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fue el cientifico que dotd a la estadistica de los herramientas que
le han permitido alcanzar lo enorme dimension con lo que cuenta en la actualidad.
Lo inferencia estadistica, su mayor contribucion, infrodujo una pieza novedosa,
relacionada con la probabilidad, que tuvo el poder de insuflar el oxigeno necesario
para que esta materia, hosta ese momento una simple herramienta ol servicio de
otras disciplinas, se convirtiera en una ciencia por derecho propio. A este matemtico
y bidlogo britdnico se debe el empleo del método estadistico en el disenio de
experimentos cientificos. Sus investigaciones también se adentran en la genéfica y en
la teoria evolutiva moderna, en un contexto marcado por lo eugenesia, muy en boga
en la primera mitad del siglo xx y de lo que era un ardiente defensor.
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Introducciéon

En los manuales la estadistica suele definirse como la ciencia que
estudia la recogida, organizacién e interpretacién de datos. Pero
en esta definicién brilla por su ausencia un componente esencial:
el trabajo estadistico se realiza empleando el lenguaje de la pro-
babilidad. La estadistica aborda el estudio probabilistico de la
incertidumbre, sea cual sea su fuente. Asi, por ejemplo, la infe-
rencia estadistica se ocupa de evaluar y juzgar las discrepancias
observadas entre la tozuda realidad y lo prescrito por el modelo
tedrico, haciendo uso indispensable del cdlculo de probabilida-
des. Pero, ;quién fue el responsable de la inyeccién conceptual
y probabilistica que experimenté la estadistica decimonénica a
principios del siglo xx?

La estadistica tiene muchos préceres: Karl Pearson, Jerzy
Neyman o Abraham Wald son algunos de ellos. Pero solo tiene
un genio: Ronald Aylmer Fisher. Un gran ntimero de las técnicas
estadisticas hoy habituales tiene su origen en la obra de sir Ro-
nald, aunque la mayoria de libros de texto omitan esta deuda. La
lectura de los articulos y los libros de Fisher, donde la discusién
légica o filosdfica siempre encuentra espacio entre el desarrollo
matematico, resulta ilustradora, sorprendente y, a menudo, com-
porta la exasperacién del lector, por cuanto el estadistico brita-
nico hacia gala de un estilo mordaz e insolente para con muchos
de sus colegas, sin escatimar insultos. Pero acercarse a la figura



de Fisher supone asistir a la fibrica de la estadistica matematica
moderna.

Las aportaciones mas descollantes de nuestro personaje
emergieron en un trasfondo histérico de lo més enrevesado, con-
formando un mosaico de conceptos cientificos e ideas filoséficas.
Fisher bebi6 de las fuentes de la estadistica a través de tres cien-
cias por completo diferentes: por medio de la astronomia cono-
ci6 las contribuciones de Gauss y Laplace; la fisica de gases le
ensend las aplicaciones desarrolladas por Quetelet y Maxwell, y,
finalmente, la biologia evolutiva le abrié las puertas de las princi-
pales novedades estadisticas de finales del siglo x1x, que llevaban
la firma de Francis Galton y Karl Pearson.

Se antoja imposible calibrar la verdadera talla de Fisher sin
compararlo con ese titin llamado Karl Pearson. En su biisqueda
de una teoria matematica de la evolucion, Pearson ide6 algunos
de los métodos estadisticos hoy clasicos. Sin embargo, fue dema-
siado lento a la hora de reconocer el talento de Fisher, adoptando
una cerrazon recalcitrante ante las rectificaciones que el joven y
astuto investigador introducia a su propio trabajo. Pearson pagé
caro su error, porque los articulos de juventud de Fisher ensefia-
ron nuevos horizontes, ensanchando el mundo estadistico cono-
cido y preparando la eclosién de la inferencia estadistica.

Fisher tenia diecinueve afios cuando ingresé en la Univer-
sidad de Cambridge y veintinueve cuando, en 1919, acepté un
puesto como estadistico en la Estacién Agricola Experimental de
Rothamsted. Alli, rodeado de patatas, fertilizantes y ratones, ci-
mento gran parte del éxito y la fama de su carrera investigadora.
Durante los aiios veinte, Fisher recogié el testigo de la oleada de
estadisticos crecida en torno a Karl Pearson, consolidando el esta-
tuto cientifico de la estadistica al cohesionar sus fundamentos ma-
tematicos. El estadistico inglés la dotd de una serie de conceptos
y métodos caracteristicos. El vocabulario técnico que redefinié
0 acuii6 para la ocasién es solo la punta del iceberg: poblacién,
muestra, parametro, estadistico, varianza, verosimilitud, prueba
de significacion, aleatorizacién...

Fisher fue el arquitecto que, simultdneamente, puso los pila-
res de la teoria de la estimacion y de la teoria de los test estadisti-
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cos. Mientras que la primera se centra en determinar un estimador
apropiado para cada parametro desconocido, asi como de com-
parar las propiedades de los candidatos, la segunda se preocupa
de someter hip6tesis que establezcan valores concretos del para-
metro al dictado de la experiencia. Cuando un astrénomo realiza
repetidas mediciones de la posicién de una estrella y quiere pre-
decir su posicién real, emplea la teoria de la estimacién. Cuando
dos astrénomos mantienen valores diferentes para la posicién de
la estrella y deciden realizar una observacién conjunta para salir
de dudas, emplean la teoria de los test estadisticos. Pero hay mas.
Fisher es el creador de lo que los estadisticos denominan «disefio
de experimentos», es decir, del uso de la estadistica en el mo-
mento de planear cualquier experimento.

Todo este espléndido bagaje se dio a conocer en el libro Mé-
todos estadisticos para investigadores, publicado en 1925, cuyo
impacto fue tremendo. No tanto por las ventas que cosechd, sino
por la cantidad de investigaciones que motivé, y no solo entre
estadisticos y matematicos, sino principalmente entre ingenieros
agronomos, biélogos, quimicos y cientificos en general. La esta-
distica habia llegado para quedarse.

Esta panoramica no estaria completa si no se mencionase que
la genética fue la otra disciplina que, junto con la estadistica, aca-
pard los pensamientos de Fisher de por vida. Nuestro autor es uno
de los fundadores de la genética de poblaciones, la ciencia que
permitié reconciliar a Darwin con Mendel, es decir, la seleccién
natural de las especies con las leyes de la herencia, asentando de
esta manera la teorfa sintética de la evolucién o neodarwinismo.
No obstante, el interés de nuestro personaje por el tema venia
suscitado por la eugenesia, una inquietante doctrina —colindante
con el racismo— que marcé la primera mitad del siglo pasado,
pero que para Fisher hizo de gozne entre la estadistica y el evo-
lucionismo.

A lo largo de este libro también nos acercaremos a las nume-
rosas controversias cientificas y filoséficas en que se sumergié
Fisher, muchas de las cuales aiin perduran, y que son una prueba
més de la vitalidad de la estadistica. La teoria estadistica cldsica,
tal como hoy la conocemos (conteniendo la estimacién, el con-
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traste de hipétesis, el disefio de experimentos y el muestreo), es
fruto de dos hombres: Ronald Aylmer Fisher y Jerzy Neyman,
cuyas contribuciones muchas veces aparecieron en paralelo, com-
plementiandose pero también contradiciéndose. A ninguno de los
dos estadisticos le gusté nunca ver asociado su nombre al del
rival, pese a que al comienzo mantuvieron una relacién amistosa.
El rabioso antagonismo entre ambos no terminé hasta la muerte
de Fisher, porque para este las aportaciones de Neyman no hacian
sino corroer las suyas propias.

El estadistico britanico reflexioné profundamente sobre el
papel que corresponde a la inferencia estadistica en el método
cientifico, entrando con ello en polémica con la mayoria de sus
colegas. Uno de los problemas favoritos de los filésofos, de Aristé-
teles a Hume, se convirtié en idea fija del pensamiento fisheriano.
Nos referimos, claro est4, al problema secular de la induccién, que
él concatend con la probabilidad y la estadistica. Las inferencias
inductivas establecian, por asi decir, conclusiones probabilisticas.

Supongamos por un instante que somos médicos y nos plan-
teamos, a propdsito de un paciente, la hipétesis de si padece tuber-
culosis. De cara a examinar la validez de esta hipétesis, le hacemos
una prueba rutinaria con rayos X que da negativa. Obviamente, este
resultado no es concluyente, porque toda prueba médica puede
fallar, presentando lo que suele denominarse un «falso negativo»
(de la misma manera que a veces se obtienen «falsos positivos»).
Nos encontramos, pues, ante un genuino test estadistico. En esta
situaciéon podemos formularnos tres preguntas distintas:

1. A partir del dato, ;qué debemos creer y en qué grado? ;Cudl
es la probabilidad de que el paciente tenga tuberculosis sa-
biendo que ha dado negativo en el test?

2. ;Qué informacién aporta el dato sobre la verosimilitud de
la hipétesis? ;Podemos inferir que no presenta la enfer-
medad?

3. Dado el dato, ;qué debemos hacer? ;Aceptamos o rechaza-
mos la hipétesis de que tiene tuberculosis?
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Mientras que la primera pregunta se centra en la creencia, la
segunda lo hace en la evidencia y la tercera en la decisién. Como
tendremos ocasion de explicar, Fisher intenté responder al se-
gundo enigma. Los estadisticos bayesianos contestan, por su parte,
al primero, y los estadisticos que siguen las ensefianzas de Neyman
lo hacen al tercero. Bayesianos y frecuentistas —incluyendo bajo
este rétulo tanto a los partidarios de Fisher como de Neyman—
aglutinan los dos polos que roturan el campo de la estadistica.

Es un hecho que la aportacién de Fisher cambi6 el paradigma
cientifico de la época; pero no es ficil discurrir el modo en el
cual la estadistica se convirtié por su mano en una ciencia per
se, en una disciplina auténoma, partiendo de ser un apéndice de
otras disciplinas como la astronomia, la sociologia o la biologia.
La naturaleza de la estadistica, que engloba contenidos y aplica-
ciones de lo mas diverso, es sumamente problematica y para nada
resulta sencillo determinar cuél es el nexo que dota de unidad a
su campo, més alld de un ramillete de herramientas matemaéticas.

La convergencia de varias disciplinas naturales y sociales po-
sibilité la configuracién de la estadistica y, al mismo tiempo, aun-
que resulte paraddjico, su emancipacion respecto de ellas. Desde
los juegos de azar, las leyes estadisticas —cuya regularidad se
revela a la escala del colectivo, no del individuo— se radiaron a
la astronomia y la geodesia, la sociologia, la biologia, la agricul-
tura, la industria, etcétera. Las monedas, los dados, las barajas y
las urnas son el modelo que utilizamos para razonar estadistica-
mente sobre los astros, las personas, los genes, las cosechas o
la produccién de coches. Para los antiguos, la probabilidad y la
estadistica aparecian en la observacién de la naturaleza. Desde
Fisher lo hacen preferiblemente en el muestreo, cuando se extrae
una muestra aleatoria de una poblacién, aunque esta tltima no sea
maés que un producto de la imaginacion del estadistico.

Ronald Aylmer Fisher hizo de la estadistica una ciencia a
medio camino entre la matemaética y la experiencia, donde la con-
frontacién con problemas tangibles estimula su crecimiento tanto
0 mas que los problemas tedricos. Son los materiales demografi-
cos, econdmicos o sanitarios los que constituyen esta ciencia y le
otorgan su preeminencia actual. Sin su estigma se reduciria a una
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disciplina marginal, teorética. La estadistica se entreteje con una
pléyade de ciencias experimentales, proyectando luz sobre sus
campos y funcionando, muchas veces, como una suerte de geo-
metria de las inferencias. Solo asi se comprende c6mo ha conquis-
tado casi todos los espacios a lo largo del siglo xx. Su irrupcién se
inserta dentro de la gran revolucién tecnolégica del siglo pasado.
Es un patrén de objetividad y estandarizacién que se aplica en
las mediciones oficiales, los procesos de fabricacion o las inves-
tigaciones farmacéuticas. Sirva como ejemplo que la nocién de
una poblacién como una cifra exacta apenas tuvo sentido hasta
que no hubo instituciones estadisticas encargadas de definir lo que
significa y de establecer con precisién cémo estimar el nimero
de habitantes, trabajadores o votantes de un pais. La estadistica
ha generado un mundo que se ha ido haciendo numérico hasta el
tltimo de sus rincones.

Y la chispa de este fuego que hoy nos calienta la encendio,
desde luego, nuestro protagonista. Un cientifico excepcional, en
su inteligencia y en su arrogancia. Nadie como él ahondé tanto
en los fundamentos de la estadistica. Su obra es la columna verte-
bral de la ciencia que hoy conocemos. Ahora, cojan aire y prepa-
rense para bucear en el océano de la ciencia estadistica.
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1890 Ronald Aylmer Fisher nace el 17 de

febrero en una localidad del extrarradio

de Londres.

1909 Ingresa en la Universidad de

Cambridge, donde estudia matematicas,

astronomia, mecanica estadistica,
teoria cudntica y biologia.

1915 Fisher se anota su primer gran tanto
al deducir la distribucién del coeficiente
de correlacién en el muestreo. La
demostracién se publica en Biometrika,
la revista editada por Karl Pearson.

1917 La sintonia entre Fisher y Pearson
comienza a resquebrajarse como
consecuencia de las dsperas criticas
que se dirigen.

1919 Fisher ingresa en la Estacién Agricola
Experimental de Rothamsted.

1922 Plantea los conceptos centrales de la
inferencia estadistica en su articulo
«Sobre los fundamentos matematicos
de la estadistica teéricax».

1925 Publica Métodos estadisticos para
investigadores, uno de los libros que
mas ha hecho por la implantacion
y difusion de la estadistica entre
cientificos e ingenieros.

1930 Aparece la monografia La teoria
genética de la seleccién natural, donde
demuestra que la herencia mendeliana
es compatible con el darwinismo.

1933 Tras el retiro de Karl Pearson, Fisher
se hace con el control de la mitad
del departamento que lideraba en
el University College de Londres:
la citedra de Eugenesia. La citedra
de Estadistica pasa a manos del hijo,
Egon Pearson.

1935 Se publica El diseiio de experimentos,
libro de cabecera para los cientificos
que querian sacar el maximo partido
a sus experimentos empleando
herramientas estadisticas. Se inicia la
polémica con Jerzy Neyman y Egon
Pearson a propésito de las pruebas
de significacion y los contrastes de
hipétesis.

1943 Regresa a Cambridge para ocupar
la citedra de Genética.

1955 Los rescoldos de la disputa mantenida
con Neyman y Pearson se reavivan
intensamente con motivo del articulo
incendiario que Fisher presenta en la
Real Sociedad de Estadistica sobre
la inferencia inductiva.

1958 Fisher polemiza sobre la relacién
entre el hdbito de fumar y el cancer
de pulmén, negando que se haya
demostrado su asociacion.

1962 Muere, como consecuencia de un
cancer de colon, el 29 de julio en
Adelaida (Australia), donde pasé
sus ultimos afios de vida como
investigador emérito.
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CAPITULO1

La estadistica antes de Fisher

A finales del siglo xix los métodos estadisticos se
encontraban desperdigados por varios campos bastante
distanciados. La astronomia custodiaba las aportaciones de
Gauss y Laplace relativas al método de minimos cuadrados,
la ley del error y el cdlculo de probabilidades. La curva
normal era de uso comun en la sociologia y en la fisica
de gases, gracias a la semejanza entre las moléculas
de un gas y los ciudadanos de un pais. Pero seria
dentro del perimetro de la biologia evolutiva
donde aparecerian las principales
novedades estadisticas del siglo.






Ronald Aylmer Fisher nacié el 17 de febrero de 1890 en East
Finchley (Londres). Sus padres, tras el nacimiento de sus dos pri-
meros hijos (Geoffrey y Evelyn), decidieron llamar a su tercer
hijo Alan, pero su temprana muerte les hizo adoptar una llamativa
supersticion: todos sus hijos sin excepcién llevarian una «y» en el
nombre, incluyendo el més joven de los siete que tuvieron, Ronald
Aylmer. Desde muy pequeiio Ronald demostré tener un talento
especial para las mateméticas. Con seis afios, su madre comenzoé
a leerle un libro divulgativo de astronomia, que desperto en él un
interés que no le abandond en la infancia ni en la adolescencia.
Sin embargo, desde los dias de la escuela, su vista mostré ser muy
pobre: padecia una miopia extrema, de manera que los médicos le
prohibieron estudiar con luz eléctrica, artificial. Durante las tar-
des, los profesores particulares le ensefiaban sin lpiz ni papel, lo
que le permitié desarrollar una habilidad excepcional para resol-
ver problemas matematicos de cabeza, basiandose en intuiciones
geométricas pero omitiendo los detalles (una costumbre que le
acompand toda la vida).

Cuando tenia catorce afios, su madre murié de un ataque
agudo de peritonitis y, poco después, su padre perdié toda su for-
tuna. Por suerte, Fisher gané una beca para financiarse la univer-
sidad. En Cambridge, donde ingresé en 1909, estudié matematicas
y astronomia, aunque también se interesé por la biologia. Tras
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graduarse, completd sus estudios dentro del campo de la «teoria
de errores», una teoria matematica de gran utilidad en astronomia
¥ que constituyd, junto con la teoria de gases, su primer contacto
con la estadistica. Puede parecer paradéjico que el creador de la
estadistica matematica moderna conociese la disciplina que contri-
buy6 a revolucionar por medio de la astronomia, como si los astros
guardasen el secreto de las encuestas o las elecciones. Para poder
explicar este hecho, y con él la magnitud de la obra de Fisher, es
obligado volver la vista atras, al siglo xix, y rastrear el origen de
los métodos estadisticos a través de varias disciplinas fronterizas.

Generalmente se admite que la estadistica se divide en dos
ramas bien diferenciadas pero interconectadas. Por un lado, la
estadistica descriptiva, que se encarga del andlisis exploratorio de
datos; por otro, la estadistica inferencial (o inferencia estadistica),
encaminada a hacer predicciones en situaciones de incertidum-
bre. El germen de la estadistica inferencial se encuentra en los
juegos de azar y en la astronomia, aunque el conjunto de concep-
tos que se desarrollaron tardé en circular al &mbito social en que
broté la estadistica descriptiva. Esta primera fase abarca, aproxi-
madamente, desde 1650 a 1850. Finalmente, en una segunda fase,
coincidiendo con la segunda mitad del siglo xix, las herramientas
estadisticas conocieron una nueva circulacién: de la astronomia
y la sociologia a la biologia. Pero comencemos por el principio.

DE LAPLACE A LA SOCIALIZACION DE
LA ESTADISTICA

Podemos imaginar la ciencia estadistica como un rio formado por
la confluencia de dos afluentes que discurrian independientes. Por
una parte, el cilculo de probabilidades, que es la base de la in-
ferencia estadistica. Por otra, «la ciencia del Estado», de donde
deriva precisamente el nombre «estadistica», y que tiene méas que
ver con la estadistica descriptiva.

El célculo de probabilidades surgié, pese a las aportaciones
pioneras de Cardano, Galileo y algunos escolésticos, al calor de
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los juegos de azar ya avanzado el siglo xvn. Cartas, dados, monedas
y urnas funcionaron como paradigmas de la naciente «geometria
del azar», segiin atestigua la correspondencia que a partir de 1654
entablaron un austero jansenista y un abogado amante de las mate-
maticas, Blaise Pascal y Pierre de Fermat, a prop6sito de los acerti-
Jos propuestos por Antoine Gombaud, caballero de Méré y jugador
empedernido. El concepto de probabilidad —que como vocablo
ya puede encontrarse en Cicer6n— se les escap6 a los griegos por
carecer de una aritmética simbdlica adecuada, asi como de dados
simétricos (los posibles resultados de su astrdgalo no eran equi-
probables), lo que les impidié postular la regla de Laplace —que ya
se encuentra en Jakob Bernoulli (1654-1705) o Abraham de Moivre
(1667-1754)— como axioma, y cuyo enunciado es el siguiente: «La
probabilidad de un suceso es igual al niimero de casos favorables
dividido por el niimero de todos los casos posibles». Ahora bien,
conviene aclarar que el concepto de probabilidad tampoco aparece
en las cartas que cruzaron Pascal y Fermat, y hay que esperar al
Ars Congectandi de Bernoulli, publicado péstumamente en 1713,
para encontrar una discusién explicita de la nocién.

En esta obra, Bernoulli partié de los problemas que habia
abordado Christiaan Huygens en su libro De Ratiociniis in Ludo
Aleae (1657), aplic6 la combinatoria a su resolucién y, lo que es
mas importante en relacién con la estadistica, present6 el «teo-
rema dureo» (una versién de la ley de estabilidad de las frecuen-
cias) y discutié por vez primera el problema de la probabilidad
inversa: ;cuantas observaciones hacen falta para estimar una pro-
babilidad a partir de la frecuencia? El matematico suizo fue pio-
nero en plantearse la posibilidad de inferir la probabilidad de un
suceso a posteriort (a partir de la experiencia) cuando no puede
deducirse a priori (antes de la experiencia, mediante razonamien-
tos légicos o psicolégicos).

A caballo entre los siglos xvin y xix, Pierre-Simon de Laplace
(1749-1827) complet6 estos avances, fusionando el cilculo alge-
braico de probabilidades con el andlisis matematico en su obra
Teoria analitica de las probabilidades (1812). Si antes de €, con
contadas excepciones, el cilculo de probabilidades se servia del
algebra, a partir de él lo haria basicamente del analisis, por medio
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EL TEOREMA AUREO DE BERNOULLI

Este teorema, conocido hoy simplemente como teorema de Bernoulli, afirma
que la frecuencia relativa de un suceso tiende a aproximarse a un nimero fijo
—la probabilidad del suceso— conforme aumenta el niumero de repeticiones
del experimento aleatorio. Formalmente: dados un suceso A, su probabilidad
p de ocurrencia y n pruebas independientes para determinar la ocurrencia
o no ocurrencia de A; si fes el niumero de veces que se presenta 4 en los n
ensayos y € es un numero positivo cualquiera, la probabilidad de que la fre-
cuencia relativa £/n discrepe de p en mas de & (en valor absoluto) tiende a
cero al tender n a infinito. Es decir:

IimPUfmpI > e] =0.
r= \p

Reciprocamente, la probabilidad de que la frecuencia relativa se estabilice
a largo plazo tiende a 1 (lo cual no quiere decir que, eventualmente, no
pueda haber desviaciones, esto es, rachas contrarias, «cisnes negros»). Asi,
por ejemplo, la frecuencia relativa con que sale cara al lanzar al aire una
moneda legal se acerca a 0,5 (su probabilidad) cuando la lanzamos un nu-
mero suficiente de veces. En la época, el conde de Buffon lanzé 4 040 veces
una moneda y obtuvo 2048 caras, es decir, el 50,69 % de las veces. Este
teorema, por tanto, formalizaba la ley del azar o ley de estabilidad de la
frecuencia: hay —por decirlo con un término debido a Bernoulli— «certeza
moral» (probabilidad de 0,999) de que a la larga la frecuencia relativa de un
suceso no se desvia significativamente de su probabilidad (véase la figura).
Era la «ley de los grandes nimeros» —empleando la expresion acufada en
el siglo xix por Siméon Denis Poisson (1781-1840)— en su forma mas sen-
cilla. En efecto, mientras que el teorema de Bernoulli nos asegura que la
frecuencia relativa con que sale cara al tirar una misma moneda sucesivas
veces tiende a estabilizarse, la ley de los grandes nimeros nos asegura que
la frecuencia relativa con que se obtiene cara al lanzar sucesivas monedas
también se estabiliza, aunque cada moneda tenga una probabilidad de cara

de las funciones generatrices. Laplace definié con rigor el con-
cepto de probabilidad y discutié ampliamente el problema de la
probabilidad inversa, redescubriendo el teorema de Bayes (solo
llamado asi por Augustus de Morgan muchos afios después, que
vindicd la prioridad de su compatriota). Ademas, sent6 las bases
de la inferencia estadistica bayesiana, que empleé para prede-
cir tasas de matrimonios y proporciones de nacimientos segin
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distinta. P.L. Chebyshev y la escuela rusa continuarian el estudio de las leyes
de los grandes numeros, que generalizan el teorema dureo. Para Bernoulli el
teorema posibilitaba calcular empiricamente las probabilidades desconoci-
das. Permitia definir la probabilidad de una forma obijetiva, invirtiendo el teo-
rema. En efecto, si la frecuencia se aproxima a la probabilidad segun crece
el nimero de observaciones, épor qué no definir la probabilidad a partir de
la frecuencia? Mediante el recurso a la induccién parecia factible definir la
probabilidad como el limite de la frecuencia, y no ya hacerlo de una forma
meramente légica o subjetiva (como un grado de creencia). No obstante,
el matematico francés afincado en Inglaterra —por su irredento calvinismo,
era hugonote— Abraham de Moivre, famoso por su tratado La doctrina de/
azar (1718), defendia que la regularidad estadistica que postulaba el teorema
aureo necesitaba obligatoriamente del concurso de Dios para funcionar. Fi-
sher, como tendremos ocasiéon de explicar, heredoé esta crisis abierta en la
interpretacion de la probabilidad.
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el sexo. Y utilizo la teoria de probabilidades en la resolucién de
miiltiples problemas de la mecanica celeste: por ejemplo, para
examinar la distribucién de las 6rbitas de los cometas como si se
tratara de una serie de cuerpos proyectados aleatoriamente en el
espacio, como dados lanzados sobre una mesa. Sin embargo, la
aplicacion de mayor envergadura vino de la mano de la «teoria de
errores» que en su dia estudiara Fisher.
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En el periodo que abarca de 1770 a 1820 se desarrollaron los
métodos estadisticos basicos en conexién con la astronomia, ya
que esta ciencia requeria de un estudio cuidadoso del error. Se
trataba de reducirlo al minimo a la hora de estimar la posicién de
un planeta o una estrella a partir del conjunto de observaciones.
Un astrénomo quiere determinar la posicion real del astro tras
haber realizado una serie de mediciones. Laplace interpreté que
la posici6n real de la estrella funcionaba como causa de las posi-
ciones observadas, dependiendo los errores del azar. En estos tér-
minos, mediante una utilizacién ingeniosa del teorema de Bayes,

EL TEOREMA DE BAYES

En una memoria de 1773 titulada «Sobre la probabilidad de las causas de los
sucesos», Laplace se planteaba que las situaciones en las que interviene el
azar son, generalmente, de dos tipos. En el primero, el azar aparece en los
resultados. Por ejemplo: conocemos la composicion de una urna en la que
hay bolas blancas y negras, y nos planteamos cuél serd el resultado de una
extraccion. A partir de las causas (la composicion de la urna, que conocemos),
calculamos la probabilidad de los resultados, de sacar blanca o negra. Hay, en
cambio, un segundo tipo de situacién en la que el azar no aparece en los resul-
tados sino en las causas. Conocemos el resultado de la extraccion (ha salido,
pongamos por caso, una bola negra) y queremos calcular la composicién de
la urna, que nos es desconocida. A partir de los resultados (ha salido negra),
determinamos la probabilidad de las causas, de cada posible composicién de
la urna. Pasamos, pues, de los efectos a las causas. Laplace enuncié y demos-
tré el teorema que descubrié el reverendo Thomas Bayes (1702-1761) y que
se publicé en una memoria pdstuma de 1763, pero que seguro desconocia
(los matematicos franceses no solian leer a los ingleses). Este teorema afirma
que si {A, A,.., A} forman un conjunto de sucesos mutuamente excluyentes
y exhaustivos, P(A) son las probabilidades a priori de los sucesos y P(BIA)
son las verosimilitudes (la probabilidad de observar el efecto B supuesta la
causa A), entonces la probabilidad a posteriori de cada suceso viene dada por:

P(alB)= LAY PEIA)
D P(A)PBIA,)

o=l

Lo que aqui nos interesa es explicar la idea latente tras la férmula de Bayes
que redescubrid Laplace, por cuanto fue uno de los caballos de batalla de
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concluyé que existe una curva que representa la distribucion del
error en torno al valor real (figura 1, pag. siguiente). La curva es
simétrica y decreciente a partir de ese valor central, en el sentido
de que cuanto mas nos alejamos de él menos probable es que co-
metamos tanto error al medir. En consecuencia, lo més probable
es que el valor que elijamos como real (la media aritmética de
los resultados) se encuentre en un entorno de ese valor central,
donde la curva alcanza su maximo. Resolviendo una ecuacion di-
ferencial, Laplace llegé a que la curva de la distribucién de los
errores viene dada por una funcién de tipo exponencial.

Fisher. Imaginemos una urna que
puede tener dos composiciones
diferentes: la primera contiene
2 bolas blancas y 3 bolas negras,
y la segunda, 3 blancas vy 2 ne-
gras, tal como muestra la figura.
Se extrae una bola al azar y re-
sulta ser negra, équé composi-
cién de la urna es mas probable?
Intuitivamente, a la luz del color
de la bola extraida, parece claro
que la primera composiciéon
tiene que ser mas probable gue
la segunda (dado que en esta Ul-  si hemos extraido una bola negra, el teorema de
tima hay menos bolas negras). E|  Bayes concluye que la probabilidad a posteriori
teorema de Bayes no hace sino de la composicién de la izquierda es mayor

N = que la de la derecha.
cuantificar numéricamente esta
intuicién. Las dos causas que
han podido originar el suceso «sacar bola negra» son, precisamente, las dos po-
sibles composiciones de la urna. Si se supone a priori que ambas composiciones
son igualmente probables (0,5 para cada una de ellas), la utilizacién de la férmula
de Bayes lleva a que la probabilidad de la primera composiciéon ha subido, tras
la extraccion de la bola negra, a 0,6, mientras que la probabilidad de la segunda
composicién ha bajado a 0,4. Las probabilidades a priori (0,5 y 0,5) han sido rec-
tificadas a posteriori (0,6 y 0,4). Un resultado que parece incontrovertible, puesto
que en la primera composicién hay mas bolas negras que en la segunda v, por lo
tanto, cabe esperar una mayor probabilidad de que la bola haya sido extraida en
esas condiciones. Para Laplace, al igual que para Bayes, este poderoso teorema
posibilitaba aprender de la experiencia y, en el limite, legitimar la induccion.
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Mientras que Laplace, a fin de combinar las observaciones su-

El método

de minimos
cuadrados sirve
para ajustar sobre
el conjunto de
observaciones una
trayectoria que
minimice el error
cuadratico.
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cesivas del astro en una trayectoria, buscaba minimizar la suma de
los errores absolutos, es decir, de las diferencias en valor absoluto
entre el valor real y los valores observados, otros astrénomos se
centraron en minimizar la suma de los errores cuadriticos, de los
cuadrados de los errores (los cuadrados se toman para dar el mismo
valor a una discrepancia por defecto que por exceso), un método de

estimacion que en seguida se revel6
como generalizable a mas variables
y més sencillo de cémputo que el
que ideara Laplace. Era el método
de minimos cuadrados (figura 2).
Este método fue dado a conocer
por Adrien-Marie Legendre (17562-
1833) en 1805, en su libro Nuevos
métodos para la determinacién de
las érbitas de los cometas. Pero un
joven matematico alemén, llamado
Carl Friedrich Gauss (1777-1855),
afirmé haber sido el primero en
utilizarlo para predecir la érbita del
asteroide Ceres, descubierto el pri-
mer dia del siglo xix, el 1 de enero
de 1801.



En su obra Teoria del movimiento de los cuerpos celestes
(1809), Gauss expuso, en el contexto de la teoria de errores, el
método que habia inventado en secreto para ajustar una curva
dentro de una nube de puntos. Demosiré que la distribucién de
los errores estd relacionada con el método de minimos cuadrados.
Una vez determinada la curva que minimizaba el error cuadra-
tico, Gauss observé que los errores cometidos en la aproximacion
se distribuian aleatoriamente alrededor de un valor medio. Esta
distribucién simétrica con forma de campana era la denominada
distribucion normal o campana de Gauss (figura 3), aunque en
la época fue conocida simplemente como ley del error. Recipro-
camente, Gauss demostré que si se suponia que los errores se
distribuian de acuerdo con esta ley general, la funcién de mini-
mos cuadrados era la que minimizaba la probabilidad de error o,
equivalentemente, la que hacia mas verosimiles las observaciones
(aunque en un primer momento no razono asi, sino que emple6 el
teorema de Bayes inspirdndose en Laplace).

No mucho maés tarde, Laplace importo los valiosos hallazgos
del matemaético aleméan al dominio de la teoria de la probabilidad,
anadiendo un resultado propio: el teorema central del limite, que
afirma que si una medida es el resultado de la suma de un gran
numero de factores sometidos a error, esta se distribuira normal-
mente con independencia de cémo lo haga cada uno de los fac-
tores en particular. Este teorema mostraba que la aproximacion

{ FIG.3
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Ley de los errores
segun Gauss:
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La probabilidad
de obtener un
cierto nimero de
caras al lanzar una
moneda 50 veces
presenta una
distribucion de
probabilidad que
se aproxima ala
curva normal.
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de la binomial a la normal, desarrollada por De Moivre como una
herramienta de calculo sin significado probabilistico, no era sino
un caso particular de un resultado mucho més general. Cualquier
suma o media, y no inicamente el niimero de éxitos en n experi-
mentos (lo que habia probado De Moivre), se distribuye aproxi-
madamente como una normal si 7 es lo suficientemente grande
(figura 4). En otras palabras, este teorema justificaba que, bajo
ciertas condiciones muy generales, era plausible modelar una va-
riable bajo estudio como si proviniese de una distribucién normal.
A este cimulo de métodos y teoremas es a lo que los historiadores
de la ciencia se refieren con la sintesis de Gauss-Laplace.

Si uno de los cursos progenitores de la estadistica se encuen-
tra en la francesa Théorie mathématique des probabilités, el otro
hay que buscarlo en la «ciencia del Estado», es decir, en el anilisis
de datos socioeconémicos relacionados con el auge del comercio
y los estados-nacién. Con més precision, en la confluencia de dos
tradiciones iniciadas también a mediados del siglo xvi: la Political
Arithmetic inglesa y la Statistik alemana. El término «aritmética
politica» fue introducido por William Petty, que pretendia ope-
rar sobre el cuerpo politico imitando a la nueva filosofia natural,
con el propésito de mejorar la toma de decisiones. Dentro de esta
rama se encuentran las observaciones sobre tablas de mortalidad
debidas a John Graunt en 1662, cuya indagacién de estos datos
demogréificos era relevante para las rentas vitalicias y las primas
de seguros. Es de destacar que estudiando estas tablas los her-
manos Huygens entrevieron los juegos de azar como un modelo
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EL PODER DE UN GRAFICO ESTADISTICO

John Snow (1813-1858) fue un destacado médico inglés pionero en el di-
bujo de una suerte de pictograma orientado a demostrar que la virulenta
epidemia de coélera que azotd Londres en 1854 se debia a un pozo de agua
contaminada, alrededor del cual se acumulaban las victimas (representadas
por puntitos), y no, como era creencia habitual, por el contagio entre en-
fermos y sanos a través del aire. Las mas de 700 personas que murieron en
menos de una semana en el barrio del Soho lo hicieron porque todas ellas
bebian de una fuente (marcada con un aspa en la calle Broad, en el centro
de la imagen), contaminada con heces fecales. La ilustracién corresponde al
mapa original de John Snow. Los puntos representan las personas afectadas
por la enfermedad, mientras que las cruces corresponden a los pozos de
agua de los que bebian.
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para inferir conocimiento acerca de otras porciones del mundo, y
acufiaron el concepto de esperanza de vida a partir de la nocién
de esperanza o ganancia mas probable de un juego. Por su parte,
el término aleman stalistik aparecié en el contexto del interés
por caracterizar a los nuevos estados —Prusia, en concreto— a
través de sus estadisticas, de sus niimeros e indices, puesto que
los impuestos aduaneros entre los Estados alemanes se fijaban de
conformidad con el niimero de habitantes de cada uno de ellos.
La tradicién inglesa y la alemana convergieron hacia finales del
siglo xvm en las islas Brit4nicas, pero no asimilaron las matematicas
francesas hasta bien entrado el siglo xix. A partir de ese momento el
estudio cuantitativo de la politica y de la sociedad tomo prestadas
las herramientas matematicas de uso ya comiin en la doctrina del
azar y la astronomia. La socializacién de la teoria de probabilida-
des francesa se debe al astrénomo belga Adolphe Quetelet (como
vemos, la conexion con la astronomia no es casual), aunque su
lenta composicién con la ciencia del Estado de raigambre inglesa
y prusiana hubo de esperar a que tanto la obra de Laplace como
la de Quetelet fuesen dadas a conocer en Gran Bretana gracias al
astrénomo John Herschel y al 16gico Augustus de Morgan.

EL «<HOMBRE MEDIO» DE QUETELET

Con la avalancha de nimeros impresos que se produjo al final
de la era napolednica, el foco de las estadisticas pasé de ser el
nimero de nacimientos, muertes y matrimonios al niimero de
suicidios, asesinatos o analfabetos. Estas cifras relativas a la cri-
minalidad y la educacién fueron el caldo de cultivo en el que se
engendré la idea del <hombre medio» (homme moyen), que favo-
reci6 la erosién del determinismo.

Adolphe Quetelet (1796-1874) complet6 sus estudios en Paris,
donde a través de su maestro Joseph Fourier tomé contacto con
la sintesis Gauss-Laplace. La perplejidad de Quetelet por las re-
gularidades de la estadistica surgié cuando, con el aumento de
la burocracia, observé la terrible exactitud con que se producian
los crimenes: las estadisticas criminales en Francia se sucedian
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con valores anuales casi constantes. Entre 1825 y 1830 el niimero
anual de acusados estaba siempre alrededor de 7100, y el de con-
denados, en torno a 4400. A su regreso a Bruselas se interesé por
el planteamiento de censos y encuestas.

Inicialmente, llevado por su deseo juvenil de ser escultor, Que-
telet aplicé las nociones probabilisticas que manejaba con soltura
en astronomia y geodesia a la medicién del cuerpo humano (al as-
trénomo belga le debemos la definicién del indice de masa corporal
que determina la obesidad). En 1835 anuncié que la ley del error
—o «ley de las causas accidentales», como preferia denominarla—
se aplicaba a las caracteristicas humanas, fisicas y de comporta-
miento, siendo el concepto central el de promedio, pues el valor
medio de la distribucién de la caracteristica bajo estudio repre-
sentaba al <hombre medio». Ciertas mediciones antropométricas,
como la estatura de los reclutas franceses o el térax de los sol-
dados escoceses, se distribuian aproximadamente como la curva
acampanada de Gauss. En efecto, en 1845, tras tabular y represen-
tar los datos relativos a los perimetros de pecho de 5738 soldados
escoceses, tomados de una revista médica de la época, observo el
parecido entre la curva de frecuencias resultante y la que aparecia
ala hora de medir la posicién de una estrella (figura 5).

FIG.5
Posicién de una estrella

Soldados escoceses
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A la izquierda,
curva de
frecuencias
correspondiente
a la amplitud de
pecho de 5738
soldados
escoceses segun
Quetelet (1845).
A la derecha,
curva de
frecuencias de
los errores
cometidos en la
observacion de
una estrella segun
el astrénomo
Friedrich W.
Bessel (1818).
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Pero mientras que el astrénomo media muchas veces la
misma estrella, existiendo un valor real de la posicién, Quete-
let mostraba datos de distintos soldados y detras de su curva no
habia un valor real del perimetro de pecho. Quetelet argumenté
que medir el perimetro de pecho de muchos soldados era como
medir muchas veces el perimetro de pecho de un mismo soldado,
del «soldado medio». Y, dando un enorme salto ontolégico, pro-
puso que la razén es que la naturaleza apunta a una especie de
hombre promedio, y que los que est4n en los extremos de la cam-
pana son desviaciones azarosas del canon ideal. Su obra marcé el
inicio de la fisica social y sirvi6 de propaganda internacional del
valor de las estadisticas, catalizando la formacién de la Sociedad
Estadistica de Londres, entre otras instituciones estadigrafas.

No obstante, no hay que olvidar que la conexién de la pro-
babilidad y la estadistica con la sociedad ya estaba de forma em-
brionaria en Laplace, puesto que el astrénomo francés recogio
el testigo de la «aritmética moral» esbozada por Condorcet en
su Ensayo sobre la aplicacion del cdlculo a la probabilidad de
las decisiones (1785), cuya meta puede retrotraerse, a su vez, a
la tdltima parte del tratado de Bernoulli, que estaba dedicado a la
aplicacion del calculo de probabilidades a cuestiones civiles, mo-
rales y econémicas, buscando aunar la sabiduria del fil6sofo con
la prudencia del politico, segin sus propias palabras. En el po-
pular Ensayo filosdfico sobre las probabilidades, publicado ori-
ginalmente como introduccién a la segunda edicién de la Teoria
analitica de las probabilidades (1814), Laplace dejé escrito que
«los problemas fundamentales de la vida no son en el fondo més
que problemas de probabilidades». No era un simple matrimo-
nio de conveniencia. Para Laplace la probabilidad era la base de
la inferencia cientifica, de la teoria del error, de la filosofia de la
causalidad y, atencién, de la cuantificacién de la credibilidad de
los testimonios. Si el calculo de probabilidades se habia revelado
tan eficaz en las ciencias naturales, ;jpor qué no iba a serlo tam-
bién en las ciencias politicas y morales? En su opisculo, Laplace
equiparaba las decisiones de una asamblea o las sentencias de un
tribunal con las posibles bolas que podian extraerse de una urna,
a fin de determinar la probabilidad de error en funcién del niimero
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de diputados que formaran la asamblea o del niimero de votos que
hiciesen falta para condenar al acusado, perfeccionando asf los
calculos al respecto que hiciera Condorcet antes de la Revolucion.
No deja de tener su gracia, como no dej6 de advertir Laplace, que
una ciencia que comenzé con consideraciones sobre monedas,
dados y barajas se convirtiera pasado el tiempo en uno de los
objetos mas importantes del conocimiento humano.

«La urna a la que interrogamos es la naturaleza.»
— AporrHE QUETELET (1845).

De hecho, Siméon Denis Poisson, el discipulo méas prome-
tedor de Laplace, contribuyé significativamente a la orientacién
social que tomo la estadistica con Quetelet. En 1835, mientras tra-
bajaba en cuestiones de matemaética electoral y jurisprudencia,
formulé la «ley de los grandes nimeros», que proveyé una mejor
base para aplicar la matematica de las probabilidades a los pro-
blemas sociales, explicando la estabilidad estadistica a través de
los cambios sociales. Grandes nimeros de individuos, actuando
independientemente en un sistema, producen regularidades que
no dependen de su coordinacién mutua, de manera que es posible
razonar sobre la colectividad sin ningin conocimiento detallado
de los individuos. En consecuencia, no se podia predecir el com-
portamiento particular de un individuo, pero si el comportamiento
promedio de la poblacién. Se trataba de otra manifestacién méas de
la regularidad estadistica del mundo. Poisson y Quetelet eran dos
astrénomos que veian en la conducta y en las caracteristicas de
sus millones de conciudadanos regularidades dignas de los astros.

En suma, Quetelet partié de la curva de Gauss, deducida pre-
viamente como ley del error o como distribucién limite en juegos
de azar como el lanzamiento de monedas, y aplicé esta misma
curva a fenémenos biol6gicos y sociales donde la media no es una
magnitud real, transforméndola en una cantidad real. La media no
era un rasgo de un individuo concreto, sino una caracteristica de
la poblacién que simplificaba los datos de partida. Servia para re-
presentar a la poblacién en el cardcter bajo estudio, de manera que
los diversos individuos se mostraban como desviaciones mayores o
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menores de este valor, del hombre medio. Para Quetelet, las varia-
ciones observadas eran simples perturbaciones, errores naturales.
Desinteresandose por el estudio intrinseco de la variabilidad, el as-
trénomo belga identificaba la media con lo justo y lo correcto. Con
la recepcion de sus trabajos en Inglaterra la curva acampanada fue
rebautizada como ley normal. Las personas normales eran aquellas
que se ajustaban a la tendencia central de las leyes sociales que
cuantificaban la estatura, el peso o la inteligencia. La sociologia
proseguiria en esta direccién al catalogar a aquellas personas cuyos
valores se encontraban en los extremos como patolégicas, «anor-
males». Pero la influencia de la obra de Quetelet no se detiene aqui,
pues puso a James Clerk Maxwell (1831-1879) en el camino de la
mecanica estadistica: las moléculas de un gas son como los indi-
viduos de una poblacién, ya que el desorden a escala individual se
transforma en un orden a escala poblacional. No en vano, la teoria
de gases fue la otra materia —junto con la teoria de errores— que
permitié a Fisher aprender los métodos estadisticos clasicos.

SIR FRANCIS GALTON, EL «HOMBRE MEDIOCRE»
Y LA EUGENESIA

Para comprender como los métodos estadisticos pasaron del
campo de la fisica social al campo de la antropologia fisica y, en
especial, a la biologia evolutiva, hay que atender al cambio en el
estudio de la variabilidad estadistica que propicié la aparicién
del darwinismo y la eugenesia. Fue la insuficiencia de las teorias
genéticas de Charles Darwin (1809-1882) lo que anim6 a Francis
Galton (1822-1911), de facto su primo, a tratar de resolver los pro-
blemas de la herencia mediante el andlisis matematico que los
datos biolégicos demandaban.

Galton, que nacié el mismo ano que Gregor Mendel (1822-
1884), era trece afos maés joven que Darwin. Tras estudiar medi-
cina y matematicas gracias a la generosa herencia paterna, se em-
barcé hacia Africa como explorador (entre otros inventos, como
los mapas anticiclénicos, patentd el saco de dormir). A su vuelta
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Este retrato, de
1913, muestra a
un joven Fisher
graduado en
Matemdticas tras
su paso por la
Universidad de
Cambridge, donde
crecid su interés
por la genética

y la evolucién a
raiz de la lectura
de una serie de
articulos de Karl
Pearson.
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a Inglaterra, coincidiendo con la consolidacién de la antropologia
colonialista, se intereso por la evolucién. Galton quedé cautivado
por la lectura del primer capitulo de El origen de las especies
(1859), que aborda la variacién bajo domesticacién, relativa a la
cria de animales, y en seguida estableci6 una correspondencia re-
gular con Darwin que duraria hasta la muerte de este tltimo. Bara-
Jjando la posibilidad de dirigir de forma controlada la seleccién na-
tural de la especie humana, Galton comenz6 a pensar seriamente
en la mejora de la humanidad a través de la crianza selectiva de
los seres humanos. En Genio hereditario (1869), decia:

De la misma manera que se logra una raza permanente de perros o
caballos dotada de especiales facultades para correr o hacer cual-
quier otra cosa, seria factible producir una raza de hombres alta-
mente dotada mediante matrimonios sensatos durante varias gene-
raciones consecutivas.

En 1883, Galton acuiid, precisamente, el término eugenesia
(«ciencia de la mejora de la raza»). Este concepto haria fortuna
en la sociedad britdnica finisecular, preocupada por el declinar
de su imperio tanto en el exterior (frente a otros imperios) como
en el interior (con el avance de las clases bajas, del lumpempro-
letariado, cuyo indice de natalidad era muy superior al de la clase
alta). Y arraigaria en Estados Unidos y en la Alemania nazi, con
la promulgacién de leyes de esterilizacion forzosa para enfermos
mentales e indigentes. El movimiento eugenésico practicamente
no se aplacaria hasta que se apagasen los hornos crematorios en
Centroeuropa y se proclamara la divisién humana en razas como
un mito propio de la antropologia fisica prebélica.

Galton creia firmemente que la poblacién inglesa estaba su-
friendo una suerte de involucién, una degeneracion biolégica que
se transmitia hereditariamente y que se manifestaba en las dificul-
tades militares que atravesaba el Imperio britanico, achacables en
su opinién a la creciente debilidad innata de las tropas. La ciencia
eugenésica debia aportar la solucién al problema favoreciendo
que las mejores estirpes se reprodujesen y limitando la procrea-
cién de las capas mas desfavorecidas.
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A diferencia de Galton, Darwin mantenia una actitud mas
prudente. En El origen del hombre y la seleccion en relacion al
sexo (1871), abordé la cuestion de las razas humanas y, aunque
acepto las teorias eugenésicas, expreso ciertas reservas. Puede
parecer sorprendente que Darwin aceptara estas teorias basadas
aparentemente en la herencia de los caracteres adquiridos popu-
larizada por Lamarck, pero la explicacién del mecanismo heredi-
tario detras de las adaptaciones era una anomalia recurrente para
el darwinismo clésico. La teoria de la «pangénesis», propuesta
por Darwin a falta de otra mejor, era totalmente compatible con
la herencia lamarckiana (aunque Galton difundié, para enfado de
Darwin, los resultados de una serie de experimentos con conejos
que contradecian la existencia de «semillas sanguineas»). Solo el
neodarwinismo, resultante de la sintesis del darwinismo clasico
con la genética mendeliana y poblacional, expulsé al lamarckismo
de la escena cientifica (la causa de las variaciones hereditarias son
las mutaciones en el ADN).

Hacia el final de su vida, Galton incluso escribié una novela
utépica, titulada Kantsaywhere, sobre una sociedad que vivia feliz
bajo preceptos eugenésicos dictados por sacerdotes-cientificos,
que su sobrina (Galton no tuvo hijos en su matrimonio), irritada
por algunas escenas subidas de tono, quemo parcialmente. La in-
fluencia de las ideas galtonianas fue notable, dando alas al darwi-
nismo social y a la introduccién de la estadistica en el estudio de
la psicologia. Los test antropométricos de Galton se transforma-
ron a la vuelta de siglo en los célebres test de inteligencia.

LA LEY DE REGRESION A LA MEDIA Y LA NOCION
DE CORRELACION

La contribucién més duradera de Galton fue la utilizacién de la
estadistica como herramienta destinada a domesticar la variabili-
dad bioldgica hereditaria. Para el polivalente cientifico inglés era
un dogma que uno solo conoce una cosa cuando puede medirla, lo
que a la postre significé la consagracién de la antropologia fisica
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cuantitativa o antropometria. A juicio de Galton, las caracteristi-
cas fisicas, tales como la altura, el peso o los rasgos de persona-
lidad, son heredadas. Galton creia que la unién de dos personas
inteligentes produciria una persona maés inteligente, del mismo
modo que la unién de dos personas altas produciria otra persona
més alta. Sin embargo, los experimentos sobre la herencia que
realiz6 a lo largo de su vida le llevaron a descubrir una nueva
regularidad estadistica, distinta de la esperada, y que denominé
reversién a la mediocridad —mads tarde regresion a la media—
en su libro Herencia natural (1889). Galton empleé este concepto
para designar la relacién que existia entre la estatura de padres e
hijos. Observ6 que si los padres son altos, los hijos generalmente
también lo son, y si los padres son bajos, los hijos son también de

- menor estatura. Pero cuando el padre es muy alto o muy bajo, apa-

rece una apreciable regresién hacia la estatura media de la pobla-
cién, de modo que los hijos retroceden o regresan hacia la altura
media de los padres. Galton extendi6 este resultado planteando
una ley universal sobre la herencia ancestral: cada peculiaridad en
un hombre es compartida por sus descendientes, pero en media
en un grado menor (hoy se sabe que més que una regularidad bio-
légica se trata de una regularidad puramente estadistica, debida
al azar: lo mas probable es que las realizaciones de una variable
aleatoria normal sean préximas a su media o valor esperado).

Hacia 1877 Galton habia descrito este mismo fenémeno expe-
rimentando con el tamaiio de las semillas de generaciones sucesi-
vas de guisantes. Mientras Mendel experimentaba con caracteres
cualitativos (color, rugosidad, etc.) de los guisantes, Galton lo
hacia con caracteres cuantitativos (tamaiio, didmetro). Cuando
repitié su estudio con registros antropométricos (donde, por
cierto, introdujo el uso de los percentiles y revalorizo el uso de la
mediana y los cuartiles), observé con algo de ayuda la siguiente
relacién lineal:

Altura del hijo (en cm) = 85 cm + 0,5 - Altura del padre (en cm).

Se trataba de una de las rectas de regresion. Ademas, conje-
turé que la intensidad de la relacion entre las dos variables —la al-
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EL QUINCUNX

El polifacético Galton buscaba explicar el hecho de
gue ciertas medidas fisicas (como la altura de las per-
sonas o el diametro de los guisantes) se distribuyen
normalmente. Para argumentar que la ley normal era
la ley de la genuina variaciéon y no solo la ley del error,
ided en 1873 el quincunx, un dispositivo cuyo nom-
bre proviene de los sembrados en que cada arbol esta
rodeado por otros cuatro arboles, y que sirve para
ilustrar el teorema central del limite. El dispositivo
consiste en un tablero en el que se introducen unos
guisantes a modo de bolitas por el extremo superior,
que van cayendo rebotando de manera azarosa en
los «arboles» hasta ser recogidos en unos comparti-
mentos separados en el otro extremo. Con este dis-
positivo, Galton demostrd que las bolitas dibujan en
el extremo inferior una campana de la distribucién
normal, como se observa en la ilustracion. Mediante
este ingenioso mecanismo explicaba la prevalencia
de la distribuciéon normal e, incluso, ilustraba la he-
rencia mediante una disposicién en fases. Interrum-

representar las influencias dominantes en la heren-  natural (1889).
cia, observd que adn se dibujaba una curva normal,
aunque mas pequefia y menos dispersa. El cientifico

: = Esquema del guincunx
piendo el paso de las bolitas en alguna zona, para  en el libro Herencia

inglés era verdaderamente un genio en cuanto a transformar representa-
ciones abstractas en modelos fisicos. Con su investigacion, reconcilio la
teoria de errores —segun la cual una acumulacion de desviaciones acci-
dentales da lugar a una distribucién normal— con la herencia, que si bien
tiene desviaciones accidentales, también contiene obvias correlaciones, ya

que cada organismo tiende a semejarse a sus ancestros.

tura del padre y la del hijo— podia cuantificarse numéricamente.
Era la mayor innovacién estadistica de la centuria: la correlacion.

Mientras que la obra de Galton sobre la regresiéon fue el re-
sultado directo de sus investigaciones sobre la herencia, su teo-
ria de la correlacién nacié de los problemas de identificacion
de criminales (un tema en el que fue pionero al introducir el
uso de las huellas dactilares). Galton comprendié en seguida que
en el sistema de identificacién propuesto por el policia francés
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Alphonse Bertillon (1853-1914) habia mucha redundancia. Ber-
tillon registraba la estatura, las dimensiones de los pies, de los
brazos y de los dedos de cada persona; pero estas cuatro medidas
no eran independientes entre si, pues las personas altas suelen
tener los pies, los brazos y los dedos largos. Galton conjeturé que
en esencia se trataba de la misma cuestién que habia rozado en su
estudio de la regresién: la correlacién entre variables. En un ar-
ticulo firmado en 1888, introdujo una primera medida matemaética
de la correlacién, es decir, del grado de dependencia entre varia-
bles, aunque la definicién como coeficiente vendria de la mano
del economista Francis Y. Edgeworth en 1892 y seria redondeada
por el matemético Karl Pearson —a quien presentaremos en el
préximo capitulo— en 1896, que otorgaria parte del prestigio por
el descubrimiento al astrénomo francés Auguste Bravais, que ya
en 1846 habia dado una formulacién matematica similar a la hora
de estudiar los errores correlativos entre las coordenadas de po-
sicién de un objeto. Hoy en dia se lo conoce como coeficiente de
correlacion lineal de Pearson, y permite estudiar correlaciones
positivas y negativas (un caso que Galton no parecié plantearse,
cuando el incremento en la primera variable se traduce en un de-
cremento en la segunda).

Galton siempre rememoraba que la eugenesia, el deseo de me-
jorar las cualidades raciales fisicas o mentales, fue el impulso que
le empujé a estudiar el problema colateral de la variacién estadis-
tica. Hasta entonces, los métodos estadisticos solo se preocupaban
por los promedios colectivos, desinteresdndose por las variaciones
individuales. Para Quetelet, el hombre medio era el centro de gra-
vedad del cuerpo social, alrededor del cual oscilaban los dtomos
sociales, los hombres particulares. Este hombre medio era el canon
de perfeccidn, pues estaba libre de excesos y defectos. Galton reco-
nocia su deuda con Quetelet al referirse a él como la mayor autori-
dad en la estadistica social, por cuanto difundi6 el uso de la curva
normal, no como ley del error, sino como descripcién de la distribu-
cién de las mediciones. Pero entre ambos cientificos se produjo una
transicién fundamental en la concepcion de las leyes estadisticas,
debida en gran parte a la fascinacién de Galton con lo excepcional,
en oposicion a la preocupacién de Quetelet por los promedios.
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Mientras que Quetelet pensaba en la tendencia central y, por
tanto, en la media, Galton, siempre preocupado por la excepcién,
se fijaba en las colas de la distribucién y en la dispersién. Galton
atendia a aquellos individuos que se desviaban ampliamente de la
media por exceso o por defecto: el hombre medio de Quetelet ya
no era el prototipo de perfeccién, sino un hombre mediocre que
necesitaba evolucionar. Lo excelso se encontraba en uno de los
extremos de la curva normal del talento. Este cambio revolucio-
nario solo fue posible cuando la normalidad devino mediocridad
gracias a que la seleccién natural de Darwin y, de forma asociada,
la reforma eugenésica resucitaron el interés por la variabilidad:
las caracteristicas excepcionales ya no eran errores de la natura-
leza, desviaciones del hombre medio ideal, sino variaciones im-
portantes para la mejora de la raza. La estadistica pasé de ser una
herramienta concebida para reducir el error a un modelo para
representar la variacién debida al azar. La reinterpretacion de la
curva normal como la ley de la genuina variacién, en vez que del
mero error, fue el resultado central del pensamiento estadistico
del siglo xix.

«La ley normal habria sido deificada por los griegos,
si la hubieran conocido.»

— Francis Gavton, HERENCIA NATURAL (1889).

En resumen, nuestro protagonista, Fisher, conocié los entre-
sijos de la estadistica gracias a un curioso maridaje de saber as-
tronémico, fisico y natural. A través de la teoria astronémica de
los errores, asimilé la sintesis Gauss-Laplace, en otras palabras,
la yuxtaposicién entre el calculo de probabilidades, el método de
minimos cuadrados y la ley del error. Por medio de la teoria ciné-
tica de los gases, aprendié a modelar colectividades mediante la
distribucién normal. Y, finalmente, los avances en biologia y an-
tropologia auspiciados por Galton le permitieron cobrar contacto
con la principal novedad estadistica decimonédnica: la correlacién.
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CAPITULO 2

Karl Pearson y la escuela
biométrica

La obra de Fisher no puede entenderse sin
contrastarla con la de su inmediato predecesor,
Karl Pearson. En su intento por desarrollar una teoria
matematica de la evolucién, Pearson alumbré algunos de
los conceptos y métodos estadisticos clasicos. Entre los
primeros, estan los histogramas y la desviacién tipica.
Entre los segundos, el analisis de la regresion y el
test de la %% Las rectificaciones que el joven
Fisher haria a varios trabajos de Pearson
conducirian a una enconada rivalidad
de por vida entre los dos.






Durante su estancia en Cambridge, Fisher ley6 los articulos pu-
blicados por el matematico Karl Pearson bajo el sugestivo titulo
de Contribuciones matemdticas a la teoria de la evolucion. Ins-
tigado por la lectura de esta serie de articulos que conjugaban sus
dos aficiones principales (la estadistica y la biologia), Fisher rea-
liz6 su primera investigacién cientifica original. Lo hizo en 1912,
con solo veintidés afios de edad y sin haber terminado atin los
estudios.

Al dejar la universidad, las finanzas familiares no estaban
demasiado boyantes y Fisher no tardé en buscar una ocupacién
como estadistico en una compaiiia mercantil e, incluso, trabajar
durante un tiempo en una granja en Canada. En 1914, de regreso
a Inglaterra, coincidiendo con el estallido de la Primera Guerra
Mundial, traté de alistarse, pero le declararon no apto para el
servicio militar por culpa de su vista maltrecha. En 1917 contrajo
matrimonio en secreto con Ruth Eileen (que, entonces, contaba
con diecisiete afios), con la que tendria ocho hijos, dos nifios y
seis nifias (una de ellas, Joan, la mayor, se casaria con el también
estadistico George E.P. Box). En 1919, tras ejercer como pro-
fesor de Fisica y Matematicas en varias escuelas, llegé su gran
oportunidad, y lo hizo por partida doble. Pearson le ofrecié una
plaza como estadistico en el Laboratorio Galton y, simultanea-
mente, le ofrecieron otra en la Estacién Agricola Experimental
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de Rothamsted, el instituto de investigacién agrénoma con mas
tradicion del Reino Unido.

Fisher resolvi6 el dilema inclindndose por la segunda opcién,
por Rothamsted. La razén principal fue que trabajar en el Labo-
ratorio Galton conllevaba que Pearson tenia que supervisar sus
publicaciones, una condicién que no estaba dispuesto a aceptar.
Ni mucho menos. Sobre todo cuando los puntos de friccién entre
ambos se habfan ido acumulando durante los ultimos afios y se-
guirian haciéndolo: la distribucién correcta del coeficiente de co-
rrelacion, el nimero exacto de grados de libertad en el test de
la %2 («chi-cuadrado»), la eficiencia del método de estimacién
de los momentos... Lo que habia comenzado siendo una relacién
amistosa, acab6 enturbidndose a causa de varios malentendidos.
Pese a su juventud, Fisher corrigi6 el trabajo de Pearson y de sus
colaboradores mas cercanos en varios aspectos, un hecho que
el segundo no terminé de encajar nunca, aunque desde luego el
cardcter altivo que destilaba Fisher no ayudé a mejorar las cosas.
Para poder explicar en qué sentido los errores tedricos de Karl
Pearson impulsaron el despegue de la investigacion de Fisher,
ademas de precipitar la abrupta ruptura entre ambos, es preciso
acercarnos a la figura principal de la estadistica victoriana y su
magna obra.

ENTRE LA ELASTICIDAD Y LA BIOMETRIA

A partir de 1884 Pearson fue profesor de Matemadtica aplicada
y Mecénica en el University College de Londres. Tras acceder
a la cétedra, se habia especializado en teoria de la elasticidad,
ya que en la segunda mitad del siglo xix la elasticidad era el pro-
blema por excelencia de la cosmologia, puesto que la trasmision
electromagnética precisaba de un éter elastico. Pero Pearson
poseia una vocacién no estrictamente cientifica. Gran parte de
su magnetismo personal provenia de su enérgico diletantismo
humanista, un gusto por la literatura, la historia o la filosofia que
ni siquiera cesé cuando se concentré en el cultivo de técnicas
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UN PERSONAJE IMPROBABLE

G ey gy

Karl Pearson (1857-1936) vino al mundo
en el seno de una familia londinense
que pertenecia a la clase media profe-
sional, lo que le permitié graduarse en
Matematicas en Cambridge en 1879 vy
realizar estudios de posgrado en las
universidades de Heidelberg y Berlin,
donde leyod y escribidé incansablemente
sobre muitiples temas: poesia, teatro,
ética, socialismo, derechos de la mujer,
etcétera, y hasta llegd a escribir un
drama, E/ nuevo Werther, publicado
bajo el pseuddnimo de Loki en 1880. En
1892, Pearson publicé La gramética de
la ciencia, un libro que recogia su filo-
sofia de la ciencia, en la que se mez-
clan el idealismo aprendido del filésofo
neokantiano Kuno Fisher y el positi-
vismo expuesto por Ernst Mach, que
hizo suyos en Alemania (no en vano,
Pearson cambio la C de su nombre de
pila por una K tras su estancia). Este libro conocié varias ediciones en vida
del autor, gozando de gran éxito. Albert Einstein, por ejemplo, formé un
pequeno grupo de lectura del mismo en Berna hacia 1902, y su contenido
llegd a influirle en la formulacién de la teoria de la relatividad especial. Una
de las ideas centrales del libro es que la funcién de la ciencia debe limitarse
a describir los hechos observables, evitando cualquier clase de recaida en
la metafisica. Las leyes cientificas no son explicaciones causales, sino re-
sumenes ordenados de los fendmenos. En otras palabras, no nos explican
por qué suceden las cosas, sino que simplemente describen como lo hacen.
Pearson queria promover cientificamente el bienestar nacional y mantenia
que la Ciencia, con mayluscula, tenia que convertirse en la base cultural
comun de la civilizacion. Ademas, al igual que Galton, defendia las bondades
de la eugenesia, manifestando en varias ocasiones su deseo de que aquellos
miembros de la comunidad que presentasen una gran desviacién fisica o B
mental respecto de la media tuviesen una seleccién sexual mas cuidadosa.
El cientifico inglés se mostraba preocupado por el declinar de la nacién
britanica como consecuencia, en su opinién, de la disminucién de la ferti-
lidad en las clases liberales. Pero su creencia en la eugenesia cientifica se
combinaba con una defensa ardorosa del socialismo. En la lucha darwinista
por la existencia entre las naciones, el socialismo parecia imponerse como ¥
una leccion historica.
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estadisticas dentro del dominio de la biologia evolutiva. Sin ir
mas lejos, en El nuevo Werther, obra que Pearson publicé en
1880, exclamaba:

Los gigantes de la literatura, los misterios del espacio multidimen-
sional, los intentos de Boltzmann y Crookes por escudrifiar el labo-
ratorio de la naturaleza, la teoria kantiana del universo y los tltimos
descubrimientos en embriologia, con las maravillosas aventuras
sobre el desarrollo de la vida... ;qué inmensidad més alld de nues-
tro entendimiento!

La metamorfosis de este matemético experto en teoria de
la elasticidad en el primer estadistico en sentido moderno no se
puede explicar si no se tiene en cuenta que se trataba de un pro-
digioso pero anacrénico cientifico renacentista, obsesionado con
la persecucion de la verdad numérica y espiritual. No es casual
que una de las metas a las que aspiraba Pearson fuese que los
futuros estadisticos aunasen las dos culturas (las ciencias y las
letras), interesandose tanto por la resolucién de problemas como
por la historia de la disciplina, a la manera que él mismo escribio,
en sus tiempos mozos, una historia cronolégica de la teoria de la
elasticidad y, ya en su madurez, una ambiciosa biografia en tres
voliimenes de su admirado Francis Galton, asi como una colec-
cién de lecciones sobre los origenes de la estadistica en relacién
con el pensamiento religioso.

Hacia 1892 se produjo un cambio drastico en los intereses
cientificos de Pearson. Por medio de la amistad con Walter Frank
Raphael Weldon (1860-1906), profesor de Zoologia en el Univer-
sity College, a quien habia conocido un afio antes en una reunién
para reformar la universidad, se interesé por el desarrollo de
métodos estadisticos que permitieran avanzar en el estudio de la
herencia y la evolucion, ya que después de la muerte de Darwin
se trataba —con la notable excepcion de las investigaciones de
Galton— de un campo pricticamente moribundo. Es de desta-
car que Pearson habia regresado de su viaje formativo por tierras
alemanas convertido no solo en un ferviente socialista, sino en
especial en un darwinista convencido, ya que habia asistido a las

KARL PEARSON Y LA ESCUELA BIOMETRICA




clases de Emil du Bois-Reymond, hermano del matemético Paul
du Bois-Reymond, en Berlin.

Raphael Weldon precisaba de ayuda con el andlisis de los
datos zoométricos recolectados con el propésito de esclarecer
cémo operaba la seleccién natural, que constituia su hipétesis
de trabajo. En 1890 habia demostrado, basandose en mediciones
realizadas en Decapod crustacea (una especie de cangrejo), que
la distribucién de las variaciones en este animal era casi la misma
que la observada por Quetelet y Galton en el hombre: la ley nor-
mal. Era la primera vez que las técnicas estadisticas desarrolla-
das por Galton en el ambito de la antropologia se aplicaban a la
biologia. Por vez primera se calculaba también un coeficiente de
correlacién organico, entre los tamafios de dos 6rganos. Galton,
que ley6 la memoria en calidad de arbitro, no tardé en establecer
contacto con Weldon, que en sus estudios con cangrejos se habia
convencido de que la evolucién era en el fondo un problema esta-
distico. Los dos mecanismos de la teoria de la evolucién, la pro-
duccién de variabilidad y la seleccién natural mediante la lucha
por la existencia, tenfan un innegable atractivo desde este punto
de vista. La produccién de variabilidad entroncaba con el azar,
con el calculo de probabilidades; la seleccién natural, con el estu-
dio de poblaciones, ya que son las unidades que van a sufrir la
evolucién en su conjunto. Por este motivo, Weldon necesitaba
la colaboracién urgente de un colega matematico.

Con treinta y cinco afios cumplidos, Pearson comenz6 a es-
tudiar los métodos estadisticos tal y como estos aparecian en
muchos manuales continentales dedicados a la demografia. Asi-
mismo, releyé los libros de Galton (a quien conocié en persona
en 1894 por mediacién de Weldon), ya que su primera lectura de
Herencia natural (1889) no habia sido muy positiva, a tenor de la
opinién que expresé en el londinense Club de Hombres y Mujeres
del que era miembro:

Personalmente debo decir que existe un considerable peligro en
aplicar los métodos de las ciencias exactas a los problemas de la
ciencia descriptiva, tanto si se trata de problemas de la herencia
como de politica econémica.
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Es mais, en el ejemplar conservado del libro de Galton, Pear-
son dejé constancia autégrafa de su exasperacién por los argu-
mentos expresados por su autor: a su juicio se trataba de meras
analogias sin valor cientifico alguno. Pese a todas estas eviden-
cias, sigue leyéndose demasiado a menudo que el impetu estadis-
tico de Pearson radicé en la lectura del libro de Galton, de quien
se le considera erréneamente discipulo. Probablemente, Weldon
fue el responsable de su cambio de opinién, dado que consiguié
ilustrar con ejemplos concretos cémo las técnicas estadisticas
planteadas por Galton podian aplicarse con acierto al material
biolégico.

Segin reinterpret6 afios después su acercamiento a la obra
de Galton, Pearson quedé sorprendido por un descubrimiento
del eminente cientifico: habia una categoria mas amplia que la
causalidad, a saber, la correlacién, de la cual la causalidad era
solo el limite. Gracias a esta nueva concepcién, la sociologia, la
psicologia, la antropologia y la biologia podian entroncar con las
matematicas. Mientras que el fisico piensa que un cierto valor
de x produce (causa) un valor determinado de y, el estadistico
cree que la relacion entre x e ¥ es mas vaga, meramente proba-
bilitaria. Galton liberé a Pearson del prejuicio de que las mate-
maticas solo podian aplicarse a los fenédmenos naturales bajo la
categoria causal. No cabe duda de que su renovada fascinacién
con la obra de Galton se debid en parte a su interés compartido
por la eugenesia.

La voluntad de investigar conjuntamente determiné la funda-
cién de la Escuela Biométrica por Weldon y Pearson bajo la in-
fluencia directa de Galton en 1893. El término biometria fue acu-
fiado, precisamente, por Pearson con el significado de «ciencia de
la medida de la vida». La escuela puso las bases de la estadistica
matemaética entre 1895 y 1915, aun cuando la mayoria de edad de
la disciplina no llegé hasta el periodo que va de 1915 a 1935, capi-
taneado por Fisher. En ambos casos, fue la necesidad de resolver
problemas biolégicos —relacionados, durante el primer periodo,
con la herencia y la evolucion, y, en el segundo, con la genética y
la experimentacién agricola— lo que acelerd la cristalizacion de
nuevas herramientas estadisticas.
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CONTRIBUCIONES MATEMATICAS A LA TEORIA
DE LA EVOLUCION

Con extraordinaria celeridad, Pearson empezé a producir nue-
vos conceptos y métodos, que muy pronto se revelaron como in-
dispensables para cualquier aplicacién de la estadistica en otro
campo. Antes de darlos a la imprenta, Pearson presenté muchas
de sus ambiciosas ideas en una serie de conferencias vespertinas
que imparti6 entre 1891 y 1894 en el Gresham College. Las prime-
ras ocho conferencias cubrieron aspectos basicos de la filosofia
de la ciencia, que fueron recogidos en el libro La gramdtica de la
ciencia (1892). En la edicién de 1900 de esta obra, escribia:

De la misma manera que podemos predecir poco o nada de un
atomo individual, poco podemos predecir de una unidad vital indi-
vidual. Solo podemos manejar las estadisticas de su conducta pro-
medio. Pero tenemos unas leyes de la variacién y de la herencia casi
tan definitivas y generales como las leyes de la fisica.

Las treinta conferencias restantes se dedicaron por completo
a la «geometria de la estadistica» y la «geometria del azar», por
emplear los rétulos originales. El matematico inglés eligié estos
tépicos porque muchos de los asistentes como publico trabajaban
por las mafianas en el distrito financiero de la City y pensé, no sin
razon, que presentar la estadistica me-
diante graficos e ilustraciones podia |
ser de su agrado. En una de estas con- |
ferencias introdujo, por ejemplo, los |
histogramas (figura 1), un diagrama |
que podia ser de utilidad en historia |
—como su nombre queria indicar— | 5
para representar la evolucién del ni-
mero de habitantes o de los ingresos
de un reino mediante intervalos de sl
tiempo que estarian adyacentes unos
con otros. Estas lecciones marcaron A T A A
el comienzo de una nueva época en la
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teoria y en la prictica de la estadistica. No por casualidad, Pear-
son afirmoé ante los presentes que a esta ciencia le aguardaba un
futuro prometedor, pues daria lustre a otras ramas de la matema-
tica e incluso al estudio de la biologia.

Uno de las primeros conceptos que forj6 fue el de «desviacién
tipica» (o «desviacién estdndar»), que a partir de 1893 sustituy6
al de «error probable», introducido por el astrénomo Friedrich
W. Bessel alrededor de 1815, como més adecuado para medir la
variacion biolégica. Mientras que la mayoria de los matematicos y
astronomos del siglo xix se habian orientado al estudio de medidas
de la concentracién y de la posicién de los datos, Pearson se preo-
cup6 por medir su dispersion o variabilidad. Si Quetelet revalorizé
el uso de la media y Galton hizo lo propio con la mediana —una
medida propuesta por Antoine Augustin Cournot—, los cuartiles
y los percentiles, Pearson bautizé a la raiz cuadrada del promedio
de los cuadrados de las diferencias de cada dato respecto de la
media (una expresién conocida en la época como «error cuadra-
tico medio») con el nombre de desviacion tipica y el signo o, para
subrayar que la variacion no tenia por qué interpretarse siempre
COIMO un error.

El error probable quedaba caracterizado porque dividia las
posibles observaciones de un astro —distribuidas segiin la curva
gaussiana en torno al valor real— en dos clases igualmente proba-
bles: a largo plazo, la mitad de las observaciones caerian en un en-
torno de su media aritmética de radio el error probable, y la otra
mitad caeria fuera, fallando demasiado por exceso o por defecto.
El error probable representaba lo que hoy a veces se denomina
desviacion absoluta respecto de la mediana. La desviacion tipica
de una serie de observaciones se calculaba mas facilmente y po-
seia mejores propiedades: la desviacién tipica de una distribucién
de error teérica, de un modelo de probabilidad, no era mas que
la versién continua de la férmula discreta antes enunciada. En la
distribucién normal el error probable es de 0,6745 veces la desvia-
cioén tipica, de manera que mientras que en un entorno de la media
de radio del error probable cae el 50% de las observaciones, en
un entorno de radio de la desviacién tipica cae aproximadamente
el 68%, y en un entorno de dos desviaciones tipicas, algo més del
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95% (si la distribucién no es normal solo puede asegurarse que
entra al menos el 75% de las observaciones).

Ademas, Pearson ided el coeficiente de variacién, definido
como el cociente de la desviacién tipica y la media en valor ab-
soluto, que servia para comparar la variabilidad entre distintos
conjuntos de datos, midiendo en cada uno de ellos el grado de re-
presentatividad de la media, esto es, si los datos estdn o no con-
centrados alrededor suyo. Finalmente, ide6 otras dos medidas des-
criptivas, el coeficiente de asimetria (figura 2) y el coeficiente de
apuntamiento o curtosis (figura 3) para medir la forma de una dis-
tribucién: si es simétrica o asimétrica respecto de la media, y si es
més apuntada o mas achatada que la distribucién normal. En suma,
Pearson inventé toda una coleccién de medidas realmente titiles en
la estadistica descriptiva, en el andlisis exploratorio de los datos.

Pero hay mas. Weldon solicité consejo a Pearson a la hora
de analizar las mediciones de cangrejos (didmetro del caparazon,
longitud de las patas, etc.) que habia realizado durante unas va-
caciones en la bahia de Napoles. Las observaciones no parecian
distribuirse de acuerdo a la ley normal. Su distribucién no era si-
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FIGURA 2:
A la izquierda,

una distribucién
con asimetria
negativa; a la
derecha, con
asimetria positiva.
En trazo continuo,
la media; en trazo
punteado, la moda
(el signo de la
diferencia entre
estos dos valores
permitia a Pearson
establecer el tipo
de asimetria).

FIGURA 3:

La curtosis
(término derivado
de la palabra
griega que
significa curvado
o arqueado) mide
el grado de
apuntamiento de
una distribucién
en comparacién
con la distribucién
normal, definida
como mesocurtica.
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métrica: en lugar de una tnica montafa, como en la distribucién
normal, parecian dibujarse dos jorobas (figura 4). Ayudado por
Pearson, Weldon diseccioné la distribucion en dos componentes
normales, siguiendo el pensamiento de Galton de que todas las
distribuciones eran normales o mixtura de normales, y concluyd
precipitadamente que debia de tratarse de dos especies diferentes
de cangrejos que por desconocimiento habia medido de modo con-
junto o, en su defecto, de una tinica especie en proceso de generar
dos especies diferentes. Pero el matematico inglés queria encon-
trar una manera de interpretar los datos sin forzar su normaliza-
cién, sin distorsionar la forma de la curva de frecuencias. No debia
descartarse que hubiese una asimetria real en los datos de partida.

En 1894, en la que seria la primera de sus memorias publica-
das sobre estadistica, Pearson imaginé todo un sistema de curvas
de frecuencias que pudiesen ser de utilidad en las investigaciones
biolégicas. Queria dotar a los biémetras de un catdlogo de mo-
delos que les permitiera extraer toda la informacién contenida
en los datos sin deformarlos. El sistema de curvas de frecuencias
permitié disponer, de rebote, de toda una serie de distribuciones
de probabilidad que podian aplicarse a distintos fenémenos alea-
torios. Entre ellas se cuentan algunas de las distribuciones que
més adelante demostrarian ser claves para la extensiéon de los
métodos estadisticos: por ejemplo, la distribucién beta, la gamma

KARL PEARSON Y LA ESCUELA BIOMETRICA




o la y? (figura 5). Esta familia de distribuciones asimétricas cons-
tituia una alternativa a la distribucién normal, dominante desde
los tiempos de Quetelet, y lograba mejores ajustes en situaciones
précticas. Para decidir cudl de las curvas habia que ajustar a los
datos en cada circunstancia, Pearson desarrollé el método de
los momentos, que permitia estimar los pardmetros que definian
cada curva —los llamados momentos (un nombre que tomo pres-
tado de la mecédnica)— a partir de los datos observados. Este mé-
todo es el méis antiguo conocido para la estimacién de pardmetros
y consiste, en suma, en igualar los momentos apropiados de la
distribucién tedrica con los correspondientes momentos calcu-
lados a partir de los datos observados, despejando a continua-
cién los parametros desconocidos. En concreto, la estimacién se
realizaba a partir del calculo de cuatro momentos, relacionados
respectivamente con la media, la desviacién tipica, la asimetria y
la curtosis (aunque este término no aparecié como tal hasta 1905),
que codifican la forma de la curva de frecuencias.

Pearson trataba de desbancar a la distribucién normal de su
papel preponderante en biologia ofreciendo una serie de curvas
alternativas para describir distribuciones asimétricas o, incluso,
bimodales; porque durante afios toda distribucién empirica que
dibujaba una curva era gaussiana, ya que era todo lo que podia ser.
Galton creia ingenuamente que todos los datos tenian que aco-
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modarse a la distribucién normal. Pearson, en cambio, enfatizaba
que las distribuciones de frecuencias empiricas podian tomar
cualquier forma. La curva normal no era la curva canénica, de
modo que la tirania de la ley normal concluyé con el fin de siglo,
cuando Pearson consigui6 que se aparcara esta visién monolitica.
Aparte de la distribucién binomial de Bernoulli y de la entronizada
distribucién normal (ambas relacionadas entre si por el teorema
central del limite), hasta el desembarco del sistema de curvas de
Pearson no se disponia de muchos modelos de probabilidad alter-
nativos, con la excepcion, entre otras, de la distribucion uniforme,
la distribucién exponencial o la puesta al dia de la distribucién de
Poisson o de los «sucesos raros», popularizada en la época por

LA ALTURA DEL NEANDERTAL

Karl Pearson aplico el célculo del coeficiente de correlacién y de las rectas
de regresion a los datos de las alturas de padres e hijos tomados por Galton.
La estatura de los hijos estaba relacionada con la estatura de los padres, de
manera que los hijos de padres altos solian ser altos. No habia una relacion
matematica perfecta, pero existia una tendencia, que podia medirse me-
diante el «coeficiente de correlacion de Pearson» (que se define como el
cociente entre el momento-producto o covarianza y las desviaciones tipicas
de las dos variables bajo estudio). Los valores de este coeficiente siempre
estaban entre -1y +1. Si el coeficiente de correlacién estaba cerca de 1 sig-
nificaba que cuando la variable «estatura del padre» aumentaba, la variable
«estatura del hijo» también lo hacia. En 1898 Pearson conjeturd que un com-
portamiento similar se daba entre la estatura de un hombre vy la longitud de
su fémur. Estudiando cientos de mediciones, encontrd que la correlacion
entre la estatura y la longitud del fémur era de 0,8048. Se trataba de una
correlacién directa fuerte. A continuacién, dedujo la relacién existente entre
la longitud del fémur vy la estatura total del individuo. En otras palabras,
determind la recta de regresién de la estatura sobre la longitud del fémur,
hallando en el caso de los varones:

Estatura (en cm) = 81,31 cm + 1,88 - Longitud del fémur (en cm).

Finalmente, Pearson ensefid como usarla para reconstruir la estatura de los
hombres prehistoricos a partir de las medidas de sus huesos. Por ejemplo,
en el caso del hombre de Neandertal, la longitud media del fémur era de
44,52 cm, con lo que sustituyendo en la ecuacion de arriba se obtenia que su
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representar el porcentaje de oficiales prusianos que en la década
de 1890 resultaron heridos por las coces de sus caballos.

Atin més, en 1896, Pearson logré la definitiva matematizacién
del coeficiente de correlacién y de la regresién lineal, que Galton
manejara empiricamente. Mientras que Galton empleaba unas ma-
tematicas muy modestas y raramente trabajaba con mds de 100 da-
tos (para asi usar porcentajes cémodamente), Pearson hizo de la
matemaética abstracta un requisito para hacer estadistica y tomé en
consideracién grandes conjuntos de datos (mas de 1000). Ofrecié
tanto la férmula del coeficiente de correlacién en que aparece el
«momento-producto» (lo que Fisher y su circulo llamarian cova-
rianza, un nombre que ha hecho fortuna) como las ecuaciones ex-
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estatura promedio era de 165,01 cm. Por su parte, el hombre de Cro-Magnon
media 172,15 cm, dado que la longitud media de los fémures conservados
era de 48,32 cm. Tanto el hombre de Neandertal como el de Cro-Magnon
eran sensiblemente mas bajos que los hombres actuales. En esencia, esta es
la metodologia que a dia de hoy siguen empleando los palecantropdlogos
para inferir las caracteristicas de las especies extintas de hominidos que des-
entierran en las excavaciones.
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plicitas de las rectas de regresién, aunque no completo la teoria de
la regresion no lineal (curvilinea) hasta 1905. Su ayudante en aquel
tiempo, el ingeniero y luego profesor de Estadistica George Udny
Yule, desarroll6é hacia 1897 la regresién miiltiple (en méas de dos
variables, cuando se supone que la variable de estudio depende de
dos o mis), conectéandola con el método de minimos cuadrados
y la sintesis Gauss-Laplace. Es poco conocido que Pearson fue el
primero en alertar del peligro de la deteccién de «correlaciones
espurias» (uno de los abusos que cometeria con la estadistica la se-
gunda mitad del siglo xx): dos variables pueden estar fuertemente
correlacionadas entre si sin que entre ambas medie una relacién de
causa-efecto o ni siquiera una causa comun (como es el caso, por
ejemplo, del mimero de cigiienas presentes en Londres y el niimero
de nifios nacidos cada semana en esa ciudad).

Finalmente, en 1900, Pearson public el test de la chi-cuadrado
(%% para comprobar la bondad del ajuste entre la distribucién ob-
servada y la distribucién tedrica o esperada. El test demostré ser
itil no solo para dar una medida del ajuste entre datos y distri-
buciones, sino que fue generalizado por Pearson y sus discipulos
para contrastar la homogeneidad entre varias muestras y la inde-
pendencia entre variables (aunque el niimero exacto de grados de
libertad de la distribucién %* que interviene en el test lo facilité
Fisher en la década de 1920). En consecuencia, la adjudicacion
de una distribucién normal ya no era cuestién de una semejanza
percibida cualitativamente entre graficas, sino de una significacion
estadistica cuantitativa. Se trataba de uno de los puentes mas s6-
lidos tendidos hasta el momento entre la estadistica descriptiva y
la estadistica inferencial. De hecho, a finales del siglo xx una cono-
cida revista cientifica estadounidense eligi6 el test x* como uno
de los veinte descubrimientos cientificos del siglo que méas habia
cambiado nuestras vidas.

Entre otras innovaciones més prosaicas, Pearson y sus co-
laboradores publicaron toda una serie de tablas para biémetras
y estadisticos de gran ayuda en el gjuste de curvas, y para cuyo
disefio se sirvieron de miquinas de calcular pioneras. No hay que
olvidar que hasta el advenimiento del ordenador, estas tablas
simplificaban enormemente la vida a los estadisticos, permitién-
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doles consultar de un vistazo el resultado de laboriosos célculos
de probabilidades. Esta abundante cosecha de resultados fue
dada a conocer a lo largo de un total de dieciocho articulos que
Pearson escribio entre 1894 y 1912 bajo el titulo comtin de Con-
tribuciones matemdticas a la teoria de la evolucion. Hoy dia
estos articulos son un claro indicador de la extraordinaria capa-
cidad para trabajar y relacionar materias dispares de que hacia
gala Karl Pearson.

LA INSTITUCIONALIZACION DE LA ESTADISTICA

Los primeros articulos de Pearson vieron la luz dentro de las Phi-
losophical Transactions de la Royal Society, pero la oposicién
despertada entre los biélogos de la sociedad por los prolijos ana-
lisis matematicos de los datos (los naturalistas no estaban dis-
puestos a aceptar conclusiones biolégicas sobre la base de razo-
namientos estadisticos) condujo a Weldon y a Pearson a fundar,
con el apoyo de Francis Galton, la revista Biometrika en 1901. La
idea de crear una revista propia para publicar las investigaciones
se debié a Weldon, pero fue Pearson quien sugirié su peculiar
nombre. Para ambos cientificos, el problema de la evolucién era
un problema estadistico. Darwin habia planteado su teoria biol6-
gica sin recurrir a la matematica, pero cada uno de sus conceptos,
desde la variacion y la seleccién a la herencia y la regresion, era
susceptible de ser definido matematicamente y analizado estadis-
ticamente.

En el editorial de presentacién de la revista, Weldon y Pear-
son describian su radio de accién y profetizaban el advenimiento
de un dia en que habria matemaéticos que serian competentes bi6-
logos y, reciprocamente, biélogos que serian competentes mate-
méticos. Durante varios lustros, Biometrika publicé sesudos ané-
lisis estadisticos sobre datos tan dispares como la envergadura de
los pijaros ex6ticos, la altura de los reclutas albaneses, la medida
de la tibia de los nativos africanos o la longitud del pene de los

pigmeos.
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LA x* Y LOS V2 DISPARADOS POR LOS NAZIS CONTRA INGLATERRA

Durante la Segunda Guerra Mundial los alemanes lanzaron una lluvia de
cohetes V2 sobre Londres. Los estadisticos que colaboraban en la defensa
antiaérea dividieron el mapa de Londres en cuadriculas de 1/4 km? (hasta
un total de 576) y contaron el nimero de bombas caidas en cada cuadricula
durante un bombardeo aleman. Observaron que en 229 cuadriculas no caia
ninguna bomba; en 211 caia solo una, etcétera. Los resultados fueron:

N¢ de impactos en la cuadricula 0 1 2 3 4 5

Frecuencia observada 229 21 93 35 7 1

Los estadisticos querian averiguar si los bombardeos seguian un patron
aleatorio, es decir, si no estaban dirigidos a determinados objetivos milita-
res, de manera que el vuelo de los V2 estaba todavia lejos del control de
los cientificos alemanes. Para ello emplearon el test ¥ de Pearson, con el
propdsito de comprobar el ajuste entre la distribucidn observada vy la distri-
bucién tedrica esperada, que en este caso se trataba de una distribucién de
Poisson o de los «sucesos raros», ya que esta ultima mide la probabilidad
de que aleatoriamente ocurra un determinado numero de eventos —que
se suponen «raros», improbables— durante cierto periodo de tiempo. La
distribucién de Poisson depende Unicamente de un parametro, habitual-
mente denotado como A, que representa la frecuencia de ocurrencia media.
El valor estimado de A a partir de los datos empiricos es:

_0-229+1-211+2-93+...+5-1
576

A =0,929

(en promedio, uno esperaria aproximadamente un impacto por cuadricula).
En consecuencia, las frecuencias que debian esperarse si los bombardeos se
ajustaban a esta distribucién eran las siguientes (la férmula de donde salen
estos valores es un poco aparatosa pero facil de justificar, aunque aqui no
entraremos en ello):

Numero de impactos/cuadricula
(0] 1 2 3 L 5
Frecuencia esperada 2275 n 98 30 F 4 1,5
Frecuencia observada 229 21 93 35 7 1
Discrepancias 1.5 0 -5 5 0 -0,5

Pils B S NI e R LT
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A continuacion, los estadisticos determinaron el valor del «estadistico chi-
cuadrado», que es una medida de la discrepancia total que se calcula su-
mando las diferencias entre la frecuencia observada y la frecuencia esperada
elevadas al cuadrado (asi no se compensan las discrepancias positivas con
las negativas) y dividiendo por la frecuencia esperada:

=127.

z v} 2 2
P Z (DlscrgpanC|a) __15 S (-0,5)
Frecuencia esperada 227,5 15

Si la distribucién de Poisson era la adecuada, este estadistico era un valor de
una distribucién chi-cuadrado con 6-2=4 grados de libertad (en general, es
siempre uno menos que el nimero de clases de partida, pero como hemos
estimado el valor de i a partir de los datos, hay que restar uno mas segun
demostro Fisher). Consultando las tablas, los estadisticos observaron que la
probabilidad de que una 2 tome un valor mayor o igual que 1,27 es de 0,87.
En otras palabras, la probabilidad de obtener una discrepancia como la obser-
vada era significativamente alta bajo el supuesto de que los bombardeos se
producian aleatoriamente, sin un objetivo fijo. Los londinenses podian respirar
tranquilos.

Misil V2 en su plataforma.
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Karl Pearson fue editor continuado de la revista Biometrika
desde su primer nimero, publicado en octubre de 1901, hasta su
muerte, ocurrida treinta y cinco afios después. Tras el inesperado
fallecimiento de Raphael Weldon en un desafortunado accidente
de esqui en 1906, Pearson se alej6 de la biologia evolutiva. Sin la
inestimable colaboracién de su bien entrenada mente biolégica,
Pearson no se sentia con fuerzas para proseguir en solitario con
el estudio estadistico de la evolucion y la herencia. Sin embargo,
redobl6 esfuerzos en la institucién de un centro que convirtiera
la estadistica en una rama de la matemaética aplicada con vida
propia, con una nomenclatura y unos métodos independientes, de
manera que los estadisticos fuesen por derecho propio «<hombres
de ciencia».

«La ciencia del futuro se llamara biometria y su 6rgano
oficial sera Biometrika.»

— KARL PEARSON.
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Sir Francis Galton falleci6 en 1911, dejando en herencia la
provisién de una citedra de Eugenesia en el University College
de Londres, que fue ocupada por su protegido, Pearson, quien
hizo asi realidad su suefio de formar un Departamento de Es-
tadistica Aplicada combinando el Laboratorio Biométrico (que
dirigia desde su fundacién en 1903) y el Laboratorio Galton para
la Eugenesia Nacional (surgido en 1907 como evolucién de la
Eugenics Record Office, instituida por Galton en 1904). El Labo-
ratorio Biométrico desarrollaba los métodos estadisticos en un
contexto biolégico, mientras que el Laboratorio Eugenésico los
aplicaba en el estudio del «deterioro nacional» (relacionando,
por ejemplo, las tasas de fertilidad con el estatus social o el al-
coholismo con su influjo en el fisico y la habilidad de la descen-
dencia). En 1925, coincidiendo con la especializacién de Bio-
metrika en temas estadisticos tedricos, Pearson fundé Annals
of Eugenics (actualmente rebautizada como Annals of Human
Genetics), para proseguir con la publicacién de investigaciones
précticas sobre la eugenesia.

KARL PEARSON Y LA ESCUELA BIOMETRICA




FOTO SUPERIOR
Fotografia tomada
en 1909 que
muestra a un
anciano Galton

de ochenta y siete
afios acompaiiado
por Karl Pearson.

FOTO INFERIOR
IZQUIERDA:

Karl Pearson

con un busto de
Raphael Weldon.
La fotografia es
de 1910.

FOTO INFERIOR
DERECHA:
Cabecera original
de Biometrika,

la revista editada
por Weldon y
Pearson con el
apoyo de Galton y
la colaboracion de
Charles Davenport
(1866-1944),
prominente
bidlogo
estadounidense
que compartia

el enfoque
biométrico
Voams L Puct L N Sy v el credo
The st miln il b bkl Su Cotadusn i385 eugenésico.

BIOMETRIKA

A JOUENAL FOM THE STATISTIAL STUDY OF
FIALAHUAL  PRORLENS

.
I¥ COXSULTATHIS WIFIE FEANOCIE GALTOY
-
W. BB WELLOR RAKL FEARSON
A

O BAYENTOSE

CAMBRIBGE it
AT THE CXICRRSITY Pl
Mewbon; (5 A4 CLAY AN mON
CAWEMIPIE VNTVEDRTY T Wassse
ATH MABIA ANE
T e

KARL PEARSON Y LA ESCUELA BIOMETRICA 61



62

UNA POLEMICA ENCARNIZADA

En 1914 Pearson recibié un articulo firmado por un profesor de es-
cuela de veinticuatro afios llamado R.A. Fisher para ser publicado
en la revista que dirigia y editaba, Biometrika. En las apretadas
péaginas del borrador, Fisher deducia un resultado que a Pearson
¥ su equipo se les habia escapado sisteméticamente: la distribu-
cién correcta del coeficiente de correlacién muestral r, un cono-
cimiento necesario para determinar el error probable a la hora de
estimar el coeficiente de correlacién poblacional p. La cuestién
de las distribuciones en el muestreo habia comenzado a percibirse
como un tema candente para el progreso de la inferencia estadis-
tica, por cuanto permitia cuantificar la fiabilidad de las prediccio-
nes realizadas en base a una muestra representativa con el fin de
conocer determinadas caracteristicas de una poblacién, de una
colectividad que se presupone demasiado numerosa como para
ser estudiada exhaustivamente. Proporcionar una estimacién de
la correlacién p en toda la poblacién a partir de la correlacién r
observada en los datos de la muestra era engafioso y de escasa
utilidad si no se indicaba su precision. El estudio de la distribu-
cién muestral, es decir, de la que resulta de considerar todas las
posibles muestras que pueden extraerse aleatoriamente de una
poblacién, permitia calcular la probabilidad de que el valor de r
calculado a partir de una muestra se acerque al valor desconocido
p de la poblacién.

Estas caracteristicas de la poblacién que se deseaba estimar
recibieron el nombre de pardmetros. Por ejemplo: la media po-
blacional p, la desviacién tipica poblacional o o el coeficiente de
correlacion de la poblacién p. En cambio, los valores que se cal-
culaban a partir de la muestra para estimar puntualmente estos
parametros se llamaron estadisticos. Por ejemplo: la media mues-
tral X, la desviacién tipica muestral S o el coeficiente de correla-
ci6én muestral r. Esta distincién entre pardmetros poblacionales
y estadisticos muestrales, como la subyacente entre poblacién y
muestra, seria canonizada por Fisher. Atiin mas: a Fisher se debe
la costumbre de representar los parametros con letras griegas y
los estadisticos con letras latinas, con la excepcién de la notacion
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barrada para la media muestral, que deriva de Maxwell. Ahora
bien, junto a la estimacion, se deseaba dar un valor de la variacion
o dispersién de todas las posibles estimaciones, a fin de dar una
idea de la exactitud de la inferencia. Para ello se calculaba el error
probable o, también, el «error estdndar» del estimador, que no es
mas que la desviacion tipica de la distribucién del estadistico en el
muestreo (esto es, de la distribucién que mide la probabilidad de
que el estadistico tome tal o cual valor en funcién de los datos
de la muestra, que se considera que han sido seleccionados alea-
toriamente de la poblacién). Este niimero decia lo buena que era
la inferencia: a menor error, mejor estimacion. Ademas, el error
suele depender de la raiz cuadrada del tamafio de la muestra, de
manera que conforme el tamafio muestral aumenta, la precisién
de la estimacién también lo hace, ya que el error disminuye con la
raiz cuadrada del tamaiio (figura 6).

Anos antes, en 1896, Pearson habia enunciado, sin demos-
trarlo —la demostracién corria a cargo de Fisher—, que el estima-
dor més probable de p, de la correlacién de toda la poblacién, era
en esencia 7, la correlacién calculada a partir de los datos obser-
vados en la muestra (aunque la notacién de Pearson no distinguia
bien entre ambos valores, entre el parametro poblacional y el es-
tadistico muestral). Pearson respondié con entusiasmo a Fisher,
felicitandole por la prueba y transmitiéndole que el articulo seria
sin duda aceptado. Una semana después, Pearson volvia a escribir
a Fisher, contandole que por fin
habia leido con detenimiento el
borrador, que le parecia que era
un avance y que serfa un honor
publicarlo si ampliaba un poco
las paginas del final. Fisher es-
tudiaba la distribucién del coe-
ficiente de correlacién muestral
geométricamente (imaginando
la muestra como un vector n-di-

FIG. &

Error en la estimacion

El error cometido
en la estimacién
disminuye
répidamente con
el tamafio de la
muestra, hasta
un punto en el
que el aumento
del tamafio
muestral no

se traduce en
una reduccién
apreciable

del error.
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macién algebraica, con lo que a Pearson le costaba seguir una
demostracion en que no se razonaba a partir de 7 sino de una fun-
cion definida sobre r. Fisher dio la bienvenida a la sugerencia y su
articulo revisado fue felizmente publicado en Biometrika en 1915.

Hasta 1917 la relacién entre ambos matematicos fue cordial,
pero en la primavera de ese afio Pearson y sus colaboradores pu-
blicaron un estudio cooperativo, en el que Pearson arremetia con-
tra Fisher, dedicando mds de una pégina a criticar un supuesto
error cometido por este Gltimo en su articulo de 1915. Quiz4 obré
asi movido por la nota que Fisher le habia enviado cuestionando
la investigacién llevada a cabo por una doctoranda danesa que
trabajaba en el laboratorio de Pearson; ademads, parecia poner en
duda los méritos del test %* y del método de los momentos para
construir estimadores. En el articulo mencionado de 1915, Fisher
daba cumplida demostracién de la afirmacién que Pearson hiciera
bastantes afios antes: el valor més probable del coeficiente de
correlacién p de toda una poblacién es, en esencia, el coeficiente
de correlacién r observado en la muestra (cuando el tamaifio
muestral crece, porque en general r tiende a ser mayor que p).
Pearson afirmaba que Fisher lo habia demostrado empleando los
métodos inversos de probabilidad, es decir, el teorema de Bayes,
ocasién que aproveché para dirigirle una reprimenda, sefialando
lo arbitrario del procedimiento, ya que tenia que partir de una
distribucién a priori uniforme, de una presuposicién de ignoran-
cia total. Sin embargo, Fisher no habia usado este procedimiento.
Como ampliaremos en el capitulo 5, Fisher no solo compartia esta
oposicion radical a la inferencia bayesiana, sino que habia em-
pleado otro método, un método nuevo que explicaremos en el
préximo capitulo: el «<método de maxima verosimilitud», que poco
o nada tenia que ver, pero que ciertamente venia expresado con
términos ambiguos.

A Fisher no tuvo que agradarle la lectura de este pasaje del
estudio, y es légico que el incidente le pesara a la hora de decli-
nar la oferta de trabajar a las 6rdenes de Pearson en el Laborato-
rio Galton y decantarse por ocupar la plaza de estadistico en la
Estacién Agricola Experimental de Rothamsted a partir de 1919.
Ademads, Fisher elaboré una respuesta en forma de articulo que le
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hizo llegar a Pearson en 1920. Alli profundizaba en el estudio del
coeficiente de correlacién para una muestra pequeia y, de paso,
indicaba que en su articulo de 1915 no habia empleado para nada
el teorema de Bayes. Y aunque decia mostrarse reacio a criticar a
los estadisticos autores del estudio (entre ellos, claro estd, Pear-
son), llegaba al extremo de ridiculizar los ejemplos que ponian,
terminando su respuesta con una nota sobre la confusién entre
la regla de Bayes y su nuevo método de construccién de estima-
dores. Como es natural, Pearson rechazé tajantemente publicar
el articulo y se lo devolvié a su autor, rogandole que no insistiera.

El principal resultado de esta desafortunada controversia
fue una enemistad declarada que se prolongé durante afios, de
manera que ninguno de los dos estadisticos desaprovechaba la
ocasioén de poder criticar al rival. Tanto es asi que cuando Fisher,
en una trilogia de articulos publicados entre 1922 y 1924, per-
fecciond el test de la chi-cuadrado, dando el nimero exacto de
grados de libertad, Pearson nunca acepté la modificacién, pese a
ser correcta. Reciprocamente, cuando en 1945 se solicité a Fisher
que escribiera la entrada sobre Pearson para un diccionario de
biografias, el editor hubo de rechazar de plano su texto por el
tono calumnioso que emanaba. En cualquier caso, soslayando las
rencillas académicas, hay que poner de relieve el acusado con-
traste entre las visiones de la estadistica de Pearson y Fisher, por
cuanto el primero empleaba muestras grandes y el segundo, por el
contrario, influido por William Sealy Gosset (alias Student), pre-
feria trabajar con muestras pequeiias, amparandose en el dicho
estadistico que afirma que para catar la sopa, aunque la olla sea
maés grande, basta con una cucharada pequena.

Karl Pearson jugdé un papel enorme en determinar el conte-
nido y la organizacion de la investigacion estadistica en su dia, a
través de sus investigaciones, sus ensefianzas, el establecimiento
de laboratorios y el inicio de un vasto programa de publicacio-
nes. A una obra tan prolifica que no tiene rival en cantidad en
ningiin otro matematico, hay que afiadir una capacidad de trabajo
inmensa, que el propio Pearson achacaba, con una pizca de iro-
nia, a que nunca contestaba al teléfono ni asistia a comités de
bienvenida.
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STUDENT Y LA DESTILERIA GUINNESS

William Sealy Gosset (1876-1937) era quimico de formacién, aungue se habia
familiarizado con la estadistica tras pasar una temporada en el Laboratorio
Biomeétrico con Pearson. En 1908 publicé un célebre articulo, titulado «El
error probable de la media», bajo el seudénimo Student. La razén es que
la empresa para la que trabajaba, la fabrica de cerveza Guinness en Dublin,
no permitia que los empleados hicieran publicas las investigaciones que
realizaban para la marca. Buscando controlar la calidad de la cerveza produ-
cida, Student recogia muestras pequefas (lo que salia mas barato). Y habia
descubierto que uno de los tipos de curvas de Pearson era una distribucién
de probabilidad de gran utilidad para el estudio de estos experimentos a
pequefia escala. Si, por ejemplo, queria estimar la acidez media de toda la
cerveza producida por la planta en un cierto periodo de tiempo, calculaba
la media de los niveles de acidez encontrados en la docena de barriles de
muestra. El problema, y de ahi el titulo del articulo, es que Student no cono-
cia el error probable que cometia en la estimacién de la media poblacional
por medio de la media muestral, un nimero necesario para valorar si la
inferencia era o no precisa y, dicho sea de paso, si la acidez entraba dentro
de los limites aceptables. Para determinarlo, Student precisaba conocer la
distribucién de probabilidad del estadistico media muestral. Se sabia que
si la muestra era grande —en la practica, mayor o igual que 30—, la distri-
bucién de la media muestral era normal (en virtud del teorema central del
limite). Pero si la muestra era pequefia, no tenia por qué serlo.

La distribucién t de Student

Student obtuvo la distribucién correcta, conocida hoy dia —después de que
Fisher la retocara en 1925— como distribucion t de Student. Esta distribu-
cion es, en realidad, una familia de distribuciones dependientes del numero
de grados de libertad; pero, en general, es mas aplanada que la distribucién
normal, con colas mas anchas, lo que refleja la mayor incertidumbre de las
inferencias. Este modelo de probabilidad es imprescindible en el presente
por su robustez, ya que no solo se emplea en la inferencia a partir de mues-
tras pequefas extraidas de una poblacién normal (de la que se desconocen
su media y su desviacion tipica), sino también cuando la poblacién subya-
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Todas las piezas del rompecabezas estaban ya sobre la mesa.
Todo estaba listo para el reordenamiento de los materiales esta-
disticos que iba a realizar Fisher. De resultas, la estadistica serfa
encumbrada como un nuevo estilo de razonamiento, que se suma-
ria, en el plano tedrico, al razonamiento axiomético matematico
¥, en el plano experimental, tanto al método hipotético-deductivo
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cente no se distribuye normal-
mente. La distribucion t es prac-
ticamente insensible al supuesto
de normalidad. t

Rescatado del olvido

No obstante, Student fue una fi-
gura marginal hasta gue Fisher
rescato su labor del olvido, aun-
qgue estaba dotada de un sen-
tido del humor peculiar (como
se observa en la regla mnemo-
técnica que inventd en relacion
con la curtosis: para recordar el
término «platicurtico», que se
aplica a las curvas mas aplana-
das que la normal, Student se  Como puede observarse, la t de Student (en gris)
acordaba de un platypus, orni-  Presenta colas mas anchas que la normal
torrinco en espafiol; y para re-  <&""earo

cordar el término «leptocurtico»,

aplicable a las curvas mas puntiagudas, traia a la memoria un par de cangu-
ros entrechocando sus cabezas, porque lepping significa saltando en inglés).
Fisher y Student establecieron contacto alrededor de 1912, por mediacion del
tutor del primero en Cambridge, un astrénomo de reconocido prestigio. Los
apuros que Student mostraba por carta con las demostraciones matematicas
inspiraron a Fisher la posibilidad de deducir exactamente la distribucién de
varios estadisticos en el muestreo y, de este modo, anotarse sus primeros
éxitos. Por su parte, la apatia de Pearson al respecto se explica porgue es-
taba convencido de que la deteccion de las pequefas tendencias que se ob-
servaban en los datos bioldgicos requeria del empleo de muestras grandes,
de un gran numero de datos: «iSolo los sucios cerveceros manejan muestras
pequenias!», solia decir con tono jocoso a sus ayudantes.

de la fisica como al taxonémico de las ciencias naturales. La es-
tadistica se convertiria en un nuevo modo de pensar y, en espe-
cial, de hacer, de intervenir en el mundo, aplicindose en 4reas tan
dispares como los laboratorios biométricos, las granjas agricolas
o la industria cervecera. Una nueva estrella anunciaba su salida
en el firmamento.
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CAPITULO 3

Los fundamentos matematicos
de la inferencia estadistica

En los afios veinte, Fisher tomo el relevo de
la primera generacién de estadisticos, crecida en
torno a Pearson. Su articulo «Sobre los fundamentos
matematicos de la estadistica tedrica» fue el aldabonazo
que anuncio6 la implantacién de la inferencia estadistica
como disciplina matematica, seguido por dos influyentes
libros: Métodos estadisticos para investigadores y
El disenio de experimentos. En ellos, Fisher cimentaria
los test de significacion, el andlisis de la varianza
y la aleatorizacién como principios basicos
de cualquier confrontacién del cientifico
natural con los hechos.






La inferencia estadistica se define como una coleccién de técnicas
que permiten formular inferencias de lo particular (l1a muestra)
a lo general (la poblacién), proporcionando —y esto es lo que
separa a la estadistica de la adivinacion— una medida de la incer-
tidumbre de la prediccién: la probabilidad de error.

Segiin se ha visto en los capitulos anteriores, la unién entre
los rudimentarios métodos estadisticos de Laplace y Gauss, confi-
nados al espacio de la astronomia, y la ciencia del Estado, circuns-
crita al campo de la demografia y la incipiente ciencia social, se
produjo a caballo entre los siglos xix y xx en el terreno intermedio
de la biologia, ya que la evolucién se reformulé como problema
estadistico gracias al influjo de la eugenesia y la biometria.

La estadistica prefisheriana, dominada por ese titdn llamado
Karl Pearson, se encontraba en la siguiente situacion. En estadis-
tica descriptiva, aunque no se distinguia claramente entre pobla-
cién y muestra, se conocian las representaciones grificas més co-
munes (diagrama de barras, histograma, diagrama de dispersion,
etc.) y se calculaban las principales medidas de centralizacién
(media, mediana, moda), dispersién (la desviacién tipica, aunque
no era la inica medida), posicién (cuartiles y percentiles) y forma
(asimetria y curtosis). El viaje desde el anélisis exploratorio de
los datos al dominio de la teoria matematica de la probabilidad se
realizaba mediante el ajuste de distribuciones teéricas —la curva
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normal o las curvas de Pearson— sobre las distribuciones de fre-
cuencias observadas, por medio del método de minimos cuadra-
dos y del método de los momentos. La bondad del ajuste podia
comprobarse mediante ese gran invento que era el test de la y°
Finalmente, el establecimiento de inferencias estadisticas solo
contaba con dos métodos expeditos: las predicciones fundadas
en el andlisis de la regresién y la correlacion; y, en especial, los
métodos inversos de probabilidad, mayoritarios desde el tiempo
de Laplace y basados en el teorema de Bayes (la inferencia baye-
siana o subjetiva).

Fisher vendria a rellenar el vacio de este importantisimo
cajon planteando gran parte de los métodos de estimacién e in-
ferencia hoy clésicos (la inferencia frecuentista u objetiva). Si
Pearson habia ensefiado cémo extraer informacién relevante de
la maraia de datos, Fisher mostré c6mo conocer el todo (la po-
blacién) observando la parte (la muestra). El fue el arquitecto que
afianzo definitivamente el puente entre la estadistica descriptiva
y la estadistica inferencial, atando esta tiltima a la matematica, lo
que insuflé nuevos aires a la disciplina.

Y lo que es més importante, Fisher estructuré las etapas del
método estadistico. Al andlisis exploratorio inicial de los datos
disponibles y la construccién de un modelo probabilistico tenta-
tivo, le seguiria una fase de estimacion de los pardmetros desco-
nocidos del modelo poblacional a partir de la muestra observada
y, finalmente, otra fase de ajuste entre el modelo y la realidad por
medio de los test de significacién y el disefio de experimentos.
Con Fisher puede decirse que culminé el cierre del cuerpo meto-
dolégico bésico de la estadistica: la eleccion del modelo teérico
a partir de los datos empiricos, la deduccion matematica de las
propiedades del mismo, la estimacién de los pardmetros desco-
nocidos y la validacién final del modelo mediante un test expe-
rimental. Esta aproximacion, en la que se recoge informacién de
los resultados de un experimento y a partir de ellos se intenta
sacar conclusiones, es el nicleo de la inferencia estadistica, que
a diferencia del célculo de probabilidades no es un razonamiento
deductivo sino inductivo, sometido a cierto error que se busca
cuantificar.
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PROBLEMAS Y CRITERIOS DE LA INFERENCIA

En 1919, Fisher acept6 un puesto como asesor estadistico en la
Estacién Agricola Experimental de Rothamsted, tras rechazar la
oferta de trabajo de Karl Pearson en el Laboratorio Galton para no
tener que sufrir su supervision, ya que las diferencias entre ambos
estaban lejos de limarse. Con veintinueve aios se traslado, junto
con su esposa e hijos, a vivir a una vieja granja al norte de Londres,
cercana a la estacion. Los duefios, fabricantes de abonos, le habian
contratado con la intencién de que pusiera orden en la enorme
cantidad de datos que se habian ido recopilando durante los afios
de funcionamiento del centro. El tiempo demostraria que la deci-
sién tomada fue la acertada. Sir Edward John Russell (1872-1965),
responsable de la estacion, mantenia una atmésfera de libertad
que estimulaba el intercambio cientifico entre bilogos, quimicos
y estadisticos. Fisher se convirti6é en un investigador agrario infa-
tigable, y entre la granja y la estacién germinaron sus ideas més
geniales, sin dejar de lado ninguna parcela de la estadistica.

En su articulo seminal titulado «Sobre los fundamentos ma-
tematicos de la estadistica teérica» (leido en la Royal Society de
Londres en 1921 y publicado en 1922), Fisher acufié la nomencla-
tura hoy habitual en cualquier manual de inferencia estadistica.
Por ejemplo: el término pardmetro, en su sentido estadistico mo-
derno, aparece por vez primera y se menciona hasta 57 veces. Una
afirmacién errénea que hiciera el astrofisico Arthur S. Eddington
en su libro Movimientos estelares (1914), junto a varias preguntas
formuladas epistolarmente por Pearson antes de que cortaran el
contacto, fueron el punto de partida que espoleé a Fisher para
estudiar la cuestién de la estimacién estadistica en detalle.

Este articulo fundacional arranca sefialando que el objeto de los
métodos estadisticos es la «reduccién» de los datos: expresar toda
la informacién relevante contenida en la muestra sobre la poblacién
por medio de unos pocos valores numéricos. Inmediatamente des-
pués, Fisher ponia de relieve la nocién de «modelo estadistico», que
posibilitaba distinguir con claridad entre una poblacién (real o hipo-
tética) y una muestra suya, un par de conceptos conjugados cuya
raya de separacion habia estado hasta el momento difuminada. Los
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datos disponibles han de considerarse como una muestra aleatoria
proveniente de una poblacién, cuya distribucion con respecto a la
caracteristica bajo estudio viene especificada por una lista de pa-
rametros que se denotan con letras griegas (por ejemplo, el para-
metro 8). En verdad, para cada posible valor de los pardmetros, se
tiene una poblacién distinta, de modo que la pregunta central que se
formula cada estadistico es, a saber: ;a cudl de las infinitas poblacio-
nes posibles pertenece esta muestra que tengo delante?

A continuacién, Fisher indicé las tres clases de problemas
matemaéticos a que se enfrenta la inferencia estadistica. En primer
lugar, los problemas de «especificaciéon», que consisten en defi-
nir el modelo poblacional, es decir, la familia de distribuciones
dependientes de uno o mas pardmetros 0 de la que se extraen
(supuestamente) las muestras. En segundo lugar, los problemas
de «estimacién», que por ser el eje principal de la inferencia esta-
distica se explican mdas adelante en detalle. Y en tercer y ultimo
lugar, los problemas de «distribucién», cuyo propésito es deducir
exactamente la distribucién de un estadistico en el muestreo a
partir de la distribucién de la poblacién, que se supone conocida.
Las distribuciones muestrales determinan la probabilidad con que
cierto estadistico toma valores entre dos limites prefijados (equi-
valentemente, la frecuencia relativa con que los toma cuando el
proceso de muestreo se repite indefinidamente). La resolucion de
esta clase de problemas es, en cierto modo, un requisito previo a
la inferencia, pues permite hallar el error estandar cometido en la
estimacidn, asi como comparar los méritos de varios estimadores
entre si. Posibilita, en suma, calcular la precision del estimador y
medir la incertidumbre en la prediccién del parametro o parame-
tros desconocidos.

Centrandonos en los problemas de la teoria de la estimacion,
Fisher apunt6 que se trata de la eleccién del valor del parametro
0 mas apropiado basiandose en la muestra o, mas exactamente, en
los estadisticos —denotados con letras latinas (como, por ejem-
plo, T)— que se calculan a partir de los datos observados. ;jPor
qué se usaba la media muestral X para estimar la media poblacio-
nal u? ;0 la desviacion tipica muestral S para aproximar la des-
viacion tipica poblacional ¢? La teoria de la estimacién estadistica
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que esbozo6 Fisher respondi6 a estas preguntas planteandose qué
propiedades debia cumplir todo buen estimador.

Una primera propiedad que parecia natural exigir a la hora de
estimar un parametro 6 mediante un estadistico 7 era que fuera
«consistente», es decir, que T convergiera en probabilidad al ver-
dadero valor de 6 conforme el tamaifio de la muestra aumentara.
En consecuencia, si la muestra era grande, el valor de T coincidi-
ria muy probablemente con el de 0. Los estimadores consistentes
eran aquellos que se volvian mejores segiin crecia el tamaiio de la
muestra, que tendian a dar el valor correcto del parametro.

«Hay que admitir que cualquier inferencia de lo particular

a lo general se realiza con un cierto grado de incertidumbre,
pero esto no es lo mismo que admitir que esa inferencia no
pueda ser absolutamente rigurosa.»

— R.A. FisnER, EL pDisENO DE EXPERIMENTOS (1935).

Una segunda propiedad deseable era que 7' no solo conver-
giera al valor real del pardmetro 6, sino que lo hiciera de manera
«eficiente», es decir, con el menor error posible. En términos mas
precisos: que el error estiandar del estimador fuera el minimo po-
sible (mas adelante veremos que Fisher dio con un método —el
método de maxima’ verosimilitud— para construir estimadores
eficientes).

Finalmente, una tercera condicién, mas restrictiva que la de
eficiencia, era la propiedad de «suficiencia», que pedia que el es-
tadistico T no desaprovechara ninguna informacién contenida
en la muestra, que contuviera toda la informacion relevante para
estimar el pardmetro correspondiente. Cuando un estadistico T
era suficiente para 6, ningin otro estimador proporcionaba mas
informacién sobre el parametro a partir de la muestra. Ademas,
podia demostrarse que en este caso T era eficiente. La suficiencia
era el criterio supremo, ya que implicaba los otros dos criterios
mas débiles (la eficiencia y la consistencia). Cuando se encon-
traba un estadistico suficiente, podia afirmarse que el problema de
la estimacién estaba completamente resuelto. Por desgracia, no
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SESGO Y EFICIENCIA

A dia de hoy, los tres criterios proporcionados por Fisher apenas han expe-
rimentado modificacion, aunque su accidn se ha visto complementada por
otros criterios.

El sesgo

Asi, se comienza definiendo un estimador T como centrado o insesgado
para el parametro 0 si, para cualquier tamafio muestral, la media de su dis-
tribucién en el muestreo es 8. En otras palabras, si el valor esperado del
estadistico T es, precisamente, el valor real de 6. En otro caso, se dice que
el estimador no es centrado, que tiene sesgo.

La eficiencia

Por su parte, se llama eficiencia o precisién de un estimador al inverso de
la varianza de su distribucién muestral, es decir, al inverso del cuadrado
de su desviacién tipica, de su error estandar (el concepto de varianza como
cuadrado de la desviacién tipica fue introducido por Fisher en 1918 por ser
mas comodo de calcular). La eficiencia o precision de un estimador estd, por
tanto, ligada a su varianza (ambas cantidades son inversamente proporcio-
nales entre si): cuanta mas dispersion tiene un estimador, menos preciso
es en sus estimaciones, y reciprocamente. Este concepto es especialmente
relevante para comparar estimadores insesgados, ya que entre ellos es pre-
ferible el mas eficiente, el de minima varianza.

El error cuadratico medio

No obstante, en ocasiones se presenta el dilema de elegir entre dos estima-
dores con propiedades contrapuestas: uno de ellos es insesgado, mientras
que el otro es sesgado aungue con menor varianza. En estos casos es razo-
nable elegir aquel estimador con menor error promedio de prediccion del
parametro (formalmente: con menor error cuadratico medio para el tamafio
muestral prefijado, siendo esta cantidad la suma de la varianza del estima-
dor y del cuadrado de su sesgo). Un ejemplo de esto nos lo proporciona la
estimacion de la varianza o? de una poblacién. En principio, lo més éptimo

siempre existia un estadistico suficiente a la hora de estimar un
parametro, como Fisher se vio obligado a reconocer.

El primer método utilizado para construir estimadores fue
el método de los momentos, propuesto por Karl Pearson. La idea
era simple: tomar como estimador de la media de la poblacién la
media muestral; de la desviacién tipica de la poblacién, la des-
viacién tipica de la muestra, y asi sucesivamente. En general,
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no es usar la varianza muestral S? (que se define como el promedio de las
diferencias elevadas al cuadrado de los datos con respecto a la media) sino
la «cuasivarianza» o varianza muestral corregida $2, que a la hora de prome-
diar, en lugar de dividir por n (el tamafo de la muestra) divide solo por n-1.
La razén estriba en que al trabajar con muestras se calcula la variabilidad en
torno a la media de la propia muestra (no en torno a la media de la pobla-
cion, que es lo que realmente interesa), y ello tiende a subestimar la variabi-
lidad de la poblacion total. Al dividir por n-1se obtiene un valor ligeramente
mayor que estima mejor la dispersion de la poblacion, porque el estadistico
resultante resulta ser un estimador insesgado. Sin embargo, desde el punto
de vista del error cuadratico medio, es mejor emplear la varianza muestral
$? que la cuasivarianza $2. El estimador sin corregir es preferible. Finalmente,
cuando se dispone de muestras grandes y no es facil la obtencion de estimado-
res centrados con alta eficiencia, el requisito minimo que se exige a un estima-
dor es que sea, de acuerdo con Fisher, consistente, entendiendo por ello que
se aproxime, al crecer el tamafo muestral, al verdadero valor del parametro.
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Si equip nos las esti | de varios disticos con los disparos de varios tiradores,
podemos comprender mejor cudles son las propiedades que debe © lir un buen esti |
Los disparos del tirador A no se desvian hacia ninguna direccién en particular, pero se
observa que estdn muy disp (lo que repr un estimador i gado pero no eficiente).

Los disparos del tirador B estdn sesgados hacia la izquierda y, ademas, dispersos (estimador
sesgado y no eficiente). Los disparos del tirador C estén poco dispersos pero desviados
(estimador sesgado y eficiente). Y los disp. del tirador D estdn centrados y

aglutinados (estimador | do y efici ), lo que constituye la mejor opcidn.

se igualaban los momentos poblacionales con los momentos
muestrales, y se despejaban los parametros desconocidos. En su
articulo, Fisher juzgé que la eficiencia de este método de cons-
truccién de estimadores no era la deseada, puesto que muchos
no cumplian las propiedades estipuladas. Los estimadores obte-
nidos por el método de los momentos son consistentes, pero no
son, en general, eficientes (centrados con varianza minima). La

LOS FUNDAMENTOS MATEMATICOS DE LA INFERENCIA ESTADISTICA

77



78

ventaja de estos estimadores es, desde luego, la simplicidad. Su
inconveniente es que al no tener en cuenta la distribucién de la
poblacién que genera la muestra, no utilizan toda la informacién
disponible.

Desde entonces, Fisher siempre se refirié al método de los
momentos de Pearson como «ese método tradicional pero inefi-
ciente». En su ceguera, Karl Pearson nunca se dio por vencido e,
incluso, en el que seria su tltimo articulo (publicado péstuma-
mente en 1936 en Biometrika), defenderia a capa y espada las
virtudes de su método, comenzando el texto con la siguiente pre-
gunta retérica: «;Perdiendo el tiempo ajustando curvas mediante
el método de los momentos, eh?».

Un procedimiento que proporcionaba estimadores con buenas
propiedades, especialmente en muestras grandes, era el método de
méaxima verosimilitud, que patenté Fisher y que en germen se en-
cuentra en su primer articulo publicado, de 1912. El precedente mas
directo del método de maxima verosimilitud se halla en Gauss, aun-
que también en Daniel Bernoulli, pero la inferencia bayesiana que
impulsé Laplace ensombreci6 este y otros trabajos. No obstante,
Fisher fue mucho maés lejos que estos matematicos en promocionar
su uso como método universal de construccién de estimadores.

Para entender la nocién de funcién de verosimilitud, que Fi-
sher reintrodujo y es una de las més importantes de la inferencia,
hay que distinguir. con nitidez dos conceptos muy parecidos. Sea
0 el pardmetro poblacional desconocido y representemos por X
la muestra extraida aleatoriamente de la poblacién. Por un lado
se tiene la probabilidad de obtener la muestra X condicionada a
cierto valor de 6 que se supone conocido, lo que se denota como
P(X|0) (con X variable y 0 fijo) y determina la probabilidad de
aparicién de cada muestra. En cambio, en un problema de estima-
ci6n, tenemos una cosa muy distinta: se ha observado la muestra
X pero 6 es desconocido. Sin embargo, la funcién anterior sigue
siendo 1til, ya que si sustituimos X por el valor observado, P(X|0)
proporciona, para cada valor de 6, la probabilidad de obtener
el valor muestral X. Cuando variamos 6, manteniendo X fijo, se
obtiene una funcién que se llama funcion de verosimilitud y se
designa como L(8|X), con X fijo y 6 variable. Conviene advertir
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EL PROBLEMA DE LOS TANQUES ALEMANES

Los estadisticos que durante
la Segunda Guerra Mundial
trabajaban para los Aliados
se toparon con un problema
peliagudo: écomo estimar el
numero total de tangues fa-
bricados por los alemanes a
partir de los numeros de serie
de los tanques capturados?
Suponiendo que los tanques
alemanes habian sido nume-
rados secuencialmente desde
1 hasta N, se trataba de cons-
s ¥ Durante la Seg

truir un estimador para N. de Panzers alemanes fue estimada con gran precisién
Supongamos, por simplificar,  por los estadisticos aliados.

que los tanques capturados

tenian los siguientes niumeros de serie: 2, 3, 7, 16. A partir de esta muestra
se deseaba estimar N, es decir, el tamaiio total de la poblacion de tanques
alemanes. Por el método de los momentos, para calcular un estimador de N
se igualaba el primer momento poblacional, es decir, la media poblacional:

= N+1

>

donde se suma 1 porque no hemos empezado a contar desde O, con el pri-
mer momento muestral, es decir, la media muestral, que es:

da G Mundial, la produccién

que, como consecuencia de haber invertido el papel de X y 6 de
acuerdo al cambio de éptica que se asume en la inferencia, la fun-
cién de verosimilitud ya no tiene por qué ser una distribucién de
probabilidad, de modo que —como Fisher no dejé de apuntar—
no obedece las reglas del calculo de probabilidades (una vez se
sustituyen los valores particulares de la muestra). Esta funcién
representa el estado de nuestra informacién con respecto al pa-
rametro de la poblacién. En efecto, en lugar de suponer que co-
nocemos 8 y calculamos las probabilidades de observar distintas
muestras X, suponemos que hemos observado una muestra X
concreta y evaluamos la verosimilitud de los posibles valores de
6. La funcién de verosimilitud es la herramienta clave para juzgar
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%= 2+3+7+16 -7
4

lgualando ambos valores y despejando N, se obtenia que la estimacién era
13. Sin embargo, por légica, si en la muestra habia salido seleccionado el
tangue numero 16, era obvio que un mejor estimador era el valor maximo
observado en la muestra, 16. Los alemanes habian producido, por lo menos,
16 tanques. No obstante, si solo se consideraba el maximo en la muestra, la
estimacion tendia a subestimar el tamafio total de la poblacién, puesto que
el maximo podia ser igual o menor pero nunca mayor que N. En verdad, el
mejor estimador posible venia dado por el estimador eficiente (insesgado de
minima varianza) cuya formula para N era:

m-n
m+ ’
n

donde m era el mayor numero de serie observado y n el tamafo muestral.
Esta formula puede entenderse como la suma del méximo en la muestra mas
el «hueco medio» en la muestra. Al valor mayor se le afiade el promedio de
los huecos entre las observaciones que tenemos, pensando que a continua-
cion suyo debe de haber tantos elementos como més o menos hay entre los
valores de que disponemos. En nuestro ejemplo, la mejor estimacion para
N seria:

16-4
Palo

6 =19 tanques en total.

la compatibilidad entre los valores muestrales observados y los
posibles valores del parametro.

La intuicién de Fisher radicé en escoger como estimacién de

0 aquel valor que haga maxima la probabilidad de aparicién de los
valores muestrales efectivamente observados. En otras palabras:
se trata de seleccionar como estimador del parametro aquel valor
que maximiza la probabilidad de lo efectivamente ocurrido, de ob-
servar los datos que realmente fueron observados. Esto conduce
a determinar el maximo de la funcién de verosimilitud, de manera
que se elige como estimador de 6 aquel valor que otorgue valor
maximo a la funcién L(6|X). Bajo ciertas condiciones de regula-
ridad, los estimadores maximo-verosimiles son asintéticamente
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UNA MONEDA TRUCADA

Consideremos una moneda de la que se desconoce la probabilidad p de
que al lanzarla salga cara. La moneda se lanza cuatro veces y se obtiene la
siguiente serie: CXCC (cara-cruz-cara-cara). Por el célculo de probabilida-
des sabemos que

P(CXCCip) = p*(1-p).
Por tanto, la funcién de verosimilitud es:
L(plCXCC)=p*(1-p).

Esta expresion nos permite intuir, por ejemplo, que el valor 0,6 para
p es mas verosimil que el valor 0,5 dado que L(0,6/CXCC)=0,0864 y
L(0,51CXCC)=0,0625. La funcion de verosimilitud permite discriminar qué
valores del parametro p son mas verosimiles a la luz de los datos disponi-
bles. Mediante un célculo no excesivamente complejo puede demostrarse
que la funcién de verosimilitud alcanza su maximo para el valor 0,75. Nues-
tra estimacion a partir de la muestra observada seria, en consecuencia, que
p = 0,75. En esencia, esta es la base del método de estimacion de parame-
tros por maxima verosimilitud.

centrados y eficientes (conforme crece el tamafio de la muestra
el sesgo tiende a cero y la varianza a su minimo) y suficientes (si
existe un estadistico asi para el problema concreto bajo estudio).

Este método era el que Fisher habia empleado en el articulo
de 1915 que Karl Pearson habia criticado con extrema dureza.
Nada tenia que ver con el teorema de Bayes. Para estimar el coe-
ficiente de correlacion p de toda una poblacién, Fisher habia ele-
gido aquel valor que maximizaba la probabilidad de obtener el
coeficiente de correlacién r observado en la muestra, es decir,
el maximo de la funcién de verosimilitud.

La nocién de modelo estadistico, los tres tipos de problemas
en inferencia (especificacién, estimacién, distribucién), los tres
criterios de estimacién (consistencia, eficiencia, suficiencia) y el
método de maxima verosimilitud aportaron el marco para el pro-
grama de investigacién que ha dominado la estadistica teérica o
matematica durante todo el siglo xx, aunque el caradcter vago y
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elusivo de muchas de las demostraciones dadas por Fisher dio
bastantes quebraderos de cabeza a los matematicos de las déca-
das siguientes. La aparicion de esta celebrada memoria de Fisher
abrié, desde luego, una nueva era en la estadistica, consagrando
una larga serie de términos (parametro, estadistico, estimador,
etc.) que desde entonces forman parte ineludible de la literatura
estadistica.

«METODOS ESTADISTICOS PARA INVESTIGADORES»

Entre los veranos de 1923 y 1924, Fisher escribié Métodos estadis-
ticos para investigadores, un libro que vio la luz en 1925 y hasta la
fecha ha sido reeditado en catorce ocasiones. Se trata de su obra
maés influyente y popular. Da la impresion de ser mas un manual
para aprendices que un libro de texto, a tenor del estilo persuasivo
y la caracteristica ausencia de demostraciones matematicas. Tal
vez en esto radicé su gran éxito. Problemas practicos, técnicos,
tedricos y filoséficos se discuten en el libro a través de ejemplos
numéricos muy ilustrativos. Fisher fue un gran matematico apli-
cado, pero concebia la estadistica como una disciplina que no solo
necesita del razonamiento deductivo tipico de las matematicas,
sino también del razonamiento inductivo que sabe hacer el cienti-
fico experimentado a partir de los datos que maneja.

El libro contenia una introduccién al tema, en la que Fisher
mantenia que la estadistica no era sino matematica aplicada a los
datos observacionales. La estadistica se interesaba por el estudio
de poblaciones de individuos, moléculas o medidas, fijindose en su
variabilidad y en la posibilidad de reducir o simplificar los datos de
partida, de extraer toda la informacién relevante que contuvieran
sobre la poblacién subyacente. En su examen de las muestras dispo-
nibles, el estadistico realizaba inferencias sobre la poblacién total,
pero estas no debian venir expresadas —segiin subrayaba Fisher
con tono agresivo— en el lenguaje de la probabilidad (como que-
rian los partidarios del teorema de Bayes y los métodos inversos de
probabilidad) sino, en todo caso, en el lenguaje de la verosimilitud.
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A través de los capitulos del libro, Fisher recorria lo que ac-
tualmente comprende un curso basico de inferencia estadistica.
Es de destacar que el autor comenzaba apoyandose en el uso de
diagramas. A su entender, su observacién no probaba nada, pero
frecuentemente sugeria como comenzar el analisis. Tras repasar
las distribuciones de probabilidad fundamentales (normal, bino-
mial y Poisson), presentaba la receta estadistica que era la piedra
angular de la obra: los «test de significacién».

Cada seccidn del libro dedicada a los test de significacién en
sus diferentes modalidades (de ajuste, homogeneidad e indepen-
dencia, para la media, la diferencia de medias o los coeficientes
de regresion y correlacion) arrancaba con un conjunto de datos
con los cuales se habia topado en el curso de alguna investigacion.
Por medio de su diseccién y explicacién, Fisher conducia al lector
a través de las diferentes etapas del razonamiento estadistico que
llevaban a la solucién del problema. El planteamiento de los test
estaba basado en el conocimiento de las distribuciones muestra-
les de poblaciones normales, deducidas con anterioridad por él
mismo y otros especialistas en articulos matematicos que no ha-
bian llegado al ptblico de investigadores biolégicos o agrénomos.
En el libro, Fisher usaba con asiduidad la %? de Pearson, la ¢ de
Student y una distribucién nueva, que a partir de 1934 seria cono-
cida como la F' de Fisher-Snedecor, por el matemético estadouni-
dense George Snedecor (1881-1974), que precisé la aproximacion
logaritmica («log-normal») que en principio empleara Fisher.

Pero, ;en qué consistia un test de significacién? Una prueba
de significacién constaba, en primer lugar, de una hipétesis nula
H, que establecia, por ejemplo, que el verdadero valor del pardme-
tro desconocido era tal o cual: 0=0,. La hipétesis de partida del
investigador fue bautizada con este nombre por Fisher en 1935
porque en agricultura representaba que no habia cambio alguno
con el uso de un nuevo fertilizante, que este no tenia efecto, esto
es, que la diferencia entre los promedios de crecimiento usandolo
y no usandolo era nula.

A continuacién, tras delimitar la hipétesis nula que se de-
seaba poner a prueba, se elegia el estadistico T del test y se cal-
culaba su valor sobre los datos de la muestra X observada, lo que
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se denotaba como T(X). Dado que la distribucién en el muestreo
del estadistico T era conocida, se determinaba la probabilidad de
que el estadistico 7' tomase un valor igual o méas extremo que el
valor observado T(X) bajo el supuesto de que la hipétesis nula
era cierta (es decir, bajo la suposicién de que el valor real del pa-
rametro 6 era 6 ). Simbélicamente: P(T = T'(X)IH, ). Este nimero
se denominé p-valor. Entonces, si el p-valor era excesivamente
pequefio —en general, por debajo de 0,05—, el test se decia que
era significativo, porque permitia rechazar la hipé6tesis nula /. En
otro caso, el test no era significativo y, para el nivel de significa-
cién prefijado de a = 0,05, no podia rechazarse la hipétesis nula
H y se aceptaba provisionalmente.

«Todo experimento se plantea a fin de dar a los hechos una
posibilidad de refutar la hipétesis nula.»

— FisuER, EL pDISERO DE EXPERIMENTOS (1935).

La hipétesis nula solo se rechazaba si la probabilidad de ob-
servar una muestra como la dada era demasiado baja. El razona-
miento estadistico se basaba en la siguiente disyuncién légica: «o
bien ha ocurrido un suceso excepcional (muy improbable), o bien
la hipétesis nula no es correcta», empleando palabras del pro-
pio Fisher. El p-valor o probabilidad de significacién —que en la
época no siempre era ficilmente computable— funcionaba para
Fisher como una suerte de medida de la evidencia en contra de
la hipétesis nula: cuanto menor fuese, mas evidencia en contra
de la hipétesis se disponia. Un valor demasiado pequeiio indicaba
que la muestra observada se separaba de lo esperado mucho mas
de lo que seria achacable al azar, a las circunstancias del mues-
treo aleatorio, y por tanto el investigador se encontraba ante una
hipétesis nula inverosimil, descartable.

Pongamos una ilustracién sencilla para fijar ideas. Suponga-
mos que suministramos un nuevo fertilizante a 20 plantas y obser-
vamos su crecimiento durante cierto periodo de tiempo, de ma-
nera que medimos si con el nuevo fertilizante han experimentado
un aumento (+) o una disminucién (=) en el ritmo de crecimiento
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con respecto al que tenian antes de usarlo. Nuestra hipétesis nula
es que el fertilizante no tiene efecto positivo alguno, es decir, que
la distribucién entre los aumentos (+) y las disminuciones (-) va
a ser completamente azarosa, como si se tratara de las caras y
las cruces obtenidas al lanzar una moneda legal, perfectamente
simétrica. Por consiguiente, de acuerdo con la hip6tesis nula H,
la probabilidad de + serd igual a la probabilidad de -, esto es,
6 = 0,56. Imaginemos que, tras realizar el experimento, observamos
16 + y solo 4 —. Si elegimos como estadistico T'del test el ntimero de
+ obtenidos, resulta que la probabilidad de obtener 16 + o m4s bajo
el supuesto de que la probabilidad de observar un aumento es de 0,5
es, segiin puede calcularse ficilmente (véase la tabla siguiente), de
solo 0,006. Formalmente: P (T 2= 16lH,)=0,006. Como este p-valor
es inferior al umbral de a.=0,05, el test es significativo y podemos
rechazar la hipétesis nula de partida: hay evidencia empirica en
contra de la hipétesis de que el fertilizante no tenia efecto, es mas,
todo parece apuntar a que estimula el crecimiento de las plantas.

Numero de + Probabilidad
16 0,004621
17 0,001087
8 0,000181
19 0,000019
20 0,000001
Suma 0,006

Tabla gque resume el célculo de las probabilidades de obtener
de 16 a 20 + de acuerdo a la férmula de la probabilidad binomial:

P(alnﬁmmdc+seak}=( 2: )-0.5”.

Frente a la creencia comin en su entorno, Fisher apuntaba
que era el p-valor y no el valor concreto 7'(X) del estadistico del
test lo que constituia una medida del sustrato racional en contra
de la hip6tesis nula. Asi, por ejemplo, el valor particular del esta-
distico %* calculado para medir la discrepancia entre una serie de
valores tedricos y los datos observados no permitia cuantificar
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el grado de asociacién entre ambas series de valores (lo que si
haria el coeficiente de correlacién), porque un mismo valor del
estadistico podia ser significativo para una muestra grande pero
insignificante para una muestra pequefa. Ademads, Fisher alert6
de que el nivel de significacién o no habia de ser fijo, rigido. Pero
la advertencia pronto cay6 en el olvido y se generalizé el uso de
0,05, al punto de no considerar significativo un p-valor de 0,051 y
si otro de 0,049. La eleccién de este valor frontera no es una cues-
tién matematica, fijada universalmente, sino que depende del con-
texto pragmatico: si se trata de la prueba de un nuevo farmaco,
un nivel de significacién del 0,05 implica que se corre un riesgo
del 5% de afirmar que el firmaco es eficaz cuando en realidad no
lo es (en este caso, como en otros, un nivel del 0,01 o 0,001 puede
ser mucho mas adecuado).

En suma, los test de significaciéon ideados por Fisher eran,
en el fondo, una especie de modus tollens estadistico. El modus
tollens tradicional poseia la siguiente estructura:

Si A, entonces B.
No B.
Luego, no A.

Y la nueva version estadistica era:

Si la hipdtesis nula H es correcta, entonces los datos obser-
vados no serdn estadisticamente significativos al nivel a = 0,05
con una alta probabilidad de 1-a=0,95.

La muestra observada X es estadisticamente significativa
al nivel a=0,05.

Luego, la hipdtesis nula H,no es correcta.

Ahora bien, la principal diferencia entre el razonamiento 16-
gico y el razonamiento estadistico es que este tltimo es falible,
en el sentido de que no siempre es seguro, pues puede fallar, ya
que existe una probabilidad de 0,05 de que por error se rechace
la hipétesis nula siendo en verdad correcta. Para sus criticos,
esta es la peculiaridad que hace que los test de significacion
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carezcan de fuerza légica. Podemos rechazar la hipotesis nula
¥y que, sin embargo, sea verdadera. Los test de significacién no
podrian, por tanto, inferir la falsedad o la verdad de la hipétesis
de partida. Fisher estaria confundiendo los sucesos improbables
con sucesos imposibles. No obstante, lo que diferencia a la esta-
distica de la adivinacién es, reiterando lo dicho al principio del
capitulo, la capacidad para cuantificar con precisién esta proba-
bilidad de error.

Fisher describia los test de significacién como un procedi-
miento para rechazar la hipétesis nula, que en ningiin caso podia
ser probada o establecida definitivamente. Este planteamiento
refutacionista era coherente con la corriente falsacionista que
poco después encabez6 el filésofo de la ciencia Karl Popper (1902-
1994). Tanto para el estadistico como para el fil6sofo, la ciencia
se caracterizaba por el planteamiento de pruebas empiricas que
pudiesen refutar o falsar las teorias que conjeturan los cientificos.
No deja de ser sorprendente que el libro El disetio de experimen-
tos de Fisher, que ahonda en este tema y del que hablaremos mas
abajo, se publicara el mismo afio, 1935, en que Popper dio a la im-
prenta su obra maestra: La ldgica del descubrimiento cientifico
(aunque el filésofo nunca cit6 al estadistico). La propuesta meto-
dolégica de Fisher era una especie de falsacionismo aplicado a la
estadistica: se trata de rechazar aquellas hipétesis para las cuales
las observaciones sean relativamente inverosimiles (aunque la
decision de rechazar es, desde luego, revisable sobre la base de
nuevos hechos). Aquello que distanciaba al estadistico britdnico
del filésofo vienés era que, para nuestro protagonista, los test de
significacién, aunque metodolégicamente deductivos (si tal, tal;
no tal, ergo rechazamos H ), eran inductivos por su contenido,
pues permitian aprender de la experiencia, aunque siempre de una
manera provisional. La hipétesis nula nunca se confirmaba, pero
era posible refutarla. Si el test era significativo, la hip6tesis era im-
plausible a la luz de los datos; y si no lo era, no indicaba més que
la hipétesis era compatible con los datos. No rechazar no queria
decir, salvo que se tratara de una bateria de test sucesivamente no
significativos, aceptar. Ningin experimento aislado demostraba
para Fisher una ley natural.
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Como ampliaremos en el capitulo 5, la aproximacién fishe-
riana presentaba algunas lagunas. En muchas ocasiones, la evi-
dencia en contra de la hip6tesis nula sugeria evidencia a favor
de cierta hipdtesis alternativa, que Fisher no tomaba nunca en
consideracion dentro de los test de significacién. Asimismo, el
matematico inglés no hacia demasiado hincapié en el calculo y
la importancia de las probabilidades de error. Finalmente, otra
dificultad que salia al paso era la cuestion técnica de qué esta-
distico elegir para cada test. Una eleccién, ciertamente, subje-
tiva, aunque bastante estandarizada. Fisher afirmé que habia que
agarrarse al principio de suficiencia, eligiendo un estadistico
suficiente, es decir, como vimos, un estadistico que contuviera
toda la informacién relevante de la muestra. Pero, desafortunada-
mente, la mayoria de estadisticos que Fisher empleaba en su libro
no cumplian esa propiedad tan deseable (como, por ejemplo, el
estadistico y?).

A mediados de 1929, Egon S. Pearson (1895-1980), hijo de
Karl Pearson y prometedor estadistico por aquel entonces, pu-
blic6 una resefia sin firmar de la segunda edicién del libro en Na-
ture que puso furioso a Fisher. Las relaciones entre Pearson hijo
y Fisher no volvieron a ser cordiales. Probablemente, este tltimo
penso que Pearson padre estaba malmetiendo detrés. La principal
critica formulada por Egon era que Fisher siempre presuponia
que la poblacién subyacente era normal, y 1a exactitud de los test
se venia abajo si esa premisa no era cierta. Curiosamente, Student
le habia insistido a Fisher sobre este tema por carta, pero este le
habia hecho oidos sordos. Serfa Egon Pearson, espoleado tam-
bién por Student, el que mediante simulacién, es decir, mediante
tablas de niimeros aleatorios, probara que muchos test basados
en el conocimiento de las distribuciones en el muestreo de po-
blaciones normales podian seguir empledndose, porque la omni-
presente distribucién ¢ era robusta, estable aun si desaparecia el
supuesto de normalidad. Una actuacién emparentada con la que
en su dia Student usara para comprobar la adecuacién empirica
de su distribucién ¢, aunque este dltimo no disponia de tablas al
efecto y hubo de conformarse con barajar cartas con niimeros ex-
traidos de la medida de la estatura y la longitud del dedo corazén
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«ANOVA»

Aparte de las pruebas de significacion, el libro de Fisher presentaba el analisis
de la varianza, otra novedosa técnica estadistica, conocida mundialmente por
sus siglas en ingles: ANOVA. Mediante los test de significacién se podia com-
parar la efectividad de un fertilizante con respecto a no usarlo o a otro distinto.
Es lo gue en la jerga estadistica se conoce como test sobre la diferencia de
medias (en el anexo al final del libro se presenta un ejemplo numérico). Pero,
écomo proceder si queremos comparar tres o mas fertilizantes, es decir, poner
a prueba la hipdtesis de que tres o mas medias son iguales? Una primera res-
puesta, bastante ineficiente, seria comparar los efectos de los tres fertilizantes
A, B ,Cdosados: AyB; AyC; By C. Pero, para un nivel de significacién fijo
de a=0,05, hacer tres pruebas incrementa la probabilidad de error mas alla
de lo tolerable: P (algtin error en los tres test)=1-P (ningun error en los tres
test)=1-0,95%=1-0,86=0,14. La probabilidad de cometer algin error a la hora
de rechazar la hipdtesis nula de que no hay diferencias es de casi tres veces lo
esperado: de 0,14 en vez de 0,05. Si en lugar de tres fertilizantes fuesen cuatro,
habria que realizar seis pruebas, lo que empieza a ser demasiado costoso. Para
solventar estos escollos, Fisher ided el andlisis de la varianza, que mediante la
comparacion de las varianzas muestrales —de ahi el nombre— permite sacar
alguna conclusion sobre los valores relativos de las medias poblacionales. Su-
pongamos que se han rociado seis parcelas con tres tratamientos diferentes
A, By C (dos parcelas para cada fertilizante). Se observa el rendimiento de
cada parcela y se calcula el promedio de productividad de cada tratamiento:

Tratamiento A

Tratamiento B

Tratamiento C

n 6 1
9 =) 3
Media A =10 Media B = 5,5 MediaC=2

A continuacidn, se calcula la gran media, la media total:

MN+6+1+9+5+3
6

En el experimento se pueden identificar tres tipos de variabilidad: la variacién
total entre las 6 parcelas (cada una tuvo rendimientos diferentes); la variaciéon en-
tre tratamientos (A, B y C no tuvieron el mismo rendimiento), y la variacién dentro
de cada tratamiento debida al error o al azar, también llamada variabilidad interna
o residual (no todas las parcelas tratadas con A tuvieron el mismo resultado). La
comparacion entre estas fuentes de variacion permite discriminar la igualdad de
efectos de A, B y C. Si la variacidn entre tratamientos no es del mismo orden que
la variacion dentro de cada tratamiento, es razonable suponer que la diferencia

Media = 5,83.
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sea achacable a los distintos efectos de A, B y C. Y si esta diferencia es estadis-
ticamente significativa, la hipotesis nula podra rechazarse. Esta diferencia entre
la variacion «entre» tratamientos y la variacion «dentro» de cada tratamiento es,
precisamente, lo que mide el andlisis de la varianza mediante el cociente de va-
rianzas, cuya distribucién es la F de Fisher-Snedecor. Parte del éxito del analisis
de la varianza se debe a su presentacién en forma de tabla. Como la variacion
total es igual a la suma de la variacion de cada tratamiento mas la variacién de-
bida al error dentro de cada tratamiento, la suma de cuadrados total (SCT) —de
cada observacion respecto de la gran media— puede descomponerse como la
suma de cuadrados de los tratamientos (SCTR) —entre la media de cada trata-
miento y la gran media— mas la suma de cuadrados del error (SCE) —de cada
observacion respecto de la media de su tratamiento—:

SCT=(1-583)"+(6-583)*+..+(3-583)"=68,83.
SCTR =2-(10 - 5,83)* + 2.(5,5 - 5,83)? + 2-(2 - 5,83) = 64,33,
SCE=(N-10)*+(6-55P+..+(3~-2y2=45.
SCT=68,83=6433+45=SCTR+ SCE.

Después de obtener las sumas de cuadrados, hay que calcular los promedios
respectivos, dividiendo cada cantidad por su nimero de grados de libertad, es
decir, por el nimero de datos menos 1. En nuestro ejemplo, SCT se divide entre
6-1=5 (ya que habia 6 observaciones); SCTR entre 3-1=2 (ya que eran 3 trata-
mientos), v, finalmente, SCE por el nimero de grados de libertad que salen de
despejar en la igualdad SCT=SCTR+SCE. Esto es: SCE=SCT-SCTR=5-2=3,
que coincide con la diferencia entre el nimero de observaciones y el numero
de tratamientos. El calculo de los cuadrados medios lo resumia Fisher en una
tabla como la siguiente, donde también se calculaba el valor de la razén F
entre los cuadrados medios de los tratamientos y del error:

Tabla ANOVA
d Suma de Grados de Cuadrado
Fuente de variacion Aindeailas libertad By F
Entre tratamientos 64,33 2 3217 21,44
Dentro de tratamientos 4,50 3 1.5
Variacién total 68,83 5

Por ultimo, como el p-valor o probabilidad de que una distribucion Fcon2y 3
grados de libertad tome un valor igual o superior a 21,44 es, segun se muestra
en las tablas, de 0,02, que es menor que 0,05, puede rechazarse la hipotesis de
que los tres fertilizantes actuan de igual manera. Es mas, segun los datos parece
que el fertilizante A es, pese al poco tamafo de la muestra, el mas beneficioso.
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de 3000 criminales. Actualmente, una variante de este método
recibe el luminoso nombre de método de Monte-Carlo.

La circulacién de Métodos estadisticos para investigadores
dictaminé el fin de la edad de la correlacion y el ajuste de curvas.
Hasta Fisher, los estadisticos dedicaban la mayor parte de sus
esfuerzos al célculo de coeficientes, siguiendo el ejemplo de Karl
Pearson. Pero una confusién crucial permeaba toda su investiga-
cién. En general, no distinguian entre el problema de la estima-
cion del valor del coeficiente, es decir, del grado de asociacién
entre dos o mas variables, y el problema adjunto de testar la signi-
ficacion de esta asociacién, su posible existencia. Ademés, Fisher
revitalizé, frente a la escuela abanderada por Pearson, el empleo
de muestras de tamafio modesto, transformando los métodos es-
tadisticos en algo vivo, rotundo y bien trabado.

«EL DISENO DE EXPERIMENTOS»

En la dltima seccién de Métodos estadisticos para investigado-
res, Fisher discutia y ejemplificaba el diseiio de experimentos en
agricultura, un campo a medio camino entre el laboratorio y el
invernadero con el que se habia familiarizado gracias a su estancia
en Rothamsted. Poco después, dentro de un articulo publicado en
1926, perfilaba atin mas las lineas maestras que debian regir cual-
quier experimento. La tormenta de ideas precipité en otro best-
seller: El disefio de experimentos, que sali6 de la imprenta en 1935
y en el que Fisher recogio los principios basicos del disefio expe-
rimental tal y como los habia pergefiado durante los afios veinte.
Esta obra innovadora conocié ocho reediciones, y se trata mas
bien de un libro de ideas que de cédlculos, que ha tenido una gran
repercusion en la investigacién agraria y, en general, experimental.

La estadistica, segin ensef6 Fisher, es necesaria para saber
c6mo implementar pruebas que respondan a preguntas del si-
guiente cariz: jqué fertilizante es mejor?, ;scudl de estos medi-
camentos es mas eficaz?, etcétera. A veces no es posible con-
testarlas mediante estudios concretos que analicen la accién del
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fertilizante o del medicamento en el metabolismo de la planta o
del organismo en cuestion, sino que es més seguro recoger datos
y comparar resultados. Ahora bien, la recogida de datos puede
liegar a ser un proceso de lo més arduo tanto si el experimento
encaminado a producirlos no se ha disefiado con cuidado como
si el cientifico no es ducho en interpretar su resultado. De la pri-
mera falla, como aclaraba Fisher, se ocupa el disefio de experi-
mentos. De la segunda, la l6gica de la inferencia cientifica. Para
el estadistico, el disefio y la 16gica son las dos caras de la misma
moneda.

La exploracién del mundo biolégico requiere obligatoria-
mente de la realizacién de experimentos controlados. No basta
con la observacién pasiva. Las técnicas de muestreo consisten en
observar una muestra representativa de la poblacién, anotando
los valores de las variables bajo estudio. Por el contrario, el disefio
de experimentos fija ciertas variables y observa la respuesta en
otras, midiendo los cambios que inducen. Cuando los datos se
obtienen mediante un adecuado disefio experimental, se tiene una
base empirica mas sdlida para juzgar las relaciones que median
entre las variables.

Los objetos que reciben el «tratamiento» —un nombre, ligado
al uso de fertilizantes, que ha perdurado— son las unidades expe-
rimentales. En el caso de un experimento agricola, las unidades
experimentales son las parcelas o las variedades de plantas toma-
das en consideracién. Por su parte, el factor es la variable cuyo
impacto en tales unidades desea medirse. Cualquier experimento
bien planeado debe fijarse, siguiendo a Fisher, no solo en la com-
paracién entre los distintos tratamientos, sino también en poner
a prueba la significacién de las diferencias observadas por medio
de un test estadistico. En consecuencia, todos los tratamientos
han de aparecer al menos por duplicado y, preferiblemente, re-
petidos varias veces. Si queremos comparar los tratamientos A y
B, lo idéneo es aplicarlos simultdneamente sobre varios pares de
parcelas. Jugérselo todo a una carta, a un tinico par de parcelas, es
demasiado arriesgado y puede conducir a conclusiones erréneas,
ya que la muestra no tiene por qué ser representativa. Pudiera
ser que la diferencia observada entre los tratamientos A y B se
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debiera simplemente a la distinta fertilidad de la tierra de cada
parcela y no, pongamos por caso, a que A fuera més beneficioso
que B. El principio de repeticién o replicacién formulado por Fi-
sher servia, por tanto, para acotar el error experimental, es decir,
la variacién aleatoria o azarosa que escapa al control del experi-
mentador (como que los suelos de las parcelas sobre las que se ha
aplicado A y B tengan distinta fertilidad).

«Consultar a un estadistico después de que haya concluido el
experimento es, muy a menudo, pedirle que realice un examen
post-mortem. Quizé pueda decir de qué murié el experimento.»

— InTERVENCION DE FisHER EN EL PriMER ConGrEso IND1o DE EsTapisTica (1938).

En la tesitura de disefiar un experimento el cientifico ignora
un sinfin de factores que pueden influir en el resultado. Es incapaz
de dominar todas las causas que pueden estar operando detras.
Asf, por ejemplo, si desea probar un nuevo fertilizante, no es sen-
sato comparar el crecimiento de las plantas a las que se le va a su-
ministrar en un invernadero con el de plantas de afios anteriores
o de otros invernaderos, que han podido crecer o estan creciendo
en ambientes desiguales. Lo suyo es comparar el crecimiento en
el mismo invernadero entre dos grupos de plantas: un grupo A al
que se le suministra el compuesto quimico y otro grupo B —de-
nominado grupo control— al que no se le suministra. El cientifico
podria inicialmente inclinarse por plantar los dos grupos de plan-
tas en dos surcos paralelos: el A a la derecha, el B a la izquierda.
Pero al hacerlo de este modo podria ser que diversos factores des-
conocidos —la incidencia solar en cada surco o las corrientes de
aire en el interior del invernadero— influyeran en el crecimiento
de las plantas enmascarando el verdadero efecto del fertilizante.
El instrumento mas general para evitar estas desviaciones es lo
que Fisher denominé principio de aleatorizacion. Cada pareja de
plantas de tipo A y B ha de irse colocando en los surcos de manera
aleatoria. Se puede tirar una moneda, de forma que si sale cara,
se coloca la primera planta A a la derecha y la primera planta B
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a la izquierda. Reciprocamente, si sale cruz, se coloca la planta
A a la izquierda y la planta B a la derecha. Y asi sucesivamente.
Mediante este procedimiento, cualquier diferencia significativa en
el crecimiento entre los dos grupos de plantas podra ser achacada
al nuevo fertilizante.

Hasta Fisher, la asignacién de tratamientos se realizaba sis-
tematicamente, lo que podia viciar los resultados. Aleatorizar no
cuesta nada y protege contra la influencia de posibles factores
conocidos e incluso desconocidos, eliminando las causas de va-
riacion fortuita que pueden oscurecer o empaiiar la evidencia.
Sin aleatorizar hubiera podido darse el caso de que el surco se-
leccionado para plantar el grupo A fuese, sin saberlo, de mayor
productividad que el elegido para plantar el grupo B, de manera
que la heterogeneidad del suelo camuflase el verdadero efecto
del nuevo fertilizante. De hecho, tal y como se habian tomado los
datos en Rothamsted, la influencia de las lluvias y de la meteoro-
logia en general enmascaraba la posible influencia de los abonos
y fertilizantes que se estaban probando en las cosechas. Ambos
factores estaban confundidos. Fisher no solo dijo qué andaba
mal, sino que explicé como hacerlo bien. Inesperadamente, con
motivo de la aleatorizacién como forma de neutralizar factores
externos, Fisher estuvo a punto de romper con su viejo amigo Stu-
dent (aunque el obituario que le escribiria en 1937 se desarrollaria
en términos muy elogiosos). Este principio desencaden6 bastante
controversia, puesto que muchos cientificos pensaban que, dado
que conocian el material que tenian entre manos, era preferible un
experimento sistematico, sin darse cuenta de que con ello conde-
naban el uso de los test de significacién, que requieren de mues-
tras aleatorias.

En ocasiones el disefio completamente aleatorizado de ex-
perimentos tropieza con un escollo dificil de salvar: la heteroge-
neidad de las unidades experimentales (por ejemplo, del terreno
de las parcelas). La asignacién aleatoria de los tratamientos a las
unidades experimentales presupone que todas son homogéneas
entre si. Si esta dltima condicién no se cumple, hay que clasificar-
las por bloques (dentro de los cuales se aplicardn aleatoriamente
todos los tratamientos, claro). La razén de agrupar en bloques es
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evidente: cuanto mas heterogéneas son las unidades, mayor es
el error experimental y menor la oportunidad de detectar dife-
rencias significativas atribuibles a los diferentes tratamientos. El
agrupamiento «bloquea» ese factor externo que provoca una va-
riacién en la respuesta que no es de interés, porque no depende
de la reaccién a los fertilizantes sino, por ejemplo, de las distintas
variedades de suelos a los que se les han suministrado. Es lo que
Fisher denominé disefio aleatorizado por blogues.

Imaginemos que se desea probar cinco tratamientos (A, B, C,
Dy E) sobre 20 parcelas. Una preparaci6n aleatorizada serfa, por
ejemplo: B,C, A, C,E,E,E, A, D,A B,C,B,D,D,B,A D, C,E,
donde cada tratamiento es probado cuatro veces. No obstante, es
posible establecer restricciones sobre el disefio completamente
aleatorizado del experimento que eliminen parte del efecto de-
bido ala heterogeneidad de la tierra —al «gradiente de fertilidad»,
como decia Fisher— y, por tanto, incrementen la sensibilidad
para detectar diferencias entre tratamientos. Una idea es, prosi-
guiendo con el ejemplo, dividir las 20 parcelas en 4 bloques segin
su composicién, de manera que en cada bloque aparezca cada
tratamiento una vez: AECBD, CBEDA, ADEBC, CEBAD. (Es con-
veniente respetar la aleatorizacién dentro de cada bloque para evi-
tar sorpresas.) Asi, se reduce la variabilidad final del experimento
de manera que es posible estimar la parte que corresponde a las
diferencias entre tratamientos con més agudeza.

Tanto en el disefio completamente aleatorizado como en el
disefio por bloques, la técnica estadistica que proporciona el exa-
men de los datos no es otra que el andlisis de la varianza o una
adaptaciéon suya (ANOVA a una o dos vias). Esta poderosa herra-
mienta creada por Fisher suplia las carencias de algunos de los
laboriosos y a menudo erréneos métodos que estaban en boga, y
permitia comparar de una vez la accion de mas de dos tratamien-
tos —por ejemplo: fosfato, sulfato, clorato o nada— separando
las diversas fuentes de variacién hasta aislar la del factor que in-
teresaba medir: la debida a la accién de los tratamientos sobre las
parcelas.

En resumidas cuentas, Fisher ensefié que los diseiios siste-
maticos no debian utilizarse. Con un diseiio completamente alea-
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EL ANTECEDENTE DE LOS SUDOKU

Cuando se desea bloquear el efecto de mas de un factor externo que
puede provocar resultados equivocos, se emplea el disefio en cuadrado
latino. Si queremos estudiar el efecto de cinco fertilizantes (A, B, C, D y E),
pero se considera que dicho efecto puede estar mediatizado por los tipos
de suelo y de insecticidas empleados (supongamos que hay otros cinco
tipos de cada uno), un experimento por bloques necesitaria de 5-5-5=125
unidades experimentales. Obviamente, razones de indole econémica de-
saconsejan experimentar con tantas parcelas. Ante esta situacidn es
posible recurrir a una clase especial de disefio en blogues incompletos
aleatorizados: el modelo en cuadrado latino. Este esquema experimental
consiste en asignar uno de los factores externos a las filas y el otro a las
columnas, de manera que cada tratamiento ocurra una vez en cada fila y
en cada columna. Por consiguiente, el numero de filas y de columnas ha
de ser el mismo: el numero de tratamientos. Estamos ante un cuadrado,
que se llama latino porque el matematico Leonhard Euler empled letras
latinas para rellenarlo. El popular rompecabezas sudoku no es sino un
caso especial de cuadrado latino, en el que no se usan letras sino digitos
del 1 al 9. Este refinado disefio permite al investigador obtener mucha in-
formacion con una muestra pequeiia, ya que elimina la variacion extrana
mediante el bloqueo simultédneo en los dos factores externos, de manera
que las posibilidades de detectar diferencias significativas entre los tra-
tamientos se doblan. En nuestro ejemplo, los 5 tratamientos consabidos
se probarian sobre solo 25 parcelas, distribuidas como en el siguiente
cuadrado latino:

DIE|C|B|A
BI|D|E|A]|C
C|lA|B|D|E
E|B|[A|C|D
AlC|D|E|B

Curiosamente, entre los 56 cuadrados latinos posibles de tamafio 5x5, el
llamado cuadrado de Knut Vik, basado en el movimiento del caballo de aje-
drez, demostré ser mas preciso en la estimacion que la media del resto de
cuadrados latinos. Andlogamente, los cuadrados latinos diagonales, aque-
llos que en la diagonal portan siempre el mismo tratamiento, mostraron ser
menos precisos, lo que Fisher interpreté como un argumento mas a favor
del principio de aleatorizacion.
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torizado, se evitaban los sesgos debidos a la distinta fertilidad
de las parcelas, pero el error experimental total podia ser inne-
cesariamente grande. En un experimento bien planeado, cier-
tas restricciones podian ser impuestas sobre la aleatorizacion,
de manera que la variabilidad debida a la distinta fertilidad de
los suelos se eliminara notablemente y fuese més facil estimar
la parte que correspondia a la diferencia entre los tratamientos.
Por medio del disefio en bloques, el valor del experimento se
incrementaba varias veces, de forma que solo la repeticién suce-
siva del experimento originario podia igualar la precisién lograda
(v esto suponiendo que la replicacién fuese factible, ya que en
agricultura dificilmente se cuenta con las mismas condiciones
meteorolégicas).

Otro de los avances que lleva la firma de Fisher es la posibili-
dad de testar mas de un factor de interés en un tinico experimento
gracias a un uso cuidadoso de la estadistica, lo que redujo los
experimentos disefiados para contrastar un solo factor al plano
de los procedimientos ineficientes y costosos. En muchas situa-
ciones practicas resulta necesario evaluar a un mismo tiempo los
efectos de varios factores, asf como su posible interaccién. Un
experimento factorial posee la ventaja de estudiar de golpe dos o
mas factores en lugar de tener que realizar dos o méas experimen-
tos independientes. Mas ain, la utilizacién del disefio factorial
identifica la interaccién que pueda existir entre los factores, lo
que es imposible de detectar si los experimentos se realizan por
separado. En el caso de dos factores en que uno tiene tres niveles
y el otro dos (por ejemplo, tres niveles de abono con nitrégeno,
correspondientes a las dosis factibles, de 0 a 2, y dos niveles de
potasio, 0 y 1), tendriamos un experimento factorial con un total
de 3x2=6 tratamientos. La respuesta seria observada bajo seis
tratamientos diferentes.

Fisher luch6 denodadamente contra la maxima, hasta enton-
ces respetada, de variar un Unico factor en cada ocasion. Hasta
que arrumbé esta creencia, la mayoria de investigadores pen-
saba que lo mejor era investigar un factor cada vez. Sin embargo,
la naturaleza, por asi decirlo, respondia mejor a un cuestionario
bien planeado que a una pregunta aislada.
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ZEA MAYS Y LA INFERENCIA ESTADISTICA NO PARAMETRICA

El tercer capitulo de E/ disefio de experimentos esta dedicado al analisis de
un célebre experimento llevado a cabo por Charles Darwin con el fin de pro-
bar que las plantas obtenidas por fecundacién cruzada crecian mas que las
autofecundadas. Con la ayuda de Galton, Darwin comparaba el crecimiento
de 15 pares de plantas de la especie Zea mays, es decir, de maiz. El primer
miembro de cada par provenia de una fecundacién cruzada, mientras que el
segundo lo hacia de una autofecundacion. Los pares eran plantados simulta-
neamente en una misma maceta, buscando que las condiciones ambientales
—agua, luz, temperatura, etc.— fuesen idénticas para cada uno de los dos.
Estas precauciones tomadas por Darwin servian para que se tuviera lo que
se denomina una muestra pareada, lo que, frente a la posibilidad de tener
dos muestras independientes de 15 plantas cada una por su lado, incrementa
la sensibilidad del experimento, esto es, su capacidad para detectar diferen-
cias significativas, porque reduce el error experimental. Mediante el test de
la t de Student (un ejemplo del cual se presenta en el anexo para no entor-
pecer la lectura), Fisher estudiaba la diferencia en los promedios de creci-
miento y concluia que Darwin estaba en lo cierto, aunque no dejaba pasar
la ocasion de reconvenirle que no aleatorizara la plantacion de cada tipo
de planta en una mitad de la maceta. Asimismo, amonestaba a Galton por
manipular falazmente los datos de la muestra, reordenandolos a su antojo.

Inferencia no-paramétrica

A continuacion, anticipandose a la critica que ciertos estadisticos tedricos
alejados de la practica experimental (una alusién obvia a Egon Pearson) po-
dian hacer sefialando que el uso del test de significacion presuponia que los
dos grupos de datos eran muestras provenientes de poblaciones normales,
Fisher ideaba un método nuevo que conducia a la misma conclusién. Era un
ejemplo temprano de lo que seria la inferencia no-paramétrica, una brecha
abierta en la inferencia estadistica que seria muy explotada tras la Segunda
Guerra Mundial, y que se diferencia de la inferencia paramétrica organizada
por Fisher en que no especifica nada sobre la forma de la distribucidn de la
poblacién subyacente y los pardmetros de gue depende. Los test no para-
meétricos presentan una menor sensibilidad que los test paramétricos, pero
no parten de la hipétesis de normalidad, lo que los hace mas generales.

Ademds, El disefio de experimentos convirtié el tomar el té
en una cuestion estadistica. Fisher tenia la costumbre, desde los
tiempos de Rothamsted, de tomarlo con todos los miembros de su
departamento. Un dia, al dar la taza a la doctora Muriel Bristol, esta
decliné diciendo que preferia que la leche se vertiera primero. A su
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juicio, el té tenia un sabor diferente si la leche se ponia antes o des-
pués. Fisher contesté que aquello era irrelevante. William Roach,
otro miembro del departamento, quien después se casé con ella,
propuso realizar un experimento: irle ofreciendo una serie de tazas
mezcladas de diferente manera y comprobar si era capaz de distin-
guirlas. La doctora identificé todas y cada una de las tazas correcta-
mente. Y Fisher incluyé la historia en su libro como hilo conductor
para plantear una serie de interrogantes que sirvieran de guia de
accion para enfrentarse a cualquier experimento: ;cudntas tazas
debian servirse?, jen qué orden?, ;cudntas se tenian que acertar?...

Si se le daba una sola taza de cada tipo, la probabilidad de que
la doctora acertara al azar era de 1/2, es decir, demasiado alta para
discriminar si acertaba por casualidad o porque podia distinguir
una mezcla de la otra. Si solo se estaba dispuesto a creerla cuando
la probabilidad de que superara correctamente la prueba por ca-
sualidad fuese suficientemente pequefia (menor de 0,05, para que
este contratiempo ocurriera menos del 5% de las veces), no ser-
via darle 2 tazas de cada tipo, ya que por casualidad acertaria 1 de
cada 6 veces (hay 6 formas de elegir 2 entre 4 objetos y solo una
es la correcta), es decir, el 17% de las veces. Tampoco funcionaba
ofrecerle 3 tazas de cada tipo, ya que acertaria por casualidad 1 de
cada 20 veces (hay 20 formas de seleccionar 3 objetos entre 6). Lo
que arrojaba una probabilidad que es igual pero no inferior al limite
estipulado de 0,05. En cambio, si se le daban 4 tazas de cada tipo,
la probabilidad de acertar por azar era solo de 1 entre 70 (existen
70 maneras distintas de elegir 4 objetos entre 8), es decir, de 0,014,
de modo que si la doctora acertaba en estas condiciones se podia
afirmar que si sabia distinguir una preparacién de otra. Esa era la
raya que al trazarla permitia distinguir si solo adivinaba el resultado
o verdaderamente estaba capacitada para discernir cémo se habia
preparado el té.

Adicionalmente, Fisher recalcaba que las tazas debian presen-
tarsele a la doctora en un orden aleatorio, para que el experimento
estuviera bien disefiado y el test de significacién fuese aplicable.
Con este maravilloso ejemplo de experimento psicofisico, el es-
tadistico inglés arrancaba un clasico apabullante que dinamité la
tradicién experimental heredada.
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LA EMERGENCIA DEL RAZONAMIENTO ESTADISTICO

Fisher revolucioné la investigacién experimental, describiendo
métodos, hoy de uso corriente, para exprimir al maximo los ex-
perimentos con muestras pequeias, evitando en lo posible la pe-
netracién de factores extraiios. Ese nifio debilucho con muchas
ganas de aprender y dotado de una profunda visién geométrica se
convirtié en uno de los cientificos que méas aportaciones ha hecho a
la estadistica, sino el que mas. En 1929 fue admitido en la Royal So-
ciety. Y al retiro de Karl Pearson en 1933, su puesto en el University
College de Londres se escindi6é en dos: una catedra de Estadistica
para su hijo Egon y otra de Eugenesia para Fisher, que abandoné
Rothamsted para ocupar la «catedra Galton», aunque Karl Pearson
movié todos los hilos para evitarlo. Por descontado, Egon Pear-
son heredé la antipatia hacia su padre de que Fisher hacia gala,
de forma que las hostilidades bajo el techo comiin no tardaron en
desencadenarse, propiciando que la atmdésfera entre ambos labora-
torios —el biométrico y el eugenésico— fuese irrespirable.

No obstante, para Fisher fueron afios placenteros, plagados
de éxitos profesionales e intelectuales. Las distinciones acrecen-
taron su fama, transformandolo en un investigador de prestigio
internacional. George Snedecor, con la extraordinaria sintesis que
fueron sus Métodos estadisticos (1940), asi como Harold Hotel-
ling, hicieron mucho por su temprano reconocimiento en Amé-
rica. En Europa, la publicacién en colaboracién con Frank Yates
(1902-1994), su discipulo méas aventajado en Rothamsted, de las
Tablas estadisticas para la investigacion biolégica, agricola y
médica (1938) contribuy6 a difundir sus ideas. No obstante, seria
el manual escrito por el matemético sueco Harald Cramér, titu-
lado Métodos matemdticos de la estadistica (1946), la obra que
mas ayudaria a expandir su concepcién de la estadistica, al vincu-
lar la inferencia estadistica britanica con la teoria de la probabili-
dad continental. En este libro ya aparece, por ejemplo, la cota de
Cramér-Rao, deducida tanto por el matematico sueco como por el
estadistico indio C.R. Rao (doctorado con Fisher), que acota por
abajo la varianza minima de un estimador, completando la teoria
fisheriana.
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De resultas de todo ello, se fragué la definitiva autonomia
de los métodos estadisticos, que sedimentaron en torno al con-
cepto de modelo estadistico introducido por Fisher (aunque al-
guna rama actual de la estadistica, como el andlisis exploratorio
de datos definido por John W. Tuckey en 1977, no lo emplea, razén
por la cual a veces se lo considera una rara avis dentro de la cien-
cia estadistica). A nuestro juicio, aunque muchos historiadores de
la ciencia hablan de la revolucién estadistica del siglo xix, creemos
que —desde una perspectiva interna— la verdadera revolucién
se produjo durante los afios veinte y treinta del siglo xx, cuando
la inferencia estadistica sufrié una inyeccién probabilistica y, al
tiempo, experimental. Si se drenaran todos los materiales biol6-
gicos, socioldgicos, etcétera, la estadistica —como no dejé de
anotar Fisher— se convertiria en una disciplina secundaria. Las
aplicaciones son los materiales imprescindibles que hacen de esta
ciencia algo mas que mera matematica aplicada.

Esta dimensién de la estadistica, capaz de proyectar un haz de
luz sobre miiltiples campos, aceleré su institucionalizacién —sim-
bolizada con la fundacién del Laboratorio Estadistico de Iowa,
en Estados Unidos, en 1933 por Snedecor (al que Fisher visit6 en
varias ocasiones)—, asi como su auge durante y después de la
Segunda Guerra Mundial, cuando los laboratorios estadisticos se
aliaron con las universidades y las industrias en el esfuerzo bélico.
Los andlisis estadisticos que antes parecian una excentricidad
—como los de Galton sobre la eficacia de la oracién o la longitud
de la soga de la horca— se convirtieron en una realidad cotidiana
en econometria, meteorologia, epidemiologia (la bioestadistica),
ingenieria industrial (el control de calidad)... Una multiplicacién
de campos, investigadores, departamentos, libros y revistas es-
pecializadas que también se vio empujada por la extensién de los
ordenadores, que facilitan el uso de los métodos estadisticos (por
ejemplo, para generar niimeros aleatorios sin tener que recurrir a
las sempiternas tablas).

En concreto, los test de significacién y los principios de ex-
perimentacién dictados por Fisher han conocido mil y una préc-
ticas exitosas, desde la prueba de fertilizantes a vacunas. Sin ir
mas lejos, el reciente anuncio de la deteccién del célebre bos6n
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de Higgs en julio de 2012 ha tomado el aspecto de un p-valor:
los fisicos han informado de que la probabilidad de detectar un
efecto como el observado en el acelerador de particulas bajo el
supuesto de que se trata de mero ruido de fondo (la hip6tesis
nula) es inferior a 0,0000003, y han interpretado esta significa-
cién estadistica como una fuerte evidencia para presuponer la
existencia de la mencionada particula (ya que de otra manera
no se explica la sefial). Un p-valor que todavia se ha hecho mas
pequeiio tras los experimentos reportados en marzo de 2013,
dando la razén a las sabias palabras de Fisher en El disefio de
experimentos:

Un fenémeno es demostrable experimentalmente cuando se conoce
cémo conducir un experimento que raramente falla para darnos un
resultado estadisticamente significativo.

Resumiendo: al calor de los experimentos agricolas, Fisher
cerrd el grueso de la teoria estadistica y, al sembrar la recurrencia
de estos métodos, segregandolos de la biometria y otros contextos
técnicos, sellé la posibilidad de su aplicacién continuada y flexible,
de manera que la estadistica logré irrumpir en todos los érdenes. A
la vanguardia de ese ejército de revolucionarios que son los esta-
disticos siempre figurard Ronald Aylmer Fisher, que puso la piedra
mayor del puente que vincula esta disciplina matematica con la
practica experimental.
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CAPITULO 4

La sintesis entre
Darwin y Mendel

Desde los tiempos de estudiante universitario,
Fisher se propuso reconciliar a Darwin con Mendel; en
otras palabras, la seleccion natural de las especies con las
leyes que rigen la herencia. Sin las aportaciones contenidas
en La teoria genética de la seleccion natural (1930),
el darwinismo habria permanecido eclipsado
y la teoria sintética de la evolucién habria
tardado anos en afianzarse.






Durante su estancia en la Estacién Agricola Experimental de
Rothamsted, Fisher no solo tuvo tiempo de refundar la estadistica
como ciencia matemético-experimental, sino que desarrollé toda
una serie de experimentos biolégicos encaminados a combinar la
teoria de la evolucién de Darwin con la teoria de la herencia de
Mendel. A pesar de que la estacién no estaba oficialmente involu-
crada en la investigacién, le permiti6é dedicar parte de su esfuerzo
a la cria de ratones, caracoles y gallinas, facilitindole tierras para
ello (aunque la colonia de ratones era atendida constantemente
por su mujer e hijos).

No obstante, su atraccién por la materia venia de antes,
de mucho antes. Entre 1912 —el afio en que publicé su primer
articulo—y 1919 —cuando se instal6 en Rothamsted—, Fisher es-
cribid casi una centena de textos, de los que mas de noventa tenian
que ver con temas biolégicos y solo el resto con la estadistica o las
matematicas. Cabe destacar, entre los dedicados a la biologia, su
influyente articulo sobre genética de 1918: «La correlacion entre
parientes bajo el supuesto de herencia mendeliana».

Mientras sufria impartiendo clases a adolecentes, el cienti-
fico britdnico comenz6 a darle vueltas a una cuestién que habia
planteado Karl Pearson: jera la variacion en las poblaciones hu-
manas consistente con el modelo mendeliano de la herencia?
En Cambridge, donde los mendelianos predominaban, Fisher se
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habia convencido de que las leyes de Mendel explicaban la he-
rencia, y querfa mitigar el debate entre bidémetras y mendelianos
mostrando que las mediciones de los primeros eran coherentes
con los principios de los segundos. Aunque cada rasgo o factor
hereditario —a partir de 1922 Fisher reemplaz6 el término factor
por el de gen— se ajustaba por separado a las leyes discretas de
Mendel, la acumulacién de factores hereditarios que se daba en
los individuos y en las poblaciones respetaba la ley continua de la
seleccién natural de Darwin, a la manera como la suma de errores
en la observacién astronémica se distribuye normalmente a pesar
de que cada uno de los errores en particular no lo haga asi.

Los héroes de juventud de Fisher habian sido Darwin y Ludwig
Boltzmann, creador, junto a Maxwell, de la mecénica estadistica. En
analogia con el conjunto infinito de las moléculas de un gas que estu-
diaba la mecanica estadistica, Fisher imaginaba, tanto en el campo
abstracto de la inferencia estadistica como en el més practico de la
biologia evolutiva, una hipotética poblacién infinita de la que se ex-
traian las muestras observadas. Un articulo posterior de 1922 sobre
la dominancia genética especificaba atin més esta analogia pionera:

La evolucién por seleccién natural puede compararse al tratamiento
analitico de la teoria de gases, en el que es posible hacer las mas va-
riadas asunciones sobre la naturaleza de las moléculas individuales
y, sin embargo, plantear leyes generales sobre el comportamiento
de los gases.

El modelo fisheriano de las poblaciones mendelianas era, en
suma, una adaptacion del modelo de los gases de la mecdnica es-
tadistica. La variacién continua observada en el total de la pobla-
cién podia perfectamente ser el producto de la accién de muchos
factores hereditarios discretos.

En el borrador que esbozé hacia 1916, Fisher incorporé
por vez primera el término estadistico varianza, que definié en
la primera pagina. Asimismo, menciond de pasada la expresion
andlisis de la varianza como forma de separar la fraccién de
variabilidad que correspondia a cada causa en la herencia. Pero el
nicleo del mismo lo constituia la tesis de que la teoria de Mendel
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no se veia rechazada por los datos biométricos. En una carta que
le envi6 a Karl Pearson, fechada en 1916, le decia:

Recientemente he completado un articulo sobre el mendelismo y la
biometria que probablemente sea de tu interés. Me he encontrado
con que el andlisis de los datos humanos no contradice el mende-
lismo. Pero el argumento es bastante complejo.

Fisher probé a enviar su articulo a la Royal Society de Londres
para que lo publicaran, pero los arbitros expresaron reservas sobre
su contenido. Uno de ellos no era otro que Karl Pearson, que aun-
que no era abiertamente hostil al resultado de la investigacién de
Fisher, encontré su borrador poco convincente y, probablemente,
no entendi6 del todo las matematicas empleadas. El otro arbitro
fue el biélogo R.C. Punnett, al que paradéjicamente Fisher sucede-
ria en el cargo en Cambridge en 1943. Afios después, Fisher soltaria
el exabrupto de que el articulo habia sido referenciado por un esta-
distico que no sabia biologia y por un biélogo que no sabia estadis-
tica. En descargo de los 4rbitros hay que senalar que los articulos
de Fisher no siempre eran faciles de seguir, pues como Student
manifesté mas de una vez por carta, el evidently de Fisher se tra-
ducia en varias horas de arduo trabajo para el resto de los mortales.

Finalmente, Fisher retiré el articulo y lo reenvié a la Royal So-
ciety de Edimburgo a mediados de 1918, donde fue publicado, no
sin dificultad, a su costa, gracias a la ayuda financiera de su amigo
Leonard Darwin (1850-1943), hijo de Charles Darwin y quien,
desde los tiempos de Cambridge, le apadriné y sostuvo durante
los periodos de penuria econémica. El primer paso en pos de la
unificacién estaba dado.

EL ECLIPSE DEL DARWINISMO
Charles Darwin confiri6 movimiento a las clases naturales de

Linneo. Aunque el dinamismo de Darwin, en contraposicién del
fijismo de Linneo, flotaba en el aire (ya se encuentra en el trans-
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formismo de Lamarck), la originalidad del naturalista inglés reside
en haber proporcionado un mecanismo explicativo: la seleccién
natural, entendida como metafora, segiin expuso en El origen de
las especies (1859). El teorema darwiniano de la evolucién se basa
primariamente en las técnicas de domesticacion y cria de anima-
les y plantas (la «seleccién natural» como extension de la «selec-
cién artificial» practicada por el hombre, pero prescindiendo del
sujeto operatorio, del demiurgo selector, y por tanto de cualquier
finalidad), y se materializa en los arboles evolutivos que reorde-
nan las especies vivas y los fésiles de las especies extintas (la
reconstruccion filogenética de las taxonomias morfolégicas).

Durante el periodo de tiempo que media entre la muerte de
Darwin en 1882 y el resurgir de sus ideas en la década de 1930, se
produjo un «eclipse del darwinismo» en el que la biologia evolu-
tiva se sumid en un estado lamentable de postracién, como con-
secuencia del avance de las teorias mendelianas de la herencia.
El trabajo de Mendel fue redescubierto en torno a 1900, treinta y
cuatro afos después de su publicacién y dieciséis después de la
muerte de su autor: en el viejo continente, por botdnicos como
Hugo de Vries, y en las Islas, por William Bateson (a quien se
debe la acunacién del término genética), que lo empleé como un
arma para revalorizar las teorias no darwinianas (lamarckianas o
mutacionistas) que defendian una variaciéon no gradual, sino dis-
continua de las especies. Bateson magnificé las diferencias entre
Mendel y Darwin, presentando al primero como hostil a la teoria
de la evolucién y al segundo como responsable del abandono en
que cayo la teoria mendeliana.

La muerte de Weldon en 1906 y de Galton en 1911 dejé prac-
ticamente solo a Karl Pearson en la defensa de la ortodoxia:
Natura non facit saltus. De hecho, las primeras contribuciones
biométricas de Pearson habian consistido en el estudio estadis-
tico de la ley de herencia ancestral de Galton y en la corrobo-
racién de la hipétesis de la gradacién, mediante la que los bié-
metras defendian que la evolucién no habia sido a saltos, como
defendian los partidarios de la teoria de la mutacién, sino por una
seleccién continua de la variacién favorable en la distribucién de
la descendencia.
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- DEMASIADO BUENOS PARA SER CIERTOS

El resultado principal de los experi-
mentos en hibridacion de plantas de
Mendel fue el descubrimiento de que
ciertos caracteres son transmitidos a la
descendencia sin atenuacién ni fusion,
porque son transportados por alguna
clase de unidad distintiva o particula,
que Mendel denomind factores y no-
sotros llamamos genes. Pero el monje
agustino también realizé un contaje
exhaustivo de sus experimentos. Asi, al
cruzar guisantes amarillos con verdes,
obtuvo una cosecha en que de 8023
guisantes, 6022 (=75%) eran amarillos
(dominante) y 2001 (=25 %) verdes (re-
cesivo). Se trataba de la segunda ley
de Mendel o ley de la segregacion. En
un articulo publicado en 1936, titulado
«iHa sido redescubierto el trabajo de  gregor Mendel.

Mendel?», Fisher puso de manifiesto,

mediante el test de la y?, la coincidencia

casi total entre los datos observados que publicé Mendel en sus famosos
experimentos con guisantes y los resultados tedricos que cabia esperar. Lo
mas sorprendente es que Mendel habia deducido una prediccion incorrecta
para algunos experimentos y, sin embargo, las observaciones presentaban
una similitud notable con esos valores incorrectos. Fisher sefialaba que no
necesariamente debia haber sido el mismo Mendel quien cocinara los datos,
sino algun celoso asistente suyo que no habia hecho su trabajo con dili-
gencia y sabia lo que Mendel queria escuchar... El tema, como es natural,
levanté gran polémica, y a dia de hoy no hay consenso acerca de si Mendel
o un ayudante retocaron los datos. A veces poca discrepancia también es
sospechosa.

En cuanto bastién de Darwin frente a los embates mende-
lianos, la escuela biométrica se enzarzé en una dura polémica.
En esta oposicién férrea influyd, desde luego, la filosofia de la
ciencia que asumia Pearson, heredada de sus ainos de estudiante
en Alemania, y que le llevaba a concebir la biometria como mera
descripcién sin especulacién, como una teoria puramente cuan-
titativa de la evolucién natural. Pearson deseaba hacer predic-
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ciones probabilisticas sobre la evolucién de una linea ancestral,
pero sin comprometerse con la discusién metafisica de los meca-
nismos hereditarios subyacentes. Una meta en consonancia con
la biblia del positivismo pearsoniano, La gramdtica de la cien-
cia, cuyo parecido con la filosofia idealista no dej6é de advertir
y fustigar Vladimir Ilich Lenin en Materialismo y empiriocri-
ticismo (1909). Esta peculiar filosofia fue, por un lado, la que le
conduyjo al desarrollo de una ciencia puramente matematica de la
herencia, equipada con herramientas estadisticas para describir
los fenémenos observables, pero, por otro lado, la que le obstacu-
liz6 valorar la singular aportacién presentada por Fisher en 1918.
Para Pearson, las poblaciones infinitas y los ciimulos de factores
hereditarios de que hablaba Fisher eran inobservables y, por con-
siguiente, irreales. El disgusto con las imagenes empleadas por
Fisher fue mayisculo.

REVOLUCION EN LA GRANJA

La polémica entre biémetras y genetistas no se cerrd, como se ha
dicho, hasta que Fisher comprobé que las mediciones empiricas
de los organismos concordaban con las leyes postuladas sobre la
herencia. El estadistico britanico fue el artifice de la sintesis entre
Darwin y Mendel, toda vez que demostré que las mediciones eran
el resultado de la adicién de un gran niimero de factores mende-
lianos (los genes) y que los valores experimentales de los coefi-
cientes de correlacién se explicaban asimismo por la comunidad
de estos factores.

Fisher cumplié con una doble misién. Por un lado, contri-
buy6 significativamente al nacimiento del neodarwinismo, de la
teoria sintética de la evolucién, en la década de 1930. En esta
sintesis confluyeron una multiplicidad de cursos de investigacién
(biométricos, genéticos, anatémicos, embriolégicos, paleontolé-
gicos...), como prueba la némina de autores que participaron en
ella: Theodosius Dobzhansky (genetista), Ernst Mayr (zo6logo),
George Gaylord Simpson (paleontélogo), etcétera. Por otro lado,
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fundo la genética de poblaciones, que es uno de los pilares de
la sintesis evolutiva moderna, una disciplina en la que convergen la
biologia evolutiva y la genética como un todo consistente mode-
lizado matematicamente.

En este punto, hay que destacar el libro revolucionario que
Fisher le dicté a su mujer durante su época en Rothamsted, La
teoria genética de la seleccion natural (1930), asi como las obras
de otros dos grandes genetistas: Evolucién en poblaciones men-
delianas (1931), de Sewall G. Wright (1889-1988), y Las causas de
la evolucion (1932), de J.B.S. Haldane (1892-1964), quien ocupé
en 1937 la catedra de Biometria del University College, asistida
con los fondos que la viuda de Raphael Weldon destiné a tal fin
al morir. Fisher, Wright y Haldane son los tres tenores de la gené-
tica de poblaciones, ya que restablecieron la seleccién darwiniana
como primer mecanismo evolutivo en términos de consecuencia
estadistica de la genética mendeliana.

«La seleccion natural no es la evolucién.» Con esta categérica
afirmacioén arrancaba el libro de Fisher, que es lo que se llama un
clasico de la genética de poblaciones. El aforismo buscaba recla-
mar la atencién sobre el otro componente ineludible de la teoria
de la evolucién: la genética mendeliana.

Las unidades evolutivas no eran los individuos, sino las po-
blaciones, cada una con una distribucién genética propia. En au-
sencia de mutaciones, y suponiendo la invariancia del entorno, la
evolucién de la poblacién més tarde o mas temprano cesaria. Pese
a que el niimero de posibles combinaciones de variantes de genes
(de «alelos») era inconcebiblemente grande, era finito, de manera
que la combinacién mas adaptada al entorno selectivo termina-
ria imponiéndose, aunque para ello la seleccion natural habria de
operar sobre las sucesivas generaciones durante un periodo
de tiempo dilatado. Sin embargo, aunque infrecuentes, las mu-
taciones de hecho ocurrian. Y la historia de la supervivencia del
nuevo gen mutante dependia, segiin ponia de relieve Fisher, tanto
de los caprichos de la fortuna como de la ventaja o desventaja
selectiva que conllevara en la lucha por la vida.

El razonamiento matemaético de Fisher en su libro comen-
zaba presuponiendo la aparicién de un gen mutante en el seno

LA SINTESIS ENTRE DARWIN Y MENDEL

n3



de una poblacién formada por millones de individuos, y cuya dis-
tribucién no era otra que la distribucién de Poisson o de los «su-
cesos raros», con media 1 +e (con e=0), donde e representaba
la «ventaja selectiva». Si una poblacién presentaba, respecto de
un carécter, ejemplares fenotipicamente diferentes (pongamos
por caso, polillas blancas y polillas negras), cada uno de los cua-
les podia corresponder a uno o més genotipos (dependiendo de
qué alelo fuera el dominante y cudl el recesivo), de modo que en
una generacion la proporcién observada entre ambos fenotipos
erary en la siguiente, en la descendencia, era r (1 + ¢), entonces
e era la ventaja selectiva del alelo que daba lugar a ese fenotipo
(por ejemplo, de las polillas negras con respecto a las blancas,
que se camuflaban mejor entre el humo de las fabricas inglesas).
Naturalmente, la ventaja selectiva e no tiene por qué ser igual a
lo largo del tiempo o en distintas condiciones ambientales, de
tal forma que lo que es favorable aqui y ahora puede no serlo
en otro momento o lugar. En el caso de las polillas, una ven-
taja selectiva de 0,01 a favor de las polillas mimetizadas con
el entorno industrial queria decir que, mientras que la variante
blanca dejaba 100 descendientes, la variante negra dejaba 101
(un 1% mas).

«En ocasiones he conocido genetistas que me preguntan
si es verdad que el gran genetista R.A. Fisher fue también
un importante estadistico.»

— LeoNARD «JiMMIE» SavaGE (1976).

14

En estas condiciones, Fisher calcul6 la probabilidad de ex-
tincién del mutante en la n-ésima generacién. En el caso de no
existir ventaja selectiva (e=0), la probabilidad de extincién en
la sexagésimo tercera generacion era igual a 0,9698, es decir, de
casi un 97% a favor de la extincién. Sorprendentemente, con una
ventaja selectiva del 1% (e=0,01), la probabilidad sefialada era
de 0,9591, de casi un 96 % a favor de la extincién. Tan solo de un
1% menos. Prosiguiendo con los célculos, en la 127 generacién la
probabilidad de no haberse extinguido era de 0,0271 con ventaja
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selectiva y de 0,0153 sin ventaja, es decir, el gen mutante tenia casi
el doble de probabilidad de supervivencia, aunque ambas proba-
bilidades eran realmente bajas. En el limite, la probabilidad de
que la mutacién beneficiosa sobreviviera era de cerca del 2% (por
su parte, la probabilidad de que lo hiciera la neutra era 0). Ahora
bien, si la poblacién era grande, del orden de millones de indivi-
duos, habria una cantidad no despreciable de individuos dotados
con la mutacién benéfica, lo que posibilitaria el cambio adapta-
tivo, sin perjuicio de que muchas mutaciones benignas pudieran
perderse por el camino.

Con estos cédlculos Fisher también pretendia mostrar cémo la
direccién y el sentido de la evolucién apenas tenian que ver con
los de la mutacién, puesto que sin ventaja selectiva el efecto de
la mutacién en la especie era insignificante y, en el limite, nulo (y
esto sin contar con que la mayoria de las mutaciones producen de-
formidades monstruosas, letales). La seleccién natural era el pro-
ceso por el cual una contingencia improbable como era una mu-
tacién veia aumentada gradualmente su probabilidad con el paso
del tiempo. La seleccion natural era, por tanto, el motor principal
de la evolucion. Lo que le devolvia la razén a Darwin y resucitaba
el darwinismo al que tan refractarios habian sido los mendelianos.
Las implicaciones biolégicas de los resultados mateméticos obte-
nidos por Fisher fueron extremadamente importantes, y se vieron
apoyadas por los experimentos con la mosca del vinagre (Droso-
phila melanogaster, cuyo frenético ritmo reproductor facilita el
estudio de mutaciones y cruzamientos).

Ademas, la obra de Fisher contenia el «teorema fundamental
de la seleccion na », que santificaba la unién entre Darwin y
Mendel, y era la pieza central de la visién de Fisher de la selec-
cion natural. Este era su enunciado: «El ritmo de aumento en la
adaptacién biolégica de una poblacion en cualquier momento es
igual a la variabilidad genética en adaptacién que la poblacion
tiene en ese momento». Esta formulacion algo criptica hizo de él
un elemento oscuro, que tardé bastantes afios en ser valorado en
su justa medida.

Para que la seleccién natural pueda actuar sobre un caracter,
debe haber algo que seleccionar, es decir, varios alelos, o formas
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UN TEMPERAMENTO DIFICIL

Ronald Aylmer Fisher estaba dotado de grandes virtudes, pero también po-
seia notables defectos. Entre ellos, un animo belicoso que le llevaba a porfiar y
discutir por trivialidades, comportandose en ocasiones con una notoria rudeza
tanto oral come escrita dentro de sus controversias con otros colegas estadis-
ticos y genetistas. Ya hemos visto una muestra de ello en su enfrentamiento
personal con Karl Pearson, y en el préoximo capitulo veremos alguna mas a
propésito de su concepcién de la inferencia estadistica o de la relacién entre
tabaco y cancer. Esta firmeza en su ideario cientifico era extensiva a sus creen-
cias religiosas y politicas, tefiidas de un claro talante conservador que le lle-
vaba a respetar las tradiciones heredadas de sus padres y denostar cualquier
forma de progresismo o comunismo. Fruto de sus convicciones eugenésicas,
mantenia gque no todos los hombres eran iguales. A todo esto unia algunas de
las excentricidades tipicas de los matematicos geniales. Su tendencia a perder
papeles importantes o a ser un administrador impaciente y despistado. Por
otra parte, su malhadada vista no era ébice para una condicion fisica envidia-
ble, conseguida gracias a que iba corriendo a trabajar a diario. Curiosamente,
para poder continuar trabajando en casa con tranquilidad (lo que tenia que ser
dificil dada la amplitud de su prole, que constituyo para él una fuente de de-
sesperos monetarios), exigia que siempre hubiera dos puertas cerradas entre
él y los nifios a fin de poder concentrarse.

Un profesor pésimo

Segun todos los testimonios, Fisher fue, sin lugar a dudas, un profesor pé-
simo, tendente a omitir explicaciones tanto en la docencia como en la inves-
tigacion. Al respecto, recogemos una anécdota relatada por el estadistico
escocés W.G. Cochran (1909-1980):

En una de sus clases citd sin demostrar un resultado. Tras varios intentos sin que
me saliera, le pedi en su despacho si podia hacerme la demostracién. Me dijo
que en algun sitio la tenia archivada; abrié varios cajones y decidié que era mejor
obtenerla de nuevo. Nos sentamos vy escribié la misma expresiéon de la que yo
habia partido. El camino obvio va en esta direccién, dijo, y escribié una expresion
de dos lineas. Ahora supongo que hay que desarrollar esto, y puso una ecuacion
gue ocupaba tres lineas. Mird la expresion y comentd: el Unico camino parece ser
este, y obtuvo una expresion de cuatro lineas y media. Hubo un silencio de unos
45 segundos y dijo, el resultado se debe seguir de esto, escribiendo debajo la
expresion que yo le habia preguntado. La clase habia terminado.

alternativas, para el gen que codifica ese caracter. Fisher demos-
tr6 matematicamente que cuanta més variabilidad genética haya
en una poblacién, mayor sera el ritmo de la evolucién. A mayor
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variacién genética, mis cambio evolutivo. Fisher comparaba su
teorema con el segundo principio de la termodindmica o ley de
la entropia, cuyo incremento es siempre positivo. La seleccién
natural actuaba de manera lenta pero segura, aumentando pro-
gresivamente la frecuencia de los genes favorables, que se iban
integrando al genoma de la especie, lo que incrementaba la ade-
cuacion de los organismos cada vez mas. Como consecuencia,
la seleccién tendia a convertir el alelo bien adaptado en el alelo
dominante y las mutaciones deletéreas en recesivas.

La genética de poblaciones aport6, empero, solidez matema-
tica a la teoria de la evolucién. No obstante, Fisher y Haldane com-
partieron dos supuestos que fueron muy criticados por Wright. En
primer lugar, concibieron la carga genética del individuo como un
saco de judias, es decir, como un conjunto de genes que no inte-
ractian entre si. Fue Wright el que generaliz6 los modelos simpli-
ficados de ambos. En segundo lugar, consideraron las poblaciones
al completo, lo que les condujo a visualizar la seleccién natural
como un proceso practicamente unidireccional, sin ramificacio-
nes. Pero Wright llamé la atencién acerca de que las poblaciones
grandes generalmente estaban disgregadas en poblaciones locales
pequeiias donde triunfaba la endogamia, lo que convertia la se-
leccién natural en algo mas voluble, dando origen a la nocién de
paisaje adaptativo.

A dia de hoy, pese a las encomiables aportaciones de Fisher
y el resto de genetistas de la sintesis, siguen existiendo dudas
sobre el reparto de papeles que cabe atribuir a la seleccién na-
tural y las mutaciones en la evolucién y, en particular, sobre su
accién a nivel molecular. Para algunos, la fuerza evolutiva prin-
cipal a nivel molecular es simplemente la «deriva genética», es
decir, el cambio en las frecuencias alélicas de las especies como
consecuencia del efecto estocastico causado por la reproduc-
cién (los alelos de los hijos son una muestra aleatoria de los de
los padres), primando la presion selectiva a nivel morfolégico,
a escala de los organismos. Para otros, en cambio, los genes
mutantes no son selectivamente neutrales, de forma que el papel
de las mutaciones no puede desdenarse y la seleccién actuaria
tanto a nivel molecular como morfolégico. En otras palabras,
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no se sabe a ciencia cierta si el sujeto de la evolucién es la es-
pecie o el genoma. Por otra parte, también hay disenso sobre
la continuidad o discontinuidad de los cambios evolutivos (gra-
dualismo). Asi, por ejemplo, los partidarios del «equilibrio pun-
tuado» sostienen, frente a los neodarwinianos ortodoxos, que en
la evolucién se alternan periodos de cambios réapidos con lentos.
Nadie discute a Darwin pero los neodarwinistas no presentan un
frente tnico.

ESTADISTICA, DARWINISMO Y EUGENESIA

El abanico de motivaciones no estaria completo si no citdramos
que Fisher fue un ardiente promotor de la eugenesia, una disci-
plina que estimulé y guio gran parte de su trabajo en genética
humana. Durante sus afios en Cambridge, Fisher colaboré con
entusiasmo, al igual que otros ilustres cientificos (como John
Maynard Keynes), con la Eugenics Education Society, fundada en
1907 por Galton y dirigida desde su muerte en 1911 por Leonard
Darwin (quien presidi6 el Primer Congreso Internacional de Euge-
nesia, celebrado en Londres en 1912 y dedicado a la memoria de
Galton). Ademids, Fisher formé una sociedad eugenésica dentro
de los muros de la universidad.

En 1911 ofrecié una charla a un grupo de estudiantes simpa-
tizantes en la que expuso la idea de Galton de que la curva normal
se aplicaba incluso a las cualidades morales e intelectuales de los
hombres, de manera que estos se repartian en varias clases que
iban desde los débiles mentales a los genios eminentes. Las vir-
tudes intelectuales y morales constituian, por descontado, rasgos
heredables, razén por la cual los matrimonios debian concertarse
entre personas de la misma clase. Para Fisher, la obra de Galton
Genio hereditario era uno de los grandes libros del siglo xix, com-
parable a El origen de las especies de Darwin, al que en cierto
modo completaba.

Uno de los primeros articulos de Fisher vio la luz en 1914 en
las paginas de la Fugenics Review, la revista estandarte del mo-
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UNA CASA EDIFICADA SOBRE ARENA

La fuerza motriz del movimiento eugenésico estaba ya en Quetelet, que
pensaba que su hombre medio compendiaba las caracteristicas fisicas y
morales de una raza. La otra mitad estaba en la idea ligada al evolucio-
nismo biolédgico de que mediante medidas sociales de seleccién podian
preservarse o alterarse las caracteristicas raciales (Galton). Sin embargo,
los historiadores de la ciencia no se ponen de acuerdo en el peso final que
cabe atribuir a la eugenesia en el desarrollo de la estadistica. Un bando
sostiene que los métodos estadisticos se desarrollaron para resolver los
problemas planteados por la investigacién en eugenesia. Esta doctrina no
solo habria motivado los trabajos de Galton, Karl Pearson o Fisher, sino que
habria condicionado su contenido (aunque, por ejemplo, Edgeworth o Yule
no compartian el interés por la seleccidn racial). En cambio, el otro bando
combate tajantemente esta relacidn, subrayando que los métodos del labo-
ratorio biométrico del University College eran completamente distintos a los
empleados en el laboratorio eugenésico contiguo, o que Karl Pearson nunca
se adhirid a la sociedad eugenésica (aunque no lo hizo por su oposicion
decidida al mendelismao).

Separacion definitiva de la estadistica y la eugenesia

Probablemente, la biometria y la eugenesia no eran compartimentos es-
tancos. Pero, mientras que ciertos métodos como el test ¥? encontraron
mil v una aplicaciones diferentes (en agronomia, genética, industria, etc.),
otros métodos, como los mapas de pedigri de Galton, no las encontra-
ron. La impronta social de la estadistica es innegable: su cristalizacion
se produjo en contacto con la biometria y los intentos por convertir la
eugenesia en la reina de las ciencias (como se observa en el cartel del
Segundo Congreso Eugenésico Internacional). No obstante, la recurrencia
de los métodos estadisticos, es decir, su extensidn a una multiplicidad de
areas naturales y sociales, posibilité su independencia con respecto a la
ideologia envolvente, a la manera como la mecanica clasica no depende

vimiento eugenésico, donde llegaria a publicar mas de 200 articu-
los entre resefias de libros y comentarios. Su titulo era «Algunas
esperanzas de un eugenista». El texto, leido previamente para la
sociedad universitaria de Cambridge, defendia la eugenesia como
via hacia el progreso de la humanidad. Tres afios mds tarde, pu-
blicé un editorial en que promovia la toma de medidas politicas
que incrementaran la tasa de natalidad de las clases profesiona-
les y controlaran la de las clases mas bajas. Un tema en el que
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hoy de la balistica de cafiones o la mecanica cuéntica de la guerra atémica.
La historia de la estadistica es una estampa que ilustra a la perfeccion la
imbricacion entre historia «interna» y «externa» de la ciencia: la eugenesia
fue la pasarela que permitié conectar la biologia evolutiva con la estadis-
tica y, de resultas de ello, impulsar la creacion de las primeras instituciones
estadisticas modernas. Fruto de esta sinergia, la estadistica cobré fuerza
suficiente para arraigar en otros dmbitos cientificos, lo que dictd su inde-
pendencia respecto de la ideologia eugenésica y, de paso, la devolucion del
favor prestado por la biclogia evolutiva con creces, al determinar el cierre
de la genética de poblaciones y el establecimiento de la teoria sintética de
la evolucion.

«La eugenesia es
la autodireccién

f ",;‘E; Rs A AD AT P2 de la evolucién
Jrau : : : humana.» Ese
era el lema
del Segundo
Congreso

Internacional de
Eugenesia (1921),
que representaba
\ a la eugenesia
SELP DIRGCTION | como el drbol
que unifica

la diversidad

de disciplinas
humanas y
sociales, con

la genética

y la estadistica
en una posicién
preeminente.

CUGENILS IS The

€UCENICS DRAWS ITS MATERIALS FROM MANY SOURCES AND ORCADIZES
ThEM INTO RD HARMOMIOUS ENTITY.

se explayé en los ultimos capitulos de La teoria genética de la
seleccion natural.

Fisher atribuia el declive de las civilizaciones al hecho

de que se alcanzaba un momento histérico en el que la fertili-
dad de las clases altas comenzaba a decaer en detrimento de
la de las clases bajas (las peor adaptadas, a su entender, aten-
diendo a las cualidades mentales). Utilizando datos extraidos
de los censos de Gran Bretaia, Fisher mostraba la relacién in-
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versa entre fertilidad y estatus social: 1as clases altas tenian una
baja fertilidad, y las bajas, una tasa alta de fertilidad. Las fami-
lias con un alto estatus social no podian permitirse dejar mucha
descendencia, ya que tener un nimero reducido de hijos era una
ventaja economica. Para superar esta lacra, el eugenista brit4-
nico proponia que por medio de subsidios estatales se paliara
el gasto excesivo que suponia tener una prole abundante. Quiza
Fisher, que tuvo dos hijos y seis hijas, estaba expresando aqui
una vivencia personal.

Coincidiendo con la publicacién del libro en 1930, Fisher
dedico bastante tiempo a colaborar con la sociedad eugenésica
abanderada por Leonard Darwin. Asi, al Tercer Congreso Inter-
nacional de Eugenesia, celebrado en Nueva York en 1932, acu-
di6 para hablar en lugar de su mentor, dada su avanzada edad.
Todavia mas: Fisher participé muy activamente en la campafa
emprendida por la sociedad a favor de la aprobacién de una ley
que permitiese la esterilizacién en base a criterios eugenésicos.
A diferencia de Estados Unidos, Alemania, Dinamarca y otros
paises protestantes, en Gran Bretafia no se logré la adopcién de
leyes de esterilizacién voluntaria ni forzosa. No obstante, debe
matizarse que los eugenistas britdnicos siempre incidieron mas en
la repercusién de la clase social que en la de la raza natural sobre
la herencia de las cualidades mentales, en contraposicion de sus
homélogos norteamericanos o alemanes.

Tras su mudanza al University College desde Rothamsted en
1933, Fisher prosiguié los estudios eugenésicos en el Laborato-
rio Galton. Junto con otros colegas, profundizé en la recoleccién
de datos sobre pedigris humanos, asi como en el estudio de los
grupos sanguineos y el factor Rhesus. Y en 1950 se opuso fron-
talmente a la Declaracién sobre la Raza de la Unesco, que sos-
tenia que este concepto era una mera herramienta clasificadora,
disociada de las culturas, las etnias o las puntuaciones en los test
de inteligencia. Fisher mantenia que la experiencia de cada dia
mostraba que las diferencias innatas intelectuales y emocionales
entre razas no podian minimizarse.

En el presente, la palabra eugenesia posee un sabor rancio,
pasado de moda. Lo que fue una idea fuerza, parece inerte. Sin
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embargo, con el propésito de contextualizar la creencia de Fisher
en las virtudes de la eugenesia, hay que apuntar que a dia de hoy
muchos cientificos y personas en general se muestran partidarios
de la ingenieria genética, aplicada no solo a patologias, sino a ras-
gos fisicos seleccionables, como el color del pelo o de los ojos del
neonato.
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CAPITULO 5

A vueltas con la induccion
y el método cientifico

Paralelamente a sus descubrimientos matematicos
y biolégicos, Fisher dedic6 parte de su tiempo a meditar
sobre el significado de la probabilidad y el alcance de los
métodos estadisticos, en especial de la inferencia bayesiana
en comparacion con la inferencia frecuentista, que defendia
como mas adecuada. No hubo costura del tejido estadistico
que Fisher no repasara, 1o que le condujo a polemizar con
Jerzy Neyman y Egon S. Pearson a propésito de los
contrastes de hipo6tesis y, ya en sus ultimos anos
de vida, con los médicos a colacién
del tabaco y el cancer.






Después de atravesar una larga crisis econémica y animica, Fisher
regresé6 en 1943 a Cambridge, su alma mater, para ocupar la ca-
tedra de Genética, sucediendo a R.C. Punnett. La convivencia con
Fisher no era facil, dada su personalidad contradictoria: licido
y ofuscado, feroz y amistoso, avaro y espléndido. Todo a la
vez. A los apuros monetarios se sumaba el duro trabajo, asi como
el cuidado de la prole. La desatencién al estado de salud de su
esposa condujo a una crisis doméstica irreversible en 1942. Ade-
maés, ese mismo afio, el mayor de sus hijos varones, que se habia
alistado como piloto de combate en la Segunda Guerra Mundial,
fallecié en un accidente aéreo sobre Sicilia, lo que dej6é a ambos
cényuges destrozados. El matrimonio se rompié cuando Fisher se
traslad6 a Cambridge... solo.

La estadistica matematica desarrollada por Fisher durante
la década de los felices afios veinte en seguida sembré contro-
versia (personal y conceptual). Esta circunstancia motivé que
Fisher reflexionara profundamente sobre la légica intrinseca de
los nuevos métodos de inferencia cientifica, la inferencia estadis-
tica denominada hoy dia cldsica. Ya en 1935 publicé un articulo
tentativo sobre el tema bajo el titulo «La l6gica de la inferencia in-
ductiva», cuya lectura en la Real Sociedad de Estadistica a finales
del afio anterior habia suscitado mil y una réplicas. Pero seria en
la década de 1950 cuando més péginas dedicara a la cuestién. Al
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polémico articulo «<Métodos estadisticos e induccién cientifica»,
presentado a la Real Sociedad de Estadistica en 1955, le sigui6 el
libro Métodos estadisticos e inferencia cientifica, un mamotreto
publicado en 1956 donde Fisher ahondaba en los aspectos mais
filoséficos de la inferencia estadistica.

En esta iltima obra, Fisher intenté ofrecer una perspectiva
unificada de la inferencia, englobando sus tres aproximaciones en
vida al problema: el método de maxima verosimilitud, los test de
significacion y la probabilidad fiduciaria (cuya definicién se expli-
cara mas abgjo). El libro tom6 la forma de un repaso de la inferen-
cia estadistica desde Bayes al presente. Por el camino, Fisher con-
denaba a la hoguera a Bayes y a Karl Pearson, entre otros «falsos
profetas». El estadistico britdnico aproveché ademas la ocasién
para mostrar su animadversién y desdén para con los estadisticos
estadounidenses, cuya concepcién de la estadistica presumia que
era puramente matematica, sin contacto alguno con las ciencias
experimentales. Para algunos colegas, como Maurice Kendall, este
libro —como el panfleto de 47 paginas sobre el cancer y el habito
de fumar que vio la luz en 1959— nunca deberia haber sido escrito.

Sea como fuere, son tres los puntos de friccién a los que Fisher
presto atencién: el significado de la probabilidad, las carencias de
la inferencia bayesiana y la légica de los contrastes de hipétesis.

DEFINIR LA PROBABILIDAD

A pesar de que la palabra probabilidad era de uso corriente en
las lenguas emparentadas con el latin (donde probable significaba
algo asi como «merecedor de aprobacién»), el concepto matema-
tico de probabilidad no hizo su entrada, como dijimos en el primer
capitulo, hasta alrededor de 1660. Y lo hizo arrastrando, desde su
nacimiento, una singular dualidad. La idea emergi6é como un Jano
bifronte que representaba una mutacién de la idea renacentista
de los signos. Una afirmacién era probable cuando estaba bien
atestiguada. Con el Renacimiento, el mundo comenz6 a testificar
por sus signos. No solo los libros de los doctores constituian un
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testimonio véalido. Ahora también lo era, por decirlo con Galileo,
el libro de la naturaleza. De modo que el signo probable era una
sefal frecuente, repetida, mediante la cual el mundo daba testi-
monio, credibilidad (del mismo modo que el humo es un signo
del fuego).

Por tanto, la probabilidad surgi6 ligada, por un lado, a la
creencia y, por otro, a la frecuencia. Al igual que el modo escolas-
tico de la posibilidad, la probabilidad podia predicarse de dicto
(acerca de las proposiciones y su evidencia) o de re (acerca de las
cosas y de la tendencia, exhibida por algunos dispositivos de
azar, a producir frecuencias relativas estables). La palabra proba-
bilidad fue usada por primera vez para denotar algo medible en la
Ldgica de Port-Royal, un manual sobre el arte de pensar impreso
en torno a 1662 por varios colaboradores de Pascal afincados en
ese enclave jansenista.

Tanto Poisson, en su obra de 1837 sobre la ley de los grandes
niimeros, como Cournot, en su libro de ciencia moral publicado
en 1843, aclaraban que la probabilidad mezclaba dos nociones que
habia que distinguir con precisién de cirujano: por una parte, la
chance o probabilidad fisica, que cuantificaba la facilidad o pro-
pensién —como se dice actualmente— a aparecer que tiene un
suceso; por otra, la probabilité o probabilidad epistémica, que
media la credibilidad que merecia la ocurrencia del suceso. Mien-
tras que la primera aludia a una propiedad objetiva del suceso (la
posibilidad de que ocurra, muy ttil para modelar), la segunda era
subjetiva (relativa a nuestro conocimiento, de utilidad al inferir).

Curiosamente, un siglo antes, el reverendo Thomas Bayes
habia dejado escrito: «por chance entiendo lo mismo que proba-
bilidad». Pero a la altura de 1850, el mundo ya no era como en
la época de Bayes y Laplace. El aspecto objetivo de la probabi-
lidad pasé a ser mucho méas determinante que el subjetivo, sen-
cillamente porque el mundo rebosaba de frecuencias. El alud de
nimeros impresos incliné la balanza. De hecho, John Venn, en la
Légica del azar (1866), aposté por un enfoque frecuencial mis
que personal de la probabilidad.

Sin embargo, la inferencia estadistica decimonénica siguié
siendo claramente bayesiana (para estimar incertidumbres se usa-
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SOLUCIONES AXIOMATICAS

Las dos interpretaciones de la probabi-
lidad comparten un mismo formalismo
matematico: los axiomas de Kolmogd-
rov (1903-1987), formulados por el ma-
tematico soviético en 1933, Cualquier
interpretacién de la probabilidad que
satisfaga estos axiomas —y hay mas—
es una buena realizacion del concepto.
Los axiomas propuestos respetaban
las intuiciones plasmadas en la defini-
cion clasica (la «regla de Laplace», solo
aplicable a casos equiprobables) y en
la definiciéon frecuentista (el teorema
de Bernoulli, solo aplicable a fenéme-
nos susceptibles de repetirse) de la pro-
babilidad, ademas de conectar la teoria
de la probabilidad con la teoria de con-
juntos y la teoria de la medida, trans-
formandola en una teoria matematica  sndrai Nikoldyevich Kolmogdrov.

firme que en seguida se difundié por

Centroeuropa permitiendo la prueba

de multiples teoremas. Por su parte, la interpretacion subjetiva de la pro-
babilidad (como grado de creencia en una proposicion o de adhesién a
la verificabilidad de un suceso, variable en cada persona, aunque sujeta a
reglas bastante estrictas de coherencia interna) fue formalizada indepen-
dientemente por el estadistico italiano Bruno de Finetti (1906-1985) en 1937
y difundida por Leonard J. Savage (1917-1971) en 1954, quien resucito la in-
ferencia bayesiana y recuper¢ este enfoque de la probabilidad relacionado
con la utilidad (nocién introducida por Daniel Bernoulli, sobrino de Jakob,
en 1737 y mas tarde por Frank P. Ramsey en 1931).

ban los métodos inversos de probabilidad de Bayes y Laplace).
Solo cuando la sobrepoblacién de nimeros, de frecuencias regis-
tradas accesibles, fue un hecho mas alla del campo astronémico
(acimulo de datos entresacados de la sociologia, la biologia o la
agronomia), pudo desarrollarse —gracias a Fisher, como vimos en
el capitulo 3— la inferencia estadistica objetiva en detrimento de la
bayesiana o subjetiva. Con la observacién continuada de regulari-
dades en otras dreas naturales distintas de la béveda celeste, la in-
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terpretacién subjetiva de la probabilidad como grado de creencia,
de estirpe laplaciana, qued6 definitivamente marginada por la inter-
pretacién objetiva o frecuentista: 1as probabilidades ya no se basa-
rian en creencias sino en frecuencias empiricas. Desde el principio
Fisher fue consciente de que cada interpretacion de la probabilidad
apuntaba a una teoria distinta de la inferencia, ya que los conceptos
probabilisticos son los ladrillos de la inferencia estadistica.

«ALL YOU NEED IS BAYES...»

Para muchos cientificos, la estadistica tiene la responsabilidad de
responder una pregunta fundamental: jcuidndo es correcto afir-
mar que un conjunto de observaciones aporta evidencia a favor o
en contra de una hipétesis? El recurso mas antiguo para dirimir
esta cuestion se remonta a 1763: el teorema de Bayes, aparecido
en el Ensayo hacia la soluciéon de un problema en la doctrina
del azar, firmado por el reverendo Thomas Bayes. Este teorema,
precursor de los métodos inversos de probabilidad y de la inferen-
cia bayesiana, era el resultado central de un ensayo destinado en
espiritu a combatir la critica escéptica a la induccién planteada
por el filésofo escocés David Hume en Sobre los milagros, ya que
ofrecia una discusién matemaética del incremento de probabilidad
entendida como credibilidad.

Solo dentro de este contexto teolégico influido por Newton
puede entenderse que, por ejemplo, el doctor John Arbuthnot,
concupiscente médico de la corte aficionado a calcular probabi-
lidades como la de que una mujer de veinte afios conservara su
virginidad o un joven hubiera sido infectado de gonorrea, realizara
en 1710 la que pasa por ser la primera prueba de significacién de
una hipétesis estadistica: si la posibilidad de nacimiento de un
varon fuese igual a la de una hembra (esto es, 1/2), la probabilidad
de que se registrasen —como se habia constatado— ochenta y
dos afnos consecutivos en que nacian mas hombres que mujeres
seria de (1/2)®, o sea, practicamente cero. Por ende, la hip6tesis
de igualdad de sexos al nacer debia ser rechazada, y Arbuthnot
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interpretaba esta regularidad como un argumento (inductivo) a
favor de la divina providencia. En esta linea, la férmula de Bayes
permitia emitir juicios probabilisticos sobre la validez de una hi-
pétesis (probabilidad a posteriori) basidndose en los datos (ve-
rosimilitudes), pero también en la apreciacién subjetiva que la
hip6tesis mereciese (probabilidad a priori).

«Las causas que llevaron a Bayes a su teorema eran mas
teologicas y sociolégicas que puramente matematicas.»
— KagL Pearson (1926).

132

No obstante, el problema de la probabilidad inversa habia co-
brado forma con la contribucién de Jakob Bernoulli en 1713. El
matemaético suizo le habia comunicado por carta a Leibniz en 1704
que habia encontrado un teorema que le permitia calcular a pos-
teriori, con una aproximaciéon determinada, las probabilidades
desconocidas de los sucesos conocidos empiricamente tan bien
como si aquellas le fuesen conocidas a priori, de entrada. Sin em-
bargo, como explicamos en el primer capitulo, el teorema dureo
de Bernoulli no era exactamente un ejemplo de probabilidad in-
versa, porque lo que el teorema venia a afirmar es que, «conocida»
la probabilidad de ocurrencia de un suceso, la frecuencia relativa
con que este suceso ocurre tiende a ese nimero (ley débil de los
grandes nimeros). En cuanto tal se trata de un teorema puro e
incuestionable de la teoria de probabilidades. Asi, Bernoulli fue
capaz de deducir el mimero de veces que hay que lanzar un dado
simétrico (legal) para que, con «certeza moral» (esto es, con pro-
babilidad mayor o igual que 0,999, un estandar an4logo al que los
estadisticos modernos usan hoy del 95% o 99% de confianza), la
frecuencia relativa con que salga el 6 difiera de p=1/6 (su pro-
babilidad, que, nétese, se supone conocida) en no mas de 0,01:
1388889 veces. En el teorema la probabilidad p estaba fija y se
calculaba la probabilidad de observar ciertos datos, sabiendo que
la frecuencia relativa de éxitos f, tendia a p cuando el niimero de
experimentos n aumentaba. Bernoulli hacia aseveraciones acerca
de lo que en la época se llamaban problemas directos de probabi-
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lidad, problemas en los que se suponia conocida la probabilidad
de éxito y se calculaba la probabilidad de cualquier sucesién de
éxitos y fracasos.

Pero si no se conocia p, ;jpodia usarse todavia el teorema?
Paraddjicamente, Bernoulli introdujo su teorema precisamente
para aquellos casos en los que no se tenia conocimiento previo de
p. Sin embargo, resisti6 la tentacién de invertir el teorema, con-
formandose con acotar los posibles valores de p entre dos limites
(anacrénicamente, dirfamos que realiz6 una estimacion por inter-
valo de p para un cierto nivel de confianza, con certeza moral; un
procedimiento que tendria continuacién con la teoria astronémica
de los errores probables, que construiria estimaciones por inter-
valo con un nivel de confianza del 50%). En otras palabras, Ber-
noulli descubrié cémo computar la siguiente probabilidad (donde
se conoce p): P(p estd en f, + €|p). Y le habria resultado tentador
tomar los valores calculados aqui como los valores de la probabili-
dad P(pestdenf =+¢lf ), donde se ha sustituido el conocimiento
de p por el de f,. Naturalmente, este paso es falaz, pues la segunda
expresion no se deduce de la primera. Parece que fue Laplace
quien sucumbié a la tentacién de «invertir» el teorema, e inferir
la probabilidad p a partir de la frecuencia observada f , a pesar
de que esta tendencia ya estaba en el propio Bernoulli, quien de
haber tenido éxito en su empefio habria resuelto el problema de la
induccioén, de ascender de lo particular a lo general, de la muestra
a la poblacién (la inferencia inductiva).

La solucién completa de Laplace a este problema pasé, ca-
nonizando la interpretacion epistémica de la probabilidad, por el
teorema de Bayes, que considera la probabilidad desconocida p
como una variable aleatoria. El optisculo de Bayes fue el primer
intento sistematico de calcular la segunda probabilidad antes ex-
presada: mediante una asignacién a priori de probabilidades y
por medio de la férmula de Bayes, se calculaba la probabilidad
pedida. Presuponiendo una distribuciéon a priori de p sobre el
intervalo [0,1], Laplace calculé a partir de los datos disponibles
la probabilidad (a posteriori) de que p estuviese a menos de una
cierta distancia ¢ de la frecuencia relativa f, observada. Dado el
nimero de veces que habia salido 6, calculaba la probabilidad de
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La distribucion

a prioriy la
verosimilitud
aparecen,
respectivamente,
con linea
entrecortada

y con linea
continua negra.

La distribucién

a posteriori,
calculada
mediante el
teorema de Bayes,
se representa con
linea continua

de color gris (en el
eje horizontal se
colocarian los
posibles valores
del pardmetro 6
que se desea
estimar). Como
puede observarse,
la distribucioén a
posteriori se
encuentra entre
medias, a medio
camino de la
distribucién a
priori y la
verosimilitud. De
hecho, en este
ejemplo, se parece
mucho mds a la
verosimilitud que a
la & priori, lo que
muestra cudnto
hemos aprendido
de los datos.

Verosimilitud

que la probabilidad de salir 6 estuviese en un entorno de la fre-
cuencia relativa observada.

Los estadisticos bayesianos buscan conocer la probabili-
dad de que cierto parametro desconocido 6 se encuentre entre
dos valores prefijados. Para ello necesitan dos cosas: en primer
lugar, las verosimilitudes P(X10), es decir, las probabilidades de
observar la muestra extraida de la poblacién dependiendo del
valor que tome el parametro; y, en segundo lugar, la probabili-
dad a priori de 6 o distribucién prior de 6, que mide la proba-
bilidad de que el pardmetro desconocido se encuentre entre dos
limites cualesquiera. La distribucién a posteriori P(01X), calcu-
lada mediante la regla de Bayes, no es sino un compromiso entre
la distribucion a priori y la verosimilitud, entre lo que sabiamos
y lo que hemos aprendido de los datos observados (figura 1).

La preferencia del siglo xix por los niimeros y la objetividad
incentivé a los matematicos a buscar alternativas a un procedi-
miento que era mirado con suspicacia. Fisher hizo de la lucha con-
tra la inferencia bayesiana una de las razones de su vida cientifica.
A su entender, los métodos estadisticos habian conducido a una
comprensién mas completa de la 16gica inductiva, constituyendo
la base de la inferencia cientifica, pues la inferencia inductiva era,
a diferencia de la deductiva, ampliadora del conocimiento (por-
que permite aprender de la experiencia, aunque siempre con un
cierto grado de incertidumbre, pero que al poder cuantificarse
hace la inferencia perfectamente rigurosa). Ahora bien, mientras
que el papel principal en la infe-
rencia deductiva o directa (de lo
general a lo particular, de la po-
blacién a la muestra) lo tomaba
la probabilidad, la inferencia in-
ductiva o inversa (de lo particu-
lar a lo general, de la muestra a

FIG. 1

|\ A posteriori
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,,,,, A priori la poblacién) estaba reservada
a la verosimilitud y, en algunos
casos, a la probabilidad fiducial.
e Bajo ningiin concepto a la proba-

bilidad bayesiana.
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Entre otras endebleces, Fisher criticaba que los bayesianos
transformaban clandestinamente la inferencia inversa o induc-
tiva en una inferencia directa, en una deduccién probabilistica,
al postular un conocimiento de partida: la distribucioén a priori
del parametro 6. En cuanto ecuacién matematica, la férmula de
Bayes podia ser indiscutible (aunque, para Fisher, era poco o
nada evidente), pero su empleo requeria asignar una probabili-
dad a priori ala verdad de la hip6tesis que se valora, un niimero
borroso sujeto a discusién. No era plausible que en situaciones
de completa ignorancia, uno admitiera que debe asignar a todos
los posibles valores de 0 la misma probabilidad (distribucién
uniforme) o una probabilidad que depende del estado de infor-
macién en que se encuentre cada uno (probabilidad subjetiva),
de manera que dos investigadores pueden usar dos priores in-
consistentes entre si cayendo en el subjetivismo més inacep-
table. (De hecho, actualmente se conocen algunas paradojas,
como la «paradoja de Lindley», que muestran cé6mo la inferen-
cia bayesiana puede fallar estrepitosamente si se eligen prio-
res inadecuadas: toda la probabilidad se deposita a posteriori
en ciertos valores del parametro se observe lo que se observe.)
Ademés, el hecho de que con el aumento del tamafio muestral la
forma precisa de la distribucién prior perdiera relevancia en re-
lacion con la verosimilitud (como en el grafico que antes hemos
mostrado en la figura 1, pag. 134), llevaba a Fisher a afirmar
que lo mas natural era extraer conclusiones sin suposiciones a
priori de ninguna clase.

No obstante, para Fisher la inferencia inductiva era posible
aunque no transcurriera por los canales bayesianos. A diferencia
del filé6sofo Karl Popper, Fisher no creia que la ciencia debiera
retornar a un simple modelo demostrativo, alejado de la préctica
experimental. La mayoria de matematicos, demasiado entrena-
dos en el arte de la deduccién, confundian una inferencia incierta
(donde la incertidumbre es cuantificable) con una inferencia no
rigurosa. El aprendizaje de la experiencia se producia por medio
de los test de significacién, que, como reflejamos en el tercer ca-
pitulo, servian para extraer conclusiones de los datos observados
sin referencia alguna a creencias previas (a priort). Y 1a verosimi-
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litud era la medida de creencia racional; porque, a diferencia de la
probabilidad (que solo permite razonamientos deductivos, pues la
férmula de Bayes ya parte de la prior), posibilita razonamientos
inductivos, al ser lo que se evaliia en los test.

«Tiene un error l6gico en la primera pagina que invalida
las restantes 395, y es que adopta el postulado de Bayes.»

— FI1SHER SOBRE EL LIBRO TEORIA DE LA PROBABILIDAD (1939) DEL AsTRONOMO HAROLD JEFFREYS.

En torno a 1930, Fisher encontré que, en ciertas situaciones
especiales, era factible transformar los conocimientos logrados
sobre el parametro en sentencias probabilisticas sin usar el teo-
rema de Bayes. A través de un oscuro argumento, Fisher definia
una distribucién de probabilidad sobre el parametro 6 en base
a los datos y sin tomar en cuenta ninguna distribucién a priori.
Era la denominada probabilidad fiducial. Fisher pensaba en
P(X10) como una funcién en dos variables y, cuando sustituia
el valor muestral observado X y podia despejar adecuadamente
6 en funcion de X, explotaba la consideracion de P(61X) como
una distribucién de probabilidad en 0 a efectos pricticos. Habia
encontrado un método para invertir afirmaciones probabilisticas
sobre las observaciones una vez dado el valor del parametro en
afirmaciones probabilisticas sobre el pardmetro a partir de las
observaciones.

En el argumento fiducial hay una transmisién de probabilidad
de X a 08, del estadistico muestral al parametro, que es intuitiva
pero confusa; porque cambia el estatus del parametro, que pasa de
ser un valor desconocido pero constante a ser una variable aleato-
ria. Para Leonard J. Savage, «la aproximacion fiducial de Fisher era
un intento de hacer una tortilla bayesiana sin romper ningiin huevo
bayesiano», ya que lo tnico que diferenciaba al método fiducial
del método de Bayes era la ausencia de conocimiento a priori. De
hecho, la distribucién fiducial podia calcularse como una distribu-
cion a posteriori respecto de una prior no informativa (neutra, uni-
forme). Esto provocé que Fisher suavizara su posicién, de manera
que en su libro de 1956 se muestra partidario de la aproximacién
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¢SALDRA EL SOL MANANA?

Persiguiendo refutar a Hume, quien ha-
bia escrito que Unicamente era proba-
ble que el Sol saliera de nuevo al dia
siguiente, Richard Price (1723-1791), el
fildosofo que se encargd de publicar pos-
tumamente el legajo de Bayes, empled
el teorema de su colega para calcu-
lar la probabilidad de que el Sol asi lo
hiciera. Teniendo en cuenta el numero
de dias que habia venido amaneciendo
ininterrumpidamente, Laplace mejord
los célculos alcanzando la «regla de su-
cesion»: si un hecho se repite seguida-
mente cualquier cantidad de veces, la
probabilidad de que ocurra una vez mas
es igual a este numero mas 1y dividido
por este mismo nimero mas 2. Asi, si su-
ponemos que el Sol ha salido invariablemente durante 5000 afios, o sea,
1826 213 dias (Laplace pensaba que la Tierra era muy joven y le adjudicaba
solo 5000 afios de existencia), la probabilidad de que salga mafana es de
1826 214/1826 215 (~ 99,9999 %). No obstante, como buen astrénomeo, Laplace
subrayaba que en el caso de este tema se trataba mas bien de un problema
de mecanica celeste que de probabilidad; porque, por esta regla, cuanto ma-
yores nos vayamos haciendo, mayor resultara la probabilidad de vivir mas. De
modo que una persona de ochenta afos tendra mayor probabilidad de vivir
un dia mas que una de solo veinte afios. Lo que carece de sentido.

Retrato idealizado de Thomas Bayes.

bayesiana cuando la informacién muestral sobre el pardmetro sea
lo suficientemente extensa, ya que en el cdlculo de la distribucién
a posteriori mediante el teorema de Bayes la verosimilitud sera
determinante (como en el grafico visto en la figura 1, pag. 134). En
otro caso, era partidario del argumento fiducial.

Los esfuerzos por suplantar el teorema de Bayes, encarnados
en personalidades tan importantes como Fisher, no lo consiguie-
ron, y a lo largo de la segunda mitad del siglo xx se ha asistido a
un resurgir de la inferencia bayesiana, el enfoque ciertamente mas
antiguo dentro de la inferencia estadistica, en conexién con la teo-
ria de la decisién. El bayesianismo intenta ser una aproximacion
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formal, algoritmica, a esa vaga
idea que seria «aprender de la ex-
periencia para decidir mejor». Da
un procedimiento para combinar
nuestra informacion a priori con
la muestra a fin de obtener una in-
ferencia que tenga en cuenta toda
la informacién disponible.

A dia de hoy algunos estadisti-
cos sostienen que la inferencia del
futuro serd bayesiana o no ser,
ya que los métodos clasicos fallan
en ocasiones en su precisién, no
toman en cuenta la informacién
proveniente de estudios previos y
tampoco ayudan a valorar 1a credi-
bilidad de una hipétesis. Mientras
que la inferencia cldsica supone
que el pardmetro 6 esté fijo y pre-
tende estimarlo, la inferencia ba-
yesiana lo interpreta como una
variable aleatoria de modo que la
probabilidad P(681X) es objeto de
estudio. Si el tamafio de la mues-
tra X es grande, ambos métodos
ofrecen en general los mismos
resultados, ya que la informacién
muestral pesa mucho més que la
informacién a priori (como puede

FliG. 2
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observarse en la figura 2, la distribucién a posteriori se asemeja
maés a la verosimilitud que a la prior). Pero si la muestra es pequeiia,
ambos métodos pueden conducir a resultados distintos, ya que la
informacién a priori pesa entonces mis que la muestral (en la fi-
gura 3 la distribucién a posteriori se diferencia bastante de la vero-
similitud). Sin embargo, en situaciones de maxima incertidumbre,
tomar como distribucién inicial una distribucién neutra (no infor-
mativa, uniforme) recupera los resultados clisicos (en la figura 4
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la distribucion a posteriori y la verosimilitud coinciden porque la
prior es uniforme). No obstante, los métodos bayesianos a veces
son dificiles de aplicar, necesitando del calculo numérico y del mé-
todo de Monte-Carlo. Quiza su repunte en la actualidad sea indiso-
ciable de la extension del ordenador.

Frente al bayesianismo subjetivo, se reivindica hoy un baye-
sianismo objetivo, en el que las probabilidades a priori no estin
basadas en las creencias personales previas del estadistico, sino
en ciertas distribuciones iniciales de referencia, regladas. Algunos
estadisticos sostienen que esta via es la mejor ruta para unificar
las inferencias bayesiana y clasica. De hecho, tanto Bayes como
Laplace empleaban priores objetivas: distribuciones uniformes.
Sin embargo, los bayesianos ortodoxos consideran este bayesia-
nismo como deshonesto, y reclaman, con De Finetti o Savage,
el empleo de probabilidades personales, confiando en el poder
de la evidencia empirica para neutralizar las diferencias en las
asignaciones de probabilidad inicial de distintos sujetos, sin que
haga falta introducir otras constricciones que la consistencia o
coherencia con los axiomas de la teoria matematica de la proba-
bilidad. La traba es que si una persona piensa que cierta hipétesis
es imposible, mientras que otra le asigna cierta probabilidad a
priori positiva, el teorema de Bayes nunca serd capaz de ponerlas
de acuerdo pese a toda la evidencia que se retina.

Obviamente, los bayesianos objetivos tratan de neutralizar
este relativismo inicial (que los subjetivos salvan fiando a un hi-
potético limite futuro comiin) constrifiendo la asignacién de pro-
babilidades iniciales mediante diversas reglas, como el «princi-
pio de razoén insuficiente» de Laplace (o de indiferencia, segin
lo rebautizé el economista John Maynard Keynes), que asigna
la misma probabilidad a todos los sucesos desconocidos. Ahora
bien, si para ser objetivos se usan siempre distribuciones unifor-
mes o cuasi-uniformes, el estadistico bayesiano solo recupera los
resultados del estadistico cldsico, porque para poder superarle
—exhibiendo, por ejemplo, estimaciones de un parametro con
menor error—, ha de introducir en general una distribucién a
priori distinta, en cuyo caso el debate entre estadisticos clasicos
y bayesianos vuelve al punto de partida.
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CUANDO KUHN CONOCIO A BAYES

La revitalizacion de los métodos bayesianos

ha tenido mucho que ver con las corrientes en

boga en el ambito de la filosofia de la cien-

cia. Los filésofos de la ciencia distinguen dos

clases de razonamiento no deductive. Por un

lado, esta la «induccion» o inferencia bajo in-

certidumbre y, por el otro, la «abduccién» o

creacion especulativa de hipdtesis tedricas

para explicar los fenémenos. Tanto la induc-

cién como la abduccién han intentado recibir
un tratamiento probabilistico por parte de

los epistemdlogos atravesado el ecuador del

siglo xx. La primera muesca se debid a Rudolf

Carnap, un filésofo perteneciente al Circulo de
Viena que termind afincado en Estados Unidos,
y que pretendio suturar la herida de muerte de la légica inductiva: el hecho
de que la seguridad del razonamiento inductivo palidece al compararla con
la del deductivo. Para ello, planted una teoria axiomatica de la confirmacién
basada en una serie de reglas que buscaban cuantificar la probabilidad in-
ductiva o logica de una hipotesis, es decir, la probabilidad de una hipdtesis H
a partir de la evidencia e disponible. Si P[Hle) =1, querfa decirse que e impli-
caba H. En cambio, si P(Hle)=0, e implicaba la negacion de H. Finalmente, si
0<P(Hle)<1, este numero media el grado en que la estructura légica de e im-
plicaba parcialmente H. Esta formulacion retomaba una idea que ya estaba en
los tratados que escribieran Keynes y el astrénomo bayesiano Harold Jeffreys,
para los que toda probabilidad inductiva era en el fondo condicional, relativa
a la evidencia accesible. En suma, para Carnap, confirmar inductivamente era
igual que implicar deductivamente, pero su légica en seguida se revelé como
lastrada por graves problemas técnicos y conceptuales.

Sir Karl Popper.

La verosimilitud de Popper

Karl Popper, en concreto, azoté furibundamente este inductivismo, estable-
ciendo una larga polémica. Al igual que Fisher, rechazaba tajantemente el
uso inductivo de la probabilidad, proponiendo el concepto de verosimilitud
como sustituto (aungue la verosimilitud popperiana no se define igual que
la verosimilitud fisheriana). A todos los efectos, Popper fue a los filésofos
inductivistas lo que Fisher fue a los estadisticos bayesianos. El empefo de al-
gunos filésofos por definir una légica probabilistica apropiada para las teorias
e hipdtesis ha fracasado; pero el reconocimiento de que la ciencia envuelve
juicios vy valoraciones subjetivas, como puso de manifiesto Thomas Samuel
Kuhn en su obra La estructura de las revoluciones cientificas (1962), ha puesto
las esperanzas de muchos epistemaologos en la inferencia bayesiana.
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INDUCCION, DEDUCCION Y DECISION

La escuela bayesiana no fue la tnica a la que se enfrenté Fisher.
Dentro de la inferencia objetiva auspiciada por el estadistico bri-
tanico creci6 otra escuela en torno a las aportaciones de Egon
Pearson y, en especial, Jerzy Neyman (1894-1981). Este matemé-
tico de origen polaco se interesé de joven por la aplicacion de la
estadistica en agricultura. Gracias a una beca, paso el afio acadé-
mico de 1925-1926 en el laboratorio de Karl Pearson, aunque se
desilusioné al descubrir que el gigante inglés ignoraba la matema-
tica abstracta continental. El siguiente curso académico opté por
pasarlo en Paris, asistiendo a las clases de Henri Léon Lebesgue.
Si no hubiese sido por el fructifero contacto epistolar con Egon
Pearson, Neyman hubiera cambiado la estadistica por las integra-
les a su vuelta a Varsovia.

Cuando Karl Pearson cedio el testigo a su hijo Egon, este no
tardé en invitar a Neyman al University College. Juntos formaron
un tindem que concibié un nuevo paradigma estadistico a partir
de los test de significacion elaborados por Fisher: los contrastes de
hipétesis, cuyo planteamiento perfeccionaron en varios articulos
espaciados entre 1928 y 1933, cuando dieron a conocer el lema fun-
damental que juega un papel crucial en la teoria. Al afo siguiente,
Neyman reformulé la estadistica inductiva al asentar la estimacion
mediante intervalos de confianza —que en cierto sentido mejora-
ban los intervalos fiduciales de Fisher— y al dar inicio a la teoria
moderna del muestreo: el muestreo aleatorio, en sus diferentes mo-
dalidades, como principio bésico de aplicacién de la estadistica.

Al comienzo, Fisher calificé el trabajo de Neyman de lumi-
noso y celebré que plantease la inferencia en términos no bayesia-
nos (la lectura del tratado de probabilidad escrito por Richard von
Mises le habia convertido en un frecuentista radical). Pero, coinci-
diendo con el ingreso de Neyman en la Real Sociedad Estadistica
en 1935, Fisher rompié dramaticamente toda relacién con é€l, al
atacar su investigacién sobre agricultura y tildarlo de matemaético
puro, sin contacto con la ciencia experimental (una acusacién a
la que Neyman respondio, por descontado, con poca delicadeza).
En su momento, Fisher escribié que si la intolerancia a nuevas
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ideas era un signo de senilidad, Karl Pearson la habia desarrollado
desde muy joven, y bien podria decirse que Fisher hizo lo propio,
convirtiéndose demasiado pronto en un egocéntrico dinosaurio
de la estadistica. Siempre se mostré muy poco generoso con Ney-
man, a pesar de que este lo admiraba y de que su teoria de los
intervalos de confianza y del contraste de hipétesis clarificé tanto
la mistica probabilidad fiducial como las pedestres pruebas de
significacion. Los roces entre Fisher y Neyman fueron constantes
mientras duré su convivencia bajo el techo comiin del University
College, y ni siquiera se calmaron cuando, en 1938, Neyman par-
ti6 hacia Berkeley, en Estados Unidos. La animadversién entre
ambos estadisticos significé la mayor grieta abierta entre los par-
tidarios de la inferencia frecuentista.

«Fisher a veces publicaba insultos que solo un santo
podia perdonar.»

—LEONARD «JIMMIE» SAVAGE (1976).

Aunque histéricamente Neyman publicé su teoria de los inter-
valos de confianza con posterioridad a la teoria de los contrastes
de hip6tesis, aquellos son previos a estos desde un punto de vista
l6gico. Sobre 1930 Neyman ya poseia el germen de la idea, pro-
bablemente influido por la aproximacién fiducial que Fisher de-
sarrollaba paralelamente (aunque soslayé referirlo). De modo que
en 1934 sugirié que mucho mas interesante que la estimacién pun-
tual era obtener un intervalo dentro del cual se tenia cierta con-
fianza de que se encontrase el paridmetro que se queria estimar.
Un intervalo de confianza consistia en acompanar la estimacion
puntual con el margen de error que reflejaba la variabilidad de la
estimacién. Proporcionar la estimacién sin indicar su margen de
error era de escasa utilidad y podia ser engafioso. Pero, frente a
la tradicién de ofrecer la estimacion puntual y el error probable
(lo que determinaba un intervalo con un nivel de confianza del
50%), Neyman barajaba la posibilidad de construir, mediante el
concurso de variables «pivotales», intervalos con cualquier nivel
de confianza deseado (pongamos por caso, como es habitual, al
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956 0 99%). Para cada nivel de confianza determinado se calculaba
su margen de error. Naturalmente, con el nivel de confianza au-
mentaba el margen de error, aunque otra forma de aumentar la
confianza era aumentar el tamario de la muestra.

Por ejemplo, puede preverse que si extraemos muestras de
tamano 16 de una poblacién que se distribuye normalmente con
media p desconocida y desviacion tipica 4, entonces con probabi-
lidad 0,95 1a media muestral X no distaré de la media poblacional
u desconocida més de 1,96 unidades. En consecuencia, si al tomar
una muestra observamos que X =40, puede esperarse que p se
encuentre previsiblemente en el intervalo 40+ 1,96 (con un 95%
de confianza).

Ahora bien, ;qué significa la coletilla «al 95% de confianza»?
Quiere decir que la estimacion por intervalo se ha realizado con
un procedimiento que se sabe que a la larga acierta el 95% de las
veces. Es como si el intervalo nos lo comunicara una persona que
dice la verdad el 95% de las veces; podemos estar bastante segu-
ros, pero no totalmente seguros. Conviene advertir, segin insistio
Neyman, que si I es un intervalo de confianza concreto al 95%, no
se puede decir que la probabilidad de que I contenga el verdadero
valor del parametro 8 es 0,95 porque el pardmetro 0 estard o no
estard en I, pero no tiene mas opciones, ya que es una constante
de valor definido aunque desconocido. Dicho de otra manera, la
probabilidad de que I incluya a 6 solo puede asumir dos valores: 1
0 0, dependiendo de si 0 est4 o no en I. Sucede que la férmula que
ha permitido construir el intervalo I al sustituir los datos observa-
dos posee una probabilidad de 0,95, lo que se interpreta, desde la
definicién objetiva o frecuencial de la probabilidad, como que el
95% de las muestras producen un intervalo que en efecto contiene
el parametro. Sin embargo, es imposible conocer si nuestro inter-
valo concreto I es uno de ellos, pero se espera que asi sea con un
95% de confianza.

Cuando en 1955 Fisher y Neyman volvieron a cruzar espadas
con motivo del articulo incendiario que el primero comunicé a la
Real Sociedad de Estadistica, Fisher dejé entrever que la concep-
cién de Neyman ponia en peligro su método fiducial, aparte de
ser supuestamente una copia degenerada (y ello a pesar de que
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los intervalos fiduciales dejan de coincidir con sus hermanos, 1los
intervalos de confianza, cuando se aplican a problemas multipara-
métricos como el de Behrens-Fisher). Recordemos que mediante
un extrafio argumento, Fisher cambiaba el estatus del parametro
0 para hacerlo susceptible de recibir una distribucién de probabi-
lidad. Pasaba de suponerlo una constante a una variable aleatoria,
una asuncion que lo sacaba del paradigma de la estadistica clasica
y lo sumergia en el marco de la estadistica bayesiana. Porque para
los bayesianos es posible entender un intervalo de confianza I al
95% como que el pardmetro 0 se encuentra ahi con una probabili-
dad (subjetiva, credencial) de 0,95.

«De un saco de judias blancas y negras saco un pufiado y cuento
el nimero de judias blancas y el nimero de judias negras y
entonces presumo que las blancas y las negras estan
aproximadamente en la misma proporcién en todo el costal.»

— CHARLES SANDERS PEIRCE SOBRE EL MUESTREO COMO BASE DE LA INDUCCION.

Mientras que los estadisticos bayesianos contestan a la pre-
gunta de por qué empleamos este intervalo I en particular, los esta-
disticos frecuentistas responden a la pregunta de por qué emplea-
mos intervalos de confianza en general, esgrimiendo que el método
de Neyman es un razonamiento deductivo que arroja un 95% de
éxitos a largo plazo. La confianza no es una medida de precision
final (atribuible al intervalo numérico construido) sino inicial.

Los contrastes de hipétesis guardan, como en seguida vere-
mos, un nexo fundamental con los intervalos de confianza. Bus-
cando fortalecer las bases légicas de los test de significacion de
Fisher, Pearson y Neyman idearon varias mejoras. El leitmotiv
de su investigacién no era otro que el siguiente interrogante: jqué
hacer si se obtiene un resultado significativo en un test estadis-
tico? De acuerdo, se rechaza la hipétesis nula, pero ;qué otra hi-
pétesis puede abrazarse? En este sentido las pruebas de significa-
cién eran peores que inttiles. No daban ninguna pista.

La teoria de Neyman-Pearson planteaba una eleccién real
entre dos hipétesis rivales. El contraste de hipétesis es un algo-

A VUELTAS CON LA INDUCCION Y EL METODO CIENTIFICO

145



146

ritmo para decidir entre dos afirmaciones sobre un parametro a
partir de la informacién contenida en la muestra. Una sera re-
chazada; la otra, aceptada. Tras formular la hipétesis nula H,
se formula la hipétesis alternativa H , que difiere de la hipétesis
de partida. A continuacion, se elige el tamaiio del test o nivel de
significacién a deseado, que marca la barrera que juzga qué dis-
crepancias son «demasiado» grandes. Usualmente, suele tomarse
a = 0,05 (el valor complementario al consabido 0,95). Este niimero
determina el riesgo aceptado, esto es, el porcentaje de muestras
que tomaremos como significativas para decir que la muestra no
es compatible con la hipétesis nula (en este caso, el 5%). Asi-
mismo, se elige el estadistico T del contraste, cuya distribucién en
el muestreo ha de ser conocida, y que funciona como una medida
de la discrepancia entre la hipétesis nula, la hip6tesis alternativa
y los datos muestrales. Con o y con T se construyen la «regién
critica» o «regién de rechazo» y la complementaria «regién de
aceptacion de la hipétesis nula» (esta iltima viene dada por un
intervalo de confianza de nivel 1-a). El hecho de que el valor
T(X) observado en la muestra del estadistico del contraste caiga
dentro de una u otra dictamina si la diferencia observada es o
no significativa, si hay que rechazar la hipétesis nula y aceptar la
hipétesis alternativa.

Todo contraste de hipdtesis conduce, pues, a aceptar o recha-
zar la hipétesis nula planteada (aceptando, en este tltimo caso, la
hipétesis alternativa). Ahora bien, pueden ocurrir las siguientes
situaciones (que aparecen esquematizadas en la tabla):

a) Se acepta la hipétesis nula siendo verdadera. Esta es una
decision correcta.

b) Se rechaza la hipétesis nula siendo falsa. Esta es otra de-
cision correcta.

c) Se rechaza la hipétesis nula siendo verdadera. Esta claro
que cometemos un error, que se llama error de tipo I. La
probabilidad de cometer este error viene dada por el nivel
de significacion o, fijado de antemano.
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d) Se acepta la hipétesis nula siendo falsa. También come-
temos un error, que se llama error de tipo II. La proba-
bilidad de cometer este error se representa por f, y la
probabilidad 1 - f se llama potencia del contraste, ya que
cuantifica la probabilidad de rechazar la hipétesis nula
cuando es falsa.

Naturaleza de la hipétesis nula H,

Decisién Verdadera Falsa
Rechazar H, Error de tipo / Correcta
No rechazar H, Correcta Error de tipo Il

Neyman y Pearson demostraron que en bastantes circunstan-
cias, una vez fijada la probabilidad o de error de tipo I (esto es,
asumiendo la interpretacion frecuentista del muestreo repetido,
una vez acotado el porcentaje de veces que tomaremos una de-
cision equivocada, al rechazar la hipétesis nula cuando es verda-
dera), es posible construir y utilizar contrastes de maxima poten-
cia, es decir, contrastes que minimizan la probabilidad f§ de error
de tipo II al tiempo que maximizan la potencia del test, su sensibi-
lidad o capacidad para detectar que la hipétesis nula es falsa. En
un célebre lema publicado en 1933, Neyman y Pearson probaron
que en el caso de hipétesis rivales simples (que asignan valores
especificos al parametro desconocido) existe automaticamente
una clase de test 6ptimos, de bajo tamaifio y madxima potencia:
los basados en la razén de verosimilitudes (ver anexo al final del
libro). Segin dejaron escrito en 1933:

Sin esperar conocer si cada hipétesis por separado es verdadera o
falsa, buscamos reglas que gobiernen nuestro comportamiento con
respecto a ellas, de modo que a la larga no estemos frecuentemente
equivocados.
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De acuerdo con el planteamiento de Neyman y Pearson, un
contraste de hipétesis no es mas que una regla de decisién. Si uno
se comporta conforme al procedimiento disefiado, a la larga re-
chazari la hipétesis nula cuando sea verdadera no mas, digamos,
que cinco veces de cada cien y, ademas, dispondré de evidencia
de que la rechazara con la suficiente frecuencia cuando sea falsa.
Los test estadisticos no son, por tanto, reglas de inferencia in-
ductiva, sino de comportamiento inductivo. Su propésito no es
fundamentar nuestras creencias, sino ajustar nuestra conducta a
los datos observados. No es posible averiguar si la hipé6tesis nula
es verdadera o falsa. Pero, en cambio, si es factible comportarnos
respecto a ella de manera que a largo plazo no erremos con de-
masiada frecuencia. Frente a Fisher, Neyman y Pearson sostenian
que lo que es inductivo no es el razonamiento sino la accién. El
objeto de la estadistica era emplear la experiencia como guia para
actuar apropiadamente. Ni mas, ni menos.

Los procesos de control de calidad en la produccién indus-
trial siguieron de cerca esta vision. Asi, durante la Segunda Guerra
Mundial, los contrastes de hipétesis sirvieron para la seleccién de
bastimentos en la Armada estadounidense, ya que inspeccionando
una muestra de cada lote podia tenerse la confianza de seleccio-
nar correctamente al menos el 95% de los lotes no defectuosos
a largo plazo. Egon Pearson escribié, de hecho, un libro sobre la
materia que perecié quemado en uno de los primeros raids sobre
Londres. Pero fue la emigraciéon de Neyman a Estados Unidos en
1938 lo que facilité que esta constelacion de ideas cruzara el At-
lantico y terminara sedimentando en la teoria matematica de la
decisién esbozada hacia 1950 por el malogrado Abraham Wald
(fallecido tempranamente en un accidente de avién).

En miiltiples ocasiones Neyman sostuvo la tantalizante doc-
trina de que la inferencia inductiva es imposible y debemos con-
tentarnos con la conducta inductiva. Una opinién contundente
que le convirtié en el villano de las disputas filoséficas de la esta-
distica. A su entender, la estadistica matematica no hacia justicia
al presunto caracter inductivo de la empresa cientifica, ya que su
entramado era puramente deductivo. Del mismo modo que los
bayesianos y sus epigonos tomaban como premisa una distribu-
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cién a priori de probabilidad, Fisher partia siempre de la funcién
matematica de verosimilitud o de una distribucién en el muestreo
deducida con anterioridad. Los intervalos de confianza, por su
parte, se obtenian razonando sobre las propiedades de ciertas va-
riables aleatorias. Y los contrastes de hip6tesis eran meras reglas
de comportamiento, donde no cabia la inferencia, ni inductiva ni
deductiva, porque habia probabilidades de error. La l6gica se re-
solvia, empero, en decision.

A juicio de Fisher, tanto Neyman como Pearson habian desvir-
tuado integramente su invencién; porque el objetivo de un test de
significacién —como explicamos en el capitulo 3— no era decidir
entre dos hipétesis alternativas, sino comprobar si una observa-
cion acreditaba o no la hipé6tesis nula. Sus queridos test se habian
transformado en vulgares recetas de aceptacién. Mientras que las
pruebas de significacion se construian tomando como referencia
una tinica hip6tesis y su objeto era validar el modelo estadistico
subyacente, los contrastes de hipétesis consideraban dos hip6tesis
rivales y su propésito principal era decantarse por una de ellas.

Ademas, para Fisher, Neyman y Pearson habian formalizado
las pruebas de significacién en un marco (supuestamente) con-
fuso, ya que el resultado de una de estas pruebas venia dado por
el p-valor, que media hasta qué punto los datos no contradecian
la hipétesis nula, ¥ no por la decisién de aceptar la hipétesis nula
o la hipétesis alternativa. No era lo mismo informar del p-valor,
como medida de la evidencia aportada por la muestra, que de la
aceptacion o el rechazo de la hipétesis nula, con la consiguiente
(falsa) creencia de que esta hipétesis era verdadera o falsa simple-
mente porque no/si contradecia los datos observados. De hecho,
la utilizacién del p-valor permite que todos los estadisticos a los
que se les facilite la misma muestra obtengan idéntico resultado.
En cambio, dos estadisticos que informen del resultado de un con-
traste pueden llegar, a partir de la misma muestra, a resultados
distintos si utilizan dos tamarfios diferentes, dos a distintos. La
razon estriba en que el p-valor es una propiedad de la muestra,
mientras que el tamaiio a es una propiedad del test.

Al respecto, Fisher protestaba enfadado que la interpreta-
cién del nivel de significacién a del test como frecuencia de una
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Cuestiones candentes en la teoria de Neyman-Pearson

A pesar de que los contrastes de hipote-
sis han sido universalmente aceptados,
presentan ciertos déficits técnicos que
no deben dejar de sefialarse. Primera-
mente, muchos investigadores creen
que para un « fijo, el rechazo de la hipo-
tesis nula, caso de producirse sera mas
evidente conforme mayor sea el tamafio
muestral n. Sin embargo, esto no es asi.
Si se quiere contrastar si la produccion
media de una maguina es de 5000
unidades/dia y se toma una muestra
grande (una serie larga de observacio-
nes diarias), es bastante probable que
se detecte una diferencia estadistica-
mente significativa y se rechace gue la
media es 5000. Pero la conclusién bien
puede ser que la media es, entonces, de
5000 + 0,00001, una diferencia perfec-
tamente irrelevante en la practica. Como la region critica depende del tamario
muestral, el valor por encima del cual se rechaza la hipdtesis nula de que la
media es 5000 se acerca a 5000 seglin aumenta n (puesto que la media ob-
servada ha de estar muy préxima a la media teodrica si la muestra es grande).
Un efecto pequefio en una muestra grande puede ser tan decisivo como un
efecto grande en una muestra pequefa. Para evitar este engorro, hay quie-
nes sugieren ajustar el tamano del test en funcion del tamafo de la muestra.

Jerzy Neyman.

decisién equivocada en muestras repetidas de la misma pobla-
cién pervertia la l6gica intrinseca a las pruebas de significacion,
porque el cientifico natural generalmente no dispone de muestras
repetidas. La analogia que empleaban Neyman y Pearson entre
el muestreo repetido y la toma reiterada de decisiones solo fun-
cionaba si se asimilaba el contraste de hipdtesis con la acepta-
cién industrial de lotes de muestras. Atin mas, la expresion error
de sequndo tipo parecia sugerir la posibilidad de aceptar como
verdadera la hipétesis nula por error, cuando la realizacién de
una prueba de significacién nunca autorizaba a tomarla como
verdadera.
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En segundo lugar, como consecuencia del papel privilegiado de la hipétesis
nula (ya gue a se fija con anterioridad), en ocasiones se tiende a aceptar la
hipoétesis nula incluso cuando los datos no encajan bien con esta hipotesis. Es
mas, la obligatoriedad de decidir entre la hipotesis nula y la hipotesis alterna-
tiva a veces conduce a tomar decisiones basandose en datos muestrales que
encajan igual de mal con ambas hipotesis, algo que con el enfoque bayesiano
no pasa (en el anexo al final de libro abundamos en esta cuestién).

La potencia del test

Neyman enfatizaba que la no significatividad de un test para rechazar la
hipétesis nula no lleva necesariamente a verla confirmada, ya que esto de-
pende de la potencia del test, de que sea lo suficientemente alta. Algunos
estadisticos apuntan que la fuerza con que la hipdtesis nula se ve confir-
mada por la muestra puede evaluarse mediante una cantidad que deno-
minan severidad, y que jugaria un papel analogo al p-valor. Mientras que el
p-valor se definia —como vimos en el tercer capitulo— por la probabilidad
P(T 2T(X)IH,). la severidad se definiria por P(T 2T(X)|H,). Cuanta mas alta
fuese esta probabilidad, mas «duro» o «severo» habria sido el test en el sen-
tido de ser capaz de discernir si la hipétesis nula era falsa. Un experimento
confirmaria una hipotesis si y solo si suponia un intento serio por refutarla.
Por ultimo, en tercer lugar, cuando las hipétesis no son simples sino com-
puestas, el lema fundamental no se verifica y la busqueda del test unifor-
memente mas potente no siempre existe, con lo que no es facil controlar
simultdneamente las dos probabilidades de error. Ya en su momento Fisher
puso de relieve que, para rizar el rizo, el calculo del error del segundo tipo vy,
por tanto, de la potencia del contraste, no siempre es accesible, dado que la
hipotesis alternativa puede no estar univocamente determinada.

Las diferencias entre ambas teorias no eran tanto matema-

ticas, numéricas, como légicas y filoséficas. En el polémico ar-
ticulo presentado por Fisher en 1955 a la Real Sociedad de Esta-
distica, el estadistico britanico atacé furibundamente a Neyman
por dejarse seducir por el «pragmatismo norteamericano», por
mostrarse mas preocupado por acelerar la produccién que por ex-
traer conclusiones estadisticas correctas. El matematico polaco
habia malinterpretado la inferencia estadistica al constreiiirla,
como decia literalmente Fisher, al &mbito de los esclavos de Wall
Street y del Kremlin, pero no de los cientificos libres en pos de la
verdad. Neyman habia cortado el nudo gordiano de la légica de
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la inferencia inductiva de la que hablaba Fisher al calificarla como
ilusoria. Pero en su ceguera habia confundido el control de cali-
dad con la inferencia cientifica, al cientifico con el comerciante. El
«comportamiento inductivo» le parecia a Fisher una evasion para
no afrontar el problema realmente existente del «razonamiento
inductivo». Fisher no queria hacer dinero sino aprender del expe-
rimento.

La réplica que Neyman no tardé en escribir comenzaba sal-
vando al desgraciado Wald de las invectivas de Fisher: 1a relacién
de la inferencia estadistica con la teoria de la decisién pergefiada
por Wald era la de la tictica con la estrategia. A continuacién,
Neyman defendia su enfoque mediante hipétesis alternativas,
llegando a subrayar que el célebre test de la catadora de té es-
taba mal disefiado si no se indicaba contra qué se queria probar
la hipétesis nula (es decir, si no se precisaba numéricamente la
habilidad de la dama, suponiendo que la tuviera, en la hipétesis
alternativa). En lo tocante al tema central de discusién, Neyman
se reafirmaba en que el comportamiento inductivo solventaba
de una vez por todas el problema irresoluble de la inferencia
inductiva.

Con el tiempo, el matemético polaco llegé a referirse a la
conducta inductiva —incluso en presencia del filésofo Carnap—
como un concepto mayor de la filosofia de la ciencia actual,
hallando sus raices en Gauss y Laplace. En cierto modo las voces
de Neyman y Popper se confunden en este punto al afirmar ambos
que no existe método inductivo de razonamiento alguno. Si para
Popper los posibles resultados de una prueba experimental son la
falsacién o, en su defecto, la corroboracién de la teoria cientifica,
para Neyman lo son el rechazo o la aceptacién de la hipétesis
nula (aunque como en el caso de Fisher, Popper apenas cité a
Neyman). .

Por alusiones, Egon Pearson también hubo de terciar en la
polémica, aunque a diferencia de Neyman se resistié a bajar a
la arena filosdfica, limitandose a aducir que la jerga de la toma de
decisiones pertenecia mas a Neyman que a si mismo. La buena
sintonia entre ambos matemadticos se habia practicamente termi-
nado cuando el segundo partié rumbo a Estados Unidos.
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USOS Y ABUSOS DE LOS METODOS ESTADISTICOS

El sincretismo metodolégico reinante es responsable de bastantes errores
cometidos en el empleo de las herramientas estadisticas. Algunos de los
mas habituales son los siguientes:

1. En el analisis exploratorio de datos suele usarse la media como medida
candnica de centralizacion, que agrupa las observaciones, cuando la me-
diana es en general mas recomendable por cuanto presenta menor vola-
tilidad, esto es, menor sensibilidad a valores extremos.

2. En el estudio de la regresién habitualmente se toma un coeficiente de co-
rrelacion lineal de 0,6 como fiable, cuando puede demostrarse que el mo-
delo subyacente solo explica en este caso el 36 % de las observaciones.

3. Una ilusion permanente, fruto del pastiche que ha fraguado en torno a los
test estadisticos, es creer que estos se apoyan en el siguiente silogismo:
«Si la hipétesis nula es correcta, entonces la muestra X no puede obser-
varse. Hemos observado X, luego la hipétesis de partida es falsa». Sin
embargo, los test descansan sobre un silogismo a lo sumo probable: «Si
la hipdtesis nula es correcta, entonces la muestra X es altamente impro-
bable. X ha sido observada, luego la hipétesis es altamente inverosimil».

4. La consagracion de la contrastacion estadistica como modo de tomar
decisiones dicotdmicas conlleva que a veces, basandose en el criterio
del a=0,05, se acepte la hipétesis nula para un p-valor de 0,051y, en
cambio, se rechace para 0,049. Asimismo, un resultado estadisticamente
significativo al nivel, pongamos, del 0,001 suele interpretarse como que
la hipodtesis alternativa ha recibido un apoyo del 0,999; pero que no haya
evidencia en contra suya no quiere decir que la tenga a favor.

5. Otro error muy extendido es confundir el p-valor, es decir, la probabilidad
de observar la muestra extraida suponiendo que la hipétesis nula es ver-
dadera, con la probabilidad de que la hipétesis nula sea verdadera a la
vista de la muestra observada (una probabilidad solo calculable mediante
el teorema de Bayes). Esta inversion ilegal de los términos es lo que se co-
noce como falacia del fiscal: si eres culpable, es légico que todas las prue-
bas apunten a ti; pero que todas las pruebas apunten a ti, no quiere decir
que ipso facto seas culpable, como suelen inferir erroneamente los fiscales.

6. Finalmente, hay que anotar que la potencia del contraste es la gran olvi-
dada de la teoria. Entre los investigadores ha fructificado la creencia de
que si un test no resulta significativo, entonces la hipétesis nula ha sido
corroborada; pero esto no puede afirmarse a la ligera sin antes calcular
la funcién de potencia del test, que mide su capacidad para detectar
discrepancias.
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La disputa entre Fisher y Neyman en 1955 inauguré toda una
serie de controversias en la que ya no intervendrian solo estadisti-
cos, sino también fil6sofos interesados por la inferencia cientifica,
que subrayarian que la teoria de los contrastes de hipotesis es
idénea para poner a prueba una hipo6tesis pero no para evaluar
el respaldo que recibe esta hipétesis una vez realizado el experi-
mento. En otras palabras, la inferencia clésica es la mds adecuada
para someter una hipoétesis al dictado de la experiencia; pero, una
vez que la naturaleza habla, la inferencia bayesiana ha de recoger
el testigo (ya que posibilita la comparacion entre las alternativas
por medio de sus probabilidades a posteriori).

Ahora bien, el propésito principal de los contrastes de hip6-
tesis no es medir el grado de apoyo que recibe una hipétesis a
partir de la muestra observada, sino evaluar la discrepancia de
esta hipétesis con los datos. En el esquema clasico, las probabi-
lidades entran en juego como probabilidades de error, no como
probabilidades de hipétesis. Al igual que el nivel de confianza, las
probabilidades de error funcionan como medidas de precisién ini-
cial, no final. Los test ideados por Fisher, Neyman y Pearson no
pueden transformarse en lo que no son. No se les puede pedir lo
que no pueden dar.

Y, sin embargo, a dia de hoy, ha triunfado el méas vivo eclec-
ticismo metodolégico, en especial en el campo de las ciencias so-
ciales, donde las pruebas de significacion de Fisher y los contras-
tes de hipétesis de Neyman-Pearson, e incluso en ocasiones los
modelos bayesianos, cohabitan en una amalgama viable a escala
técnica pero irreconciliable a escala conceptual. A partir de los
afos sesenta del pasado siglo las teorias de Fisher y de Neyman-
Pearson comenzaron silenciosamente a conformar un oscuro hi-
brido cuyo uso se ha trivializado, convirtiéndose en un ritual me-
cénico. Bajo el pensamiento débil de que jtodo vale! («cualquier
método estadistico es un instrumento vilido», «no hay que entrar
en disquisiciones légicas»), se oculta un problema de calado fi-
loséfico con repercusiones a la hora de plasmar e interpretar los
resultados, porque no es lo mismo informar del p-valor que de la
distribucién a posteriori o del tamafio del test, la potencia del
contraste y la decisién tomada.
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FUMAR PERJUDICA GRAVEMENTE LA SALUD

Hacia 1920 se observé un gran incremento de los fallecimientos
por cancer de pulmén. Aunque existian trabajos previos sobre la
posible relacién entre este tipo de cancer y el hdbito de fumar, en
la década de 1950, gracias a los trabajos de Richard Doll (1912-
1905) y Austin Bradford Hill (1897-1991), la cuestién cobré un
verdadero interés y propicié agrios debates en la opinién piblica.
Estos epidemiélogos fueron los artifices de la extensién de los
principios fisherianos del disefio de experimentos a la investiga-
cién clinica.

Doll y Hill publicaron un estudio estadistico donde los casos
los constituian los pacientes que ingresaban en ciertos hospitales
con diagnéstico de cancer de pulmén, mientras que el «grupo con-
trol» estaba formado por pacientes cuyo ingreso se debia a otras
causas. Mediante el andlisis de las historias clinicas de los enfer-
mos que ya tenian o que desarrollaron este cancer, estimaron que
la incidencia del mismo en los fumadores era entre 11 y 20 veces
mayor que en los no fumadores. Su conclusion era, de facto, esta-
disticamente significativa al nivel del 0,001.

Sin embargo, estos trabajos recibieron numerosas obje-
ciones de personalidades tan respetadas como Jerzy Neyman.
Pero quizi el principal paladin de las criticas fue nada menos
que Fisher (a quien distinguimos en muchas fotografias pipa en
mano). Este inveterado fumador, que incluso sirvié como con-
sultor de alguna compaiiia tabacalera, publicé varios articulos
y un panfleto cuestionando la relacién entre cancer, cigarrillos y
estadistica.

Una de las pegas que Fisher esgrimié fue que el estudio de-
mostraba que los fumadores presentaban un mayor riesgo de
padecer cancer de pulmén, pero esto no implicaba que la causa
fuese necesariamente el tabaco. Que A y B estén directamente
correlacionadas no quiere decir que A sea la causa de B, pues bien
podria ser que B fuera la causa de A (que el cancer de pulmén mo-
tivara el habito de fumar) o que existiese un factor C que fuese la
causa comiin de A y B (que las personas que adquieren el habito
de fumar tuviesen algo en la estructura genética que las hiciera
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propensas a caer en la adiccién al tabaco y, a la vez, contraer
un cancer; una posibilidad que Fisher barajaba amparandose en
datos extraidos de gemelos). El estadistico inglés comparaba la
correlaciéon descubierta por Doll y Hill con la correlacion enga-
fiosa que mediaba entre la evolucion de la tasa de divorcios y la
importacién de manzanas.

Fisher afiadia que, a diferencia de los experimentos agréno-
mos o los estudios sobre vacunas, el estudio de Doll y Hill no se
ajustaba al disefio experimental, sino que era un mero estudio
prospectivo, porque la divisién en dos grupos —casos y contro-
les— no se habia producido aleatoriamente, sino que venia dada
¥, por tanto, sujeta a factores externos dificiles de bloquear. Es
mas, subrayaba que si uno separaba a los fumadores en dos gru-
pos, los que inhalan el humo y los que no, los que no inhalaban el
humo eran curiosamente los que méis padecian cancer de pulmén.
Fisher escenificaba la conclusién real del estudio con el siguiente
consejo: «fumar perjudica la salud, pero si tienes que fumar, mejor
traga el humo».

Los afios sucesivos conocieron una multiplicaciéon de estu-
dios prospectivos, asi como de experimentos con animales que
corroboraron fuera de toda duda la tesis de Doll y Hill (y mos-
traron que, pese a lo que por error arrgjaba el primer estudio,
inhalar el humo resulta fatal). A medida que la evidencia se fue
acumulando Neyman cambi6 de opinién, pero Fisher permanecié
irreductible en su posicién.

LA ESTADISTICA EN EL SIGLO XXI

Ronald Aylmer Fisher nunca ocupé una plaza como estadistico
en la universidad. En 1957 tomo la decisién de abandonar la ca-
tedra de Genética en la Universidad de Cambridge y, dos afios
después, se incorporé como investigador emérito a un complejo
cientifico e industrial ligado a la Universidad de Adelaida (Aus-
tralia). Este genio de temperamento, que habia sido nombrado
sir por la reina Isabel II en el afio 1952, encontré la muerte el 29
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de julio de 1962, a los setenta y dos afios, como consecuencia de
un cancer de colon.

Los avances que Fisher impulsé le otorgan un puesto de
honor en el pantedn de los estadisticos. Gracias a él, la estadistica
es la matriz de muchas ciencias experimentales. En tanto que la
experimentacién produce datos varios, precisa de la estadistica.
Todo hecho cientifico posee un caricter ineludiblemente estadis-
tico: se trata de un compendio de observaciones repetidas, que
estdn sujetas a factores y errores de naturaleza aleatoria. La es-
tadistica interviene en la descripcién, modelizacién, explicacién
y prediccién de estos datos. Y lo hace, en general, cumpliendo
las siguientes etapas: planteamiento de un modelo adecuado al
problema utilizando el calculo de probabilidades; disefio del expe-
rimento; descripcién y andlisis de los datos muestrales recogidos;
estimacion de los parametros desconocidos del modelo pobla-
cional; contraste de hipotesis sobre el modelo; reajuste de este y
toma de decisiones.

«Lo mejor de ser estadistico es que puedes meterte
en cualquier jardin.»

— Joun W. Tuckey.
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Al igual que otros estilos de razonamiento cientifico (el
geométrico de las ciencias matematicas, el hipotético-deduc-
tivo de las ciencias fisicas, el experimental de las ciencias de
laboratorio, el taxonémico de las ciencias naturales y el hist6-
rico-genético de las ciencias humanas), hay un estilo propio de
operar, pensar y actuar enlazado a la ciencia estadistica, que se
caracteriza por una fértil dialéctica entre razonamiento y expe-
rimentacion.

La aplicacién de los métodos estadisticos se ha extendido a
areas tan diversas como la ingenieria, la economia, la medicina o
la psicologia. En la actualidad, tanto los filtros de spam de nues-
tro ordenador como la observacion de cimulos estelares, la de-
teccion del fraude fiscal o el analisis de las causas de accidentes
como el del Challenger en 1986 emplean técnicas estadisticas.
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La difusién de la estadistica, de la que Ronald Aylmer Fisher
fue participe privilegiado, no solo ha provocado que el mapa se
pliegue mejor al territorio, sino también que a resultas de ello el
territorio —nuestro mundo globalizado— se haya visto transfor-
mado hasta limites insospechados por culpa de la introduccién
del mapa. Habitamos un mundo estadistico en el que el mapa se
confunde con la realidad.

A VUELTAS CON LA INDUCCION Y EL METODO CIENTIFICO
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Anexo

TESTANDO A.FISHER, NEYMAN Y BAYES

El objetivo de este anexo es presentar matematicamente cémo
cada una de las tres escuelas estadisticas posee un enfoque muy
distinto a la hora de analizar un mismo caso de estudio. Por medio
de un ejemplo numérico sencillo, el lector podra comprobar cémo
cada una de estas filosofias de la estadistica interpreta los célcu-
los probabilisticos de una manera sutilmente diferente.

Supongamos que un parametro poblacional 6 desconocido
solo puede tomar dos valores: 0 o 1. Supongamos, ademads, que
los datos muestrales X que observaremos inicamente tienen cua-
tro posibles resultados: 1, 2, 3 o 4. La siguiente tabla recoge las
probabilidades P(X10) de observar cada resultado muestral en
funcién de los valores del parametro:

P(x16) | x=1 X=2 X=3 X=4
8=0 0,980 0,010 | 0005 | 0,005
8=1 0098 | 0900 | 0,001 0,001

TEST DE SIGNIFICACION DE FISHER

Queremos poner a prueba la hipétesis nula de que 6=0. De
acuerdo con Fisher, no hacemos referencia a hipétesis alterna-
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tiva alguna (6 =1), ya que nuestro objetivo no es decidir entre dos
hipétesis rivales, sino validar el modelo estadistico subyacente
que presupone ese valor para el parametro desconocido. Si recor-
damos del capitulo 3, el p-valor se definia como la probabilidad
P(T 2T(X)H,), lo que en este caso discreto se adapta como la
probabilidad de observar un valor igual o més raro que el valor
efectivamente observado bajo la hipétesis de que 6=0. Con esto
en mente, ;qué inferiremos si observamos que X =27

Por légica, mirando la tabla anterior, como la probabilidad
de observar este resultado muestral suponiendo que 6=0 es muy
baja (de solo 0,010), el p-valor ha de ser pequeiio. En efecto, vale
0,010 + 0,005 +0,005=0,02, que al ser menor que el consabido 1i-
mite de 0,05, apunta a que la hipétesis nula no encaja con el dato
observado y, por tanto, ha de ser rechazada.

.Y si observamos X =37 Entonces el p-valor vale
0,005 +0,005=0,01, 1o que conduce a rechazar la hip6tesis nula de
que 0 =0 con mayor significacién. Finalmente, si se observa X=1
(el dato para el que la hipétesis nula encaja muy bien, ya que este
dato se observa con probabilidad 0,980), el p-valor es 0,980 +
+0,010+ 0,005 + 0,005 = 1, lo que de ningtin modo contradice la hi-
poétesis nula. En resumen, el p-valor es la medida matemética que
informa en los test de significacién de hasta qué punto la muestra
refuta la hipotesis de partida. Pero nada dice de en qué grado
permite inferirla o confirmarla.

CONTRASTE DE HIPOTESIS DE NEYMAN-PEARSON

Consideramos la hip6tesis nula H: 6 = 0 versus la hipétesis alter-
nativa H: 6 = 1. El prop6sito del contraste es decidir entre ambas.
Intuitivamente, consultando la tabla, si observamos X =1, acep-
taremos la hipétesis nula. En cambio, si observamos X=2, nos
inclinaremos por rechazarla, aceptando la hipétesis alternativa.
Cuando X =3 o 4, la decisién no est4 tan clara.

Como explicamos en el capitulo 5, 1a teoria de Neyman-Pear-
son comienza balanceando las dos probabilidades de error. En
primer lugar, se fija el tamano o nivel dé significacion o del test,
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que acota la probabilidad del error de tipo I (esto es, la frecuencia
con que tomamos la decisién equivocada de rechazar la hip6tesis
nula cuando es verdadera). A continuacién, se busca aquel test
con menor probabilidad de error de tipo II (de aceptar la hip6tesis
nula cuando es falsa) o, equivalentemente, con mayor potencia,
es decir, con mayor probabilidad de rechazar la hipétesis nula
cuando es, en efecto, falsa. Segiin demostraron Neyman y Pearson
en un famoso lema, los test 6ptimos (tamafio pequefio, mixima
potencia) se basan en la razén de verosimilitudes, es decir, en
el cociente P(X16=1)/ P(X16=0), que se obtiene dividiendo las
probabilidades (verosimilitudes) de la tabla:

P(Xx|6=1)
P(x|8=0)

Es facil ver que la razén de verosimilitudes va a conducir al
rechazo de la hipdétesis nula y 1a aceptacién de la hipétesis alterna-
tiva cuando X=2 (como era de esperar), ya que el cociente toma
un valor muy grande (la verosimilitud de la hipétesis alternativa
es 90 veces la de la hipétesis nula). Cuando X =1, mantendremos
la hipétesis nula, porque el cociente toma el valor mis pequeiio
(0,1). Ysi X=3 0 4, la decisién dependera del tamafio a elegido del
test, puesto que los resultados muestrales encajan practicamente
igual de mal con ambas hipé6tesis (la probabilidad de observar 3 o
4 era baja con ambas hipétesis). Asi, puede demostrarse que con
a=0,01 la regién critica para H: 6=0 solo contiene a X=2. En
consecuencia, para X =3 o 4 retenemos la hipétesis nula. La po-
tencia de este test vendria dada por la probabilidad P(X =216=1)
de rechazar la hipétesis nula cuando la hipétesis alternativa es
verdadera, que arroja un valor (consultando la tabla inicial) de
0,900. Por consiguiente, este test muestra una gran potencia,
en otras palabras, una gran capacidad para detectar cuindo la
hipé6tesis nula es falsa. En concreto, si se observa X=1 (un re-
sultado no significativo), la «severidad» del test viene dada por

ANEXO

163



164

P(T 2T(X)®=1)=0,900+0,001+0,001+0,098 =1, lo que ofrece
una evidencia excelente para inferir la hipétesis nula frente a la
alternativa.

Sin embargo, con a=0,02, l1a regién critica incluye a X=2, 3 y
4, por lo que rechazariamos la hip6tesis de partida en todas estas
circunstancias, a pesar de que la hipétesis nula es mas verosimil
que la hipétesis alternativa cuando X=3 o 4. Como se ha dicho, los
datos muestrales 3 y 4 constituyen sucesos raros bajo cualquiera
de las dos hipétesis rivales, pero la obligatoriedad de decidir entre
una y otra fuerza siempre a tomar una decision en la teoria de
Neyman-Pearson. Esta es una de las criticas que los partidarios
de la inferencia bayesiana suelen hacer a los defensores de la infe-
rencia frecuentista, ya que con el enfoque bayesiano, como ense-
guida comprobaremos, esto no siempre pasa.

No obstante, una linea de defensa de los estadisticos clasicos
es la apelacién a la nocion de severidad. De este modo, por ejem-
plo, la decisién de aceptar la hipétesis alternativa cuando X =3 (un
resultado significativo) no es un indicio que permita inferir esta hi-
potesis fuera de toda duda razonable, ya que la severidad del test
para con H, es —aunque la justificacion de la férmula excede el
alcance del libro— P(T <T(X)6= 1) =0,098+0,001+0,001=0,1
(muy pequeiia). La severidad del test es muy baja porque la po-
tencia es muy alta, exactamente de 0,902. Tomemos un ejemplo
ilustrativo para explicar por qué se da esta relacién: si usamos una
red muy tupida para pescar, tendremos muchas oportunidades de
pescar un pez y, en consecuencia, de rechazar la hipétesis nula
de que el lago no contiene peces (alta potencia); pero si logramos
pescar, como los agujeros de la red son tan pequeiios y capturan
casi todo, no podremos saber si el pez es pequeno o grande y, por
tanto, confirmar una hipétesis alternativa con respecto al tamafio
de los peces del lago (baja severidad). En suma, la observacion del
dato muestral 3 conduce a rechazar H| (ya que para 6=0 es muy
improbable observarlo), pero de aqui no se desprende necesaria-
mente la verdad de H, (de que 6=1, porque para este valor tam-
bién es muy improbable observarlo). El lector perspicaz puede
estar preguntiandose por qué no consideramos el tipico a=0,05.
La razén es que requeriria, al tratarse de un ejemplo discreto, la
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introduccion de un «test aleatorio», lo que complicaria en exceso
la discusién.

INFERENCIA BAYESIANA

El andlisis bayesiano precisa de postular una distribucién a
priori sobre 6. A continuacién, mediante la aplicacién del teo-
rema de Bayes (que presentamos en el capitulo 1), pueden com-
binarse estas probabilidades a priori con las verosimilitudes a
fin de obtener las probabilidades a posteriori que permitan de-
cantarnos entre H; y H . Vamos a considerar dos priores distin-
tas. La primera serd uniforme, es decir, neutral, no informativa,
otorgando la misma probabilidad a los dos posibles valores de 6:
P(6=0)=P(6=1)=1/2. La segunda, en cambio, otorgara cinco
veces mas credibilidad al valor8=1: P(6=0)=1/6; P(6=1)=5/6.
Asi pues, para cada uno de los dos posibles valores de 6, la proba-
bilidad a posteriori vendra dada por la férmula de Bayes, expre-
sada a continuacion:

P(6)- P(X10)
P(0)- P(X10)+ P(1)- P(X11)

P(OX)=

Segiin puede calcularse, en el primer caso, si tomamos la dis-
tribucién uniforme y observamos X = 1, la probabilidad a posteriori
es claramente favorable a la hipétesis nula frente a la alter-
nativa: P(6=0X =1)=0,91, mientras que P(6=1X =1)=0,09.
Si observamos X =2, la probabilidad a posteriori favorece, como
se esperaba, la hipétesis alternativa: P(6=0X =1)=0,01 frente
P(6=0X =1)=0,99. Pero, ;qué sucede si X=3 o 4 (los valores
muestrales que planteaban problemas a la teoria clasica)? To-
mando X =3, se comprueba que la regla de Bayes se inclina por
la hipotesis nula frente a la alternativa: P(6=0X=3)=0,83 y
P(6=1X =3)=0,17. Sin embargo, cuando introducimos la se-
gunda prior (que otorga més peso a priori a =1 que a 6=0),
el panorama cambia radicalmente: P(8=0X=3)=0,50 y
P(6=1X =3)=0,50. {En equilibrio! Como puede observarse, la
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eleccion de la prior resulta decisiva en el enfoque bayesiano y
decanta la balanza hacia uno u otro lado.

INFERENCIA CLASICA

Por ultimo, nos gustaria mostrar con otro ejemplo cémo opera la
inferencia cléasica en la vida real. Vamos a inspirarnos en una apli-
cacioén que Fisher extrajo del célebre articulo de Student de 1908.
Se desea testar el poder de un nuevo medicamento para inducir
al sueno, y se ha medido el nimero de horas de descanso que
10 pacientes han ganado o perdido con esta droga hipnética con
respecto a no usarla. Es lo que se llama una muestra con obser-
vaciones pareadas, porque las comparaciones se realizan sobre
las mismas 10 personas (si se tratase de 10 personas distintas en
cada caso, se tratarfia de dos muestras independientes, que re-
quieren de otro test estadistico algo mas complejo; con muestras
apareadas pueden captarse efectos invisibles para las muestras
independientes). Estas han sido las diferencias observadas con el
uso: +1,2; +2.4; +1,3; +1,3; +0; +1; +1,8; +0,8; +4,6; +1,4. A simple
vista, parece que el sedante es efectivo, pero podria ser que el
efecto se debiese al azar y no a la dosis. La media muestral X vale
+1,568 (lo que refuerza nuestra opinién), pero nos gustaria con-
trastar la hipétesis nula de que la media poblacional p es 0 frente
a la hipoétesis alternativa p=0. En otras palabras, 1a hipé6tesis de
que si el medicamento se suministrase a toda la poblacién no se
detectaria efecto alguno versus la hip6tesis de que si lo hay.

Supongamos que el niimero de horas de suefio que se ganan o
se pierden con el sedante sigue una distribucién normal de media
n y desviacion tipica o desconocidas. A partir de los datos de la
muestra, queremos precisamente estimar el efecto medio n del
medicamento sobre toda la poblacién. Se sabe por el teorema cen-
tral del limite que para muestras grandes (n >30), en condiciones
muy generales,

estimador-parametro
desviacién tipica del estimador

~ distribucién normal estandar.
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Para el caso de la estimacion de la media poblacional u con
muestras pequefias en poblaciones normales, si conociéramos la
desviacion tipica poblacional o, atin podriamos emplear la aproxi-
macién normal. Con una confianza del 95%, la media poblacional
u se encontraria de la media muestral X a menos de 1,96 veces la
desviacién tipica poblacional o dividida por la raiz cuadrada del
tamario muestral ». O como gustaba decir a Fisher, solo una vez de
cada veinte excederia estos limites, fijados para el nivel cldsico
de significacion del 5%.

Cuando no se conocia o (lo mis frecuente), el astrénomo
F.W. Bessell conjetur6 que podia sustituirse su conocimiento por
el de la desviacién tipica muestral corregida S (la raiz cuadrada
de la cuasivarianza muestral, definida en el capitulo 3, y que en
nuestro ejemplo vale 1,23) y sucumbié a la tentacién de decir que
los valores aceptables eran aquellos que no excedian de:

S

+1,96 w

Sin embargo, esta estimacién, que hizo fortuna durante el
siglo x1x, obviaba el hecho de que S est4 sujeta a las variaciones
azarosas del muestreo, por lo que en unas ocasiones sera mayor
y en otras menor que o. Student fue el primero en percibir que
este olvido afectaba a las conclusiones con muestras pequefias,
reparando en que la distribucién normal (de donde procede el
+1,96) no podia emplearse. En su lugar habia que usar una nueva
distribucién, la ¢ de Student, cuyas colas de valores extremos de-
crecen mucho més lentamente. En consecuencia, el refinamiento
de la inferencia pasaba por usar como valor adecuado +2,262 (al
5% de significacién). Curiosamente, Student envié las tablas de
su distribucién a Fisher con el comentario: «Probablemente sea
la inica persona que las use jaméas». El paso del tiempo ha demos-
trado, contra la opinién de Karl Pearson, la ubicuidad de la ¢ de
Student, ya que su uso es generalmente valido con independencia
de que la distribucion de partida sea normal.

Resumiendo, si desconocemos o, hay que emplear la aproxi-
macién que descubrié Student, a la que tanto juego sacé Fisher:
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media muestral — parametro

e - ~t, , de Student.
desviacion tipica de la media muestral

El test t concierne a la precisién de la media de una muestra
de observaciones, y posibilita poner a prueba la significacién de
una hipétesis sobre la media poblacional. Si nuestro sedante no
tuviese efecto alguno (u=0), seria de esperar que la media mues-
tral X estuviese en el intervalo:

S 1,23
+2,262- ——=0+2,262- = = (0,88, +0,88).
& Jn J10 ( )

Como la media muestral es +1,58, podemos rechazar la hipé-
tesis nula: el nuevo medicamento es efectivo.
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