfectamente circular (superficie que en matemati-
cas se denomina «toro») y se la estira hasta que su circunferencia
exterior tenga la forma de una elipse, también se le habra aplicado
una funcién. Y puede deformarse asimismo una superficie esfé-
rica, aplastiandola, hasta transformarla en un circulo, o retorcer
un rectdngulo hasta que tenga la forma de una escalera de caracol;
en realidad, la cantidad y variedad de deformaciones posibles es
infinita.

En uno de sus trabajos més importantes, una verdadera obra
maestra, su tesis doctoral de 1851, Riemann analiza funciones, es
decir, deformaciones, que se aplican a todo el plano euclideo que,
por motivos que veremos en el capitulo 1, podemos llamar plano
complejo. Dicho de manera muy general, el «célculo de variable
compleja» citado anteriormente es el estudio de este tipo de fun-
ciones.

Ahora bien, una de las dificultades que presenta esta rama de
las matemaéticas es que resulta muy complicado visualizar la de-
formacién que se le aplica a una superficie infinita de una manera
tal vez intrincadisima. Pero en su tesis doctoral Riemann creé una
«herramienta» que tiene la enorme virtud de permitir «visualizar»
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muchas de las caracteristicas de las funciones de variable com-
pleja y que, en consecuencia, facilita el trabajo de compararlas y
clasificarlas. La idea del matemaético consistié en asociar a cada
funcién una superficie, hoy conocida como superficie de Riemann
de esa funcién. Su tesis también exponia la idea de que al estudiar
las superficies que corresponden a las diferentes funciones basta
con limitarse a analizar aquellas propiedades que se conservan
cuando la superficie es deformada como si fuese de goma, sin ha-
cerle cortes ni ensamblar partes separadas; técnicamente se las
llama deformaciones bicontinuas.

A mediados del siglo xix la topologia era una rama de las ma-
tematicas que estaba todavia en ciernes, una rama prometedora
pero carente de un corpus coherente de éxitos. Sin embargo, a
partir de la tesis de Riemann, la topologia se transforma, precisa-
mente, en el estudio de las propiedades que se conservan (que son
invariantes) por la aplicacién de las deformaciones bicontinuas.
Y Riemann fue el primero que aplico esta forma de pensar la to-
pologia —tal y como a partir de entonces se ha hecho una y otra
vez— al estudio de las propiedades esenciales de las funciones y
de sus superficies asociadas.

Hemos hablado del calculo de variable compleja y de la topo-
logia como ramas diferentes de las matematicas, que en realidad
lo son, pero Riemann derivé la topologia del célculo, a la vez que
us6 aquella para profundizar en el estudio de este:

Célculo de variable compleja <> Topologia.

En 1854 el matemaético aleman escribié otro de sus traba-
jos méas importantes —que no se publicaria hasta 1868—, una
nueva obra maestra en la que creé los conceptos fundamentales
de la geometria diferencial. El problema bésico que plantea este
trabajo podria formularse de la siguiente manera: ;cémo sabe-
mos que la Tierra es esférica y no plana? Si se piensa con dete-
nimiento, la mayoria de los experimentos que, histéricamente,
permitieron determinar la esfericidad de la Tierra o bien impli-
can observaciones que se «separan de su superficie» (como, por
ejemplo, cuando vemos desaparecer antes el casco que el mastil
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de un barco que se aleja de nosotros, o cuando se observa la
sombra de la Tierra sobre la Luna durante un eclipse), o bien
implican recorrer una larga distancia a lo largo de su superficie
(como sucede cuando se la circunnavega). La verdadera pregunta
es: ;seria posible comprobar la esfericidad de la Tierra mediante
observaciones «locales», que no impliquen que el observador se
aleje mucho de su posicién y que a la vez no supongan «des-
pegarse» de la superficie del planeta? Dicho de otro modo, si
fuéramos seres bidimensionales que viviéramos confinados en
la superficie de la Tierra y ni siquiera comprendiéramos la idea
de una tercera dimension, jseriamos capaces de deducir que la
Tierra es esférica?

Riemann le da sentido a esta pregunta redefiniendo, en pri-
mer lugar, la idea de dimension. ;Por qué decimos que la parte
exterior de una esfera, o la de una rosquilla, o la de un cilindro,
por ejemplo, tienen todas dos dimensiones? Debe considerarse
en primer lugar que el plano tiene dos dimensiones porque cada
posicién en él queda determinada por dos coordenadas (como la
latitud y la longitud en un mapa). Para Riemann, un «objeto ma-
tematico» (variedad diferencial es el término correcto) tiene dos
dimensiones si es posible recubrirlo con pequeiios recortes del
plano, que deben ser previamente deformados para ajustarse al
objeto en cuestién. Estos recortes son denominados técnicamente
cartas porque, como las cartas de navegacién, permiten ubicar la
posicién de cualquier punto de la superficie.

En su trabajo de 1854 Riemann respondia afirmativamente
a la pregunta antes planteada: si es posible determinar la curva-
tura de una superficie actuando localmente desde «dentro» de la
misma, sin necesidad de hacer observaciones desde fuera ni de
realizar largos viajes. Los detalles sobre esta cuestién se verdan en
el segundo capitulo. Debe observarse que las deformaciones que
se aplican a las cartas son del mismo tipo que aquellas que inter-
vienen en la definicién de la topologia. Vimos antes que hay una
vinculacién entre el célculo de variable compleja y la topologia, y
vemos ahora que existe asimismo una vinculacién entre este y la
variedad diferencial, que es el objeto de estudio fundamental de la
geometria diferencial:
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Célculo de variable compleja <> Topologia <>
<> Geometria diferencial.

Pero el aspecto mas extraordinario de este trabajo de 1854
es que, en €], Riemann concibié nuestro propio universo como
una variedad diferencial de tres dimensiones: asi como una es-
fera puede cubrirse con, por ejemplo, cartas circulares deforma-
das, nuestro universo puede llenarse con esferas macizas tridi-
mensionales —que jugarian en este caso el papel de las cartas—.
Cobra sentido, entonces, la pregunta de si vivimos en un universo
«plano» o curvado (la palabra «plano» solo se usa aqui como
opuesta a «curvado»). Es interesante destacar que este problema
no era para Riemann una cuestién meramente teérica, ya que la
textura, la curvatura y la forma del universo tienen consecuencias
directas sobre las leyes de la fisica. La luz, afirmé Riemann, no se
propaga necesariamente en linea recta, sino que viaja por las geo-
désicas del espacio, que son los caminos mas cortos que conec-
tan dos puntos. Estas geodésicas (concepto creado por Riemann)
son efectivamente rectas si el universo es plano, pero tomarian
otras formas en un universo curvo. Esta concepcién, de hecho,
cuestiona una de las ideas centrales de la fisica de Newton, ya
que Riemann entendia que el espacio no era meramente el esce-
nario pasivo en el que sucedian los fenémenos fisicos, sino que la
geometria del universo era parte esencial de la explicacién de los
fenémenos fisicos. Estas ideas de Riemann constituyen una de las
bases fundamentales de la teoria de la relatividad general y de la
cosmologia moderna.

De este modo pasamos del andlisis de variable compleja a
las superficies de Riemann y a la topologia, de esta a la geometria
diferencial y al problema de la curvatura del universo, y de este, a
su vez, al problema de las leyes fundamentales de la fisica:

Célculo de variable compleja <> Topologia <>
<> Geometria diferencial <« Fisica.

Antes se ha mencionado también la aritmética, esto es, el es-
tudio de los niimeros naturales (0, 1, 2, 3,...), su suma, su producto
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y todos los conceptos y propiedades asociados a ellos. La aritmé-
tica estudia, por ejemplo, propiedades relativas a la divisibilidad,
los niimeros cuadrados, y se dedica muy especialmente al estudio
de los niimeros primos. Parece una rama de las matematicas muy
alejada de los temas tratados anteriormente, pero en el siglo xvin
el gran matemaético suizo Leonhard Euler observé la siguiente
igualdad:

PRTELENTT UV A . SN W
23 35 45 53 68 l_l 1__]:_ l_l l_i

2# 33 58 75

donde s > 1 y el producto de la derecha va recorriendo todos los
numeros primos.

Riemann retomé la idea de Euler y la llevé mas alla al obser-
var que la expresion de la izquierda puede verse en realidad como
una funcién de variable compleja cuyo comportamiento da mucha
informacién acerca del modo en que se distribuyen los niimeros
primos. De hecho, en la iltima de sus obras maestras, un trabajo
de 1859, Riemann plante6 una conjetura acerca de esta funcién,
que es conocida como hipdtesis de Riemann y que es considerada
por los especialistas en aritmética como el problema no resuelto
mas importante de esa rama de las matematicas (sobre él habla-
remos en el capitulo 5). De este modo, ya tenemos las siguientes
vinculaciones:

(?Teomet{m <> Fisica.
diferencial

Aritmética <= Hipdétesis de Riemann.

Topologia <>
Célculo de variable compleja

Cabe mencionar otro punto en comun que tienen todos los
trabajos de Riemann y que consiste en el hecho de que este no se
limita a resolver problemas fisicos 0 matemaéticos basdndose en
conceptos ya existentes, sino que constantemente crea «herra-
mientas» nuevas, conceptos inéditos que le sirven para ampliar
los alcances de los métodos de las matematicas. Como dijo Carl
Friedrich Gauss, el principe de las matemaéticas y uno de sus men-
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tores: «Riemann ofrece pruebas convincentes de que [...] posee
una mente creadora activa, verdaderamente matematica, y de que
es duefio de una gloriosa y fecunda originalidad».

Es imposible ofrecer, en el limitado espacio de este libro,
una idea cabal del pensamiento de un hombre tan profundo como
Riemann, pero resulta significativo que para todos aquellos que
han tomado sus ideas, que han intentado comprender cémo «fun-
ciona» el universo, la bisqueda y el trabajo de Riemann todavia
perduren.
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1826 Nace en Breselenz, Alemania, el 17 de
septiembre, Georg Friedrich Bernhard
Riemann, hijo de un pastor luterano.
Desde su infancia muestra una gran
habilidad para las matematicas. Siendo
él todavia un nifio, la familia se traslada
a Quickborn, localidad préxima a
Hamburgo.

1840 Ingresa en el Liceo de Handver y dos
afos después completa sus estudios
secundarios en Luneburgo, donde tiene
su primer contacto con las matematicas
superiores.

1846 Ingresa en la Universidad de Gotinga
con la intencién de estudiar filosofia y
teologia, pero su vocacién matemdtica
se impone tras asistir a las clases de
Gauss.

1847 Riemann pasa dos afios en la
Universidad de Berlin, donde coincide
con Dirichlet.

1849 Regresa a Gotinga, donde comienza
a preparar su tesis doctoral bajo la
direccién de Gauss.

1851 Completa su tesis doctoral, una
de sus obras maestras. En ella define
las superficies que hoy llevan su
nombre y da forma moderna a la

topologia.

1854 Expone su tesis de habilitacion,
en la que establece los conceptos
fundamentales de la geometria

diferencial (una de las bases
matematicas de la teoria de la
relatividad). Completa asimismo la
investigacion en la que define la que
hoy se conoce como «integral de
Riemann». Estos dos trabajos se
publicaran en 1868.

1857 Publica «Teoria de las funciones
abelianas», otra de sus obras maestras,
que es elogiada por matematicos de
toda Europa.

1859 Riemann asume la catedra de
Matematicas de Gotinga, plaza que
antes habfa estado a cargo de Gauss
y Dirichlet, sucesivamente. Es elegido
miembro de la Academia de Ciencias
de Berlin y de la Royal Society de
Londres.

1862 En junio se casa con Elise Koch.
Un mes después cae enfermo de
pleuritis, enfermedad pulmonar
que al poco tiempo deriva en
tuberculosis. En diciembre viaja
a [talia en busca de un clima méas
favorable.

1863 Vuelve a Gotinga, pero su salud decae
nuevamente y regresa a Italia. Alli nace
su hija Ida.

1865 En octubre regresa a Gotinga por
idltima vez.

1866 Muere el 20 de julio en Italia, en la
ciudad de Selasca.
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CAPITULO 1

Riemann y la topologia

Bernhard Riemann tuvo una infancia pobre,
pero feliz. Sus padres y maestros hicieron todo lo
posible por cultivar su innato talento para las matematicas,
del que dio muestras a muy temprana edad. En la
universidad, fue discipulo de Gauss, quien dirigié
su tesis doctoral. En ella Riemann desarroll6 un
concepto que hoy en dia es fundamental en el
calculo de variable compleja, las llamadas
«superficies de Riemann».






Georg Friedrich Bernhard Riemann nacié el 17 de septiembre de
1826 en Breselenz, un pequeiio pueblo que entonces pertenecia
al reino de Hanéver, en Alemania. Su padre, Friedrich Bernhard
Riemann, era un pastor luterano que habia combatido contra las
tropas de Napoleén Bonaparte entre 1806 y 1815, cuando el ejér-
cito francés invadié Alemania. Terminada la guerra, se casé con
Charlotte Ebell, hija de un modesto abogado, y juntos se insta-
laron en Breselenz, aunque poco tiempo después se mudaron a
Quickborn. Los Riemann tuvieron seis hijos, dos nifios y cuatro
nifias; Bernhard fue el segundo y el mayor de los varones.

Riemann recordaria su infancia como una etapa muy feliz de
su vida, y siempre estuvo muy ligado a sus padres y hermanos,
a quienes visitaba cada vez que podia. Sin embargo, la vida de
Bernhard en Breselenz y Quickborn no fue facil: los ingresos de
la familia eran escasos y, en consecuencia, los Riemann pasaron
muchas privaciones. Bernhard tuvo una salud muy fragil, y sus
biégrafos coinciden en sefialar como causa directa de ello la mala
alimentacion que padecié durante aquellos primeros afos.

En un principio, Riemann y sus hermanos no fueron a la
escuela, sino que recibieron su primera educacién en casa, con
su padre como maestro, quien les enseii6 a leer y a escribir, asi
como también aritmética e historia. Pero pronto Bernhard co-
menzo6 a dar muestras claras de su gran habilidad para las ma-
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tematicas: no solo resolvia perfectamente todos los problemas
aritméticos que le planteaba su padre, sino que ademas él mismo
inventaba problemas cada vez mas variados y dificiles. Por ese
motivo, cuando Bernhard tenia diez afios, Riemann padre, segu-
ramente con un gran esfuerzo econémico para la familia, con-
traté a un profesor particular para que ensefiara a su hijo geo-
metria y aritmética.

« Su incapacidad [la de Riemann] para darse cuenta de
la magnitud de su propio talento era tan caracteristica
de €l como su casi patolégica modestia.»

— Eric TEMPLE BELL, L0OS GRANDES MATEMATICOS.

20

En 1840, a los catorce afios, Bernhard se fue a vivir con
su abuela a la ciudad de Hanéver para estudiar en el Liceo, al
que ingresé directamente en el tercer curso. Pero en 1842 su
abuela fallecid, por lo que Riemann tuvo que completar sus es-
tudios secundarios en el Johanneum Gymnasium de Luneburgo,
ciudad cercana a Quickborn, donde se alojaba en casa de uno
de los profesores. La cercanfa entre Luneburgo y Quickborn le
permitia viajar a su casa frecuentemente; ello mejoré su d4nimo,
que habia decaido en Hanéver, donde extraiiaba a sus padres y
hermanos. Cabe afiadir que, ademéas de muy apegado a su fami-
lia, Riemann era timido y retraido; le era muy dificil hacer nue-
vos amigos y nunca se encontré totalmente comodo hablando
en publico, ni siquiera afos después, cuando ya era profesor y
algunas de sus conferencias cambiaron el rumbo de las mate-
méticas.

EL DESCUBRIMIENTO DE LAS MATEMATICAS
Fue en Luneburgo, gracias al director del Johanneum Gymna-

sium, el profesor Schmalfuss, donde Bernhard tuvo su primer
contacto con las matematicas superiores. Schmalfuss se percaté
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CARL FRIEDRICH GAUSS (1777-1855)

Gauss, nacido en Brunswick (Alemania),
esta considerado unanimemente como
uno de los tres mas grandes matema-
ticos de todos los tiempos, junto con
Arquimedes e Isaac Newton, un recono-
cimiento que llegé a recibir en vida. De
su precocidad da cuenta una anécdota
que protagonizé con tan solo nueve
anos de edad: el maestro de su escuela,
de nombre Buttner, para mantener a sus
alumnos ocupados, les mandd calcular
la suma de todos los nimeros del 1 al
100. Gauss hall6 el resultado correcto en
pocos segundos gracias a un ingenioso
razonamiento: imagind que escribia la
suma buscada dos veces, primero en orden creciente y luego decreciente, y
que sumaba los numeros alineados verticalmente:

1T # 2 + 3 +..4% 99 -+ 100
100 + 99 + 98 +.+ 2 + 1

101 + 101 + 101 +..+ 101 + 101

En la ultima linea aparece el 101 sumado 100 veces, es decir, el resultado de la
suma «duplicada» es 10100. Por lo tanto, el resultado de sumar cada niumero
solo una vez es 5050.

Los poligonos regulares

Con tan solo diecisiete afios Gauss realizo uno de sus descubrimientos mas
populares, relacionado con los poligonos regulares. Un problema que preo-
cupaba a los gedmetras desde la Antigledad era qué poligonos regulares
pueden construirse con una regla no graduada y un compas. Usando solo esos
dos instrumentos, desde el siglo m a.C. se conocian métodos para construir
poligonos regulares de 3, 4, 5, 6, 8, 10, 12, 15, 16 y 20 lados, pero no para los
valores intermedios, 7, 9, 11,13, 14, 17 y 19. Gauss demostroé que, de todos estos
ultimos poligonos, solo es posible construir con regla y compas el de 17 lados,
y ademas explicé como hacerlo, en lo que fue el primer avance en los proble-
mas con regla y compas en mas de dos mil afios. Estaba tan orgulloso de ese
descubrimiento gue, muchos afios mas tarde, pidié que en su lapida se grabara
un poligono regular de 17 lados inscrito en una circunferencia. Gauss también
hizo contribuciones decisivas al célculo, la aritmética, la geometria clasica, la
geometria diferencial, la estadistica, la fisica matematica y la astronomia.
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rapidamente del gran talento de Riemann y le dio libre acceso
a su biblioteca personal. El primer libro que Riemann eligi6 de
esa biblioteca fue el Ensayo sobre la teoria de los nimeros, de
Adrien-Marie Legendre (1752-1833), un texto de mas de ochocien-
tas paginas que Bernhard leyd en tan solo seis dias. Otras de las
lecturas que realizé en aquella época fueron los textos clasicos de
Arquimedes y Apolonio de Pérgamo.

En 1846, a los diecinueve anos, Riemann completé brillan-
temente sus estudios secundarios e ingresé en la Universidad de
Gotinga con la intencién, por sugerencia de su padre, de estudiar
filosofia y teologia con el fin de convertirse en pastor luterano.
Pero en aquellos tiempos ensefiaba en aquella universidad ale-
mana Carl Friedrich Gauss, llamado el principe de las malemd-
ticas. Riemann asisti6 a las clases de Gauss y ya no pudo evitar
que su vocacion se impusiera. Poco tiempo después de llegar a
Gotinga Bernhard le escribié a su padre pidiéndole permiso para
dejar la filosofia y la teologia, y dedicarse a las matemaéticas; Rie-
mann padre no dudé en darselo.

Riemann destacé en Gotinga, pero no permaneci6 alli mucho
tiempo, ya que en 1847 acudié a la Universidad de Berlin para
completar su formacion en algunas ireas para las que Gotinga no
tenia docentes del nivel necesario. En Berlin estudié, entre otros,
con Gustav Lejeune Dirichlet, también un matematico destacado
y una de las figuras fundamentales del cdlculo diferencial. Tanto
Gauss como Dirichlet tuvieron gran influencia en el desarrollo del
pensamiento matematico de Riemann.

En 1849 Bernhard volvié a Gotinga y comenz6 a trabajar en su
tesis doctoral, bajo la direccién de Gauss. El hecho de que Gauss,
reconocido en vida como el matematico mas grande de su tiempo,
aceptara dirigir la tesis doctoral de Riemann ya representa por
si solo un tributo a la capacidad de este como matemaético. El
trabajo, titulado «Grundlagen fiir eine allgemeine Theorie der
Functionen einer verdnderlichen complexen Grisse» («Funda-
mentos para una teoria general de las funciones de una variable
compleja»), fue expuesto ante el tribunal examinador en diciem-
bre de 1851 y aprobado por unanimidad. La evaluacién previa que
Gauss habia presentado al tribunal decia:

RIEMANN Y LA TOPOLOGIA



La disertacién presentada por Herr Riemann ofrece pruebas convin-
centes de que ha realizado detenidas y penetrantes investigaciones
en aquellas partes del tema tratadas en la disertacién, de que posee
una mente creadora activa, verdaderamente matematica, y de que es
duefio de una gloriosa y fecunda originalidad.

En esta tesis Riemann sent6 las bases de la topologia mo-
derna; en las siguientes secciones de este capitulo veremos cémo
lo hizo.

PETER GUSTAV LEJEUNE DIRICHLET (1805-1859)

Dirichlet nacié en Duren (localidad ale-
mana que entonces pertenecia a Fran-
cia) y desde muy pequefio mostro gran
interés por las matematicas, una incli-
nacion alentada tanto por sus padres
como por sus profesores. Cursé sus
primeros estudios primero en Bonn, y
luego en Colonia, donde tuvo entre sus
profesores a Georg Simon Ohm (el des-
cubridor de la famosa ley de Ohm de
la resistencia eléctrica). A los dieciséis
afios ya estaba preparado para ingre-
sar en la universidad, pero en aquella
época los estandares de las institucio-
nes alemanas no eran muy altos, por lo
que prefirié estudiar en Paris. Alli cono-
cid, entre otros, a Laplace, Legendre y
Fourier. Debe sefialarse que no muchos
anos después Alemania emprendid una serie de reformas educativas que
hicieron de sus universidades las mejores de su tiempo, y que el propio Diri-
chlet jugé un papel muy importante en ese proceso. El matematico regreso
a Alemania en 1825 y tres afios mas tarde se incorporé como profesor a la
Universidad de Berlin, donde permanecié hasta 1855, afio en que aceptd
hacerse cargo de la catedra de Gauss en la Universidad de Gotinga. Como
matematico hizo contribuciones importantes al calculo y la aritmética. Entre
muchos otros, se le debe el teorema que dice que si @ y b son niumeros
enteros cuyo maximo comun divisor es igual a 1, entonces la sucesion a+b,
2a+b, 3a+b, contiene infinitos niumeros primos.

WSt Y e iy S e T S T S Sl T i s M S S T T T
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LAS COLECCIONES DE NUMEROS Y LOS NUMEROS
COMPLEJOS

El titulo de la tesis doctoral de Riemann incluye el concepto de
«variable compleja», por lo que comenzaremos su analisis ana-
lizando en primer lugar qué son los nimeros complejos. Para
llegar a ellos, sin embargo, debemos explicar previamente las
diferentes colecciones en las que se agrupan los nimeros, cada
una de las cuales contiene a la anterior, La primera de estas co-
lecciones estd formada por los niimeros naturales, que son los
nimeros que se obtienen a partir del 0 sumando 1 cada vez; es
decir, los nimeros naturales son los nimeros 0, 1, 2, 3, 4, Si
agregamos los negativos, obtenemos la coleccién de los nime-
ros enteros, que son, en consecuencia, los nimeros ..., -3, -2,
-1,0, 1, 2, 3,... (los puntos suspensivos indican que la coleccién
se extiende infinitamente tanto hacia la derecha como hacia la
izquierda).

La coleccién que sigue es la de los nimeros racionales, que
son aquellos cuya escritura decimal es finita, como es el caso de
0,24 o de 3,5, o bien es infinita pero periédica, como sucede con
1,3333 o con 0,1234343434 («periddica» significa que hay un blo-
que de cifras que se repite una y otra vez; en el segundo ejemplo
ese bloque es 34). Otra manera de definir los nimeros raciona-
les es diciendo que son aquellos que pueden expresarse como
una fraccién formada por dos enteros: 0,24=6/25; -3,6=-7/2;
1,333...=4/3; 0,1234343434... =611/4950... Los enteros son casos
particulares de niimeros racionales, ya que también pueden escri-
birse como fraccién; asi, por ejemplo, 5=5/1.

La coleccién que sigue a la de los racionales, y que asimismo
la contiene, es la de los nimeros reales; esta coleccion se obtiene
agregando los niimeros irracionales, que son aquellos cuya escri-
tura decimal es infinita y no periédica. Entre los nlimeros irracio-
nales estdn, por ejemplo, n=3,14159265...; V2= 1,414213562... o
-3 =-1,7320508...

Una caracteristica de los niimeros reales es que pueden re-
presentarse en una recta, denominada «recta numérica» o «real».
A cada punto de la recta le corresponde un nimero y, recipro-
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camente, a cada nimero le corresponde un punto, tal como se
muestra en la figura 1.

FIG. 1

A o 1V2 2 35 3

Otra de sus caracteristicas consiste en que al elevar al cua-
drado un nimero real (es decir, al multiplicarlo por sf mismo)
el resultado nunca es un nimero negativo. Por ejemplo,
(v/2)? =242 =2, mientras que (-+/2)? =(-v2)(-v2) =2, tam-
bién positivo. Una consecuencia de este hecho es que, entre los
nimeros reales, es imposible calcular la raiz cuadrada de un ni-
mero negativo; asi, =1 o2 , por ejemplo, son operaciones
«prohibidas» en ese contexto, ya que no existe ningiin nimero
real que elevado al cuadrado sea igual a -1 o -2.

Ahora bien, ninguna de las aplicaciones de las matemaéticas
en la vida cotidiana, como por ejemplo en el caso de la medicién
de longitudes, dreas, volimenes, pesos, distancias o intervalos de
tiempo, requiere de otros niimeros que no sean los reales. Por ese
motivo durante siglos se consideré que estos eran los tinicos nu-
meros que existian y que operaciones como v~1 0+/~2 carecian
de todo sentido.

Sin embargo, en la primera mitad del siglo xvilos matemaéticos
italianos Niccold Fontana, méas conocido como Tartaglia (1499-
1557), y Girolamo Cardano (1501-1576), al desarrollar el método
para resolver ecuaciones del tipo de & + x— 10 =0 (es decir, ecua-
ciones en las que la incégnita aparece elevada al cubo), se en-
contraron con que a veces ese método los «obligaba», en medio
del proceso de cémputo, a calcular raices cuadradas de nimeros
negativos, si bien el resultado final del cémputo era un nimero
real. Por ejemplo, el método podia pedirles calcular en cierto
momento 1++/-2, en otro momento 1-+/-2, para finalmente
sumar ambos resultados y obtener asi (1++/-2)+(1-v-2)=2.
Tanto Tartaglia como Cardano consideraban que estas raices
cuadradas de niimeros negativos representaban niimeros que en
realidad no existian, motivo por el que los llamaron «nimeros

RIEMANN Y LA TOPOLOGIA



imaginarios», y solo los admitian como «ficciones ttiles» que les
permitian resolver ecuaciones cibicas.

El primero en operar abiertamente con estos niimeros «ima-
ginarios» fue, a mediados del siglo xvm, Leonhard Euler, quien,
quiza para evitar el choque psicolégico que implicaba escribir
J-1, introdujo la letra i para referirse a esa expresién mate-
miética (nétese que i* = —1). De este modo, en lugar de 1+v-1,
Euler escribia 1 + 4, y en lugar de -2 ponia /2i (en efecto,
(V2i)? = (v/2)*(i)* =2(-1) = -2, por lo que V=2 = /2i).

También fue Euler quien bautizé como «niimeros complejos»
a estas expresiones de la forma a + b%, donde a y b son niimeros
reales. Tenemos asi que son niimeros complejos, por ejemplo,

V3

-3 + 8i, 3—?1: y también 8 + 01.

Nétese que 8 +0i es en realidad 8. De este modo, asi como
los enteros contienen como casos particulares a los naturales, los
racionales contienen a los enteros y los reales contienen a los ra-
cionales, de la misma forma, los nimeros complejos contienen
como caso particular a los reales (figura 2).

Euler oper6 y trabajé con los niimeros complejos; por ejem-
plo, establecié que (2 + 31)(2-31)=2.2-2.3i+31-2-3i-3i =
=4 —-6i+ 6i+9=13. Euler demostré inclusive teoremas referidos a
los niimeros complejos. Asi, por ejemplo, fue en este contexto que,
en 1748, publicé su famosa férmula e +1=0.

S e—— - - — - e S A DR Los dif o
conjuntos de

FIG. 2
| nameros.
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LA FORMULA DE EULER

elf
Euler demostré que si t es un numero
real, entonces e" es siempre un ndmero
complejo ubicado en la circunferencia
centrada en el O y de radio 1, donde ¢ es
el angulo, medido en radianes, que ese
numero forma con el eje de los numeros
reales positivos (véase la figura). Cuando
el dangulo es de 180°, es decir, cuando
t=m, el nimero complejo en cuestion es
-1. Tenemos en consecuencia que e’*=-1,
de donde se deduce la famosa férmula
e +1=0.

Sin embargo, Euler nunca explicé claramente qué represen-
taban estos «nuevos» numeros, y es por ello que la cuestién de
si en verdad existian sigui6é siendo todavia motivo de debate. La
existencia de los nimeros complejos fue aceptada finalmente en
1799, ano en el que Gauss publicé su tesis doctoral.

Comencemos por decir que, asi como cada posicién en un
mapa puede ser indicada mediante su latitud y su longitud, del
mismo modo cada punto del plano queda identificado también
mediante dos coordenadas, llamadas su abscisa y su ordenada
(figura 3). La idea de Gauss consisti6 en establecer que cada ni-
mero complejo representa en realidad un punto del plano; mas
concretamente, el nimero complejo a + bi, dijo Gauss, representa
el punto de coordenadas (a,b). Fue esta identificacién la que final-
mente le dio a los nimeros complejos su «carta de ciudadania»
entre los niimeros existentes.

Obsérvese, ademds, que el hecho de que los niimeros rea-
les estén incluidos entre los complejos se ve graficamente en el
hecho de que la recta real estd contenida en el plano complejo
(figura 4).

Evidentemente, cuando Riemann comenzé a trabajar en su
tesis doctoral bajo la tutela de Gauss, esta identificaciéon entre
numeros complejos y puntos del plano estaba ya madura en el
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FIG. 3

3 P=(23)=2+3i

(30)=3+0i=3
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pensamiento matematico y Riemann pudo hacer libre uso de ella.
Maés atin, como veremos en este capitulo, Riemann no solo usé
esta idea, sino que la llevé a mayores niveles de profundidad.

LA IDEA DE FUNCION

Como en el caso de los nimeros complejos, el primero en hablar
de funciones en un sentido relativamente moderno fue Leonhard
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Euler, quien como ya se ha apuntado desarrollé su trabajo a me-
diados del siglo xvin. Para Euler, una funcién era una regla que
a cada nimero (real o complejo) le asigna, a su vez, un nimero
(también real o complejo); y esa regla debia estar expresada nece-
sariamente por una férmula. Por ejemplo, la férmula 22 + 2 define
una funcién, a la que podemos llamar f. ;Cémo actia esta for-
mula en tanto que regla de asignacién? Para calcular, por ejemplo,
qué nmimero le asigna f al 3 se reemplaza la letra o (llamada la
variable de la funcién) por ese numero 3; y dado que 3*°+2=11,
entonces f, al nimero 3, le asigna el 11. Esto también se expresa
diciendo que la «imagen de 3 por f es 11», frase que Euler resu-
mia, tal como todavia se hace, como f(3)=11. Para la expresion
general de la funcién, Euler escribia, como también todavia se
hace, f{x)=x*+2. De este modo, son ejemplos de esta funcién
f@)=34+2=11f(-1)=(-1)2+2=3 0 f(+/2)=(V2)' +2=4.

Pero la variable también puede ser reemplazada por niime-
ros complejos; tenemos asi, por ejemplo, que f(2-1)=(2-1)*+2=
=(2-1)(2-1)+2=4-21-2i +(-1)*+ 2=4-4i-1 + 2=5-41; es decir,
la imagen de 2 - 7 por f es 5—4i. La tradicién matematica indica
que se use la letra z para las variables que van a ser reemplazadas
por nimeros complejos, mientras que la letra x se reserva para
aquellas que seran reemplazadas solo por niimeros reales. De este
modo, f(2)=2%+2 es una funcidon de variable compleja, que son
aquellas funciones de las que habla la tesis de Riemann.

«A Dirichlet le gustaba tener ideas claras sobre una base
intuitiva, evitando los calculos largos tanto como fuera posible.
Riemann adopt6 enseguida este método de trabajo.»

— FELIX KLEIN, LECCIONES SOBRE EL DESARROLLO DE LA MATEMATICA EN EL SIGLO XIX.

30

Ahora bien, como acaba de sefialarse, para Euler una funcién
solo podia estar descrita mediante una férmula. Sin embargo, mas
de medio siglo después, en un articulo publicado en 1829 y dedi-
cado a un tema relacionado con las series de Fourier (volveremos
a esta cuestion con mas detalle en el tercer capitulo), Dirichlet
afirmé que era necesario ampliar la clase de las reglas admisibles.
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LEONHARD EULER (1707-1783)

Euler naci¢ en Basilea (Suiza) v a los
catorce afios ingresd en la Universi-
dad de esta ciudad con la intencién
de estudiar filosofia para convertirse
en ministro protestante, al igual que
su padre. En 1723 se doctord con una
tesis en la que comparaba las filosofias
de Descartes y Newton. Pero Johann
Bernoulli, famoso matemadtico de la
época y profesor de aquella universi-
dad, se dio cuenta del gran talento de
Euler para las matematicas y convencié
al padre de este de que le permitiera
dedicarse a esa ciencia. Es asi como
inicié en la misma universidad sus es-
tudios de matematicas, que completd
en 1726. Euler pasoé la mayor parte de
su carrera en la Academia de Ciencias
de San Petersburgo, donde ocupd la catedra de Fisica, con la sola excepcidn
del periodo comprendido entre 1759 y 1766, durante el cual formd parte de
la Academia de Ciencias de Berlin, puesto al que renuncié por serias discre-
pancias con algunos de sus colegas. Euler fue sin duda el matematico mas
importante del siglo xvii; es también el matematico que mas ha escrito en
toda la historia de esta ciencia y uno de los cientificos mas productivos de
todos los tiempos en cualquier area del conocimiento. Hizo aportaciones
fundamentales a la fisica, el calculo, la teorfa de ecuaciones diferenciales,
la aritmética, la geometria y el dlgebra, y fue el iniciador de la topologia,
la teoria de grafos y la teoria analitica de numeros. Trece afios antes de
morir quedd completamente ciego, pero ello no hizo disminuir su ritmo de
trabajo, ya que tenia una impresionante capacidad para el calculo mental,
asl como una memoria fotografica. Cincuenta afios después de su muerte
la Academia de Ciencias de San Petersburgo todavia seguia publicando sus
trabajos inéditos.

Segin el matematico, la regla de asignacién de nimeros podia
estar expresada de cualquier manera, siempre que se cumplieran
dos condiciones: por un lado, la regla debia indicar de un modo
claro y preciso qué imagen se le asigna a cada nimero, y por el
otro, ningiin niimero podia tener dos o mas imagenes diferentes.
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A modo de ejemplo, Dirichlet propuso una funcién que no estaba
definida mediante una férmula; esta funcién, que llamaremos
D(x), y que hoy en dia es conocida como la funcién de Dirichlet,
le asigna a cada nimero racional el 1, y a cada niimero irracional
el 0. En otras palabras, D(x)=1 si # es un nimero racional y
D(x)=0 si x es un nimero irracional. De este modo, D(2)=1,
D(-2,3)=1y D(~/2) =0. Al admitir cualquier tipo de regla, Dirich-
let ampli6 el rango de las funciones admisibles.

Riemann, que habia estudiado con Dirichlet en Berlin, estaba,
por supuesto, al tanto de estas ideas; mas atin, es razonable su-
poner que reflexion6 profundamente sobre el problema de qué
era exactamente una funcién, ya que en su tesis doctoral logré
darle a ese concepto (especialmente a las funciones de variable
compleja) una interpretaciéon geométrica de tal riqueza que por si
sola cre6 la topologia moderna. Veremos a continuacién por qué.
Comencemos por decir que en su tesis Riemann escribié que:

Cuando a todo valor de z le corresponde un valor determinado w
[...] entonces a todo punto del plano A le corresponde un punto del
plano B, a toda linea le corresponde, de forma general, una linea
y a toda porcion conexa de superficie, una porcién de superficie
igualmente conexa. En consecuencia, se puede considerar esta de-
pendencia de la magnitud w de z como una representacién del plano
A sobre el plano B.

Debe puntualizarse que «conexa» significa aqui que la superfi-
cie estd formada por un tinico sector y no por secciones separadas
entre si.

Para entender la idea que describe Riemann en este parrafo
consideremos, a modo de ejemplo, la funcién de variable compleja
f(2)=2iz, es decir, la funcién que consiste en multiplicar el niimero
complejo z por el nimero complejo 2i. De este modo, se obtiene,
entre otros valores posibles, que (1) =2i y que f(2) =21 -i=-2. Rie-
mann afirmaba que una funcién de variable compleja describia en
realidad un desplazamiento de los puntos del plano; entonces, en
el ejemplo anterior, el hecho de que f(1)=2i significa que la fun-
cién fdesplaza al punto (1,0), que es el que corresponde al nimero
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complejo 1=1+0i, a la posicién
(0,2), que es la que corresponde al
nimero complejo 2i.

De la misma forma, dado que
Sf(i)=-2, entonces f desplaza al
punto A=(0,1) hasta la posicién
B=(-2,0). Ahora bien, se puede
probar que esta funcién f admite
una precisa descripcién geomé-
trica. Tal como se vio en los ejem-
plos previos, si se piensa en el ni-
mero complejo 2 como un punto
del plano y a continuacién se consi-
dera el segmento L que conecta ese
punto con el punto (0,0), la interpre-
tacién geométrica es la siguiente: el
hecho de que f(2)=w significa que
w se obtiene duplicando la longitud
del segmento L y girdndolo después
90° en sentido contrario al de las
agujas del reloj (figura 5).

Para continuar con el ejem-
plo, considérese ahora, en lugar
de puntos aislados, toda una re-
gién del plano o, en palabras de
Riemann, «toda porcién conexa
de superficie». Por ejemplo, lla-
memos R al rectdngulo de vértices
(0,0), (0,1), (2,0) y (2,1); si se aplica
la funcién f a todos los puntos que
forman ese rectangulo (tanto a los

-2

FIG. 5

-ﬁ“

FIG. &

de su perimetro como a los interiores) entonces el resultado final
sera otro cuadrado R' cuyos lados miden el doble de los de R y que

esta girado 90° con respecto a este (figura 6).

Segin la idea de Riemann, que €l expresoé con la frase «a toda
porcién conexa de superficie [le corresponde] una porcioén de
superficie igualmente conexa», las funciones representan movi-
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FIG.7

mientos que desplazan y deforman las superficies, como si estas
estuvieran hechas de goma. Pero Riemann también dijo que «a
toda linea le corresponde, de forma general, una linea», lo que sig-
nifica que Riemann consider6 asimismo deformaciones de curvas.
Para ver un ejemplo de esta situacién, considérese la frontera del
cuadrado C vista en el ejemplo anterior (véase la parte izquierda
de la figura 7). Si 2 es un nimero complejo, se llama Izl (y se lee
«modulo de 2») a la distancia del punto z al (0,0); si z=a +bi se
puede probar que |2 = Va® +b*; asi, por ejemplo, |1+ = V2.

Por otra parte, también puede probarse que si =0 entonces
la distancia de % al (0,0) es 1; asf, por ejemplo, es la distancia de

ﬁ_ 1 3 1 1

2 22

al (0,0). Considérese entonces la funcién
2
2)=—)
f(2) i

que puede calcularse para cualquier z= 0; si se le aplica esta fun-
cién al cuadrado C de la figura 7, cuyos vértices son de la forma
(£1,+1), se obtiene como resultado la circunferencia de centro
(0,0) y radio 1.

Riemann afirma, entonces, que el cuadrado puede ser defor-
mado, tal como si fuera de goma, hasta transformarse en una cir-
cunferencia. Para comprender por qué estas ideas reformularon
la topologia y la llevaron a la forma que tiene actualmente, debe
entenderse qué estudia esta rama de las matematicas.
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¢QUE ES LA TOPOLOGIA?

El primero en usar la palabra «topologia» fue el matematico ale-
man Johann Benedict Listing (1808-1882), quien, al igual que Rie-
mann, habia sido discipulo de Gauss. Listing utiliz6 este término
en un trabajo publicado en 1861. Sin embargo, la topologia naci6é
en realidad afios antes, en 1736, en el articulo en el que Leonhard
Euler resolvié el problema de los siete puentes de Kénigsberg.
Veamos en qué consiste este problema y cémo se relaciona su
solucién con las ideas de Riemann.

La ciudad de Konigsberg (antigua capital de Prusia Oriental
que hoy pertenece a Rusia y que fue rebautizada Kaliningrado
tras la Segunda Guerra Mundial) est4 atravesada por el rio Pre-
gel. En los tiempos de Euler existian siete puentes que conecta-
ban las margenes del rio con dos islas que habia en su centro,
tal como aparece esquematizado en la figura 8, en la que las islas
estan sefaladas con las letras C y D.

Segin cuenta Euler, los habitantes de Kénigsberg solian pre-
guntarse si era posible realizar un paseo (que podia comenzar en
una de las margenes o en una de las islas) que cruzara exactamente
una vez por cada puente, es decir, un camino que los atravesara
sin repetir y sin omitir ninguno. Por ejemplo, en la figura 9 (pagina
siguiente) se muestran dos intentos fallidos: uno falla porque se
omite un puente; el otro, porque un puente es cruzado dos veces.

Ahora bien, en el problema de los puentes de Kénigsberg, al
igual que en la figura 7, aparecen cuatro regiones: las regiones A

FiG. B

/i ! Vi

Bsie - g
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FIG. 10

y B, que son las margenes del rio, y
las regiones C y D, que son las islas.
El tinico aspecto relevante de la cues-
tién es qué regiones estidn conecta-
das entre si y por cuintos puentes,
sin importar cudl sea su longitud, su
forma o cualquier otro dato relativo a
ellos. Por lo tanto, la situacion de la
figura 8 puede resumirse, sin perder
informacién, en el esquema de la fi-
gura 10.

La imagen de dicha figura es un
grafo, es decir, un dibujo formado por
puntos (que en este caso representan
a las regiones A, B, C y D) conecta-
dos mediante lineas (que representan
los puentes). El problema se trans-
forma, entonces, en la pregunta de
si es posible trazar, en ese grafo, un
camino que recorra exactamente una
vez cada linea sin repetir ni omitir
ninguna de ellas (no importa cuantas
veces toque cada punto).

En su articulo de 1736 Euler ob-
servd que la existencia o no de un
recorrido como el que se busca de-
pende solo de la cantidad de lineas
que sale de cada punto. Convenga-
mos en decir que un punto es par si
de él parte una cantidad par de lineas

e impar si la cantidad de lineas que parte de él es impar; en la fi-
gura 10 todos los puntos son impares. Euler demostré que existe
un recorrido que pase exactamente una vez por cada linea si y
solo si la cantidad de puntos impares no es mayor que dos. Ahora
bien, como en el grafo de los puentes de Konigsberg hay cuatro
puntos impares, entonces un paseo como el que querian hacer los
habitantes de la ciudad es imposible.
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En su articulo, Euler demostré cudl es la condicién para que
el recorrido sea posible y determiné que en el caso del problema
de Konigsberg esa condicidn fallaba. Pero puede irse mas all4. Asi,
la figura 11 incluye el grafo de la figura 10 (recuadrado), ademas
de otros; todos ellos resultan de deformarlo como si estuviera
hecho de goma, exactamente el mismo tipo de deformacién que,
segun se vio anteriormente, consider6 Riemann para las superfi-
cies y las curvas.

En todos estos nuevos grafos las cantidades de lineas que
salen de cada punto son siempre las mismas y, en consecuencia,
tampoco se modifica el hecho de que es imposible hacer un re-
corrido que pase exactamente una vez por cada linea. Riemann
observé en su tesis que existen ciertas propiedades de las curvas
y de las superficies que no se alteran cuando se las deforma, como
si estuvieran hechas de goma. Hoy en dia a estas propiedades se
las conoce como propiedades topoldgicas o invariantes topolo-
gicas, y se les da este nombre porque la topologia es, justamente,

A A c
c/\o
\/ \ B
B
< c
A B |
\ |
BD
D

FIG. 11
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el estudio de las propiedades que no se
modifican al aplicarse esa clase de de-
formaciones.
Otra manera de expresar esta idea
es diciendo que si una superficie (o
una curva) se obtiene de otra por una
deformacién de este estilo, entonces
ambas superficies (o0 curvas) tienen
exactamente las mismas propiedades
topologicas. Por ejemplo, la figura 7
(pag. 34) nos muestra que el borde de
un cuadrado y una circunferencia tienen las mismas propiedades
topoldgicas (son topolégicamente equivalentes). Entre las pro-
piedades topoldgicas que ambas curvas poseen se encuentra el
hecho de que son cerradas y que no se cortan a si misma. La curva
de la figura 12, en cambio, si se corta a si misma por lo que no es
topolégicamente equivalente a ellas.

LAS SUPERFICIES DE RIEMANN

Riemann, en su tesis de 1851, fue el primero en estudiar siste-
maticamente invariantes topoldgicos, especificamente los inva-
riantes topologicos de las hoy llamadas superficies de Riemann,
que son superficies que él asoci6 a ciertas funciones de variable
compleja. Veamos en qué consiste esta idea. Considérese la fun-
ci6n de variable real f(x) =¥z (laraiz cibica de x). Su dominio,
que es como se llama en conjunto a todos los valores que pueden
ser reemplazados en la variable, estd formado, entonces, por los
numeros reales. Por otra parte, sabemos que, por ejemplo, como
23=8, entonces /8 =2, es decir, f(8)=2, y de la misma forma
f(~64) = ¥-64 = -4 dado que (—4)*=-64.

La primera pregunta que debemos hacernos es qué sucede
cuando tratamos de extender el dominio a todo el plano complejo;
en otras palabras, ;qué pasa si intentamos calcular f(z), donde 2
es un nimero complejo? Por ejemplo, ;qué es f(7) o f(1-7)? Este
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es un problema que también estudié Riemann, tanto en su tesis de
1851 como en un trabajo de 1854 que describiremos en el préximo
capitulo, y que consiste en analizar si es posible extender a todo el
plano complejo el dominio de una funcién que, en principio, habia
sido planteada solamente para los niimeros reales. Esta cuestion,
de suma importancia en el célculo de variable compleja, se co-
noce como el problema de la extensién analitica.

«Gauss predijo que la topologia llegaria a ser uno de los métodos
mas influyentes de las matemadticas, como en efecto ocurrio.»

— Eric TempPLE BELL, LOS GRANDES MATEMATICOS.

Ahora bien, como ya se apuntd, cuando se trabaja con ni-
meros reales, entonces /8 =2, porque 2°=8 y, ademds, 2 es el
inico numero real que elevado al cubo es 8. Esto 1ltimo asegura,
como queria Dirichlet, que cada nimero real tenga solamente
una imagen. Un problema que surge al pasar a trabajar con na-
meros complejos es que en este caso cada niimero complejo (con
la dnica excepcion del 0) tiene fres raices ctbicas. Por ejemplo,
dado que (2+0¢)*=8, (—1+ ﬁi)a =8 y (=1 J§i)3 =8, entonces
hay, dentro de los niimeros complejos, tres raices ctibicas de 8,
que son 2, -1+/3i y -1-+/3i. El 0, pensado como 0 + 0i, es el
dnico niumero complejo que tiene solo una raiz ctbica (que es el
propio nimero 0).

En consecuencia, al definir f(2)=4%z, con z complejo, es-
tamos ante una funcién ambigua que a casi todos los nimeros
le asigna mas de una imagen. Riemann llamaba funciones mul-
tiformes a aquellas que presentan este tipo de ambigiiedad y
uniformes a las funciones que, tal como debe ser segtin la defini-
cion de Dirichlet, asignan siempre una sola imagen. En realidad,
es muy frecuente que, dada una funcién uniforme de variable
real, esta se transforme, tal como sucedié con la raiz cibica,
en multiforme al extenderla al dominio complejo; la motivacién
de Riemann al definir las superficies que hoy llevan su nombre
fue resolver este tipo ambigiiedades. En sus propias palabras,
citadas de su tesis:
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Superficie de
Riemann de la
funcidn ralz
clbica. Esta
formada por tres
coplas del plano
complejo (dos de
ellas deformadas),
unidas por el
origen de
coordenadas

40

La funcién multiforme admite en cada punto de una superficie que
represente el modo de ramificacion, un Gnico valor determinado, y
puede ser vista como una funcién perfectamente determinada sobre
esa superficie.

Este parrafo expresa la idea de ampliar el dominio de
f(x) =%z atn més all4 del plano complejo; la funcién se calcula
para los puntos de una superficie especialmente definida de tal
modo que cada uno de ellos tenga solamente una imagen. De esta
manera, dado que el nimero complejo z=8 admite tres raices
clbicas, w, =2, w, =-1+3i y w, =-1-+3¢, se considera una
superficie que esta formada por tres copias del plano complejo
(figura 13) y que es la superficie de Riemann de la funcién raiz ci-
bica. Esta funcién se calcula, entonces, no en los nimeros com-
plejos, sino en los puntos de esta nueva superficie «tripartita», de
manera que, por ejemplo, al nimero 8 de la primera copia se le
asigna el niimero w, al 8 de la segunda copia, el niimero w,, y al
8 de la tercera copia, el nimero w,.

Generalizando esta idea, cada 2 que no sea 0 tiene tres raices
cibicas, que se identifican por el angulo que forman con la parte

FIG.13

< Copia 1del plano complejo

/«— Copia 2 del plano complejo

<+— Copia 3 del plano complejo
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FIG. 14
Wz ==1+V3/
angulo =120°
== ~
~
- T - G
» ‘\ ‘\ El angulo se mide con
' \ \ respecto a esta recta
T
\ w, =2
angulo = 0°
w,=-1-V3/
angulo = 240°

positiva del eje real; w, es la que tiene el &ngulo mas pequeno, w,
es la que sigue y w, es la del 4ngulo mayor (figura 14). A la version
de 2 que estd en la copia 1 se le asigna la raiz w,, a la que estd en
la copia 2 se le asigna la raiz w,, y a la version que estd en la copia
3 se le asigna la raiz w,.

De este modo, en la definicién de la funcién se incluyen las
tres raices cubicas que tiene cada nimero complejo, pero a la
vez se logra que a cada punto del dominio (que en este caso es
la superficie «tripartita») se le asigne inicamente un valor bien
determinado. Como el 0 tiene solo una raiz cibica, entonces no
hay tres copias de él; es decir, mientras que hay tres copias del 8
o de cualquier otro niimero distinto de cero hay, en cambio, un
tnico 0, que pertenece entonces a las tres partes de la superficie
a la vez; ese es el motivo por el que, como se ve en la figura 13, las
tres copias del plano se conectan en ese punto.

Puede objetarse que la copia superior y la inferior no son pla-
nas, sino que estdn deformadas, pero debe recordarse que Rie-
mann hizo un estudio de las propiedades topoldgicas de estas su-
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perficies, y esas propiedades, como ya se apunté, no se alteran si
las superficies son deformadas como si fueran de goma. Riemann,
entonces, asocié a cada funcién f(z) de variable compleja una su-
perficie, y la importancia de esta asociacion reside en que muchas
de las propiedades de f(2) se reflejan en propiedades topolégicas
de su superficie asociada. De este modo, el estudio de la superficie
permite, por un lado, deducir caracteristicas de la funcién, y por el
otro, sirve para descubrir similitudes y diferencias entre las distin-
tas funciones a través del estudio de las similitudes y diferencias
de sus superficies asociadas.

En el caso de la raiz ciibica, la posicién del 0 como «punto
triple» indica que alli la funcién tiene un comportamiento «ané-
malo». Para ejemplificar en qué consiste este comportamiento
volvamos a la funcién de variable real f(x)=%¥z. Una funcién
de variable real se puede representar graficamente mediante una
curva que esté dibujada en el plano; en cada punto de esta curvala
primera coordenada es un valor x del dominio de f, mientras que
la segunda coordenada es la imagen de ese nimero x. A modo de
ejemplo, la parte izquierda de la figura 15 muestra el grafico de la
funcién raiz ctibica de variable real.

Un concepto importante en el cdlculo diferencial es el de la
recta tangente a una curva, que se define del siguiente modo: sea P
un punto fijjo en una curva C'y sea X un segundo punto de la curva.

_
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Tomemos la recta que pasa por Py X, llamada recta secante a C
que pasa por Py X. Imaginemos ahora que X se va aproximado a
P; cuando X y P llegan a coincidir exactamente, la recta secante
se ha transformado en la recta tangente a la curva C en el punto P.

En la parte derecha de la figura 15 vemos algunas de las rectas
tangentes a la curva. La recta tangente da una indicacién grafica de
la velocidad de crecimiento de la funcién: cuanto mas vertical es
la recta tangente, mas rapidamente crece la funcién en ese punto.
En el caso de la funcién f(2) = ¥z, tal como se ve en la figura 15,
en el punto x =0 la recta tangente es perfectamente vertical; esto
significa que en ese punto, por apenas un instante, la funcién tiene
una velocidad de crecimiento infinita. En =0 la funcién tiene,
entonces, un comportamiento anémalo; matematicamente se dice
que la funcién no es diferenciable en ese punto. Esta anomalia se
extiende a la funcién de variable compleja: la raiz cibica de va-
riable compleja no es diferenciable en 2 =0, y esto se refleja en la
posicién especial del 0 en la superficie de Riemann de la funcién.

Ahora bien, jpor qué el grafico de una funcién de variable
real se dibuja en el plano? Como ya se dijo, los niimeros reales
se representan en una recta (figura 1, pag. 26), que es un objeto
geométrico de una sola dimensién. Por lo tanto, para realizar el
grafico de una funcién de variable real se necesita una dimensién
para representar el dominio y otra mas para las imigenes; dos di-
mensiones en total. Los nimeros complejos, en cambio, se repre-
sentan en el plano, que tiene dos dimensiones; en consecuencia, el
grifico de una funcién de variable compleja deberia dibujarse en
un espacio de cuatro dimensiones: dos dimensiones para el domi-
nio y dos para las imédgenes. Pero a nosotros, seres humanos, nos
resulta imposible visualizar cuatro dimensiones fisicas, por lo que
no es posible extender la idea del gréfico de la figura 14 al caso de
funciones de variable compleja y es necesario recurrir a ideas al-
ternativas. Las superficies de Riemann nos dan, precisamente, un
modo de mostrar graficamente las caracteristicas de la funcién.

De hecho, la superficie de Riemann de la funcién raiz ciibica
de variable compleja es un poco méas complicada que como se la
muestra en la figura 13 (pag. 40); una representacién mas ajustada
a la realidad es la de la figura 16 (pag. siguiente).
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Como se ve, hay algunas lineas a lo largo de las cuales la su-
perficie se corta a si misma; este hecho est4 vinculado con lo que
se llama la continuidad de la funcién. Recuérdese que la distin-
cién entre las raices w, w, y w, estd dada por el &ngulo que forman
con el eje de los nimeros reales positivos (figura 14, pag. 41). Ima-
ginemos ahora que un niimero complejo comienza a girar desde
ese eje aumentando su d4ngulo, como una aguja de reloj que gira
al revés. El 4ngulo aumentara entonces, digamos, hasta 10°, 20°,
30°, llegara hasta 350°, 359°, pero después de 359° 59' 59" volvera
a 0°, es decir, al completar el giro se produce un salto instantaneo
desde 360° a 0°; este tipo de salto brusco se llama discontinuidad
de la funcion (volveremos a este tema en el capitulo 3). En la su-
perficie de Riemann esta discontinuidad que existe a lo largo del
eje de los nimeros reales positivos se manifiesta como una linea
en la que es posible pasar de una a otra capa de la superficie.

Otro ejemplo de superficie de Riemann aparece en la figura 17,
en este caso se trata de la superficie que corresponde a la funcién

| FIG.16

RIEMANN Y LA TOPOLOGIA



Imagen detallada
correspondiente
a la superficie de
Riemann de la
funcién raiz
cuadrada.

FIG.17

raiz cuadrada. Las similitudes y diferencias entre las superficies de
las figuras 16 y 17 reflejan las similitudes y diferencias que existen
entre la raiz cibica de variable compleja y la raiz cuadrada de va-
riable compleja; por ejemplo, cada nimero complejo, excepto el
0, tiene dos raices cuadradas complejas (mientras que el 0 tiene
solo una) y la funcién no es diferenciable en 0. Esto se refleja, de
manera similar a lo que sucede con la raiz cibica, en que la su-
perficie que corresponde a la raiz cuadrada tiene dos «capas» (la
de la rafz cibica tiene tres) y asimismo se refleja en que el 0 es un
punto «doble» (que est4 a la vez en las dos capas). Ademds, como
se observa en la figura 17, la superficie de la raiz cuadrada también
se corta a si misma a lo largo de una linea; la explicacién de este
fenémeno es, por supuesto, la misma que para la raiz cibica.

Ahora bien, el tema que estamos tratando es tan rico y pro-
fundo que Riemann, en su tesis, apenas llegé a rozar algunas de
sus muchas complejidades y ramificaciones. Es asi que tres afios
después, en 1854, Riemann retomo la cuestién, aunque desde un
punto de vista muy diferente. Este trabajo de 1854 es el que abrié
el camino matematico que, a la larga, condujo a Einstein hasta la
teoria de la relatividad.
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CAPITULO 2

La forma del universo

Terminada su tesis doctoral en 1851,

Riemann tuvo que realizar una nueva investigaciéon
matematica por exigencias de la Universidad de Gotinga.
Presento tres propuestas a Gauss y este eligi6 la que
suponia una revision de diversos principios de la fisica de
Newton. En este trabajo, Riemann creé un nuevo concepto
matematico, la variedad diferencial. Aios después,
esta nocién se transformo en la base matematica
de la teoria de la relatividad de Einstein y es
asimismo el fundamento esencial de muchas
teorias fisicas actualmente en desarrollo.






A principios de la década de 1850, el mayor deseo de Riemann era
convertirse en profesor de Matematicas, o de Fisica, de la Uni-
versidad de Gotinga. En ese sentido, la aprobacién de su tesis
doctoral en diciembre de 1851 habia sido un gran paso adelante,
ya que el doctorado era una exigencia indispensable para poder
acceder a un puesto académico en Gotinga, existia, sin embargo,
un importante requisito adicional. Segin las reglas vigentes en
aquella época (y que, de hecho, rigen todavia en Alemania, asi
como en otros paises europeos), para poder aspirar a un puesto
de profesor en una universidad alemana, el candidato, ademas de
ser doctor, debia realizar una investigacién original diferente de
aquella que habia presentado en su tesis doctoral.

Este trabajo adicional, conocido como Habilitationsschrift,
0 «trabajo de habilitacién», tenia un nivel de dificultad equiva-
lente al de una tesis doctoral, aunque presentaba con respecto
a esta dos diferencias fundamentales. En primer lugar, mientras
que la tesis doctoral se presentaba ineludiblemente por escrito,
en el caso de la Habilitationsschrift, en cambio, la presentacion
escrita era opcional. La unica obligacién del postulante consis-
tia en exponer oralmente, ante un tribunal nombrado por la uni-
versidad, los resultados de su investigacién. El hecho de que la
publicacién no fuese obligatoria aliviaba al candidato de todas
las complejidades que conlleva la escritura rigurosa de un tra-
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bajo cientifico, dificultades que a mediados del siglo xi1x no eran
menores si se considera que en aquella época cualquier escrito
se redactaba a mano, o a lo sumo con unas maquinas de escribir
muy primitivas.

Ahora bien, aunque esta primera diferencia constituia un
verdadero respiro para el candidato, la segunda diferencia traia
consigo una importante complicacién, ya que mientras que en la
tesis doctoral el candidato acordaba con su director (que en el
caso de Riemann, recuérdese, habia sido Gauss) cuél era el tema
de la investigacion a realizar, en la Habilitationsschrift, por el
contrario, el candidato dedicaba varios meses a realizar tres in-
vestigaciones preliminares diferentes, cada una de ellas sobre
un tema distinto que elegia él mismo. Cuando, a juicio del can-
didato, las tres investigaciones estaban bastante avanzadas, se
las presentaba al director, quien era el encargado de seleccionar
cudl de ellas debia ser completada y expuesta ante el tribunal de
la universidad.

LOS TRES TEMAS DE RIEMANN

Riemann comenzé a preparar su trabajo de habilitacién a prin-
cipios de 1852, y a medida que pasaban los meses, y las ideas
encajaban entre si, lentamente fue sintiendo cémo aumentaba
su optimismo, asi como la certidumbre de poseer la capacidad
necesaria para las matematicas, pero también para la fisica, una
ciencia por la que también estaba muy interesado. Tanta era su
confianza en el futuro durante esos meses que, para no quitarle
tiempo a sus investigaciones, y a pesar de sus permanentes pro-
blemas econémicos, rechazé un puesto de ayudante en el Obser-
vatorio Astronémico de Gotinga. Mientras avanzaba en su trabajo
le escribi6 a su padre:

Creo que mi disertacién [se refiere a la exposicion de su tesis doc-

toral] ha mejorado mis perspectivas; espero también aprender a
escribir mas rapidamente y con mayor fluidez, especialmente si fre-
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cuento los &mbitos académicos y tengo posibilidades de pronunciar
conferencias. Por eso tengo un buen dnimo.

Finalmente, en los primeros meses de 1854, después de casi dos
afos de esfuerzo, estuvo en condiciones de comunicarle a Gauss sus
tres temas para el trabajo de habilitacion, los cuales, como era cos-
tumbre, Riemann presento en orden de preferencia. Como primera
opcién, Riemann propuso exponer un nuevo concepto matematico
desarrollado por él, concepto (hoy conocido como la integral de
Riemann) que permitia atacar de un modo novedoso un problema
relacionado con las series de Fourier. Riemann habia tenido cono-
cimiento de este problema a través de Dirichlet durante el tiempo
que habia pasado en Berlin entre 1847 y 1849. El segundo tema con-
sistia en un anilisis fisico-matematico de la distribucién de las car-
gas eléctricas en cuerpos que no son absolutamente conductores ni
absolutamente no conductores. Finalmente, el tercer tema, muy es-
peculativo, proponia una reformulacién de los principios de la geo-
metria, asi como unarevision profunda de algunos de los conceptos
centrales de la fisica de Isaac Newton (1643-1727).

Riemann sabia perfectamente que por una «ley no escrita»
el director nunca seleccionaba el tercero de los temas propues-
tos, el cual, se suponia, solo era presentado para completar el
nimero de tres que exigia el reglamento. Por ese motivo, como
tercer punto Riemann habia decidido incluir un tema que, en rea-
lidad, no tenia intencién de analizar en un futuro préximo y que,
de hecho, creia que le demandaria algunos afios antes de poder
desarrollarlo en profundidad.

Pero Gauss vio claramente que esta tercera propuesta conte-
nia el germen de una idea potente y novedosa; més atin, el propio
Gauss habia reflexionado alguna vez sobre cuestiones similares,
aunque nunca habia llegado a publicar nada al respecto. Por otra
parte, Gauss confiaba plenamente en la capacidad matematica
de Riemann. Por estos motivos, para sorpresa de todos, y de
Riemann antes que nadie, Gauss le indicé que expusiera como
tema de habilitacién la tercera propuesta, la que se referia a la
reformulacién de la geometria. Durante las semanas de intenso
trabajo que siguieron, Riemann le escribié a su padre:
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Estoy sumido en la perplejidad porque tengo que ocuparme de
esta cuestion. [...] Estoy cada vez mas convencido de que Gauss
ha trabajado en este tema durante afios, y que ha hablado de él
con algunos amigos (Weber, entre otros). Secretamente te escribo,
pues no quiero parecer arrogante, pero espero que ain no sea de-
masiado tarde para mi y que obtendré el reconocimiento como
investigador.

«Nuestra intencién es abandonar la anterior concepcién de
los fenémenos cuya base establecié Newton [...] y reformularla
gradualmente merced a los hechos que no permite explicar.»

— BERNHARD RIEMANN, EN SU TRABAJO DE HABILITACION.

52

Pero la confianza de Gauss estaba justificada, porque Rie-
mann logré completar el trabajo en unos pocos meses. La Ha-
bilitationsschrift estuvo lista a principios de mayo, aunque la
exposicién oral se postergé hasta junio, porque Gauss se encon-
traba muy enfermo, tanto que hasta llegé a temerse por su vida
(de hecho, falleci6é en febrero del afio siguiente). Finalmente, la
exposicion tuvo lugar el 10 de junio de 1854, y el trabajo fue apro-
bado inmediatamente. El matematico e historiador Michael Mo-
nastyrsky escribié que «de entre quienes escucharon a Riemann,
solo Gauss estaba en condiciones de apreciar la profundidad de
su pensamiento. La exposicién excedio las expectativas de Gauss
y lo sorprendié gratamente. De regreso del encuentro, hablando
con Wilhelm Weber, alab6é mucho las ideas que Riemann habia
presentado y hablé de ellas con un entusiasmo que era muy raro
en él».

El trabajo que Riemann expuso en 1854 (y que se publicaria
afios més tarde, en 1868) se titula «Uber die Hypothesen welche
der Geometrie zu Grunde liegen» («Sobre las hip6tesis que sirven
de fundamento a la geometria») y, como el gran Gauss habia pre-
visto, contiene ideas poderosas que llevaron a la reformulacién de
la geometria y de la fisica; tanto que llegé a ser, con el correr de los
anos, uno de los pilares matematicos fundamentales de la teoria
de la relatividad.
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EL PROBLEMA DE LA CURVATURA

Para comenzar a entender el contenido del revolucionario trabajo
de habilitacion de Riemann, acerquémonos en primer lugar al uni-
verso creado por el escritor inglés Edwin Abbott (1838-1926) en
su novela Flatland («Planilandia»), de 1884. En esa novela, el
autor nos describe un universo bidimensional habitado por seres
inteligentes, también bidimensionales. Si colocamos una moneda
muy delgada sobre una mesa y a continuacién nos ubicamos de tal
modo que veamos solo el canto de la moneda tendremos, dice Ab-
bott, una imagen bastante cercana al modo en que los habitantes
de Planilandia perciben a sus congéneres y a su entorno.

Planilandia es, pues, bidimensional y, en consecuencia, asi
como nosotros, seres humanos de tres dimensiones, somos inca-
paces siquiera de visualizar mentalmente una cuarta dimension
(o de imaginar una direccién que sea perpendicular simultdnea-
mente a las tres direcciones adelante-atras, derecha-izquierda y
arriba-abajo), de la misma forma, los habitantes de Planilandia
son incapaces de imaginar una tercera dimensién. Los planilan-
deses tienen palabras para decir «adelante o atras», o para decir
«derecha o izquierda», pero la idea de «arriba o abajo» les resulta
totalmente inconcebible (figura 1).

Por otra parte, los habitantes de Planilandia ven su universo
como si fuera «perfectamente horizontal» y no perciben la exis-
tencia de curvatura alguna. Ahora bien, los seres humanos vivi-
mos sobre la superficie de la Tierra, que es esférica y tiene en

FIG.1

Eje adelante-atras

Eje d;recha-izquierda

b

Planilandia

l El eje arriba-abajo es

perpendicular a Planilandia
y apunta hacia «afuera»
del universo.
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consecuencia una superficie curvada; sin embargo, en nuestro
entorno inmediato, la percibimos como si fuera plana y horizon-
tal. Este «engafio de los sentidos» se debe a que, comparada con
nuestro propio tamano, la Tierra es tan grande que su curvatura
no es perceptible a simple vista. ;Es posible que los planilandeses
no vivan, como ellos creen, en un universo plano y horizontal, sino
en la superficie de una enorme esfera? (figura 2).

Antes de continuar, es necesario hacer una observacioén, a fin
de evitar confusiones, acerca del lenguaje usado a continuacién.
Llamamos «esfera» al objeto matemaético tridimensional que esta
formado tanto por su «ciscara» como por su interior; en cambio,
cuando se habla solo de la «cascara» (que es un objeto bidimensio-
nal) se la denomina «superficie esférica» o «superficie de la esfera».

Retomemos ahora nuestro discurso. Si los planilandeses vi-
vieran en la superficie de una enorme esfera, ;cémo podrian lle-
gar a darse cuenta de ello? Pero antes de contestar esta cuestién,
preguntémonos cémo podemos estar seguros nosotros de que
vivimos sobre una superficie esférica; es decir, ;co6mo podemos
comprobar que la Tierra es realmente esférica? Una manera
de comprobarlo consiste en viajar directamente hacia el frente
sin desviarse; si la Tierra es en verdad esférica, tarde o temprano
regresaremos al punto de partida. Histéricamente, como es bien
sabido, este procedimiento fue llevado a la practica por los pri-
meros marinos que circunnavegaron el globo. Pero supongamos
que Planilandia es tan inmensamente grande que un método como
este resultara completamente irrealizable,

FIG. 2

Planilandia como

la perciben sus
habitantes. Planilandia como podria

ser en realidad.
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COORDENADAS CARTESIANAS

El primero en proponer que la posicién
de los puntos del plano podia caracte-
rizarse usando una pareja de coordena-
das fue el matematico v filésofo fran-
cés René Descartes (1596-1650) en un
trabajo publicado en 1637 bajo el titulo
de La Géométrie. Poco tiempo antes el
también matematico, v abogado, fran-
cés Pierre de Fermat (1601-1665) habia
hecho la misma propuesta, pero su tra-
bajo se publico unos afnos después que
el de Descartes. En aquella época, los
trabajos cientificos solian escribirse casi
excfusivamente_en latin, pero Descartes o, 0 o pens Bascaibes pintais
queria que sus ideas llegaran al mayor  hacia 1649.

numero posible de sus conciudadanos,

y no solo a los eruditos; por ese motivo,

aunque conocia perfectamente el latin, escribia en francés. De todos modos,
sus obras fueron traducidas al latin y en ellas su nombre, latinizado, se trans-
formo en Renato Cartesio. Por ese motivo al sistema de coordenadas que él
propuso se lo conoce como sistema de coordenadas cartesianas.

La pregunta, entonces, es si los planilandeses podrian llegar
a distinguir si su mundo es «perfectamente horizontal» o si es
«curvado» usando solo procedimientos locales, es decir, mediante
métodos que no los obliguen a alejarse mucho de la posicién en
la que se encuentren. De nuevo trasladamos esta pregunta al caso
de la Tierra: ;cémo podemos comprobar que la Tierra es esfé-
rica mediante procedimientos locales? En realidad, hay una gran
cantidad de experimentos que permiten comprobar que la Tierra
es esférica. Vale la pena destacar que fodos ellos implican, de un
modo u otro, observar «por arriba» de la superficie de la Tierra
y, por lo tanto, no se restringen estrictamente a la superficie del

planeta, sino que conllevan la idea de una tercera dimension.

Un experimento clésico para verificar la curvatura de la Tierra
consiste en observar que cuando un barco de vela se va alejando
de la costa, las personas que se quedan en el puerto dejan de ver
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primero el casco del barco y solo posteriormente dejan de ver el
mastil. Esta observacién permite comprobar que la superficie de
la Tierra es curva, ya que de ser perfectamente horizontal el casco
y el maéstil se verian ambos a la vez todo el tiempo, aunque, por
supuesto, cada vez mas pequeiios (figura 3).

Este experimento implica una tercera dimensién porque
presupone que la luz puede separarse de la superficie terrestre
(el observador levanta la vista para ver alejarse el barco); como
consecuencia de ello, esta experiencia seria inconcebible para un
planilandés, ya que Planilandia, a diferencia de la Tierra, no es
un mundo plano contenido en un universo tridimensional mayor,
sino que Planilandia es en si mismo un universo bidimensional.
La luz viaja dentro de Planilandia de la misma forma que viaja den-
tro de nuestro universo, y si Planilandia fuese curvo, la trayectoria
de la luz en su interior estaria asimismo forzada a curvarse para
respetar la forma del universo (figura 4).

FIG.3

FIG. 4

.....

" Trayectoria de la luz
s dentro de Planilandia.
—'..."
¢
Planilandia curva
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FIGURA 3-

Cuando el barco
se aleja de la
costa la curvatura
de la Tierra oculta
primero el casco
y mds tarde el
mastil.

FIGURA, 4:

En un universo
curvo, la
trayectoria de
la luz respeta
esa curvatura.
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LA REDONDEZ DE LA TIERRA

Varios pensadores griegos de la Antigliedad sostuvieron que la Tierra es es-
férica; sin embargo, Aristoteles (384-322 a.C.) parece haber sido el primero
en dar argumentos empiricos a favor de esa idea. Uno de ellos se basaba en
el hecho de que, al viajar hacia el sur, las constelaciones visibles alcanzaban,
en el cielo nocturno, alturas diferentes de las observadas en Grecia. Pero
el primero en medir la circunferencia terrestre fue Eratéstenes de Cirene
(276-194 a.C.). Mientras trabajaba en Alejandria, donde llegé a ser director
de la Biblioteca, Eratostenes recibio informes desde Siena (hoy Asuan), una
ciudad ubicada unos 800 km al sur de Alejandria, exactamente sobre el
Tropico de Céncer, que decian que al mediodia del 21 de junio el sol se re-
flejaba en el agua de los pozos y que una vara colocada verticalmente sobre
el suelo no producia sombra alguna. Eratéstenes verificé que un palo co-
locado verticalmente en Alejandria, en ese mismo momento, si proyectaba
una sombra bien definida. Midiendo esta sombra, Eratdstenes calculd que
los radios terrestres correspondientes a Alejandria y a Siena formaban un
angulo de unos 7°. Conocido este dngulo y la distancia a Siena, Eratéstenes
dedujo gue la circunferencia terrestre era de unos 40000 km, el valor mas
exacto conocido en la Antigtiedad.

e

Rayos de sol \ Alejandria
~

~
_

L e BB
Siena

La pregunta, por lo tanto, es: ;seria posible para un planilan-
dés comprobar si su universo es «horizontal» o si es «curvado»
mediante algin experimento local que no implique una tercera
dimensioén? Trasladando el problema a la Tierra, ;podriamos com-
probar que la superficie de la Tierra es curva sin mirar por encima
o por debajo de ella? Estas son, esencialmente, las cuestiones
que se formulé Riemann en su famoso trabajo de habilitacién y
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la respuesta, dijo Riemann, pasa por la nocién de distancia y por
las desviaciones que puedan existir con respecto al teorema de
Pitagoras. Explicaremos estas ideas en las préximas secciones.

VARIEDADES DIFERENCIALES

Ya se ha sefialado antes que el plano tiene dos dimensiones; in-
tuitivamente esto puede ser obvio, pero ;cémo se define riguro-
samente en matematicas la idea de dimension? Los matematicos
dicen que el plano tiene dos dimensiones porque en €1, tal como
vimos en el capitulo anterior, la posicién de cada punto queda
determinada por dos coordenadas. A su vez, que las coordenadas
necesarias sean dos es consecuencia del hecho de que en el plano
hay dos direcciones perpendiculares a lo largo de las cuales un
punto puede moverse (adelante-atrds o derecha-izquierda). Cada
coordenada indica la posicién del punto con respecto a una de
esas dos direcciones: la primera coordenada indica en qué me-
dida se movio hacia la derecha o hacia la izquierda y la segunda
coordenada indica en qué medida se movi6 hacia delante o hacia
atras (figura 5).

AR . G 333
2 .
1 :
: o i
3

FIG. 5

Plano bidimensional 11 R

Espacio tridimensional
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Para construir una
cinta de Mébius se
toma una tira de
papel con forma
de rectangulo,
cuyos vértices
llamamos
A,B,CyD.

A continuacién se
pegan los bordes
maés cortos, pero
antes se gira uno
de ellos de modo
tal que el vértice
A se pegue con el
C,velBconelD,

FIG. &

En el mismo sentido, una recta tiene solo una dimensiéon
porque la posicién de un punto queda determinada por un tinico
nimero; el espacio, por su parte, tiene tres dimensiones porque,
como también se ve en la figura 5, la posicién de un punto queda
definida por tres coordenadas, ya que en el espacio un punto puede
moverse en tres direcciones: adelante-atras, derecha-izquierda y
arriba-abajo. (Vale la pena aclarar que esta definicién de la idea
de dimensi6n corresponde a la llamada dimensién topoldgica de
un objeto matematico; existen, en realidad, otras definiciones po-
sibles para la dimensién, como la dimensién fractal, pero estas
comenzaron a desarrollarse en el siglo xx y se basan en conceptos
ajenos a los temas tratados en este libro.)

Pero, ademds, solemos decir, y de hecho se ha afirmado en
el apartado anterior, que la superficie de una esfera también tiene
dos dimensiones, y lo mismo suele decirse de la «cdscara» de una
rosquilla (superficie que en matemaéticas es conocida como t0r0).
De la misma forma, también tiene dos dimensiones una cinta de
Mobius, tal y como se observa en las diversas fases de su cons-
truccién (figura 6).

Es sabido que la posicién de cada punto de la superficie de
una esfera (por ejemplo, cada punto de la superficie terrestre)
queda determinada por dos coordenadas, su latitud y su longitud;
pero jsucede lo mismo en un toro, en una cinta de Mobius o en
cualquier otra superficie? La respuesta es que si y, a continuacion,
explicaremos los motivos en el caso del toro (en otras superficies
la explicacién es practicamente la misma).

60
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AUGUST FERDINAND MOBIUS (1790-1868)

M&bius nacié en Schulpforta (Alemania)
y, siguiendo los deseos de su familia, en
1809 ingreso en la Universidad de Leip-
zig con la intencidn de estudiar leyes.
Pero pronto descubrié que no era esa
su verdadera vocacion y que preferia
las ciencias. Por ese motivo en 1813 se
matriculd en la Universidad de Gotinga,
donde estudid astronomia con Gauss y
matematicas con Johann Pfaff (quien
habia sido el mentor de Gauss). En Go-
tinga, en 1815, se doctord con un tra-
bajo sobre astronomia; ese mismo afo
completd su trabajo de habilitacion, con
una investigacién sobre matematicas.
Fue en una memoria enviada a la Aca-
demia de Ciencias de Paris, la cual solo
fue descubierta después de su muerte,
donde Moébius discutia las propiedades
de varias superficies, entre ellas la cinta que hoy lleva su nombre. Aunque la
mayoria de sus trabajos trataron sobre geometria analitica o sobre topolo-
gia, también hizo aportes muy relevantes a la astronomia.

Imaginemos que «recortamos» una parte circular del plano (la
forma exacta del recorte en realidad no es importante, porque va-
mos a deformarlo como si estuviera hecho de goma, es decir,
vamos a aplicarle una deformacién topolégica como las estudia-
das en el capitulo anterior). Un toro, dice Riemann, puede cu-
brirse completamente usando una cantidad adecuada de copias
de ese recorte, copias que han sido convenientemente deformadas
para «encajar» perfectamente con el toro. En la figura 7 (pag.si-
guiente) puede verse que para cubrir al toro es suficiente con cua-
tro de esos recortes deformados (en la imagen se ha destacado
uno de ellos).

Ahora bien, cada una de esas copias lleva consigo las coor-
denadas que tenia en el plano (figura 8). Cada parte P del toro
cubierta por una de esas copias «hereda» esas coordenadas, las
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FIG. 7

FIG.8

[ Loy —

1

cuales sirven para determinar la posicién de cualquier punto del
toro (al menos de cualquier punto que se encuentre en la parte
P). Por ejemplo, en la figura 8 vemos el punto que corresponde a
la posicién (1,1). Nétese que estas coordenadas «heredadas» no
sirven para el toro completo, sino que solo se aplican en la parte
cubierta por la copia correspondiente; se dice entonces que el
toro tiene sistemas de coordenadas locales (y no necesariamente
un sistema de coordenadas global, como si tiene el plano).

De hecho, la propia superficie esférica tiene también sistemas
de coordenadas locales; tal y como muestra la figura 9, podemos
cubrir esa superficie con dos copias del recorte circular del plano:
una cubre el «<hemisferio norte» de la superficie de la esfera (des-
tacada en la imagen), y la otra, el «<hemisferio sur».

Cada una de estas copias que cubren el toro o la superficie
de la esfera se denomina carta (en el mismo sentido en el que, en
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otro contexto, se habla de cartas de navegacién) y a la coleccién
de todas las cartas se la conoce como el atlas del toro (o de la
superficie esférica): un conjunto de mapas que permiten ubicar,
en cada region, la posicién de cada punto.

Para Riemann, un toro tiene dos dimensiones porque gracias
asu atlas, que define sistemas de coordenadas locales, la posicién
de cualquiera de sus puntos puede determinarse usando solo dos
nimeros; y lo mismo sucede con la superficie esférica y con la
cinta de M6bius. En realidad, todo objeto matemético que pueda
cubrirse totalmente con circulos convenientemente deformados
tiene dos dimensiones. En matemaéticas a estos objetos se los
llama variedades diferenciales de dos dimensiones. De la misma
forma, una circunferencia es una variedad diferencial de una sola
dimensién, ya que puede cubrirse con dos copias de un segmento,
es decir, con dos recortes tomados de la recta (figura 10).

FIG. 9

FIG. 10 T =
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El estudio de las variedades diferenciales constituye la rama
de las matemaéticas conocida como geomelria diferencial. Una
cuestion interesante es que Riemann establecié que, ademas de
las variedades diferenciales de una o dos dimensiones, existen
también variedades diferenciales de tres dimensiones, o de cuatro
dimensiones, o de cinco, o de seis... De hecho, segiin algunas teo-
rias fisicas que actualmente estan siendo investigadas, nuestro pro-
pio universo podria ser una variedad diferencial de nueve o diez
dimensiones; volveremos a esta cuestién en este mismo capitulo.

Antes de seguir avanzando es necesario mencionar breve-
mente un detalle técnico. Por razones relacionadas con la co-
rrecta definicién de las deformaciones que les aplicamos a los
«recortes», es necesario que estos no incluyan su propio borde;
en otras palabras, los circulos que recortamos del plano no deben
incluir la circunferencia que les sirve como borde. Al tomar en
cuenta esta condicién, en la figura 9 el ecuador de la superficie
esférica queda en realidad sin cubrir, ya que el ecuador es, jus-
tamente, el borde tanto de la carta que cubre el hemisferio norte
como de la que cubre el hemisferio sur; unos bordes que, si se
respeta la mencionada restricciéon técnica, no forman parte de
ninguna de las dos cartas. Para evitar esta situacion, el recorte
que cubre el hemisferio norte deberia extenderse un poco hasta
cubrir parte del hemisferio sur, y viceversa (figura 11).

Una situacién similar se da en el toro que se muestra en la
figura 7 (pag. 62), donde, estrictamente hablando, la frontera entre

Fig.m

Ecuador de la
esfera

X s it
Como la carta no incluye su v ;
borde entonces tiene que
extenderse mas alla del

ecuador de la esfera. e _ i
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cada par de cartas queda sin cubrir y una vez mas, para evitar
esta situacion, cada recorte debe superponerse un poco con sus
vecinos. En realidad, en casi todas las variedades diferenciales es
normal que haya cartas que se superpongan.

Por otra parte, y nuevamente por razones técnicas, al trans-
formar las cartas para adaptarlas a las superficies no es valido
que la deformacion genere «picos» o «dobleces»; las deformacio-
nes, se dice, deben ser «suaves». Concretamente, por ejemplo,
mientras que una superficie esférica o la superficie de un elipsoide
(es decir, la superficie de una pelota de rugby) son variedades
diferenciales, por el contrario, la superficie de un cubo 7o es una
variedad diferencial, ya que a lo largo de sus aristas tiene dobleces
«no permitidas». A la superficie de un cubo, o a la de cualquier
otro poliedro, se la llama una variedad topolégica y su estudio
no forma parte de la geometria diferencial, sino de la topologia.

De todos modos, dado que aqui estamos hablando solo de
las ideas generales del trabajo de Riemann, todos estos detalles
técnicos, aunque sean importantes desde un punto de vista teé-
rico, no tendran mayor relevancia para nosotros y no volveremos
a referirnos a ellos.

LA DISTANCIA SEGUN PITAGORAS

Volvamos a la pregunta que habiamos planteado inicialmente:
scémo podrian los planilandeses distinguir si la variedad dife-
rencial de dimensién dos que constituye su universo es «plana»
o «curvada»? Dijimos antes que la res-
puesta de Riemann se relaciona con las
«desviaciones con respecto al teorema de FIG. 12
Pitdgoras»; veamos a continuacién en qué
consiste esta idea.

La distancia entre dos puntos A y B
del plano es, por definicién, la longitud A
del camino rectilineo que conecta A con
B (figura 12). Ahora bien, ;por qué el ca-
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En el plano la distancia
entre A y B es la longitud
del camino rectilineo
que los conecta.
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FIG. 13

mino debe ser rectilineo? ;Por qué

A no puede tener otra forma cual-

quiera? La respuesta es que para

\ definir la distancia entre A y B se

C";Tmc:m 1\ elige, de todos los caminos posi-

o it £ 3 bles que van de un punto a otro,

% ! aquel que sea el mas corto; y es

e e inaig bien sabido que, de todos los cami-

I nos posibles que van de A a B, el

8 i mds corto es, precisamente, el que

J va en linea recta.

’ En su trabajo de habilitacién

s Riemann logré extender esta idea

de «distancia entre dos puntos»

a una variedad diferencial cual-

quiera, y para ello introdujo el concepto de geodésica. Asi como

en el plano la recta es el camino mas corto entre dos puntos, de la

misma forma, en el caso de una variedad diferencial cualquiera,

Riemann llamé «geodésica» al camino més corto de todos los que

conectan dos puntos de esa variedad (el camino, por supuesto, no

puede salir en ningtin momento de la variedad); de este modo, las
rectas son las geodésicas del plano.

Tomemos ahora, a modo de otro ejemplo, una superficie es-
férica. Puede demostrarse que en este caso las geodésicas son
los circulos mdximos, es decir, las circunferencias cuyo centro
coincide con el centro de la esfera (figura 13). Dicho en otros
términos, el camino mas corto entre dos puntos de la superficie
de una esfera es el que se mueve a lo largo de uno de sus circulos
maximos.

En el globo terrestre los circulos miaximos mas conocidos son
el ecuador y los meridianos; de este modo, por ejemplo, el camino
mas corto entre el polo norte y un punto cualquiera del ecuador
es aquel que sigue la linea del meridiano que los conecta. (En rea-
lidad, estrictamente hablando, cada meridiano equivale a «medio
circulo maximo» y solo forma un circulo maximo completo con
su meridiano opuesto; asi, por ejemplo, un circulo maximo esta
formado por el meridiano de Greenwich y el de 180° juntos.)
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En resumen, la distancia més corta
entre dos puntos de una superficie es-
férica es la longitud del arco de circulo
maximo que los conecta. Generalizando
esta idea, Riemann dijo que la distancia a
entre dos puntos de una variedad diferen-
cial cualquiera es la longitud del arco de
geodésica que los conecta.

Pero ;,como calculamos la distancia
entre dos puntos? En el caso del plano, la respuesta esta estrecha-
mente relacionada con el teorema de Pitdgoras. Este teorema, uno
de los mas famosos de las matematicas, dice que en un tridangulo
rectangulo el cuadrado de la hipotenusa es igual a la suma de los
cuadrados de los catetos (figura 14).

Para ver cémo se relaciona el teorema de Pitdgoras con el
calculo de la distancia entre dos puntos del plano, supongamos
que, siempre en el plano, viajiramos en linea recta desde el punto
de coordenadas (1,3) hasta el punto (1,1) y que inmediatamente a
continuacién fuésemos desde alli, también en linea recta, hasta el
punto (4,1), tal y como muestra la figura 15. ;Cudl es la distancia
entre el punto inicial y el punto final de este recorrido?

FIG. 14

Teorema de Pitdgoras
c?=a2+h?

c

FIG. 15
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EL TEOREMA DE PITAGORAS

El teorema de Pitagoras ya era cono-
cido por egipcios y sumerios mucho

antes del nacimiento del sabio griego.
Se cree, inclusive, que el propio Pita-
goras (ca. 569-475 a.C.) aprendi6 el
teorema de ellos durante sus viajes por
Egipto y Mesopotamia. Sin embargo, el
meérito de Pitdgoras consistio en haber
sido el primero en hallar una demostra-
cion, aunque esta no ha llegado hasta
nosotros (tampoco esta claro si la de-
mostracion fue realizada por Pitagoras
en persona o por alguno de sus discipu-
los). Si es un hecho cierto que a lo largo
de los siglos gue siguieron a Pitagoras,
los matematicos han ido descubriendo
cientos de demostraciones diferentes

Pitdgoras representado por Rafael
en La escuela de Atenas.

de ese teorema. Tanto es asi que en 1927 el estadounidense Elisha S. Loomis
publicé una recopilacion con 370 de ellas, una cantidad de demostraciones
que no ha sido igualada por ningun otro teorema matematico.

Es facil ver que la distancia recorrida en el primer tramo es
2, y que la del segundo es 3. Por otra parte, como se ve en la
misma figura 15, los tres puntos en cuestién son los vértices de
un triangulo rectidngulo y la linea recta que va del punto inicial al
final es su hipotenusa; por lo tanto, por el teorema de Pitdgoras,
la distancia entre el punto (1,3) y el (4,1) es v/2% + 3% = /13 = 3,606.

MARCO POLO EN PLANILANDIA

Imaginemos ahora que los planilandeses fueran unos seres muy pe-
queiios (de unos pocos centimetros cuadrados de drea), mientras
que todo su universo es la superficie de una esfera similar en tamafio
a la Tierra; mas exactamente, digamos que en Planilandia cada cir-
culo maximo mide en total 40000 km. En realidad, somos nosotros,
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seres tridimensionales que vemos Planilandia desde «afuera», quie-
nes sabemos que se trata de una gran superficie esférica; como ya
se dijo, los propios planilandeses tendrin la sensacién de vivir en
un plano, ya que localmente la superficie de una esfera se parece
a una parte del plano (de hecho, a escala humana, la superficie de
la Tierra parece plana a simple vista). Cada meridiano de ese uni-
verso, y en general cada circulo maximo (es decir, cada geodésica)
serd percibida por los planilandeses como una linea recta.

Imaginemos ahora que un explorador planilandés viajara a lo
largo de uno de los meridianos de su universo desde el polo norte
N hasta un punto A situado en el ecuador, que luego gira «per-
pendicularmente» hacia el este y que, a continuacion, viaja otros
2000 km a lo largo del ecuador de Planilandia hasta otro punto B
situado también en el ecuador.

Como ya se apunt6, dado que el planilandés se ha movido
todo el tiempo por las geodésicas de su universo, su percepcién
sera que entre los puntos N y A ha viajado en linea recta, y que
asimismo ha ido en linea recta al ir desde A hasta B. Ademas, dado
que en el primer tramo el explorador se movid directamente hacia
el sur y luego giré hacia el este, su percepcién sera que, entre un
tramo y otro del viaje ha girado 90°. En definitiva, el explorador
vera los puntos N, A y B como los vértices de un tridngulo rectan-

gulo (figura 16).

N FIG. 16
~
-—
A B
Recorrido real del explorador Recorrido como lo percibe
en la Planilandia esférica. el explorador.
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Supongamos, ademads, que el explorador lleva consigo un
odémetro, es decir, un instrumento que a medida que avanza le
indica cudl es la distancia que va recorriendo. Evidentemente
este instrumento le dird que entre N y A ha viajado 10000 km
(la cuarta parte de la circunferencia total de la superficie de la
esfera) y que entre A y B ha vigjado 2000 km. Ahora bien, ;cual
es la distancia entre B y N? El explorador, que sabe geometria,
podria intentar el célculo de esta distancia mediante el teorema
de Pitagoras, tal como se ha hecho en el ejemplo anterior; de este
modo obtendria que la distancia en «linea recta» entre By N es
igual a /10 000% + 2 000° =10198,04 km. Pero si el explorador viaja
entre los puntos By N a lo largo de la geodésica que los conecta,
el odémetro le dird que ha recorrido solo 10000 km; la distancia
calculada por el teorema es casi un 2% mayor que la distancia real.

Esta discrepancia esta motivada porque el teorema de Pitago-
ras solo vale en el plano y falla en cualquier superficie curvada. En
consecuencia, al hacer los cdlculos y mediciones antes descritos,
el explorador planilandés habra demostrado, usando medios exis-
tentes dentro de su propio universo, que este es curvo y no plano.
Por otra parte, el explorador tendria otra clara indicacién de que
su universo es curvo al observar que la geodésica que vade BaN
es perpendicular a la que va desde A hasta B, mientras que en un

FIG. 17

5= Angulo menor

a 90°
\
\

Recorrido real del explorador
en la Planilandia esférica.
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universo plano las dos geodésicas formarian un d4ngulo menor a
90° (figura 17).

De hecho, haciendo las mediciones adecuadas, asi como un
analisis mas fino de las discrepancias con el teorema de Pitdgoras
y de los angulos que forman los lados de los tridngulos determina-
dos por las geodésicas, el explorador podria inclusive determinar
si la forma real de su universo es esférica, o si tiene la forma de un
toro, la de una cinta de Mébius o la de cualquier otra superficie.

En teoria, para saber si Planilandia es un universo plano o
curvo, un cientifico planilandés solo necesitaria medir los lados
de un tridngulo rectingulo trazado dentro de su universo y com-
probar si esas medidas se corresponden, 0 no, con las que predice
el teorema de Pitdgoras; en caso afirmativo el universo sera plano
y, en caso contrario, no lo serd. En la préctica, sin embargo, esta
determinacién puede ser dificil, ya que cuando la superficie es
curvada, la discrepancia entre la medida real de la hipotenusa y el
valor predicho por el teorema de Pitdgoras es, en general, propor-
cional al tamafio del tridngulo considerado. Si el triangulo no es
muy grande, entonces la discrepancia puede ser tan pequeiia que
podria llegar a confundirse con simples errores de medicién. En el
caso del explorador planilandés de nuestro ejemplo la discrepan-
cia es tan grande porque el explorador recorrié nada menos que
la cuarta parte de la longitud total de su universo. En tridngulos
mucho mas pequernios la discrepancia podria ser mucho mas dificil
de detectar; volveremos a esta cuestion méas adelante.

ESFERAS E HIPERESFERAS

Las reflexiones acerca de como determinar «desde adentro» si un
universo bidimensional es plano o curvado son muy interesan-
tes, pero aun es méas interesante observar que, en su trabajo de
habilitacién, Riemann postulé que nuestro universo, el universo
en el que verdaderamente vivimos, es en realidad una variedad
diferencial de tres dimensiones y que, en consecuencia, es perfec-
tamente licito preguntarse si se trata de un universo «no curvado»
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o de un universo «curvado». Analicemos esta extraordinaria idea
de Riemann.

La geometria del espacio que se estudia en la escuela es la
llamada geometria euclidea, que lleva ese nombre porque sus
propiedades bésicas fueron postuladas, en el siglo m a.C., por
Euclides de Alejandria. Dijimos antes que, asi como la posicién
de un punto del plano queda determinada por dos coordenadas,
de manera similar la posicién de un punto en el espacio euclideo
queda determinada por tres coordenadas (figura 5). Un sfmil geo-
grafico de esta ultima situacién seria el siguiente: para determi-
nar con toda precisién dénde esta ubicado un escalador que va
subiendo una montafa se necesita conocer, no solo su latitud y
su longitud, sino también a qué altura se encuentra con respecto
al suelo.

Nuestro universo es una variedad diferencial de dimension
tres porque localmente se parece a una seccién esférica del espa-
cio euclideo. Por ejemplo, si tomamos al Sol como centro de un
sistema de coordenadas, entonces la posicién de cualquier punto
del sistema solar (o del universo cercano) quedara perfectamente
determinada por sus coordenadas con respecto a esos ejes, los
cuales forman un sistema local de coordenadas (figura 18).

Esa gran esfera centrada en
el Sol seria por lo tanto una carta
local de nuestro universo, simi-
lar a cada una de las cartas cir-
culares que cubren los universos
planos de las figuras 7 y 9 (pags.
. 62 y 63). Ahora bien, dijimos que
- si Planilandia fuese una enorme
) superficie esférica, entonces sus
j—_",/ habitantes no percibirian a simple

vista su curvatura, pero si podrian
3 determinarla midiendo las desvia-
ciones locales con respecto al teo-
rema de Pitdgoras. Nuestra propia
situacién, como seres tridimen-
sionales, es similar; de este modo,
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EL TESERACTO

Asi como una hiperesfera es la version tetradimensional de una esfera, un
teseracto es la version tetradimensional de un cubo. Si unimos dos seg-
mentos mediante otros dos que sean perpendiculares a ellos obtenemos
un cuadrado; si unimos dos cuadrados iguales mediante cuatro segmentos,
también iguales, que sean perpendiculares a los cuatro lados del cuadrado,
obtenemos un cubo. De manera similar, si unimos dos cubos iguales me-
diante ocho segmentos, también iguales, que sean perpendiculares a todas
las aristas del cubo obtenemos un hipercubo, o teseracto. Esa direccién que
es perpendicular simultdneamente a todas las aristas del cubo es comple-
tamente inimaginable para nosotros. (En la imagen del teseracto, el cubo
interior y el exterior son iguales; el del interior se ve mas pequefo porque

esta «mas lejos» en la cuarta dimension.)

-—
Segmento

Cuadrado

Cubo Teseracto

cabe la posibilidad de que nuestro universo sea en realidad una
enorme hiperesfera, una enorme variedad diferencial tridimen-
sional curvada, pero de cuya curvatura no somos conscientes a
simple vista.

Asi como una superficie esférica es la «cidscara» de un cuerpo
tridimensional perfectamente simétrico, una hiperesfera es la
«cascara tridimensional» de un objeto de cuatro dimensiones tam-
bién perfectamente simétrico; y aunque es verdad que nos resulta
imposible visualizar cémo es un objeto de cuatro dimensiones, si
podemos hacernos una idea de cémo es realmente una hiperes-
fera gracias a la nocién riemanniana de carta local.

La figura 9, y también la figura 19 (pag. siguiente), muestran
que una superficie esférica puede visualizarse como dos circulos
«pegados por sus bordes», es decir, dos circulos cuyas circunfe-
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FIG. 19

rencias han sido empalmadas formando una sola curva, la cual, a
su vez, es el ecuador de la superficie esférica. Obsérvese ademas
que, antes de ser pegados por sus bordes, estos dos circulos deben
ser curvados en una direccién perpendicular a su superficie (fi-
gura 19), una direccién inconcebible para un planilandés.

Siguiendo esta misma idea, para visualizar un universo hi-
peresférico debemos imaginar que dos esferas tridimensionales,
digamos E| y E,, son «pegadas» por sus cascaras. Esto quiere
decir que el polo norte de la superficie de E| ser4, para cualquier
habitante de ese universo hiperesférico, exactamente el mismo
punto que el polo norte de la superficie de E, (véase mas adelante
la figura 20). La superficie de E, pegada a la de E,, juega el mismo
papel que juega el ecuador en las figuras 9 y 19. Observemos que
para que sea posible pegar las esferas del modo que estamos pos-
tulando debe suponerse que E| y E, han sido «curvadas» en una
direccién que es inimaginable graficamente para nosotros, ya
que es simultineamente perpendicular a los ejes adelante-atras,
arriba-abajo y derecha-izquierda.

Suponemos, pues, que las dos esferas E| y E, han sido pegadas
por sus ciscaras, pero sin que se peguen entre si los puntos inte-
riores, de la misma manera que en la figura 19 los circulos se pegan
por sus bordes sin que se peguen sus puntos interiores. Un universo
hiperesférico no es otra cosa que la unién de las dos esferas asi
pegadas, que constituyen las dos cartas locales de ese universo.

Ahora bien, dijimos antes que si Planilandia fuese una super-
ficie esférica entonces un explorador planilandés que viajara «en
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linea recta» terminaria por volver al punto de partida. Lo mismo le
sucederia a un explorador humano en un universo que fuese una
hiperesfera. En efecto, llamemos P al centro de la esfera E y Q al
centro de E, (figura 20), y supongamos que un explorador parte
desde el punto P y viaja en linea recta hacia el norte; cuando el
explorador llegue al punto N entrari inmediatamente en la esfera
E, (recuérdese que el punto N de E, y el punto N de E, son exac-
tamente el mismo punto). El explorador no tendra ninguna sensa-
ci6n en especial al pasar de E| a E,, de la misma forma que noso-
tros no sentimos nada en especial al pasar del hemisferio norte al
hemisferio sur de la Tierra. Siempre viajando en linea recta, el ex-
plorador atravesara E, hasta el punto S, y
en el camino pasara por @, que es el punto
del universo mads alejado de P. Al llegar a
Svolveré a entrar a E, y finalmente llegard
al punto de partida. La percepcién del ex-

.z

plorador serd que ha vuelto al punto inicial =~ ______

tras viajar todo el tiempo en linea recta. -

FIG. 20

g B P
:Nuestro universo es un espacio tridi- \—'_/
mensional euclidiano «no curvado»? ;0,

por el contrario, es una variedad diferen-

cial curvada, ya sea que se trata de una

hiperesfera, o de una variedad con alguna -
otra forma? En realidad, es imposible res- s
ponder estas preguntas mediante el pro-
cedimiento de enviar a un explorador en

un viagje en linea recta y esperar a ver si

alguna vez regresa al punto de partida. Por

un lado, es imposible en la prictica porque

implicaria recorrer miles de millones de S

- -

3]

afos luz, pero, ademés, sobre todo es im- \_’"/4/
posible porque hoy sabemos (aunque en la

época de Riemann esto era inimaginable)
que el universo estd en expansién, y que,
de hecho, hay regiones del mismo que se
alejan de nosotros a velocidades tales que
son inalcanzables ni siquiera en teoria.

Ze
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LA EXPANSION DEL UNIVERSO

Hasta principios del siglo xx practica-
mente todos los cientificos sostenian la
idea de que el universo era, a gran es-
cala, esencialmente estatico. Esta idea
cambid a finales de la década de 1920
con el descubrimiento de la expansién
del universo, ya que si este estd en ex-
pansién entonces debio haber necesa-
riamente en el pasado un momento en
que fue mucho mas pequefo. Normal-
mente suele atribuirse el hallazgo de la
expansion del universo al astrénomo
norteamericano Edwin Hubble (1889-
1953). Sin embargo, investigaciones re-
cientes sugieren que el descubrimiento
deberia atribuirse en realidad al astro-

f ; t big dot 3 Georges Lemaitre fotografiado en
nomo Irances, y tambien Sacerdole ca~ , ypiversidad Catslica de Lovaina

télico, Georges Lemaitre (1894-1966).  hacia 1933,

El trabajo de este ultimo fue publicado

en francés dos afios antes que el de Hubble, pero no tuvo mucha difusion
y Lemaitre, tal vez por su modestia innata, prefirié no reclamar la prioridad
del hallazgo.

Esto significa que las dos esferas de la figura 20 se estdn «in-
flando» a una velocidad tan grande que es imposible, incluso en
teoria, que el viajero alcance alguna vez el punto @ porque este se
aleja de P a una velocidad mayor de la que el viajero es capaz de
desarrollar. Cabe la posibilidad de que alguna vez la expansion se
detenga, o inclusive que se revierta y que el universo entre en una
fase de contraccién, en cuyo caso el viaje pasaria a ser realizable
al menos en teoria; pero tales posibilidades son cuestiones sobre

las cuales los cosmélogos atin no se han puesto de acuerdo.

Pero, tal y como ya se apunto, existe también otro modo de
determinar si una variedad diferencial es «curvada» o no: el teo-
rema de Pitdgoras. De manera similar a lo que antes se comenté
para las superficies, el teorema de Pitdgoras es vilido en el es-
pacio euclideo de tres dimensiones, pero falla en espacios con

LA FORMA DEL UNIVERSO



curvatura. De modo que, en teoria, deberiamos ser capaces de
determinar si nuestro universo es plano o curvo analizando las
desviaciones con respecto a ese teorema en tridngulos trazados
entre tres puntos del espacio, mejor todavia si se trata de tridngu-
los de gran tamario.

«El de Riemann parece ser uno de esos casos en los que
las ideas mas originales y caracteristicas de un pensador
aparecen muy pronto.»

— JosE FERREIRGS, RIEMANNIANA SELECTA.

Recientemente se han hecho mediciones de ese estilo, tomando
triAngulos cuyos lados son los rayos de luz emitidos por objetos si-
tuados a enormes distancias (del orden de los miles de millones de
aiios luz). Sin embargo, aun trabajando con tridngulos de un orden
de magnitud tan descomunal, las mediciones no han sido conclu-
yentes; en principio, los valores registrados difieren de los que se
obtendrian en un universo «plano», pero esa diferencia es tan pe-
quena que no queda claro si se debe al hecho de que el universo es
realmente curvo, o si estd causada por los inevitables errores de
medicion. Por otra parte, esta situacién, esta imposibilidad (por el
momento) de distinguir entre un universo «plano» y uno curvo es
tomada por algunos cosmélogos como un resultado positivo, ya que
las teorias sobre el origen del universo actualmente vigentes, con-
cretamente la llamada «teoria inflacionaria», predicen precisamente
que nuestro universo tiene una curvatura practicamente nula. La
cuestion todavia estd abierta y su investigacion seguramente apor-
tard resultados muy interesantes en los préximos afos.

RIEMANN Y EINSTEIN
Ademas del problema que acabamos de describir —la geometria

global del universo—, Riemann estaba también muy interesado
en la cuestion de la posible existencia de «curvaturas locales», es
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La luz que

pasa por las
proximidades del
Sol sufre una
curvatura debido
a la gran masa del
astro, fenémeno
que hace que
cambie la posicién
aparente de
algunas estrellas.

FIG. 21

@ Tierra

78

Posicion aparente ./

Rayo de luz que viaja
por la geodésica

decir, de pequenias «arrugas» en la textura del espacio. Para Rie-
mann esta era una cuestion fundamental, ya que él entendia que
las leyes de la fisica no debian expresarse, como hacia Newton,
en términos de fuerzas que actiian instantdneamente entre obje-
tos materiales que pueden estar ubicados a enormes distancias,
sino que estas leyes debian formularse en términos de la geome-
tria local del universo. Es decir, para Riemann el espacio tenia un
papel activo en las interacciones fisicas, mientras que para New-
ton era solo el escenario pasivo en el que ocurrian los fenémenos.

Mas alla de las insinuaciones en ese sentido que hizo en su
trabajo de habilitacién, Riemann no llegé a desarrollar estas
ideas; pero hoy se sabe que su modo de pensar la fisica era esen-
cialmente correcto. Sus ideas fueron retomadas a principios del
siglo xx por Albert Einstein (1879-1955) y constituyeron una de
las bases fundamentales de la teoria de la relatividad. Gracias a
Einstein, hoy sabemos que la materia curva localmente el espacio
y que la «fuerza de gravedad» no es otra cosa que una consecuen-
cia de esta curvatura.

Asi, en 1919, en una famosa observacién astronémica, el as-
trofisico britanico Arthur Eddington (1882-1944) comprobé que
la trayectoria de la luz se curva al pasar cerca del Sol (en rea-
lidad se curva al pasar cerca de
cualquier objeto fisico, pero la
enorme masa del Sol hace que en
ese caso el efecto sea mds visible).

de la estrella <
'

. i ﬁ. Durante un eclipse total de Sol (fi-
Posicién real gura 21), Eddington comprobé que
de.a seuwie la desviacion de los rayos de luz se

) manifiesta por un desplazamiento
Eclipse total
de Sol aparente de las estrellas que se

ven cerca del Sol.

Esta desviacién se produce
porque la luz se mueve siempre
siguiendo las geodésicas del uni-
verso, y como el Sol curva el es-
pacio a su alrededor entonces mo-
difica localmente la forma de esas
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geodésicas y modifica en consecuencia la trayectoria de la luz. Un
ejemplo todavia mas dramatico se da en las cercanias de un agu-
jero negro, una estrella «muerta» cuya materia se ha concentrado
casi en un punto matematico; en este caso la curvatura del espacio
es tan grande que la luz no puede escapar de él.

Para Einstein, por otra parte, el universo no era una variedad
diferencial tridimensional, como suponia Riemann, sino una varie-
dad tetradimensional; 1a cuarta dimension es el tiempo. En otras
palabras, en el espacio-tiempo einsteniano cada «punto» esta de-
terminado por cuatro coordenadas, tres espaciales y una tempo-
ral. Por ejemplo, si un escalador va subiendo por una montaia,
las primeras tres coordenadas nos dirian su latitud, longitud y su
altura con respecto al suelo, y la cuarta nos diria en qué momento
se encuentra en esa posicion.

Mis atin, actualmente la teoria de cuerdas, una teoria cuya va-
lidez esté todavia en discusién, postula que nuestro universo es en
realidad una variedad diferencial de diez dimensiones: una tempo-
ral, como en la teoria de la relatividad, y nueve espaciales. Ahora
bien, si esto fuese cierto, ;por qué solo percibimos {res dimen-
siones espaciales? La respuesta que esta teoria propone es que,
asi como una hoja de papel muy delgada tiene tres dimensiones
pero parece tener solo dos porque su tercera dimensién es muy
pequeia, de la misma manera, iinicamente percibimos tres de las
nueve dimensiones espaciales porque las otras seis son demasiado
pequeiias como para ser percibidas «a simple vista».

Estos ejemplos, y muchos otros que también podriamos dar,
muestran que el concepto de variedad diferencial sigue siendo
central en la matemdtica y en la fisica. No es exagerado decir
que la teoria de la relatividad de Einstein, la cosmologia moderna,
la teoria de cuerdas y muchas otras teorias fisicas existen en su
forma actual gracias a aquellas ideas que, por indicacién de Gauss,
Riemann cred, desarroll6 e investigé durante los primeros meses
de 1854. Gauss estaba convencido de que esas ideas eran brillan-
tes y potencialmente muy poderosas y, por supuesto, como solia
sucederle, no se equivocaba ni siquiera en lo mas minimo.
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CAPITULO 3

La integral de Riemann

Cuando Riemann le present6 a Gauss los tres temas
propuestos para su trabajo de habilitacion, el ya anciano
profesor, contrariamente a la costumbre establecida, eligi6
el que su antiguo alumno habia colocado en tercer lugar.
Pero ;cudl era el primero de los temas seleccionados
por Riemann? En él planteaba la solucién para un
problema propuesto por Dirichlet en 1829,
relacionado con series trigonométricas,
~ y que llevo a la definicion de la hoy

llamada integral de Riemann.






Hacia la segunda mitad del siglo xix los matematicos alemanes se
dividian, a grandes rasgos, en dos escuelas. Una de ellas sostenia
que en toda investigacién matematica se debia dar prioridad al
rigor l6gico y que era erréneo dar cualquier paso, o emplear cual-
quier método, cuya validez no estuviera firmemente establecida
de antemano. Esta escuela era particularmente dominante en la
Universidad de Berlin y dos de sus miembros més representa-
tivos fueron Leopold Kronecker (1823-1891) y Karl Weierstrass
(1815-1897). La otra escuela, por el contrario, ponia el rigor 16-
gico en un segundo plano y destacaba el valor de la creatividad
y de la intuicién. Sus seguidores sostenian que el trabajo de los
matematicos consistia sobre todo en plantear nuevos problemas
y crear nuevos conceptos que permitieran resolver, no solo esos
mismos problemas, sino también aquellos que hubieran sido
planteados por las generaciones anteriores; sin que les preocu-
para excesivamente si esos nuevos desarrollos los alejaban del
mds estricto rigor 1égico. La siguiente frase, que Georg Cantor
(1845-1918) incluyd en su tesis doctoral, resume parte del pen-
samiento de esta corriente: «In re mathematica ars proponendi
pluris facienda est quam solvendi», que significa «En matemati-
cas el arte de hacer preguntas es mas valioso que el de resolver
problemas» (por «resolver problemas» Cantor entendia «aplicar
métodos ya conocidos»).
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Esta segunda escuela, que fue la dominante en Gotinga, tuvo
entre sus representantes al propio Georg Cantor, si bien este se
habia formado en Berlin con Kronecker y Weierstrass, y a Richard
Dedekind (1831-1916), quien fue amigo de Riemann y, como €I, dis-
cipulo de Gauss. En cuanto a Gauss, el mas grande de todos, fue
probablemente el tinico matemaético con la capacidad suficiente
como para satisfacer al mismo tiempo las exigencias de una y otra
escuela: no solo plante6 problemas nuevos y cre6 conceptos ori-
ginales, sino que supo dotarlos de un rigor légico irreprochable.

«El método de Weierstrass era aritmético; el de Riemann,
geométrico e intuitivo. Decir que uno es mejor que otro carece
de sentido, pues ambos no pueden ser examinados desde un
punto de vista comun.»

— Eric TEMPLE BELL, LOS GRANDES MATEMATICOS.

84

Los trabajos de Riemann comentados en los dos capitulos
previos muestran que su pensamiento estaba claramente orien-
tado hacia la segunda escuela. Tanto en su tesis doctoral como en
su Habilitationsschrift creé conceptos y planted problemas que
eran completamente nuevos para su tiempo. Hay que decir, por
otra parte, que en todos sus articulos siempre opté por dar expli-
caciones que estuvieran basadas en la intuicién, o incluso en expe-
rimentos de la fisica, mds que en algiin encadenamiento de ideas
puntillosamente riguroso. Este estilo informal le atrajo las criticas
de diversos matematicos de la primera escuela, especialmente de
Weierstrass, quien incluso llegé a cuestionar la validez de algu-
nos de los teoremas demostrados por Riemann. Muchos afios mas
tarde, sin embargo, el también matemético aleman David Hilbert
(1862-1943) reformulé los razonamientos de Riemann de modo
que satisficieran las exigencias de rigor de Weierstrass, y logré
de ese modo justificar, méas alld de toda duda, que los teoremas
demostrados por Riemann eran realmente correctos.

La investigacién que Riemann expuso en su trabajo de ha-
bilitacién (que, recordemos, era el tercero de los temas que €l le
habia propuesto a Gauss) lo ubica en la misma escuela de Dede-
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kind y Cantor, pero ;puede decirse lo mismo del primero de los
temas que Riemann habia elegido, aquel que era su favorito? La
respuesta, una vez mas, es afirmativa, ya que la primera propuesta
de Riemann consistia en crear un nuevo método, el cual ampliaba
enormemente los alcances de otro creado, a fines del siglo xvi, por
Isaac Newton (1643-1727) y Gottfried Wilhelm von Leibniz (1646-
1716), con el propésito de resolver un problema planteado por
Dirichlet, y del que Riemann tomé conocimiento cuando ambos
coincidieron en Berlin entre 1847 y 1849. Asf pues, Riemann pro-
ponia crear un nuevo concepto con la intencién de resolver un
problema recientemente planteado, una intencién claramente
guiada por los postulados de la segunda escuela.

EL TEMA FAVORITO DE RIEMANN

Durante el tiempo que dedicé a la preparaciéon de su Habilita-
tionsschrift, entre 1852 y 1854, Riemann tenia la absoluta con-
viccién de que Gauss iba a elegir el primero de los temas que él
pensaba proponerle. Como consecuencia de ello, fue a este tema
al que dedicé la mayor parte de su tiempo. En ese sentido, ade-
mas, conté con una inesperada ayuda, ya que durante el otofio de
1852 Dirichlet, la persona que habia planteado el problema que
Riemann intentaba resolver, visité Gotinga durante algunas sema-
nas. Por esa época Riemann le escribi6 a su padre:

A la manana siguiente [después de una fiesta] Dirichlet estuvo con-
migo durante dos horas. Me facilito las notas que necesitaba para mi
trabajo de habilitacién, que de otro modo me hubieran consumido
muchas horas de estudio laborioso en la biblioteca. Ley6 también
mi disertacion y se mostré muy amigable, mucho mas de lo que yo
podia esperar si considero la gran distancia que existe entre noso-
tros. Espero que me recordarda més adelante.

Noétese que Riemann dice que «Me facilité las notas que ne-
cesitaba para mi trabajo de habilitacién», y no «mi posible trabajo
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de habilitacién». Sin embargo, tal y como se vio en el capitulo an-
terior, Gauss, contra todo prondstico, eligi6 la tercera propuesta,
por lo que Riemann no tuvo la oportunidad de exponer su solu-
ci6n para el problema de Dirichlet. Mds atin, por motivos que se
desconocen, ni siquiera intento6 publicarla. Fue Dedekind, en 1867,
quien finalmente tomé las notas de Riemann y las transformé en
un articulo cientifico que fue publicado al afio siguiente, bajo la
firma de Riemann, con el titulo de «Ueber die Darstellbarkeit einer
Function durch eine trigonometrische Reihe» («Sobre la posibi-
lidad de representar una funcion mediante una serie trigonomé-
trica»). En la primera pagina de este articulo aparece una nota al
pie, fechada en julio de 1867 y firmada por Dedekind, que dice:

Esta memoria fue presentada por su autor, en 1854, a la Facultad de
Filosofia, para obtener su Habilitacién en la Universidad de Gotinga.
Aunque el autor no parece haber tenido intencién de publicarla, la
impresién de este trabajo sin cambio alguno nos parece méas que
justificada, tanto por el considerable interés del tema en si, cuanto
por la forma en la que son tratados los principios més importantes
del célculo.

SENO Y COSENO

Tal y como se dijo en el primer capitulo, una funcién es una regla
que a cada nimero le hace corresponder, a su vez, otro nimero
(aclaremos que, a diferencia de lo que hicimos antes, en este capi-
tulo solo consideraremos nimeros reales y no nimeros comple-
jos). Recordemos asimismo que la primera definicién moderna de
funcién fue dada, a mediados del siglo xvin, por Leonhard Euler,
quien consideraba que esa regla debia estar expresada necesaria-
mente mediante una férmula, tal como es el caso, por ejemplo, de
f@)=1+x+x2

Existen, desde luego, infinitas funciones distintas, pero de
todas ellas hay una familia en particular relacionada con el ar-
ticulo de Riemann; se trata de las llamadas funciones trigono-
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FIG. 1

métricas, de las cuales las dos mas importantes son el seno y el
coseno. Estas dos funciones se estudian habitualmente aplicadas a
los éangulos interiores de un tridngulo rectangulo; de ahi el nombre
de «trigonométricas», palabra que significa, precisamente, «medi-
cién de triangulos» (el término proviene de las palabras griegas
trigonos, «triangulo», y metrom, «medida»). Sin embargo, en este
capitulo daremos una definicién alternativa, una definicién que
es usada en matematicas superiores y que, de hecho, resulta mas
conveniente para nuestros fines. Para ello, consideremos un sis-
tema de coordenadas en el plano (figura 1) y tracemos, con centro
en el origen del sistema, una circunferencia de radio 1.

A continuacién imaginemos un punto, al que llamaremos P,
que se vamoviendo a lo largo de la circun-
ferencia. Este punto P comienza su reco-

©on rrido en la posicién (1,0) y se desplaza a
velocidad constante en sentido contrario
al de las agujas del reloj mientras recorre
la circunferencia completa una y otra vez
(figura 1). Las funciones seno y coseno se
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FIG. 2

dh

definen a partir de ese movimiento de la
siguiente manera: si t es la distancia que
en determinado momento ha recorrido
el punto P, llamaremos cos(t), que se lee
«coseno de ¢», a la primera coordenada
de la posicién que ocupa el punto P en
ese instante, y sen(?), que se lee «seno de
t», a la segunda coordenada (figura 2).
Por ejemplo, supongamos que el
punto P ha recorrido la cuarta parte de
la circunferencia y que se encuentra, por
lo tanto, en la posicién (0,1). Dado que la

"
1]
=
—~
-
St

longitud recorrida por P en ese caso es

2 7«

4 2

(ya que la longitud total de la circunfe-
rencia es 2m), entonces
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En el primer capitulo se vio que toda funcién de variable real
se puede representar mediante una curva que, agregamos ahora,
es conocida como el grdfico de esa funcién. Recuérdese que este
gréfico se dibuja en el plano, también en el contexto de un sistema
de coordenadas, de tal modo que la primera coordenada de cada
punto de la curva es un nimero real ¢, mientras que la segunda
coordenada es la imagen de ¢ (el valor que la funcién le asigna a
t). Basada en esta idea, la figura 3 muestra los graficos que corres-
ponden al seno y al coseno. (Los valores negativos de t corres-
ponden, por convencioén, a las distancias recorridas por el punto
P cuando este gira en el sentido de las agujas del reloj, sentido de
giro que es conocido, precisamente, como negativo.)

Cada una de estas dos curvas tiene la forma de una onda, es
decir, una forma que es similar esencialmente a la que tienen las
olas que se forman en la superficie de un estanque. Dos de las ca-
racteristicas fundamentales de una onda son su periodo y su am-
plitud. El periodo es el tiempo que tarda la onda en repetirse, que
en el caso de las olas es el tiempo que estas tardan en volver una y
otra vez a la misma altura; la amplitud, por su parte, es la distancia
que hay entre el nivel del agua tranquila y la altura del pico mas
alto de la ola. En el caso del seno y del coseno, se asume que el .
punto P se mueve a la velocidad necesaria para recorrer por cada  grafica de las

funciones seno

segundo transcurrido una longitud exactamente igual a 1; en otras  y coseno.

FIG. 3

funcién
coseno
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HISTORIA DE LAS PALABRAS

La palabra «trigonometria» fue
usada por primera vez en la \
obra Trigonometria: sive de so-
lutione triangulorum tractatus
brevis et perspicuus, un tratado
publicado en 1595 por el mate-
matico, astrénomo y tedlogo
polaco Bartolomé Pitiscus
(1561-1613). En cuanto al nom-
bre de la funcién seno; a la
cuerda correspondiente al arco
de una circunferencia se la lla-
maba, en latin, inscripta corda o,
simplemente, inscripta. A la mi- 4
tad de esa cuerda (que, como __/
se ve en la imagen, es el seno) se
la llamaba semis inscriptae que
se abreviaba s. ins., abreviatura que se unificaba como sins y se latinizaba
como sinus, que en espanol se transforma en «seno». La palabra «coseno»,
por su parte, proviene de la abreviatura de complementi sinus, es decir,
«seno del complemento»; ya que, efectivamente, si a es un angulo entre O
y n/2 su complemento es el angulo que mide n/2-a y se tiene que
cos(a)=sen(n/2-w); es decir, el coseno de un angulo es, efectivamente, el
seno de su complemento.

senoc

tcuerda

palabras, se supone que el punto P tarda 2n segundos en reco-
rrer la circunferencia completa y en volver a repetir, consecuente-
mente, una y otra vez las mismas posiciones. Bajo esta suposicién
el periodo del seno y del coseno seria 2r. En cuanto a la amplitud,
la figura 3 muestra que esta es igual a 1, que es la distancia entre el
eje horizontal y la mayor altura que alcanza la onda, que es 1.
Pero tanto el periodo como la amplitud pueden alterarse: las
aguas se pueden agitar de modo que las olas sean mas altas o mas
bajas, o para que se sucedan mas lenta o mds rapidamente. En
cuanto al seno o al coseno, si el punto P se desplazara al doble de
velocidad, el periodo de las ondas de la figura 3 se reduciria a la
mitad (porque el punto tardaria la mitad del tiempo en completar
un giro). Por otra parte, si el punto P se moviera a lo largo de una
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circunferencia de radio 2, en lugar de una de radio 1, la amplitud
se duplicaria. La figura 4 es un ejemplo de una de estas «ondas
modificadas» y muestra la onda resultante de duplicar su amplitud
y al mismo tiempo dividir por 3 el periodo del coseno.

En lo que sigue, llamaremos ondas bdsicas tanto al seno y al
coseno como a todas las ondas que se obtienen modificando su
periodo y/o su amplitud. Estas ondas bdsicas, como veremos en
este mismo capitulo, juegan un papel central en el problema de
Dirichlet que resolvié Riemann.

SUMAS INFINITAS

Dijimos antes que Euler consideraba que una funcién debia estar
expresada necesariamente por una férmula. ;Puede afirmarse
que las funciones seno y coseno, tal como las hemos descrito,
estdn definidas de ese modo? A primera vista parece que la res-
puesta deberia ser negativa, ya que ambas definiciones se refieren
a las posiciones que va ocupando un punto que se desplaza por
una circunferencia, y no parecen involucrar ninguna clase de foér-
mula. Sin embargo, Euler demostré que, a pesar de las aparien-
cias, los valores del seno y del coseno si pueden ser calculados
mediante una férmula, aunque hay que decir que esta involucra
una suma infinita. Concretamente, Euler demostré que los valo-
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res que toman las funciones seno y coseno pueden calcularse de
esta manera:

x3 x5 x? xQ .‘Z'“

sen(x)=r-—+—-—+—-"—+
31 B! 71 9 11
2 4 6 8 10

o) =l D B
2! 4! 6! 8' 10!

Los puntos suspensivos indican que la suma sigue indefini-
damente. (Si n es un nimero entero mayor o igual que 1 se llama
factorial de n, y se escribe n!, al producto de todos los niimeros
enteros entre 1 y n. Asi, por ejemplo, 2! =2-1=2;3!'=3.2.1=6;
4!=4.3.2.1 =24, y asi sucesivamente.)

En matematicas, a una suma formada por infinitos términos se
la llama «serie»; pero jqué significa realmente sumar infinitos nd-
meros? En el siglo xvin las operaciones relacionadas con el infinito
todavia no estaban claramente definidas y para Euler, asi como para
todos sus contemporaneos, sumar infinitos niimeros no era muy di-
ferente de simplemente sumar muchos nimeros: sumar dos, cien,
mil o infinitos niimeros no eran operaciones esencialmente diferen-
tes en sus propiedades (solo se diferenciaban en la dificultad del cal-
culo). Sin embargo, como el propio Euler no tardo en percibir, tratar
a las series de una manera tan «ingenua», es decir, operar con ellas
de la misma manera que como se opera con las sumas habituales
(que involucran siempre finitos sumandos), conduce en realidad a
extrafias paradojas. Mostremos un ejemplo, debido al propio Euler.

Consideremos, dijo Euler, lasumainfinita 1 +x+x?+2* + 24 +...
y multipliquémosla por 1 — z; es decir, calculemos el resultado de
(1-2)(1+x+2%+x%+x*+...). Este resultado se obtiene multipli-
cando cada término del primer paréntesis por cada uno de los
infinitos términos del segundo:

(1-2)(A+x+x2+x+2t+...) =
=l+x+xi+x+xt+.. —x-2?-2*-xt-... =1

Tenemos asi que (1-2) (1+x+x%+x*+2%+...) es, sorpren-
dentemente, igual a 1; y de ello se deduce que:
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(1-2)(Q+x+2*+2° +2' +..) =1
1

1 +2+2%+ 2% +2 ' +...= .
l1-x

En esta tltima expresion, dijo Euler, tomemos x = 2. Obtene-
mos asi que:

1+2+22+23+24+...=L=—1.

La conclusién es que 1+2+4+8+16+...= -1, en otras pala-
bras, la suma de una cantidad infinita de niimeros positivos daria
como resultado el nimero negativo —1. Sin embargo, la intuicién
y el sentido comin nos dicen que el verdadero resultado de la
suma 1+2+4+8+16+... tiene que ser, simplemente, infinito.
Euler traté de justificar este resultado paradédjico defendiendo
que, bajo ciertas circunstancias, un nimero negativo puede tener
un valor infinito, aunque, desde luego, no llegé a ninguna conclu-
sion satisfactoria.

Con el correr del tiempo, la aparicion de otras paradojas
similares hizo que los matematicos llegaran gradualmente a la
conclusion de que las series no pueden ser tratadas simplemente
como «sumas muy largas», sino que se rigen por reglas que son
diferentes de las sumas que solo involucran una cantidad finita de
sumandos. Por este motivo, a lo largo del siglo xix, las investiga-
ciones de diversos matematicos estuvieron dedicadas a establecer
cuédles son, exactamente, las «leyes» que rigen el comportamiento
de las series.

Por ejemplo, el matematico noruego Niels Henrik Abel estu-
dié6 las llamadas series de potencias, es decir, las sumas infinitas
de potencias de x, tal como es el caso de 1 +x+2°+2°+2'+..., 0
también de las sumas que definen al seno y al coseno. Concre-
tamente, Abel establecié que en estas sumas la x no puede ser
reemplazada, en principio, por cualquier nimero, sino que para
cada serie existe un rango muy especifico de niimeros que pueden
ser reemplazados por la x. En el caso de 1+x+2%+x%+2'+ ...,
por ejemplo, este rango abarca todos los niimeros entre —1 y el
1 (ambos no incluidos), de modo que, si bien en esa serie tiene
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sentido reemplazar a por 0,5, en cambio no tiene sentido reem-
plazarla por 2, dado que este niimero se encuentra fuera del rango
establecido.

Esta reflexion resuelve la paradoja mostrada anteriormente;
la respuesta es que en la igualdad

1
1 +x+22 428+ 20 +.. = ——
1-x

simplemente no tiene sentido tomar x=2. En el caso de las se-
ries que calculan el seno y el coseno puede demostrarse que sus
rangos abarcan todos los nimeros reales, por lo que en estas
series la variable x si puede ser reemplazada por cualquier ni-
mero. Ahora bien, el trabajo de Riemann demuestra una propie-

NIELS HENRIK ABEL (1802-1829)

La infancia del matematico noruego Abel
estuvo marcada por la pobreza, situacion
gue se vio agravada por las malas circuns-
tancias politicas y econémicas que atra-
vesaba entonces su pais (en esa época
Noruega estaba bajo el control politico
de Dinamarca). La falta de recursos le
habria impedido cursar estudios univer-
sitarios, pero Abel conté con la ayuda
del matematico Bernt Michael Holmboé
(1795-1850), quien fue su profesor en el
colegio y reconocié su talento para las
matematicas. Holmboé recomendd a Abel
y, gracias a ello, este obtuvo una beca
para estudiar en la Universidad de Chris-
tiania, en Copenhague, donde ingresé
en 1821. A pesar de que vivié solamente
veintiséis anos, Abel logré hacer contri-
buciones esenciales al algebra y al calculo. Asi, por ejemplo, demostrd, al
mismo tiempo gue Evariste Galois (1811-1832), la imposibilidad de resolver
las ecuaciones de grado cinco; estudio las llamadas «integrales elipticas» y
también contribuy6 a la fundamentacion légica del calculo. Abel fallecio de
tuberculosis en 1829,
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dad muy extrafia de las sumas infinitas. Como es bien sabido,
sumar 1+2+3+4+...+100 da el mismo resultado que sumar
2+1+4+3+...+100+99, 0 100+97+99+98+...+3+1; en otras
palabras, el resultado de la suma es siempre el mismo, no importa
en qué orden se escriban los sumandos. Sin embargo, Riemann de-
mostré que esta propiedad no se extiende a las sumas infinitas, al
menos no a todas ellas, puesto que algunas series dan resultados
diferentes segin en qué orden se escriban sus términos. Veamos
un ejemplo.
Puede probarse que la suma

[2lsel-)5(a)
l4|==|+=+|—-—|+=+|—== |+

2/ 3 4) b 6

da como resultado el logaritmo natural de 2 (aproximadamente

0,693147...). Ahora bien, para desarrollar nuestro ejemplo reor-
denamos los términos de la serie de esta forma:

ks e sl els)
l+|—=|+|-=|+=+|—=|+|—=|+=+|-—— |+
2 4) 3 6 8/ b 10
Calculemos ahora el resultado de la suma reordenada:
Falla)ale)lals o)
1+ —=|+|=-=|+=+|-=|+|-=|+=+|-—— |+ =
2 4) 3 6 8/ b 10
() (205 () (5 5+)
=14 |+|-=|+|=+|—=||+|-= |+|=+]|-— ||+ =
2 4) |3 6 8/ |b 10
1 ( 1) 1 (l) 1
=ttt | = |+—=+=
2 4) 6 8/ 10
o0+ (2) 555 ()]
=—ll4|==|t=F]| ==+ —F| == |+--]|.
2 2/ 3 4/ b5 6

Es decir, el reordenamiento mostrado nos da un resultado
que es la mitad del de la suma original. Al cambiar el orden de los
sumandos, el resultado final de la suma ha cambiado; mas aiin,
Riemann demostré que, dado cualquier niimero real S, siempre es
posible reordenar la suma
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o)

de modo tal que su resultado sea el niimero S elegido. Por ejem-
plo, es posible reordenar los sumandos de tal modo que la suma
sea, si se quiere, igual a 0, igual a —287 o igual a &.

Destaquemos que, como ya se dijo antes, esta rara propiedad
no vale para fodas las series; hay muchas de ellas cuyo resultado
no cambia aun cuando se reordenen sus términos. Esto sucede,
por ejemplo, si todos los niimeros sumados son positivos, o si
todos son negativos. En el caso de que hubiera términos positivos
y términos negativos «mezclados», el resultado tampoco cambia
si la serie cumple esta propiedad: al transformar todos los signos
«negativos» en «positivos» se obtiene una serie cuya suma total
es un numero finito.

Por ejemplo, la serie

()als)lwl=

1+ —=|+—+|—=|+—+|—— |+~

2) 4 8/ 16 32

dara siempre el mismo resultado (que es 2/3), no importa cémo
se reordenen sus términos. Esto se debe a que, a su vez, la suma
1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ... da un resultado finito (que
es 2). Obviamente, esto no sucede en el ejemplo que mostramos
antes (de suceder, la suma no cambiaria al ser reordenados los

términos); en otras palabras, estamos diciendo que el resultado
desumarl + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... es exactamente +x.

FOURIER Y LOS FENOMENOS ONDULATORIOS

,Qué significa entonces «serie trigonométrica»? Una «serie» es
una suma con infinitos términos; «trigonométricas» son las fun-
ciones seno y coseno, y también, por extension, todas las ondas
bésicas. Una serie trigonométrica es asi una suma formada por
infinitas ondas bésicas; por ejemplo:
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cos(x)+ %cos(2x)+écos(3x)+ icos(4x)+...

Ahora bien, dijimos antes que los grificos de las ondas bési-
cas recuerdan la forma de las olas que se producen en la super-
ficie de un estanque. En realidad, este simil no es casual, sino
que refleja el hecho de que todos los fenémenos ondulatorios, o
peri6dicos, pueden describirse matematicamente mediante una
combinacién adecuada de ondas bésicas.

El primero en observar la relacion entre los fenomenos ondu-
latorios y las ondas basicas fue el fisico y matematico francés Jo-
seph Fourier. En un trabajo publicado en 1808, Fourier demostré
que cualquier funcién periédica f(x), es decir, cualquier funcién
cuyos valores se repiten ciclicamente una y otra vez, puede es-
cribirse como la suma de una cantidad, finita o infinita, de ondas
basicas. Esta escritura actualmente se conoce como la descompo-
sicion de f(x) en serie de Fourier; o, también, la descomposicion
de f(x) en una serie trigonomélrica.

En cierto sentido, la idea de Fourier no era completamente
nueva. En el siglo v a.C. Aristételes habia afirmado que los plane-
tas (que para €l eran el Sol, la Luna, Mercurio, Venus, Marte, Jipi-
ter y Saturno) giraban alrededor de la Tierra en 6rbitas de forma
circular. Aristételes justificaba este hecho mediante el siguiente
argumento filoséfico: como en aquella época se creia que los obje-
tos celestes estaban constituidos por una materia pura e impoluta,

RECIPROCOS DE LOS CUADRADOS

Euler demostré muchos resultados relacionados con sumas de series; uno
de ellos es la representacion del seno y del coseno como series de poten-
cias, tal y como se muestra en el texto. Otro resultado muy curioso, también
demostrado por Euler, se relaciona con la suma de los reciprocos de los

numeros cuadrados; en ese sentido Euler probd que:

T 1 1 1 S
TH—+—t—t—— it m—.

4 9 16 25 6
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Para Ptolomeo los
movimientos
planetarios eran
el resultado

de combinar
movimientos
circulares.
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su movimiento tenia que ser necesariamente circular, porque
el circulo es la «curva perfecta». Sin embargo, en el siglo 1 d.C., el
matemético y astrénomo Claudio Ptolomeo observé que una 6rbita
circular no podia explicar todas las complejidades del movimiento
planetario, y afirmé que ese movimiento tenia que ser el resultado
de combinar varios movimientos circulares simultaneos (figura 5).

Cuando, siglos més tarde, Nicolds Copérnico (1473-1543) pos-
tul6é que todos los planetas, incluida la Tierra, giraban alrededor
del Sol, conservé igualmente la idea de que los movimientos pla-
netarios resultaban de la combinacion de varios movimientos
circulares (aunque eran necesarios menos circulos que en el caso
de Ptolomeo). Dado que las ondas basicas describen en realidad
movimientos circulares (el movimiento del punto P alrededor de
una circunferencia), puede decirse que tanto Ptolomeo como Co-
pérnico sostenian que el movimiento periddico de los planetas
era, como diria mas adelante Fourier, el resultado de combinar
una cantidad finita de ondas basicas.

La innovacion de Fourier consistié en demostrar, por un lado,
que cualquier fenémeno periédico (no solo los movimientos plane-
tarios) es la suma de ondas bésicas, y por el otro, que esta suma
podia involucrar eventualmente una cantidad infinita de sumandos.

Epiciclog:: f ‘\ FIG. 5
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Para mostrar un ejemplo de descomposicién en serie de
Fourier, tomemos la funcién f(x) cuyo grafico se muestra en la
figura 6. Podemos imaginar que esta funcién describe la altura
que alcanza un punto que sube y baja a velocidad constante por
un segmento vertical de longitud 1. El punto sube hasta la altura
1, luego baja hasta la altura 0, luego vuelve a subir y a bajar, y asi
sucesivamente una y otra vez.

Puede probarse que la descomposicion en serie de Fourier de
esta funcién, es decir, su escritura como suma de ondas bésicas, es:

1 4 4 4
J(@)= 5_?‘:05(:&')_@005(3”)_ 2B cos(bnx) -
4
———cos(7Tnx)-...
497° ( )

Como se ve, la suma en realidad contiene un ntimero fijo (en
este caso 1/2) y la resta de una cantidad infinita de ondas bésicas,
todas ellas de la forma

%cos(nn “x)

nw=n
con n impar. Por otra parte, en la descomposicién no aparece nin-
guna onda bésica asociada a la funcién seno; esto tiltimo es solo

una peculiaridad de esta funcién, ya que en otras pueden aparecer
perfectamente al mismo tiempo ondas del seno y del coseno.

FIG. &
¥
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JEAN BAPTISTE JOSEPH FOURIER (1768-1830)

Nacido en Auxerre (Francia), el primer
interés de Fourier fue la literatura, pero
a los catorce afios descubri¢ el tratado
de matematicas de Etienne Bézout
(1730-1783), cuyos seis volumenes estu-
dié en poco tiempo, y desde entonces
hizo de las matematicas su gran voca-
cion. Fourier fue uno de los muchos
cientificos de los que se roded Napo-
leén Bonaparte durante su carrera; y
como consecuencia de este vinculo
ocupo diversos cargos politicos, ade-
mas de cientificos. Como prefecto del
departamento de Isere, Fourier descu-
brié el interés de Jean-Frangois Cham-
pollion (1790-1832) por los jeroglificos
egipcios y lo alento a intentar descifrar-
los, objetivo que Champollion efectivamente alcanzé. Fourier hizo importan-
tes aportes a la fisica y a las matematicas, tanto puras como aplicadas,
dentro del drea del célculo y el dlgebra.

LA INTEGRAL DE CAUCHY

Cualquier funcién periédica, dijo Fourier, puede escribirse como
la suma (de una cantidad finita o infinita) de ondas basicas; pero
;,como puede saberse exactamente cudles son las ondas basicas
que hay que sumar? El procedimiento para responder a esta pre-
gunta es demasiado técnico para el propésito de este libro, pero
si puede decirse, y ese es el punto que nos interesa aqui, que el
procedimiento involucra el cdlculo de varias integrales.

El concepto de integral, uno de los mas importantes del cal-
culo, fue desarrollado a finales del siglo xvii simultdnea e indepen-
dientemente por Isaac Newton y Gottfried Wilhelm von Leibniz.
Planteado en términos modernos, el problema que motiva la de-
finicién de la integral es el de calcular cudl es el drea de la regién
comprendida entre el eje horizontal y el grafico de una cierta fun-
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cién f(x). Por ejemplo, ;cudl es el drea de la regién sombreada en
cada uno de los dos gréficos mostrados en la figura 77

En la figura 7a, la regién sombreada es simplemente un trian-
gulo, y su 4drea, en consecuencia, puede calcularse sin dificultades
mediante una férmula bien conocida. Sin embargo, en la figura 7b,
donde la curva que aparece es la del coseno, el calculo es mucho
maés complejo y escapa totalmente a la geometria tradicional. ;C6mo
puede calcularse, entonces, un drea como la de la figura 7b?

Para resolver este problema, Newton y Leibniz imaginaron
que la regién cuya drea se quiere calcular estaba formada por infi-
nitos rectangulos colocados uno al lado del otro. Segin esta idea,
cada uno de esos rectangulos tenia como base un segmento infini-
tamente pequeiio, pero con una longitud distinta de cero; la altura
de cada rectangulo, por su parte, estaba dada por la propia funcién
(en realidad, ni Newton ni Leibniz hablaban de «funciones», sino
simplemente de curvas, pero traducimos aqui sus ideas a concep-

0.5 05

FIG. 8

Gréfico de f(x)

Altura = f(x)

a/ b
> 4

£
Base = dx
(cantidad infinitamente

pequefa pero no nula)
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tos modernos); este planteamiento se ilustra en la figura 8, donde
f(x) es una funcién cualquiera.

El area buscada se calculaba como la suma de las dreas de
esos infinitos rectangulos. Ahora bien, Leibniz llamaba dx a la
longitud «infinitamente pequefia» de las bases de los rectangulos,
mientras que su altura, como ya se dijo, esta dada por f(x); por lo
tanto, el drea de cada rectdngulo se calcula como f(x) dx. En con-
secuencia, para expresar la suma de las dreas de los rectangulos,
que es el drea de la region bajo la curva de f(x), Leibniz escribia:

j‘f(x)dx.

Este simbolo se llama en matematicas «integral de f{x)» y
todavia hoy se usa para expresar el drea de la regién compren-
dida entre el eje horizontal y el gréfico de f{x). La parte izquierda
del simbolo es simplemente una letra S deformada, la inicial de
summa, que en latin significa «suma». (Técnicamente, aunque es
un detalle que no debe preocuparnos, cuando el grafico esta por
debajo del eje horizontal, la integral le «agrega» al area un signo
negativo; por ejemplo, si el drea de la region fuera 8, la integral
daria como resultado -8.)

Pero ;qué es en realidad un nimero positivo «infinitamente
pequeiio pero distinto de cero»? Se trata de un concepto muy di-
ficil de entender; peor atin, es un concepto que, cuando se intenta
definir con precision, acaba siendo contradictorio consigo mismo.
Una definicién razonable seria que se trata de «nimero positivo
menor que cualquier nimero positivo», pero esto llevaria a decir
que es menor que si mismo, o menor que su mitad.

Newton y Leibniz eran perfectamente conscientes de que su
integral estaba sustentada en una base l6gica muy endeble; sin
embargo, si se aceptaba la existencia de esos rectdngulos de base
«infinitamente pequefia», las férmulas que se deducian de esa idea
permitian calcular correctamente areas que de otro modo resulta-
ban imposibles de hallar. Més atin, con el correr de las décadas, se
fueron encontrando otras aplicaciones para las integrales; entre
ellas, el calculo de volimenes y de longitudes de curvas, la re-
solucién de ecuaciones diferenciales y, como ya se apuntd, la
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determinacién de qué ondas béasicas son las que deben aparecer
en las series de Fourier.

Ahora bien, a medida que se hallaban mis y mas aplicacio-
nes para la integral, fue creciendo paralelamente la necesidad de
dotarla de una fundamentacién légica rigurosa; y el primero en
lograrlo, el primero en dar una definicion clara y concreta de la
integral, fue el matematico francés Augustin Louis Cauchy en su
libro Cours d’Analyse («Curso de analisis»), de 1817.

La idea de Cauchy para eludir los nimeros «infinitamente
pequeiios» fue calcular el drea bajo una curva mediante aproxi-
maciones sucesivas. De este modo, modificé la idea de Newton
y Leibniz cambiando los rectangulos de base dx por rectangulos
que tuvieran una base pequefia (pero no infinitamente pequeiia)
para luego imaginar que esas bases se van reduciendo cada vez
mas (figura 9). A medida que las bases de los rectangulos se hacen
cada vez mas pequeiias (y el niimero de rectdngulos va aumen-
tando), se obtienen aproximaciones cada vez mas exactas del area
buscada.

Las férmulas para calcular areas que se deducen de la defi-
nicién de Cauchy son, en realidad, exactamente las mismas que
las que se deducen de la definicién de Newton y Leibniz, por lo
que en la practica no hay ninguna diferencia entre una y otra. Sin
embargo, la definicién de Cauchy omite hablar de «niimeros infi-
nitamente pequefios», y en consecuencia, desde un punto de vista
légico, resulta ser mucho mejor. A pesar de esta superioridad, la
idea de Cauchy comparte con la de Newton y Leibniz un impor-
tante «punto débil», ya que ninguno de los tres consideraba que

A medida que sus
bases se hacen mas
pequeifias, la suma

de las dreas de los
rectdngulos se parece
cada vez mas al drea
bajo la curva.

FIG.9
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AUGUSTIN LOUIS CAUCHY (1789-1857)

Cauchy nacié en Paris con la buena es-
trella de que los famosos matematicos
franceses Pierre-Simon Laplace (1749-
1827) y Joseph-Louis Lagrange (1736-
1813) fueran amigos de su padre vy visi-
tantes frecuentes de su casa. Ambos
matematicos descubrieron temprana-
mente el talento de Cauchy, cuya voca-
cion quedod asi marcada desde sus pri-
meros afios. En 1805 ingresd en la Ecole
Polytechnique, donde se gradud en
1807, y ese mismo ano ingreso en la es-
cuela de ingenieria, donde destacd
tanto por sus conocimientos tedricos
como practicos. Cauchy fue pionero en
la busqueda de una fundamentacién ri-
gurosa para el calculo; por ejemplo, fue el primero en hacer un estudio sis-
tematico de las condiciones bajo las cuales una serie da como resultado una
suma finita, y asimismo, fue el primero en dar una definicion rigurosa de la
integral. Fue también uno de los precursores del analisis complejo.

pudieran existir funciones discontinuas, y es por este motivo
que cuando Dirichlet las introdujo en 1829, la integral de Cauchy
quedd, en gran medida, obsoleta.

EL PROBLEMA

4Qué es una funcién discontinua? Es una funcién cuyo grifico
presenta, al ser trazado, «saltos abruptos» o «discontinuidades».
A modo de ejemplo obsérvese el grafico de la figura 10, el cual esta
formado por una sucesién de segmentos desconectados entre si.
Evidentemente, si intentamos dibujarlo comenzando desde el punto
(0,0), nos encontraremos con que al llegar al (1,0) el lipiz debe «sal-
tar bruscamente» hacia arriba hasta el punto (1,2); es decir, en el
(1,0) encontramos una interrupcion, una discontinuwidad.
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Ahora bien, la imagen que aparece en la figura 10 ;es real-
mente el grafico de una funcién? La respuesta que Euler habria
dado a esa pregunta es que no, porque, a priori, no parece que
ese dibujo pueda ser generado mediante una tnica férmula. Sin
embargo, en 1829 Dirichlet probé que este grifico puede obte-
nerse como el resultado de la suma de infinitas ondas béasicas; en
otras palabras, la imagen de la figura 10 es el grafico de una serie
trigonométrica, y por lo tanto es el grafico de una funcién. Como
consecuencia de ello, tal y como ya se adelant6 en el capitulo 1,
Dirichlet estableci6 que habia que ampliar la definicién de funcién
para abarcar a cualquier regla de asignacién de nimeros, estu-
viera esta, o no, expresada mediante una férmula. Ninguna regla
debia ser excluida a priori.

«Dedekind solia referirse a Riemann como su modelo en cuanto
a metodologia matematica.»

— Jost FERREIRGS, THEORIA. REVISTA DE TEORIA, HISTORIA ¥ FUNDAMENTOS DE LA CIENCIA.

De hecho, hoy en dia funciones como las de la figura 10 son
muy usadas en muchas ramas de la ingenieria. Para los ingenie-
ros actuales, el grifico de la figura 10 podria representar una su-
cesion de senales: durante el primer segundo hay silencio, luego
una senal de intensidad constante que dura un segundo, luego
otra vez silencio, luego otra sefial de un segundo y asi sucesiva-
mente. La descomposicién en serie trigonométrica de las sefiales
tiene numerosisimas aplicaciones practicas, que abarcan desde

FIG. 10
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las transmisiones de radio hasta el disefio de los tomégrafos usa-
dos en medicina.

Sin embargo, el hecho de que una funcién como la de la fi-
gura 10 pudiera descomponerse en serie trigonométrica colocé
a Dirichlet frente al problema de cémo determinar cuiles son las
ondas basicas que deben intervenir en esa serie. La respuesta,
como ya se dijo, es que la descomposicion en serie de Fourier de
una funcién periédica se obtiene mediante el célculo de varias
integrales. Pero en 1829 la tinica integral bien definida era la de
Cauchy, y esta no es vilida cuando se trabaja con funciones dis-
continuas. Cuando se intenta aplicar la definicién de Cauchy a
funciones como las de la figura 10 el resultado que se obtiene para
la integral no siempre representa el valor correcto del area. Diri-
chlet plante6 entonces el problema de modificar la definicion de
la integral de tal modo que pudiera aplicarse aun en los casos en
que hubiera discontinuidades. Este es el problema que Riemann
tomoé como primer tema de investigaciéon en 1852.

LA SOLUCION DE RIEMANN

Riemann se enfrenté al problema planteado por Dirichlet y hallé
una definicién de integral que tenia sentido aun cuando la fun-
cién presentara «saltos» o «discontinuidades». Para ello, retomé
la idea de las aproximaciones sucesivas pero, a diferencia de Cau-
chy, propuso tomar dos aproximaciones para el drea, una aproxi-
macién por exceso y otra por defecto (figura 11).

Es decir, Riemann propuso usar dos familias de rectangulos
para aproximar el drea. Los rectiangulos de una de las familias
(parte derecha de la figura) estan por debajo de la curva, por lo
que sus areas son siempre un poco menores que la que se quiere
calcular; estos rectangulos nos dan la aproximacién por defecto.
Los rectangulos de la otra familia, por su parte, estidn siempre por
arriba de la curva (parte izquierda de la figura) y nos dan la apro-
ximacién por exceso (un drea que es un poco mayor que la que
se quiere calcular). A medida que los rectangulos van reduciendo
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sus bases, las dos aproximaciones
se acercan cada vez mas al valor del
area buscada.

Hay que precisar que, al dar su
definicién de integral, Riemann es-
taba retomando una idea que ya habia
sido empleada en el siglo v a.C. por

el geémetra griego Eudoxo de Cnido
para calcular el area del circulo.
Para hacer ese célculo Eudoxo habia
usado poligonos regulares inscritos y
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circunscritos a la circunferencia; los

poligonos inscritos dan una aproxi-

macién por defecto del drea, mien-
tras que los otros dan una aproximacién por exceso (figura 12,
pag. anterior). A medida que crece la cantidad de lados de los
poligonos, las dos aproximaciones se acercan cada vez mas al
area buscada.

En el trabajo de Riemann publicado por Dedekind, el ma-
tematico dio esta nueva definicién para la integral, estudié las
propiedades resultantes de este nuevo concepto y demostré que
poseia un alcance mayor que la integral que habia definido Cau-
chy. Porque, tal como Dirichlet pedia, 1a definicién de Riemann,
que es, de hecho, la que hoy en dia se usa en todas las aplicacio-
nes pricticas, tanto en fisica como en ingenieria, tiene sentido y
da el valor correcto del 4rea aun cuando la funcién tenga «saltos»
(figura 13). Por lo tanto, la integral de Riemann, que es como ac-
tualmente se la conoce, permite hallar la descomposicién en serie
de Fourier de funciones como la que se muestra en la figura 10.

Es verdad que décadas mas tarde se encontraron, a su vez,
limitaciones para la integral de Riemann, ya que, asi como la
integral de Cauchy «falla» en las funciones discontinuas, la de
Riemann «falla» asimismo cuando la cantidad de saltos es «de-
masiado grande». Y si bien funciones de este tltimo tipo nunca
aparecen en las aplicaciones practicas, el francés Henri Lebesgue
(1875-1941) amplié en 1901 la definicién de Riemann con el fin de
abarcar una clase aiin mayor de funciones.
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CAPITULO 4

Riemann y la fisica

Bernhard Riemann se consideraba a si mismo

tanto fisico como matematico. De hecho, mas alla

de que muchos de sus trabajos matematicos tengan
fuertes implicaciones fisicas, hay ademas una parte muy
significativa de su obra que esta dedicada exclusivamente

al andlisis de fenémenos fisicos, en especial los
fenémenos asociados al flujo de corrientes
eléctricas o a la propagacion de la luz.






Después de exponer su trabajo de habilitacién y tras pasar una
temporada de descanso en Quickborn, donde seguian viviendo
sus padres y algunos de sus hermanos, en septiembre de 1854
Riemann comenz6 a trabajar en la Universidad de Gotinga como
docente remunerado. De este modo, no solo lograba alcanzar un
objetivo largamente perseguido, sino que ademas, aunque el di-
nero que ganaba no era mucho, le fue posible ayudar econémica-
mente a su familia. Hay que decir que, debido a su natural timidez,
inicialmente el ejercicio de la docencia no le resultd facil; sin em-
bargo, en poco tiempo logré adaptarse, tanto es asi que a finales
de 1854 le escribia a su hermana Ida:

He sido capaz de mantener regularmente mis clases. Mi primera des-
confianza ha ido disminuyendo cada vez mas, y me he habituado a
pensar més en los oyentes que en mi mismo y a leer en sus expresiones
si debo pasar a otros puntos o explicar mas detenidamente la cuestion.

En esa misma carta se congratulaba ademas por el éxito de
su primer curso académico y por el inesperado gran nimero
de oyentes: ocho personas, cuando €l no esperaba méas que dos.
Poco tiempo después, el 23 de febrero de 1855, fallecié Gauss, y
es muestra del respeto que Riemann se habia ganado en Gotinga el
que hubiera quienes lo propusieran como candidato para suceder
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WILHELM WEBER (1804-1891)

Weber nacié en Wittenberg (Alemania)
e ingreso en la Universidad de Halle en
1822, donde cuatro afios mas tarde se
doctord en fisica con una tesis sobre
los mecanismos por los que se pro-
duce la voz humana. Al afio siguiente
expuso su Habilitationsschrift con una
investigacion relacionada con el mismo
tema; la cual amplié en una serie de ar-
ticulos publicados entre 1828 y 1820 en
la revista Annalen der Physik und Che-
mie («Anales de fisica y quimica»). A
partir de 1828 su prestigio académico
comenzo a crecer rapidamente, sobre
todo después de que ese mismo afio
Gauss asistiera a una de sus conferen-
cias y manifestara la gran capacidad
de aquel joven fisico. En ese momento
Gauss estaba muy interesado en el
estudio del magnetismo terrestre y le
ofrecio a Weber un puesto en Gotinga
para trabajar con él en esa investiga-
cion; ambos cientificos colaboraron es-
trechamente entre 1831 y 1837. Aparte
de su capacidad cientifica, Weber tenia una gran reputacién como exposi-
tor. Durante sus conferencias, que eran muy apreciadas, solia realizar expe-
rimentos para ilustrar los temas tratados, una practica muy novedosa para
la época. También sostenia, y asimismo fue pionero en esta idea, que para
aprender mejor, los estudiantes debian realizar los experimentos fisicos por
si mismos en lugar de solo observar al profesor hacerlos. A lo largo de su
vida Weber recibié muchos premios y honores; por ejemplo, en 1850 fue
elegido miembro de la Real Sociedad de Londres; en 1874, miembro de la
Real Sociedad de Edimburgo, y en 1879, miembro de la Academia Nortea-
mericana de Artes y Ciencias. En 1935 se le dio el nombre de «weber» a la
unidad de flujo magnético.

a Gauss en su catedra. Sin embargo, las autoridades de la universi-
dad consideraron que era demasiado joven para un puesto de esa
importancia y finalmente la catedra fue ofrecida a Dirichlet, quien
la acept6 y se traslado desde Berlin para hacerse cargo de ella.
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JAMES CLERK MAXWELL (1831-1879)

La capacidad del escocés James Clerk
Maxwell para las matematicas se ma-
nifesté muy pronto; asi, por ejemplo,
en 1846 escribié un articulo sobre cur-
vas ovales, que él definia como el lugar
geométrico de todos los puntos para los
cuales la suma de m veces la distancia a
un foco F, mas n veces la distancia a un
‘foco F, es constante (véase la figura). En
ese articulo, ademas, estudiaba curvas
con tres o mas focos. Maxwell expuso
este trabajo, titulado «Sobre la descrip-
cién de las curvas ovales y de aquellas
con una pluralidad de focos», ante la Real
Sociedad de Edimburgo el 6 de abril de
1846; y aunque muchas de las ideas con-
tenidas en el articulo no eran completa-
mente originales, ya que Descartes habia
estudiado temas similares casi dos siglos
antes, no deja de ser notable que al escribirlo, y al exponerlo, Maxwell tuviera
solo catorce afios de edad. Maxwell se doctoré en matematicas en 1854 en la
Universidad de Cambridge, donde ademas trabajé como docente e investi-
gador durante toda su carrera. Como cientifico, sus trabajos mas importantes
giraron en torno de la teoria
de la electricidad y el magne-
ma, + nd, = constante tismo. Estas investigaciones
llegaron a su punto culminante
en 1873 con la publicacién de
sus famosas ecuaciones sobre
la relacién entre el campo mag-
nético y el campo eléctrico, uno
de los pilares fundamentales de
la fisica moderna, y que hoy son
conocidas como ecuaciones de
Maxwell.

Pero ahora volvamos un poco atras en el tiempo, hasta 1849.
En ese afio, recordemos, Riemann regresé a Gotinga después de
haber pasado dos afios en Berlin y comenzaba a preparar su tesis
doctoral. A la vez que preparaba su tesis, Riemann asistia al semi-

RIEMANN Y LA FiSICA

n3



n4

nario de fisica que dictaba, también en la Universidad de Gotinga,
Wilhelm Weber, quien habia trabajado en estrecha colaboracién
con Gauss (ya mencionamos a Weber en el segundo capitulo a
propdsito de la exposicion de Riemann de su trabajo de habilita-
cion, en junio de 1854).

Hay que decir que el seminario de Weber no consistia sola-
mente en una serie de clases avanzadas, sino que era un verda-
dero laboratorio de investigacién en el que se formulaban nuevas
teorias, especialmente sobre electromagnetismo, y se realizaban
los experimentos necesarios para ponerlas a prueba. En este tl-
timo sentido puede mencionarse, a modo de ejemplo, que en 1856
Weber y su colaborador Rudolf Kohlrausch midieron la razén entre
la carga electrostatica y la carga electrodindmica de una particula y
encontraron que era de 3,1074 - 10° m/seg. Fue Riemann, que estaba
presente al realizar esas mediciones, quien observé que este valor
se aproxima al de la velocidad de la luz y dedujo de ello que debia
de haber una relacién muy estrecha entre la propagacién de la luz
y los fenémenos electrodindmicos y electrostiticos, conexién que
seria confirmada en 1905 por Einstein en su articulo «Sobre la elec-
trodindmica de los cuerpos en movimiento», en el que presenté por
primera vez la teorfa de la relatividad.

Por otra parte, el dato experimental obtenido por Weber y
Kohlrausch fue crucial para que James Clerk Maxwell desarro-
llara, en 1873, la teoria que explica la relacién entre la electricidad,
el magnetismo y la propagacién de la luz. Es asimismo interesante
notar que fue en el articulo que da cuenta de ese experimento
donde se usé por primera vez la letra «c» para referirse a la velo-
cidad de la luz, tal como se hace todavia en la actualidad.

EL CAMPO UNIFICADO

En realidad, Riemann siempre estuvo muy interesado en la fisica,
tanto es asi que de los catorce articulos cientificos que escribié
(cuatro de los cuales se publicaron péstumamente), cinco estan
dedicados exclusivamente a la explicacién de fenémenos fisicos,

RIEMANN Y LA FISICA



mientras que casi todos los demas, aun cuando en principio ha-
blan de temas matematicos, tienen asimismo importantes conse-
cuencias dentro del terreno de la fisica (entre estos ultimos se
cuenta, por ejemplo, el trabajo sobre geometria diferencial del que
hablamos en el segundo capitulo).

Cuando en 1852 Riemann empez6 a realizar las investigacio-
nes preliminares para su trabajo de habilitacién, seguia todavia
asistiendo regularmente al seminario de Weber, aunque ahora en
calidad de ayudante no remunerado. Pero ademds, en paralelo,
se planteaba a si mismo una serie de cuestiones relacionadas con
el problema de hallar una teoria que permitiera explicar simul-
taneamente todas las fuerzas de la naturaleza, que por entonces
se crefa que eran la gravedad, la electricidad, el magnetismo y el
calor. Tal intensidad de trabajo acabé por perjudicar su salud, que
en verdad nunca fue muy sélida, y es por eso que a principios de
1854 le escribia a su hermana Ida:

He estado tan absorbido en mi investigacion sobre la unidad de
todas las leyes fisicas, que cuando me fue entregado el tema para
mi conferencia [su Habilitationsschrift], no pude abandonar la in-
vestigacién. Luego, en parte como resultado de las meditaciones,
en parte por mi permanencia constante en lugares cerrados durante
esta mala estacion, cai enfermo; mis viejos males se repitieron con
gran frecuencia y no pude continuar mi labor. Varias semanas mas
tarde, al mejorar el tiempo, comencé a sentirme mejor.

Hasta donde se conoce, Riemann fue el primero en plantear
el problema de reunir la descripcién de todas las fuerzas de la na-
turaleza bajo una misma teoria, cuestién que mas tarde Einstein
denominaria «el problema del campo unificado»; y aunque Rie-
mann nunca llegé a una conclusién definitiva sobre esta materia,
las reflexiones, tanto fisicas como filoséficas, que hizo al respecto
entre 1852 y 1866 fueron recopiladas y publicadas en el Annalen
der Physik und Chemie en 1867 bajo el titulo de Una contribu-
cion a la electrodindmica.

Ademas de la observacién, ya mencionada, de que una teoria
de la electricidad y el magnetismo tiene que ser muy cercana a una
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teoria de la propagacién de la luz, el articulo presenta la idea de
Riemann de que cualquier fuerza que actie entre dos particulas
debe propagarse necesariamente a una velocidad finita, concep-
cién que contradecia la teorfa newtoniana dominante en aquella
época segun la cual existfa una accién instantdnea, no importa
cudl fuese la distancia. Riemann, ademas, identifica esa velocidad
de propagacién con la de la luz, prediccion que seria corroborada
décadas mas tarde por Einstein y que es uno de los pilares de la
teoria de la relatividad.

«En cualquier region matemaética donde comenzara a investigar
[Riemann], el cosmos matematico comenzaba a lucir con un
brillo jamas visto.»

— EcemonT COLERUS, BREVE HISTORIA DE LA MATEMATICA.

16

En cuanto al problema del campo unificado en si, hoy se sabe
que las fuerzas fundamentales de la naturaleza son efectivamente
cuatro, pero no las que se creia a mediados del siglo xix, sino la
fuerza electromagnética, la gravedad y otras dos fuerzas que ac-
tiian a nivel subatémico conocidas como la fuerza nuclear fuerte y
la fuerza nuclear débil. Sin embargo, aunque se han hecho muchos
avances parciales en el problema de unificarlas bajo una misma
teoria (por ejemplo, se ha logrado unificar a la fuerza electromag-
nética con la nuclear débil) al momento de escribir estas lineas el
problema del campo unificado permanece todavia sin solucién.

EL SEGUNDO TEMA

El capitulo anterior estuvo dedicado a la primera opcién que Rie-
mann le propuso a Gauss como tema para desarrollar en su tra-
bajo de habilitacién. Se trataba, recordemos, de la solucién de un
problema planteado por Dirichlet sobre series de Fourier; solu-
cién que, a su vez, condujo a Riemann a la definicién de la integral
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que hoy lleva su nombre. En el segundo capitulo, por su parte, se
explicé el contenido de la tercera opcién de Riemann, aquella que
Gauss finalmente le pidi6é que expusiera ante el tribunal examina-
dor; este tema contenia nada menos que las definiciones de los
conceptos fundamentales de la geometria diferencial. Queda, por
tanto, analizar la segunda opcién que Riemann le propuso a Gauss
como tema para su Habilitationsschrift.

Comencemos por decir que se le atribuye al gran matema-
tico y astronomo Tales de Mileto el descubrimiento de la electri-
cidad, o més exactamente, de la electrostatica. Tales habria sido
el primero en observar que al frotar una varilla de &mbar con un
paiio de lana se lograba que aquel atrajera objetos pequeiios, y
que si se frotaba con mas energia durante el tiempo suficiente
entonces se producia una chispa. De hecho, la palabra «electri-
cidad» proviene de la palabra electrén, que en griego significa
«ambar».

Sin embargo, a pesar de este descubrimiento tan prematuro,
durante muchos siglos no se hicieron investigaciones relativas
a los fenémenos eléctricos mas alla de algunas observaciones
aisladas, y solo fue a principios del siglo xvin1 que empezaron a
ser estudiados sistematicamente. En este contexto, en octubre
de 1745 el holandés Pieter van Musschenbroek (1692-1761), de
la Universidad de Leiden, y el aleman Ewald Georg von Kleist
(1700-1748), desarrollaron simultinea e independientemente el
dispositivo al que méas adelante (debido a la mayor fama de la
que gozaba Van Musschenbroek) se le dio el nombre de botella
de Leiden. _

Esta botella es un mecanismo capaz de almacenar cargas
eléctricas. Su disefo original consistia en un recipiente de vidrio
cerrado, parcialmente lleno de agua, y con un clavo que sobre-
salia de la tapa a la vez que estaba en contacto con el liquido. La
botella era cargada poniendo en contacto el extremo exterior del
clavo con una fuente de electricidad electrostitica (normalmente
generada por friccién). El dispositivo era capaz de retener las
cargas durante varias horas y producia un fuerte shock al entrar
en contacto con un cuerpo humano (el propio experimentador,
normalmente).
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TALES DE MILETO (CA. 624-547 A.C.)

Hay muy pocas certezas acerca de la vida de Tales de Mileto dado que las
referencias escritas mas antiguas que hablan de su vida o de su obra provie-
nen de autores que vivieron siglos mas tarde. Tales nacié y murié en Mileto,
Asia Menor, actualmente Turquia, ciudad que en aquella época era una co-
lonia griega. Hasta donde se sabe, Tales fue politico, fildsofo, matematico
y astronomo, y uno de los siete sabios de la Grecia antigua. Se le atribuye
la idea de que los fendmenos naturales no eran provocados por seres divi-
nos, sino que tenian explicaciones racionales que podian ser deducidas por
la observacidn y el pensamiento. Asimismo, se le atribuye la idea de que
la verdad de las afirmaciones matematicas debia ser demostrada mediante
razonamientos generales. Gracias a sus conocimientos astronomicos pudo
predecir el eclipse total de sol que fue observado en Grecia en el afio 585
a.C. Tales también habria calculado la altura de la gran piramide de Keops
usando solamente una varilla vertical y sus conocimientos de geometria.
El planteamiento para resolver esta cuestion era el siguiente: tenemos gue
a/h = A/H, donde a y h son conocidos, y A puede calcularse conociendo L
y la longitud de la sombra de la piramide (véase la figura). Con estos datos
puede calcularse H, la altura de la pirdmide.

/ a (sombra de
la varilla)

L (lado de la base
de la pir damide)
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FIG. 1 _ Varilla de metal
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FIG, 2

En disefios posteriores, el agua fue reemplazada por placas
metdlicas (figura 1) que revestian tanto el interior como el exte-
rior del recipiente. Una vez cargado el dispositivo se tomaba un
alambre en forma de arco, uno de cuyos extremos se ponia en
contacto con la ldmina externa (figura 2). Cuando el otro extremo
del arco se acercaba a la cabeza del clavo se producia entonces
una descarga en forma de chispa.

El punto que nos interesa aqui es que si, después de ser descar-
gada, se deja reposar la botella durante unos minutos, esta recu-
pera espontaneamente parte de su carga anterior y de este modo es
posible obtener (sin recargar la botella) una segunda chispa. Muy
frecuentemente este fendmeno de «recarga espontinea» puede re-
petirse hasta cuatro o cinco veces consecutivas. ;jPor qué la botella
se recarga de esta manera? Este es el problema que Riemann se
plante6 como segunda investigacion para su Habilitationsschrift.
En ese sentido en 1854 le escribia a su hermana Ida:

Weber y algunos de sus colaboradores han hecho mediciones muy
exactas de un fenémeno que hasta ahora no habia sido explicado:
la carga residual en una botella de Leiden. Les comuniqué mi teoria
sobre este fendmeno, que he elaborado especialmente para este fin.
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El funcionamiento
de una botella de
Leyden es muy
sencillo. Para
cargar el
dispositivo se
frota el extremo
exterior de la
varilla con un
pafio, Para
descargarlo, tal
como se muestra
en la figura 2, se
emplea una pieza
metélica que
ponga en
contacto el
extremo de la
varilla con el
revestimiento
exterior de la
botella.
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He encontrado la explicacion mediante mis investigaciones acerca
de la relacién entre electricidad, luz y magnetismo [se refiere a la
investigacién sobre el campo unificado]. Esta cuestién era muy im-
portante para mi, pues es la primera vez que he podido aplicar mi
trabajo a un fenémeno atin desconocido, y espero que la publicacién
contribuird a que mi obra sea recibida favorablemente.

Riemann titul6 el trabajo en el que analiza este fenémeno
«Sobre las leyes de distribucion de las tensiones eléctricas en
cuerpos ponderables, cuando estos no pueden ser considerados
como absolutamente conductores o no conductores» y lo expuso
ante la Real Sociedad de Ciencias de Gotinga en septiembre de
1854. Mas tarde lo envié a la revista Annalen der Physik und
Chemie, pero en realidad nunca llegé a publicarse, porque Rie-
mann no acepté algunas modificaciones que los editores le in-
dicaron; en consecuencia, las tinicas referencias escritas sobre
este trabajo son las que aparecen, resumidas, en las actas de la
Sociedad.

En este trabajo Riemann rechaza la teoria dualista de la
carga, que era sostenida por Weber y que afirma que la electrici-
dad es el flujo de dos tipos de particulas, unas positivas y otras
negativas. Por el contrario, Riemann adopta la hipétesis unita-
ria, propuesta por Benjamin Franklin (1706-1790), segin la cual
hay un tnico tipo de particula eléctrica, cuya carga es negativa.
Hoy sabemos, de hecho, que esta 1iltima es la hip6tesis correcta.
Para la explicacién del fenémeno en si, Riemann postuld la exis-
tencia de una tendencia de los cuerpos a persistir en su estado
eléctrico, una suerte de «inercia eléctrica de la materia».

Debe decirse finalmente que, a pesar de que el articulo de Rie-
mann contiene muchas ideas correctas (como la ya mencionada
defensa de la hipétesis unitaria de Franklin), la explicacién que
actualmente se acepta para la carga residual de una botella de
Leiden es bastante diferente de la que Riemann propuso. Cuando
la botella se carga, las moléculas de las laminas de metal (molé-
culas que actian a estos efectos como pequefios imanes) orientan
sus polos en la misma direccién; pero al descargarse la botella, no
todas las moléculas «pierden» esa alineacién, sino que un nimero
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significativo de ellas permanece orientado de la misma manera;
son estas moléculas que «persisten en estar alineadas» las que
producen la carga residual.

MAS ALLA DE LA HABILITACION

. En el periodo posterior a la exposicion de su Habilitationsschrift

Riemann continué con sus investigaciones fisicas, y en 1855 pu-
blicé en el Annalen der Physik und Chemie el articulo titulado
«Sobre la teoria de los anillos de color de Nobili». Leopoldo No-
bili fue un fisico italiano que nacié en 1784 en Trassilico, Tos-
cana, y fallecié en 1835 en Florencia. Entre otros logros, inventé
una serie de instrumentos que fueron de gran utilidad para la
investigacion de la termodindmica y la electroquimica, entre ellos
un galvanémetro que lleva su nombre (un galvanémetro es un ins-
trumento que sirve para detectar y medir la corriente eléctrica).
También se le atribuye el descubrimiento de los anillos que llevan
su nombre y que son los que aparecen en el titulo del trabajo de
Riemann. Para obtener los anillos, se conecta una placa de oro,
o de plata, al polo negativo de una pila mediante un alambre de
platino; a continuacién, la placa es colocada perpendicularmente
en una solucién de sulfato de cobre (o de acetato de plomo), y
finalmente el circuito se cierra. Se observa entonces que en la
placa se forman varios anillos concéntricos de diversos colores,
todos muy intensos, que varian segin sea la composicién de la
solucién o de la placa.

En su trabajo, Riemann ofrece una explicacién para el fené-
meno fundada en un estudio tedrico desarrollado por €l sobre
la propagacion y la distribucién de una corriente eléctrica en un
conductor. Para ello se basé, a su vez, en los trabajos previos
del fisico francés Emil du Bois-Reymond (1818-1896), mejorando
sus cdlculos y discutiendo las hip6tesis consideradas por este
autor. En referencia a este estudio, el 9 de octubre de 1854 Rie-
mann le escribia a su hermana Ida: «Este tema es importante
porque se pueden hacer mediciones muy exactas en relacién con
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él y comprobar las leyes de acuerdo a las cuales la electricidad
se mueve». A la larga, sin embargo, el trabajo no produjo mayor
impacto en las teorias sobre la propagacién de las corrientes
eléctricas.

En 1856, poco tiempo después de la publicacion de su articulo
sobre los anillos de Nobili, el exceso de trabajo volvi6 a afectar
su salud. Riemann sufrié un colapso nervioso y, por consejo mé-
dico, se traslad6 durante algunos meses a la regiéon montafnosa de
Hartz, situada a unos 30 km al noreste de Gotinga. Alli se dedicé a
pasear con algunos amigos; sin embargo, muchos de estos, entre
ellos Dedekind, eran colegas de la universidad, por lo que Rie-
mann continué discutiendo con ellos sus teorias fisicas.

Pasado este periodo de descanso, Riemann se reincorporé a
la universidad en 1857 y al afio siguiente realiz6 un trabajo sobre
electrodindmica. En referencia al mismo le escribi6 a su hermana
Ida:

Mi descubrimiento esté relacionado con la intima conexién que
existe entre la electricidad y la luz. Lo he enviado a la Real Sociedad
[de Gotinga]. Por lo que he oido, Gauss ideé otra teoria, respecto a
esta intima relacion, diferente de la mia, pero solo la comunicé a sus
amigos mas intimos. Sin embargo, estoy plenamente convencido
de que mi teoria es la exacta, y que en pocos afios serd reconocida
como tal.

No obstante, a pesar del optimismo que muestra en su carta,
la teoria de Riemann fue desechada. Mas adelante, en 1859, ex-
puso, otra vez ante la Real Sociedad de Ciencias de Gotinga, el
trabajo titulado «Sobre la propagacién de ondas de aire planas
con amplitudes de oscilacion finitas», que fue publicado en 1860.
Se trata de un articulo de 22 paginas, uno de los mas extensos
de los que escribid, en el que resolvia las ecuaciones que descri-
ben los movimientos de los gases bajo diferentes condiciones de
presioén y temperatura.

El tltimo trabajo que mencionaremos en esta seccién, tam-
bién del periodo posterior a 1854, y dedicado asimismo a la ex-
plicacién de un fenémeno fisico, es «Una contribucién a la in-
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vestigacién del movimiento de un
fluido uniforme en un elipsoide»,
publicado, como el anterior, en
1860.

Un elipsoide es un cuerpo que
puede describirse como una esfera
que ha sido achatada, o alargada,
en algunas direcciones (figura 3) y
que no es muy diferente a una pe-
lota de rugby (otra forma de des-
cribirlo es como la «versioén tridi-
mensional» de una elipse; de ahi,
de hecho, su nombre).

En su articulo Riemann analizé elipsoides hechos de un gas
homogéneo (el «fluido uniforme» del titulo), el cual a su vez
consider6é como formado por particulas puntuales aisladas su-
jetas a la fuerza de gravedad. En particular, Riemann estudi6 la
evolucion de los ejes del elipsoide, es decir, la variacién de sus
longitudes a lo largo del tiempo, asi como la rotacién alrededor
de ellos de los diferentes componentes del cuerpo. La idea de
considerar a los gases como formados por particulas puntua-
les anticipa la que, muchos afios mas tarde, seria una de las
hipétesis fundamentales de la mecéanica estadistica de Ludwig
Boltzmann.

Ahora bien, toda nube de gas o de polvo que gira sobre si
misma en el espacio, y que en reposo tendria forma esférica,
adopta, por efecto de la mal llamada fuerza centrifuga (que
no es otra cosa que la inercia «en accién»), la forma de un elip-
soide, y es por eso que las estrellas son, de hecho, elipsoides en
rotacién. Pero también sucede que los planetas se han formado
por la condensaciéon de nubes de gas y polvo de forma elip-
soidal, y que, de hecho, los ciimulos estelares tienen la misma
forma (a ese nivel puede considerarse que cada estrella actia
como una particula aislada). No es sorprendente, pues, que este
trabajo de Riemann tuviera importantes aplicaciones a la hora
de analizar la forma de los cuerpos celestes y de los cimulos
estelares.
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LUDWIG BOLTZMANN (1844-1906)

Boltzmann nacié en Viena y se doctord
en fisica en la universidad de esta ciudad
en 1866, Boltzmann es recordado prin-
cipalmente por su invencién, en la dé-
cada de 1870, de la mecanica estadistica,
cuya hipdtesis central es que los gases,
y otras sustancias, se componen de par-
ticulas que se mueven aleatoriamente,
¥y que el comportamiento azaroso de
estas particulas es el que determina las
propiedades de la materia. Estas ideas
fueron rechazadas por la comunidad
cientifica en general, ya que implicaban
la reversibilidad de ciertos fenémenos
que se consideraban como completa-
mente irreversibles. Por ejemplo, si de-
jamos un frasco de perfume sin tapa en
una habitacion cerrada y dejamos que el
perfume se evapore, la mecanica estadistica de Boltzmann dice que existe la
posibilidad (aun cuando la probabilidad de que esto ocurra sea pequefia) de
gue las moléculas de perfume, en su movimiento aleatorio, regresen espon-
taneamente a la botella y esta vuelva a llenarse. Conclusiones de este tipo
se consideraban absurdas, por lo que los ataques a su teoria continuaron
durante muchos afos. Finalmente, el 5 de octubre de 1906 Boltzmann, quien
siempre habia sido propenso a la depresion, se suicidd. Aparentemente nunca
llego a saber que pocos meses antes Albert Einstein habia publicado un ar-
ticulo sobre el movimiento browniano que demostraba matematicamente la
consistencia de sus hipdtesis, las cuales, ademas, fueron verificadas experi-
mentalmente en la década siguiente gracias el desarrollo de la teoria atémica.

LA CURVA BRAQUISTOCRONA

Ademas de los citados anteriormente, en el periodo posterior a su
Habilitationsschrift Riemann escribié dos trabajos que destacan
por la gran trascendencia que tuvieron a lo largo de las décadas
posteriores. El primero, publicado en 1857, es un articulo sobre
Junciones abelianas; el segundo, de 1859, plantea un problema
relativo a la que hoy se conoce como la funcién zeta de Riemann.
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JOHANN BERNOULLI (1667-1748)

Bernoulli nacié en Basilea, Suiza, v en
1683 ingreso en la universidad de esa

ciudad con la intencidén de estudiar me-
dicina; sin embargo, por influencia de su
hermano mayor Jacob (también mate-
matico de renombre) fue interesandose
cada vez mas por las matematicas hasta
que finalmente estas se transformaron
en su profesion. De todos modos, su
tesis doctoral y sus primeros trabajos
lograron combinar ambos intereses, ya
que trataron de aplicaciones matemati-
cas en la medicina. A lo largo de su vida
hizo notables avances en el desarrollo
del calculo diferencial, que en aquella
época era un descubrimiento reciente;
amplio sus métodos vy los aplico a la re-
solucién de problemas fisicos y astronédmicos de modo tan brillante que
llegd a ser conocido internacionalmente como «El Arquimedes de la era»,
expresion que aparece en su epitafio.

Hablaremos a continuacion del primero de ellos y dejaremos el
segundo para el préximo capitulo.

El trabajo sobre funciones abelianas se titula, precisamente,
«Teoria de las funciones abelianas» («Theorie der Abel’schen
Functionen», en el original), y fue publicado en las paginas 101 a
155 del volumen 54 (aio 1857), del muy prestigioso Journal fiir
die reine und angewandte Mathematik («Revista de matematicas
puras y aplicadas», mas conocida como Journal de Crelle, por ser
su fundador el matematico aleman August Leopold Crelle).

Aunque las funciones abelianas reciben su nombre de Niels
Henrik Abel, de quien hemos hablado en el capitulo anterior, su
historia, sin embargo, empieza méas de un siglo antes del naci-
miento de este matematico noruego. Su origen se remonta a fines
del siglo xvi1, época en la que Newton formulé la ley de la gravedad
y las leyes fundamentales del movimiento, y en la que cred, al
mismo tiempo que Leibniz, el cdlculo diferencial, <herramienta»
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matematica que rapidamente se transformo en esencial para des-
cribir las leyes fisicas de Newton, asi como sus consecuencias.
A partir de estos descubrimientos muchos matematicos se abo-
caron a la tarea de plantear y resolver diversos problemas fisi-
cos relacionados con el movimiento, tanto de objetos terrestres
como astronémicos. De este modo, se calcularon las érbitas de
los cometas con una precisién nunca antes sofiada, se resolvieron
problemas de balistica y muchisimos otros.

Fue en ese contexto que en 1696 el matematico suizo Johann
Bernoulli formulé el problema de la braquistécrona (palabra que
proviene del griego brachistos, que significa «breve», y chronos,
«tiempo»). Este problema plantea determinar qué forma debe
tener una pendiente para que el tiempo que tarda en caer un ob-
jeto alo largo de ella sea el minimo posible (sin tomar en cuenta el
rozamiento que pueda existir). En otras palabras, ;qué trayectoria
debe seguir un cuerpo para llegar desde A hasta B (figura 4) en
el menor tiempo posible si solamente actiia sobre €l la fuerza de
gravedad?

En realidad, el problema ya habia sido planteado siglos antes
por varios matemadticos y fisicos, entre ellos por ejemplo Galileo
Galilei (1564-1642), quienes no habian podido encontrar una res-
puesta; sin embargo, Bernoulli consideraba que, tras los descu-
brimientos de Newton y Leibniz,
la fisica y la matemadtica ya habian
«madurado» lo suficiente como A
para que el problema pudiera ser, e
finalmente, resuelto.

A primera vista podria creerse
que el camino entre A y B deberia
ser rectilineo, ya que, después de \’Objeto que cae
todo, es el camino més corto; vy,
esta seria la respuesta si, al caer, \

el objeto lo hiciera siempre a la \\\

FIG. 4

misma velocidad. Sin embargo, Pandiente
la realidad es que en la caida la x
B

velocidad va aumentando y que
lo hace mas rapidamente cuanto

RIEMANN Y LA FISICA

127



La cicloide v,
debajo, la solucién
del problema de la

braquistécrona.

mas pronunciada es la pendiente. Por lo tanto, la mejor estrategia
es tener una curva que sea «mas empinada» al comienzo, con el
objeto de ganar rapidamente velocidad, y que solo gradualmente
se vaya dirigiendo hacia el punto final. Esta es la idea general de
la solucién, pero el problema pedia en realidad la descripcién ma-
temética exacta de la curva en cuestién (de hecho, Galileo creia,
erréneamente, que la solucién era un arco de circunferencia).

Cuando Bernoulli, en 1696, lanz6 esta cuestién a modo de de-
safio abierto a todos los matematicos europeos no esperaba obte-
ner una respuesta rapida; sin embargo, para sorpresa de todos, el
problema fue resuelto en muy poco tiempo por Isaac Newton. En
realidad, el inglés Newton estaba resentido con los matematicos
del resto de Europa porque estos habian apoyado a Leibniz en la
controversia que ambos sostuvieron por la prioridad del descu-
brimiento del cdlculo diferencial (hoy en dia, como ya se dijo, se
acepta que ambos hicieron el descubrimiento de manera indepen-
diente). A causa de ello Newton opté por presentar su solucion
de manera anénima, pero Bernoulli identificé sin dificultades al
autor del brillante razonamiento; «se reconoce al leén por sus
garras» fue la famosa frase que Bernoulli dijo al respecto.

La respuesta al problema es que la curva que hace que la caida
tarde el menor tiempo posible es un arco de cicloide, que es la
curva que dibuja un punto fijado en el borde de una rueda cuando
esta gira sobre un camino plano sin deslizarse (figura 5).

FIG. 5

128

A
1
\? Objeto que cae
"

S
Arco de cicliode ™——e g
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Es interesante observar que esta respuesta tiene en la actua-
lidad aplicaciones practicas muy concretas; por citar solo una de
ellas, digamos que los toboganes que sirven para evacuar los avio-
nes tienen forma de arco de cicloide, precisamente para ahorrar
segundos vitales en una situaciéon de emergencia.

LAS FUNCIONES ABELIANAS

. Cémo se relaciona el problema de la braquistécrona con las
funciones abelianas? Tal y como se dijo en el capitulo anterior,
los matematicos del siglo xix, entre ellos Niels Abel, hicieron una
profunda revision de los métodos del calculo diferencial, estable-
ciendo de manera rigurosa sus alcances y sus aplicaciones reales.
Es asi que Abel en 1826 reformulé el razonamiento que usé New-
ton para resolver el problema de la braquistécrona con el fin de
ajustarlo mejor a los nuevos estdndares de rigor de la época, y
para ello planteo el problema a través de una ecuacion integral.

En el capitulo anterior hemos hablado del concepto de inte-
gral. Recordemos que si f(x) es una funcién de variable real cuyo
grafico estd por arriba del eje horizontal, entonces la integral de
f(x) calcula el drea de la regién limitada entre ese eje horizontal
y el grafico de la funcién.

Imaginemos ahora que f(x) es una funcién que es descono-
cida, pero de la que si sabemos de qué manera va cambiando el
area bajo su grafico a medida que au-
menta el valor de x (figura 6).

Al problema de hallar una funcién
desconocida f(x) conocido el modo en 1 ™
que varia su integral se lo conoce como
el problema de resolver una ecuacion in-
tegral. Ahora bien, como ya se dijo antes,
Abel reformul6 la solucién del problema
de la braquistécrona y lo hizo mediante

FIG. &

el planteamiento de una ecuacién inte-
gral. Més tarde, a integrales similares a
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las que planteé Abel, y que resultaron tener otras importantes apli-
caciones, tanto en fisica como en matemadticas puras, se las llamé
inlegrales abelianas y a sus soluciones, funciones abelianas.

«Parece muy probable que de haber vivido veinte o treinta anos
mas Riemann hubiera llegado a ser el Newton o el Einstein
del siglo xix.»

— Eric TemrLE BELL, LOS GRANDES MATEMATICOS.

130

Hay que decir que el problema de la braquistécrona se en-
marca en realidad dentro de una familia mucho mas amplia de
problemas, en todos los cuales se busca la curva, o la superficie,
que logre que cierta cantidad sea minima; en el caso de la bra-
quistécrona, por ejemplo, se busca que sea minima la cantidad de
tiempo que tarda en caer el objeto entre el punto A y el punto B
de la figura 4 (pag. 127).

Otro famoso problema de este tipo, por ejemplo, pide hallar,
de todas las superficies que encierran un volumen dado, aquella
cuya area sea minima. En términos mas concretos, la pregunta
podria formularse asi: si quisiéramos disefiar una botella de un
litro de capacidad, ;qué forma deberia tener para que la cantidad
de material sea la minima posible? La respuesta a esta pregunta
es que para lograr ese objetivo la botella debe tener forma esfé-
rica: la superficie de menor area capaz de encerrar un volumen
fijado de antemano es siempre la superficie de una esfera. Es im-
portante decir que esta solucién explica por qué las pompas de
jabon tienen forma de esfera. Esto se debe a que la pompa tiende
a minimizar la tensién superficial, y esto se logra, precisamente,
minimizando el 4rea de la pelicula de jabén.

En su trabajo de 1857, Riemann retomé las ecuaciones de
Abel y las utilizé para plantear nuevos problemas de minimiza-
cién, los cuales resolvié mediante una hédbil combinacién de razo-
namientos fisicos y matematicos. Riemann hizo uso en sus razo-
namientos de lo que él denomind el principio de Dirichlet, y que
dice, basicamente, que todos los fenémenos fisicos siempre evolu-
cionan en la direccién de «hacer el menor esfuerzo posible» (por
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ejemplo, las pompas de jabén minimizan la tensién superficial, la
luz viaja por el camino mas corto, etc.). Hay que decir, para evitar
confusiones, que solo Riemann usé el nombre de «principio de
Dirichlet» para referirse a esta afirmacién y que, de hecho, jamas
se le ha vuelto a poner ese nombre.

Aunque en su trabajo, Riemann no resolvi6 el problema de la
superficie minima que encierra un volumen dado, podemos usarlo
de todos modos para ejemplificar su modo de pensar. De haber
tratado el problema de la superficie minima, Riemann habria plan-
teado las ecuaciones que describen el problema y habria obser-
vado que este es equivalente al problema de minimizar la tensién
superficial en una pompa de jabén, y dado que estas siempre tie-
nen forma esférica, habria concluido que la solucién del problema
es, en efecto, una esfera. Es decir, habria empleado la observacion
fisica sobre la forma de la pompa para deducir la solucién mate-
matica del problema.

Es importante remarcar en que hemos dado una version ex-
tremadamente simplificada de las ideas contenidas en el trabajo
de Riemann, las cuales, ademés, sacaban partido de las ideas to-
polégicas que él mismo habia desarrollado en su tesis doctoral.
Por otra parte, los fenémenos fisicos con los que Riemann trabajo
en su articulo estaban, en la misma linea que muchos de sus otros
trabajos, relacionados con la distribucién de cargas eléctricas. De
hecho, Riemann descubrié muchos de los teoremas de la teorfa de
funciones abelianas pensando en experimentos simples sobre el
flujo de corrientes eléctricas en placas delgadas.

Riemann logré desplegar en su trabajo toda la originalidad
y la profundidad de su pensamiento, tanto es asi que en su libro
Desarrollos matemdticos en el siglo xix, el matematico Felix Klein
(1849-1925) escribié:

Cuando Weierstrass envi6 a la Academia de Berlin en 1857 un pri-
mer estudio general de las funciones abelianas, el articulo de Rie-
mann sobre el mismo tema ya habia sido publicado en el Journal de
Crelle, volumen 54. Este contenia tantos conceptos nuevos e ines-
perados que Weierstrass retiré su articulo y, de hecho, no publicé
ningin otro sobre el mismo tema.

RIEMANN Y LA FISICA

131






CAPITULO 5

La hipétesis de Riemann

En 1900, en la conferencia inaugural del Segundo
Congreso Internacional de Matematicas, David Hilbert
planteé los 23 problemas que a su juicio iban a guiar
la investigacién matematica a lo largo del siglo xx. Uno
de ellos es conocido como la hipdiesis de Riemann, ya
que fue planteado por Bernhard Riemann en 1859. Este
problema, que aiin hoy no ha sido resuelto, es una
de las claves fundamentales para demostrar
muchas conjeturas relacionadas
con los nimeros primos.






Gustav Lejeune Dirichlet fallecié el 5 de mayo de 1859 y su ca-
tedra en Gotinga, la misma que hasta 1855 habia sido ocupada
por Gauss, volvié a quedar vacante. Recordemos que en 1855 las
autoridades de la universidad habian considerado que Riemann
no tenia la madurez suficiente como para hacerse cargo de ese
puesto. Sin embargo, en 1859 la situacién habia cambiado radical-
mente, porque con la publicacién, dos afios antes, de su trabajo
sobre funciones abelianas Riemann habia saltado a la fama dentro
del mundo de las matematicas europeas. Las autoridades de Go-
tinga cambiaron, en consecuencia, la opinién que tenian acerca
de Riemann y finalmente este, el 30 de julio de 1859, se convirtié
en profesor titular de matematicas de la Universidad de Gotinga.

Pero este nuevo cargo en la universidad no fue el tinico logro
académico de Riemann en aquel afio, porque poco después fue
elegido miembro de la Academia de Ciencias de Berlin. Entre
quienes lo habian recomendado para recibir ese honor se encon-
traba Karl Weierstrass, quien en su propuesta escribié:

Antes de la aparicién de su mas reciente obra [la «Teoria de fun-
ciones abelianas»], Riemann era casi desconocido para los mate-
maéticos. De alguna manera, esta circunstancia excusa de la nece-
sidad de un examen més detallado de sus obras como base de esta
presentacién. Consideramos nuestro deber llamar la atencion de la
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Academia hacia nuestro colega, a quien recomendamos no como
un joven talento con grandes esperanzas, sino como un investiga-
dor completamente maduro e independiente en nuestra drea de la
ciencia, cuyo progreso ha sido en gran medida promovido por él

Puede parecer extraino que Weierstrass dijera que Riemann
era «casi un desconocido» y que no hiciera referencia a su trabajo

sobre geometria diferencial ni a aquel en el que definié la integral

KARL WEIERSTRASS (1815-1897)

Weierstrass nacio en Ostenfelde (Ale-
mania) y mientras cursaba sus estudios
secundarios ya dio muestras de una
capacidad extraordinaria para las ma-
tematicas; leia regularmente el Journal
de Crelle (la prestigiosa revista de ma-
tematicas superiores) y daba clases
complementarias a todos sus hermanos.
Sin embargo, su padre deseaba que es-
tudiara economia y fue por eso que en
1834 ingreso en la Universidad de Bonn
para estudiar leyes, finanzas y economia.
Sin embargo, su vocacién por las mate-
maticas era mas fuerte y Weierstrass
abandond la universidad y se dedicé a
estudiar esta materia de modo autodi-
dacta, leyendo las obras de Laplace, Ja-
cobi y otros matematicos de renombre.
Finalmente, tras conseguir el permiso
paterno, en 1839 ingresd en la Acade-
mia de Teoclogia y Filosofia de Mlnster
para convertirse en profesor de nivel se-
cundario de matematicas. Weierstrass comenzdé a trabajar como maestro en
1842, a la vez que iniciaba su carrera como investigador enviando una serie
de articulos al Journal de Crelle. El éxito de sus trabajos fue tal que, a pesar
de no poseer un doctorado, en 1856 se le ofrecié un puesto de profesor en
la Universidad de Berlin, cargo que Weierstrass acepto inmediatamente. Sus
trabajos, en los que hizo contribuciones esenciales a la fundamentacién del
célculo, siempre se destacaron por sus altas exigencias de rigor légico.
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de Riemann, pero hay que recordar que, aunque ambos articulos
fueron completados en 1854, solo serian publicados en 1868.

Al aio siguiente de este nombramiento, en 1860, Riemann
viajo a Paris, donde conocié a diversos matematicos franceses de
renombre, entre ellos a Charles Hermite (1822-1901), quien elogi6
sus trabajos. En aquella época, ademas, fue nombrado miembro
de la Academia Francesa de Ciencias, asi como de la Real Socie-
dad de Londres.

De este modo, Riemann finalmente comenzaba a obtener el
reconocimiento que merecia. En el plano personal, por otra parte,
el futuro también se mostraba prometedor. Por un lado, el au-
mento de salario que implicaba su nuevo cargo le permitié incre-
mentar la ayuda econémica que enviaba a su familia. Por otro, en
junio de 1862 contrajo matrimonio con Elise Koch, una amiga de
sus hermanas, y un afio después naci6 su hija, a la que llamaron
Ida en homenaje a la hermana mayor de Bernhard. La década de
1860 comenzaba con los mejores augurios para Riemann, pero
lamentablemente esa felicidad iba a durar muy poco tiempo.

SUS ULTIMOS ANOS

Tanto Riemann como todos sus hermanos tuvieron siempre una
salud muy fragil; como ya se apuntdé, los historiadores suelen
atribuir esta circunstancia a la mala alimentacién y a la falta de
cuidados médicos que todos ellos padecieron durante la infancia.
Pero fuese cual fuese el motivo, la verdad es que ninguno de los
cinco hermanos de Riemann logré alcanzar una edad avanzada.
De hecho, la tinica hermana que lo sobrevivié fue Ida. Su hermana
Clara muri6 en 1855, su hermana Maria y su tinico hermano varén
(que era empleado de correos en Bremen y, por tanto, constituia
otro de los sostenes econémicos de la familia) fallecieron ambos
en 1857, y su hermana Elena, en 1864; todos ellos alrededor de los
cuarenta anos de edad.

En cuanto a Bernhard, un mes después de haberse casado,
en julio de 1862, cayé enfermo de pleuritis (una inflamacién de
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los pulmones), que poco tiempo después se transformé en tuber-
culosis. Y como los meses pasaban y la situacién no mejoraba, en
diciembre, al acercarse el invierno, los médicos le aconsejaron
que viajara a Italia, con la esperanza de que el clima méas benigno
de ese pais lo ayudara a recuperarse. La situacion econémica de
Riemann, aunque mucho mejor que la de afos anteriores, no le
permitia concederse lujos semejantes y el viaje solo fue posible
gracias a la ayuda de algunos amigos que le prestaron el dinero
necesario.

«La hipotesis de Riemann no es un simple problema, es “el”
problema, el mas importante de los problemas de las
matematicas puras.»

— Enrico BoMBIERI, MATEMATICO DEL INsTITUTO DE ESTUDIOS AVANZADOS DE PRINCETON.

El clima mas cdlido logré que Riemann se sintiera mejor
y, en consecuencia, en marzo de 1863 regresé a Gotinga con la
intencién de reintegrarse a sus deberes académicos; pero a los
pocos meses sufrié una recaida y en agosto tuvo que volver a Ita-
lia, donde nacié su hija Ida. Su situacion econémica volvia a ser
complicada y, a modo de ayuda, la Universidad de Pisa le ofreci6
una catedra, pero le fue imposible aceptarla debido a su lastimoso
estado de salud. Afortunadamente, gracias a la intervencién de
sus amigos alemanes, la Universidad de Gotinga aceptd enviarle
una importante suma de dinero, ayuda que le permitié alquilar una
casa en el campo.

Dos afios mas tarde, en octubre de 1865, Riemann regresé6
por tltima vez a Gotinga. Alli se reunié con algunos colegas y
puso en orden sus papeles; poco después volvié a Italia. Por ese
tiempo Dedekind escribié: «Sus fuerzas declinaban rdpidamente
y comprendia que el final estaba préximo». En esta nueva esta-
dia italiana Riemann se instal6 en la ciudad de Selasca, al norte
del pais. Alli murié, acompaiiado por su esposa, el 20 de julio de
1866, a la edad de treinta y nueve afios. Su epitafio, redactado por
sus amigos italianos, destaca el aspecto religioso de la vida de
Riemann por encima del aspecto cientifico (Riemann siempre fue
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muy creyente). El texto del epitafio es: «Todas las cosas trabajan
para el bien de los que aman al Sefior».

Hoy en dia Riemann sigue vivo en sus escritos, en las ideas
que concibié y en todo lo que estas produjeron, y también en los
problemas que plante6, muy especialmente en uno de ellos, una
conjetura tan trascendente que para muchos de los mateméticos
de los tltimos 150 afios ha sido, y es todavia, el méas importante
de todos los problemas mateméticos atin no resueltos. Se trata de
la cuestién conocida como la hipdtesis de Riemann, que resulta
ser la clave para desentranar el misterio de la distribucion de los
nimeros primos.

LOS NUMEROS PRIMOS

Como ya se apuntd, en 1859 Riemann fue elegido miembro de la
Academia de Ciencias de Berlin. En aquella época era costumbre
que cada nuevo miembro de la Academia expusiera ante sus co-
legas el resultado de alguna investigacién propia y original, y, ob-
viamente, Riemann cumplié con este requisito. Su exposicién, que
qued6 registrada en el informe mensual de la Academia correspon-
diente a noviembre de aquel aiio, lleva por titulo «Ueber die Anzahl
der Primzahlen unter einer gegebenen Grisse» («Sobre el nimero
de primos por debajo de un determinado valor») y en él plante6
la famosa hipdtesis de Riemann. Para entender de qué trata este
problema, comencemos hablando de los miimeros primos.

Se llaman primos a todos los nimeros naturales que solo son
divisibles por 1 y por si mismos. Por ejemplo, 3 es primo porque
solo es divisible por 1 y por 3, mientras que 9 no lo es porque,
ademas de por 1 y por 9, también es divisible por 3. Los prime-
ros niumeros primos son 2, 3, 5, 7, 11, 13, 17, 19, 23,... Debido a
razones técnicas ni el 1 ni el 0 son considerados primos. Por otra
parte, existen también primos negativos, que son los niimeros -2,
-3, -b, -7, -11, =13, -17, 19, -23,..., pero no nos ocuparemos de
ellos debido a que, como puede verse, solo son el «reflejo» de los
primos positivos.
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Una primera pregunta que puede hacerse es si terminan al-
guna vez; en otras palabras, ;jexiste un dltimo niimero primo o,
por el contrario, estos siguen indefinidamente? El primero en dar
una respuesta rigurosa a esta pregunta fue, hasta donde se sabe,
Euclides de Alejandria en el siglo m a.C. En el teorema 20 del Libro
IX de su obra mis famosa, los Elementos, Euclides demuestra que
existe una cantidad infinita de niimeros primos, es decir, que los
primos nunca terminan. Por otra parte, una de las caracteristi-
cas mas importantes de los primos consiste en que son los «ladri-
llos bésicos» de los niimeros naturales, en el sentido de que todo
nimero natural mayor que 1, o bien es primo, o bien se escribe
de manera tnica como producto de primos; por ejemplo, 6=2.3
y esa es la tinica forma de escribirlo como producto de primos
(dejando de lado el hecho obvio de que también puede escribirse
como 6=3-2). Otros ejemplos son 8=2:2.2; 15=3.5y21=3.T.

La propiedad de los niimeros primos que mas ha atraido el
interés de los matematicos durante siglos es su comportamiento
aparentemente «cadtico» y «aleatorio». ;Qué significa esto exac-
tamente? Comencemos por decir que se llama laguna de primos a
cualquier secuencia formada por nimeros naturales consecutivos

EXISTEN INFINITOS PRIMOS

Dada cualquier cantidad finita de nimeros primos, siempre existe un primo
mas (lo cual implica, por supuesto, que no existe un d/timo nimero primo).
Tomemos una cantidad finita de primos, digamos, p, p,... p,, ¥ definamos
a continuacién el nimero N como el resultado de sumar 1 al producto de
todos ellos: N=p,'p,-....p, +1. Observemos que si dividimos a N por p, el
resto es 1, y que lo mismo sucede si lo dividimos por cualquiera de los otros
numeros p,... p,. Ahora bien, el nimero N, como todo nimero natural, tiene
algun divisor primo (si N es primo, el divisor es el propio niumero N). Llame-
mos g a un divisor primo de N. éPuede ser g=p,? No, porque g es divisor
de N mientras que p no lo es (porque N dividido por p, da resto 1). Por la
misma razon, g no puede ser ninguno de los numeros p,,... p,; es decir, g es
un primo diferente de todos los que teniamos al principio. De este modo,
queda probado que, dados los primos p, p,... p, existe un primo g que es
distinto de todos ellos.
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en los que no aparece ningin primo (figura 1); es decir, secuencias
que implican, precisamente, una «laguna» o una interrupcién en la
sucesion de los nimeros primos. Una de estas lagunas, por ejem-
plo, esta formada por los nimeros 90, 91, 92, 93, 94, 95, 96 (ubicada
Jjusto entre los primos 89 y 97), y que es, de hecho, la primera laguna
de longitud 7 que aparece en la secuencia de los niimeros naturales.

Ahora bien, puede probarse que, dado cualquier nimero N, no
importa lo grande que sea, siempre existe una laguna cuya longitud
es al menos igual que N. En otras palabras, hay pares de primos
consecutivos tan alejados entre si como se quiera. La distancia
entre 89 y 97 es 8, pero hay primos consecutivos cuya distancia es
mayor a un millén, o a mil millones, o a un trillén.

Al mismo tiempo, sin embargo, se cree que existe una can-
tidad infinita de parejas de primos gemelos; es decir, infinitas
parejas de primos cuya diferencia es exactamente igual a 2. Son
pares de primos gemelos, por ejemplo, (3,5), (5,7), (11,13), (71,73)
y también (2003663613 - 2'%%° _ 1: 2003663613 - 2!%%0 4 1), estos
dos ultimos son niimeros de mas de 58000 cifras cada uno. Los
primeros 15 pares de primos gemelos son los siguientes: (3,5),
(5,7, (11,13), (17,19), (29,31), (41,43), (59,61), (71,73), (101,103),
(107,109), (137,139), (149,151), (179,181), (191,193), (197,199).

Estos dos hechos reunidos ejemplifican lo que hemos llamado
el «comportamiento caético» de los niimeros primos. Por un lado,
en la secuencia de los primos existen términos consecutivos tan
alejados entre si como se quiera (a millones y millones de ntiime-
ros de distancia, por ejemplo), a la vez que, segiin se cree, existen
infinitas parejas de primos cuya distancia es solamente 2. Mas
ain, no existe, en principio, ningiin modo de saber si un primo

FIG. 1 @ ga 911 92 93 9:‘,“ 95"‘ 96@
I ]

Laguna de primos

Hay lagunas de primos tan largas como se quiera

LA HIPOTESIS DE RIEMANN

141



142

dado marca el inicio de una laguna larguisima de cientos de millo-
nes de niimeros, o una muy breve de solo unos pocos.

CONJETURAS

Como ya se apunt6, este comportamiento «extrafio» de los niime-
ros primos ha fascinado durante siglos a los matematicos, quienes
han formulado decenas de problemas relacionados con ellos, mu-
chos de los cuales permanecen todavia sin resolver. En general,
estos problemas estin enunciados en la forma de una conjetura,
que es una afirmacién matematica de la que se cree que és verdad,
pero que nadie ha podido alin demostrar ni refutar.

Por ejemplo, antes se ha mencionado la conjetura de los pri-
mos gemelos, que dice que existen infinitas parejas de primos
cuya diferencia es 2. Es interesante sefialar que, aunque el pro-
blema no ha sido resuelto, se han hecho algunos avances en esa

LAGUNAS DE PRIMOS

Dado cualquier N, es siempre posible encontrar N numeros consecutivos
ninguno de los cuales es primo (es decir, existe una laguna de primos de
longitud N). Para ello recordemos que si M es un numero entero mayor
que 1 se define como M! (se lee «factorial de M») al producto de todos los
numeros naturales entre 1y M, es decir, M!=1:2-3 -...-M. Dado N, considere-
mos la secuencia formada por los N nimeros consecutivos gue se obtienen
sumando al factorial de N + 1los numeros 2, 3, 4,... N+1. Es decir, tomamos
la secuencia: (N+1)!1+2, (N+ 1D+ 3, (N+D!+4,.. (N+D!I+(N+1). La secuencia
estd formada, como ya se dijo, por N niumeros y ademas ninguno de ellos
es primo: (N+1)!+2 no es primo porqgue es divisible por 2, (N+1)!+3 no es
primo porqgue es divisible por 3 y asi sucesivamente. Aunque acabamos de
mostrar el modo de hallar una laguna de longitud N, la que hemos hallado
no es la unica laguna posible. Por ejemplo, si buscaramos una laguna de
longitud 7 el método nos diria que es la que va desde 8!+2=40 322 hasta
8!+8=402328; sin embargo, otra laguna de la misma longitud es la que va
desde el numero 90 hasta el 96.
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direccién. En 1973 el matematico chino Chen Jingrun (1933-1996)
demostré que existen infinitos niimeros primos p tales que p + 2
es, 0 bien primo, o bien el producto de dos niimeros primos. Es
decir, existen infinitas parejas en las que uno de los dos «gemelos»
es un numero primo mientras que el otro es, o bien un primo, o
bien tan «parecido» a un primo como es posible.

En otro sentido, en mayo de 2013 el también matemético
chino Yitang Zhang (n. 1955) demostré que existen infinitos
pares de primos que estdn separados por una distancia menor a
700000005 en otras palabras, que existen infinitas lagunas cuya
longitud es menor que esa cantidad. Poco tiempo después, este
resultado fue mejorado cuando se demostré que existen infinitos
pares de primos separados por una distancia menor a 10206.

Dado que el problema pide demostrar que existen infinitos
pares de primos cuya distancia es igual a 2, tal vez parezca un
logro muy inferior el haber probado que hay infinitos pares de
primos cuya distancia es menor a 10206. Pero la verdad es que
se trata de un avance enorme, ya que antes de que Yitang Zhang
demostrara su teorema no se sabia si habia infinitos pares de pri-
mos a una distancia finita, no importa cudl fuera esta. Bien po-
dria haber sucedido que a partir de algiin momento las distancias
entre primos consecutivos crecieran indefinidamente, pero ahora
sabemos que hay infinitos pares de primos a una distancia fija
y finita, y no es imposible imaginar que en algiin momento esa
distancia pueda ser reducida de 10206 a 2 (aunque no necesaria-
mente usando los mismos métodos que Yitang Zhang).

Otro problema famoso relativo a los niimeros primos es la
conjetura de Goldbach, llamada asi porque fue formulada por pri-
mera vez por el matematico aleman Christian Goldbach (1690-
1764) en una carta enviada a Leonhard Euler el 7 de junio de 1742.
Esta conjetura dice, simplemente, que todo niimero par mayor
que 2 es la suma de dos niimeros primos; por ejemplo: 4=2+2,
6=3+3,8=3+5,10=3+7,12=5+7...

Se ha comprobado que todo nimero par menor que 10* (un
1 seguido de 18 ceros) es la suma de dos niimeros primos, pero
todavia no se ha podido demostrar que esto sea cierto para todos
los infinitos nimeros pares que existen, asi como tampoco se ha
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encontrado un nimero par para el cual la afirmacién falle. Si se
han podido demostrar algunas afirmaciones relacionadas con esta
conjetura; asi, por ejemplo, en 1937 el matematico ruso Ivin Vino-
gradov (1891-1983) probé que «casi todos» los nimeros impares
mayores que 5 son suma de ¢res niimeros primos. Este «casi todos»
significa que si la afirmacién falla para algunos niimeros impares,
entonces solo puede fallar para una cantidad finita de ellos.

LA «OTRA» CONJETURA DE GOLDBACH

Goldbach hizo diversas aporta-
ciones a la aritmética, la mayoria
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5=2-7P+3 Fragmento de la carta de Goldbach a Euler
7=2-12+5 en la que formulé su famosa conjetura.
9=2-12+7

N=2-22+3

17=2-0*+17.

Tanto Euler como Goldbach estaban convencidos de que esta conjetura
era cierta; sin embargo, resulta que es falsa. En 1856 Moritz Abraham Stern
(1807-1894), profesor de matematicas de Gotinga, comprobd que la conje-
tura falla para los nimeros 5777 y 5993, ya que ninguno de los dos puede
escribirse como la suma del doble de un cuadrado mas un primo. Hasta el
dia de hoy son los dos Unicos numeros gue se conocen para los cuales la
conjetura no se cumple.
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El dltimo problema no resuelto que vamos a comentar se re-
laciona con los primos de Mersenne, asi llamados en homenaje al
matematico y monje francés Marin Mersenne, quien los estudié a
principios del siglo xvi. Se llama «primo de Mersenne» a cualquier
numero primo que sea de la forma 2" - 1; es decir, cualquier primo
que se obtenga restando 1 a una potencia de 2. Por ejemplo, son
primos de Mersenne: 3 =22-1;7=23-1;31=25-1...

En este caso la conjetura dice que la cantidad de primos de
Mersenne es infinita; es decir, que nunca se terminan. Al mo-
mento de escribir estas lineas se conocen 48 niimeros que son
primos de Mersenne, el mayor de los cuales tiene mas de 17 mi-
llones de cifras. Sin embargo, todavia no se sabe si hay, o no, una
cantidad infinita de ellos.

Muchos de los problemas que hemos mencionado, asi como
muchos otros relacionados con los niimeros primos, podrian re-
solverse si se conociera con precision cémo es la distribucion
de los niimeros primos. ;Qué significa esto? Dicho brevemente,
dados dos nimeros naturales n y m, el problema de la distribu-
cién de los nimeros primos pide determinar cudntos primos hay
en el intervalo que va entre n y m. Esta cantidad, obviamente,
depende de cudles sean exactamente los niimeros n y m; dado el
comportamiento «erratico» de los niimeros primos, esa cantidad
va variando de una manera muy compleja.

Nétese, por ejemplo, que tener un conocimiento preciso de
como es la distribucién de los niimeros primos nos daria una in-
formacién muy valiosa para resolver el problema de los primos
gemelos, ya que este puede reformularse de esta manera: ;existen
infinitos niimeros impares n tales que en el intervalo que va entre
n y n+2 (inclusive) hay exactamente dos primos?

LA FUNCION PI
Si n es un nimero natural, suele llamarse ni(n) a la cantidad de

primos que hay entre 1 y n inclusive; por ejemplo, (9) =4, ya que
entre 1 y 9 hay cuatro primos: 2, 3, 5 y 7, mientras que n(11)=5,
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MARIN MERSENNE (1588-1648)

Mersenne nacié en Qizé (Francia) y
estudié en la escuela jesuitica de La
Fléche, que recibia nifios indepen-
dientemente del nivel econémico
de sus padres, que en su caso eran
muy pobres. En esa escuela conocié
a René Descartes, que también estu-
diaba alli, y con quien mantuvo una
{ larga amistad. Mersenne completd
i su educacion en el Collége Royale de
! Paris, donde se gradud en filosofia v
teologia; inmediatamente después,
en 1611, ingreso en un monasterio de
la Orden de los Minimos, orden cuyos
miembros se dedican al estudio vy la
ensefianza. En 1616 fue designado su-
perior de uno de los monasterios de
Paris, donde permanecid, excepto Retrato-de: Mersenne por sl pintor
por algunos viajes muy breves, hasta  y grabador francés Balthasar
su muerte en 1648. En 1623 comenzod Moncornet (1654).
a relacionarse con una larga serie de
sabios de toda Europa, con guienes mantuvo una intensa correspondencia
y también algunos encuentros en Paris. Entre ellos estaban René Descar-
tes, Gilles de Roberval, Pierre de Fermat, Christiaan Huygens, Galileo Gali-
lei, Thomas Hobbes, Etienne Pascal vy su hijo Blaise Pascal. Mersenne actué
como nexo entre ellos para la discusion de cuestiones cientificas y filosofi-
cas, y especialmente matematicas, ya que esta ultima ciencia jugd un papel
muy importante en su vida desde el principio de su estadia en Paris. En este
ultimo terreno, publicd estudios, entre otros temas, sobre las propiedades
de la cicloide y sobre los primos que llevan su nombre. También estaba muy
interesado en la musica y dedicd mucho tiempo a hacer investigaciones
sobre la generacién y la medicién de la velocidad del sonido. En este sen-
tido, en 1627 publicé uno de sus trabajos mas famosos, La armonia universal,
siendo el primero en publicar las leyes que rigen el comportamiento de las
cuerdas vibrantes. Mersenne envio este trabajo a Christiaan Huygens, quien
lo tomo6 como base para su teoria de la musica y su teoria ondulatoria de la
luz. En octubre de 1644 viajo a Italia donde conocié a Evangelista Torricelli
y supo de sus investigaciones con el barémetro. De regreso en Paris, Mer-
senne difundio el experimento por toda Francia y alento a los investigadores
franceses a reproducirlo. En su testamento legd su cuerpo para que fuera
usado en experimentos biolégicos.
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FIG. 2
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ya que a los cuatro anteriores se agrega el 11. Como se muestra
en la figura 2, si para cada natural n se conoce el valor exacto de
n(n) entonces puede saberse la cantidad de primos que hay entre
nym.

En principio, el valor de n(n) puede calcularse simplemente
contando uno por uno cudntos primos hay entre 1 y n, tal y como
hemos mostrado para n(9) y w(11). El problema es que ese mé-
todo resulta completamente inviable en la practica. Digamos, por
ejemplo, que nos preguntamos cuanto vale w(10'™), donde 10'® es
un 1 seguido de 100 ceros, y que vamos a responder la pregunta
tomando uno por uno todos los nimeros entre 1y 10'°, determi-
nando en cada caso cuil es primo y cudl no lo es. Supongamos
finalmente que fuéramos capaces de determinar en solo un se-
gundo si el nimero considerado es primo o no. Bajo todas estas
suposiciones tardariamos 10' segundos en determinar el valor de
7(10'%), un tiempo que equivale a algo mas de 3 - 10” afios. Para
intentar comprender qué tan impresionantemente enorme es ese
lapso de tiempo, téngase en cuenta, a modo de comparacién, que
la vida total del universo no llega a 2 - 10*° afos.

Es necesario, por lo tanto, un modo més «inteligente» de cal-
cular el valor de n(n). En ese sentido, varios matemaéticos de los
siglos xvi y x1x, entre ellos Gauss, conjeturaron que una buena
aproximacion del valor de n(n) estd dada por la férmula n / In(n),
donde In(n) es el «logaritmo natural» de n. Este hecho, conocido
como el teorema de los nimeros primos, fue probado posterior-
mente, en 1896, de manera independiente por los matematicos
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franceses Jacques Hadamard (1865-1963) y Charles-Jean de la Va-
llée Poussin (1866-1962). Esta aproximacién nos dice que m(10'%)
vale aproximadamente 4,34 - 10°".

La tabla siguiente nos muestra algunos valores de mt(n) con
las aproximaciones que da la férmula n/In(n). Sin embargo, la
aproximacién que proporciona esta férmula, aunque muy buena,
no es la inica ni necesariamente la mejor.

n m(n) In?n)
10 4 4,34
100 25 21,7
1000 168 144,76
10000 1229 1085,74

Existen, pues, muchas maneras de aproximar la cantidad de
primos que hay entre 1 y n; la férmula n/In(n) es una de ellas,
pero en su trabajo de 1859 Riemann ofrecié una estimacién mucho
mejor, y para ello partié de una igualdad que habia sido planteada
un siglo antes por Euler:

1 l+l+1+l_“= 1 + 1 1
2° '3 4 5 6 ;. 1, 1, 1, 1
25 38 58 78

A la izquierda aparece una suma infinita similar a las que ana-
lizamos en capitulos previos, mientras que lo que se ve a la dere-
cha es un producto infinito cuyos factores contienen a todos los
nimeros primos (2, 3, 5, 7, ...). Euler, de hecho, usé esta igualdad
para dar una demostracion de la existencia de infinitos primos,
una demostraciéon diferente de la que en su momento ofrecié
Euclides. En su razonamiento, Euler toma s=1 en la igualdad an-
terior, de donde obtiene:

LY. I S N T S S
456 , 1,1,1,]1
2 3 53 7

1+

11
—+=+
2 3
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Si solo existiera una cantidad finita de nimeros primos, el
producto de la derecha daria necesariamente un resultado finito
(porque seria el producto de una cantidad finita de nimeros).
Pero el producto es igual a la suma

cuyo resultado, segiin dijimos en el capitulo 3, es infinito. En con-
secuencia, el siguiente producto:

1 1 1 1

t-2q3.1,. 041
2 3 5 7

da como resultado «infinito» y, por lo tanto, debe involucrar una
cantidad infinita de factores; en conclusién, existen infinitos ni-
meros primos.

Ahora bien, mientras que Euler solo consideraba a s como
un nimero real mayor que 1, Riemann, en cambio, extendié la
idea a todo el plano complejo; y de este modo definié la que hoy
es conocida como la funcion zeta de Riemann («zeta» es aqui
el nombre de la letra griega €). En efecto, si s es un niimero real
mayor que 1 (el caso que consideraba Euler), entonces T (s), que
se lee «zeta de s», se define como el resultado de la suma infinita
que antes escribimos:

1.3 &%_.1_ 1
s b oD g e s
o

Por ejemplo, C (3) es el resultado de

1+ :2 + 2 + 2 - & + $
2 8 £ '8 67
que vale aproximadamente 1,202056903... Para extender la fun-
cién a todo el plano, Riemann se basé en los teoremas sobre fun-
ciones de variable compleja que habia demostrado en su tesis de
1851. Estos teoremas le permitieron probar que la funcién T (s)
puede, en realidad, calcularse para cualquier nimero real o com-
plejo. Es decir, si s es un niimero real o complejo entonces £ (s)
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FIG. 3

dara siempre como resultado un niimero asimismo real o com-
plejo (excepto cuando s =1 en cuyo caso la funcién, como ya diji-
mos, «vale infinito»).

Ahora bien, sucede que el comportamiento de una funcién
de variable compleja queda muy determinado por el valor de sus
ratces, que es el nombre que se les da a los niimeros donde la fun-
cién vale 0. Por ejemplo, las raices de la funcién f(2)=1+2%son i
y=i, yaquef(i)=1+#=1+(-1)=0y fl=i)=1+(=i)*=1+(-1)=0.

;Qué sucede con las raices de la funcién zeta? Se puede pro-
bar que esta funcién vale 0 en todos los nimeros enteros negativos
pares; en otras palabras, ocurre que € (-2)=0,C(-4)=0, T(-6)=0,
etc. Los niimeros pares negativos son las raices triviales de la
funcién zeta, ya que son todos bien conocidos. Pero existe tam-
bién una cantidad infinita de raices no triviales; es decir, otros in-
finitos nimeros complejos en los que la funcién vale cero y cuyos
valores no son completamente conocidos.

Como dijimos antes, el comportamiento de la funcién zeta
estd determinado por sus raices; por otra parte, la funcién zeta,
como también vimos, se relaciona estrechamente con los niimeros
primos. Por lo tanto, conocer exactamente
cudles son todas las raices de la funcién zeta
nos daria mucha informacién acerca de la
distribucién de los niimeros primos. Por
ejemplo, segin demostré Riemann, n(n)
puede calcularse de manera exacta como
Rn)—(R(m)+R(m*)+R(m3) +...), donde
R es una funcién conocida y r, ,, 1, son las
raices de la funcién zeta.

En su trabajo de 18569 Riemann demos-

150

tré que todas las raices no triviales estdn
ubicadas en la franja vertical del plano com-
plejo comprendida entre 0y 1 (figura 3).
Sin embargo, la mayoria de las aplica-
ciones de la funcién zeta a los problemas
relacionados con los nimeros primos re-
quieren una informacién méas precisa; de
hecho, requieren que todas esas raices no
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triviales estén en la recta vertical que hace de eje de simetria de
la franja. En su trabajo de 1859 Riemann conjetura que esto es
cierto y es esta conjetura la que constituye el famoso problema
de la hipdtesis de Riemann.

Hipdtesis de Riemann (problema atin no resuelto): todas las raices
no triviales de la funcién zeta estdn en la recta vertical que corres-
ponde al valor 1/2.

En la actualidad no se sabe todavia si la hipétesis es verda-
dera o falsa. Mediante el uso de computadoras se han encontrado
mas de 150 millones de raices no triviales de la funcién zeta, todas
ellas ubicadas en la recta vertical «correcta»; sin embargo, no se
ha podido demostrar que todas ellas estén alli, ni tampoco se ha
encontrado ninguna raiz no trivial fuera de esa recta.

;Por qué la hipétesis de Riemann es un problema tan re-
levante? Como ya se apunté anteriormente, ello se debe a que
muchos de los problemas relacionados con la distribucién de los
nimeros primos estan asociados con ella. Por ejemplo, puede
probarse que hay una relacién directa entre el tamafo de las
regiones del plano complejo «libres de raices» y las lagunas de
primos; mas concretamente, conocer la distancia entre dos rai-
ces no triviales que sean consecutivas en la recta «critica» da
informacién directa sobre los tamafios posibles de las lagunas
de primos.

Otro ejemplo de la importancia de la hipétesis de Riemann
es el hecho de que en 1997 se prob6 que si una versién de la hipé-
tesis de Riemann es cierta (versién conocida como la hipdéiesis
de Riemann generalizada) entonces todo nimero impar mayor
que 5 seria suma de tres primos (y no solo «casi todos», tal como
demostré Vinogradov).

Hay otros ejemplos, pero la mayoria de ellos son muy técni-
cos. Agregaremos solamente que se ha demostrado que sip y q
son primos consecutivos, y la hipétesis de Riemann es cierta, en-
tonces la diferencia g—p (que es la distancia entre p y q) es siem-
pre menor a./p In( p) ; resultado que, una vez ms, da informacién
sobre las longitudes posibles de las lagunas de primos.
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Por todo lo dicho, la hipétesis de Riemann es el mas impor-
tante de todos los problemas no resueltos relacionados con la
aritmética, y es, de hecho, uno de los problemas no resueltos
mas importantes de todas las matemadticas. En este sentido, es
importante mencionar dos hechos. En el afio 1900 se desarrollé
en Paris el Segundo Congreso Internacional de Matematicas; la
conferencia inaugural de ese congreso estuvo a cargo de David
Hilbert, quien planteé en ella los 23 problemas que, a su juicio,
iban a guiar la investigaciéon matematica a lo largo del siglo xx. El
octavo problema de la lista de Hilbert era la hip6tesis de Riemann.

«Un periodista le pregunt6 a David Hilbert cudl seria su primera
pregunta si pudiera resucitar 500 anos después de su muerte,

a lo que este respondi6 sin titubeos: “;Ha demostrado alguien
la hipétesis de Riemann?”».

— JosE MaNuveL SANcHEZ MuRoz, HISTORIAS DE MATEMATICOS, RIEMANN ¥ LOS NUMEROS PRIMOS.

Un siglo més tarde, en el afio 2000, el Instituto Clay de Mate-
maéticas de Cambridge, Massachusetts, siguiendo el ejemplo de
Hilbert, planteé los que llamé los siete problemas del milenio, los
siete problemas no resueltos més importantes de las matemati-
cas, y ofrecié ademas un premio de un millén de délares a quien
resolviese uno de ellos. La hipétesis de Riemann es el cuarto de
esos problemas.

El problema lleva 150 aiios sin respuesta, pero en este mismo
instante hay investigadores que estin trabajando en su bisqueda.
Porque, si hay algo que puede decirse de los matematicos, es que
son tenaces y que nunca se dan por vencidos.

REFLEXIONES FINALES

Durante su carrera cientifica, Riemann, entre otros logros, le dio
un impulso hasta entonces desconocido a la topologia (actual-
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mente una de las ramas mas fecundas de las matematicas), senté
una de las bases matematicas de la teoria de la relatividad y de la
cosmologia moderna, formulé el concepto de integral que se usa
actualmente en las actividades practicas (en fisica e ingenieria,
por ejemplo), anticip6 muchos de los conceptos centrales vincu-
lados ala luz, la electricidad y el magnetismo, y plante6 uno de los
«problemas del milenio», el cual, de ser resuelto, darfa una clave
fundamental para comprender cémo se distribuyen los niimeros
primos. Esta serie de éxitos serfan notables en el caso de cual-
quier cientifico, pero lo son muchisimo maés si tenemos en cuenta
la brevedad de la carrera de Riemann.

Es imposible especular sobre qué otros triunfos podria haber
alcanzado Riemann de haber gozado de una vida maés larga. No
solo imposible, sino ademas completamente innecesario, porque
en lugar de lamentarnos por lo que no llegé a hacer, debemos,
con toda justicia, celebrar todo aquello que Riemann nos legé, las
ideas que desarroll6 y los conceptos que cred, en todas aquellas
que fueron sus victorias intelectuales y en las que Riemann toda-
via vive.

LA HIPOTESIS DE RIEMANN
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