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Introducción 

En los manuales la estadística suele definirse como la ciencia que 
estudia la recogida, organización e interpretación de datos. Pero 
en esta definición brilla por su ausencia un componente esencial: 
el trabajo estadístico se realiza empleando el lenguaje de la pro­
babilidad. La estadística aborda el estudio probabilístico de la 
incertidumbre, sea cual sea su fuente. Así, por ejemplo, la infe­
rencia estadística se ocupa de evaluar y juzgar las discrepancias 
observadas entre la tozuda realidad y lo prescrito por el modelo 
teórico, haciendo uso indispensable del cálculo de probabilida­
des. Pero, ¿quién fue el responsable de la inyección conceptual 
y probabilística que experimentó la estadística decimonónica a 
principios del siglo xx? 

La estadística tiene muchos próceres: Karl Pearson, Jerzy 
N eyman o Abraham W ald son algunos de ellos. Pero solo tiene 
un genio: Ronald Aylmer Fisher. Un gran número de las técnicas 
estadísticas hoy habituales tiene su origen en la obra de sir Ro­
nald, aunque la mayoría de libros de texto omitan esta deuda. La 
lectura de los artículos y los libros de Fisher, donde la discusión 
lógica o filosófica siempre encuentra espacio entre el desarrollo 
matemático, resulta ilustradora, sorprendente y, a menudo, com­
porta la exasperación del lector, por cuanto el estadístico britá­
nico hacía gala de un estilo mordaz e insolente para con muchos 
de sus colegas, sin escatimar insultos. Pero acercarse a la figura 
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de Fisher supone asistir a la fábrica de la estadística matemática 
moderna. 

Las aportaciones más descollantes de nuestro personaje 
emergieron en un trasfondo histórico de lo más enrevesado, con­
formando un mosaico de conceptos científicos e ideas filosóficas. 
Fisher bebió de las fuentes de la estadística a través de tres cien­
cias por completo diferentes: por medio de la astrononúa cono­
ció las contribuciones de Gauss y Laplace; la física de gases le 
enseñó las aplicaciones desarrolladas por Quetelet y Maxwell, y, 
finalmente, la biología evolutiva le abrió las puertas de las princi­
pales novedades estadísticas de finales del siglo XIX, que llevaban 
la firma de Francis Galton y Karl Pearson. 

Se antoja imposible calibrar la verdadera talla de Fisher sin 
compararlo con ese titán llamado Karl Pearson. En su búsqueda 
de una teoría matemática de la evolución, Pearson ideó algunos 
de los métodos estadísticos hoy clásicos. Sin embargo, fue dema­
siado lento a la hora de reconocer el talento de Fisher, adoptando 
una cerrazón recalcitrante ante las rectificaciones que el joven y 
astuto investigador introducía a su propio trabajo. Pearson pagó 
caro su error, porque los artículos de juventud de Fisher enseña­
ron nuevos horizontes, ensanchando el mundo estadístico cono­
cido y preparando la eclosión de la inferencia estadística. 

Fisher tenía diecinueve años cuando ingresó en la Univer­
sidad de Cambridge y veintinueve cuando, en 1919, aceptó un 
puesto como estadístico en la Estación Agrícola Experimental de 
Rothamsted. Allí, rodeado de patatas, fertilizantes y ratones, ci­
mentó gran parte del éxito y la fama de su carrera investigadora. 
Durante los años veinte, Fisher recogió el testigo de la oleada de 
estadísticos crecida en torno a Karl Pearson, consolidando el esta­
tuto científico de la estadística al cohesionar sus fundamentos ma­
temáticos. El estadístico inglés la dotó de una serie de conceptos 
y métodos característicos. El vocabulario técnico que redefinió 
o acuñó para la ocasión es solo la punta del iceberg: población, 
muestra, parámetro, estadístico, varianza, verosimilitud, prueba 
de significación, aleatorización ... 

Fisher fue el arquitecto que, simultáneamente, puso los pila­
res de la teoría de la estimación y de la teoría de los test estadísti-

INTRODUCCIÓN 



cos. Mientras que la primera se centra en determinar un estimador 
apropiado para cada parámetro desconocido, así como de com­
parar las propiedades de los candidatos, la segunda se preocupa 
de someter hipótesis que establezcan valores concretos del pará­
metro al dictado de la experiencia. Cuando un astrónomo realiza 
repetidas mediciones de la posición de una estrella y quiere pre­
decir su posición real, emplea la teoría de la estimación. Cuando 
dos astrónomos mantienen valores diferentes para la posición de 
la estrella y deciden realizar una observación cortjunta para salir 
de dudas, emplean la teoría de los test estadísticos. Pero hay más. 
Fisher es el creador de lo que los estadísticos denominan «diseño 
de experimentos», es decir, del uso de la estadística en el mo­
mento de planear cualquier experimento. 

Todo este espléndido bagaje se dio a conocer en el libro Mé­
todos estadísticos para investigadores, publicado en 1925, cuyo 
impacto fue tremendo. No tanto por las ventas que cosechó, sino 
por la cantidad de investigaciones que motivó, y no solo entre 
estadísticos y matemáticos, sino principalmente entre ingenieros 
agrónomos, biólogos, químicos y científicos en general. La esta­
dística había llegado para quedarse. 

Esta panorámica no estaría completa si no se mencionase que 
la genética fue la otra disciplina que, junto con la estadística, aca­
paró los pensamientos de Fisher de por vida. Nuestro autor es uno 
de los fundadores de la genética de poblaciones, la ciencia que 
permitió reconciliar a Darwin con Mendel, es decir, la selección 
natural de las especies con las leyes de la herencia, asentando de 
esta manera la teoría sintética de la evolución o neodarwinismo. 
No obstante, el interés de nuestro personaje por el tema venía 
suscitado por la eugenesia, una inquietante doctrina -colindante 
con el racismo- que marcó la primera mitad del siglo pasado, 
pero que para Fisher hizo de gozne entre la estadística y el evo­
lucionismo. 

A lo largo de este libro también nos acercaremos a las nume­
rosas controversias científicas y filosóficas en que se sumergió 
Fisher, muchas de las cuales aún perduran, y que son una prueba 
más de la vitalidad de la estadística. La teoría estadística clásica, 
tal como hoy la conocemos ( conteniendo la estimación, el con-
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traste de hipótesis, el diseño de experimentos y el muestreo), es 
fruto de dos hombres: Ronald Aylmer Fisher y Jerzy Neyman, 
cuyas contribuciones muchas veces aparecieron en paralelo, com­
plementándose pero también contradiciéndose. A ninguno de los 
dos estadísticos le gustó nunca ver asociado su nombre al del 
rival, pese a que al comienzo mantuvieron una relación amistosa 
El rabioso antagonismo entre ambos no terminó hasta la muerte 
de Fisher, porque para este las aportaciones de Neyman no hacían 
sino corroer las suyas propias. 

El estadístico británico reflexionó profundamente sobre el 
papel que corresponde a la inferencia estadística en el método 
científico, entrando con ello en polémica con la mayoría de sus 
colegas. Uno de los problemas favoritos de los filósofos, de Aristó­
teles a Hume, se convirtió en idea fija del pensamiento fisheriano. 
Nos referirnos, claro está, al problema secular de la inducción, que 
él concatenó con la probabilidad y la estadística. Las inferencias 
inductivas establecían, por así decir, conclusiones probabilísticas. 

Supongamos por un instante que somos médicos y nos plan­
teamos, a propósito de un paciente, la hipótesis de si padece tuber­
culosis. De cara a examinar la validez de esta hipótesis, le hacemos 
una prueba rutinaria con rayos X que da negativa Obviamente, este 
resultado no es concluyente, porque toda prueba médica puede 
fallar, presentando lo que suele denominarse un «falso negativo» 
(de la misma manera que a veces se obtienen «falsos positivos»). 
Nos encontramos, pues, ante un genuino test estadístico. En esta 
situación podemos formularnos tres preguntas distintas: 

l. A partir del dato, ¿qué debemos creer y en qué grado? ¿Cuál 
es la probabilidad de que el paciente tenga tuberculosis sa­
biendo que ha dado negativo en el test? 

2. ¿Qué información aporta el dato sobre la verosimilitud de 
la hipótesis? ¿Podemos inferir que no presenta la enfer­
medad? 

3. Dado el dato, ¿qué debemos hacer? ¿Aceptamos o rechaza­
mos la hipótesis de que tiene tuberculosis? 
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Mientras que la primera pregunta se centra en la creencia, la 
segunda lo hace en la evidencia y la tercera en la decisión. Como 
tendremos ocasión de explicar, Fisher intentó responder al se­
gundo enigma. Los estadísticos bayesianos contestan, por su parte, 
al primero, y los estadísticos que siguen las enseñanzas de N eyrnan 
lo hacen al tercero. Bayesianos y frecuentistas -incluyendo bajo 
este rótulo tanto a los partidarios de Fisher corno de Neyrnan­
aglutinan los dos polos que roturan el campo de la estadística. 

Es un hecho que la aportación de Fisher cambió el paradigma 
científico de la época; pero no es fácil discurrir el modo en el 
cual la estadística se convirtió por su mano en una ciencia per 
se, en una disciplina autónoma, partiendo de ser un apéndice de 
otras disciplinas corno la astronomía, la sociología o la biología. 
La naturaleza de la estadística, que engloba contenidos y aplica­
ciones de lo más diverso, es sumamente problemática y para nada 
resulta sencillo determinar cuál es el nexo que dota de unidad a 
su campo, más allá de un ramillete de herramientas matemáticas. 

La convergencia de varias disciplinas naturales y sociales po­
sibilitó la configuración de la estadística y, al mismo tiempo, aun­
que resulte paradójico, su emancipación respecto de ellas. Desde 
los juegos de azar, las leyes estadísticas -cuya regularidad se 
revela a la escala del colectivo, no del individuo- se radiaron a 
la astronomía y la geodesia, la sociología, la biología, la agricul­
tura, la industria, etcétera. Las monedas, los dados, las barajas y 
las urnas son el modelo que utilizarnos para razonar estadística­
mente sobre los astros, las personas, los genes, las cosechas o 
la producción de coches. Para los antiguos, la probabilidad y la 
estadística aparecían en la observación de la naturaleza. Desde 
Fisher lo hacen preferiblemente en el muestreo, cuando se extrae 
una muestra aleatoria de una población, aunque esta última no sea 
más que un producto de la imaginación del estadístico. 

Ronald Aylrner Fisher hizo de la estadística una ciencia a 
medio camino entre la matemática y la experiencia, donde la con­
frontación con problemas tangibles estimula su crecimiento tanto 
o más que los problemas teóricos. Son los materiales demográfi­
cos, económicos o sanitarios los que constituyen esta ciencia y le 
otorgan su preeminencia actual. Sin su estigma se reduciría a una 
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disciplina marginal, teorética. La estadística se entreteje con una 
pléyade de ciencias experimentales, proyectando luz sobre sus 
campos y funcionando, muchas veces, como una suerte de geo­
metria de las inferencias. Solo así se comprende cómo ha conquis­
tado casi todos los espacios a lo largo del siglo xx. Su irrupción se 
inserta dentro de la gran revolución tecnológica del siglo pasado. 
Es un patrón de objetividad y estandarización que se aplica en 
las mediciones oficiales, los procesos de fabricación o las inves­
tigaciones farmacéuticas. Sirva como ejemplo que la noción de 
una población como una cifra exacta apenas tuvo sentido hasta 
que no hubo instituciones estadísticas encargadas de definir lo que 
significa y de establecer con precisión cómo estimar el número 
de habitantes, trabajadores o votantes de un país. La estadística 
ha generado un mundo que se ha ido haciendo numérico hasta el 
último de sus rincones. 

Y la chispa de este fuego que hoy nos calienta la encendió, 
desde luego, nuestro protagonista. Un científico excepcional, en 
su inteligencia y en su arrogancia. Nadie como él ahondó tanto 
en los fundamentos de la estadística. Su obra es la columna verte­
bral de la ciencia que hoy conocemos. Ahora, cojan aire y prepá­
rense para bucear en el océano de la ciencia estadística. 
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1890 Ronald Aylmer Fisher nace el 17 de 
febrero en una localidad del extrarradio 
de Londres. 

1909 Ingresa en la Universidad de 
Cambridge, donde estudia matemáticas, 
astronomía, mecánica estadística, 
teoría cuántica y biología. 

1915 Fisher se anota su primer gran tanto 
al deducir la distribución del coeficiente 
de correlación en el muestreo. La 
demostración se publica en Biometrika, 
la revista editada por Karl Pearson. 

1917 La sintonía entre Fisher y Pearson 
comienza a resquebrajarse como 
consecuencia de las ásperas críticas 
que se dirigen. 

1919 Fisher ingresa en la Estación Agrícola 
Experimental de Rothamsted. 

1922 Plantea los conceptos centrales de la 
inferencia estadística en su artículo 
«Sobre los fundamentos matemáticos 
de la estadística teórica». 

1925 Publica Métodos estadísticos para 
investigadores, uno de los libros que 
más ha hecho por la implantación 
y difusión de la estadística entre 
científicos e ingenieros. 

1930 Aparece la monografía La teoría 
genética de la selección natural, donde 
demuestra que la herencia mendeliana 
es compatible con el darwinismo. 

1933 Tras el retiro de Karl Pearson, Fisher 
se hace con el control de la mitad 
del departamento que lideraba en 
el University College de Londres: 
la cátedra de Eugenesia. La cátedra 
de Estadística pasa a manos del hijo, 
Egon Pearson. 

1935 Se publica El diseño de eX'J)erimentos, 
libro de cabecera para los científicos 
que querían sacar el máximo partido 
a sus experimentos empleando 
herramientas estadísticas. Se inicia la 
polémica con Jerzy Neyman y Egon 
Pearson a propósito de las pruebas 
de significación y los contrastes de 
hipótesis. 

1943 Regresa a Cambridge para ocupar 
la cátedra de Genética. 

1955 Los rescoldos de la disputa mantenida 
con Neyman y Pearson se reavivan 
intensamente con motivo del artículo 
incendiario que Fisher presenta en la 
Real Sociedad de Estadística sobre 
la inferencia inductiva. 

1958 Fisher polemiza sobre la relación 
entre el hábito de fumar y el cáncer 
de pulmón, negando que se haya 
demostrado su asociación. 

1962 Muere, como consecuencia de un 
cáncer de colon, el 29 de julio en 
Adelaida (Australia), donde pasó 
sus últimos años de vida como 
investigador emé1ito. 
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CAPÍTULO 1 

La estadística antes de Fisher 

A finales del siglo XIX los métodos estadísticos se 
encontraban desperdigados por varios campos bastante 

distanciados. La astronomía custodiaba las aportaciones de 
Gauss y Laplace relativas al método de mínimos cuadrados, 

la ley del error y el cálculo de probabilidades. La curva 
normal era de uso común en la sociología y en la física 

de gases, gracias a la semejanza entre las moléculas 
de un gas y los ciudadanos de un país. Pero sería 

dentro del perímetro de la biología evolutiva 
donde aparecerían las principales 
novedades estadísticas del siglo. 





Ronald Aylmer Fisher nació el 17 de febrero de 1890 en East 
Finchley (Londres). Sus padres, tras el nacimiento de sus dos pri­
meros hijos (Geoffrey y Evelyn), decidieron llamar a su tercer 
hijo Alan, pero su temprana muerte les hizo adoptar una llamativa 
superstición: todos sus hijos sin excepción llevarían una «y» en el 
nombre, incluyendo el más joven de los siete que tuvieron, Ronald 
Aylmer. Desde muy pequeño Ronald demostró tener un talento 
especial para las matemáticas. Con seis años, su madre comenzó 
a leerle un libro divulgativo de astronomía, que despertó en él un 
interés que no le abandonó en la infancia ni en la adolescencia. 
Sin embargo, desde los días de la escuela, su vista mostró ser muy 
pobre: padecía una miopía extrema, de manera que los médicos le 
prohibieron estudiar con luz eléctrica, artificial. Durante las tar­
des, los profesores particulares le enseñaban sin lápiz ni papel, lo 
que le permitió desarrollar una habilidad excepcional para resol­
ver problemas matemáticos de cabeza, basándose en intuiciones 
geométricas pero omitiendo los detalles ( una costumbre que le 
acompañó toda la vida). 

Cuando tenía catorce años, su madre murió de un ataque 
agudo de peritonitis y, poco después, su padre perdió toda su for­
tuna Por suerte, Fisher ganó una beca para financiarse la univer­
sidad. En Cambridge, donde ingresó en 1909, estudió matemáticas 
y astronomía, aunque también se interesó por la biología. Tras 
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graduarse, completó sus estudios dentro del campo de la «teoría 
de errores», una teoría matemática de gran utilidad en astrononúa 
y que constituyó, junto con la teoría de gases, su primer contacto 
con la estadística. Puede parecer paradójico que el creador de la 
estadística matemática moderna conociese la disciplina que contri­
buyó a revolucionar por medio de la astrononúa, como si los astros 
guardasen el secreto de las encuestas o las elecciones. Para poder 
explicar este hecho, y con él la magnitud de la obra de Fisher, es 
obligado volver la vista atrás, al siglo XIX, y rastrear el origen de 
los métodos estadísticos a través de varias disciplinas fronterizas. 

Generalmente se admite que la estadística se divide en dos 
ramas bien diferenciadas pero interconectadas. Por un lado, la 
estadística descriptiva, que se encarga del análisis exploratorio de 
datos; por otro, la estadística inferencia! ( o inferencia estadística), 
encaminada a hacer predicciones en situaciones de incertidum­
bre. El germen de la estadística inferencia! se encuentra en los 
juegos de azar y en la astrononúa, aunque el conjunto de concep­
tos que se desarrollaron tardó en circular al ámbito social en que 
brotó la estadística descriptiva. Esta primera fase abarca, aproxi­
madamente, desde 1650 a 1850. Finalmente, en una segunda fase, 
coincidiendo con la segunda mitad del siglo XIX, las herramientas 
estadísticas conocieron una nueva circulación: de la astrononúa 
y la sociología a la biología. Pero comencemos por el principio. 

DE LAPLACE A LA SOCIALIZACIÓN DE 
LA ESTADÍSTICA 

Podemos imaginar la ciencia estadística como un río formado por 
la confluencia de dos afluentes que discurrían independientes. Por 
una parte, el cálculo de probabilidades, que es la base de la in­
ferencia estadística. Por otra, «la ciencia del Estado», de donde 
deriva precisamente el nombre «estadística», y que tiene más que 
ver con la estadística descriptiva. 

El cálculo de probabilidades surgió, pese a las aportaciones 
pioneras de Cardano, Galileo y algunos escolásticos, al calor de 
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los juegos de azar ya avanzado el siglo xvn. Cartas, dados, monedas 
y urnas funcionaron como paradigmas de la naciente «geometría 
del azar», según atestigua la correspondencia que a partir de 1654 
entablaron un austero jansenista y un abogado amante de las mate­
máticas, Blaise Pascal y Pierre de Fermat, a propósito de los acerti­
jos propuestos por Antaine Gombaud, caballero de Méré y jugador 
empedernido. El concepto de probabilidad --que como vocablo 
ya puede encontrarse en Cicerón- se les escapó a los griegos por 
carecer de una aritmética simbólica adecuada, así como de dados 
simétricos (los posibles resultados de su astrágalo no eran equi­
probables ), lo que les impidió postular la regla de Laplace --que ya 
se encuentra enJakob Bemoulli (1654-1705) o Abraham de Moivre 
(1667-1754)- como axioma, y cuyo enunciado es el siguiente: «La 
probabilidad de un suceso es igual al número de casos favorables 
dividido por el número de todos los casos posibles». Ahora bien, 
conviene aclarar que el concepto de probabilidad tampoco aparece 
en las cartas que cruzaron Pascal y Fermat, y hay que esperar al 
Ars Conjectandi de Bemoulli, publicado póstumamente en 1713, 
para encontrar una discusión explícita de la noción. 

En esta obra, Bemoulli partió de los problemas que había 
abordado Christiaan Huygens en su libro De Ratiociniis in Ludo 
Aleae (1657), aplicó la combinatoria a su resolución y, lo que es 
más importante en relación con la estadística, presentó el «teo­
rema áureo» ( una versión de la ley de estabilidad de las frecuen­
cias) y discutió por vez primera el problema de la probabilidad 
inversa: ¿cuántas observaciones hacen falta para estimar una pro­
babilidad a partir de la frecuencia? El matemático suizo fue pio­
nero en plantearse la posibilidad de inferir la probabilidad de un 
suceso a posteriori (a partir de la experiencia) cuando no puede 
deducirse a priori ( antes de la experiencia, mediante razonamien­
tos lógicos o psicológicos). 

A caballo entre los siglos XVIII y XIX, Pierre-Simon de Laplace 
(1749-1827) completó estos avances, fusionando el cálculo alge­
braico de probabilidades con el análisis matemático en su obra 
Teoría analítica de las probabilidades (1812). Si antes de él, con 
contadas excepciones, el cálculo de probabilidades se servía del 
álgebra, a partir de él lo haría básicamente del análisis, por medio 
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EL TEOREMA ÁUREO DE BERNOULLI 

Este teorema, conocido hoy simplemente como teorema de Bernoulli, afirma 
que la frecuencia relativa de un suceso tiende a aproximarse a un número fijo 
-la probabilidad del suceso- conforme aumenta el número de repeticiones 
del experimento aleatorio. Formalmente: dados un suceso A, su probabilidad 
p de ocurrencia y n pruebas independientes para determinar la ocurrencia 
o no ocurrencia de A; si fes el número de veces que se presenta A en los n 
ensayos y E es un número positivo cualquiera, la probabilidad de que la fre­
cuencia relativa f/n discrepe de p en más de E (en valor absoluto) tiende a 
cero al tender na infinito. Es decir: 

Recíprocamente, la probabilidad de que la frecuencia relativa se estabilice 
a largo plazo tiende a 1 (lo cual no quiere decir que, eventualmente, no 
pueda haber desviaciones, esto es, rachas contrarias, «cisnes negros»). Así, 
por ejemplo, la frecuencia relativa con que sale cara al lanzar al aire una 
moneda legal se acerca a 0,5 (su probabilidad) cuando la lanzamos un nú­
mero suficiente de veces. En la época, el conde de Buffon lanzó 4 040 veces 
una moneda y obtuvo 2 048 caras, es decir, el 50,69 % de las veces. Este 
teorema, por tanto, formalizaba la ley del azar o ley de estabilidad de la 
frecuencia: hay -por decirlo con un término debido a Bernoulli- «certeza 
moral» (probabilidad de 0,999) de que a la larga la frecuencia relativa de un 
suceso no se desvía significativamente de su probabilidad (véase la figura). 
Era la «ley de los grandes números» -empleando la expresión acuñada en 
el siglo x1x por 5iméon Denis Poisson (1781-1840)- en su forma más sen­
cilla. En efecto, mientras que el teorema de Bernoulli nos asegura que la 
frecuencia relativa con que sale cara al tirar una misma moneda sucesivas 
veces tiende a estabilizarse, la ley de los grandes números nos asegura que 
la frecuencia relativa con que se obtiene cara al lanzar sucesivas monedas 
también se estabiliza, aunque cada moneda tenga una probabilidad de cara 

de las funciones generatrices. Laplace definió con rigor el con­
cepto de probabilidad y discutió ampliamente el problema de la 
probabilidad inversa, redescubriendo el teorema de Bayes (solo 
llamado así por Augustus de Morgan muchos años después, que 
vindicó la prioridad de su compatriota). Además, sentó las bases 
de la inferencia estadística bayesiana, que empleó para prede­
cir tasas de matrimonios y proporciones de nacimientos según 
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distinta. P.L. Chebyshev y la escuela rusa continuarían el estudio de las leyes 
de los grandes números, que generalizan el teorema áureo. Para Bernoulli el 
teorema posibilitaba calcular empíricamente las probabilidades desconoci­
das. Permitía definir la probabilidad de una forma objetiva, invirtiendo el teo­
rema. En efecto, si la frecuencia se aproxima a la probabilidad según crece 
el número de observaciones, ¿por qué no definir la probabilidad a partir de 
la frecuencia? Mediante el recurso a la inducción parecía factible definir la 
probabilidad como el límite de la frecuencia, y no ya hacerlo de una forma 
meramente lógica o subjetiva (como un grado de creencia) . No obstante, 
el matemático francés afincado en Inglaterra -por su irredento calvinismo, 
era hugonote- Abraham de Moivre, famoso por su tratado La doctrina del 
azar (1718), defendía que la regularidad estadística que postulaba el teorema 
áureo necesitaba obligatoriamente del concurso de Dios para funcionar. Fi­
sher, como tendremos ocasión de explicar, heredó esta crisis abierta en la 
interpretación de la probabilidad. 

el sexo. Y utilizó la teoría de probabilidades en la resolución de 
múltiples problemas de la mecánica celeste: por ejemplo, para 
examinar la distribución de las órbitas de los cometas como si se 
tratara de una serie de cuerpos proyectados aleatoriamente en el 
espacio, como dados lanzados sobre una mesa. Sin embargo, la 
aplicación de mayor envergadura vino de la mano de la «teoría de 
errores» que en su día estudiara Fisher. 
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En el período que abarca de 1770 a 1820 se desarrollaron los 
métodos estadísticos básicos en conexión con la astronorrúa, ya 
que esta ciencia requería de un estudio cuidadoso del error. Se 
trataba de reducirlo al rrúnimo a la hora de estimar la posición de 
un planeta o una estrella a partir del conjunto de observaciones. 
Un astrónomo quiere determinar la posición real del astro tras 
haber realizado una serie de mediciones. Laplace interpretó que 
la posición real de lá estrella funcionaba como causa de las posi­
ciones observadas, dependiendo los errores del azar. En estos tér­
minos, mediante una utilización ingeniosa del teorema de Bayes, 

EL TEOREM A DE BA YES 

En una memoria de 1773 titulada «Sobre la probabilidad de las causas de los 
sucesos», Laplace se planteaba que las situaciones en las que interviene el 
azar son, generalmente, de dos tipos. En el primero, el azar aparece en los 
resultados. Por ejemplo: conocemos la composición de una urna en la que 
hay bolas blancas y negras, y nos planteamos cuál será el resultado de una 
extracción. A partir de las causas (la composición de la urna, que conocemos), 
calculamos la probabilidad de los resultados, de sacar blanca o negra. Hay, en 
cambio, un segundo tipo de situación en la que el azar no aparece en los resul­
tados sino en las causas. Conocemos el resultado de la extracción (ha salido, 
pongamos por caso, una bola negra) y queremos calcular la composición de 
la urna, que nos es desconocida. A partir de los resultados (ha salido negra), 
determinamos la probabilidad de las causas, de cada posible composición de 
la urna. Pasamos, pues, de los efectos a las causas. Laplace enunció y demos­
tró el teorema que descubrió el reverendo Thomas Bayes (1702-1761) y que 
se publicó en una memoria póstuma de 1763, pero que seguro desconocía 
(los matemáticos franceses no solían leer a los ingleses). Este teorema afirma 
que si {A,, A2" .. , An} forman un conjunto de sucesos mutuamente excluyentes 
y exhaustivos, P(A) son las probabilidades a priori de los sucesos y P(BIA; ) 
son las verosimilitudes (la probabilidad de observar el efecto B supuesta la 
causa A), entonces la probabilidad a posteriori de cada suceso viene dada por: 

P(A;IB) - /CA;) ·P(BIA;) . 

¿P(Ak)· P(BIAk) 
k 0 l 

Lo que aquí nos interesa es explicar la idea latente tras la fórmula de Bayes 
que redescubrió Laplace, por cuanto fue uno de los caballos de batalla de 
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concluyó que existe una curva que representa la distribución del 
error en torno al valor real (figura 1, pág. siguiente). La curva es 
simétrica y decreciente a partir de ese valor central, en el sentido 
de que cuanto más nos alejamos de él menos probable es que co­
metamos tanto error al medir. En consecuencia, lo más probable 
es que el valor que elijamos como real (la media aritmética de 
los resultados) se encuentre en un entorno de ese valor central, 
donde la curva alcanza su máximo. Resolviendo una ecuación di­
ferencial, Laplace llegó a que la curva de la distribución de los 
errores viene dada por una función de tipo exponencial. 

Fisher. Imaginemos una urna que 
puede tener dos composiciones 
diferentes: la primera contiene 
2 bolas blancas y 3 bolas negras, 
y la segunda, 3 blancas y 2 ne­
gras, tal como muestra la figura. 
Se extrae una bola al azar y re­
sulta ser negra, ¿qué composi­
ción de la urna es más probable? 
Intuitivamente, a la luz del color 
de la bola extraída, parece claro 
que la primera composición 
tiene que ser más probable que 
la segunda (dado que en esta úl­
tima hay menos bolas negras). El 
teorema de Bayes no hace sino 
cuantificar numéricamente esta 
intuición . Las dos causas que 

Si hemos extraído una bola negra, el teorema de 
Bayes concluye que la probabilidad a posterior/ 
de la composición de la izquierda es mayor 
que la de la derecha. 

han podido originar el suceso «sacar bola negra» son, precisamente, las dos po­
sibles composiciones de la urna. Si se supone a priori que ambas composiciones 
son igualmente probables (0,5 para cada una de ellas), la utilización de la fórmula 
de Bayes lleva a que la probabilidad de la primera composición ha subido, tras 
la extracción de la bola negra, a 0 ,6, mientras que la probabilidad de la segunda 
composición ha bajado a 0,4. Las probabilidades a priori (0,5 y 0,5) han sido rec­
tificadas a posteriori (0,6 y 0,4 ). Un resultado que parece incontrovertible, puesto 
que en la primera composición hay más bolas negras que en la segunda y, por lo 
tanto, cabe esperar una mayor probabilidad de que la bola haya sido extraída en 
esas condiciones. Para Laplace, al igual que para Bayes, este poderoso teorema 
posibilitaba aprender de la experiencia y, en el límite, legitimar la inducción. 
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Mientras que Laplace, a fin de combinar las observaciones su­
cesivas del astro en una trayectoria, buscaba minimizar la suma de 
los errores absolutos, es decir, de las diferencias en valor absoluto 
entre el valor real y los valores observados, otros astrónomos se 
centraron en minimizar la suma de los errores cuadráticos, de los 
cuadrados de los errores (los cuadrados se toman para dar el mismo 
valor a una discrepancia por defecto que por exceso), un método de 
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y más sencillo de cómputo que el 
que ideara Laplace. Era el método 
de mínimos cuadrados (figura 2). 
Este método fue dado a conocer 
por Adrien-Marie Legendre (1752-
1833) en 1805, en su libro Nuevos 
métodos para la determinación de 
las órbitas de los cometas. Pero un 
joven matemático alemán, llamado 
Carl Friedrich Gauss (1777-1855), 
afirmó haber sido el primero en 
utilizarlo para predecir la órbita del 
asteroide Ceres, descubierto el pri­
mer día del siglo XIX, el 1 de enero 
de 1801. 
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En su obra Teoría del movimiento de los cuerpos celestes 
(1809), Gauss expuso, en el contexto de la teoría de errores, el 
método que había inventado en secreto para ajustar una curva 
dentro de una nube de puntos. Demostró que la distribución de 
los errores está relacionada con el método de mínimos cuadrados. 
Una vez determinada la curva que minimizaba el error cuadrá­
tico, Gauss observó que los errores cometidos en la aproximación 
se distribuían aleatoriamente alrededor de un valor medio. Esta 
distribución simétrica con forma de campana era la denominada 
distribución normal o campana de Gauss (figura 3), aunque en 
la época fue conocida simplemente como ley del error. Recípro­
camente, Gauss demostró que si se suponía que los errores se 
distribuían de acuerdo con esta ley general, la función de míni­
mos cuadrados era la que minimizaba la probabilidad de error o, 
equivalentemente, la que hacía más verosímiles las observaciones 
( aunque en un primer momento no razonó así, sino que empleó el 
teorema de Bayes inspirándose en Laplace). 

No mucho más tarde, Laplace importó los valiosos hallazgos 
del matemático alemán al dominio de la teoría de la probabilidad, 
añadiendo un resultado propio: el teorema central del límite, que 
afirma que si una medida es el resultado de la suma de un gran 
número de factores sometidos a error, esta se distribuirá normal­
mente con independencia de cómo lo haga cada uno de los fac­
tores en particular. Este teorema mostraba que la aproximación 
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de la binomial a la normal, desarrollada por De Moivre como una 
herramienta de cálculo sin significado probabilístico, no era sino 
un caso particular de un resultado mucho más general. Cualquier 
suma o media, y no únicamente el número de éxitos en n experi­
mentos (lo que había probado De Moivre ), se distribuye aproxi­
madamente como una normal si n es lo suficientemente grande 
(figura 4). En otras palabras, este teorema justificaba que, bajo 
ciertas condiciones muy generales, era plausible modelar una va­
riable bajo estudio como si proviniese de una distribución normal. 
A este cúmulo de métodos y teoremas es a lo que los historiadores 
de la ciencia se refieren con la síntesis de Gauss-Laplace. 

Si uno de los cursos progenitores de la estadística se encuen­
tra en la francesa Théorie mathématique des probabilités, el otro 
hay que buscarlo en la «ciencia del Estado», es decir, en el análisis 
de datos socioeconómicos relacionados con el auge del comercio 
y los estados-nación. Con más precisión, en la confluencia de dos 
tradiciones iniciadas también a mediados del siglo xvrr: laPolitical 
Arithmetic inglesa y la Statistik alemana. El término «aritmética 
política» fue introducido por William Petty, que pretendía ope­
rar sobre el cuerpo político imitando a la nueva filosofía natural, 
con el propósito de mejorar la toma de decisiones. Dentro de esta 
rama se encuentran las observaciones sobre tablas de mortalidad 
debidas a John Graunt en 1662, cuya indagación de estos datos 
demográficos era relevante para las rentas vitalÍcias y las primas 
de seguros. Es de destacar que estudiando estas tablas los her­
manos Huygens entrevieron los juegos de azar como un modelo 
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EL PODER DE UN GRÁFICO EST ADISTICO 

John Snow (1813-1858) fue un destacado médico inglés pionero en el di­
bujo de una suerte de pictograma orientado a demostrar que la virulenta 
epidemia de cólera que azotó Londres en 1854 se debía a un pozo de agua 
contaminada, alrededor del cual se acumulaban las víctimas (representadas 
por puntitos) , y no, como era creencia habitual, por el contag io entre en­
fermos y sanos a través del aire. Las más de 700 personas que murieron en 
menos de una semana en el barrio del Soho lo hicieron porque todas ellas 
bebían de una fuente (marcada con un aspa en la ca lle Broad, en el centro 
de la imagen), contaminada con heces fecales. La ilustración corresponde al 
mapa original de John Snow. Los puntos representan las personas afectadas 
por la enfermedad, mientras que las cruces corresponden a los pozos de 
agua de los que bebían. 
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para inferir conocimiento acerca de otras porciones del mundo, y 
acuñaron el concepto de esperanza de vida a partir de la noción 
de esperanza o ganancia más probable de un juego. Por su parte, 
el término alemán statistik apareció en el contexto del interés 
por caracterizar a los nuevos estados - Prusia, en concreto- a 
través de sus estadísticas, de sus números e índices, puesto que 
los impuestos aduaneros entre los Estados alemanes se fijaban de 
conformidad con el número de habitantes de cada uno de ellos. 

La tradición inglesa y la alemana convergieron hacia finales del 
siglo xvm en las islas Británicas, pero no asimilaron las matemáticas 
francesas hasta bien entrado el siglo XIX. A partir de ese momento el 
estudio cuantitativo de la política y de la sociedad tomó prestadas 
las herramientas matemáticas de uso ya común en la doctrina del 
azar y la astronomía. La socialización de la teoría de probabilida­
des francesa se debe al astrónomo belga Adolphe Quetelet ( como 
vemos, la conexión con la astronomía no es casual), aunque su 
lenta composición con la ciencia del Estado de raigambre inglesa 
y prusiana hubo de esperar a que tanto la obra de La.place como 
la de Quetelet fuesen dadas a conocer en Gran Bretaña gracias al 
astrónomo John Herschel y al lógico Augustus de Margan. 

EL «HOMBRE MEDIO» DE QUETELET 

Con la avalancha de números impresos que se produjo al final 
de la era napoleónica, el foco de las estadísticas pasó de ser el 
número de nacimientos, muertes y matrimonios al número de 
suicidios, asesinatos o analfabetos. Estas cifras relativas a la cri­
minalidad y la educación fueron el caldo de cultivo en el que se 
engendró la idea del «hombre medio» (homme mayen), que favo­
reció la erosión del determinismo. 

Adolphe Quetelet ( 1796-187 4) completó sus estudios en París, 
donde a través de su maestro Joseph Fourier tomó contacto con 
la síntesis Gauss-Laplace. La perplejidad de Quetelet por las re­
gularidades de la estadística surgió cuando, con el aumento de 
la burocracia, observó la terrible exactitud con que se producían 
los crímenes: las estadísticas criminales en Francia se sucedían 
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con valores anuales casi constantes. Entre 1825 y 1830 el número 
anual de acusados estaba siempre alrededor de 7100, y el de con­
denados, en torno a 4400. A su regreso a Bruselas se interesó por 
el planteamiento de censos y encuestas. 

Inicialmente, llevado por su deseo juvenil de ser escultor, Que­
telet aplicó las nociones probabilísticas que manejaba con soltura 
en astrononúa y geodesia a la medición del cuelJ)o humano ( al as­
trónomo belga le debemos la definición del índice de masa colJ)oral 
que determina la obesidad). En 1835 anunció que la ley del error 
-o «ley de las causas accidentales», como preferia denominarla­
se aplicaba a las caracteristicas humanas, físicas y de comporta­
miento, siendo el concepto central el de promedio, pues el valor 
medio de la distribución de la caracteristica bajo estudio repre­
sentaba al «hombre medio». Ciertas mediciones antropométricas, 
como la estatura de los reclutas franceses o el tórax de los sol­
dados escoceses, se distribuían aproximadamente como la curva 
acampanada de Gauss. En efecto, en 1845, tras tabular y represen­
tar los datos relativos a los perimetros de pecho de 5 738 soldados 
escoceses, tomados de una revista médica de la época, observó el 
parecido entre la curva de frecuencias resultante y la que aparecía 
a la hora de medir la posición de una estrella (figura 5). 

FIG. 5 
Soldados escoceses Posición de una estrella 
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Pero mientras que el astrónomo medía muchas veces la 
misma estrella, existiendo un valor real de la posición, Quete­
let mostraba datos de distintos soldados y detrás de su curva no 
había un valor real del perímetro de pecho. Quetelet argumentó 
que medir el perímetro de pecho de muchos soldados era como 
medir muchas veces el perímetro de pecho de un mismo soldado, 
del «soldado medio». Y, dando un enorme salto ontológico, pro­
puso que la razón es que la naturaleza apunta a una especie de 
hombre promedio, y que los que están en los extremos de la cam­
pana son desviaciones azarosas del canon ideal. Su obra marcó el 
inicio de la física social y sirvió de propaganda internacional del 
valor de las estadísticas, catalizando la formación de la Sociedad 
Estadística de Londres, entre otras instituciones estadígrafas. 

No obstante, no hay que olvidar que la conexión de la pro­
babilidad y la estadística con la sociedad ya estaba de forma em­
brionaria en Laplace, puesto que el astrónomo francés recogió 
el testigo de la «aritmética moral» esbozada por Condorcet en 
su Ensayo sobre la aplicación del cálculo a la probabilidad de 
las decisiones (1785), cuya meta puede retrotraerse, a su vez, a 
la última parte del tratado de Bernoulli, que estaba dedicado a la 
aplicación del cálculo de probabilidades a cuestiones civiles, mo­
rales y económicas, buscando aunar la sabiduría del filósofo con 
la prudencia del político, según sus propias palabras. En el po­
pular Ensayo .filosófico sobre las probabilidades, publicado ori­
ginalmente como introducción a la segunda edición de la Teoria 
analítica de las probabilidades (1814), Laplace dejó escrito que 
«los problemas fundamentales de la vida no son en el fondo más 
que problemas de probabilidades». No era un simple matrimo­
nio de conveniencia. Para Laplace la probabilidad era la base de 
la inferencia científica, de la teoría del error, de la filosofía de la 
causalidad y, atención, de la cuantificación de la credibilidad de 
los testimonios. Si el cálculo de probabilidades se había revelado 
tan eficaz en las ciencias naturales, ¿por qué no iba a serlo tam­
bién en las ciencias políticas y morales? En su opúsculo, Laplace 
equiparaba las decisiones de una asamblea o las sentencias de un 
tribunal con las posibles bolas que podían extraerse de una urna, 
a fin de determinar la probabilidad de error en función del número 
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de diputados que formaran la asamblea o del número de votos que 
hiciesen fal!;a para condenar al acusado, perfeccionando así los 
cálculos al respecto que hiciera Condorcet antes de la Revolución. 
No deja de tener su gracia, como no dejó de advertir Laplace, que 
una ciencia que comenzó con consideraciones sobre monedas, 
dados y barajas se convirtiera pasado el tiempo en uno de los 
objetos más importantes del conocimiento humano. 

«La urna a la que interrogamos es la naturaleza.» 
- AoOLPHE QUETELET (1845). 

De hecho, Siméon Denis Poisson, el discípulo más prome­
tedor de Laplace, contribuyó significativamente a la orientación 
social que tomó la estadística con Quetelet. En 1835, mientras tra­
bajaba en cuestiones de matemática electoral y jurisprudencia, 
formuló la «ley de los grandes números», que proveyó una mejor 
base para aplicar la matemática de las probabilidades a los pro­
blemas sociales, explicando la estabilidad estadística a través de 
los cambios sociales. Grandes números de individuos, actuando 
independientemente en un sistema, producen regularidades que 
no dependen de su coordinación mutua, de manera que es posible 
razonar sobre la colectividad sin ningún conocimiento detallado 
de los individuos. En consecuencia, no se podía predecir el com­
portamiento particular de un individuo, pero sí el comportamiento 
promedio de la población. Se trataba de otra manifestación más de 
la regularidad estadística del mundo. Poisson y Quetelet eran dos 
astrónomos que veían en la conducta y en las características de 
sus millones de conciudadanos regularidades dignas de los astros. 

En suma, Quetelet partió de la curva de Gauss, deducida pre­
viamente como ley del error o como distribución límite en juegos 
de azar como el lanzamiento de monedas, y aplicó esta misma 
curva a fenómenos biológicos y sociales donde la media no es una 
magnitud real, transformándola en una cantidad real. La media no 
era un rasgo de un individuo concreto, sino una característica de 
la población que simplificaba los datos de partida Servía para re­
presentar a la población en el carácter bajo estudio, de manera que 
los diversos individuos se mostraban como desviaciones mayores o 
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menores de este valor, del hombre medio. Para Quetelet, las varia­
ciones observadas eran simples perturbaciones, errores naturales. 
Desinteresándose por el estudio intrinseco de la variabilidad, el as­
trónomo belga identificaba la media con lo justo y lo correcto. Con 
la recepción de sus trabajos en Inglaterra la curva acampanada fue 
rebautizada como ley normal. Las personas normales eran aquellas 
que se ajustaban a la tendencia central de las leyes sociales que 
cuantificaban la estatura, el peso o la inteligencia. La sociología 
proseguiría en esta dirección al catalogar a aquellas personas cuyos 
valores se encontraban en los extremos como patológicas, «anor­
males». Pero la influencia de la obra de Quetelet no se detiene aquí, 
pues puso a James Clerk Maxwell (1831-1879) en el camino de la 
mecánica estadística: las moléculas de un gas son como los indi­
viduos de una población, ya que el desorden a escala individual se 
transforma en un orden a escala poblacional. No en vano, la teoría 
de gases fue la otra materia - junto con la teoría de errores- que 
permitió a Fisher aprender los métodos estadísticos clásicos. 

SIR FRANCIS GAL TON, EL «HOMBRE MEDIOCRE» 
Y LA EUGENESIA 

Para comprender cómo los métodos estadísticos pasaron del 
campo de la física social al campo de la antropología física y, en 
especial, a la biología evolutiva, hay que atender al cambio en el 
estudio de la variabilidad estadística que propició la aparición 
del darwinismo y la eugenesia. Fue la insuficiencia de las teorías 
genéticas de Charles Darwin (1809-1882) lo que animó a Francis 
Galton (1822-1911 ), de facto su primo, a tratar de resolver los pro­
blemas de la herencia mediante el análisis matemático que los 
datos biológicos demandaban. 

Galton, que nació el mismo año que Gregor Mendel (1822-
1884), era trece años más joven que Darwin. Tras estudiar medi­
cina y matemáticas gracias a la generosa herencia paterna, se em­
barcó hacia África como explorador ( entre otros inventos, como 
los mapas anticiclónicos, patentó el saco de dormir). A su vuelta 
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Este retrato, de 
1913, muestra a 
un joven Fisher 
graduado en 
Matemáticas tras 
su paso por la 
Universidad de 
Cambridge, donde 
creció su interés 
por la genética 
y la evolución a 
raíz de la lectura 
de una serie de 
artículos de Karl 
Pearson. 
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a Inglaterra, coincidiendo con la consolidación de la antropología 
colonialista, se interesó por la evolución. Galton quedó cautivado 
por la lectura del primer capítulo de El origen de las especies 
(1859), que aborda la variación bajo domesticación, relativa a la 
cría de animales, y en seguida estableció una correspondencia re­
gular con Darwin que duraría hasta la muerte de este último. Bara­
jando la posibilidad de dirigir de forma controlada la selección na­
tural de la especie humana, Galton comenzó a pensar seriamente 
en la mejora de la humanidad a través de la crianza selectiva de 
los seres humanos. En Genio hereditario (1869), decía: 

De la misma manera que se logra una raza permanente de perros o 
caballos dotada de especiales facultades para correr o hacer cual­
quier otra cosa, sería factible producir una raza de hombres alta­
mente dotada mediante matrimonios sensatos durante varias gene­
raciones consecutivas. 

En 1883, Galton acuñó, precisamente, el término eugenesia 
(«ciencia de la mejora de la raza»). Este concepto haría fortuna 
en la sociedad británica finisecular, preocupada por el declinar 
de su imperio tanto en el exterior (frente a otros imperios) como 
en el interior ( con el avance de las clases bajas, del lumpempro­
letariado, cuyo índice de natalidad era muy superior al de la clase 
alta). Y arraigaría en Estados Unidos y en la Alemania nazi, con 
la promulgación de leyes de esterilización forzosa para enfermos 
mentales e indigentes. El movimiento eugenésico prácticamente 
no se aplacaría hasta que se apagasen los hornos crematorios en 
Centroeuropa y se proclamara la división humana en razas como 
un mito propio de la antropología física prebélica. 

Galton creía firmemente que la población inglesa estaba su­
friendo una suerte de involución, una degeneración biológica que 
se transmitía hereditariamente y que se manifestaba en las dificul­
tades militares que atravesaba el Imperio británico, achacables en 
su opinión a la creciente debilidad innata de las tropas. La ciencia 
eugenésica debía aportar la solución al problema favoreciendo 
que las mejores estirpes se reprodujesen y limitando la procrea­
ción de las capas más desfavorecidas. 
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A diferencia de Galton, Darwin mantenía una actitud más 
prudente. En El origen del hombre y la selección en relación al 
sexo (1871), abordó la cuestión de las razas humanas y, aunque 
aceptó las teorías eugenésicas, expresó ciertas reservas. Puede 
parecer sorprendente que Darwin aceptara estas teorías basadas 
aparentemente en la herencia de los caracteres adquiridos popu­
larizada por Larnarck, pero la explicación del mecanismo heredi­
tario detrás de las adaptaciones era una anomalía recurrente para 
el darwinisrno clásico. La teoría de la «pangénesis», propuesta 
por Darwin a falta de otra mejor, era totalmente compatible con 
la herencia larnarckiana ( aunque Galton difundió, para enfado de 
Darwin, los resultados de una serie de experimentos con conejos 
que contradecían la existencia de «semillas sanguíneas»). Solo el 
neodarwinisrno, resultante de la síntesis del darwinisrno clásico 
con la genética mendeliana y poblacional, expulsó al larnarckisrno 
de la escena científica Oa causa de las variaciones hereditarias son 
las mutaciones en el ADN). 

Hacia el final de su vida, Galton incluso escribió una novela 
utópica, titulada Kant-saywhere, sobre una sociedad que vivía feliz 
bajo preceptos eugenésicos dictados por sacerdotes-científicos, 
que su sobrina (Galton no tuvo hijos en su matrimonio), irritada 
por algunas escenas subidas de tono, quemó parcialmente. La in­
fluencia de las ideas galtonianas fue notable, dando alas al darwi­
nisrno social y a la introducción de la estadística en el estudio de 
la psicología. Los test antropométricos de Galton se transforma­
ron a la vuelta de siglo en los célebres test de inteligencia. 

LA LEY DE REGRESIÓN A LA MEDIA Y LA NOCIÓN 
DE CORRELACIÓN 

La contribución más duradera de Galton fue la utilización de la 
estadística corno herramienta destinada a domesticar la variabili­
dad biológica hereditaria. Para el polivalente científico inglés era 
un dogma que uno solo conoce una cosa cuando puede medirla, lo 
que a la postre significó la consagración de la antropología física 
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cuantitativa o antropometría. A juicio de Galton, las característi­
cas físicas, tales como la altura, el peso o los rasgos de persona­
lidad, son heredadas. Galton creía que la unión de dos personas 
inteligentes produciría una persona más inteligente, del mismo 
modo que la unión de dos personas altas produciría otra persona 
más alta. Sin embargo, los experimentos sobre la herencia que 
realizó a lo largo de su vida le llevaron a descubrir una nueva 
regularidad estadística, distinta de la esperada, y que denominó 
reversión a la mediocridad - más tarde regresión a la media­
en su libro Herencia natural (1889). Galton empleó este concepto 
para designar la relación que existía entre la estatura de padres e 
hijos. Observó que si los padres son altos, los hijos generalmente 
también lo son, y si los padres son bajos, los hijos son también de 

, menor estatura. Pero cuando el padre es muy alto o muy bajo, apa­
rece una apreciable regresión hacia la estatura media de la pobla­
ción, de modo que los hijos retroceden o regresan hacia la altura 
media de los padres. Galton extendió este resultado planteando 
una ley universal sobre la herencia ancestral: cada peculiaridad en 
un hombre es compartida por sus descendientes, pero en media 
en un grado menor (hoy se sabe que más que una regularidad bio­
lógica se trata de una regularidad puramente estadística, debida 
al azar: lo más probable es que las realizaciones de una variable 
aleatoria normal sean próximas a su media o valor esperado). 

Hacia 1877 Galton había descrito este mismo fenómeno expe­
rimentando con el tamaño de las semillas de generaciones sucesi­
vas de guisantes. Mientras Mendel experimentaba con caracteres 
cualitativos (color, rugosidad, etc.) de los guisantes, Galton lo 
hacía con caracteres cuantitativos (tamaño, diámetro). Cuando 
repitió su estudio con registros antropométricos ( donde, por 
cierto, introdujo el uso de los percentiles y revalorizó el uso de la 
mediana y los cuartiles), observó con algo de ayuda la siguiente 
relación lineal: 

Altura del hijo (en cm)= 85 cm+ 0,5 • Altura del padre (en cm). 

Se trataba de una de las rectas de regresión. Además, conje­
turó que la intensidad de la relación entre las dos variables - la al-
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EL QU/NCUNX 

El polifacético Galton buscaba explicar el hecho de 
que ciertas medidas físicas (como la altura de las per­
sonas o el diámetro de los guisantes) se distribuyen 
normalmente. Para argumentar que la ley normal era 
la ley de la genuina variación y no solo la ley del error, 
ideó en 1873 el quincunx, un dispositivo cuyo nom­
bre proviene de los sembrados en que cada árbol está 
rodeado por otros cuatro árboles, y que sirve para 
ilustrar el teorema central del límite. El dispositivo 
consiste en un tablero en el que se introducen unos 
guisantes a modo de bolitas por el extremo superior, 
que van cayendo rebotando de manera azarosa en 
los «árboles» hasta ser recogidos en unos comparti-
mentos separados en el otro extremo. Con este dis­
positivo, Galton demostró que las bolitas dibujan en 
el extremo inferior una campana de la distribución 
normal, como se observa en la ilustración. Mediante 
este ingenioso mecanismo explicaba la prevalencia 
de la distribución normal e, incluso, ilustraba la he­
rencia mediante una disposición en fases. Interrum­
piendo el paso de las bolitas en alguna zona, para 
representar las influencias dominantes en la heren­
cia, observó que aún se dibujaba una curva normal, 
aunque más pequeña y menos dispersa. El científico 

............. . . . . . . . . . . . . 
............ . . . . . . . . . . . . . 

....... - ..... 
1 

Esquema del quíncunx 
en el libro Herencia 
natural (1889). 

inglés era verdaderamente un genio en cuanto a transformar representa­
ciones abstractas en modelos físicos. Con su investigación, reconcilió la 
teoría de errores -según la cual una acumulación de desviaciones acci­
dentales da lugar a una distribución normal- con la herencia, que si bien 
tiene desviaciones accidentales, también contiene obvias correlaciones, ya 
que cada organismo tiende a semejarse a sus ancestros. 

tura del padre y la del hijo- podía cuantificarse numéricamente. 
Era la mayor innovación estadística de la centuria: la correlación. 

Mientras que la obra de Galton sobre la regresión fue el re­
sultado directo de sus investigaciones sobre la herencia, su teo­
ría de la correlación nació de los problemas de identificación 
de criminales (un tema en el que fue pionero al introducir el 
uso de las huellas dactilares). Galton comprendió en seguida que 
en el sistema de identificación propuesto por el policía francés 
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Alphonse Bertillon (1853-1914) había mucha redundancia. Ber­
tillon registraba la estatura, las dimensiones de los pies, de los 
brazos y de los dedos de cada persona; pero estas cuatro medidas 
no eran independientes entre sí, pues las personas altas suelen 
tener los pies, los brazos y los dedos largos. Galton conjeturó que 
en esencia se trataba de la misma cuestión que había rozado en su 
estudio de la regresión: la correlación entre variables. En un ar­
tículo firmado en 1888, introdujo una primera medida matemática 
de la correlación, es decir, del grado de dependencia entre varia­
bles, aunque la definición como coeficiente vendría de la mano 
del economista Francis Y. Edgeworth en 1892 y sería redondeada 
por el matemático Karl Pearson -a quien presentaremos en el 
próximo capítulo- en 1896, que otorgaría parte del prestigio por 
el descubrimiento al astrónomo francés Auguste Bravais, que ya 
en 1846 había dado una formulación matemática similar a la hora 
de estudiar los errores correlativos entre las coordenadas de po­
sición de un objeto. Hoy en día se lo conoce como coeficiente de 
correlación lineal de Pearson, y permite estudiar correlaciones 
positivas y negativas (un caso que Galton no pareció plantearse, 
cuando el incremento en la primera variable se traduce en un de­
cremento en la segunda). 

Galton siempre rememoraba que la eugenesia, el deseo de me­
jorar las cualidades raciales fisicas o mentales, fue el impulso que 
le empujó a estudiar el problema colateral de la variación estadís­
tica Hasta entonces, los métodos estadísticos solo se preocupaban 
por los promedios colectivos, desinteresándose por las variaciones 
individuales. Para Quetelet, el hombre medio era el centro de gra­
vedad del cuerpo social, alrededor del cual oscilaban los átomos 
sociales, los hombres particulares. Este hombre medio era el canon 
de perfección, pues estaba libre de excesos y defectos. Galton reco­
nocía su deuda con Quetelet al referirse a él como la mayor autori­
dad en la estadística social, por cuanto difundió el uso de la curva 
normal, no como ley del error, sino como descripción de la distribu­
ción de las mediciones. Pero entre ambos científicos se produjo una 
transición fundamental en la concepción de las leyes estadísticas, 
debida en gran parte a la fascinación de Galton con lo excepcional, 
en oposición a la preocupación de Quetelet por los promedios. 
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Mientras que Quetelet pensaba en la tendencia central y, por 
tanto, en la media, Galton, siempre preocupado por la excepción, 
se fijaba en las colas de la distribución y en la dispersión. Galton 
atendía a aquellos individuos que se desviaban amplian1ente de la 
media por exceso o por defecto: el hombre medio de Quetelet ya 
no era el prototipo de perfección, sino un hombre mediocre que 
necesitaba evolucionar. Lo excelso se encontraba en uno de los 
extremos de la curva normal del talento. Este cambio revolucio­
nario solo fue posible cuando la normalidad devino mediocridad 
gracias a que la selección natural de Darwin y, de forma asociada, 
la reforma eugenésica resucitaron el interés por la variabilidad: 
las caracteristicas excepcionales ya no eran errores de la natura­
leza, desviaciones del hombre medio ideal, sino variaciones im­
portantes para la mejora de la raza. La estadística pasó de ser una 
herramienta concebida para reducir el error a un modelo para 
representar la variación debida al azar. La reinterpretación de la 
curva normal como la ley de la genuina variación, en vez que del 
mero error, fue el resultado central del pensamiento estadístico 
del siglo XIX. 

«La ley normal habría sido deificada por los griegos, 
si la hubieran conocido.» 

- FRANCIS GALTON, HERENCIA NATURAL (1889). 

En resumen, nuestro protagonista, Fisher, conoció los entre­
sijos de la estadística gracias a un curioso maridaje de saber as­
tronómico, físico y natural. A través de la teoria astronómica de 
los errores, asinilló la síntesis Gauss-Laplace, en otras palabras, 
la yuxtaposición entre el cálculo de probabilidades, el método de 
mínimos cuadrados y la ley del error. Por medio de la teoria ciné­
tica de los gases, aprendió a modelar colectividades mediante la 
distribución normal. Y, finalmente, los avances en biología y an­
tropología auspiciados por Galton le permitieron cobrar contacto 
con la principal novedad estadística decimonónica: la correlación. 
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CAPÍTULO 2 

Karl Pearson y la escuela 
biométrica 

La obra de F'isher no puede entenderse sin 
contrastarla con la de su inmediato predecesor, 

Karl Pearson. En su intento por desarrollar una teoría 
matemática de la evolución, Pearson alumbró algunos de 
los conceptos y métodos estadísticos clásicos. Entre los 
primeros, están los histogramas y la desviación típica. 

Entre los segundos, el análisis de la regresión y el 
test de la x2• Las rectificaciones que el joven 

F'isher haría a varios trabajos de Pearson 
conducirían a una enconada rivalidad 

de por vida entre los dos. 





Durante su estancia en Cambridge, Fisher leyó los artículos pu­
blicados por el matemático Karl Pearson bajo el sugestivo título 
de Contribuciones matemáticas a la teoría de la evolución. Ins­
tigado por la lectura de esta serie de artículos que conjugaban sus 
dos aficiones principales (la estadística y la biología), Fisher rea­
lizó su primera investigación científica original. Lo hizo en 1912, 
con solo veintidós años de edad y sin haber terminado aún los 
estudios. 

Al dejar la universidad, las finanzas familiares no estaban 
demasiado boyantes y Fisher no tardó en buscar una ocupación 
como estadístico en una compañía mercantil e, incluso, trabajar 
durante un tiempo en una granja en Canadá. En 1914, de regreso 
a Inglaterra, coincidiendo con el estallido de la Primera Guerra 
Mundial, trató de alistarse, pero le declararon no apto para el 
servicio militar por culpa de su vista maltrecha. En 1917 contrajo 
matrimonio en secreto con Ruth Eileen ( que, entonces, contaba 
con diecisiete años), con la que tendría ocho hijos, dos niños y 
seis niñas (una de ellas, Joan, la mayor, se casaría con el también 
estadístico George E.P. Box). En 1919, tras ejercer como pro­
fesor de Física y Matemáticas en varias escuelas, llegó su gran 
oportunidad, y lo hizo por partida doble. Pearson le ofreció una 
plaza como estadístico en el Laboratorio Galton y, simultánea­
mente, le ofrecieron otra en la Estación Agrícola Experimental 
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de Rothamsted, el instituto de investigación agrónoma con más 
tradición del Reino Unido. 

Fisher resolvió el dilema inclinándose por la segunda opción, 
por Rothamsted. La razón principal fue que trabajar en el Labo­
ratorio Galton conllevaba que Pearson tenía que supervisar sus 
publicaciones, una condición que no estaba dispuesto a aceptar. 
Ni mucho menos. Sobre todo cuando los puntos de fricción entre 
ambos se habían ido acumulando durante los últimos años y se­
guirían haciéndolo: la distribución correcta del coeficiente de co­
rrelación, el número exacto de grados de libertad en el test de 
la x2 («chi-cuadrado»), la eficiencia del método de estimación 
de los momentos ... Lo que había comenzado siendo una relación 
amistosa, acabó enturbiándose a causa de varios malentendidos. 
Pese a su juventud, Fisher corrigió el trabajo de Pearson y de sus 
colaboradores más cercanos en varios aspectos, un hecho que 
el segundo no terminó de encajar nunca, aunque desde luego el 
carácter altivo que destilaba Fisher no ayudó a mejorar las cosas. 
Para poder explicar en qué sentido los errores teóricos de Karl 
Pearson impulsaron el despegue de la investigación de Fisher, 
además de precipitar la abrupta ruptura entre ambos, es preciso 
acercarnos a la figura principal de la estadística victoriana y su 
magna obra. 

ENTRE LA ELASTICIDAD Y LA BIOMETRÍA 

A partir de 1884 Pearson fue profesor de Matemática aplicada 
y Mecánica en el University College de Londres. Tras acceder 
a la cátedra, se había especializado en teoría de la elasticidad, 
ya que en la segunda mitad del siglo XIX la elasticidad era el pro­
blema por excelencia de la cosmología, puesto que la trasmisión 
electromagnética precisaba de un éter elástico. Pero Pearson 
poseía una vocación no estrictamente científica. Gran parte de 
su magnetismo personal provenía de su enérgico diletantismo 
humanista, un gusto por la literatura, la historia o la filosofía que 
ni siquiera cesó cuando se concentró en el cultivo de técnicas 
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UN PERSONAJE IMPROBABLE 

Karl Pearson (1857-1936) vino al mundo 
en el seno de una familia londinense 
que pertenecía a la clase media profe­
sional, lo que le permitió graduarse en 
Matemáticas en Cambridge en 1879 y 
realizar estudios de posgrado en las 
universidades de Heidelberg y Berlín, 
donde leyó y escribió incansablemente 
sobre múltiples temas: poesía, teatro, 
ética, socialismo, derechos de la mujer, 
etcétera, y hasta llegó a escribir un 
drama, El nuevo Werther, publicado 
bajo el pseudónimo de Loki en 1880. En 
1892, Pearson publicó La gramática de 
la ciencia, un libro que recogía su filo­
sofía de la ciencia, en la que se mez­
clan el idealismo aprendido del filósofo 
neokantiano Kuno Fisher y el positi­
vismo expuesto por Ernst Mach, que 
hizo suyos en Alemania (no en vano, 
Pearson cambió la C de su nombre de 
pila por una K tras su estancia). Este libro conoció varias ediciones en vida 
del autor, gozando de gran éxito. Albert Einstein, por ejemplo, formó un 
pequeño grupo de lectura del mismo en Berna hacia 1902, y su contenido 
llegó a influirle en la formulación de la teoría de la relatividad especial. Una 
de las ideas centrales del libro es que la función de la ciencia debe limitarse 
a describir los hechos observables, evitando cualquier clase de recaída en 
la metafísica. Las leyes científicas no son explicaciones causales, sino re­
súmenes ordenados de los fenómenos. En otras palabras, no nos explican 
por qué suceden las cosas, sino que simplemente describen cómo lo hacen. 
Pearson quería promover científicamente el bienestar nacional y mantenía 
que la Ciencia, con mayúscula, tenía que convertirse en la base cultural 
común de la civilización. Además, al igual que Galton, defendía las bondades 
de la eugenesia, manifestando en varias ocas iones su deseo de que aquellos 
miembros de la comunidad que presentasen una gran desviación física o 
mental respecto de la media tuviesen una selección sexual más cuidadosa. 
El científico inglés se mostraba preocupado por el declinar de la nación 
británica como consecuencia, en su opinión, de la disminución de la ferti­
lidad en las clases liberales. Pero su creencia en la eugenesia científica se 
combinaba con una defensa ardorosa del socialismo. En la lucha darwinista 
por la existencia entre las naciones, el socialismo parecía imponerse como 
una lección histórica. 
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estadísticas dentro del dominio de la biología evolutiva. Sin ir 
más lejos, en El nuevo Werther, obra que Pearson publicó en 
1880, exclamaba: 

Los gigantes de la literatura, los misterios del espacio multidimen­
sional, los intentos de Boltzmann y Crookes por escudriñar el labo­
ratorio de la naturaleza, la teoría kantiana del universo y los últimos 
descubrimientos en embriología, con las maravillosas aventuras 
sobre el desarrollo de la vida ... ¡qué inmensidad más allá de nues­
tro entendimiento! 

La metamorfosis de este matemático experto en te01ia de 
la elasticidad en el primer estadístico en sentido moderno no se 
puede explicar si no se tiene en cuenta que se trataba de un pro­
digioso pero anacrónico científico renacentista, obsesionado con 
la persecución de la verdad numérica y espiritual. No es casual 
que una de las metas a las que aspiraba Pearson fuese que los 
futuros estadísticos aunasen las dos culturas (las ciencias y las 
letras), interesándose tanto por la resolución de problemas como 
por la historia de la disciplina, a la manera que él mismo escribió, 
en sus tiempos mozos, una historia cronológica de la teoría de la 
elasticidad y, ya en su madurez, una ambiciosa biografía en tres 
volúmenes de su admirado Francis Galton, así como una colec­
ción de lecciones sobre los orígenes de la estadística en relación 
con el pensamiento religioso. 

Hacia 1892 se produjo un cambio drástico en los intereses 
científicos de Pearson. Por medio de la amistad con Walter Frank 
Raphael Weldon (1860-1906), profesor de Zoología en el Univer­
sity College, a quien había conocido un año antes en una reunión 
para reformar la universidad, se interesó por el desarrollo de 
métodos estadísticos que permitieran avanzar en el estudio de la 
herencia y la evolución, ya que después de la muerte de Darwin 
se trataba -con la notable excepción de las investigaciones de 
Galton- de un campo prácticamente moribundo. Es de desta­
car que Pearson había regresado de su viaje formativo por tierras 
alemanas convertido no solo en un ferviente socialista, sino en 
especial en un darwinista convencido, ya que había asistido a las 
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clases de Emil du Bois-Reymond, hermano del matemático Paul 
du Bois-Reymond, en Berlín. 

Raphael W eldon precisaba de ayuda con el análisis de los 
datos zoométricos recolectados con el propósito de esclarecer 
cómo operaba la selección natural, que constituía su hipótesis 
de trabajo. En 1890 había demostrado, basándose en mediciones 
realizadas en Decapad crustacea (una especie de cangrejo), que 
la distribución de las variaciones en este animal era casi la misma 
que la observada por Quetelet y Galton en el hombre: la ley nor­
mal. Era la primera vez que las técnicas estadísticas desarrolla­
das por Galton en el án1bito de la antropología se aplicaban a la 
biología. Por vez primera se calculaba tanlbién un coeficiente de 
correlación orgánico, entre los tamaños de dos órganos. Galton, 
que leyó la memoria en calidad de árbitro, no tardó en establecer 
contacto con Weldon, que en sus estudios con cangrejos se había 
convencido de que la evolución era en el fondo un problema esta­
dístico. Los dos mecanismos de la teoría de la evolución, la pro­
ducción de variabilidad y la selección natural mediante la lucha 
por la existencia, tenían un innegable atractivo desde este punto 
de vista. La producción de variabilidad entroncaba con el azar, 
con el cálculo de probabilidades; la selección natural, con el estu­
dio de poblaciones, ya que son las unidades que van a sufrir la 
evolución en su conjunto. Por este motivo, Weldon necesitaba 
la colaboración urgente de un colega matemático. 

Con treinta y cinco años cumplidos, Pearson comenzó a es­
tudiar los métodos estadísticos tal y como estos aparecían en 
muchos manuales continentales dedicados a la demografía. Asi­
mismo, releyó los libros de Galton (a quien conoció en persona 
en 1894 por mediación de Weldon), ya que su primera lectura de 
Herencia natural (1889) no había sido muy positiva, a tenor de la 
opinión que expresó en el londinense Club de Hombres y Mujeres 
del que era miembro: 

Personalmente debo decir que existe un considerable peligro en 
aplicar los métodos de las ciencias exactas a los problemas de la 
ciencia descriptiva, tanto si se trata de problemas de la herencia 
como de política económica. 
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Es más, en el ejemplar conservado del libro de Galton, Pear­
son dejó constancia autógrafa de su exasperación por los argu­
mentos expresados por su autor: a su juicio se trataba de meras 
analogías sin valor científico alguno. Pese a todas estas eviden­
cias, sigue leyéndose demasiado a menudo que el ímpetu estadís­
tico de Pearson radicó en la lectura del libro de Galton, de quien 
se le considera erróneamente discípulo. Probablemente, W el don 
fue el responsable de su cambio de opinión, dado que consiguió 
ilustrar con ejemplos concretos cómo las técnicas estadísticas 
planteadas por Galton podían aplicarse con acierto al material 
biológico. 

Según reinterpretó años después su acercamiento a la obra 
de Galton, Pearson quedó sorprendido por un descubrimiento 
del eminente científico: había una categoría más amplia que la 
causalidad, a saber, la correlación, de la cual la causalidad era 
solo el límite. Gracias a esta nueva concepción, la sociología, la 
psicología, la antropología y la biología podían entroncar con las 
matemáticas. Mientras que el físico piensa que un cierto valor 
de x produce (causa) un valor determinado de y, el estadístico 
cree que la relación entre x e y es más vaga, meramente proba­
bilitaria. Galton liberó a Pearson .del prejuicio de que las mate­
máticas solo podían aplicarse a los fenómenos naturales bajo la 
categoría causal. No cabe duda de que su renovada fascinación 
con la obra de Galton se debió en parte a su interés compartido 
por la eugenesia. 

La voluntad de investigar conjuntamente determinó la funda­
ción de la Escuela Biométrica por Weldon y Pearson bajo la in­
fluencia directa de Galton en 1893. El término biometría fue acu­
ñado, precisamente, por Pearson con el significado de «ciencia de 
la medida de la vida». La escuela puso las bases de la estadística 
matemática entre 1895 y 1915, aun cuando la mayoría de edad de 
la disciplina no llegó hasta el período que va de 1915 a -1935, capi­
taneado por Fisher. En ambos casos, fue la necesidad de resolver 
problemas biológicos -relacionados, durante el primer período, 
con la herencia¡ la evolución, y, en el segundo, con la genética y 
la experimentación agrícola- lo que aceleró la cristalización de 
nuevas herramientas estadísticas. 
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CONTRIBUCIONES MATEMÁTICAS A LA TEORÍA 
DE LA EVOLUCIÓN 

Con extraordinaria celeridad, Pearson empezó a producir nue­
vos conceptos y métodos, que muy pronto se revelaron como in­
dispensables para cualquier aplicación de la estadística en otro 
campo. Antes de darlos a la imprenta, Pearson presentó muchas 
de sus ambiciosas ideas en una serie de conferencias vespertinas 
que impartió entre 1891 y 1894 en el Gresham College. Las prime­
ras ocho conferencias cubrieron aspectos básicos de la filosofía 
de la ciencia, que fueron recogidos en el libro La gramática de la 
ciencia (1892). En la edición de 1900 de esta obra, escribía: 

De la misma manera que podemos predecir poco o nada de un 
átomo individual, poco podemos predecir de una unidad vital indi­
vidual. Solo podemos manejar las estadísticas de su conducta pro­
medio. Pero tenemos unas leyes de la variación y de la herencia casi 
tan definitivas y generales como las leyes de la física. 

Las treinta conferencias restantes se dedicaron por completo 
a la «geometría de la estadística» y la «geometría del azar», por 
emplear los rótulos originales. El matemático inglés eligió estos 
tópicos porque muchos de los asistentes como público trabajaban 
por las mañanas en el distrito financiero de la City y pensó, no sin 
razón, que presentar la estadística me-
diante gráficos e ilustraciones podía 
ser de su agrado. En una de estas con­
ferencias introdujo, por ejemplo, los 
histogramas (figura 1), un diagrama 
que podía ser de utilidad en historia 
-como su nombre quería .indicar­
para representar la evolución del nú­
mero de habitantes o de los ingresos 
de un reino mediante intervalos de 
tiempo que estarían adyacentes unos 
con otros. Estas lecciones marcaron 
el comienzo de una nueva época en la 

25 -·1 ··-J 1--1 1 
20 ' - 1 1 1 

' ' i 
15 1 

10 

5 

-1 o 

KARL PEARSON Y LA ESCUELA BIOMÉTRICA 

En los 
histogramas, 
a diferencia de 
en los diagramas 
de barras (que 
se usan para 
reflejar datos 
no agrupados), 
las clases 
no aparecen 
separadas 
sino contiguas. 
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teoría y en la práctica de la estadística. No por casualidad, Pear­
son afirmó ante los presentes que a esta ciencia le aguardaba un 
futuro prometedor, pues daría lustre a otras ramas de la matemá­
tica e incluso al estudio de la biología. 

Uno de las primeros conceptos que forjó fue el de «desviación 
típica» ( o «desviación estándar»), que a partir de 1893 sustituyó 
al de «error probable», introducido por el astrónomo Friedrich 
W. Bessel alrededor de 1815, como más adecuado para medir la 
variación biológica. Mientras que la mayoría de los matemáticos y 
astrónomos del siglo XIX se habían orientado al estudio de medidas 
de la concentración y de la posición de los datos, Pearson se preo­
cupó por medir su dispersión o variabilidad. Si Quetelet revalorizó 
el uso de la media y Galton hizo lo propio con la mediana -una 
medida propuesta por Antaine Augustin Cournot-, los cuartiles 
y los percentiles, Pearson bautizó a la raíz cuadrada del promedio 
de los cuadrados de las diferencias de cada dato respecto de la 
media ( una expresión conocida en la época como «error cuadrá­
tico medio») con el nombre de desviación típica y el signo o, para 
subrayar que la variación no tenía por qué interpretarse siempre 
como un error. 

El error probable quedaba caracterizado porque dividía las 
posibles observaciones de un astro --distribuidas según la curva 
gaussiana en tomo al valor real- en dos clases igualmente proba­
bles: a largo plazo, la mitad de las observaciones caerían en un en­
torno de su media aritmética de radio el error probable, y la otra 
mitad caería fuera, fallando demasiado por exceso o por defecto. 
El error probable representaba lo que hoy a veces se denomina 
desviación absoluta respecto de la mediana. La desviación típica 
de una serie de observaciones se calculaba más fácilmente y po­
seía mejores propiedades: la desviación típica de una distribución 
de error teórica, de un modelo de probabilidad, no era más que 
la versión continua de la fórmula discreta antes enunciada. En la 
distribución normal el error probable es de 0,6745 veces la desvia­
ción típica, de manera que mientras que en un entorno de la media 
de radio del error probable cae el 50% de las observaciones, en 
un entorno de radio de la desviación típica cae aproximadamente 
el 68 %, y en un entorno de dos desviaciones típicas, algo más del 
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Asimetría negativa Asimetría positiva 

A 
Leptocúrtica Mesocúrtica Platicúrtica 

95% (si la distribución no es normal solo puede asegurarse que 
entra al menos el 75% de las observaciones). 

Además, Pearson ideó el coeficiente de variación, definido 
como el cociente de la desviación típica y la media en valor ab­
soluto, que servía para comparar la variabilidad entre distintos 
cor\juntos de datos, midiendo en cada uno de ellos el grado de re­
presentatividad de la media, esto es, si los datos están o no con­
centrados alrededor suyo. Finalmente, ideó otras dos medidas des­
criptivas, el coeficiente de asimetría (figura 2) y el coeficiente de 
apuntamiento o curtosis (figura 3) para medir la forma de una dis­
tribución: si es simétrica o asimétrica respecto de la media, y si es 
más apuntada o más achatada que la distribución normal. En suma, 
Pearson inventó toda una colección de medidas realmente útiles en 
la estadística descriptiva, en el análisis exploratorio de los datos. 

Pero hay más. W el don solicitó consejo a Pearson a la hora 
de analizar las mediciones de cangrejos ( diámetro del caparazón, 
longitud de las patas, etc.) que había realizado durante unas va­
caciones en la balúa de Nápoles. Las observaciones no parecían 
distribuirse de acuerdo a la ley normal. Su distribución no era si-
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FIG. 3 

FIGURA 2: 

A la izquierda, 
una distribución 
con asimetría 
negativa; a la 
derecha, con 
asimetría positiva. 
En trazo continuo, 
la media; en trazo 
punteado, la moda 
(el signo de la 
diferencia entre 
estos dos valores 
permitía a Pearson 
establecer el tipo 
de asimetría). 

FIGURA 3· 

La curtosis 
(término derivado 
de la palabra 
griega que 
significa curvado 
o arqueado) mide 
el grado de 
apuntamiento de 
una distribución 
en comparación 
con la distribución 
normal, definida 
como mesocúrtica. 
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Representación 
del gráfico 111 del 

artículo «Sobre 
ciertas variaciones 

correladas en 
Carcínus moenas)), 

publicado por 
Weldon en 1893, 

que recoge la 
distribución 

asimétrica 
-descompuesta 

en dos curvas 

normales 
superpuestas­

de las medidas de 
los cangrejos 
napolitanos. 

52 

~-------•--·- -·- - -
FtG. 4 ->---+-----~- • 

1 --r-
1 ' -_ --1-. ;-- . 

i. -· -·· - -

' 
, : ·, 40~:'--· - 40 ' 

1 ,,., .,. 3q,/ _ .... 
-l---+--l--,ijl,._,. .. __ 1 __ -.:.__t 

20 

30 

-;/ 10 

'J 
·· ~o 

•, 1 

1 10 ------~~-
580 590 600 610 620 630 640 650 660 670 680 690 700 

métrica: en lugar de una única montaña, como en la distribución 
normal, parecían dibujarse dos jorobas (figura 4). Ayudado por 
Pearson, W el don diseccionó la distribución en dos componentes 
normales, siguiendo el pensamiento de Galton de que todas las 
distribuciones eran normales o mixtura de normales, y concluyó 
precipitadamente que debía de tratarse de dos especies diferentes 
de cangrejos que por desconocimiento había medido de modo con­
junto o, en su defecto, de una única especie en proceso de generar 
dos especies diferentes. Pero el matemático inglés quería encon­
trar una manera de interpretar los datos sin forzar su normaliza­
ción, sin distorsionar la forma de la curva de frecuencias. No debía 
descartarse que hubiese una asimetría real en los datos de partida. 

En 1894, en la que sería la primera de sus memorias publica­
das sobre estadística, Pearson imaginó todo un sistema de curvas 
de frecuencias que pudiesen ser de utilidad en las investigaciones 
biológicas. Quería dotar a los biómetras de un catálogo de mo­
delos que les permitiera extraer toda la información contenida 
en los datos sin deformarlos. El sistema de curvas de frecuencias 
permitió disponer, de rebote, de toda una serie de distribuciones 
de probabilidad que podían aplicarse a distintos fenómenos alea­
torios. Entre ellas se cuentan algunas de las distribuciones que 
más adelante demostrarían ser claves para la extensión de los 
métodos estadísticos: por ejemplo, la distribución beta, la gamma 
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o la x2 (figura 5). Esta familia de distribuciones asimétricas cons­
tituía una alternativa a la distribución normal, dominante desde 
los tiempos de Quetelet, y lograba mejores ajustes en situaciones 
prácticas. Para decidir cuál de las curvas había que ajustar a los 
datos en cada circunstancia, Pearson desarrolló el método de 
los momentos, que permitía estimar los parámetros que definían 
cada curva - los llamados momentos ( un nombre que tomó pres­
tado de la mecánica)- a partir de los datos observados. Este mé­
todo es el más antiguo conocido para la estimación de parámetros 
y consiste, en suma, en igualar los momentos apropiados de la 
distribución teórica con los correspondientes momentos calcu­
lados a partir de los datos observados, despejando a continua­
ción los parámetros desconocidos. En concreto, la estimación se 
realizaba a partir del cálculo de cuatro momentos, relacionados 
respectivamente con la media, la desviación típica, la asimetría y 
la curtosis ( aunque este término no apareció como tal hasta 1905), 
que codifican la forma de la curva de frecuencias. 

Pearson trataba de desbancar a la distribución normal de su 
papel preponderante en biología ofreciendo una serie de curvas 
alternativas para describir distribuciones asimétricas o, incluso, 
bimodales; porque durante años toda distribución empírica que 
dibujaba una curva era gaussiana, ya que era todo lo que podía ser. 
Galton creía ingenuamente que todos los datos tenían que aco-
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La distribución z2 

se trata más bien 
de una familia de 
distribuciones, 
dependiente 
cada una de ellas 
de un parámetro 
denominado 
«número de 
grados de 
libertad» 
(conforme 
aumentan, 
la curva va 
perdiendo 
asimetría y 
converge a una 
distribución 
normal). 

FIG. 5 
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modarse a la distribución normal. Pearson, en cambio, enfatizaba 
que las distribuciones de frecuencias empíricas podían tomar 
cualquier fonna. La curva normal no era la curva canónica, de 
modo que la tiranía de la ley normal concluyó con el fin de siglo, 
cuando Pearson consiguió que se aparcara esta visión monolítica. 
Aparte de la distribución binomial de Bernoulli y de la entronizada 
distribución normal ( ambas relacionadas entre sí por el teorema 
central del límite), hasta el desembarco del sistema de curvas de 
Pearson no se disponía de muchos modelos de probabilidad alter­
nativos, con la excepción, entre otras, de la distribución uniforme, 
la distribución exponencial o la puesta al día de la distribución de 
Poisson o de los «sucesos raros», popularizada en la época por 

LA ALTURA DEL NEANDERTAL 

Karl Pearson aplicó el cálcu lo del coeficiente de correlación y de las rectas 
de regresión a los datos de las alturas de padres e hijos tomados por Galton. 
La estatura de los hijos estaba relacionada con la estatura de los padres, de 
manera que los hijos de padres altos so lían ser altos. No había una re lación 
matemática perfecta, pero existía una tendenc ia, que pod ía medirse me­
diante el «coeficiente de correlación de Pearson» (que se define como el 
cociente entre el momento-producto o covarianza y las desviaciones típicas 
de las dos variab les bajo estudio). Los va lores de este coeficiente siempre 
estaban entre - 1 y + l. Si el coefi c iente de corre lación estaba cerca de 1 sig­
nificaba que cuando la variab le «estatura del padre» aumentaba, la variable 
«estatura del hijo» también lo hacía. En 1898 Pearson conjeturó que un com­
portamiento sim ilar se daba entre la estatura de un hombre y la longitud de 
su fémur. Estud iando cientos de mediciones, encontró que la correlación 
entre la estatura y la longitud del fémur era de 0,8048. Se trataba de una 
correlación directa fuerte. A continuación, dedujo la re lación existente entre 
la longitud del fémur y la estatura total del individuo. En otras palabras, 
determinó la recta de regresión de la estatura sobre la longitud del fémur, 
hallando en el caso de los varones: 

Estatura (en cm) = 81,31 cm + 1,88 • Longitud del fémur (en cm). 

Finalmente, Pearson enseñó cómo. usarla para reconstruir la estatura de los 
hombres prehistóricos a partir de las medidas de sus huesos. Por ejemplo, 
en el caso del hombre de Neandertal, la longitud media del fémur era de 
44,52 cm, con lo que sustituyendo en la ecuación de arriba se obtenía que su 
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representar el porcentaje de oficiales prusianos que en la década 
de 1890 resultaron heridos por las coces de sus caballos. 

Aún más, en 1896, Pearson logró la definitiva matematización 
del coeficiente de correlación y de la regresión lineal, que Galton 
manejara empíricamente. Mientras que Galton empleaba unas ma­
temáticas muy modestas y raramente trabajaba con más de 100 da­
tos (para así usar porcentajes cómodamente), Pearson hizo de la 
matemática abstracta un requisito para hacer estadística y tomó en 
consideración grandes cor\juntos de datos (más de 1000). Ofreció 
tanto la fórmula del coeficiente de correlación en que aparece el 
«momento-producto» (lo que Fisher y su círculo llamarían cova­
rianza, un nombre que ha hecho fortuna) como las ecuaciones ex-
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Longitud del fémur (en cm) 

Este diagrama 
de dispersión 
relaciona la 
longitud del fémur 
y la talla (en 
centímetros) de 
una muestra de 
seis individuos. 
Como puede 
observarse, entre 
ambas variables 
existe una 
correlación lineal 
fuerte (con linea 
punteada, la recta 
de regresión), 

estatura promedio era de 165,01 cm, Por su parte, el hombre de Cro-Magnon 
medía 172,15 cm, dado que la longitud media de los fémures conservados 
era de 48,32 cm, Tanto el hombre de Neandertal como el de Cro-Magnon 
eran sensiblemente más bajos que los hombres actuales, En esencia, esta es 
la metodología que a día de hoy siguen empleando los paleoantropólogos 
para inferir las características de las especies extintas de homínidos que des­
entierran en las excavaciones, 

KARL PEARSON Y LA ESCUELA BIOMÉTRICA 55 



56 

plícitas de las rectas de regresión, aunque no completó la teoría de 
la regresión no lineal ( curvilínea) hasta 1905. Su ayudante en aquel 
tiempo, el ingeniero y luego profesor de Estadística George Udny 
Yule, desarrolló hacia 1897 la regresión múltiple ( en más de dos 
variables, cuando se supone que la variable de estudio depende de 
dos o más), conectándola con el método de mínimos cuadrados 
y la síntesis Gauss-Laplace. Es poco conocido que Pearson fue el 
primero en alertar del peligro de la detección de «correlaciones 
espurias» ( uno de los abusos que cometería con la estadística la se­
gunda mitad del siglo xx): dos variables pueden estar fuertemente 
correlacionadas entre sí sin que entre ambas medie una relación de 
causa-efecto o ni siquiera una causa común ( como es el caso, por 
ejemplo, del número de cigüeñas presentes en Londres y el número 
de niños nacidos cada semana en esa ciudad). 

Finalmente, en 1900, Pearson publicó el test de la chi-cuadrado 
(x2) para comprobar la bondad del ajuste entre la distribución ob­
servada y la distribución teórica o esperada. El test demostró ser 
útil no solo para dar una medida del ajuste entre datos y distri­
buciones, sino que fue generalizado por Pearson y sus discípulos 
para contrastar la homogeneidad entre varias muestras y la inde­
pendencia entre variables ( aunque el número exacto de grados de 
libertad de la distribución x2 que interviene en el test lo facilitó 
Fisher en la década de 1920). En consecuencia, la adjudicación 
de una distribución normal ya no era cuestión de una semejanza 
percibida cualitativamente entre gráficas, sino de una significación 
estadística cuantitativa. Se trataba de uno de los puentes más só­
lidos tendidos hasta el momento entre la estadística descriptiva y 
la estadística inferencial. De hecho, a finales del siglo xx una cono­
cida revista científica estadounidense eligió el test x2 como uno 
de los veinte descubrimientos científicos del siglo que más había 
cambiado nuestras vidas. 

Entre otras innovaciones más prosaicas, Pearson y sus co­
laboradores publicaron toda una serie de tablas para biómetras 
y estadísticos de gran ayuda en el ajuste de curvas, y para cuyo 
diseño se sirvieron de máquinas de calcular pioneras. No hay que 
olvidar que hasta el advenimiento del ordenador, estas tablas 
simplificaban enormemente la vida a los estadísticos, permitién-
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doles consultar de un vistazo el resultado de laboriosos cálculos 
de probabilidades. Esta abundante cosecha de resultados fue 
dada a conocer a lo largo de un total de dieciocho artículos que 
Pearson escribió entre 1894 y 1912 bajo el título común de Con­
tribuciones matemáticas a la teoría de la evolución. Hoy día 
estos artículos son un claro indicador de la extraordinaria capa­
cidad para trabajar y relacionar materias dispares de que hacía 
gala Karl Pearson. 

LA INSTITUCIONALIZACIÓN DE LA ESTADÍSTICA 

Los primeros artículos de Pearson vieron la luz dentro de las Phi­
losophical Transactions de la Royal Society, pero la oposición 
despertada entre los biólogos de la sociedad por los prolijos aná­
lisis matemáticos de los datos (los naturalistas no estaban dis­
puestos a aceptar conclusiones biológicas sobre la base de razo­
namientos estadísticos) condujo a Weldon y a Pearson a fundar, 
con el apoyo de Francis Galton, la revistaBiometrika en 1901. La 
idea de crear una revista propia para publicar las investigaciones 
se debió a Weldon, pero fue Pearson quien sugirió su peculiar 
nombre. Para ambos científicos, el problema de la evolución era 
un problema estadístico. Darwin había planteado su teoría bioló­
gica sin recurrir a la matemática, pero cada uno de sus conceptos, 
desde la variación y la selección a la herencia y la regresión, era 
susceptible de ser definido matemáticamente y analizado estadís­
ticamente. 

En el editorial de presentación de la revista, Weldon y Pear­
son describían su radio de acción y profetizaban el advenimiento 
de un día en que habría matemáticos que serían competentes bió­
logos y, recíprocamente, biólogos que serían competentes mate­
máticos. Durante varios lustros, Biometrika publicó sesudos aná­
lisis estadísticos sobre datos tan dispares como la envergadura de 
· los pájaros exóticos, la altura de los reclutas albaneses, la medida 
de la tibia de los nativos africanos o la longitud del pene de los 
pigmeos. 

KARL PEARSON Y LA ESCUELA BIOMÉTRICA 57 



58 

LA x2 Y LOS V2 DISPARADOS POR LOS NAZIS CONTRA INGLATERRA 

Durante la Segunda Guerra Mundial los alemanes lanzaron una lluvia de 
cohetes V2 sobre Londres. Los estadísticos que colaboraban en la defensa 
antiaérea dividieron el mapa de Londres en cuadrículas de 1/4 km 2 (hasta 
un total de 576) y contaron el número de bombas caídas en cada cuadrícula 
durante un bombardeo alemán. Observaron que en 229 cuadrículas no caía 
ninguna bomba; en 211 caía solo una, etcétera. Los resultados fueron : 

N2 de impactos en la cuadrícula o 1 2 3 4 5 

Frecuencia observada 229 211 93 35 7 1 

Los estadísticos querían averiguar si los bombardeos seguían un patrón 
aleatorio, es decir, si no estaban dirigidos a determinados objetivos m il ita­
res, de manera que el vuelo de los V2 estaba todavía lejos del control de 
los científicos alemanes. Para ello emplearon el test x2 de Pearson, con el 
propósito de comprobar el ajuste entre la distribución observada y la distri­
bución teórica esperada, que en este caso se trataba de una distribución de 
Poisson o de los «sucesos raros», ya que esta última mide la probabilidad 
de que aleatoriamente ocurra un determinado número de eventos - que 
se suponen «raros», improbables- durante cierto período de tiempo. La 
distribución de Poisson depende únicamente de un parámetro, habitual­
mente denotado como "A., que representa la frecuencia de ocurrencia media. 
El valor estimado de "A. a partir de los datos empíricos es: 

A. = 0-229+1 -211+2 -93+ ... +5·1 0,929 
576 

(en promedio, uno esperaría aproximadamente un impacto por cuadrícula). 
En consecuencia, las frecuencias que debían esperarse si los bombardeos se 
ajustaban a esta distribución eran las siguientes (la fórmula de donde salen 
estos valores es un poco aparatosa pero fácil de justificar, aunque aquí no 
entraremos en ello): 

Número de impactos/cuadrícula 

o 1 2 3 4 5 

Frecuencia esperada 227,5 211 98 30 7 1,5 

Frecuencia observada 229 211 93 35 7 1 

Discrepancias 1,5 o -5 5 o -0,5 
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A continuación, los estadísticos determinaron el valor del «estadístico chi­
cuadrado», que es una medida de la discrepancia total que se calcula su­
mando las diferencias entre la frecuencia observada y la frecuencia esperada 
elevadas al cuadrado (así no se compensan las discrepancias positivas con 
las negativas) y dividiendo por la frecuencia esperada: 

2 L (Discrepancia)2 

X = Frecuencia esperada 
~ (-0, 5)2 = 1 27 + ... + ' . 
227,5 1,5 

Si la distribución de Poisson era la adecuada, este estadístico era un valor de 
una distribución chi-cuadrado con 6-2 = 4 grados de libertad (en general , es 
siempre uno menos que el número de clases de partida, pero como hemos 
estimado el valor de "A. a partir de los datos, hay que restar uno más según 
demostró Fisher). Consultando las tablas, los estadísticos observaron que la 
probabilidad de que una x! tome un valor mayor o igual que 1,27 es de 0,87. 
En otras palabras, la probabilidad de obtener una discrepancia como la obser­
vada era significativamente alta bajo el supuesto de que los bombardeos se 
producían aleatoriamente, sin un objetivo fijo. Los londinenses podían respirar 
tranquilos. 

Misil V2 en su plataforma. 
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Karl Pearson fue editor continuado de la revista Biometrika 
desde su prin1er número, publicado en octubre de 1901, hasta su 
muerte, ocurrida treinta y cinco años después. Tras el inesperado 
fallecimiento de Raphael W el don en un desafortunado accidente 
de esquí en 1906, Pearson se alejó de la biología evolutiva. Sin la 
inestimable colaboración de su bien entrenada mente biológica, 
Pearson no se sentía con fuerzas para proseguir en solitario con 
el estudio estadístico de la evolución y la herencia. Sin embargo, 
redobló esfuerzos en la institución de un centro que convirtiera 
la estadística en una rama de la matemática aplicada con vida 
propia, con una nomenclatura y unos métodos independientes, de 
manera que los estadísticos fuesen por derecho propio «hombres 
de ciencia». 

«La ciencia del futuro se llamará biometría y su órgano 
oficial será Biometrika. » 

- Jú.RL PEARSON. 
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Sir Francis Galton falleció en 1911, dejando en herencia la 
provisión de una cátedra de Eugenesia en el University College 
de Londres, que fue ocupada por su protegido, Pearson, quien 
hizo así realidad su sueño de formar un Departamento de Es­
tadística Aplicada combinando el Laboratorio Biométrico ( que 
dirigía desde su fundación en 1903) y el Laboratorio Galton para 
la Eugenesia Nacional (surgido en 1907 como evolución de la 
Eugenics Record O.fjice, instituida por Galton en 1904). El Labo­
ratorio Biométrico desarrollaba los métodos estadísticos en un 
contexto biológico, mientras que el Laboratorio Eugenésico los 
aplicaba en el estudio del «deterioro nacional» (relacionando, 
por ejemplo, las tasas de fertilidad con el estatus social o el al­
coholismo con su influjo en el físico y la habilidad de la descen­
dencia). En 1925, coincidiendo con la especialización de Bio­
metrika en temas estadísticos teóricos, Pearson fundó Annals 
of Eugenics (actualmente rebautizada como Annals of Human 
Genetics), para proseguir con la publicación de investigaciones 
prácticas sobre la eugenesia. 
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FOTO SUPERIOR: 

Fotografía tomada 
en 1909 que 
muestra a un 
anciano Galton 
de ochenta y siete 
años acompañado 
por Karl Pearson. 

FOTO INFERIOR 
IZQUIERDA: 

Karl Pearson 
con un busto de 
Raphael Weldon. 
La fotografía es 
de 1910. 

FOTO INFERIOR 
DERECHA· 

Cabecera original 
de Biometrika, 
la revista editada 
porWeldon y 
Pearson con el 
apoyo de Galton y 
la colaboraci ón de 
Charles Davenport 
(1866-1944), 
prominente 
b iólogo 
estadounidense 
que compartía 
el enfoque 
biométrico 
y el credo 
eugenésico. 
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UNA POLÉMICA ENCARNIZADA 

En 1914 Pearson recibió un artículo firmado por un profesor de es­
cuela de veinticuatro años llamado R.A. Fisher para ser publicado 
en la revista que dirigía y editaba, Biometrika. En las apretadas 
páginas del borrador, Fisher deducía un resultado que a Pearson 
y su equipo se les había escapado sistemáticamente: la distribu­
ción correcta del coeficiente de correlación muestra! r, un cono­
cimiento necesario para determinar el error probable a la hora de 
estimar el coeficiente de correlación poblacional p. La cuestión 
de las distribuciones en el muestreo había comenzado a percibirse 
como un tema candente para el progreso de la inferencia estadís­
tica, por cuanto permitía cuantificar la fiabilidad de las prediccio­
nes realizadas en base a una muestra representativa con el fin de 
conocer determinadas características de una población, de una 
colectividad que se presupone demasiado numerosa como para 
ser estudiada exhaustivamente. Proporcionar una estimación de 
la correlación p en toda la población a partir de la correlación r 
observada en los datos de la muestra era engañoso y de escasa 
utilidad si no se indicaba su precisión. El estudio de la distribu­
ción muestra!, es decir, de la que resulta de considerar todas las 
posibles muestras que pueden extraerse aleatoriamente de una 
población, permitía calcular la probabilidad de que el valor de r 
calculado a partir de una muestra se acerque al valor desconocido 
p de la población. 

Estas características de la población que se deseaba estimar 
recibieron el nombre de parámetros. Por ejemplo: la media po­
blacional µ, la desviación típica poblacional o o el coeficiente de 
correlación de la población p. En cambio, los valores que se cal­
culaban a partir de la muestra para estimar puntualmente estos 
parámetros se llamaron estadísticos. Por ejemplo: la media mues­
tra! X, la desviación típica muestra! S o el coeficiente de correla­
ción muestra! r. Esta distinción entre parámetros poblacionales 
y estadísticos muestrales, como la subyacente entre población y 
muestra, sería canonizada por Fisher. Aún más: a Fisher se debe 
la costumbre de representar los parámetros con letras griegas y 
los estadísticos con letras latinas, con la excepción de la notación 
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barrada para la media muestra!, que deriva de ~ ax:well. Ahora 
bien, junto a la estimación, se deseaba dar un valor de la variación 
o dispersión de todas las posibles estimaciones, a fin de dar una 
idea de la exactitud de la inferencia. Para ello se calculaba el error 
probable o, también, el «error estándar» del estimador, que no es 
más que la desviación típica de la distribución del estadístico en el 
muestreo ( esto es, de la distribución que mide la probabilidad de 
que el estadístico tome tal o cual valor en función de los datos 
de la muestra, que se considera que han sido seleccionados alea­
toriamente de la población). Este número decía lo buena que era 
la inferencia: a menor error, mejor estimación. Además, el error 
suele depender de la raíz cuadrada del tamaño de la muestra, de 
manera que conforme el tamaño muestra! aumenta, la precisión 
de la estimación también lo hace, ya que el error disminuye con la 
raíz cuadrada del tamaño (figura 6). 

Años antes, en 1896, Pearson había enunciado, sin demos­
trarlo -la demostración corría a cargo de Fisher-, que el estima­
dor más probable de p, de la correlación de toda la población, era 
en esencia r, la correlación calculada a paitir de los datos obser­
vados en la muestra ( aunque la notación de Pearson no distinguía 
bien entre ambos valores, entre el parámetro poblacional y el es­
tadístico muestra!). Pearson respondió con entusiasmo a Fisher, 
felicitándole por la prueba y transmitiéndole que el artículo sería 
sin duda aceptado. Una semana después, Pearson volvía a escribir 
a Fisher, contándole que por fin 
había leído con detenimiento el 
borrador, que le parecía que era 
un avance y que sería un honor 
publicarlo si ampliaba un poco 
las páginas del final. Fisher es­
tudiaba la distribución del coe­
ficiente de correlación muestra! 
geométricamente (imaginando 
la muestra como un vector n-di-

FIG.6 
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El error cometido 
en la estimación 
disminuye 
rápidamente con 
el tamaño de la 
muestra, hasta 
un punto en el 
que el aumento 
del tamaño 
muestra! no 
se traduce en 
una reducción 
apreciable 
del error. 

----~ 

! 

mensional y la distribución como 
una variedad diferenciable) y re­
curría, además, a una transfor-

1 º ___ 2º ___ 4º ___ 6_º ___ ª_º ___ 1º_º .... L. Tamaño de la muestra 
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rnación algebraica, con lo que a Pearson le costaba seguir una 
demostración en que no se razonaba a partir de r sino de una fun­
ción definida sobre r. Fisher dio la bienvenida a la sugerencia y su 
artículo revisado fue felizmente publicado enBiometrika en 1915. 

Hasta 1917 la relación entre ambos matemáticos fue cordial, 
pero en la primavera de ese año Pearson y sus colaboradores pu­
blicaron un estudio cooperativo, en el que Pearson arremetía con­
tra Fisher, dedicando más de una página a criticar un supuesto 
error cometido por este último en su artículo de 1915. Quizá obró 
así movido por la nota que Fisher le había enviado cuestionando 
la investigación llevada a cabo por una doctoranda danesa que 
trabajaba en el laboratorio de Pearson; además, parecía poner en 
duda los méritos del test X2 y del método de los momentos para 
construir estimadores. En el artículo mencionado de 1915, Fisher 
daba cumplida demostración de la afirmación que Pearson hiciera 
bastantes años antes: el valor más probable del coeficiente de 
correlación p de toda una población es, en esencia, el coeficiente 
de correlación r observado en la muestra ( cuando el tamaño 
rnuestral crece, porque en general r tiende a ser mayor que p ). 
Pearson afirmaba que Fisher lo había demostrado empleando los 
métodos inversos de probabilidad, es decir, el teorema de Bayes, 
ocasión que aprovechó para dirigirle una reprimenda, señalando 
lo arbitrario del procedimiento, ya que tenía que partir de una 
distribución a priori uniforme, de una presuposición de ignoran­
cia total. Sin embargo, Fisher no había usado este procedimiento. 
Corno ampliaremos en el capítulo 5, Fisher no solo compartía esta 
oposición radical a la inferencia bayesiana, sino que había em­
pleado otro método, un método nuevo que explicaremos en el 
próximo capítulo: el «método de máxima verosimilitud», que poco 
o nada tenía que ver, pero que ciertamente venía expresado con 
términos ambiguos. 

A Fisher no tuvo que agradarle la lectura de este pasaje del 
estudio, y es lógico que el incidente le pesara a la hora de decli­
nar la oferta de trabajar a las órdenes de Pearson en el Laborato­
rio Galton y decantarse por ocupar la plaza de estadístico en la 
Estación Agrícola Experimental de Rothamsted a partir de 1919. 
Además, Fisher elaboró una respuesta en forma de artículo que le 
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hizo llegar a Pearson en 1920. Allí profundizaba en el estudio del 
coeficiente de correlación para una muestra pequeña y, de paso, 
indicaba que en su artículo de 1915 no había empleado para nada 
el teorema de Bayes. Y aunque decía mostrarse reacio a criticar a 
los estadísticos autores del estudio ( entre ellos, claro está, Pear­
son), llegaba al extremo de ridiculizar los ejemplos que ponían, 
terminando su respuesta con una nota sobre la confusión entre 
la regla de Bayes y su nuevo método de constmcción de estima­
dores. Como es natural, Pearson rechazó tajantemente publicar 
el artículo y se lo devolvió a su autor, rogándole que no insistiera. 

El principal resultado de esta desafortunada controversia 
fue una enemistad declarada que se prolongó durante años, de 
manera que ninguno de los dos estadísticos desaprovechaba la 
ocasión de poder criticar al rival. Tanto es así que cuando Fisher, 
en una trilogía de artículos publicados entre 1922 y 1924, per­
feccionó el test de la chi-cuadrado, dando el número exacto de 
grados de libertad, Pearson nunca aceptó la modificación, pese a 
ser correcta. Recíprocamente, cuando en 1945 se solicitó a Fisher 
que escribiera la entrada sobre Pearson para un diccionario de 
biografías, el editor hubo de rechazar de plano su texto por el 
tono calumnioso que emanaba. En cualquier caso, soslayando las 
rencillas académicas, hay que poner de relieve el acusado con­
traste entre las visiones de la estadística de Pearson y Fisher, por 
cuanto el primero empleaba muestras grandes y el segundo, por el 
contrario, influido por Willian1 Sealy Gosset (alias Student), pre­
fería trabajar con muestras pequeñas, amparándose en el dicho 
estadístico que afirma que para catar la sopa, aunque la olla sea 
más grande, basta con una cucharada pequeña. 

Karl Pearson jugó un papel enorme en determinar el conte­
nido y la organización de la investigación estadística en su día, a 
través de sus investigaciones, sus enseñanzas, el establecimiento 
de laboratorios y el inicio de un vasto programa de publicacio­
nes. A una obra tan prolífica que no tiene rival en cantidad en 
ningún otro matemático, hay que añadir una capacidad de trabajo 
inmensa, que el propio Pearson achacaba, con una pizca de iro­
nía, a que nunca contestaba al teléfono ni asistía a comités de 
bienvenida. 
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STUDENT Y LA DESTILERÍA GUINNESS 

William Sealy Gosset (1876-1937) era químico de formación, aunque se había 
familiarizado con la estadística tras pasar una temporada en el Laboratorio 
Biométrico con Pearson. En 1908 publicó un célebre artículo, titulado «El 
error probable de la media», bajo el seudónimo Student. La razón es que 
la empresa para la que trabajaba, la fábrica de cerveza Guinness en Dublín, 
no permitía que los empleados hicieran públicas las investigaciones que 
realizaban para la marca. Buscando controlar la calidad de la cerveza produ­
cida, Student recogía muestras pequeñas (lo que salía más barato). Y había 
descubierto que uno de los tipos de curvas de Pearson era una distribución 
de probabilidad de gran utilidad para el estudio de estos experimentos a 
pequeña escala. Si, por ejemplo, quería estimar la acidez media de toda la 
cerveza producida por la planta en un cierto período de tiempo, calculaba 
la media de los niveles de acidez encontrados en la docena de barriles de 
muestra. El problema, y de ahí el título del artículo, es que Student no cono­
cía el error probable que cometía en la estimación de la media poblacional 
por medio de la media muestra!, un número necesario para valorar si la 
inferencia era o no precisa y, dicho sea de paso, si la acidez entraba dentro 
de los límites aceptables. Para determinarlo, Student precisaba conocer la 
distribución de probabilidad del estadístico media muestra!. Se sabía que 
si la muestra era grande -en la práctica, mayor o igual que 30-, la distri­
bución de la media muestra! era normal (en virtud del teorema central del 
límite). Pero si la muestra era pequeña, no tenía por qué serlo. 

La distribución t de Student 
Student obtuvo la distribución correcta, conocida hoy día -después de que 
Fisher la retocara en 1925- como distribución t de Student. Esta distribu­
ción es, en realidad, una familia de distribuciones dependientes del número 
de grados de libertad; pero, en general, es más aplanada que la distribución 
normal, con colas más anchas, lo que refleja la mayor incertidumbre de las 
inferencias. Este modelo de probabilidad es imprescindible en el presente 
por su robustez, ya que no solo se emplea en la inferencia a partir de mues­
tras pequeñas extraídas de una población normal (de la que se desconocen 
su media y su desviación típica), sino también cuando la población subya-

Todas las piezas del rompecabezas estaban ya sobre la mesa. 
Todo estaba listo para el reordenamiento de los materiales esta­
dísticos que iba a realizar Fisher. De resultas, la estadística sería 
encumbrada como un nuevo estilo de razonamiento, que se suma­
ría, en el plano teórico, al razonamiento axiomático matemático 
y, en el plano experimental, tanto al método hipotético-deductivo 
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cente no se distribuye normal­
mente. La distribución tes prác­
ticamente insensible al supuesto 
de normalidad. 

Rescatado del olvido 
No obstante, Student fue una fi­
gura marginal hasta que Fisher 
rescató su labor del olvido, aun­
que estaba dotada de un sen­
tido del humor peculiar (como 
se observa en la regla mnemo­
técnica que inventó en relación 
con la curtosis: para recordar el 
término «platicúrtico», que se 
aplica a las curvas más aplana­
das que la normal, Student se 
acordaba de un platypus, orni­
torrinco en español; y para re­
cordar el término «leptocúrtico», 

Como puede observarse, la t de Student (en gris) 
presenta colas más anchas que la normal 
(en negro). 

aplicable a las curvas más puntiagudas, traía a la memoria un par de cangu­
ros entrechocando sus cabezas, porque lepping significa saltando en inglés). 
Fisher y Student establecieron contacto alrededor de 1912, por mediación del 
tutor del primero en Cambridge, un astrónomo de reconocido prestigio. Los 
apuros que Student mostraba por carta con las demostraciones matemáticas 
inspiraron a Fisher la posibilidad de deducir exactamente la distribución de 
var ios estadísticos en el muestreo y, de este modo, anotarse sus primeros 
éxitos. Por su parte, la apatía de Pearson al respecto se explica porque es­
taba convencido de que la detección de las pequeñas tendencias que se ob­
servaban en los datos biológicos requería del empleo de muestras grandes, 
de un gran número de datos: «iSolo los sucios cerveceros manejan muestras 
pequeñas!», solía decir con tono jocoso a sus ayudantes. 
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de la física como al taxonómico de las ciencias naturales. La es­
tadística se convertiría en un nuevo modo de pensar y, en espe­
cial, de hacer, de intervenir en el mundo, aplicándose en áreas tan 
dispares como los laboratorios biométricos, las grartjas agrícolas 
o la industria cervecera. Una nueva estrella anunciaba su salida 
en el firmamento. 
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CAPÍTULO 3 

Los fundamentos matemáticos 
de la inferencia estadística 

En los años veinte, Fisher tomó el relevo de 
la primera generación de estadísticos, crecida en 

torno a Pearson. Su artículo «Sobre los fundamentos 
matemáticos de la estadística teórica» fue el aldabonazo 
que anunció la implantación de la inferencia estadística 

como disciplina matemática, seguido por dos influyentes 
libros: Métodos estadísticos para investigadores y 

El diseño de experimentos. En ellos, Fisher cimentaría 
los test de significación, el análisis de la varianza 

y la aleatorización como principios básicos 
de cualquier confrontación del científico 

natural con los hechos. 





La inferencia estadística se define como una colección de técrucas 
que permiten formular inferencias de lo particular (la muestra) 
a lo general (la población), proporcionando -y esto es lo que 
separa a la estadística de la adivinación- una medida de la incer­
tidumbre de la predicción: la probabilidad de error. 

Según se ha visto en los capítulos anteriores, la uruón entre 
los rudimentarios métodos estadísticos de La.place y Gauss, confi­
nados al espacio de la astronomía, y la ciencia del Estado, circuns­
crita al campo de la demografía y la incipiente ciencia social, se 
produjo a caballo entre los siglos XIX y xx en el terreno intermedio 
de la biología, ya que la evolución se reformuló como problema 
estadístico gracias al influjo de la eugenesia y la biometría. 

La estadística prefisheriana, dominada por ese titán llamado 
Karl Pearson, se encontraba en la siguiente situación. En estadís­
tica descriptiva, aunque no se distinguía claramente entre pobla­
ción y muestra, se conocían las representaciones gráficas más co­
munes ( diagrama de barras, histograma, diagrama de dispersión, 
etc.) y se calculaban las principales medidas de centralización 
(media, mediana, moda), dispersión (la desviación típica, aunque 
no era la única medida), posición ( cuartiles y percentiles) y forma 
(asimetría y curtosis). El viaje desde el análisis exploratorio de 
los datos al dominio de la teoría matemática de la probabilidad se 
realizaba mediante el ajuste de distribuciones teóricas -la curva 
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normal o las cwvas de Pearson- sobre las distribuciones de fre­
cuencias obsezvadas, por medio del método de mínimos cuadra­
dos y del método de los momentos. La bondad del ajuste podía 
comprobarse mediante ese gran invento que era el test de la x2. 

Finalmente, el establecimiento de inferencias estadísticas solo 
contaba con dos métodos expeditos: las predicciones fundadas · 
en el análisis de la regresión y la correlación; y, en especial, los 
métodos inversos de probabilidad, mayoritarios desde el tiempo 
de Laplace y basados en el teorema de Bayes (la inferencia baye­
siana o subjetiva). 

Fisher vendría a rellenar el vacío de este importantísimo 
cajón planteando gran parte de los métodos de estimación e in­
ferencia hoy clásicos (la inferencia frecuentista u objetiva) . Si 
Pearson había enseñado cómo extraer información relevante de 
la maraña de datos, Fisher mostró cómo conocer el todo (la po­
blación) obsezvando la parte (la muestra). Él fue el arquitecto que 
afianzó definitivamente el puente entre la estadística descriptiva 
y la estadística inferencial, atando esta última a la matemática, lo 
que insufló nuevos aires a la disciplina. 

Y lo que es más importante, Fisher estructuró las etapas del 
método estadístico. Al análisis exploratorio inicial de los datos 
disponibles y la construcción de un modelo probabilístico tenta­
tivo, le seguiría una fase de estimación de los parámetros desco­
nocidos del modelo poblacional a partir de la muestra obsezvada 
y, finalmente, otra fase de ajuste entre el modelo y la realidad por 
medio de los test de significación y el diseño de experimentos. 
Con Fisher puede decirse que culminó el cierre del cuerpo meto­
dológico básico de la estadística: la elección del modelo teórico 
a partir de los datos empíricos, la deducción matemática de las 
propiedades del mismo, la estimación de los parámetros desco­
nocidos y la validación final del modelo mediante un test expe­
rimental. Esta aproximación, en la que se recoge información de 
los resultados de un experimento y a partir de ellos se intenta 
sacar conclusiones, es el núcleo de la inferencia estadística, que 
a diferencia del cálculo de probabilidades no es un razonamiento 
deductivo sino inductivo, sometido a cierto error que se busca 
cuantificar. 
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PROBLEMAS Y CRITERIOS DE LA INFERENCIA 

En 1919, Fisher aceptó un puesto como asesor estadístico en la 
Estación Agrícola Experimental de Rothamsted, tras rechazar la 
oferta de trabajo de Karl Pearson en el Laboratorio Galton para no . 
tener que sufrir su supervisión, ya que las diferencias entre ambos 
estaban lejos de limarse. Con veintinueve años se trasladó, junto 
con su espos<1 e hijos, a vivir a una vieja granja al norte de Londres, 
cercana a la estación. Los dueños, fabricantes de abonos, le habían 
contratado con la intención de que pusiera orden en la enorme 
cantidad de datos que se habían ido recopilando durante los años 
de funcionan1iento del centro. El tiempo demostraría que la deci­
sión tomada fue la acertada Sir Edward John Russell (1872-1965), 
responsable de la estación, mantenía una atmósfera de libertad 
que estimulaba el intercambio científico entre biólogos, químicos 
y estadísticos. Fisher se convirtió en un investigador agrario infa­
tigable, y entre la granja y la estación germinaron sus ideas más 
geniales, sin dejar de lado ninguna parcela de la estadística 

En su artículo seminal titulado «Sobre los fundamentos ma­
temáticos de la estadística teórica» (leído en la Royal Society de 
Londres en 1921 y publicado en 1922), Fisher acuñó la nomencla­
tura hoy habitual en cualquier manual de inferencia estadística. 
Por ejemplo: el término parámetro, en su sentido estadístico mo­
derno, aparece por vez primera y se menciona hasta 57 veces. Una 
afirmación errónea que hiciera el astrofísico Arthur S. Eddington 
en su libro Movimientos estelares (1914), junto a varias preguntas 
formuladas epistolarrnente por Pearson antes de que cortaran el 
contacto, fueron el punto de partida que espoleó a Fisher para 
estudiar la cuestión de la estimación estadística en detalle. 

Este artículo fundacional arranca señalando que el objeto de los 
métodos estadísticos es la «reducción» de los datos: expresar toda 
la información relevante contenida en la muestra sobre la población 
por medio de unos pocos valores numéricos. hunediatarnente des­
pués, Fisher ponía de relieve la noción de «modelo estadístico», que 
posibilitaba distinguir con claridad entre una población ( real o hipo­
tética) y una muestra suya, un par de conceptos conjugados cuya 
raya de separación había estado hasta el momento difunúnada. Los 
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datos disporúbles han de considerarse como una muestra aleatoria 
proverúente de una población, cuya distribución con respecto a la 
característica bajo estudio viene especificada por una lista de pa­
rámetros que se denotan con letras griegas (por ejemplo, el pará­
metro 8). En verdad, para cada posible valor de los parámetros, se 
tiene una población distinta, de modo que la pregunta central que se 
formula cada estadístico es, a saber: ¿a cuál de las infinitas poblacio­
nes posibles pertenece esta muestra que tengo delante? 

A continuación, Fisher indicó las tres clases de problemas 
matemáticos a que se enfrenta la inferencia estadística. En primer 
lugar, los problemas de «especificación», que consisten en defi­
nir el modelo poblacional, es decir, la familia de distribuciones 
dependientes de uno o más parámetros 8 de la que se extraen 
(supuestamente) las muestras. En segundo lugar, los problemas 
de «estimación», que por ser el eje principal de la inferencia esta­
dística se explican más adelante en detalle. Y en tercer y último 
lugar, los problemas de «distribución», cuyo propósito es deducir 
exactamente la distribución de un estadístico en el muestreo a 
partir de la distribución de la población, que se supone conocida. 
Las distribuciones muestrales determinan la probabilidad con que 
cierto estadístico toma valores entre dos límites prefijados ( equi­
valentemente, la frecuencia relativa con que los toma cuando el 
proceso de muestreo se repite indefirúdamente ). La resolución de 
esta clase de problemas es, en cierto modo, un requisito previo a 
la inferencia, pues permite hallar el error estándar cometido en la 
estimación, así como comparar los méritos de varios estimadores 
entre sí. Posibilita, en suma, calcular la precisión del estimador y 
medir la incertidumbre en la predicción del parámetro o paráme­
tros desconocidos. 

Centrándonos en los problemas de la teoría de la estimación, 
Fisher apuntó que se trata de la elección del valor del parámetro 
8 más apropiado basándose en la muestra o, más exactamente, en 
los estadísticos -denotados con letras latinas ( como, por ejem­
plo, 1)- que se calculan a partir de los datos observados. ¿Por 
qué se usaba la media muestra! X para estimar la media poblacio­
nal µ?¿Ola desviación típica muestra! S para aproximar la des­
viación típica poblacional a? La teoría de la estimación estadística 
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que esbozó Fisher respondió a estas preguntas planteándose qué 
propiedades debía cumplir todo buen estimador. 

Una primera propiedad que parecía natural exigir a la hora de 
estimar un parámetro 8 mediante un estadístico T era que fuera 
«consistente», es decir, que T convergiera en probabilidad al ver­
dadero valor de 8 conforme el tamaño de la muestra aumentara. 
En consecuencia, si la muestra era grande, el valor de T coincidi­
ría muy probablemente con el de 8. Los estimadores consistentes 
eran aquellos que se volvían mejores según crecía el tamaño de la 
muestra, que tendían a dar el valor correcto del parámetro. 

«Hay que admitir que cualquier inferencia de lo particular 
a lo general se realiza con un cierto grado de incertidumbre, 

pero esto no es lo mismo que admitir que esa inferencia no 
pueda ser absolutamente rigurosa.» 
- R.A. F!SHER, EL DISEÑO DE EXPERIMENTOS (1935). 

Una segunda propiedad deseable era que T no solo conver­
giera al valor real del parámetro 8, sino que lo hiciera de manera 
«eficiente», es decir, con el menor error posible. En términos más 
precisos: que el error estándar del estimador fuera el mínimo po­
sible (más adelante veremos que Fisher dio con un método -el 
método de máxima· verosimilitud- para construir estimadores 
eficientes). 

Finalmente, una tercera condición, más restrictiva que la de 
eficiencia, era la propiedad de «suficiencia», que pedía que el es­
tadístico T no desaprovechara ninguna información contenida 
en la muestra, que contuviera toda la información relevante para 
estimar el parámetro correspondiente. Cuando un estadístico T 
era suficiente para 8, ningún otro estimador proporcionaba más 
información sobre el parámetro a partir de la muestra. Además, 
podía demostrarse que en este caso T era eficiente. La suficiencia 
era el criterio supremo, ya que implicaba los otros dos criterios 
más débiles (la eficiencia y la consistencia). Cuando se encon­
traba un estadístico suficiente, podía afirmarse que el problema de 
la estimación estaba completamente resuelto. Por desgracia, no 
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SESGO Y EFICIENCIA 

A día de hoy, los tres criterios proporcionados por Fisher apenas han expe­
rimentado modificación, aunque su acción se ha visto complementada por 
otros criterios . 

El sesgo 
Así, se comienza definiendo un estimador T como centrado o insesgado 
para el parámetro 8 si, para cualquier tamaño muestra!, la media de su dis­
tribución en el muestreo es 8. En otras palabras, si el valor esperado del 
estadístico Tes, precisamente, el valor real de 8. En otro caso, se dice que 
el estimador no es centrado, que tiene sesgo. 

La eficiencia 
Por su parte, se llama eficiencia o precisión de un estimador al inverso de 
la varianza de su distribución muestra!. es decir. al inverso del cuadrado 
de su desviación típica, de su error estándar (el concepto de varianza como 
cuadrado de la desviación típica fue introducido por Fisher en 1918 por ser 
más cómodo de calcular) . La eficiencia o precisión de un estimador está, por 
tanto, ligada a su varianza (ambas cantidades son inversamente proporcio­
nales entre sí): cuanta más dispersión tiene un estimador, menos preciso 
es en sus estimaciones. y recíprocamente. Este concepto es especialmente 
relevante para comparar estimadores insesgados. ya que entre ellos es pre­
ferible el más eficiente, el de mínima varianza. 

El error cuadrático medio 
No obstante. en ocasiones se presenta el dilema de elegir entre dos estima­
dores con propiedades contrapuestas: uno de ellos es insesgado, mientras 
que el otro es sesgado aunque con menor varianza. En estos casos es razo­
nable elegir aquel estimador con menor error promedio de predicción del 
parámetro (formalmente: con menor error cuadrático medio para el tamaño 
muestra! prefijado, siendo esta cantidad la suma de la varianza del estima­
dor y del cuadrado de su sesgo). Un ejemplo de esto nos lo proporciona la 
estimación de la varianza o2 de una población. En principio. lo más óptimo 

siempre existía un estadístico suficiente a la hora de estimar un 
parámetro, como Fisher se vio obligado a reconocer. 

El primer método utilizado para construir estimadores fue 
el método de los momentos, propuesto por Karl Pearson. La idea 
era simple: tornar como estimador de la media de la población la 
media muestra!; de la desviación típica de la población, la des­
viación típica de la muestra, y así sucesivamente. En general, 
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no es usar la varianza muestra! 52 (que se define como el promedio de las 
diferencias elevadas al cuadrado de los datos con respecto a la media) sino 
la «cuasivarianza» o varianza muestra! corregida 52, que a la hora de prome­
diar, en lugar de dividir por n (el tamaño de la muestra) divide solo por n -1. 
La razón estriba en que al trabajar con muestras se calcula la variabilidad en 
torno a la media de la propia muestra (no en torno a la media de la pobla­
ción, que es lo que realmente interesa), y ello tiende a subestimar la variabi­
lidad de la población total. Al dividir por n - 1 se obtiene un valor ligeramente 
mayor que estima mejor la dispers ión de la población, porque el estadístico 
resultante resulta ser un estimador insesgado. Sin embargo, desde el punto 
de vista del error cuadrático medio, es mejor emplear la varianza muestra! 
5 2 que la cuasivarianza 52. El estimador sin corregir es preferible. Finalmente, 
cuando se dispone de muestras grandes y no es fácil la obtención de estimado­
res centrados con alta eficiencia, el requisito mínimo que se exige a un estima­
dor es que sea, de acuerdo con Fisher, consistente, entendiendo por ello que 
se aproxime, al crecer el tamaño muestra!, al verdadero valor del parámetro. 

Tirador A Tirador B Tirador e Tirador D 

Si equiparamos las estimaciones de varios estadísticos con los disparos de varios tiradores, 
podemos comprender mejor cuáles son las propiedades que debe cumplir un buen estimador. 
Los disparos del tirador A no se desvían hacia ninguna dirección en particular, pero se 
observa que están muy dispersos (lo que representa un estimador insesgado pero no eficiente). 
Los disparos del tirador B están sesgados hacia la izquierda y, además, dispersos (estimador 
sesgado y no eficiente). Los disparos del tirador C están poco dispersos pero desviados 
(estimador sesgado y eficiente). Y los disparos del tirador D están centrados y 

aglutinados (estimador insesgado y eficiente), lo que constituye la mejor opción. 

se igualaban los momentos poblacionales con los momentos 
muestrales, y se despejaban los parámetros desconocidos. En su 
artículo, Fisher juzgó que la eficiencia de este método de cons­
trucción de estimadores no era la deseada, puesto que muchos 
no cumplían las propiedades estipuladas. Los estimadores obte­
nidos por el método de los momentos son consistentes, pero no 
son, en general, eficientes (centrados con varianza mínima). La 
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ventaja de estos estimadores es, desde luego, la simplicidad. Su 
inconveniente es que al no tener en cuenta la distribución de la 
población que genera la muestra, no utilizan toda la información 
disponible. 

Desde entonces, Fisher siempre se refirió al método de los 
momentos de Pearson como «ese método tradicional pero inefi­
ciente». En su ceguera, Karl Pearson nunca se dio por vencido e, 
incluso, en el que sería su último artículo (publicado póstuma­
mente en 1936 en Biometrika), defendería a capa y espada las 
virtudes de su método, comenzando el texto con la siguiente pre­
gunta retórica: «¿Perdiendo el tiempo ajustando curvas mediante 
el método de los momentos, eh?». 

Un procedimiento que proporcionaba estimadores con buenas 
propiedades, especialmente en muestras grandes, era el método de 
máxima verosimilitud, que patentó Fisher y que en germen se en­
cuentra en su primer artículo publicado, de 1912. El precedente más 
directo del método de máxima verosimilitud se halla en Gauss, aun­
que también en Daniel Bemoulli, pero la inferencia bayesiana que 
impulsó Laplace ensombreció este y otros trabajos. No obstante, 
Fisher fue mucho más lejos que estos matemáticos en promocionar 
su uso como método universal de construcción de estimadores. 

Para entender la noción de función de verosimilitud, que Fi­
sher reintrodujo y es una de las más importantes de la inferencia, 
hay que distinguir. con nitidez dos conceptos muy parecidos. Sea 
8 el parámetro poblacional desconocido y representemos por X 
la muestra extraída aleatoriamente de la población. Por un lado 
se tiene la probabilidad de obtener la muestr.a X condicionada a 
cierto valor de 8 que se supone conocido, lo que se denota como 
P(XI 8) ( con X variable y 8 fijo) y determina la probabilidad de 
aparición de cada muestra. En cambio, en un problema de estima­
ción, tenemos una cosa muy distinta: se ha observado la muestra 
X pero 8 es desconocido. Sin embargo, la función anterior sigue 
siendo útil, ya que si sustituimos X por el valor observado, P(XI 0) 
proporciona, para cada valor de 8, la probabilidad de obtener 
el valor muestra! X. Cuando variamos 8, manteniendo X fijo, se 
obtiene una función que se llamafunción de verosimilitud y se 
designa como L(8 IX), con X fijo y 8 variable. Conviene advertir 
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fotografías 
icónicas de 
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trabajando con 
su máquina de 
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llamada Millonaria. 
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por Antony 
Barrington·Brown 1 

reproducida en 
J.F. Box, R.A. 
Fisher: The Lite 
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Nueva York, 
Wiley, 1978.) 
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El Rothamsted 
Research, antes 
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Agrícola 
Experimental de 
Rothamsted, uno 
de los centros de 
investigación en 
agricultura más 
antiguos del 
mundo, donde 
Fisher tuvo 
ocasión de 
realizar los 
experimentos 
que le permitirían 
elaborar el corpus 
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estadística . 
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EL PROBLEMA DE LOS TANQUES ALEMANES 

Los estadísticos que durante 
la Segunda Guerra Mundial 
trabajaban para los Aliados 
se toparon con un problema 
peliagudo: ¿cómo estimar el 
número total de tanques fa­
bricados por los alemanes a 
partir de los números de serie 
de los tanques capturados? 
Suponiendo que los tanques 
alemanes habían sido nume­
rados secuencialmente desde 
1 hasta N, se trataba de cons­
truir un estimador para N. 
Supongamos, por simplificar, 
que los tanques capturados 

Durante la Segunda Guerra Mundial, la producción 
de Panzers alemanes fue estimada con gran precisión 
por los estadísticos aliados. 

tenían los siguientes números de serie: 2, 3, 7, 16. A partir de esta muestra 
se deseaba estimar N, es decir, el tamaño total de la población de tanques 
alemanes. Por el método de los momentos, para calcular un estimador de N 
se igualaba el primer momento poblacional, es decir, la media poblacional : 

N+l 
µ=-2-· 

donde se suma 1 porque no hemos empezado a contar desde O, con el pri­
mer momento muestra! , es decir, la media muestra!, que es: 

que, como consecuencia de haber invertido el papel de X y 0 de 
acuerdo al cambio de óptica que se asume en la inferencia, la fun­
ción de verosimilitud ya no tiene por qué ser una distribución de 
probabilidad, de modo que -como Fisher no dejó de apuntar­
no obedece las reglas del cálculo de probabilidades (una vez se 
sustituyen los valores particulares de la muestra). Esta función 
representa el estado de nuestra información con respecto al pa­
rámetro de la población. En efecto, en lugar de suponer que co­
nocemos 0 y calculamos las probabilidades de observar distintas 
muestras X, suponemos que hemos observado una muestra X 
concreta y evaluamos la verosimilitud de los .posibles valores de 
0. La función de verosimilitud es la herramienta clave para juzgar 
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X=2+3+7+16 7_ 
4 

Igualando ambos valores y despejando N, se obtenía que la estimación era 
13. Sin embargo, por lógica, si en la muestra había salido seleccionado el 
tanque número 16, era obvio que un mejor estimador era el valor máximo 
observado en la muestra, 16. Los alemanes habían producido, por lo menos, 
16 tanques. No obstante, si solo se consideraba el máximo en la muestra, la 
estimación tendía a subestimar el tamaño total de la población, puesto que 
el máximo podía ser igual o menor pero nunca mayor que N. En verdad, el 
mejor estimador posible venía dado por el estimador eficiente (insesgado de 
mínima varianza) cuya fórmula para N era: 

m-n 
m+--, 

n 

donde m era el mayor número de serie observado y n el tamaño muestra!. 
Esta fórmula puede entenderse como la suma del máximo en la muestra más 
el «hueco medio» en la muestra. Al valor mayor se le añade el promedio de 
los huecos entre las observaciones que tenemos, pensando que a continua­
ción suyo debe de haber tantos elementos como más o menos hay entre los 
valores de que disponemos. En nuestro ejemplo, la mejor estimación para 
N sería: 

16-4 
16+--=19 tanques en total. 

4 

la compatibilidad entre los valores muestrales observados y los 
posibles valores del parámetro. 

La intuición de Fisher radicó en escoger como estimación de 
8 aquel valor que haga máxima la probabilidad de aparición de los 
valores muestrales efectivamente observados. En otras palabras: 
se trata de seleccionar como estimador del parámetro aquel valor 
que maximiza la probabilidad de lo efectivamente ocurrido, de ob­
servar los datos que realmente fueron observados. Esto conduce 
a determinar el máximo de la función de verosimilitud, de manera 
que se elige como estimador de 8 aquel valor que otorgue valor 
máximo a la función L(8 IX). Bajo ciertas condiciones de regula­
ridad, los estimadores máximo-verosímiles son asintóticamente 
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UNA MONEDA TRUCADA 

Consideremos una moneda de la que se desconoce la probabilidad p de 
que al lanzarla salga cara. La moneda se lanza cuatro veces y se obtiene la 
siguiente serie: CXCC (cara-cruz-cara-cara). Por el cálculo de probabilida­
des sabemos que 

P(CXCCIP) = p 3(1-p). 

Por tanto, la función de verosimilitud es: 

L(p/CXCC)- p 3(1- p). 

Esta expres1on nos permite intuir, por ejemplo, que el valor 0,6 para 
p es más verosímil que el valor 0,5 dado que L(0,6ICXCC) = 0,0864 y 
L(0,5ICXCC) = 0,0625. La función de verosimilitud permite discriminar qué 
valores del parámetro p son más verosímiles a la luz de los datos disponi­
bles. Mediante un cálculo no excesivamente complejo puede demostrarse 
que la función de verosimilitud alcanza su máximo para el valor 0,75. Nues­
tra estimación a partir de la muestra observada sería, en consecuencia, que 
p = 0,75. En esencia, esta es la base del método de estimación de paráme-
tros por máxima verosimilitud. · 

centrados y eficientes ( conforme crece el tamaño de la muestra 
el sesgo tiende a cero y la varianza a su mínimo) y suficientes (si 
existe un estadístico así para el problema concreto bajo estudio). 

Este método era el que Fisher había empleado en el artículo 
de 1915 que Karl Pearson había criticado con extrema dureza. 
Nada tenía que ver con el teorema de Bayes. Para estimar el coe­
ficiente de correlación p de toda una población, Fisher había ele­
gido aquel valor que maximizaba la probabilidad de obtener el 
coeficiente de correlación r observado en la muestra, es decir, 
el máximo de la función de verosimilitud. 

La noción de modelo estadístico, los tres tipos de problemas 
en inferencia (especificación, estimación, distribución), los tres 
criterios de estimación (consistencia, eficiencia, suficiencia) y el 
método de máxima verosimilitud aportaron el marco para el pro­
grama de investigación que ha dominado la estadística teórica o 
matemática durante todo el siglo xx, aunque el carácter vago y 
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elusivo de muchas de las demostraciones dadas por Fisher dio 
bastantes quebraderos de cabeza a los matemáticos de las déca­
das siguientes. La aparición de esta celebrada memoria de Fisher 
abrió, desde luego, una nueva era en la estadística, consagrando 
una larga serie de términos (parámetro, estadístico, estimador, 
etc.) que desde entonces forman parte ineludible de la literatura 
estadística. 

«MÉTODOS ESTADÍSTICOS PARA INVESTIGADORES» 

Entre los veranos de 1923 y 1924, Fisher escribió Méwdos estadís­
ticos para investigadores, un libro que vio la luz en 1925 y hasta la 
fecha ha sido reeditado en catorce ocasiones. Se trata de su obra 
más influyente y popular. Da la impresión de ser más un manual 
para aprendices que un libro de texto, a tenor del estilo persuasivo 
y la característica ausencia de demostraciones matemáticas. Tal 
vez en esto radicó su gran éxito. Problemas prácticos, técnicos, 
teóricos y filosóficos se discuten en el libro a través de ejemplos 
numéricos muy ilustrativos. Fisher fue un gran matemático apli­
cado, pero concebía la estadística como una disciplina que no solo 
necesita del razonamiento deductivo típico de las matemáticas, 
sino también del razonamiento inductivo que sabe hacer el cientí­
fico experimentado a partir de los datos que maneja. 

El libro contenía una introducción al tema, en la que Fisher 
mantenía que la estadística no era sino matemática aplicada a los 
datos observacionales. La estadística se interesaba por el estudio 
de poblaciones de individuos, moléculas o medidas, fijándose en su 
variabilidad y en la posibilidad de reducir o simplificar los datos de 
partida, de extraer toda la información relevante que contuvieran 
sobre la población subyacente. En su examen de las muestras dispo­
nibles, el estadístico realizaba inferencias sobre la población total, 
pero estas no debían venir expresadas -según subrayaba Fisher 
con tono agresivo-- en el lenguaje de la probabilidad ( como que­
rían los partidarios del teorema de Bayes y los métodos inversos de 
probabilidad) sino, en todo caso, en el lenguaje de la verosimilitud. 
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A través de los capítulos del libro, Fisher recorría lo que ac­
tualmente comprende un curso básico d~ inferencia estadística. 
Es de destacar que el autor comenzaba apoyándose en el uso de 
diagramas. A su entender, su observación no probaba nada, pero 
frecuentemente sugería cómo comenzar el análisis. Tras repasar 
las distribuciones de probabilidad fundamentales (normal, bino­
mial y Poisson), presentaba la receta estadística que era la piedra 
angular de la obra: los «test de significación». 

Cada sección del libro dedicada a los test de significación en 
sus diferentes modalidades ( de ajuste, homogeneidad e indepen­
dencia, para la media, la diferencia de medias o los coeficientes 
de regresión y correlación) arrancaba con un conjunto de datos 
con los cuales se había topado en el curso de alguna investigación. 
Por medio de su disección y explicación, Fisher conducía al lector 
a través de las diferentes etapas del razonamiento estadístico que 
llevaban a la solución del problema. El planteamiento de los test 
estaba basado en el conocimiento de las distribuciones muestra­
les de poblaciones normales, deducidas con anterioridad por él 
mismo y otros especialistas en artículos matemáticos que no ha­
bían llegado al público de investigadores biológicos o agrónomos. 
En el libro, Fisher usaba con asiduidad la x2 de Pearson, la t de 
Student y una distribución nueva, que a partir de 1934 sería cono­
cida como la F de Fisher-Snedecor, por el matemático estadouni­
dense George Snedecor (1881-1974), que precisó la aproximación 
logarítmica ( «log-normal») que en principio empleara Fisher. 

Pero, ¿en qué consistía un test de significación? Una prueba 
de significación constaba, en primer lugar, de una hipótesis nula 
H

0 
que establecía, por ejemplo, que el verdadero valor del paráme­

tro desconocido era tal o cual: 8 = 80• La hipótesis de partida del 
investigador fue bautizada con este nombre por Fisher en 1935 
porque en agricultura representaba que no había cambio alguno 
con el uso de un nuevo fertilizante, que este no tenía efecto, esto 
es, que la diferencia entre los promedios de crecimiento usándolo 
y no usándolo era nula. 

A continuación, tras delimitar la hipótesis nula que se de­
seaba poner a prueba, se elegía el estadístico T del test y se cal­
culaba su valor sobre los datos de la muestra X observada, lo que 
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se denotaba como T(X). Dado que la distribución en el muestreo 
del estadístico T era conocida, se determinaba la probabilidad de 
que el estadístico T tomase un valor igual o más extremo que el 
valor observado T(X) bajo el supuesto de que la hipótesis nula 
era cierta ( es decir, bajo la suposición de que el valor real del pa­
rámetro 8 era 80). Simbólicamente: P(T ~ T(X)IH0 ) . Este número 
se denominó p -valor. Entonces, si el p-valor era excesivamente 
pequeño - en general, por debajo de 0,05-, el test se decía que 
era significativo, porque permitía rechazar la hipótesis nula H

0
. En 

otro caso, el test no era significativo y, para el nivel de significa­
ción prefijado de a = 0,05, no podía rechazarse la hipótesis nula 
H

0 
y se aceptaba provisionalmente. 

«Todo experimento se plantea a fin de dar a los hechos una 
posibilidad de refutar la hipótesis nula.» 

- FISHER, EL DISEÑO DE EXPERIMENTOS (1935) . 

La hipótesis nula solo se rechazaba si la probabilidad de ob­
servar una muestra como la dada era demasiado baja. El razona­
miento estadístico se basaba en la siguiente disyunción lógica: «o 
bien ha ocurrido un suceso excepcional (muy improbable), o bien 
la hipótesis nula no es correcta», empleando palabras del pro-

. pio Fisher. El p-valor o probabilidad de significación -{lUe en la 
época no siempre era fácilmente computable- funcionaba para 
Fisher como una suerte de medida de la evidencia en contra de 
la hipótesis nula: cuanto menor fuese, más evidencia en contra 
de la hipótesis se disponía. Un valor demasiado pequeño indicaba 
que la muestra observada se separaba de lo esperado mucho más 
de lo que sería achacable al azar, a las circunstancias del mues­
treo aleatorio, y por tanto el investigador se encontraba ante una 
hipótesis nula inverosímil, descartable. 

Pongamos una ilustración sencilla para fijar ideas. Suponga­
mos que suministramos un nuevo fertilizante a 20 plantas y obser­
vamos su crecimiento durante cierto período de tiempo, de ma­
nera que medimos si con el nuevo fertilizante han experimentado 
un aumento ( +) o una disminución ( - ) en el ritmo de crecimiento 
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con respecto al que teman antes de usarlo. Nuestra hipótesis nula 
es que el fertilizante no tiene efecto positivo alguno, es decir, que 
la distribución entre los aumentos ( +) y las disminuciones ( - ) va 
a ser completamente azarosa, como si se tratara de las caras y 
las cruces obtenidas al lanzar una moneda legal, perfectamente 
simétrica. Por consiguiente, de acuerdo con la hipótesis nula H

0
, 

la probabilidad de + será igual a la probabilidad de -, esto es, 
0 = 0,5. Imaginemos que, tras realizar el experimento, observarnos 
16 + y solo 4 -. Si elegimos corno estadístico T del test el número de 
+ obtenidos, resulta que la probabilidad de obtener 16 + o más bajo 
el supuesto de que la probabilidad de observar un aumento es de 0,5 
es, según puede calcularse fácilmente (véase la tabla siguiente), de 
solo 0,006. Formalmente: P(T 2: 161H0 ) = 0,006. Corno este p-valor 
es inferior al umbral de a= 0,05, el test es significativo y podemos 
rechazar la hipótesis nula de partida: hay evidencia empírica en 
contra de la hipótesis de que el fertilizante no tema efecto, es más, 
todo parece apuntar a que estimula el crecimiento de las plantas. 

Número de+ Probabilidad 

16 0,004621 

17 0,001087 

18 0,000181 

19 0,000019 

20 0,000001 

Suma 0,006 

Tabla que resume el cálculo de las probabilidades de obtener 
de 16 a 20 + de acuerdo a la fórmula de la probabilidad binomial: 

P(elnúmerode+ seak) = ( ~O )-o,s'º. 

Frente a la creencia común en su entorno, Fisher apuntaba 
que era el p-valor y no el valor concreto T(X) del estadístico del 
test lo que constituía una medida del sustrato racional en contra 
de la hipótesis nula. Así, por ejemplo, el valor particular del esta­
dístico x2 calculado para medir la discrepancia entre una serie de 
valores teóricos y los datos observados no permitía cuantificar 
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el grado de asociación entre ambas series de valores (lo que sí 
haría el coeficiente de correlación), porque un mismo valor del 
estadístico podía ser significativo para una muestra grande pero 
insignificante para una muestra pequeña. Además, Fisher alertó 
de que el nivel de significación a no había de ser fijo, rígido. Pero 
la advertencia pronto cayó en el olvido y se generalizó el uso de 
0,05, al punto de no considerar significativo un p-valor de 0,051 y 
sí otro de 0,049. La elección de este valor frontera no es una cues­
tión matemática, fijada universalmente, sino que depende del con­
texto pragmático: si se trata de la prueba de un nuevo fármaco, 
un nivel de significación del 0,05 implica que se corre un riesgo 
del 5 % de afirmar que el fármaco es eficaz cuando en realidad no 
lo es (en este caso, como en otros, un nivel del 0,01 o 0,001 puede 
ser mucho más adecuado). 

En suma, los test de significación ideados por Fisher eran, 
en el fondo, una especie de modus tollens estadístico. El modus 
tollens tradicional poseía la siguiente estructura: 

Si A, entonces B. 
NoB. 
Luego, no A. 

Y la nueva versión estadística era: 

Si la hipótesis nula H
0 
es correcta, entonces los datos obser­

vados no serán estadísticamente significativos al nivel a = 0,05 
con una alta probabilidad de 1 - a= O, 95. 

La muestra observada X es estadísticamente significativa 
al nivel a= 0,05. 

Luego, la hipótesis nula H
0 
no es correcta. 

Ahora bien, la principal diferencia entre el razonamiento ló­
gico y el razonamiento estadístico es que este último es falible, 
en el sentido de que no siempre es seguro, pues puede fallar, ya 
que existe una probabilidad de 0,05 de que por error se rechace 
la hipótesis nula siendo en verdad correcta. Para sus críticos, 
esta es la peculiaridad que hace que los test de significación 
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carezcan de fuerza lógica. Podemos rechazar la hipótesis nula 
y que, sin embargo, sea verdadera. Los test de significación no 
podrían, por tanto, inferir la falsedad o la verdad de la hipótesis 
de partida. Fisher estaría confundiendo los sucesos improbables 
con sucesos imposibles. No obstante, lo que diferencia a la esta­
dística de la adivinación es, reiterando lo dicho al principio del 
capítulo, la capacidad para cuantificar con precisión esta proba­
bilidad de error. 

Fisher describía los test de significación como un procedi­
miento para rechazar la hipótesis nula, que en ningún caso podía 
ser probada o establecida definitivamente. Este planteamiento 
refutacionista era coherente con la corriente falsacionista que 
poco después encabezó el filósofo de la ciencia Karl Popper (1902-
1994). Tanto para el estadístico como para el filósofo, la ciencia 
se caracterizaba por el planteamiento de pruebas empíricas que 
pudiesen refutar o falsar las teorías que conjeturan los científicos. 
No deja de ser sorprendente que el libro El diseño de experimen­
tos de Fisher, que ahonda en este tema y del que hablaremos más 
abajo, se publicara el mismo año, 1935, en que Popper dio a la im­
prenta su obra maestra: La lógica del descubrimiento cientijico 
( aunque el filósofo nunca citó al estadístico). La propuesta meto­
dológica de Fisher era una especie de falsacionismo aplicado a la 
estadística: se trata de rechazar aquellas hipótesis para las cuales 
las observaciones sean relativamente inverosímiles (aunque la 
decisión de rechazar es, desde luego, revisable sobre la base de 
nuevos hechos). Aquello que distanciaba al estadístico británico 
del filósofo vienés era que, para nuestro protagonista, los test de 
significación, aunque metodológicamente deductivos (si tal, tal; 
no tal, ergo rechazamos H

0
), eran inductivos por su contenido, 

pues permitían aprender de la experiencia, aunque siempre de una 
manera provisional. La hipótesis nula nunca se confirmaba, pero 
era posible refutarla. Si el test era significativo, la hipótesis era im­
plausible a la luz de los datos; y si no lo era, no indicaba más que 
la hipótesis era compatible con los datos. No rechazar no quería 
decir, salvo que se tratara de una batería de test sucesivamente no 
significativos, aceptar. Ningún experimento aislado demostraba 
para Fisher una ley natural. 
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Como ampliaremos en el capítulo 5, la aproximación fishe­
riana presentaba algunas lagunas. En muchas ocasiones, la evi­
dencia en contra de la hipótesis nula sugería evidencia a favor 
de cierta hipótesis alternativa, que Fisher no tomaba nunca en 
consideración dentro de los test de significación. Asimismo, el 
matemático inglés no hacía demasiado hincapié en el cálculo y 
la importancia de las probabilidades de error. Finalmente, otra 
dificultad que salía al paso era la cuestión técnica de qué esta­
dístico elegir para cada test. Una elección, ciertamente, subje­
tiva, aunque bastante estandarizada. Fisher afirmó que había que 
agarrarse al principio de suficiencia, eligiendo un estadístico 
suficiente, es decir, como vimos, un estadístico que contuviera 
toda la información relevante de la muestra. Pero, desafortunada­
mente, la mayoría de estadísticos que Fisher empleaba en su libro 
no cumplían esa propiedad tan deseable (como, por ejemplo, el 
estadístico x2). 

A mediados de 1929, Egon S. Pearson (1895-1980), hijo de 
Karl Pearson y prometedor estadístico por aquel entonces, pu­
blicó una reseña sin firmar de la segunda edición del libro en Na­
ture que puso furioso a Fisher. Las relaciones entre Pearson hijo 
y Fisher no volvieron a ser cordiales. Probablemente, este último 
pensó que Pearson padre estaba malmetiendo detrás. La principal 
crítica formulada por Egon era que Fisher siempre presuponía 
que la población subyacente era normal, y la exactitud de los test 
se venía abajo si esa premisa no era cierta. Curiosamente, Student 
le había insistido a Fisher sobre este tema por carta, pero este le 
había hecho oídos sordos. Sería Egon Pearson, espoleado tam­
bién por Student, el que mediante simulación, es decir, mediante 
tablas de números aleatorios, probara que muchos test basados 
en el conocimiento de las distribuciones en el muestreo de po­
blaciones normales podían seguir empleándose, porque la omni­
presente distribución t era robusta, estable aun si desaparecía el 
supuesto de normalidad. Una actuación emparentada con la que 
en su día Student usara para comprobar la adecuación empírica 
de su distribución t, aunque este último no disponía de tablas al 
efecto y hubo de conformarse con barajar cartas con números ex­
traídos de la medida de la estatura y la longitud del dedo corazón 

LOS FUNDAMENTOS MATEMÁTICOS DE LA INFERENCIA ESTADÍSTICA 89 



90 

«ANOVA» 

Aparte de las pruebas de significación, el libro de Fisher presentaba el análisis 
de la varianza, otra novedosa técnica estadística, conocida mundialmente por 
sus siglas en ingles: ANOV A. Mediante los test de significación se podía com­
parar la efectividad de un fertilizante con respecto a no usarlo o a otro distinto. · 
Es lo que en la jerga estadística se conoce como test sobre la diferencia de 
medias (en el anexo al final del libro se presenta un ejemplo numérico). Pero, 
¿cómo proceder si queremos comparar tres o más fertilizantes, es decir, poner 
a prueba la hipótesis de que tres o más medias son iguales? Una primera res­
puesta, bastante ineficiente, sería comparar los efectos de los tres fertilizantes 
A, B, C dos a dos: A y B; A y C; B y C. Pero, para un nivel de significación fijo 
de a= 0,05, hacer tres pruebas incrementa la probabilidad de error más allá 
de lo tolerable: P (algún error en los tres test)=l -P (ningún error en los tres 
test)= 1 -0,953 = 1 -0,86 = 0,14. La probabilidad de cometer algún error a la hora 
de rechazar la hipótesis nula de que no hay diferencias es de casi tres veces lo 
esperado: de 0,14 en vez de 0,05. Si en lugar de tres fertilizantes fuesen cuatro, 
habría que realizar seis pruebas, lo que empieza a ser demasiado costoso. Para 
solventar estos escollos, Fisher ideó el análisis de la varianza, que mediante la 
comparación de las varianzas muestrales -de ahí el nombre- permite sacar 
alguna conclusión sobre los valores relativos de las medias poblacionales. Su­
pongamos que se han rociado seis parcelas con tres tratamientos diferentes 
A, B y C (dos parcelas para cada fertilizante). Se observa el rendimiento de 
cada parcela y se calcula el promedio de productividad de cada tratamiento: 

Tratamiento A Tratamiento B Tratamiento C 

11 6 1 

9 5 3 

Media A= 10 Media B = 5,5 MediaC=2 

A continuación, se calcula la gran media, la media total: 

M d . _ 11+6+ 1+9+5+3 5 83 e 1a - ------- , . 
6 

En el experimento se pueden identificar tres tipos de variabilidad: la variación 
total entre las 6 parcelas (cada una tuvo rendimientos diferentes); la variación en­
tre tratamientos CA. By C no tuvieron el mismo rendimiento), y la variación dentro 
de cada tratamiento debida al error o al azar, también llamada variabilidad interna 
o residual (no todas las parcelas tratadas con A tuvieron el mismo resultado). La 
comparación entre estas fuentes de variación permite discriminar la igualdad de 
efectos de A, By C. Si la variación entre tratamientos no es del mismo orden que 
la variación dentro de cada tratamiento, es razonable suponer que la diferencia 
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sea achacable a los distintos efectos de A, B y C. Y si esta diferencia es estadís­
ticamente significativa, la hipótesis nula podrá rechazarse. Esta diferencia entre 
la variación «entre» tratamientos y la variación «dentro» de cada tratamiento es, 
precisamente, lo que mide el análisis de la varianza mediante el cociente de va­
rianzas, cuya distribución es la F de Fisher-Snedecor. Parte del éxito del análisis 
de la varianza se debe a su presentación en forma de tabla. Como la variación 
total es igual a la suma de la variación de cada tratamiento más la variación de­
bida al error dentro de cada tratamiento, la suma de cuadrados total (SCT) -de 
cada observación respecto de la gran media- puede descor:nponerse como la 
suma de cuadrados de los tratamientos (SCTR) -entre la media de cada trata­
miento y la gran media- más la suma de cuadrados del error (SCE) -de cada 
observación respecto de la media de su tratamiento-: 

SCT = (11 - 5,83)2 + (6 - 5,83)2 + ... + (3 - 5,83)2 = 68,83. 
SCTR = 2 · (10 - 5,83) 2 + 2·(5,5 - 5,83)2 + 2 · (2 - 5,83) = 64,33. · 
SCE = (11 - 10)2 + (6 - 5,5)2 + ... + (3 - 2)2 = 4,5. 
SCT = 68,83 = 64,33 + 4,5 = SCTR + SCE. 

Después de obtener las sumas de cuadrados, hay que calcular los promedios 
respectivos, dividiendo cada cantidad por su número de grados de libertad, es 
decir, por el número de datos menos l. En nuestro ejemplo, SCT se divide entre 
6-1 = 5 (ya que había 6 observaciones); SCTR entre 3-1 = 2 (ya que eran 3 trata­
mientos), y, finalmente, SCE por el número de grados de libertad que salen de 
despejar en la igualdad SCT=SCTR+SCE. Esto es: SCE=SCT-SCTR=5-2=3, 
que coincide con la diferencia entre el número de observaciones y el número 
de tratamientos. El cálculo de los cuadrados medios lo resumía Fisher en una 
tabla como la siguiente, donde también se calculaba el va lor de la razón F 
entre los cuadrados medios de los tratamientos y del error: 

Tabla ANOVA 

Fuente de variación 
Suma de Grados de Cuadrado 

F 
cuadrados libertad medio 

Entre tratamientos 64,33 2 32,17 21,44 

Dentro de t ra tamientos 4,50 3 1,5 

Va riación total 68,83 5 

Por último, como el p-valor o probabilidad de que una distribución F con 2 y 3 
grados de libertad tome un valor igual o superior a 21,44 es, según se mu~stra 
en las tablas, de 0,02, que es menor que 0,05, puede rechazarse la hipótesis de 
que los tres fertilizantes actúan de igual manera. Es más, según los datos parece 
que el fertilizante A es, pese al poco tamaño de la muestra, el más beneficioso. 
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de 3 000 criminales. Actualmente, una variante de este método 
recibe el luminoso nombre de método de Monte-Garlo. 

La circulación de Métodos estadísticos para investigadores 
dictaminó el fin de la edad de la correlación y el ajuste de curvas. 
Hasta Fisher, los estadísticos dedicaban la mayor parte de sus 
esfuerzos al cálculo de coeficientes, siguiendo el ejemplo de Karl 
Pearson. Pero una confusión crucial permeaba toda su investiga­
ción. En general, no distinguían entre el problema de la estima­
ción del valor del coeficiente, es decir, del grado de asociación 
entre dos o más variables, y el problema adjunto de testar la signi­
ficación de esta asociación, su posible existencia. Además, Fisher 
revitalizó, frente a la escuela abanderada por Pearson, el empleo 
de muestras de tamaño modesto, transformando los métodos es­
tadísticos en algo vivo, rotundo y bien trabado. 

ccEL DISEÑO DE EXPERIMENTOS» 

En la última sección de Métodos estadísticos para investigado­
res, Fisher discutía y ejemplificaba el diseño de experimentos en 
agricultura, un campo a medio camino entre el laboratorio y el 
invernadero con el que se había familiarizado gracias a su estancia 
en Rothamsted. Poco después, dentro de un artículo publicado en 
1926, perfilaba aún más las líneas maestras que debían regir cual­
quier experimento. La tormenta de ideas precipitó en otro best­
seller: El diseño de experimentos, que salió de la imprenta en 1935 
y en el que Fisher recogió los principios básicos del diseño expe­
rimental tal y como los había pergeñado durante los años veinte. 
Esta obra innovadora conoció ocho reediciones, y se trata más 
bien de un libro de ideas que de cálculos, que ha tenido una gran 
repercusión en la investigación agraria y, en general, experimental. 

La estadística, según enseñó Fisher, es necesaria para saber 
cómo implementar pruebas que respondan a preguntas del si­
guiente cariz: ¿qué fertilizante es mejor?, ¿cuál de estos medi­
camentos es más eficaz?, etcétera. A veces no es posible con­
testarlas mediante estudios concretos que analicen la acción del 
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fertilizante o del medicamento en el metabolismo de la planta o 
del organismo en cuestión, sino que es más seguro recoger datos 
y comparar resultados. Ahora bien, la recogida de datos puede 
llegar a ser un proceso de lo más arduo tanto si el experimento 
encaminado a producirlos no se ha diseñado con cuidado como 
si el científico no es ducho en interpretar su resultado. De la pri­
mera falla, como aclaraba Fisher, se ocupa el diseño de experi­
mentos. De la segunda, la lógica de la inferencia científica. Para 
el estadístico, el diseño y la lógica son las dos caras de la misma 
moneda. 

La exploración del mundo biológico requiere obligatoria­
mente de la realización de experimentos controlados. No basta 
con la observación pasiva. Las técnicas de muestreo consisten en 
observar una muestra representativa de la población, anotando 
los valores de las variables bajo estudio. Por el contrario, el diseño 
de experimentos fija ciertas variables y observa la respuesta en 
otras, midiendo los cambios que inducen. Cuando los datos se 
obtienen mediante un adecuado diseño experimental, se tiene una 
base empírica más sólida para juzgar las relaciones que median 
entre las variables. 

Los objetos que reciben el «tratamiento» - un nombre, ligado 
al uso de fertilizantes, que ha perdurado- son las unidades expe­
rimentales. En el caso de un experimento agrícola, las unidades 
experimentales son las parcelas o las variedades de plantas toma­
das en consideración. Por su parte, el factor es la variable cuyo 
impacto en tales unidades desea medirse. Cualquier experimento 
bien planeado debe fijarse, siguiendo a Fisher, no solo en la com­
paración entre los distintos tratamientos, sino también en poner 
a prueba la significación de las diferencias observadas por medio 
de un test estadístico. En consecuencia, todos los tratamientos 
han de aparecer al menos por duplicado y, preferiblemente, re­
petidos varias veces. Si queremos comparar los tratanúentos A y 
B, lo idóneo es aplicarlos simultáneamente sobre varios pares de 
parcelas. Jugárselo todo a una carta, a un único par de parcelas, es 
demasiado arriesgado y puede conducir a conclusiones erróneas, 
ya que la muestra no tiene por qué ser representativa. Pudiera 
ser que la diferencia observada entre los tratamientos A y B se 
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debiera simplemente a la distinta fertilidad de la tierra de cada 
parcela y no, pongamos por caso, a que A fuera más beneficioso 
que B. El principio de repetición o replicación formulado por Fi­
sher seIVÍa, por tanto, para acotar el error experimental, es decir, 
la variación aleatoria o azarosa que escapa al control del experi­
mentador ( como que los suelos de las parcelas sobre las que se ha 
aplicado A y B tengan distinta fertilidad) . 

«Consultar a un estadístico después de que haya concluido el 
experimento es, muy a menudo, pedirle que realice un examen 
post-mortero. Quizá pueda decir de qué murió el experimento.» 

- INTERVENCIÓN DE FISHER EN EL PRIMER CONGRESO INDIO DE ESTADISTICA (1938). 

94 

En la tesitura de diseñar un experimento el científico ignora 
un sinf'm de factores que pueden influir en el resultado. Es incapaz 
de dominar todas las causas que pueden estar operando detrás. 
Así, por ejemplo, si desea probar un nuevo fertilizante, no es sen­
sato comparar el crecimiento de las plantas a las que se le va a su­
ministrar en un invernadero con el de plantas de años anteriores 
o de otros invernaderos, que han podido crecer o están creciendo 
en ambientes desiguales. Lo suyo es comparar el crecimiento en 
el mismo invernadero entre dos grupos de plantas: un grupo A al 
que se le suministra el compuesto químico y otro grupo B --de­
nominado grupo control- al que no se le suministra. El científico 
podría inicialmente inclinarse por plantar los dos grupos de plan­
tas en dos surcos paralelos: el A a la derecha, el B a la izquierda. 
Pero al hacerlo de este modo podría ser que diversos factores des­
conocidos - la incidencia solar en cada surco o las corrientes de 
aire en el interior del invernadero- influyeran en el crecimiento 
de las plantas enmascarando el verdadero efecto del fertilizante. 
El instrumento más general para evitar estas desviaciones es lo 
que Fisher denominó principio de aleatorización. Cada pareja de 
plantas de tipo A y B ha de irse colocando en los surcos de manera 
aleatoria. Se puede tirar una moneda, de forma que si sale cara, 
se coloca la primera planta A a la derecha y la primera planta B 
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a la izquierda. Recíprocamente, si sale cruz, se coloca la planta 
A a la izquierda y la planta B a la derecha. Y así sucesivamente. 
Mediante este procedimiento, cualquier diferencia significativa en 
el crecimiento entre los dos grupos de plantas podrá ser achacada 
al nuevo fertilizante. 

Hasta Fisher, la asignación de tratamientos se realizaba sis­
temáticamente; lo que podía viciar los resultados. Aleatorizar no 
cuesta nada y protege contra la influencia de posibles factores 
conocidos e incluso desconocidos, eliminando las causas de va­
riación fortuita que pueden oscurecer o empañar la evidencia. 
Sin aleatorizar hubiera podido darse el caso de que el surco se­
leccionado para plantar el grupo A fuese, sin saberlo, de mayor 
productividad que el elegido para plantar el grupo B, de manera 
que la heterogeneidad del suelo camuflase el verdadero efecto 
del nuevo fertilizante. De hecho, tal y como se habían tomado los 
datos en Rothamsted, la influencia de las lluvias y de la meteoro­
logía en general enmascaraba la posible influencia de los abonos 
y fertilizantes que se estaban probando en las cosechas. Ambos 
factores estaban confundidos. Fisher no solo dijo qué andaba 
mal, sino que explicó cómo hacerlo bien. Inesperadamente, con 
motivo de la aleatorización como forma de neutralizar factores 
externos, Fisher estuvo a punto de romper con su viejo amigo Stu­
dent (aunque el obituario que le escribiría en 1937 se desarrollaría 
en térnünos muy elogiosos). Este principio desencadenó bastante 
controversia, puesto que muchos científicos pensaban que, dado 
que conocían el material que tenían entre manos, era preferible un 
experimento sistemático, sin darse cuenta de que con ello conde­
naban el uso de los test de significación, que requieren de mues­
tras aleatorias. 

En ocasiones el diseño completamente aleatorizado de ex­
perimentos tropieza con un escollo difícil de salvar: la heteroge­
neidad de las unidades experimentales (por ejemplo, del terreno 
de las parcelas). La asignación aleatoria de los tratamientos a las 
unidades experimentales presupone que todas son homogéneas 
entre sí. Si esta última condición no se cumple, hay que clasificar­
las por bloques ( dentro de los cuales se aplicarán aleatoriamente 
todos los tratamientos, claro). La razón de agrupar en bloques es 

LOS FUNDAMENTOS MATEMÁTICOS DE LA INFERENCIA ESTADISTICA 95 



96 

evidente: cuanto más heterogéneas son las unidades, mayor es 
el error experimental y menor la oportunidad de detectar dife­
rencias significativas atribuibles a los diferentes tratamientos. El 
agrupamiento «bloquea» ese factor externo que provoca una va­
riación en la respuesta que no es de interés, porque no depende 
de la reacción a los fertilizantes sino, por ejemplo, de las distintas 
variedades de suelos a los que se les han suministrado. Es lo que 
Fisher denominó diseño aleatorizado por bloques. 

Imaginemos que se desea probar cinco tratamientos (A, B, C, 
D y E) sobre 20 parcelas. Una preparación aleatorizada sería, por 
ejemplo: B, C, A, C, E, E, E, A, D, A, B, C, B, D, D, B, A, D, C, E, 
donde cada tratamiento es probado cuatro veces. No obstante, es 
posible establecer restricciones sobre el diseño completamente 
aleatorizado del experimento que eliminen parte del efecto de­
bido ala heterogeneidad de la tierra - al «gradiente de fertilidad», 
corno -decía Fisher- y, por tanto, incrementen la sensibilidad 
para detectar diferencias entre tratamientos. Una idea es, prosi­
guiendo con el ejemplo, dividir las 20 parcelas en 4 bloques según 
su composición, de manera que en cada bloque aparezca cada 
tratamiento una vez: AECBD, CBEDA, ADEBC, CEBAD. (Es con­
veniente respetar la aleatorización dentro de cada bloque para evi­
tar sorpresas.) Así, se reduce la variabilidad final del experimento 
de manera que es posible estimar la parte que corresponde a las 
diferencias entre tratamientos con más agudeza. 

Tanto en el diseño completamente aleatorizado corno en el 
diseño por bloques, la técnica estadística que proporciona el exa­
men de los datos no es otra que el análisis de la varianza o una 
adaptación suya (ANOVA a una o dos vías). Esta poderosa herra­
mienta creada por Fisher suplía las carencias de algunos de los 
laboriosos y a menudo erróneos métodos que estaban en boga, y 
permitía comparar de una vez la acción de más de dos tratamien­
tos - por ejemplo: fosfato, sulfato, clorato o nada- separando 
las diversas fuentes de variación hasta aislar la del factor que in­
teresaba medir: la debida a la acción de los tratamientos sobre las 
parcelas. 

En resumidas cuentas, Fisher enseñó que los diseños siste­
máticos no debían utilizarse. Con un diseño completamente alea-
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EL ANTECEDENTE DE LOS SUDOKU 

Cuando se desea bloquear e l efecto de más de un factor externo que 
puede provocar resultados equívocos, se emplea el diseño en cuadrado 
latino. Si queremos estudiar el efecto de cinco fertilizantes (A, B, C, D y E), 
pero se considera que dicho efecto puede estar mediatizado por los tipos 
de suelo y de insecticidas empleados (supongamos que hay otros cinco 
tipos de cada uno), un experimento por bloques necesitaría de 5 • 5 • 5 = 125 
unidades experimentales. Obviamente, razones de índole económica de­
saconsejan experimentar con tantas parcelas. Ante esta situación es 
posible recurrir a una clase especial de diseño en bloques incompletos 
aleatorizados: el modelo en cuadrado latino. Este esquema experimental 
consiste en asignar uno de los factores externos a las filas y el otro a las 
columnas, de manera que cada tratamiento ocurra una vez en cada fila y 
en cada columna. Por consiguiente, el número de filas y de columnas ha 
de ser el mismo: e l número de tratamientos. Estamos ante un cuadrado, 
que se llama latino porque el matemático Leonhard Euler empleó letras 
latinas para rellenarlo. El popular rompecabezas sudoku no es sino un 
caso especial de cuadrado latino, en el que no se usan letras sino dígitos 
del 1 al 9. Este refinado diseño permite al investigador obtener mucha in­
formación con una muestra pequeña, ya que elimina la variación extraña 
mediante el bloqueo simultáneo en los dos factores externos, de manera 
que las posibilidades de detectar diferencias significativas entre los tra­
tamientos se doblan. En nuestro ejemplo, los 5 tratamientos consabidos 
se probarían sobre solo 25 parcelas, distribuidas como en el siguiente 
cuadrado lat ino: 

D E c B A 

B D E A e 

e A B D E 

E B A e D 

A e D E B 

Curiosamente, entre los 56 cuadrados latinos posibles de tamaño 5 x 5, el 
llamado cuadrado de Knut Vik, basado en el movimiento del caballo de aje­
drez, demostró ser más preciso en la est imación que la media del resto de 
cuadrados latinos. Análogamente, los cuadrados latinos diagonales, aque­
llos que en la diagonal portan siempre el mismo tratamiento, mostraron ser 
menos precisos, lo que Fisher interpretó como un argumento más a favor 
del principio de aleatorización. 
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torizado, se evitaban los sesgos debidos a la distinta fertilidad 
de las parcelas, pero el error experimental total podía ser inne­
cesariamente grande. En un experimento bien planeado, cier­
tas restricciones podían ser impuestas sobre la aleatorización, 
de manera que la variabilidad debida a la distinta fertilidad de 
los suelos se eliminara notablemente y fuese más fácil estimar 
la parte que correspondía a la diferencia entre los tratamientos. 
Por medio del diseño en bloques, el valor del experimento se 
incrementaba varias veces, de forma que solo la repetición suce­
siva del experimento originario podía igualar la precisión lograda 
(y esto suponiendo que la replicación fuese factible, ya que en 
agricultura difícilmente se cuenta con las mismas condiciones 
meteorológicas). 

Otro de los avances que lleva la fuma de Fisher es la posibili­
dad de testar más de un factor de interés en un único experimento 
gracias a un uso cuidadoso de la estadística, lo que redujo los 
experimentos diseñados para contrastar un solo factor al plano 
de los procedimientos ineficientes y costosos. En muchas situa­
ciones prácticas resulta necesario evaluar a un mismo tiempo los 
efectos de varios factores, así como su posible interacción. Un 
experimento factorial posee la ventaja de estudiar de golpe dos o 
más factores en lugar de tener que realizar dos o más experimen­
tos independientes. Más aún, la utilización del diseño factorial 
identifica la interacción que pueda existir entre los factores, lo 
que es imposible de detectar si los experimentos se realizan por 
separado. En el caso de dos factores en que uno tiene tres niveles 
y el otro dos (por ejemplo, tres niveles de abono con nitrógeno, 
correspondientes a las dosis factibles, de O a 2, y dos niveles de 
potasio, O y 1), tendríamos un experimento factorial con un total 
de 3 x 2 = 6 tratamientos. La respuesta sería observada bajo seis 
tratamientos diferentes. 

Fisher luchó denodadamente contra la máxima, hasta enton­
ces respetada, de variar un único factor en cada ocasión. Hasta 
que arrumbó esta creencia, la mayoría de investigadores pen­
saba que lo mejor era investigar un factor cada vez. Sin embargo, 
la naturaleza, por así decirlo, respondía mejor a un cuestionario 
bien planeado que a una pregunta aislada. 
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ZEA MAYS Y LA INFERENCIA ESTADÍSTICA NO PARAMÉTRICA 

El tercer capítulo de El diseño de experimentos está dedicado al análisis de 
un célebre experimento llevado a cabo por Charles Darwin con el fin de pro­
bar que las plantas obtenidas por fecundación cruzada crecían más que las 
autofecundadas. Con la ayuda de Galton, Darwin comparaba el crecimiento 
de 15 pares de plantas de la especie Zea mays, es decir, de maíz. El primer 
miembro de cada par provenía de una fecundación cruzada, mientras que el 
segundo lo hacía de una autofecundación. Los pares eran plantados simultá­
neamente en una misma maceta, buscando que las condiciones ambientales 
-agua, luz, temperatura, etc.- fuesen idénticas para cada uno de los dos. 
Estas precauciones tomadas por Darwin servían para que se tuviera lo que 
se denomina una muestra pareada, lo que, frente a la posibilidad de tener 
dos muestras independientes de 15 plantas cada una por su lado, incrementa 
la sensibilidad del experimento, esto es, su capacidad para detectar diferen­
cias significativas, porque reduce el error experimental. Mediante el test de 
la t de 5tudent (un ejemplo del cual se presenta en el anexo para no entor­
pecer la lectura), Fisher estudiaba la diferencia en los promedios de creci­
miento y concluía que Darwin estaba en lo cierto, aunque no dejaba pasar 
la ocasión de reconvenirle que no aleatorizara la plantación de cada tipo 
de planta en una mitad de la maceta. Asimismo, amonestaba a Galton por 
manipular falazmente los datos de la muestra, reordenándolos a su antojo. 

Inferencia no-paramétrlca 
A continuación, anticipándose a la crítica que ciertos estadísticos teóricos 
alejados de la práctica experimental (una alusión obvia a Egon Pearson) po­
dían hacer señalando que el uso del test de significación presuponía que los 
dos grupos de datos eran muestras provenientes de poblaciones normales, 
Fisher ideaba un método nuevo que conducía a la misma conclusión. Era un 
ejemplo temprano de lo que sería la inferencia no-paramétrica, una brecha 
abierta en la inferencia estadística que sería muy explotada tras la Segunda 
Guerra Mundial, y que se diferencia de la inferencia paramétrica organizada 
por Fisher en que no especifica nada sobre la forma de la distribución de la 
población subyacente y los parámetros de que depende. Los test no para­
métricos presentan una menor sensibilidad que los test paramétricos, pero 
no parten de la hipótesis de normalidad, lo que los hace más generales. 

Además, El diseño de experimentos convirtió el tomar el té 
en una cuestión estadística. Fisher tenía la costumbre, desde los 
tiempos de Rothamsted, de tomarlo con todos los miembros de su 
departamento. Un día, al dar la taza a la doctora Muriel Bristol, esta 
declinó diciendo que preferia que la leche se vertiera primero. A su 

LOS FUNDAMENTOS MATEMÁTICOS DE LA INFERENCIA ESTADÍSTICA 99 



juicio, el té terúa un sabor diferente si la leche se porúa antes o des­
pués. Fisher contestó que aquello era irrelevante. William Roach, 
otro miembro del departamento, quien después se casó con ella, 
propuso realizar un experimento: irle ofreciendo una serie de tazas 
mezcladas de diferente manera y comprobar si era capaz de distin­
guirlas. La doctora identificó todas y cada una de las tazas correcta­
mente. Y Fisher incluyó la historia en su libro como hilo conductor 
para plantear una serie de interrogantes que sirvieran de guía de 
acción para enfrentarse a cualquier experimento: ¿cuántas tazas 
debían servirse?, ¿en qué orden?, ¿cuántas se terúan que acertar? ... 

Si se le daba una sola taza de cada tipo, la probabilidad de que 
la doctora acertara al azar era de 1/2, es decir, demasiado alta para 
discriminar si acertaba por casualidad o porque podía distinguir 
una mezcla de la otra. Si solo se estaba dispuesto a creerla cuando 
la probabilidad de que superara correctamente la prueba por ca­
sualidad fuese suficientemente pequeña (menor de 0,05, para que 
este contratiempo ocurriera menos del 5% de las veces), no ser­
vía darle 2 tazas de cada tipo, ya que por casualidad acertaría 1 de 
cada 6 veces (hay 6 formas de elegir 2 entre 4 objetos y solo una 
es la correcta), es decir, el 17% de las veces. Tampoco funcionaba 
ofrecerle 3 tazas de cada tipo, ya que acertaría por casualidad 1 de 
cada 20 veces (hay 20 formas de seleccionar 3 objetos entre 6). Lo 
que arrojaba una probabilidad que es igual pero no inferior al límite 
estipulado de 0,05. En can1bio, si se le daban 4 tazas de cada tipo, 
la probabilidad de acertar por azar era solo de 1 entre 70 ( existen 
70 maneras distintas de elegir 4 objetos entre 8), es decir, de 0,014, 
de modo que si la doctora acertaba en estas condiciones se podía 
afirmar que sí sabía distinguir una preparación de otra. Esa era la 
raya que al trazarla pemtitía distinguir si solo adivinaba el resultado 
o verdaderamente estaba capacitada para discernir cómo se había 
preparado el té. 

Adicionalmente, Fisher recalcaba que las tazas debían presen­
társele a la doctora en un orden aleatorio, para que el experimento 
estuviera bien diseñado y el test de significación fuese aplicable. 
Con este maravilloso ejemplo de experimento psicofísico, el es­
tadístico inglés arrancaba un clásico apabullante que dinamitó la 
tradición experimental heredada. 
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LA EMERGENCIA DEL RAZONAMIENTO ESTADÍSTICO 

Fisher revolucionó la investigación experimental, describiendo 
métodos, hoy de uso corriente, para exprimir al máximo los ex­
perimentos con muestras pequeñas, evitando en lo posible la pe­
netración de factores extraños. Ese niño debilucho con muchas 
ganas de aprender y dotado de una profunda visión geométrica se 
convirtió en uno de los científicos que más aportaciones ha hecho a 
la estadística, sino el que más. En 1929 fue admitido en la Royal So­
ciety. Y al retiro de Karl Pearson en 1933, su puesto en el University 
College de Londres se escindió en dos: una cátedra de Estadística 
para su rujo Egon y otra de Eugenesia para Fisher, que abandonó 
Rothamsted para ocupar la «cátedra Galton», aunque Karl Pearson 
movió todos los hilos para evitarlo. Por descontado, Egon Pear­
son heredó la antipatía hacia su padre de que Fisher hacía gala, 
de forma que las hostilidades bajo el techo común no tardaron en 
desencadenarse, propiciando que la atmósfera entre ambos labora­
torios -el biométrico y el eugenésico- fuese irrespirable. 

No obstante, para Fisher fueron años placenteros, plagados 
de éxitos profesionales e intelectuales. Las distinciones acrecen­
taron su fama, transformándolo en un investigador de prestigio 
internacional. George Snedecor, con la extraordinaria síntesis que 
fueron sus Métodos estadísticos (1940), así como Harold Hotel­
ling, hicieron mucho por su temprano reconocimiento en Amé­
rica. En Europa, la publicación en colaboración con Frank Yates 
(1902-1994), su discípulo más aventajado en Rothamsted, de las 
Tablas estadísticas para la investigación biológica, agrícola y 
médica (1938) contribuyó a difundir sus ideas. No obstante, sería 
el manual escrito por el matemático sueco Harald Cramér, titu­
lado Métodos matemáticos de la estadística (1946), la obra que 
más ayudaría a expandir su concepción de la estadística, al vincu­
lar la inferencia estadística británica con la teoría de la probabili­
dad continental. En este libro ya aparece, por ejemplo, la cota de 
Cramér-Rao, deducida tanto por el matemático sueco como por el 
estadístico indio C.R. Rao (doctorado con Fisher), que acota por 
abajo la varianza mínima de un estimador, completando la teoría 
fisheriana. 
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De resultas de todo ello, se fraguó la definitiva autonomía 
de los métodos estadísticos, que sedimentaron en torno al con­
cepto de modelo estadístico introducido por Fisher ( aunque al­
guna rama actual de la estadística, como el análisis exploratorio 
de datos definido por John W. Tuckey en 1977, no lo emplea, razón 
por la cual a veces se lo considera una rara avis dentro de la cien­
cia estadística). A nuestro juicio, aunque muchos historiadores de 
la ciencia hablan de la revolución estadística del siglo XIX, creemos 
que -desde una perspectiva interna- la verdadera revolución 
se produjo durante los años veinte y treinta del siglo xx, cuando 
la inferencia estadística sufrió una inyección probabilística y, al 
tiempo, experimental. Si se drenaran todos los materiales bioló­
gicos, sociológicos, etcétera, la estadística -como no dejó de 
anotar Fisher- se convertiría en una disciplina secundaria. Las 
aplicaciones son los materiales imprescindibles que hacen de esta 
ciencia algo más que mera matemática aplicada. 

Esta dimensión de la estadística, capaz de proyectar un haz de 
luz sobre múltiples campos, aceleró su institucionalización - sim­
bolizada con la fundación del Laboratorio Estadístico de Iowa, 
en Estados Unidos, en 1933 por Snedecor (al que Fisher yisitó en 
varias ocasiones)-, así como su auge durante y después de la 
Segunda Guerra Mundial, cuando los laboratorios estadísticos se 
aliaron con las universidades y las industrias en el esfuerzo bélico. 
Los análisis estadísticos que antes parecían una excentricidad 
-como los de Galton sobre la eficacia de la oración o la longitud 
de la soga de la horca- se convirtieron en una realidad cotidiana 
en econometría, meteorología, epidemiología (la bioestadística), 
ingeniería industrial (el control de calidad) . .. Una multiplicación 
de campos, investigadores, departamentos, libros y revistas es­
pecializadas que también se vio empujada por la extensión de los 
ordenadores, que facilitan el uso de los métodos estadísticos (por 
ejemplo, para generar números aleatorios sin tener que recurrir a 
las sempiternas tablas). 

En concreto, los test de significación y los principios de ex­
perimentación dictados por Fisher han conocido mil y una prác­
ticas exitosas, desde la prueba de fertilizantes a vacunas. Sin ir 
más lejos, el reciente anuncio de la detección del célebre bosón 
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de Higgs en julio de 2012 ha tomado el aspecto de un p-valor: 
los físicos han informado de que la probabilidad de detectar un 
efecto como el observado en el acelerador de partículas bajo el 
supuesto de que se trata de mero ruido de fondo (la hipótesis 
nula) es inferior a 0,0000003, y han interpretado esta significa­
ción estadística como una fuerte evidencia para presuponer la 
existencia de la mencionada partícula (ya que de otra manera 
no se explica la señal). Un p-valor que todavía se ha hecho más 
pequeño tras los experimentos reportados en marzo de 2013, 
dando la razón a las sabias palabras de Fisher en El diseño de 
e.werimentos: 

Un fenómeno es demostrable experimentalmente cuando se conoce 
cómo conducir un experimento que raramente falla para darnos un 
resultado estadísticamente significativo. 

Resumiendo: al calor de los experimentos agrícolas, Fisher 
cerró el grueso de la teoría estadística y, al sembrar la recurrencia 
de estos métodos, segregándolos de la biometría y otros contextos 
técnicos, selló la posibilidad de su aplicación continuada y flexible, 
de manera que la estadística logró irrumpir en todos los órdenes. A 
la vanguardia de ese ejército de revolucionarios que son los esta­
dísticos siempre figurará Ronald Aylmer Fisher, que puso la piedra 
mayor del puente que vincula esta disciplina matemática con la 
práctica experimental. 
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CAPÍTULO 4 

La síntesis entre 
Darwin y Mendel 

Desde los tiempos de estudiante universitario, 
Fisher se propuso reconciliar a Darwin con Mendel; en 

otras palabras, la selección natural de las especies con las 
leyes que rigen la herencia. Sin las aportaciones contenidas 

en La teoría genética de la selección natural (1930), 
el darwinismo habría permanecido eclipsado 

y la teoría sintética de la evolución habría 
tardado años en afianzarse. 





Durante su estancia en la Estación Agrícola Experimental de 
Rothamsted, Fisher no solo tuvo tiempo de refundar la estadística 
como ciencia matemático-experimental, sino que desarrolló toda 
una serie de experimentos biológicos encaminados a combinar la 
teoría de la evolución de Darwin con la teoría de la herencia de 
Mendel. A pesar de que la estación no estaba oficialmente involu­
crada en la investigación, le permitió dedicar parte de su esfuerzo 
a la cría de ratones, caracoles y gallinas, facilitándole tierras para 
ello ( aunque la colonia de ratones era atendida constantemente 
por su mujer e hijos). 

No obstante, su atracción por la materia venía de antes, 
de mucho antes. Entre 1912 -el año en que publicó su primer 
artículo-y 1919-cuando se instaló en Rothamsted-, Fisher es­
cribió casi una centena de textos, de los que más de noventa tenían 
que ver con temas biológicos y solo el resto con la estadística o las 
matemáticas. Cabe destacar, entre los dedicados a la biología, su 
influyente artículo sobre genética de 1918: «La correlación entre 
parientes bajo el supuesto de herencia mendeliana». 

Mientras sufría impartiendo clases a adolecentes, el cientí­
fico británico comenzó a darle vueltas a una cuestión que había 
planteado Karl Pearson: ¿era la variación en las poblaciones hu­
manas consistente con el modelo mendeliano de la herencia? 
En Cambridge, donde los mendelianos predominaban, Fisher se 
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había convencido de que las leyes de Mendel explicaban la he­
rencia, y quería mitigar el debate entre biómetras y mendelianos 
mostrando que las mediciones de los primeros eran coherentes 
con los principios de los segundos. Aunque cada rasgo o factor 
hereditario -a partir de 1922 Fisher reemplazó el término factor 
por el de gen- se ajustaba por separado a las leyes discretas de 
Mendel, la acumulación de factores hereditarios que se daba en 
los individuos y en las poblaciones respetaba la ley continua de la 
selección natural de Darwin, a la manera como la suma de errores 
en la observación astronómica se distribuye normalmente a pesar 
de que cada uno de los errores en particular no lo haga así. 

Los héroes de juventud de Fisher habían sido Darwin y Ludwig 
Boltzmann, creador, junto a Maxwell, de la mecánica estadística. En 
analogía con el cortjunto infinito de las moléculas de un gas que estu­
diaba la mecánica estadística, Fisher imaginaba, tanto en el campo 
abstracto de la inferencia estadística como en el más práctico de la 
biología evolutiva, una hipotética población infinita de la que se ex­
traían las muestras observadas. Un artículo posterior de 1922 sobre 
la dominancia genética especificaba aún más esta analogía pionera: 

La evolución por selección natural puede compararse al tratamiento 
analítico de la teoría de gases, en el que es posible hacer las más va­
riadas asunciones sobre la naturaleza de las moléculas individuales 
y, sin embargo, plantear leyes generales sobre el comportamiento 
de los gases. 

El modelo fisheriano de las poblaciones mendelianas era, en 
suma, una adaptación del modelo de los gases de la mecánica es­
tadística. La variación continua observada en el total de la pobla­
ción podía perfectamente ser el producto de la acción de muchos 
factores hereditarios discretos. 

En el borrador que esbozó hacia 1916, Fisher incorporó 
por vez primera el término estadístico varianza, que definió en 
la primera página. Asimismo, mencionó de pasada la expresión 
análisis de la varianza como forma de separar la fracción de 
variabilidad que correspondía a cada causa en la herencia. Pero el 
núcleo del mismo.lo constituía la tesis de que la teoría de Mendel 
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no se veía rechazada por los datos biométricos. En una carta que 
le envió a Karl Pearson, fechada en 1916, le decía: 

Recientemente he completado un artículo sobre el mendelismo y la 
biometria que probablemente sea de tu interés. Me he encontrado 
con que el análisis de los datos humanos no contradice el mende­
lismo. Pero el argumento es bastante complejo. 

Fisher probó a enviar su artículo a la Royal Society de Londres 
para que lo publicaran, pero los árbitros expresaron reservas sobre 
su contenido. Uno de ellos no era otro que Karl Pearson, que aun­
que no era abiertamente hostil al resultado de la investigación de 
Fisher, encontró su borrador poco convincente y, probablemente, 
no entendió del todo las matemáticas empleadas. El otro árbitro 
fue el biólogo R.C. Punnett, al que paradójicamente Fisher sucede­
ría en el cargo en Cambridge en 1943. Años después, Fisher soltaría 
el exabrupto de que el artículo había sido referenciado por un esta­
dístico que no sabía biología y por un biólogo que no sabía estadís­
tica. En descargo de los árbitros hay que señalar que los artículos 
de Fisher no siempre eran fáciles de seguir, pues como Student 
manifestó más de una vez por carta, el evidently de Fisher se tra­
ducía en varias horas de arduo trabajo para el resto de los mortales. 

Finalmente, Fisher retiró el artículo y lo reenvió a la Royal So­
ciety de Edimburgo a mediados de 1918, donde fue publicado, no 
sin dificultad, a su costa, gracias a la ayuda financiera de su amigo 
Leonard Darwin (1850-1943), hijo de Charles Darwin y quien, 
desde los tiempos de Cambridge, le apadrinó y sostuvo durante 
los períodos de penuria económica. El primer paso en pos de la 
unificación estaba dado. 

EL ECLIPSE DEL DARWINISMO 

Charles Darwin confirió movimiento a las clases naturales de 
Llnneo. Aunque el dinamismo de Darwin, en contraposición del 
fijismo de Linneo, flotaba en el aire (ya se encuentra en el trans-
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formismo de Lamarck ), la originalidad del naturalista inglés reside 
en haber proporcionado un mecanismo explicativo: la selección 
natural, entendida como metáfora, según expuso en El origen de 
las especies (1859). El teorema darwiniano de la evolución se basa 
primariamente en las técnicas de domesticación y cría de anima­
les y plantas (la «selección natural» como extensión de la «selec­
ción artificial» practicada por el hombre, pero prescindiendo del 
sajeto operatorio, del demiurgo selector, y por tanto de cualquier 
finalidad), y se materializa en los árboles evolutivos que reorde­
nan las especies vivas y los fósiles de las especies extintas (la 
reconstrucción filogenética de las taxonomías morfológicas). 

Durante el período de tiempo que media entre la muerte de 
Darwin en 1882 y el resurgir de sus ideas en la década de 1930, se 
prodajo un «eclipse del darwinismo» en el que la biología evolu­
tiva se sumió en un estado lamentable de postración, como con­
secuencia del avance de las teorías mendelianas de la herencia. 
El trabajo de Mendel fue redescubierto en tomo a 1900, treinta y 
cuatro años después de su publicación y dieciséis después de la 
muerte de su autor: en el viejo continente, por botánicos como 
Hugo de Vries, y en las Islas, por William Bateson (a quien se 
debe la acuñación del término genética), que lo empleó como un 
arma para revalorizar las teorías no darwinianas (lamarckianas o 
mutacionistas) que defendían una vaiiación no gradual, sino dis­
continua de las especies. Bateson magnificó las diferencias entre 
Mendel y Darwin, presentando al primero como hostil a la teoría 
de la evolución y al segundo como responsable del abandono en 
que cayó la teoría mendeliana. 

La muerte de Weldon en 1906 y de Galton en 1911 dejó prác­
ticamente solo a Karl Pearson en la defensa de la ortodoxia: 
Natura nonfacit saltus. De hecho, las primeras contribuciones 
biométricas de Pearson habían consistido en el estudio estadís­
tico de la ley de herencia ancestral de Galton y en la corrobo­
ración de la hipótesis de la gradación, mediante la que los bió­
metras defendían que la evolución no había sido a saltos, como 
defendían los partidarios de la teoría de la mutación, sino por una 
selección continua de la variación favorable en la distribución de 
la descendencia. 
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DEMASIADO BUENOS PARA SER CIERTOS 

El resultado principal de los experi­
mentos en hibridación de plantas de 
Mendel fue el descubrimiento de que 
ciertos caracteres son transmitidos a la 
descendencia sin atenuación ni fusión, 
porque son transportados por alguna 
clase de unidad distintiva o partícula, 
que Mendel denominó factores y no­
sotros llamamos genes. Pero el monje 
agustino también realizó un contaje 
exhaustivo de sus experimentos. Así, al 
cruzar guisantes amarillos con verdes, 
obtuvo una cosecha en que de 8 023 
guisantes, 6 022 (- 75 % ) eran amarillos 
(dominante) y 2 001 (-25 %) verdes (re­
cesivo) . Se trataba de la segunda ley 
de Mendel o ley de la segregación. En 
un artículo publicado en 1936, titulado 
«¿Ha sido redescubierto el trabajo de 
Mendel?», Fisher puso de manifiesto, 
mediante el test de la x2, la coincidencia 

Gregor Mendel. 

casi total entre los datos observados que publicó Mendel en sus famosos 
experimentos con guisantes y los resultados teóricos que cabía esperar. Lo 
más sorprendente es que Mendel había deducido una predicción incorrecta 
para algunos experimentos y, sin embargo, las observaciones presentaban 
una similitud notable con esos valores incorrectos. Fisher señalaba que no 
necesariamente debía haber sido el mismo Mendel quien cocinara los datos, 
sino algún celoso asistente suyo que no había hecho su trabajo con dili­
gencia y sabia lo que Mendel quería escuchar .. . El tema, como es natural , 
levantó gran polémica, y a día de hoy no hay consenso acerca de si Mendel 
o un ayudante retocaron los datos. A veces poca discrepancia también es 
sospechosa. 

En cuanto bastión de Darwin frente a los embates mende­
lianos, la escuela biométrica se enzarzó en una dura polémica. 
En esta oposición férrea influyó, desde luego, la filosofía de la 
ciencia que asumía Pearson, heredada de sus años de estudiante 
en Alemania, y que le llevaba a concebir la biometría como mera 
descripción sin especulación, como una teoría puramente cuan­
titativa de la evolución natural. Pearson deseaba hacer. predic-
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ciones probabilísticas sobre la evolución de una línea ancestral, 
pero sin comprometerse con la discusión metafísica de los meca­
nismos hereditarios subyacentes. Una meta en consonancia con 
la biblia del positivismo pearsoniano, La gramática de la cien­
cia, cuyo parecido con la filosofía idealista no dejó de advertir 
y fustigar Vladimir llich Lenin en Materialismo y empiriocri­
ticismo (1909). Esta peculiar filosofía fue, por un lado, la que le 
condujo al desarrollo de una ciencia puramente matemática de la 
herencia, equipada con herramientas estadísticas para describir 
los fenómenos observables, pero, por otro lado, la que le obstacu­
lizó valorar la singular aportación presentada por Fisher en 1918. 
Para Pearson, las poblaciones infinitas y los cúmulos de factores 
hereditarios de que hablaba Fisher eran inobservables y, por con­
siguiente, irreales. El disgusto con las imágenes empleadas por 
Fisher fue mayúsculo. 

REVOLUCIÓN EN LA GRANJA 

La polémica entre biómetras y genetistas no se cerró, como se ha 
dicho, hasta que Fisher comprobó que las mediciones empíricas 
de los organismos concordaban con las leyes postuladas sobre la 
herencia. El estadístico británico fue el artífice de la síntesis entre 
Darwin y Mendel, toda vez que demostró que las mediciones eran 
el resultado de la adición de un gran número de factores mende­
lianos (los genes) y que los valores experimentales de los coefi­
cientes de correlación se explicaban asimismo por la comunidad 
de estos factores. 

Fisher cumplió con una doble misión. Por un lado, contri­
buyó significativamente al nacimiento del neodarwinismo, de la 
teoría sintética de la evolución, en la década de 1930. En esta 
síntesis confluyeron una multiplicidad de cursos de investigación 
(biométricos, genéticos, anatómicos, embriológicos, paleontoló­
gicos ... ), como prueba la nómina de autores que participaron en 
ella: Theodosius Dobzhansky (genetista), Emst Mayr (zoólogo), 
George Gaylord Simpson (paleontólogo), etcétera. Por otro lado, 
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fundó la genética de poblaciones, que es uno de los pilares de 
la síntesis evolutiva moderna, una disciplina en la que convergen la 
biología evolutiva y la genética como un todo consistente mode­
lizado matemáticamente. 

En este punto, hay que destacar el libro revolucionario que 
Fisher le dictó a su mujer durante su época en Rothan1sted, La 
teoría genética de la selección natural (1930), así como las obras 
de otros dos grandes genetistas: Evolución en poblaciones men­
delianas (1931), de Sewall G. Wright (1889-1988), y Las causas de 
la evolución (1932), de J.B.S. Haldane (1892-1964), quien ocupó 
en 1937 la cátedra de Biometría del University College, asistida 
con los fondos que la viuda de Raphael W el don destinó a tal fin 
al morir. Fisher, Wright y Haldane son los tres tenores de la gené­
tica de poblaciones, ya que restablecieron la selección darwiniana 
como primer mecanismo evolutivo en témlinos de consecuencia 
estadística de la genética mendeliana. 

«La selección natural no es la evolución.» Con esta categórica 
afirmación arrancaba el libro de Fisher, que es lo que se llama un 
clásico de la genética de poblaciones. El aforismo buscaba recla­
mar la atención sobre el otro componente ineludible de la teoría 
de la evolución: la genética mendeliana. 

Las unidades evolutivas no eran los individuos, sino las po­
blaciones, cada una con una distribución genética propia. En au­
sencia de mutaciones, y suponiendo la invariancia del entorno, la 
evolución de la población más tarde o más temprano cesaría. Pese 
a que el número de posibles combinaciones de variantes de genes 
( de «alelos») era inconcebiblemente grande, era finito, de manera 
que la combinación más adaptada al entorno selectivo termina­
ría imponiéndose, aunque para ello la selección natural habría de 
operar sobre las sucesivas generaciones durante un período 
de tiempo dilatado. Sin embargo, aunque infrecuentes, las mu­
taciones de hecho ocurrían. Y la historia de la supervivencia del 
nuevo gen mutante dependía, según ponía de relieve Fisher, tanto 
de los caprichos de la fortuna como de la ventaja o desventaja 
selectiva que conllevara en la lucha por la vida. 

El razonamiento matemático de Fisher en su libro comen­
zaba presuponiendo la aparición de un gen mutante en el seno 
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de una población formada por millones de individuos, y cuya dis­
tribución no era otra que la distribución de Poisson o de los «su­
cesos raros», con media 1 + e ( con e<!: O), donde e representaba 
la «ventaja selectiva». Si una población presentaba, respecto de 
un carácter, ejemplares fenotípicamente diferentes (pongamos 
por caso, polillas blancas y polillas negras), cada uno de los cua­
les podía corresponder a uno o más genotipos ( dependiendo de 
qué alelo fuera el dominante y cuál el recesivo ), de modo que en 
una generación la proporción observada entre ambos fenotipos 
erar y en la siguiente, en la descendencia, era r(l + e), entonces 
e era la ventaja selectiva del alelo que daba lugar a ese fenotipo 
(por ejemplo, de las polillas negras con respecto a las blancas, 
que se camuflaban mejor entre el humo de las fábricas inglesas). 
Naturalmente, la ventaja selectiva e no tiene por qué ser igual a 
lo largo del tiempo o en distintas condiciones ambientales, de 
tal forma que lo que es favorable aquí y ahora puede no serlo 
en otro momento o lugar. En el caso de las polillas, una ven­
taja selectiva de 0,01 a favor de las polillas mimetizadas con 
el entorno industrial quería decir que, mientras que la variante 
blanca dejaba 100 descendientes, la variante negra dejaba 101 
(un 1 % más). 

«En ocasiones he conocido genetistas que me preguntan 
si es verdad que el gran genetista R.A. Fisher fue también 
un importante estadístico.» 
- LEONARD «JIMMIE» 8AYAGE (1976). 
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En estas condiciones, Fisher calculó la probabilidad de ex­
tinción del mutante en la n-ésima generación. En el caso de no 
existir ventaja selectiva (e= O), la probabilidad de extinción en 
la sexagésimo tercera generación era igual a 0,9698, es decir, de 
casi un 97% a favor de la extinción. Sorprendentemente, con una 
ventaja selectiva del 1 % (e = 0,01), la probabilidad señalada era 
de 0,9591, de casi un 96 % a favor de la extinción. Tan solo de un 
1 % menos. Prosiguiendo con los cálculos, en la 127 generación la 
probabilidad de no haberse extinguido era de 0,0271 con ventaja 
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selectiva y de 0,0153 sin ventaja, es decir, el gen mutante tenía casi 
el doble de probabilidad de supervivencia, aunque ambas proba­
bilidades eran realmente bajas. En el límite, la probabilidad de 
que la mutación beneficiosa sobreviviera era de cerca del 2% (por 
su parte, la probabilidad de que lo hiciera la neutra era O). Ahora 
bien, si la población era grande, del orden de millones de indivi­
duos, habría una cantidad no despreciable de individuos dotados 
con la mutación benéfica, lo que posibilitaría el cambio adapta­
tivo, sin perjuicio de que muchas mutaciones benignas pudieran 
perderse por el canüno. 

Con estos cálculos Fisher también pretendía mostrar cómo la 
dirección y el sentido de la evolución apenas tenían que ver con 
los de la mutación, puesto que sin ventaja selectiva el efecto de 
la mutación en la especie era insignificante y, en el límite, nulo (y 
esto sin contar con que la mayoría de las mutaciones producen de­
formidades monstruosas, letales). La selección natural era el pro­
ceso por el cual una contingencia improbable corno era una mu­
tación veía aumentada gradualmente su probabilidad con el paso 
del tiempo. La selección natural era, por tanto, el motor principal 
de la evolución. Lo que le devolvía la razón a Darwin y resucitaba 
el darwinisrno al que tan refractarios habían sido los mendelianos. 
Las implicaciones biológicas de los resultados matemáticos obte­
nidos por Fisher fueron extremadamente importantes, y se vieron 
apoyadas por los experimentos con la mosca del vinagre (Droso­
phila melanogaster, cuyo frenético ritmo reproductor facilita el 
estudio de mutaciones y cruzamientos). 

Además, la obra de Fisher contenía el «teorema fundamental 
de la selección natural», que santificaba la unión entre Darwin y 
Mendel, y era la pieza central de la visión de Fisher de la selec­
ción natural. Este era su enunciado: «El ritmo de aumento en la 
adaptación biológica de una población en cualquier momento es 
igual a la variabilidad genética en adaptación que la población 
tiene en ese momento». Esta formulación algo críptica hizo de él 

. un elemento oscuro, que tardó bastantes años en ser valorado en 
su justa medida. 

Para que la selección natural pueda actuar sobre un carácter, 
debe haber algo que seleccionar, es decir, varios alelos, o formas 
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UN TEMPERAMENTO DIFÍCIL 

Ronald Aylmer Fisher estaba dotado de grandes virtudes, pero también po­
seía notables defectos. Entre el los, un ánimo belicoso que le llevaba a porfiar y 
discutir por trivialidades, comportándose en ocasiones con una notoria rudeza 
tanto oral como escrita dentro de sus controversias con otros colegas estadís­
ticos y genetistas. Ya hemos visto una muestra de ello en su enfrentamiento 
personal con Kar l Pearson, y en el próximo capítu lo veremos alguna más a 
propósito de su concepción de la inferencia estadística o de la relac ión entre 
tabaco y cáncer. Esta firmeza en su ideario científico era extensiva a sus creen­
cias religiosas y políticas, teñidas de un claro talante conservador que le lle­
vaba a respetar las tradiciones heredadas de sus padres y denostar cualquier 
forma de progresismo o comunismo. Fruto de sus convicciones eugenésicas, 
mantenía que no todos los hombres eran iguales. A todo esto unía algunas de 
las excentricidades típicas de los matemáticos geniales. Su tendencia a perder 
papeles importantes o a ser un administrador impaciente y despistado. Por 
otra parte, su malhadada vista no era óbice para una condición física envidia­
ble, conseguida gracias a que iba corriendo a trabajar a diario. Curiosamente, 
para poder continuar trabajando en casa con tranquilidad (lo que tenía que ser 
difícil dada la amplitud de su prole, que constituyó para él una fuente de de­
sesperos monetarios), exigía que siempre hubiera dos puertas cerradas entre 
él y los niños a fin de poder concentrarse. 

Un profesor pésimo 
Según todos los testimonios, Fisher fue, sin lugar a dudas, un profesor pé­
simo, tendente a omitir explicaciones tanto en la docencia ·como en la inves­
tigación. Al respecto, recogemos una anécdota relatada por el estadístico 
escocés W.G. Cochran (1909-1980): 

En una de sus clases citó sin demostrar un resultado. Tras varios intentos sin que 
me saliera, le pedí en su despacho si podía hacerme la demostración. Me dijo 
que en algún sitio la tenia archivada; abrió varios cajones y decidió que era mejor 
obtenerla de nuevo. Nos sentamos y escribió la misma expresión de la que yo 
había partido. El camino obvio va en esta dirección, dijo, y escribió una expresión 
de dos lineas. Ahora supongo que hay que desarrollar esto, y puso una ecuación 
que.ocupaba tres líneas. Miró la expresión y comentó: el único camino parece ser 
este, y obtuvo una expresión de cuatro lineas y media. Hubo un silencio de unos 
45 segundos y dijo, el resultado se debe seguir de esto, escribiendo debajo la 
expresión que yo le había preguntado. La clase había terminado. 

alternativas, para el gen que codifica ese carácter. Fisher demos­
tró matemáticamente que cuanta más variabilidad genética haya 
en una población, mayor será el ritmo de la evolución. A mayor 
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variación genética, más cambio evolutivo. Fisher comparaba su 
teorema con el segundo principio de la termodinámica o ley de 
la entropía, cuyo incremento es siempre positivo. La selección 
natural actuaba de manera lenta pero segura, aumentando pro­
gresivamente la frecuencia de los genes favorables, que se iban 
integrando al genoma de la especie, lo que incrementaba la ade­
cuación de los organismos cada vez más. Como consecuencia, 
la selección tendía a convertir el alelo bien adaptado en el alelo 
dominante y las mutaciones deletéreas en recesivas. 

La genética de poblaciones aportó, empero, solidez matemá­
tica a la teoría de la evolución. No obstante, Fisher y Haldane com­
partieron dos supuestos que fueron muy criticados por Wright. En 
primer lugar, concibieron la carga genética del individuo como un 
saco de judías, es decir, como un coajunto de genes que no inte­
ractúan entre sí. Fue Wright el que generalizó los modelos simpli­
ficados de ambos. En segundo lugar, consideraron las poblaciones 
al completo, lo que les condujo a visualizar la selección natural 
como un proceso prácticamente unidireccional, sin ramificacio­
nes. Pero Wright llamó la atención acerca de que las poblaciones 
grandes generalmente estaban disgregadas en poblaciones locales 
pequeñas donde triunfaba la endogamia, lo que convertía la se­
lección natural en algo más voluble, dando origen a la noción de 
paisaje adaptativo. 

A día de hoy, pese a las encomiables aportaciones de Fisher 
y el resto de genetistas de la síntesis, siguen existiendo dudas 
sobre el reparto de papeles que cabe atribuir a la selección na­
tural y las mutaciones en la evolución y, en particular, sobre su 
acción a nivel molecular. Para algunos, la fuerza evolutiva prin­
cipal a nivel molecular es simplemente la «deriva genética», es 
decir, el cambio en las frecuencias alélicas de las especies como 
consecuencia del efecto estocástico causado por la reproduc­
ción (los alelos de los hijos son una muestra aleatoria de los de 
los padres), primando la presión selectiva a nivel morfológico, 
a escala de los organismos. Para otros, en cambio, los genes 
mutantes no son selectivamente neutrales, de forma que el papel 
de las mutaciones no puede desdeñarse y la selección actuaría 
tanto a nivel molecular como morfológico. En otras palabras, 
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no se sabe a ciencia cierta si el sujeto de la evolución es la es­
pecie o el genoma. Por otra parte, también hay disenso sobre 
la continuidad o discontinuidad de los cambios evo.lutivos (gra­
dualismo ). Así, por ejemplo, los partidarios del «equilibrio pun­
tuado» sostienen, frente a los neodarwinianos ortodoxos, que en 
la evolución se alternan períodos de cambios rápidos con lentos. 
Nadie discute a Darwin pero los neodarwinistas no presentan un 
frente único. 

ESTADÍSTICA, DARWINISMO Y EUGENESIA 

El abanico de motivaciones no estaría completo si no citáramos 
que Fisher fue un ardiente promotor de la eugenesia, una disci­
plina que estimuló y guio gran parte de su trabajo en genética 
humana. Durante sus años en Cambridge, Fisher colaboró con 
entusiasmo, al igual que otros ilustres científicos ( como John 
Maynard Keynes ), con la Eugenics Education Society, fundada en 
1907 por Galton y dirigida desde su muerte en 1911 por Leonard 
Darwin ( quien presidió el Primer Congreso Internacional de Euge­
nesia, celebrado en Londres en 1912 y dedicado a la memoria de 
Galton). Además, Fisher formó una sociedad eugenésica dentro 
de los muros de la universidad. 

En 1911 ofreció una charla a un grupo de estudiantes simpa­
tizantes en la que expuso la idea de Galton de que la curva normal 
se aplicaba incluso a las cualidades morales e intelectuales de los 
hombres, de manera que estos se repartían en varias clases que 
iban desde los débiles mentales a los genios eminentes. Las vir­
tudes intelectuales y morales constituían, por descontado, rasgos 
heredables, razón por la cual los matrimonios debían concertarse 
entre personas de la misma clase. Para Fisher, la obra de Galton 
Genio hereditario era uno de los grandes libros del siglo XIX, com­
parable a El origen de las especies de Darwin, al que en cierto 
modo completaba. 

Uno de los primeros artículos de Fisher vio la luz en 1914 en 
las páginas de la Eugenics Review, la revista estandarte del mo-
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UNA CASA EDIFICADA SOBRE ARENA 

La fuerza motriz del movimiento eugenésico estaba ya en Quetelet, que 
pensaba que su hombre medio compendiaba las características físicas y 
morales de una raza . La otra mitad estaba en la idea ligada al evolucio­
nismo biológico de que mediante medidas sociales de selección podían 
preservarse o alterarse las características raciales (Galton). Sin embargo, 
los historiadores de la ciencia no se ponen de acuerdo en el peso final que 
cabe atribuir a la eugenesia en el desarrollo de la estadística. Un bando 
sostiene que los métodos estadísticos se desarrollaron para resolver los 
problemas planteados por la investigación en eugenesia. Esta doctrina no 
solo habría motivado los trabajos de Galton, Karl Pearson o Fisher, sino que 
habría condicionado su contenido (aunque, por ejemplo, Edgeworth o Yule 
no compartían el interés por la selección racial). En cambio, el otro bando 
combate tajantemente esta relación, subrayando que los métodos del labo­
ratorio biométrico del University College eran completamente distintos a los 
empleados en el laboratorio eugenésico contiguo, o que Karl Pearson nunca 
se adhirió a la sociedad eugenésica (aunque no lo hizo por su oposición 
decidida al mendelismo). 

Separación definitiva de la estadística y la eugenesia 
Probablemente, la biometría y la eugenesia no eran compartimentos es­
tancos. Pero, mientras que ciertos métodos como el test x2 encontraron 
mil y una aplicaciones diferentes (en agronomía, genética, industria, etc.), 
otros métodos, como los mapas de pedigrí de Galton, no las encontra­
ron. La impronta social de la estadística es innegable: su cristalización 
se produjo en contacto con la biometría y los intentos por convertir la 
eugenesia en la reina de las ciencias (como se observa en el cartel del 
Segundo Congreso Eugenésico Internacional). No obstante, la recurrencia 
de los métodos estadísticos, es decir, su extensión a una multiplicidad de 
áreas naturales y sociales, posibilitó su independencia con respecto a la 
ideología envolvente, a la manera como la mecánica clásica no depende 

vimiento eugenésico, donde llegaría a publicar más de 200 artícu­
los entre reseñas de libros y comentarios. Su título era «Algunas 
esperanzas de un eugenista». El texto, leído previan1ente para la 
sociedad universitaria de Cambridge, defendía la eugenesia como 
vía hacia el progreso de la humanidad. Tres años más tarde, pu­
blicó un editorial en que promovía la toma de medidas políticas 
que incrementaran la tasa de natalidad de las clases profesiona­
les y controlaran la de las clases más bajas. Un tema en el que 
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hoy de la balística de cañones o la mecánica cuántica de la guerra atómica. 
La historia de la estadística es una estampa que ilustra a la perfección la 
imbricación entre historia «interna» y «externa» de la ciencia: la eugenesia 
fue la pasarela que permitió conectar la biología evolutiva con la estadís­
tica Y, de resultas de ello, impulsar la creación de las primeras instituciones 
estadísticas modernas. Fruto de esta sinergia, la estadística cobró fuerza 
suficiente para arraigar en otros ámbitos científicos, lo que dictó su inde­
pendencia respecto de la ideología eugenésica y, de paso, la devolución del 
favor prestado por la biología evolutiva con creces, al determinar el cierre 
de la genética de poblaciones y el establecimiento de la teoría sintética de 
la evolución. 

,uc,nics 11"1111S ITS HAl'"'"~· F"º" 111111',1 SOU'RCH 11111) ORCAOIUS 
ThlH IIITO 110 hllllNOntOUS lDTITY. 

«La eugenesia es 
la autodirección 
de la evolución 
humana.» Ese 
era el lema 
del Segundo 
Congreso 
Internacional de 
Eugenesia (1921), 
que representaba 
a la eugenesia 
como el árbol 
que unifica 
la diversidad 
de disciplinas 
humanas y 
sociales, con 
la genética 
y la estadística 
en una posición 
preeminente. 

se explayó en los últimos capítulos de La teoría genética de la 
selección natural. 

Fisher atribuía el declive de las civilizaciones al hecho 
de que se alcanzaba un momento histórico en el que la fertili­
dad de las clases altas comenzaba a decaer en detrimento de 
la de las clases bajas (las peor adaptadas, a su entender, aten­
diendo a las cualidades mentales). Utilizando datos extraídos 
de los censos de Gran Bretaña, Fisher mostraba la relación in-
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versa entre fertilidad y estatus social: las clases altas tenían una 
baja fertilidad, y las bajas, una tasa alta de fertilidad. Las fami­
lias con un alto estatus social no podían permitirse dejar mucha 
descendencia, ya que tener un número reducido de hijos era una 
ventaja económica. Para superar esta lacra, el eugenista britá­
nico proponía que por medio de subsidios estatales se paliara 
el gasto excesivo que suponía tener una prole abundante. Quizá 
Fisher, que tuvo dos hijos y seis hijas, estaba expresando aquí 
una vivencia personal. 

Coincidiendo con la publicación del libro en 1930, Fisher 
dedicó bastante tiempo a colaborar con la sociedad eugenésica 
abanderada por Leonard Darwin. Así, al Tercer Congreso Inter­
nacional de Eugenesia, celebrado en Nueva York en 1932, acu­
dió para hablar en lugar de su mentor, dada su avanzada edad. 
Todavía más: Fisher participó muy activamente en la campaña 
emprendida por la sociedad a favor de la aprobación de una ley 
que permitiese la esterilización en base a criterios eugenésicos. 
A diferencia de Estados Unidos, Alemania, Dinamarca y otros 
países protestantes, en Gran Bretaña no se logró la adopción de 
leyes de esterilización voluntaria ni forzosa. No obstante, debe 
matizarse que los eugenistas británicos siempre incidieron más en 
la repercusión de la clase social que en la de la raza natural sobre 
la herencia de las cualidades mentales, en contraposición de sus 
homólogos norteamericanos o alemanes. 

Tras su mudanza al University College desde Rothamsted en 
1933, Fisher prosiguió los estudios eugenésicos en el Laborato­
rio Galton. Junto con otros colegas, profundizó en la recolección 
de datos sobre pedigrís humanos, así como en el estudio de los 
grupos sanguíneos y el factor Rhesus. Y en 1950 se opuso fron­
talmente a la Declaración sobre la Raza de la Unesco, que sos­
tenía que este concepto era una mera herramienta clasificadora, 
disociada de las culturas, las etnias o las puntuaciones en los test 
de inteligencia. Fisher mantenía que la experiencia de cada día 
mostraba que las diferencias innatas intelectuales y emocionales 
entre razas no podían minimizarse. 

En el presente, la palabra eugenesia posee un sabor rancio, 
pasado de moda. Lo que fue una idea fuerza, parece inerte. Sin 
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embargo, con el propósito de contextualizar la creencia de Fisher 
en las virtudes de la eugenesia, hay que apuntar que a día de hoy 
muchos científicos y personas en general se muestran partidarios 
de la ingeniería genética, aplicada no solo a patologías, sino a ras­
gos físicos seleccionables, corno el color del pelo o de los ojos del 
neonato. 
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CAPÍTULO 5 

A vueltas con la inducción 
y el método científico 

Paralelamente a sus descubrimientos matemáticos 
y biológicos, Fisher dedicó parte de su tiempo a meditar 
sobre el significado de la probabilidad y el alcance de los 

métodos estadísticos, en especial de la inferencia bayesiana 
en comparación con la inferencia frecuentista, que defendía 
corno más adecuada. No hubo costura del tejido estadístico 
que Fisher no repasara, lo que le condujo a polemizar con 

J erzy N eyrnan y Egon S. Pearson a propósito de los 
contrastes de hipótesis y, ya en sus últimos años 

de vida, con los médicos a colación 
del tabaco y el cáncer. 





Después de atravesar una larga crisis económica y anímica, Fisher 
regresó en 1943 a Cambridge, su alma mater, para ocupar la cá­
tedra de Genética, sucediendo a R.C. Punnett. La convivencia con 
Fisher no era fácil, dada su personalidad contradictoria: lúcido 
y ofuscado, feroz y amistoso, avaro y espléndido. Todo a la 
vez. A los apuros monetarios se sumaba el duro trabajo, así como 
el cuidado de la prole. La desatención al estado de salud de su 
esposa condujo a una crisis doméstica irreversible en 1942. Ade­
más, ese mismo año, el mayor de sus hijos varones, que se había 
alistado como piloto de combate en la Segunda GueITa Mundial, 
falleció en un accidente aéreo sobre Sicilia, lo que dejó a ambos 
cónyuges destrozados. El matrimonio se rompió cuando Fisher se 
trasladó a Cambridge ... solo. 

La estadística matemática desaITollada por Fisher durante 
la década de los felices años veinte en seguida sembró contro­
versia (personal y conceptual). Esta circunstancia motivó que 
Fisher reflexionara profundamente sobre la lógica intrínseca de 
los nuevos métodos de inferencia científica, la inferencia estadís­
tica denominada hoy día clásica. Ya en 1935 publicó un artículo 
tentativo sobre el tema bajo el título «La lógica de la inferencia in­
ductiva», cuya lectura en la Real Sociedad de Estadística a finales 
del año anterior había suscitado mil y una réplicas. Pero sería en 
la década de 1950 cuando más páginas dedicara a la cuestión. Al 
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polémico artículo «Métodos estadísticos e inducción científica», 
presentado a la Real Sociedad de Estadística en 1955, le siguió el 
libro Métodos estadísticos e inferencia cientfjica, un mamotreto 
publicado en 1956 donde Fisher ahondaba en los aspectos más 
filosóficos de la inferencia estadística. 

En esta última obra, Fisher intentó ofrecer una perspectiva 
unificada de la inferencia, englobando sus tres aproximaciones en 
vida al problema: el método de máxima verosimilitud, los test de 
significación y la probabilidad fiduciaria ( cuya definición se expli­
cará más abajo). El libro tornó la forma de un repaso de la inferen­
cia estadística desde Bayes al presente. Por el canüno, Fisher con­
denaba a la hoguera a Bayes y a Karl Pearson, entre otros «falsos 
profetas». El estadístico británico aprovechó además la ocasión 
para mostrar su animadversión y desdén para con los estadísticos 
estadounidenses, cuya concepción de la estadística presumía que 
era puramente matemática, sin contacto alguno con las ciencias 
experimentales. Para algunos colegas, corno Maurice Kendall, este 
libro - corno el panfleto de 47 páginas sobre el cáncer y el hábito 
de fumar que vio la luz en 1959- nunca debería haber sido escrito. 

Sea como fuere, son tres los puntos de fricción a los que Fisher 
prestó atención: el significado de la probabilidad, las carencias de 
la inferencia bayesiana y la lógica de los contrastes de hipótesis. 

DEFINIR LA PROBABILIDAD 

A pesar de que la palabra probabilidad era de uso corriente en 
las lenguas emparentadas con el latín ( donde probable significaba 
algo así corno «merecedor de aprobación»), el concepto matemá­
tico de probabilidad no hizo su entrada, corno dijin1os en el primer 
capítulo, hasta alrededor de 1660. Y lo hizo airastrando, desde su 
nacirniento, una singular dualidad. La idea emergió corno un Jano 
bifronte que representaba una mutación de la idea renacentista 
de los signos. Una afirmación era probable cuando estaba bien 
atestiguada. Con el Renacimiento, el mundo comenzó a testificar 
por sus signos. No solo los libros de los doctores constituían un 
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testimonio válido. Ahora también lo era, por decirlo con Galileo, 
el libro de la naturaleza. De modo que el signo probable era una 
señal frecuente, repetida, mediante la cual el mundo daba testi­
monio, credibilidad ( del mismo modo que el humo es un signo 
del fuego). 

Por tanto, la probabilidad surgió ligada, por un lado, a la 
creencia y, por otro, a la frecuencia. Al igual que el modo escolás­
tico de la posibilidad, la probabilidad podía predicarse de dicto 
(acerca de las proposiciones y su evidencia) o de re (acerca de las 
cosas y de la tendencia, exhibida por algunos dispositivos de 
azar, a producir frecuencias relativas estables). La palabra proba­
bilidad fue usada por primera vez para denotar algo medible en la 
Lógica de Port-Royal, un manual sobre el arte de pensar impreso 
en torno a 1662 por varios colaboradores de Pascal afincados en 
ese enclave jansenista. 

Tanto Poisson, en su obra de 1837 sobre la ley de los grandes 
números, como Cournot, en su libro de ciencia moral publicado 
en 1843, aclaraban que la probabilidad mezclaba dos nociones que 
había que distinguir con precisión de cirujano: por una parte, la 
chance o probabilidad física, que cuantificaba la facilidad o pro­
pensión - como se dice actualmente- a aparecer que tiene un 
suceso; por otra, la probabilité o probabilidad epistémica, que 
medía la credibilidad que merecía la ocurrencia del suceso. Mien­
tras que la primera aludía a una propiedad objetiva del suceso (la 
posibilidad de que ocurra, muy útil para modelar), la segunda era 
subjetiva (relativa a nuestro conocimiento, de utilidad al inferir). 

Curiosamente, un siglo antes, el reverendo Thomas Bayes 
había dejado escrito: «por chance entiendo lo mismo que proba­
bilidad». Pero a la altura de 1850, el mundo ya no era como en 
la época de Bayes y Laplace. El aspecto objetivo de la probabi­
lidad pasó a ser mucho más determinante que el subjetivo, sen­
cillamente porque el mundo rebosaba de frecuencias. El alud de 
números impresos inclinó la balanza. De hecho, John Venn, en la 
Lógica del azar (1866), apostó por un enfoque frecuencial más 
que personal de la probabilidad. 

Sin embargo, la inferencia estadística decimonónica siguió 
siendo claramente bayesiana (para estimar incertidumbres se usa-
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SOLUCIONES AXIOMÁTICAS 

Las dos i_nterpretaciones de la probabi­
lidad comparten un mismo formalismo 
matemático: los axiomas de Kolmogó­
rov (1903-1987), formulados por el ma­
temático soviético en 1933. Cualquier 
interpretación de la probabilidad que 
satisfaga estos axiomas -y hay más­
es una buena realización del concepto. 
Los axiomas propuestos respetaban 
las intuiciones plasmadas en la defini­
ción clásica (la «regla de Laplace», solo 
aplicable a casos equiprobables) y en 
la definición frecuentista (el teorema 
de Bernoulli, solo aplicable a fenóme­
nos susceptibles de repetirse) de la pro­
babilidad, además de conectar la teoría 
de la probabilidad con la teoría de con­
juntos y la teoría de la medida, trans­
formándola en una teoría matemática 
firme que en seguida se difundió por 
Centroeuropa permitiendo la prueba 

Andréi Nikoláyevich Kolmogórov. 

de múltiples teoremas. Por su parte, la interpretación subjetiva de la pro­
babilidad (como grado de creencia en una proposición o de adhesión a 
la verificabilidad de un suceso, variable en cada persona, aunque sujeta a 
reglas bastante estrictas de coherencia interna) fue formalizada indepen­
dientemente por el estadístico italiano Bruno de Finetti (1906-1985) en 1937 
y difundida por Leonard J. Savage (1917-1971) en 1954, qu ien resucitó la in ­
ferencia bayesiana y recuperó este enfoque de la probabilidad relacionado 
con la utilidad (noción introducida por Daniel Bernoulli, sobrino de Jakob, 
en 1737 y más tarde por Frank P. Ramsey en 1931). 

ban los métodos inversos de probabilidad de Bayes y Laplace ). 
Solo cuando la sobrepoblación de números, de frecuencias regis­
tradas accesibles, fue un hecho más allá del campo astronómico 
( acúmulo de datos entresacados de la sociología, la biología o la 
agronomía), pudo desarrollarse -gracias a Fisher, como vimos en 
el capítulo 3- la inferencia estadística objetiva en detrimento de la 
bayesiana o subjetiva. Con la observación continuada de regulari­
dades en otras áreas naturales distintas de la bóveda celeste, la in-
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terpretación subjetiva de la probabilidad como grado de creencia, 
de estirpe laplaciana, quedó definitivamente marginada por la inter­
pretación objetiva o frecuentista: las probabilidades ya no se basa­
rían en creencias sino en frecuencias empíricas. Desde el principio 
Fisher fue consciente de que cada interpretación de la probabilidad 
apuntaba a una teoría distinta de la inferencia, ya que los conceptos 
probabilísticos son los ladrillos de la inferencia estadística. 

«ALL YOU NEED IS BAYES ... » 

Para muchos científicos, la estadística tiene la responsabilidad de 
responder una pregunta fundamental: ¿cuándo es correcto afir­
mar que un conjunto de observaciones aporta evidencia a favor o 
en contra de una hipótesis? El recurso más antiguo para dirimir 
esta cuestión se remonta a 1763: el teorema de Bayes, aparecido 
en el Ensayo hacia la solución de un problema en la doctrina 
del azar, firmado por el reverendo Thomas Bayes. Este teorema, 
precursor de los métodos inversos de probabilidad y de la inferen­
cia bayesiana, era el resultado central de un ensayo destinado en 
espíritu a combatir la crítica escéptica a la inducción planteada 
por el filósofo escocés David Hume en Sobre los milagros, ya que 
ofrecía una discusión matemática del incremento de probabilidad 
entendida como credibilidad. 

Solo dentro de este contexto teológico influido por Newton 
puede entenderse que, por ejemplo, el doctor John Arbuthnot, 
concupiscente médico de la corte aficionado a calcular probabi­
lidades como la de que una mujer de veinte años conservara su 
virginidad o un joven hubiera sido infectado de gonorrea, realizara 
en 1710 la que pasa por ser la primera prueba de significación de 
una hipótesis estadística: si la posibilidad de nacimiento de un 
varón fuese igual a la de una hembra ( esto es, 1/2), la probabilidad 
de que se registrasen -como se había constatado- ochenta y 
dos años consecutivos en que ·nacían más hombres que mujeres 
sería de (1/2)82, o sea, prácticamente cero. Por ende, la hipótesis 
de igualdad de sexos al nacer debía ser rechazada, y Arbuthnot 
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interpretaba esta regularidad como un argumento (inductivo) a 
favor de la divina providencia. En esta línea, la fórmula de Bayes 
permitía emitir juicios probabilísticos sobre la validez de una hi­
pótesis (probabilidad a posteriori) basándose en los datos (ve­
rosimilitudes), pero también en la apreciación subjetiva que la 
hipótesis mereciese (probabilidad a priori). 

«Las causas que llevaron a Bayes a su teorema eran más 
teológicas y sociológicas que puramente matemáticas.» 
- KARL PEARSON (1926). 

132 

No obstante, el problema de la probabilidad inversa había co­
brado forma con la contribución de Jakob Bemoulli en 1713. El 
matemático suizo le había comunicado por carta a Leibniz en 1704 
que había encontrado un teorema que le permitía calcular a pos­
teriori, con una aproximación determinada, las probabilidades 
desconocidas de los sucesos conocidos empíricamente tan bien 
como si aquellas le fuesen conocidas a priori, de entrada. Sin em­
bargo, como explicamos en el primer capítulo, el teorema áureo 
de Bemoulli no era exactamente un ejemplo de probabilidad in­
versa, porque lo que el teorema venía a afirmar es que, «conocida» 
la probabilidad de ocurrencia de un suceso, la frecuencia relativa 
con que este suceso ocurre tiende a ese número (ley débil de los 
grandes números). En cuanto tal se trata de un teorema puro e 
incuestionable de la teoría de probabilidades. Así, Bemoulli fue 
capaz de deducir el número de veces que hay que lanzar un dado 
simétrico (legal) para que, con «certeza moral» ( esto es, con pro­
babilidad mayor o igual que 0,999, un estándar análogo al que los 
estadísticos modernos usan hoy del 95% o 99% de confianza), la 
frecuencia relativa con que salga el 6 difiera de p = 1/6 ( su pro­
babilidad, que, nótese, se supone conocida) en no más de 0,01: 
1388 889 veces. En el teorema la probabilidad p estaba fija y se 
calculaba la probabilidad de observar ciertos datos, sabiendo que 
la frecuencia relativa de éxitos.{,, tendía ap cuando el número de 
experimentos n aumentaba. Bemoulli hacía aseveraciones acerca 
de lo que en la época se llamaban problemas directos de probabi-
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lidad, problemas en los que se suponía conocida la probabilidad 
de éxito y se calculaba la probabilidad de cualquier sucesión de 
éxitos y fracasos. 

Pero si no se conocía p, ¿podía usarse todavía el teorema? 
Paradójicamente, Bernoulli introdujo su teorema precisamente 
para aquellos casos en los que no se tenía conocimiento previo de 
p. Sin embargo, resistió la tentación de invertir el teorema, con­
forn1ándose con acotar los posibles valores de p entre dos límites 
( anacrónicamente, diríamos que realizó una estimación por inter­
valo de p para un cierto nivel de confianza, con certeza moral; un 
procedimiento que tendría continuación con la teoría astronómica 
de los errores probables, que construiría estimaciones por inter­
valo con un nivel de confianza del 50%). En otras palabras, Ber­
noulli descubrió cómo computar la siguiente probabilidad ( donde 
se conoce p ): P (p está enfn ± E I p ). Y le habría resultado tentador 
tomar los valores calculados aquí como los valores de la probabili­
dad P (p está enf ± E I f ), donde se ha sustituido el conocinúento n n 
de p por el de.f,,. Naturalmente, este paso es falaz, pues la segunda 
expresión no se deduce de la primera. Parece que fue Laplace 
quien sucumbió a la tentación de «invertir» el teorema, e inferir 
la probabilidad p a partir de la frecuencia observada!,,, a pesar 
de que esta tendencia ya estaba en el propio Bernoulli, quien de 
haber tenido éxito en su empeño habría resuelto el problema de la 
inducción, de ascender de lo particular a lo general, de la muestra 
a la población (la inferencia inductiva). 

La solución completa de Laplace a este problema pasó, ca­
nonizando la interpretación epistémica de la probabilidad, por el 
teorema de Bayes, que considera la probabilidad desconocida p 
como una variable aleatoria. El opúsculo de Bayes fue el primer 
intento sistemático de calcular la segunda probabilidad antes ex­
presada: mediante una asignación a priori de probabilidades y 
por medio de la fórmula de Bayes, se calculaba la probabilidad 
pedida. Presuponiendo una distribución a priori de p sobre el 
intervalo [0,1], Laplace calculó a partir de los datos disponibles 
la probabilidad ( a posteriori) de que p estuviese a menos de una 
cierta distancia E de la frecuencia relativa!,, observada. Dado el 
número de veces que había salido 6, calculaba la probabilidad de 
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La distribución 
a priori y la 

verosimilitud 
aparecen, 

respectivamente. 
con línea 

entrecortada 
y con línea 

continua negra. 
La distribución 

a posteriori, 
calculada 

mediante el 
teorema de Bayes, 
se representa con 

línea continua 
de color gris (en el 

eje horizontal se 
colocarían los 

posibles valores 
del parámetro O 

que se desea 
estimar). Como 

puede observarse, 
la distribución a 

posteriori se 
encuentra entre 
medias, a medio 

camino de la 
distribución a 

priori y la 
verosimilitud. De 

hecho, en este 
ejemplo, se parece 

mucho más a la 
verosimilitud que a 

la a priori, lo que 
muestra cuánto 

hemos aprendido 
de los datos. 

que la probabilidad de salir 6 estuviese en un entorno de la fre­
cuencia relativa observada. 

Los estadísticos bayesianos buscan conocer la probabili­
dad de que cierto parámetro desconocido 8 se encuentre entre 
dos valores prefijados. Para ello necesitan dos cosas: en primer 
lugar, las verosimilitudes P(Xl8), es decir, las probabilidades de 
observar la muestra extraída de la población dependiendo del 
valor que torne el parámetro; y, en segundo lugar, la probabili­
dad a priori de 8 o distribución prior de 8, que mide la proba­
bilidad de que el parámetro desconocido se encuentre entre dos 
límites cualesquiera. La distribución a posteriorj, P(S IX), calcu­
lada mediante la regla de Bayes, no es sino un compromiso entre 
la distribución a priori y la verosimilitud, entre lo que sabíamos 
y lo que hemos aprendido de los datos observados (figura 1). 

La preferencia del siglo xrx por los números y la objetividad 
incentivó a los matemáticos a buscar alternativas a un procedi­
miento que era mirado con suspicacia. Fisher hizo de la lucha con­
tra la inferencia bayesiana una de las razones de su vida científica. 
A su entender, los métodos estadísticos habían conducido a una 
comprensión más completa de la lógica inductiva, constituyendo 
la base de la inferencia científica, pues la inferencia inductiva era, 
a diferencia de la deductiva, ampliadora del conocimiento (por­
que permite aprender de la experiencia, aunque siempre con un 
cierto grado de incertidumbre, pero que al poder cuantificarse 
hace la inferencia perfectamente rigurosa). Ahora bien, mientras 

que el papel principal en la infe­

Veros imilitud 
FIG. l rencia deductiva o directa ( de lo 

general a lo particular, de lapo­
blación a la muestra) lo tornaba 
la probabilidad, la inferencia in­
ductiva o inversa ( de lo particu­
lar a lo general, de la muestra a 
la población) estaba reservada 
a la verosimilitud y, en algunos 
casos, a la probabilidad fiducial. 
Bajo ningún concepto a la proba­
bilidad bayesiana. 

134 

••••• ;-- priori 

·•. .. .. 
·• ... 

·• ... 

A VUELTAS CON LA INDUCCIÓN Y EL MÉTODO CIENTÍFICO 



A VUELTAS CON LA INDUCCIÓN Y EL MÉTODO CIENTÍFICO 

Ronald A. Fisher 
en 1943, año en 
que volvió a la 
Universidad de 
Cambridge para 
ocupar la cátedra 
de Genética, tras 
atravesar graves 
problemas 
familiares que 
acabaron con 
la disgregación 
de su matrimonio. 
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Entre otras endebleces, Fisher criticaba que los bayesianos 
transformaban clandestinamente la inferencia inversa o induc­
tiva en una inferencia directa, en una deducción probabilística, 
al postular un conocimiento de partida: la distribución a priori 
del parámetro 8. En cuanto ecuación matemática, la fórmula de 
Bayes podía ser indiscutible ( aunque, para Fisher, era poco o 
nada evidente), pero su empleo requería asignar una probabili­
dad a priori a la verdad de la hipótesis que se valora, un número 
borroso sujeto a discusión. No era plausible que en situaciones 
de completa ignorancia, uno admitiera que debe asignar a todos 
los posibles valores de 8 la misma probabilidad ( distribución 
uniforme) o una probabilidad que depende del estado de infor­
mación en que se encuentre cada uno (probabilidad subjetiva), 
de manera que dos investigadores pueden usar dos priores in­
consistentes entre sí cayendo en el subjetivismo más inacep­
table. (De hecho, actualmente se conocen algunas paradojas, 
como la «paradoja de Lindley», que muestran cómo la inferen­
cia bayesiana puede fallar estrepitosamente si se eligen prio­
res inadecuadas: toda la probabilidad se deposita a posteriori 
en ciertos valores del parámetro se observe lo que se observe.) 
Además, el hecho de que con el aumento del tamaño muestra! la 
forma precisa de la distribución prior perdiera relevancia en re­
lación con la verosimilitud ( como en el gráfico que antes hemos 
mostrado en la figura 1, pág. 134), llevaba a Fisher a afirmar 
que lo más natural era extraer conclusiones sin suposiciones a 
priori de ninguna clase. 

No obstante, para Fisher la inferencia inductiva era posible 
aunque no transcurriera por los canales bayesianos. A diferencia 
del filósofo Karl Popper, Fisher no creía que la ciencia debiera 
retornar a un simple modelo demostrativo, alejado de la práctica 
experimental. La mayoría de matemáticos, demasiado entrena­
dos en el arte de la deducción, confundían una inferencia incierta 
( donde la incertidumbre es cuantificable) con una inferencia no 
rigurosa. El aprendizaje de la experiencia se producía por medio 
de los test de significación, que, como reflejamos en el tercer ca­
pítulo, servían para extraer conclusiones de los datos observados 
sin referencia alguna a creencias previas ( a priori). Y la verosimi-
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litud era la medida de creencia racional; porque, a diferencia de la 
probabilidad ( que solo permite razonamientos deductivos, pues la 
fórmula de Bayes ya parte de la prior), posibilita razonamientos 
inductivos, al ser lo que se evalúa en los test. 

«Tiene un error lógico en la primera página que invalida 
las restantes 395, y es que adopta el postulado de Bayes.» 

- FISHER SOBRE EL LIBRO TEORÍA DE LA PROBABILIDAD (1939) DEL ASTRÓNOMO IIAROLD JEFFREYS, 

En torno a 1930, Fisher encontró que, en ciertas situaciones 
especiales, era factible transformar los conocimientos logrados 
sobre el parámetro en sentencias probabilísticas sin usar el teo­
rema de Bayes. A través de un oscuro argumento, Fisher definía 
una distribución de probabilidad sobre el parámetro 8 en base 
a los datos y sin tomar en cuenta ninguna distribución a priori. 
Era la denominada probabilidad fiducial. Fisher pensaba en 
P(X10) como una función en dos variables y, cuando sustituía 
el valor muestral observado X y podía despejar adecuadamente 
0 en función de X, explotaba la consideración de P(0 IX) como 
una distribución de probabilidad en 8 a efectos prácticos. Había 
encontrado un método para invertir afirmaciones probabilísticas 
sobre las observaciones una vez dado el valor del parámetro en 
afirmaciones probabilísticas sobre el parámetro a partir de las 
observaciones. 

En el argumento fiducial hay una transmisión de probabilidad 
de X a 8, del estadístico muestral al parámetro, que es intuitiva 
pero confusa; porque cambia el estatus del parámetro, que pasa de 
ser un valor desconocido pero constante a ser una variable aleato­
ria. Para Leonard J. Savage, «la aproximación fiducial de Fisher era 
un intento de hacer una tortilla bayesiana sin romper ningún huevo 
bayesiano», ya que lo único que diferenciaba al método fiducial 
del método de Bayes era la ausencia de conocimiento a priori. De 
hecho, la distribución fiducial podía calcularse como una distribu­
ción a posteriori respecto de una prior no informativa (neutra, uni­
forme). Esto provocó que Fisher suavizara su posición, de manera 
que en su libro de 1956 se muestra partidario de la aproximación 
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,SALDRÁ EL SOL MAÑANA? 

Persiguiendo refutar a Hume, quien ha­
bía escrito que únicamente era proba­
ble que el Sol saliera de nuevo al día 
siguiente, Richard Price (1723-1791), el 
filósofo que se encargó de publicar pós­
tumamente el legajo de Bayes, empleó 
el teorema de su colega para calcu­
lar la probabilidad de que el Sol así lo 
hiciera. Teniendo en cuenta el número 
de días que había venido amaneciendo 
ininterrumpidamente, Laplace mejoró 
los cálculos alcanzando la «regla de su­
cesión»: si un hecho se repite seguida­
mente cualquier cantidad de veces, la 

probabilidad de que ocurra una vez más Retrato idea lizado de Thomas Bayes. 
es igual a este número más 1 y dividido 
por este mismo número más 2. Así, si su-
ponemos que el Sol ha salido invariablemente durante 5000 años, o sea, 
1826 213 días (Laplace pensaba que la Tierra era muy joven y le adjudicaba 
solo 5000 años de existencia), la probabilidad de que salga mañana es de 
1826 214/1826 215 (- 99,9999 %). No obstante, como buen astrónomo, La place 
subrayaba que en el caso de este tema se trataba más b ien de un problema 
de mecánica celeste que de probabilidad; porque, por esta regla, cuanto ma­
yores nos vayamos haciendo, mayor resultará la probabilidad de vivir más. De 
modo que una persona de ochenta años tendrá mayor probabilidad de vivir 
un día más que una de solo veinte años. Lo que carece de sent ido. 

bayesiana cuando la información muestra! sobre el parámetro sea 
lo suficientemente extensa, ya que en el cálculo de la distribución 
a posteriori mediante el teorema de Bayes la verosimilitud será 
determinante ( como en el gráfico visto en la figura 1, pág. 134). En 
otro caso, era partidario del argumento fiducial. 

Los esfuerzos por suplantar el teorema de Bayes, encarnados 
en personalidades tan importantes como Fisher, no lo consiguie­
ron, y a lo largo de la segunda mitad del siglo xx se ha asistido a 
un resurgir de la inferencia bayesiana, el enfoque ciertamente más 
antiguo dentro de la inferencia estadística, en conexión con la teo­
ría de la decisión. El bayesianismo intenta ser una aproximación 
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formal, algorítmica, a esa vaga 
idea que sería «aprender de la ex­
periencia para decidir mejor». Da 
un procedimiento para combinar 
nuestra información a priori con 
la muestra a fin de obtener una in­
ferencia que tenga en cuenta toda 
la información disponible. 

A día de hoy algunos estadísti­
cos sostienen que la inferencia del 
futuro será bayesiana o no será, 
ya que los métodos clásicos fallan 
en ocasiones en su precisión, no 
toman en cuenta la información 
proveniente de estudios previos y 
tampoco ayudan a valorar la credi­
bilidad de una hipótesis. Mientras 
que la inferencia clásica supone 
que el parámetro 8 está fijo y pre­
tende estimarlo, la inferencia ba­
yesiana lo interpreta como una 
variable aleatoria de modo que la 
probabilidad P(8 IX) es objeto de 
estudio. Si el tamaño de la mues­
tra X es grande, ambos métodos 
ofrecen en general los mismos 
resultados, ya que la información 
muestra! pesa mucho más que la 
información a priori ( como puede 

Prio r .·· .. .. . .. : ··. . ··. .. 
: ·-. 

Va lores de e 

Prior 

Valores de e 

Verosim ilitud / A posteriori 

Prior 
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observarse en la figura 2, la distribución a posteriori se asemeja 
más a la verosimilitud que a la prior). Pero si la muestra es pequeña, 
an1bos métodos pueden conducir a resultados distintos, ya que la 
información a priori pesa entonces más que la muestra! ( en la fi­
gura 3 la distribución a posteriori se diferencia bastante de la vero­
similitud). Sin embargo, en situaciones de máxima incertidumbre, 
tomar como distribución inicial una distribución neutra (no infor­
mativa, uniforme) recupera los resultados clásicos ( en la figura 4 
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la distribución a posteriori y la verosimilitud coinciden porque la 
prior es unifom1e). No obstante, los métodos bayesianos a veces 
son difíciles de aplicar, necesitando del cálculo numérico y del mé­
todo de Monte-Carlo. Quizá su repunte en la actualidad sea indiso­
ciable de la extensión del ordenador. 

Frente al bayesianismo subjetivo, se reivindica hoy un baye­
sianismo objetivo, en el que las probabilidades a priori no están 
basadas en las creencias personales previas del estadístico, sino 
en ciertas distribuciones iniciales de referencia, regladas. Algunos 
estadísticos sostienen que esta vía es la mejor ruta para unificar 
las inferencias bayesiana y clásica. De hecho, tanto Bayes como 
Laplace empleaban priores objetivas: distribuciones uniformes. 
Sin embargo, los bayesianos ortodoxos consideran este bayesia­
nismo como deshonesto, y reclaman, con De Finetti o Savage, 
el empleo de probabilidades personales, confiando en el poder 
de la evidencia empírica para neutralizar las diferencias en las 
asignaciones de probabilidad inicial de distintos sujetos, sin que 
haga falta introducir otras constricciones que la consistencia o 
coherencia con los axiomas de la teoría matemática de la proba­
bilidad. La traba es que si una persona piensa que cierta hipótesis 
es imposible, mientras que otra le asigna cierta probabilidad a 
priori positiva, el teorema de Bayes nunca será capaz de ponerlas 
de acuerdo pese a toda la evidencia que se reúna. 

Obviamente, los bayesianos objetivos tratan de neutralizar 
este relativismo inicial ( que los subjetivos salvan fiando a un hi­
potético límite futuro común) constriñendo la asignación de pro­
babilidades iniciales mediante diversas reglas, como el «princi­
pio de razón insuficiente» de Laplace ( o de indiferencia, según 
lo rebautizó el economista John Maynard Keynes), que asigna 
la misma probabilidad a todos los sucesos desconocidos. Allora 
bien, si para ser objetivos se usan siempre distribuciones unifor­
mes o cuasi-unifom1es, el estadístico bayesiano solo recupera los 
resultados del estadístico clásico, porque para poder superarle 
-exhibiendo, por ejemplo, estimaciones de un parámetro con 
menor error-, ha de introducir en general una distribución a 
priori distinta, en cuyo caso el debate entre estadísticos clásicos 
y bayesianos vuelve al punto de partida. 
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CUANDO KUHN CONOCIÓ A BA YES 

La revitalización de los métodos bayesianos 
ha tenido mucho que ver con las corrientes en 
boga en el ámbito de la filosofía de la cien­
cia. Los filósofos de la ciencia distinguen dos 
clases de razonamiento no deductivo. Por un 
lado, está la «inducción» o inferencia bajo in­
certidumbre y, por el otro, la «abducción» o 
creación especulativa de hipótesis teóricas 
para explicar los fenómenos. Tanto la induc­
ción como la abducción han intentado recibir 
un tratamiento probabilístico por parte de 
los epistemólogos atravesado el ecuador del 
siglo xx. La primera muesca se debió a Rudolf 
Carnap, un filósofo perteneciente al Círculo de 
Viena que terminó afincado en Estados Unidos, 

Sir Karl Popper. 

y que pretendió suturar la herida de muerte de la lógica inductiva: el hecho 
de que la seguridad del razonamiento inductivo palidece al compararla con 
la del deductivo. Para ello, planteó una teoría axiomática de la confirmación 
basada en una serie de reglas que buscaban cuantificar la probabilidad in­
ductiva o lógica de una hipótesis, es decir, la probabilidad de una hipótesis H 
a partir de la evidencia e disponible. Si P(H[e)=l, quería decirse que e impli­
caba H. En cambio, si P(Hle) =0, e implicaba la negación de H. Finalmente, si 
O< P(Hle) < 1, este número medía el grado en que la estructura lógica de e im­
plicaba parcialmente H. Esta formulación retomaba una idea que ya estaba en 
los tratados que escribieran Keynes y el astrónomo bayesiano Harold Jeffreys, 
para los que toda probabilidad inductiva era en el fondo condicional, relati va 
a la evidencia accesible. En suma, para Carnap, confirmar inductivamente era 
igual que implicar deductivamente, pero su lógica en seguida se reveló como 
lastrada por graves problemas técnicos y conceptuales. 

La verosimilitud de Popper 
Karl Popper, en concreto, azotó furibundamente este inductivismo, estable­
ciendo una larga polémica. A l igual que Fisher, rechazaba tajantemente el 
uso inductivo de la probabilidad, proponiendo el concepto de verosimilitud 
como sustituto (aunque la verosim ilitud popperiana no se define igual que 
la verosim ilitud fisheriana). A todos los efectos, Popper fue a los filósofos 
inductiv istas lo que Fisher fue a los estadísticos bayesianos. El empeño de al­
gunos filósofos por definir una lógica probabilística apropiada para las teorías 
e hipótesis ha fracasado; pero el reconocimiento de que la ciencia envuelve 
juicios y va loraciones subjetivas, como puso de manifiesto Thomas Samuel 
Kuhn en su obra La estructura de las revoluciones científicas (1962), ha puesto 
las esperanzas de muchos epistemólogos en la inferencia bayesiana. 
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INDUCCIÓN, DEDUCCIÓN Y DECISIÓN 

La escuela bayesiana no fue la única a la que se enfrentó Fisher. 
Dentro de la inferencia objetiva auspiciada por el estadístico bri­
tánico creció otra escuela en torno a las aportaciones de Egon 
Pearson y, en especial, Jerzy Neyrnan (1894-1981). Este matemá­
tico de origen polaco se interesó de joven por la aplicación de la 
estadística en agricultura. Gracias a una beca, pasó el año acadé­
mico de 1925-1926 en el laboratorio de Karl Pearson, aunque se 
desilusionó al descubrir que el gigante inglés ignoraba la matemá­
tica abstracta continental. El siguiente curso académico optó por 
pasarlo en París, asistiendo a las clases de Henri Léon Lebesgue. 
Si no hubiese sido por el fructífero contacto epistolar con Egon 
Pearson, Neyman hubiera cambiado la estadística por las integra­
les a su vuelta a Varsovia. 

Cuando Karl Pearson cedió el testigo a su hijo Egon, este no 
tardó en invitar a Neyman al University College. Juntos formaron 
un tándem que concibió un nuevo paradigma estadístico a partir 
de los test de significación elaborados por Fisher: los contrastes de 
hipótesis, cuyo planteamiento perfeccionaron en varios artículos 
espaciados entre 1928 y 1933, cuando dieron a conocer el lema fun­
damental que juega un papel crucial en la teoría. Al año siguiente, 
Neyman reformuló la estadística inductiva al asentar la estimación 
mediante intervalos de confianza -que en cierto sentido mejora­
ban los intervalos fiduciales de Fisher- y al dar inicio a la teoría 
moderna del muestreo: el muestreo aleatorio, en sus diferentes mo­
dalidades, como principio básico de aplicación de la estadística 

Al comienzo, Fisher calificó el trabajo de Neyman de lumi­
noso y celebró que plantease la inferencia en términos no bayesia­
nos (la lectura del tratado de probabilidad escrito por Richard von 
Mises le había convertido en un frecuentista radical). Pero, coinci­
diendo con el ingreso de Neyman en la Real Sociedad Estadística 
en 1935, Fisher rompió dramáticamente toda relación con él, al 
atacar su investigación sobre agricultura y tildarlo de matemático 
puro, sin contacto con la ciencia experimental (una acusación a 
la que Neyman respondió, por descontado, con poca delicadeza). 
En su momento, Fisher escribió que si la intolerancia a nuevas 

142 A VUELTAS CON LA INDUCCIÓN Y EL MÉTODO CI ENTÍFICO 



ideas era un signo de senilidad, Karl Pearson la había desarrollado 
desde muy joven, y bien podría decirse que Fisher hizo lo propio, 
convirtiéndose demasiado pronto en un egocéntrico dinosaurio 
de la estadística. Siempre se mostró muy poco generoso con Ney­
man, a pesar de que este lo admiraba y de que su teoría de los 
intervalos de confianza y del contraste de hipótesis clarificó tanto 
la mística probabilidad fiducial como las pedestres pruebas de 
significación. Los roces entre Fisher y Neyman fueron constantes 
mientras duró su convivencia bajo el techo común del University 
College, y ni siquiera se calmaron cuando, en 1938, Neyman par­
tió hacia Berkeley, en Estados Unidos. La animadversión entre 
ambos estadísticos significó la mayor grieta abierta entre los par­
tidarios de la inferencia frecuentista. 

«Fisher a veces publicaba insultos que solo un santo 
podía perdonar.» 

-LEONARD «JIMMIE» SAVAGE (1976). 

Aunque históricamente Neyman publicó su teolia de los inter­
valos de confianza con posteri01idad a la teolia de los contrastes 
de hipótesis, aquellos son previos a estos desde un punto de vista 
lógico. Sobre 1930 Neyman ya poseía el germen de la idea, pro­
bablemente influido por la aproximación fiducial que Fisher de­
sarrollaba paralelamente ( aunque soslayó referirlo). De modo que 
en 1934 sugirió que mucho más interesante que la estimación pun­
tual era obtener un intervalo dentro del cual se tenía cierta con­
fianza de que se encontrase el parámetro que se quería estimar. 
Un intervalo de confianza consistía en acompañar la estimación 
puntual con el margen de error que reflejaba la variabilidad de la 
estimación. Proporcionar la estimación sin indicar su margen de 
eITor era de escasa utilidad y podía ser engañoso. Pero, frente a 
la tradición de ofrecer la estimación puntual y el error probable 
(lo que determinaba un intervalo con un nivel de confianza del 
50%), Neyman barajaba la posibilidad de construir, mediante el 
concurso de variables «pivotales», intervalos con cualquier nivel 
de confianza deseado (pongamos por caso, como es habitual, al 
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95 o 99 %). Para cada nivel de confianza determinado se calculaba 
su margen de e1Tor. Naturalmente, con el nivel de confianza au­
mentaba el margen de error, aunque otra forma de aumentar la 
confianza era aumentar el tamaño de la muestra. 

Por ejemplo, puede preverse que si extraemos muestras de 
tamaño 16 de una población que se distribuye normalmente con 
media µ desconocida y desviación típica 4, entonces con probabi­
lidad 0,95 la media muestra! X no distará de la media poblacional 
µ desconocida más de 1,96 unidades. En consecuencia, si al tomar 
una muestra observamos que X = 40, puede esperarse que µ se 
encuentre previsiblemente en el intervalo 40± 1,96 (con un 95% 
de confianza). · 

Ahora bien, ¿qué significa la coletilla «al 95 % de confianza»? 
Quiere decir que la estimación por intervalo se ha realizado con 
un procedimiento que se sabe que a la larga acierta el 95 % de las 
veces. Es como si el intervalo nos lo comunicara una persona que 
dice la verdad el 95 % de las veces; podemos estar bastante segu­
ros, pero no totalmente seguros. Conviene advertir, según insistió 
Neyman, que si I es un intervalo de confianza concreto al 95%, no 
se puede decir que la probabilidad de que I contenga el verdadero 
valor del parámetro 8 es 0,95 porque el parámetro 8 estará o no 
estará en I, pero no tiene más opciones, ya que es una constante 
de valor definido aunque desconocido. Dicho de otra manera, la 
probabilidad de que I incluya a 8 solo puede asumir dos valores: 1 
o O, dependiendo de si 8 está o no en l. Sucede que la fórmula que 
ha permitido construir el intervalo I al sustituir los datos observa­
dos posee una probabilidad de 0,95, lo que se interpreta, desde la 
definición objetiva o frecuencial de la probabilidad, como que el 
95% de las muestras producen un intervalo que en efecto contiene 
el parámetro. Sin embargo, es imposible conocer si nuestro inter­
valo concreto I es uno de ellos, pero se espera que así sea con un 
95 % de confianza. 

Cuando en 1955 Fisher y Neyman volvieron a cruzar espadas 
con motivo del artículo incendiario que el primero comunicó a la 
Real Sociedad de Estadística, Fisher dejó entrever que la concep­
ción de Neyman ponía en peligro su método fiducial, aparte de 
ser supuestamente una copia degenerada (y ello a pesar de que 
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los intervalos fiduciales dejan de coincidir con sus hermanos, los 
intervalos de confianza, cuando se aplican a problemas multipara­
métricos como el de Behrens-Fisher). Recordemos que mediante 
un extraño argumento, Fisher cambiaba el estatus del parámetro 
8 para hacerlo susceptible de recibir una distribución de probabi­
lidad. Pasaba de suponerlo una constante a una variable aleatoria, 
una asunción que lo sacaba del paradigma de la estadística clásica 
y lo sumergía en el marco de la estadística bayesiana. Porque para 
los bayesianos es posible entender un intervalo de confianza I al 
95 % como que el parámetro 8 se encuentra ahí con una probabili­
dad (subjetiva, credencial) de 0,95. 

«De un saco de judías blancas y negras saco un puñado y cuento 
el número de judías blancas y el número de judías negras y 

entonces presumo que las blancas y las negras están 
aproximadamente en la misma proporción en todo el costal.» 

- CHARLES SANDERS PEIRCE SOBRE EL MUESTREO COMO BASE DE LA INDUCCIÓN. 

Mientras que los estadísticos bayesianos contestan a la pre­
gunta de por qué empleamos este intervalo I en particular, los esta­
dísticos frecuentistas responden a la pregunta de por qué emplea­
mos intervalos de confianza en general, esgrimiendo que el método 
de N eyman es un razonamiento deductivo que arroja un 95 % de 
éxitos a largo plazo. La confianza no es una medida de precisión 
final ( atribuible al intervalo numérico construido) sino inicial. 

Los contrastes de hipótesis guardan, como en seguida vere­
mos, un nexo fundamental con los intervalos de confianza. Bus­
cando fortalecer las bases lógicas de los test de significación de 
Fisher, Pearson y Neyman idearon varias mejoras. El leitmotiv 
de su investigación no era otro que el siguiente interrogante: ¿qué 
hacer si se obtiene un resultado significativo en un test estadís­
tico? De acuerdo, se rechaza la hipótesis nula, pero ¿qué otra hi­
pótesis puede abrazarse? En este sentido las pruebas de significa­
ción eran peores que inútiles. No daban ninguna pista. 

La teoría de Neyman-Pearson planteaba una elección real 
entre dos hipótesis rivales. El contraste de hipótesis es un algo-
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ritmo para decidir entre dos afirmaciones sobre un parámetro a 
partir de la información contenida en la muestra. Una será re­
chazada; la otra, aceptada. Tras formular la hipótesis nula H

0
, 

se formula la hipótesis alternativa Hl' que difiere de la hipótesis 
de partida. A continuación, se elige el tamaño del test o nivel de 
significación a deseado, que marca la barrera que juzga qué dis­
crepancias son «demasiado» grandes. Usualmente, suele tomarse 
a = 0,05 (el valor complementario al consabido 0,95). Este número 
determina el riesgo aceptado, esto es, el porcentaje de muestras 
que tomaremos como significativas para decir que la muestra no 
es compatible con la hipótesis nula ( en este caso, el 5 %). Asi­
mismo, se elige el estadístico T del contraste, cuya distribución en 
el muestreo ha de ser conocida, y que funciona como una medida 
de la discrepancia entre la hipótesis nula, la hipótesis alternativa 
y los datos muestrales. Con a y con T se construyen la «región 
crítica» o «región de rechazo» y la complementaria «región de 
aceptación de la hipótesis nula» ( esta última viene dada por un 
intervalo de confianza de nivel 1-a). El hecho de que el valor 
T(X) observado en la muestra del estadístico del contraste caiga 
dentro de una u otra dictamina si la diferencia observada es o 
no significativa, si hay que rechazar la hipótesis nula y aceptar la 
hipótesis alternativa. 

Todo contraste de hipótesis conduce, pues, a aceptar o recha­
zar la hipótesis nula planteada ( aceptando, en este último caso, la 
hipótesis alternativa). Ahora bien, pueden ocurrir las siguientes 
situaciones (que aparecen esquematizadas en la tabla): 

a) Se acepta la hipótesis nula siendo verdadera. Esta es una 
decisión correcta. 

b) Se rechaza la hipótesis nula siendo falsa. Esta es otra de­
cisión correcta. 

c) Se rechaza la hipótesis nula siendo verdadera. Está claro 
que cometemos un error, que se llama error de tipo J. La 
probabilidad de cometer este error viene dada por el nivel 
de significación a, fijado de antemano. 
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d) Se acepta la hipótesis nula siendo falsa. También come­
temos un error, que se llama error de tipo II. La proba­
bilidad de cometer este error se representa por f3, y la 
probabilidad 1 - f3 se llama potencia del contraste, ya que 
cuantifica la probabilidad de rechazar la hipótesis nula 
cuando es falsa. 

Naturaleza de la hipótesis nula H
0 

Decisión Verdadera Fa lsa 

Rechazar H
0 

Error de t ipo I Correcta 

No rechazar H0 Correcta Error de tipo !! 

Neyrnan y Pearson demostraron que en bastantes circunstan­
cias, una vez fijada la probabilidad a de error de tipo I ( esto es, 
asumiendo la interpretación frecuentista del muestreo repetido, 
una vez acotado el porcentaje de veces que tornaremos una de­
cisión equivocada, al rechazar la hipótesis nula cuando es verda­
dera), es posible construir y utilizar contrastes de máxima poten­
cia, es decir, contrastes que minimizan la probabilidad f3 de error 
de tipo II al tiempo que maximizan la potencia del test, su sensibi­
lidad o capacidad para detectar que la hipótesis nula es falsa. En 
un célebre lema publicado en 1933, Neyrnan y Pearson probaron 
que en el caso de hipótesis rivales simples ( que asignan valores 
específicos al parámetro desconocido) existe automáticamente 
una clase de test óptimos, de bajo tamaño y máxima potencia: 
los basados en la razón de verosimilitudes (ver anexo al final del 
libro). Según dejaron escrito en 1933: 

Sin esperar conocer si cada hipótesis por separado es verdadera o 
falsa, buscamos reglas que gobiernen nuestro comportamiento con 
respecto a ellas, de modo que a la larga no estemos frecuentemente 
equivocados. 
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De acuerdo con el planteamiento de Neyman y Pearson, un 
contraste de hipótesis no es más que una regla de decisión. Si uno 
se comporta conforme al procedimiento diseñado, a la larga re­
chazará la hipótesis nula cuando sea verdadera no más, digamos, 
que cinco veces de cada cien y, además, dispondrá de evidencia 
de que la rechazará con la suficiente frecuencia cuando sea falsa. 
Los test estadísticos no son, por tanto, reglas de inferencia in­
ductiva, sino de comportamiento inductivo. Su propósito no es 
fundamentar nuestras creencias, sino ajustar nuestra conducta a 
los datos observados. No es posible averiguar si la hipótesis nula 
es verdadera o falsa. Pero, en cambio, sí es factible comportarnos 
respecto a ella de manera que a largo plazo no erremos con de­
masiada frecuencia. Frente a Fisher, Neyman y Pearson sostenían 
que lo que es inductivo no es el razonamiento sino la acción. El 
objeto de la estadística era emplear la experiencia como guía para 
actuar apropiadan1ente. Ni más, ni menos. 

Los procesos de control de calidad en la producción indus­
trial siguieron de cerca esta visión. Así, durante la Segunda Guerra 
Mundial, los contrastes de hipótesis sirvieron para la selección de 
bastimentos en la Armada estadounidense, ya que inspeccionando 
una muestra de cada lote podía tenerse la confianza de seleccio­
nar correctamente al menos el 95 % de los lotes no defectuosos 
a largo plazo. Egon Pearson escribió, de hecho, un libro sobre la 
materia que pereció quemado en uno de los primeros raids sobre 
Londres. Pero fue la emigración de Neyman a Estados Unidos en 
1938 lo que facilitó que esta constelación de ideas cruzara el At­
lántico y terminara sedimentando en la teoría matemática de la 
decisión esbozada hacia 1950 por el malogrado Abral1am Wald 
(fallecido tempranamente en un accidente de avión). 

En múltiples ocasiones Neyman sostuvo la tantalizante doc­
trina de que la inferencia inductiva es imposible y debemos con­
tentarnos con la conducta inductiva. Una opinión contundente 
que le convirtió en el villano de las disputas filosóficas de la esta­
dística. A su entender, la estadística matemática no hacía justicia 
al presunto carácter inductivo de la empresa científica, ya que su 
entramado era puramente deductivo. Del mismo modo que los 
bayesianos y sus epígonos tomaban como premisa una distribu-
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ción a priori de probabilidad, Fisher partía siempre de la función 
matemática de verosimilitud o de una distribución en el muestreo 
deducida con anterioridad. Los intervalos de confianza, por su 
parte, se obtenían razonando sobre las propiedades de ciertas va­
riables aleatorias. Y los contrastes de hipótesis eran meras reglas 
de comportamiento, donde no cabía la inferencia, ni inductiva ni 
deductiva, porque había probabilidades de error. La lógica se re­
solvía, empero, en decisión. 

Ajuicio de Fisher, tanto Neyman como Pearson habían desvir­
tuado íntegramente su invención; porque el objetivo de un test de 
significación --como explicamos en el capítulo 3- no era decidir 
entre dos hipótesis alternativas, sino comprobar si una observa­
ción acreditaba o no la hipótesis nula. Sus queridos test se habían 
transformado en vulgares recetas de aceptación. Mientras que las 
pruebas de significación se construían tomando como referencia 
una única hipótesis y su objeto era validar el modelo estadístico 
subyacente, los contrastes de hipótesis consideraban dos hipótesis 
rivales y su propósito principal era decantarse por una de ellas. 

Además, para Fisher, Neyman y Pearson habían formalizado 
las pruebas de significación en un marco (supuestamente) con­
fuso, ya que el resultado de una de estas pruebas venía dado por 
el p-valor, que medía hasta qué punto los datos no contradecían 
la hipótesis nula, y no por la decisión de aceptar la hipótesis nula 
o la hipótesis alternativa. No era lo mismo informar del p-valor, 
como medida de la evidencia aportada por la muestra, que de la 
aceptación o el rechazo de la hipótesis nula, con la consiguiente 
(falsa) creencia de que esta hipótesis era verdadera o falsa simple­
mente porque no/sí contradecía los datos observados. De hecho, 
la utilización del p-valor permite que todos los estadísticos a los 
que se les facilite la misma muestra obtengan idéntico resultado. 
En cambio, dos estadísticos que informen del resultado de un con­
traste pueden llegar, a partir de la misma muestra, a resultados 
distintos si utilizan dos tamaños diferentes, dos a distintos. La 
razón estriba en que el p-valor es una propiedad de la muestra, 
mientras que el tamaño a es una propiedad del test. 

Al respecto, Fisher protestaba enfadado que la interpreta­
ción del nivel de significación a del test como frecuencia de una 
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Cuestiones candentes en la teoría de Neyman-Pearson 

A pesar de que los contrastes de hipóte­
sis han sido universalmente aceptados, 
presentan ciertos déficits técn icos que 
no deben dejar de señalarse. Primera­
mente, muchos investigadores creen 
que para un a fijo, el rechazo de la hipó­
tesis nula, caso de producirse será más 
evidente conforme mayor sea el tamaño 
muestra! n. Sin embargo, esto no es así. 
Si se quiere contrastar si la producción 
media de una máquina es de 5 000 
unidades/día y se toma una muestra 
grande (una serie larga de observacio- . 
nes diarias). es bastante probable que 
se detecte una diferencia estadística­
mente significativa y se rechace que la 
media es 5 000. Pero la conclusión bien 
puede ser que la media es, entonces, de Jerzy Neyman. 

5000 + 0,00001, una diferencia perfec-
tamente irrelevante en la práctica. Como la región crítica depende del tamaño 
muestra!, el valor por encima del cual se rechaza la hipótesis nula de que la 
media es 5 000 se acerca a 5 000 según aumenta n (puesto que la media ob­
servada ha de estar muy próxima a la media teórica si la muestra es grande). 
Un efecto pequeño en una muestra grande puede ser tan decisivo como un 
efecto grande en una muestra pequeña. Para evitar este engorro, hay quie­
nes sugieren ajustar el tamaño del test en función del tamaño de la muestra. 

decisión equivocada en muestras repetidas de la misma pobla­
ción pervertía la lógica intrínseca a las pruebas de significación, 
porque el científico natural generalmente no dispone de muestras 
repetidas. La analogía que empleaban N eyrnan y Pearson entre 
el muestreo repetido y la toma reiterada de decisiones solo fun­
cionaba si se asimilaba el contraste de hipótesis con la acepta­
ción industrial de lotes de muestras. Aún más, la expresión error 
de segundo tipo parecía sugerir la posibilidad de aceptar como 
verdadera la hipótesis nula por error, cuando la realización de 
una prueba de significación nunca autorizaba a tomarla como 
verdadera . . 
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En segundo lugar, como consecuencia del papel privilegiado de la hipótesis 
nula (ya que a se fija con anterioridad), en ocasiones se tiende a aceptar la 
hipótesis nula incluso cuando los datos no encajan bien con esta hipótesis. Es 
más, la obligatoriedad de decidir entre la hipótesis nula y la hipótesis alterna­
tiva a veces conduce a tomar decisiones basándose en datos muestrales que 
encajan igual de mal con ambas hipótesis, algo que con el enfoque bayesiano 
no pasa (en el anexo al final de libro abundamos en esta cuestión). 

La potencia del test 
Neyman enfatizaba que la no significativ idad de un test para rechazar la 
hipótesis nula no lleva necesariamente a verla confirmada, ya que esto de­
pende de la potencia del test, de que sea lo suficientemente alta. Algunos 
estadísticos apuntan que la fuerza con que la hipótesis nula se ve confir­
mada por la muestra puede evaluarse mediante una cantidad que deno­
minan severidad, y que jugaría un papel aná logo al p-valor. Mientras que el 
p-valor se definía -como vimos en el tercer capítulo- por la probabilidad 
P(T ~ T(X)IH0 ), la severidad se definiría por P(T ~ T(X)IH,) . Cuanta más alta 
fuese esta probabilidad, más «duro» o «severo» habría sido el test en el sen­
tido de ser capaz de discernir si la hipótesis nula era falsa . Un experimento 
confirmaría una hipótesis si y solo si suponía un intento serio por refutarla. 
Por último, en tercer lugar, cuando las hipótesis no son simples sino com­
puestas, el lema fundamental no se verifica y la búsqueda del test unifor­
memente más potente no siempre existe, con lo que no es fácil controlar 
simultáneamente las dos probabilidades de error. Ya en su momento Fisher 
puso de relieve que, para rizar el rizo, el cálculo del error del segundo tipo y, 
por tanto, de la potencia del contraste, no siempre es accesible, dado que la 
hipótesis alternativa puede no estar unívocamente determinada. 

Las diferencias entre ambas teorías no eran tanto matemá­
ticas, numéricas, como lógicas y filosóficas. En el polémico ar­
tículo presentado por Fisher en 1955 a la Real Sociedad de Esta­
dística, el estadístico británico atacó furibundamente a Neyman 
por dejarse seducir por el «pragmatismo nor:t;eamericano», por 
mostrarse más preocupado por acelerar la producción que por ex­
traer conclusiones estadísticas correctas. El matemático polaco 
había malinterpretado la inferencia estadística al constreñirla, 
como decía literalmente Fisher, al ámbito de los esclavos de Wall 
Street y del Kremlin, pero no de los científicos libres en pos de la 
verdad. Neyman había cortado el nudo gordiano de la lógica de 
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la inferencia inductiva de la que hablaba Fisher al calificarla como 
ilusoria. Pero en su ceguera había confundido el control de cali­
dad con la inferencia científica, al científico con el comerciante. El 
«comportamiento inductivo» le parecía a Fisher una evasión para 
no afrontar el problema realmente existente del «razonamiento 
inductivo». Fisher no quería hacer dinero sino aprender del expe­
rimento. 

La réplica que Neyman no tardó en escribir comenzaba sal­
vando al desgraciado W ald de las invectivas de Fisher: la relación 
de la inferencia estadística con la teoría de la decisión pergeñada 
por Wald era la de la táctica con la estrategia. A continuación, 
Neyman defendía su enfoque mediante hipótesis alternativas, 
llegando a subrayar que el célebre test de la catadora de té es­
taba mal diseñado si no se indicaba contra qué se quería probar 
la ·hipótesis nula ( es decir, si no se precisaba numéricamente la 
habilidad de la dama, suponiendo que la tuviera, en la hipótesis 
alternativa). En lo tocante al tema central de discusión, Neyman 
se reafirmaba en que el comportamiento inductivo solventaba 
de una vez por todas el problema irresoluble de la inferencia 
inductiva. 

Con el tiempo, el matemático polaco llegó a referirse a la 
conducta inductiva -incluso en presencia del filósofo Carnap­
como un concepto mayor de la filosofía de la ciencia actual, 
hallando sus raíces en Gauss y Laplace. En cierto modo las voces 
de Neyman y Popper se confunden en este punto al afirmar ambos 
que no existe método inductivo de razonamiento alguno. Si para 
Popper los posibles resultados de una prueba experimental son la 
falsación o, en su defecto, la corroboración de la teoría científica, 
para Neyman lo son él rechazo o la aceptación de la hipótesis 
nula (aunque como en eLcaso de Fisher, Popper apenas citó a 
Neyman). 

Por alusiones, Egon Pearson también hubo· de terciar en la 
polémica, aunque a diferencia de Neyman se resistió a bajar a 
la arena filosófica, limitándose a aducir que la jerga de la toma de 
decisiones pertenecía más a Neyman que a sí mismo. La buena 
sintonía entre ambos matemáticos se había prácticamente termi­
nado cuando el segundo partió rumbo a Estados Unidos. 
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USOS Y ABUSOS DE LOS MÉTODOS ESTADÍSTICOS 

El sincretismo metodológico reinante es responsable de bastantes errores 
cometidos en el empleo de las herramientas estadísticas. Algunos de los 
más habituales son los siguientes: 

1. En el anál isis exploratorio de datos suele usarse la media como medida 
canónica de centralización, que agrupa las observaciones, cuando la me­
diana es en general más recomendable por cuanto presenta menor vola­
tilidad, esto es, menor sensibilidad a valores extremos. 

2. En el estudio de la regresión habitualmente se toma un coeficiente de co­
rrelación lineal de 0,6 como fiable, cuando puede demostrarse que el mo­
delo subyacente solo explica en este caso el 36 % de las observaciones. 

3. Una ilusión permanente, fruto del pastiche que ha fraguado en torno a los 
test estadísticos, es creer que estos se apoyan en el siguiente silogismo: 
«Si la hipótesis nula es correcta, entonces la muestra X no puede obser­
varse. Hemos observado X, luego la hipótesis de partida es falsa» . Sin 
embargo, los test descansan sobre un silogismo a lo sumo probable: «Si 
la hipótesis nula es correcta, entonces la muestra X es altamente impro­
bable. X ha sido observada, luego la hipótesis es altamente inverosímil». 

4. La consagración de la contrastación estadística como modo de tomar 
decisiones dicotómicas conlleva que a veces, basándose en el criterio 
del a= 0 ,0S, se acepte la hipótesis nula para un p-valor de 0,051 y, en 
cambio, se rechace para 0 ,049. Asimismo, un resultado estadísticamente 
significativo al nivel, pongamos, del 0,001 suele interpretarse como que 
la hipótesis alternativa ha recibido un apoyo del 0,999; pero que no haya 
evidencia en contra suya no quiere decir que la tenga a favor. 

S. Otro error muy extendido es confundir el p-valor, es decir, la probabilidad 
de observar la muestra extraída suponiendo que la hipótesis nula es ver­
dadera, con la probabilidad de que la hipótesis nula sea verdadera a la 
vista de la muestra observada (una probabilidad solo calculable mediante 
el teorema de Bayes). Esta inversión ilegal de los términos es lo que seco­
noce como falacia del fiscal: si eres culpable, es lógico que todas las prue­
bas apunten a ti; pero que todas las pruebas apunten a ti, no quiere decir 
que ipso facto seas culpable, como suelen inferir erróneamente los fiscales. 

6. Finalmente, hay que anotar que la potencia del contraste es la gran olvi­
dada de la teoría. Entre los investigadores ha fructificado la creencia de 
que si un test no resulta significativo, entonces la hipótesis nula ha sido 
corroborada; pero esto no puede afirmarse a la ligera sin antes calcular 
la función de potencia del test, que mide su capacidad para detectar 
discrepancias. 
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La disputa entre Fisher y Neyman en 1955 inauguró toda una 
serie de controversias en la que ya no intervendrían solo estadísti­
cos, sino también filósofos interesados por la inferencia científica, 
que subrayarían que la teoría de los contrastes de hipótesis es 
idónea para poner a prueba una hipótesis pero no para evaluar 
el respaldo que recibe esta hipótesis una vez realizado el experi­
mento. En otras palabras, la inferencia clásica es la más adecuada 
para someter una hipótesis al dictado de la experiencia; pero, una 
vez que la naturaleza habla, la inferencia bayesiana ha de recoger 
el testigo (ya que posibilita la comparación entre las alternativas 
por medio de sus probabilidades a posteriori). 

Ahora bien, el propósito principal de los contrastes de hipó­
tesis no es medir el grado de apoyo que recibe una hipótesis a 
partir de la muestra observada, sino evaluar la discrepancia de 
esta hipótesis con los datos. En el esquema clásico, las probabi­
lidades entran en juego como probabilidades de error, no como 
probabilidades_ de hipótesis. Al igual que el nivel de confianza, las 
probabilidades de error funcionan como medidas de precisión ini­
cial, no final. Los test ideados por Fisher, Neyman y Pearson no 
pueden transformarse en lo que no son. No se les puede pedir lo 
que no pueden dar. 

Y, sin embargo, a día de hoy, ha triunfado el más vivo eclec­
ticismo metodológico, en especial en el campo de las ciencias so­
ciales, donde las pruebas de significación de Fisher y los contras­
tes de hipótesis de Neyman-Pearson, e incluso en ocasiones los 
modelos bayesianos, cohabitan en una amalgam~ viable a escala 
técnica pero irreconciliable a escala conceptual. A partir de los 
años sesenta del pasado siglo las teorías de Fisher y de Neyman­
Pearson comenzaron silenciosamente a conformar un oscuro hí­
brido cuyo uso se ha trivializado, convirtiéndose en un ritual me­
cánico. Bajo el pensamiento débil de que ¡todo vale! («cualquier 
método estadístico es un instrumento válido», «no hay que entrar 
en disquisiciones lógicas»), se oculta un problema de calado fi­
losófico con repercusiones a la hora de plasmar e interpretar los 
resultados, porque no es lo mismo informar del p-valor que de la 
distribución a posteriori o del tamaño del test, la potencia del 
contraste y la decisión tomada. 
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FUMAR PERJUDICA GRAVEMENTE LA SALUD 

Hacia 1920 se observó un gran incremento de los fallecimientos 
por cáncer de pulmón. Aunque existían trabajos previos sobre la 
posible relación entre este tipo de cáncer y el hábito de fumar, en 
la década de 1950, gracias a los trabajos de Richard Doll (1912-
1905) y Austin Bradford Hill (1897-1991), la cuestión cobró un 
verdadero interés y propició agrios debates en la opinión pública. 
Estos epidemiólogos fueron los artífices de la extensión de los 
principios fisherianos del diseño de experimentos a la investiga­
ción clínica. 

Doll y Hill publicaron un estudio estadístico donde los casos 
los constituían los pacientes que ingresaban en ciertos hospitales 
con diagnóstico de cáncer de pulmón, mientras que el «grupo con­
trol» estaba formado por pacientes cuyo ingreso se debía a otras 
causas. Mediante el análisis de las historias clínicas de los enfer­
mos que ya tenían o que desarrollaron este cáncer, estimaron que 
la incidencia del mismo en los fumadores era entre 11 y 20 veces 
mayor que en los no fumadores. Su conclusión era, de facto, esta­
dísticamente significativa al nivel del 0,001. 

Sin embargo, estos trabajos recibieron numerosas obje­
ciones de personalidades tan respetadas como Jerzy Neyman. 
Pero quizá el principal paladín de las críticas fue nada menos 
que Fisher ( a quien distinguimos en muchas fotografías pipa en 
mano). Este inveterado fumador, que incluso sirvió como con­
sultor de alguna compañía tabacalera, publicó varios artículos 
y un panfleto cuestionando la relación entre cáncer, cigarrillos y 
estadística. 

Una de las pegas que Fisher esgrimió fue que el estudio de­
mostraba que los fumadores presentaban un mayor riesgo de 
padecer cáncer de pulmón, pero esto no implicaba que la causa 
fuese necesariamente el tabaco. Que A y B estén directamente 
correlacionadas no quiere decir que A sea la causa de B, pues bien 
podría ser que B fuera la causa de A ( que el cáncer de pulmón mo­
tivara el hábito de fumar) o que existiese un factor C que fuese la 
causa común de A y B ( que las personas que adquieren el hábito 
de fumar tuviesen algo en la estructura genética que las hiciera 
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propensas a caer en la adicción al tabaco y, a la vez, contraer 
un cáncer; una posibilidad que Fisher barajaba amparándose en 
datos extraídos de gemelos). El estadístico inglés comparaba la 
correlación descubierta por Doll y Hill con la correlación enga­
ñosa que mediaba entre la evolución de la tasa de divorcios y la 
importación de manzanas. 

Fisher añadía que, a diferencia de los experimentos agróno­
mos o los estudios sobre vacunas, el estudio de Doll y Hill no se 
ajustaba al diseño experimental, sino que era un mero estudio 
prospectivo, porque la división en dos grupos - casos y contro­
les- no se había producido aleatoriamente, sino que venía dada 
y, por tanto, sujeta a factores externos difíciles de bloquear. Es 
más, subrayaba que si uno separaba a los fumadores en dos gru­
pos, los que inhalan el humo y los que no, los que no inhalaban el 
humo eran curiosamente los que más padecían cáncer de pulmón. 
Fisher escenificaba la conclusión real del estudio con el siguiente 
consejo: «fumar perjudica la salud, pero si tienes que fumar, mejor 
traga el humo». 

Los años sucesivos conocieron una multiplicación de estu­
dios prospectivos, así como de experimentos con animales que 
corroboraron fuera de toda duda la tesis de Doll y Hill (y mos­
traron que, pese a lo que por error arrojaba el primer estudio, 
inhalar el humo resulta fatal). A medida que la evidencia se fue 
acumulando Neyman cambió de opinión, pero Fisher permaneció 
irreductible en su posición. 

LA ESTADÍSTICA EN EL SIGLO XXI 

Ronald Aylmer Fisher nunca ocupó una plaza como estadístico 
en la universidad. En 1957 tomó la decisión de abandonar la cá­
tedra de Genética en la Universidad de Cambridge y, dos años 
después, se incorporó como investigador emérito a un complejo 
científico e industrial ligado a la Universidad de Adelaida (Aus­
tralia). Este genio de temperamento, que había sido nombrado 
sir por la reina Isabel II en el año 1952, encontró la muerte el 29 
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de julio de 1962, a los setenta y dos años, como consecuencia de 
un cáncer de colon. 

Los avances que Fisher impulsó le otorgan un puesto de 
honor en el panteón de los estadísticos. Gracias a él, la estadística 
es la matriz de muchas ciencias experimentales. En tanto que la 
experimentación produce datos varios, precisa de la estadística. 
Todo hecho científico posee un carácter ineludiblemente estadís­
tico: se trata de un compendio de observaciones repetidas, que 
están sujetas a factores y errores de naturaleza aleatoria. La es­
tadística interviene en la descripción, modelización, explicación 
y predicción de estos datos. Y lo hace, en general, cumpliendo 
las siguientes etapas: planteamiento de un modelo adecuado al 
problema utilizando el cálculo de probabilidades; diseño del expe­
rimento; descripción y análisis de los datos muestrales recogidos; 
estimación de los parámetros desconocidos del modelo pobla­
cional; contraste de hipótesis sobre el modelo; reajuste de este y 
toma de decisiones. 

«Lo mejor de ser estadístico es que puedes meterte 
en cualquier jardín.» 
- JOHN W. TUCKEY. 
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Al igual que otros estilos de razonamiento científico ( el 
geométrico de las ciencias matemáticas, el hipotético-deduc­
tivo de las ciencias físicas , el experimental de las ciencias de 
laboratorio, el taxonómico de las ciencias naturales y el histó­
rico-genético de las ciencias humanas), hay un estilo propio de 
operar, pensar y actuar enlazado a la ciencia estadística, que se 
caracteriza por una fértil dialéctica entre razonamiento y expe­
rimentación. 

La aplicación de los métodos estadísticos se ha extendido a 
áreas tan diversas como la ingeniería, la economía, la medicina o 
la psicología. En la actualidad, tanto los filtros de spam de nues­
tro ordenador como la observación de cúmulos estelares, la de­
tección del fraude fiscal o el análisis de las causas de accidentes 
como el del Challenger en 1986 emplean técnicas estadísticas. 

A VUELTAS CON LA INDUCCIÓN Y EL MÉTODO CIENTÍFICO 



La difusión de la estadística, de la que Ronald Aylmer Fisher 
fue partícipe privilegiado, no solo ha provocado que el mapa se 
pliegue mejor al territorio, sino también que a resultas de ello el 
territorio -nuestro mundo globalizado- se haya visto transfor­
mado hasta límites insospechados por culpa de la introducción 
del mapa. Habitamos un mundo estadístico en el que el mapa se 
confunde con la realidad. 
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Anexo 

TESTANDO A FISHER, NEYMAN Y BA YES 

El objetivo de este anexo es presentar matemáticamente cómo 
cada una de las tres escuelas estadísticas posee un enfoque muy 
distinto a la hora de analizar un mismo caso de estudio. Por medio 
de un ejemplo numérico sencillo, el lector podrá comprobar cómo 
cada una de estas filosofías de la estadística interpreta los cálcu­
los probabilísticos de una manera sutilmente diferente. 

Supongamos que un parámetro poblacional 8 desconocido 
solo puede tomar dos valores: O o l. Supongamos, además, que 
los datos muestrales X que observaremos únicamente tienen cua­
tro posibles resultados: 1, 2, 3 o 4. La siguiente tabla recoge las 
probabilidades P(X10) de observar.cada resultado muestra! en 
función de los valores del parámetro: 

P(Xl0) X=l X=2 X=3 X=4 

0=0 0,980 0,010 0,005 0,005 

0=1 0,098 0 ,900 0,001 0,001 

TEST DE SIGNIFICACIÓN DE FISHER 

Queremos poner a prueba la hipótesis nula de que 0 = O. De 
acuerdo con Fisher, no hacemos referencia a hipótesis alterna-
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tiva alguna (8 = 1 ), ya que nuestro objetivo no es decidir entre dos 
hlpótesis rivales, sino validar el modelo estadístico subyacente 
que presupone ese valor para el parámetro desconocido. Si recor­
damos del capítulo 3, el p-valor se definía como la probabilidad 
P (T ~ T(X)IH 0 ), lo que en este caso discreto se adapta como la 
probabilidad de observar un valor igual o más raro que el valor 
efectivamente observado bajo la hipótesis de que 8 = O. Con esto 
en mente, ¿qué inferiremos si observamos que X= 2? 

Por lógica, mirando la tabla anterior, como la probabilidad 
de observar este resultado muestral suponiendo que 8 = O es muy 
baja (de solo 0,010), el p-valor ha de ser pequeño. En efecto, vale 
0,010 +0,005 +0,005 =0,02, que al ser menor que el consabido lí­
mite de 0,05, apunta a que la hlpótesis nula no encaja con el dato 
observado y, por tanto, ha de ser rechazada. 

¿ Y si observamos X = 3? Entonces el p-valor vale 
0,005 + 0,005 = 0,01, lo que conduce a rechazar la hipótesis nula de 
que 8 = O con mayor significación. Finalmente, si se observa X = 1 
( el dato para el que la hlpótesis nula encaja muy bien, ya que este 
dato se observa con probabilidad 0,980), el p-valor es 0,980 + 
+ 0,010 + 0,005 + 0,005 = 1, lo que de ningún modo contradice la hi­
pótesis nula. En resumen, el p-valor es la medida matemática que 
informa en los test de significación de hasta qué punto la muestra 
refuta la hipótesis de partida. Pero nada dice de en qué grado 
permite inferirla o confirmarla. 

CONTRASTE DE HIPÓTESIS DE NEYMAN-PEARSON 

Consideramos la hipótesis nula H
0

: 8 = O versus la hlpótesis alter­
nativa H

1
: 8 = l. El propósito del contraste es decidir entre ambas. 

Intuitivamente, consultando la tabla, si observamos X = 1, acep­
taremos la hipótesis nula. En cambio, si observamos X = 2, nos 
inclinaremos por rechazarla, aceptando la hipótesis alternativa. 
Cuando X = 3 o 4, la decisión no está tan clara. 

Como explicamos en el capítulo 5, la teoría de Neyman-Pear­
son comienza balanceando las dos probabilidades de error. En 
primer lugar, se fija el tamaño o nivel dé significación a del test, 
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que acota la probabilidad del error de tipo I ( esto es, la frecuencia 
con que tomamos la decisión equivocada de rechazar la hipótesis 
nula cuando es verdadera). A continuación, se busca aquel test 
con menor probabilidad de error de tipo II ( de aceptar la hipótesis 
nula cuando es falsa) o, equivalentemente, con mayor potencia, 
es decir, con mayor probabilidad de rechazar la hipótesis nula 
cuando es, en efecto, falsa. Según demostraron Neyman y Pearson 
en un famoso lema, los test óptimos (tamaño pequeño, máxima 
potencia) se basan en la razón de verosimilitudes, es decir, en 
el cociente P ( X I 0 = l) / P ( XI 0 = O), que se obtiene dividiendo las 
probabilidades (verosimilitudes) de la tabla: 

X=l X=2 X=3 X=4 

P(Xl0=1) 
0,1 90 0,2 0,2 P(Xl0=O) 

Es fácil ver que la razón de verosimilitudes va a conducir al 
rechazo de la hipótesis nula y la aceptación de la hipótesis alterna­
tiva cuando X = 2 ( como era de esperar), ya que el cociente toma 
un valor muy grande (la verosimilitud de la hipótesis alternativa 
es 90 veces la de la hipótesis nula). Cuando X = l, mantendremos 
la hipótesis nula, porque el cociente toma el valor más pequeño 
(O, 1 ). Y si X= 3 o 4, la decisión dependerá del tamaño a elegido del 
test, puesto que los resultados muestrales encajan prácticamente 
igual de mal con ambas hipótesis (la probabilidad de observar 3 o 
4 era baja con ambas hipótesis). Así, puede demostrarse que con 
a = 0,01 la región crítica para H

0
: 8 = O solo contiene a X = 2. En 

consecuencia, para X = 3 o 4 retenemos la hipótesis nula. La po­
tencia de este test vendría dada por la probabilidad P( X = 210 = 1) 
de rechazar la hipótesis nula cuando la hipótesis alternativa es 
verdadera, que arroja un valor ( consultando la tabla inicial) de 
0,900. Por consiguiente, este test muestra una gran potencia, 
en otras palabras, una gran capacidad para detectar cuándo la 
hipótesis nula es falsa. En concreto, si se observa X = l (un re­
sultado no significativo), la «severidad» del test viene dada por 
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P(T ~ T(X)l0 = 1) = 0,900+0,001 + 0,001 + 0,098 = 1, lo que ofrece 
una evidencia excelente para inferir la hipótesis nula frente a la 
alternativa. 

Sin embargo, con a = 0,02, la región crítica incluye aX = 2, 3 y 
4, por lo que rechazaríamos la hipótesis de partida en todas estas 
circunstancias, a pesar de que la hipótesis nula es más verosímil 
que la hipótesis alternativa cuando X= 3 o 4. Como se ha dicho, los 
datos muestrales 3 y 4 constituyen sucesos raros bajo cualquiera 
de las dos hipótesis rivales, pero la obligatoriedad de decidir entre 
una y otra fuerza siempre a tomar una decisión en la teoría de 
Neyman-Pearson. Esta es una de las críticas que los partidarios 
de la inferencia bayesiana suelen hacer a los defensores de la infe­
rencia frecuentista, ya que con el enfoque bayesiano, como ense­
guida comprobaremos, esto no siempre pasa. 

No obstante, una línea de defensa de los estadísticos clásicos 
es la apelación a la noción de severidad. De este modo, por ejem­
plo, la decisión de aceptar la hipótesis alternativa cuando X = 3 (un 
resultado significativo) no es un indicio que permita inferir esta hi­
pótesis fuera de toda duda razonable, ya que la severidad del test 
para con H

1 
es - aunque la justificación de la fórmula excede el 

alcance del libro- P(T ~ T(X)l0 = 1)= 0,098+0,001+0,001 = 0,1 
(muy pequeña). La severidad del test es muy baja porque lapo­
tencia es muy alta, exactamente de 0,902. Tomemos un ejemplo 
ilustrativo para explicar por qué se da esta relación: si usamos una 
red muy tupida para pescar, tendremos muchas oportunidades de 
pescar un pez y, en consecuencia, de rechazar la hipótesis nula 
de que el lago no contiene peces (alta potencia); pero si logran1os 
pescar, como los agujeros de la red son tan pequeños y capturan 
casi todo, no podremos saber si el pez es pequeño o grande y, por 
tanto, confirmar una hipótesis alternativa con respecto al tamaño 
de los peces del lago (baja severidad). En suma, la observación del 
dato muestral 3 conduce a rechazar H

0 
(ya que para 0 = O es muy 

improbable observarlo), pero de aquí no se desprende necesaria­
mente la verdad de H 1 ( de que 0 = 1, porque para este valor tam­
bién es muy improbable observarlo). El lector perspicaz puede 
estar preguntándose por qué no consideramos el típico a= 0,05. 
La razón es que requeriría, al tratarse de un ejemplo discreto, la 
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introducción de un «test aleatorio», lo que complicaría en exceso 
la discusión. 

INFERENCIA BAYESIANA 

El análisis bayesiano precisa de postular una distribución a 
priori sobre 8. A continuación, mediante la aplicación del teo­
rema de Bayes (que presentamos en el capítulo 1), pueden com­
binarse estas probabilidades a priori con las verosimilitudes a 
fin de obtener las probabilidades a posteriori que permitan de­
cantarnos entre H 0 y H 1. Vamos a considerar dos priores distin­
tas. La primera será uniforme, es decir, neutral, no informativa, 
otorgando la misma probabilidad a los dos posibles valores de 8: 
P ( 0 = O) = P ( 0 = 1) = 1 / 2 . La segunda, en cambio, otorgará cinco 
veces más credibilidad al valore = 1: P(0 = O) = 1/ 6; P(0 = 1) = 5 / 6. 
Así pues, para cada uno de los dos posibles valores de 8, la proba­
bilidad a posteriori vendrá dada por la fómmla de Bayes, expre­
sada a continuación: 

P(OIX) = P(0) · P(X10) 
P(0)· P(XI0)+ P(l) · P(Xll) 

Según puede calcularse, en el primer caso, si tomamos la dis­
tiibución uniforme y observamos X = 1, la probabilidad a posteriori 
es claramente favorable a la hipótesis nula frente a la alter­
nativa: P( 0 = 01X = l) = 0, 9 l, mientras que P(0 = 11X = l) = 0,09. 
Si observamos X = 2, la probabilidad a posteriori favorece, como 
se esperaba, la hipótesis alternativa: P(0 = OIX = l) = 0,01 frente 
P( 0 = OIX = 1) = O, 99. Pero, ¿qué sucede si X = 3 o 4 (los valores 
muestrales que planteaban problemas a la teoría clásica)? To­
mando X= 3, se comprueba que la regla de Bayes se inclina por 
la hipótesis nula frente a la alternativa: P(0 = 01X = 3) = 0,83 y 
P( 0 = llX = 3) = O, 17. Sin embargo, cuando introducimos la se­
gunda prior ( que otorga más peso a priori a 8 = 1 que a 8 = O), 
el panorama cambia radicalmente: P(0 = OIX = 3) = 0,50 y 
P(e = llX = 3) = 0,50. ¡En equilibrio! Como puede observarse, la 
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elección de la prior resulta decisiva en el enfoque bayesiano y 
decanta la balanza hacia uno u otro lado. 

INFERENCIA CLÁSICA 

Por último, nos gustarla mostrar con otro ejemplo cómo opera la 
inferencia clásica en la vida real. Vamos a inspirarnos en una apli­
cación que Fisher extrajo del célebre artículo de Student de 1908. 
Se desea testar el poder de un nuevo medicamento para inducir 
al sueño, y se ha medido el número de horas de descanso que 
10 pacientes han ganado o perdido con esta droga hipnótica con 
respecto a no usarla. Es lo que se llama una muestra con obser­
vaciones pareadas, porque las comparaciones se realizan sobre 
las mismas 10 personas (si se tratase de 10 personas distintas en 
cada caso, se trataría de dos muestras independientes, que re­
quieren de otro test estadístico algo más complejo; con muestras 
apareadas pueden captarse efectos invisibles para las muestras 
independientes). Estas han sido las diferencias observadas con el 
uso: +1,2; +2,4; +1,3; +1,3; +O; +1; +1,8; +0,8; +4,6; +1,4. A simple 
vista, parece que el sedante es efectivo, pero podría ser que el 
efecto se debiese al azar y no a la dosis. La media muestral X vale 
+1,58 (lo que refuerza nuestra opinión), pero nos gustaría con­
trastar la hipótesis nula de que la media poblacional µ es O frente 
a la hipótesis alternativa µ;,,O. En otras palabras, la hipótesis de 
que si el medicamento se suministrase a toda la población no se 
detectaría efecto alguno versus la hipótesis de que sí lo hay. 

Supongan1os que el número de horas de sueño que se ganan o 
se pierden con el sedante sigue una distribución normal de media 
µ y desviación típica o desconocidas. A partir de los datos de la 
muestra, queremos precisamente estimar el efecto medio µ del 
medicamento sobre toda la población. Se sabe por el teorema cen­
tral del límite que para muestras grandes ( n > 30), en condiciones 
muy generales, 

estimador-parámetro 
------------ - distribución normal estándar. 
desviación típica del estimador 
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Para el caso de la estimación de la media poblacional µ con 
muestras pequeñas en poblaciones normales, si conociéramos la 
desviación típica poblacional a, aún podríamos emplear la aproxi­
mación normal. Con una confianza del 95%, la media poblacional 
µ se encontraria de la media muestral X a menos de 1,96 veces la 
desviación típica poblacional a dividida por la raíz cuadrada del 
tamaño muestral n. O como gustaba decir a Fisher, solo una vez de 
cada veinte excedería estos límites, fijados para el nivel clásico 
de significación del 5%. 

Cuando no se conocía a (lo más frecuente), el astrónomo 
F. W. Bessell cor\jeturó que podía sustituirse su conocimiento por 
el de la desviación típica muestral corregida S (la raíz cuadrada 
de la cuasivarianza muestral, definida en el capítulo 3, y que en 
nuestro ejemplo vale 1,23) y sucumbió a la tentación de decir que 
los valores aceptables eran aquellos que no excedían de: 

s 
±1,96· ✓n· 

Sin embargo, esta estimación, que hizo fortuna durante el 
siglo XIX, obviaba el hecho de que S está sujeta a las variaciones 
azarosas del muestreo, por lo que en unas ocasiones será mayor 
y en otras menor que a. Student fue el primero en percibir que 
este olvido afectaba a las conclusiones con muestras pequeñas, 
reparando en que la distribución normal ( de donde procede el 
±1,96) no podía emplearse. En su lugar había que usar una nueva 
distribución, la t de Student, cuyas colas de valores extremos de­
crecen mucho más lentamente. En consecuencia, el refinamiento 
de la inferencia pasaba por usar como valor adecuado ±2,262 (al 
5% de significación). Curiosamente, Student envió las tablas de 
su distribución a Fisher con el comentario: «Probablemente sea 
la única persona que las use jamás». El paso del tiempo ha demos­
trado, contra la opinión de Karl Pearson, la ubicuidad de la t de 
Student, ya que su uso es generalmente válido con independencia 
de que la distribución de partida sea normal. 

Resumiendo, si desconocemos a, hay que emplear la aproxi­
mación que descubrió Student, a la que tanto juego sacó Fisher: 
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media muestra! - parámetro d S d t - -------------- - t e tu en . 
desviación típica de la media muestra! n -i 

El test t concierne a la precisión de la media de una muestra 
de observaciones, y posibilita poner a prueba la significación de 
una hipótesis sobre la media poblacional. Si nuestro sedante no 
tuviese efecto alguno (µ=O), sería de esperar que la media mues­
tra! X estuviese en el intervalo: 

µ±2,262- ~ = 0±2,262 -
1
~ = (-0,88,+o,88). 

vn vlO 

Como la media muestra! es + 1,58, podernos rechazar la hipó­
tesis nula: el nuevo medicamento es efectivo. 
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