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Introducción 

En la ciudad francesa de Nancy, en la esquina entre la Grand Rue 
y la Rue de Guise, hay una pequeña farmacia. Este establecimien­
to ocupa hoy en día, tal y como lo hacía hace más de 150 años, los 
bajos de un edificio de tres plantas, el Hotel Martigny. En la facha­
da que da a la Grand Rue, a la altura del primer piso, hay una 
placa conmemorativa que dice: «En esta casa nació el 29 de abril 
de 1854 Henri Poincaré, miembro de la Academia Francesa y de la 
Academia de Ciencias, muerto en París el 17 de julio de 1912». 

No muy lejos de allí, en la Rue de la Visitation, se encuentra 
el Liceo Henri Poincaré, llamado así en honor del ilustre hijo de la 
ciudad. Y andando por la fachada principal de esta institución en 
dirección a, la Grand Rue se llega a la calle Henri Poincaré. Casi 
paralela a esta última, discurre otra calle más ancha y más larga, 
la calle Raymond Poincaré, dedicada a su primo, el presidente 
de la República Francesa durante la Primera Guerra Mundial. La 
ciudad honra así a sus ciudadanos más distinguidos. En Francia, 
la figura del político parece ser más valorada que la del matemáti­
co, a juzgar por la importancia de las calles que les dedican, pero 
Henri Poincaré perteneció a esa clase de hombres cuyo legado 
traspasa todas las fronteras, las espaciales y las temporales. 

A pesar de que Poincaré vio su ciudad natal invadida por las 
tropas alemanas siendo adolescente, el resto de su vida transcurrió 
en un período de paz, el comprendido entre la guerra franco-pru-
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siana de 1870-1871 y el comienzo de la Primera Guerra Mundial en 
1914, de la que ya no fue testigo. En el plano político, la Tercera 
República, instaurada tras la caída del emperador Napoleón III y 
el fracaso de la Comuna de París, consiguió sobrevivir gracias a 
una Constitución flexible que permitió la alternancia en el poder 
de gobiernos de distinto signo. Poincaré nunca ejerció una activi­
dad política, pero siempre estuvo bien relacionado con el poder y 
no solo por la buena sintonía que mantuvo con su primo. 

Fue esta una época de un trepidante crecimiento económico 
e industrial. Y, al igual que en Alemania, la ciencia - elemento 
fundamental para el desarrollo tecnológico- era promovida y 
financiada tanto estatal como privadamente. En los últimos años 
del siglo XIX se produjo la electrificación de buena parte de Euro­
pa, así como la difusión del telégrafo. En los primeros años del 
siglo xx surgió la telegrafía sin hilos. Estos avances planteaban 
problemas, tanto teóricos como prácticos, que interesaron a cien­
tíficos e ingenieros de todos los países avanzados. 

En Francia, al igual que en Alemania, a finales del siglo XIX se 
consolidó un sistema de enseñanza público a todos los niveles 
educativos. Las Grandes Écoles, que databan de la época de la 
Revolución, se consolidaron como centros de élite de la enseñan­
za superior y en ellas estudiaron los hombres más brillantes de la 
época, ya fueran ingenieros, matemáticos, economistas o políticos. 
Poincaré se formó en uno de estos centros. 

París, donde Poincaré vivió la mayor parte de su vida, sufrió 
una gran remodelación a finales del siglo XIX. En 1889, con motivo 
de la Exposición Universal de ese año, finalizó la construcción de 
la Torre Eiffel. Durante la Exposición Universal de 1900 se cons­
truyó la primera línea del metro. La ciudad se modernizó y expan­
dió, convirtiéndose en una de las grandes urbes mundiales. Era La 
Belle Époque, un período caracterizado, al menos en apariencia, 
por el optimismo, la expansión económica y social, la confianza 
en la ciencia y el progreso. También fue una época de renovación 
artística, en la que surgieron movimientos estéticos que siguen 
siendo admirados hoy en día. 

Poincaré se distinguió desde pequeño por una excepcional 
capacidad para las matemáticas. En el otoño de 1873 ingresó en 
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la École Polytechnique, una de las Grandes Écoles, y de allí pasó 
a la Escuela de Minas de París. Se licenció como ingeniero de 
minas en 1878, pero su principal interés eran las matemáticas y, 
por este motivo, simultaneó los estudios de ingeniería con los de 
matemáticas en la Sorbona. Ejerció algunos meses como inge­
niero de minas en Vesoul, durante los cuales fue testigo de los 
estragos causados por un terrible accidente. A finales de 1879 
obtuvo una plaza de profesor en la Universidad de Caen. A partir 
de ese momento ya se dedicó en exclusiva a las matemáticas y 
la ciencia. 

El primero de los grandes trabajos de Poincaré estuvo centra­
do en el estudio de las ecuaciones diferenciales. Inventó unas fun­
ciones, que él llamó «fuchsianas» y que hoy en día se conocen 
como «automórficas», que servían para resolver ecuaciones dife­
renciales muy generales. Este trabajo le valió el reconocimiento 
de los matemáticos franceses -en especial de Charles Hermite, 
que había sido profesor suyo en la escuela politécnica y que le 
apoyaría durante el resto de su carrera- y también le dio a cono­
cer en el ámbito internacional. Así, el matemático sueco Gosta 
Mittag-Leffler se fijó en sus trabajos, iniciándose entonces una re­
lación profesional y de amistad que sería muy provechosa para 
ambos. 

Pero el nombre de Henri Poincaré saltó a la fama mundial 
cuando en enero de 1889 ganó un concurso matemático convoca­
do por el rey Óscar II de Suecia. El trabajo presentado por Poin­
caré trataba sobre el problema de los tres cuerpos: encontrar la 
trayectoria de tres cuerpos sometidos a su mutua atracción gravi­
tatoria. Aunque la concesión del premio no estuvo exenta de difi­
cultades - Poincaré cometió un error en la memoria original que 
él mismo detectó y corrigió--, lo cierto es que este trabajo repre­
senta una de las mayores aportaciones de Poincaré a la historia de 
las matemáticas. Al ser el problema de los tres cuerpos de una 
enorme complejidad, Poincaré no intentó una resolución general, 
sino que buscó una comprensión cualitativa de la estructura gene­
ral de las soluciones. En su trabajo desarrolló toda una serie de 
conceptos y herramientas matemáticas nuevas que hoy en día se 
usan en lo que se conoce como teoría de los sistemas dinámicos. 
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Esta teoría matemática se aplica a campos tan diversos como la 
física, la biología, la química o la economía. 

Poincaré ocupó diversas cátedras de Física y Matemáticas 
en París a partir de 1881. El premio del rey de Suecia le convirtió en 
uno de los hombres de ciencia más cono.cidos de Francia y sus 
trabajos posteriores no hicieron sino acrecentar su fama. Entre 
estos trabajos se encuentran los dedicados a la topología, de la que 
es considerado como uno de sus fun~adores. La topología es la 
rama de las matemáticas que trata especialmente de la continuidad 
y de otros conceptos más generales originados de ella, como las 
propiedades de las figuras con independencia de su tamaño o for­
ma. En topología, dos objetos son equivalentes si podemos defor­
mar uno de ellos de manera continua, sin hacer cortes ni agujeros, 
hasta convertirlo en el otro. Para un topólogo, un triángulo y un 
cuadrado son la misma cosa. La topología estudia propiedades más 
generales que las que estudia la geometría. Se trata de caracterizar 
un objeto sabiendo de cuántas partes está compuesto, si tiene 
agujeros, si posee una frontera definida, si es finito o, en cambio, 
se extiende sin fin, etc. Poincaré se interesó por la topología a 
partir de sus trabajos con las ecuaciones diferenciales y el proble­
ma de los tres cuerpos. Y ello le llevó a la necesidad de generalizar 
los conceptos y las herramientas matemáticas de la topología a 
espacios de más de tres dimensiones. 

El nombre de Poincaré volvió a aparecer en los medios de 
comunicación a principios del siglo XXI con motivo de la resolución 
de un problema topológico que él enunció cien años antes, proble­
ma que se conoce como «la conjetura de Poincaré». Convertida ya 
en teorema desde que fue resuelta, esta afirma, en un lenguaje no 
demasiado técnico, que «toda superficie de n dimensiones que sea 
finita, no tenga agujeros y no esté retorcida, la podemos deformar 
continuamente hasta convertirla en una esfera». En el capítulo 
cuatro daremos un enunciado más riguroso, e introduciremos los 
conceptos matemáticos necesarios para hacerlo. Poincaré no pro­
puso la conjetura como tal, sino que lo hizo a modo de pregunta, 
aunque todos los matemáticos posteriores a él esperaban que la 
respuesta fuera positiva. El problema se reveló tan difícil de resol­
ver que en el año 2000 el Instituto Clay lo incluyó entre uno de los 
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problemas del milenio, y prometió un millón de dólares a quien lo 
resolviera. La demostración final fue obra del matemático ruso 
Grigori Perelman (n. 1966), quien, tras varios años de trabajo en 
solitario, lo resolvió a inicios del presente siglo. Perelman se hizo 
por ello merecedor de la medalla Fields, uno de los mayores reco­
nocimientos que puede recibir un matemático, y del premio de los 
problemas del milenio, pero rechazó ambos. 

Henri Poincaré fue también uno de los físicos teóricos más 
importantes de su tiempo. Especialmente crucial fue su contribu­
ción a la teoría especial de la relatividad, de la que es, junto a Lo­
rentz y Einstein, uno de sus fundadores. Ya en torno a 1900 Poin­
caré apostaba por mantener el principio de relatividad como un 
principio básico de la física. Este principio se puede enunciar di­
ciendo que las leyes de la física son las mismas para todos los 
observadores, independientemente de si están o no en movimien­
to. El espacio absoluto no existe y es, por tanto, imposible detectar 
el movimiento de un objeto respecto de este espacio absoluto. Solo 
es posible detectar el movinúento relativo entre dos objetos. Ade­
más, Poincaré también admitía la constancia de la velocidad de la 
luz, aunque como una convención inevitable. Recordemos que 
estos dos principios, el principio de relatividad y la constancia de 
la velocidad de la luz, son los dos postulados que introdujo Ein­
stein en su primer artículo sobre la relatividad. 

Entre los hallazgos de Poincaré estaba el hecho de que la sin­
cronización mediante rayos lunúnosos llevaba a que la simultanei­
dad de dos sucesos era relativa, ya que dependía del observador. 
Un hecho este que la teoría de la relatividad pondría sobre bases 
firmes. En 1905 Poincaré escribió el artículo «Sobre la dinámica 
del electrón», cuyo contenido es en gran parte similar al artículo 
«Sobre la electrodinámica de los cuerpos en movimiento» que Al­
bert Einstein publicó ese mismo año, y que se considera el artícu­
lo fundacional de la teoría de la relatividad. Las predicciones cuan­
titativas de ambos científicos para el movimiento de un electrón 
sometido a campos eléctricos y magnéticos son iguales, y también 
son iguales a las que ya había deducido Lorentz. La diferencia 
entre estos artículos es, sobre todo, de interpretación. En la inter­
pretación de las consecuencias cinemáticas de las transformacio-
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nes de las distancias y los tiempos -las transformaciones de Lo­
rentz- Einstein es más audaz que Lorentz y Poincaré, y rompe de 
una manera más explícita con los antiguos conceptos de espacio 
y tiempo. 

Henri Poincaré también destacó por sus reflexiones filosófi­
cas, especialmente en el campo de la epistemología o filosofía de 
la ciencia Publicó muchos artículos sobre este tema y se convirtió 
en autor de éxito con una colección de ensayos dirigidos al gran 
público, en los que combinaba la disquisición filosófica con la di­
vulgación científica. Poincaré formó parte de muchas academias 
y sociedades científicas y fue un hombre social y profesionalmen­
te muy reconocido. Su prestigio, no solo en Francia, era enorme y 
ello le permitía frecuentar los círculos más selectos de la vida in­
telectual y política de la época. Falleció por una complicación 
inesperada tras una operación de próstata. A su entierro acudieron 
grandes personalidades de la cultura y la política francesas y su 
muerte fue lamentada por todos los científicos del momento, den­
tro y fuera de Francia. 
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1854 El 29 de abril nace en Nancy Jules 
Henri Poincaré. 

1862 Ingresa en el liceo de Nancy, hoy 
llan1ado en su honor Lycée Henri 
Poincaré. Su educación prinlaria 
la recibió de un profesor particular. 

1873 Ingresa en la École Polytechnique. 
En paralelo a sus estudios de 
ingeniería, estudia matemáticas. 

1874 Publica su prinler trabajo original 
en matemáticas. 

1876 Se exanlina de matemáticas, con éxito, 
en la Universidad de la Sorbona. 

1878 Se licencia como Ingeniero de Minas. 

1879 En marzo es designado ingeniero de 
minas de tercera clase en Vesoul. 
En agosto obtiene su doctorado en 
Matemáticas por la Universidad de 
Paris. En septiembre se produce el 
accidente en la mina Magny y tiene 
que elaborar un detallado informe. 
En diciembre obtiene una plaza de 
profesor de Cálculo Diferencial e 
Integral en la Facultad de Ciencias 
de la Universidad de Caen. 

1881 El 20 de abril contrae matrimonio con 
Louise Poulain d'Andecy. En octubre 
obtiene una plaza en la Facultad 
de Ciencias de la Sorbona, en Paris. 

1883 Obtiene el puesto de tutor en la École 
Polytechnique. 

1886 Obtiene la cátedra de Física 
Matemática y Probabilidad. 

1887 Es elegido miembro de la Academia 
de Ciencias. 

1889 Obtiene el premio del rey de Suecia por 
su trabajo «Sobre el problema de los 
tres cuerpos y las ecuaciones 
de la dinámica». 

1895 Publica en el Journal de l'École 
Polytechnique el artículo «Analysis 
situs», el primero de sus trabajos 
dedicados a la topología. 

1899 Envía una carta sobre el caso Dreyfus, 
que es leída en el segundo juicio al que 
fue sometido el militar. 

1904 Enuncia la cortjetura que lleva su 
nombre. 

1905 Presenta a la Academia de Ciencias 
un resun1en de su artículo «Sobre 
la dinámica del electrón», que será 
publicado en 1906. 

1908 Es elegido miembro de la Academia 
Francesa. 

1911 Asiste, junto con Einstein, Planck 
y Lorentz, entre otros científicos, 
al primer Congreso Solvay, celebrado 
en Bruselas. 

1912 Muere en Paris el 17 de julio como 
consecuencia de las complicaciones 
derivadas de una operación de próstata. 
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CAPÍTULO 1 

¿Rigor o intuición? 

Durante todo el siglo XIX las matemáticas 
experimentaron un gran impulso. Los grandes 
matemáticos como Gauss, Cauchy o Riemann 

resolvieron muchos problemas antiguos y, sobre todo, 
abrieron el camino a nuevos métodos e ideas, como la 
geometría no euclídea. Francia gozó de una prestigiosa 
escuela matemática que incluía grandes nombres como 

el propio Cauchy, Laplace, Lagrange y Hermite. 
En este contexto, Henri Poincaré quedó muy 

pronto cautivado por la disciplina 
que le haría famoso. 





Jules Henri Poincaré nació en Nancy el 29 de abril de 1854. Su 
padre, Émile Léon Poincaré, era médico y también ejercía de pro­
fesor de Anatomía y Fisiología en la Escuela de Medicina de aque­
lla ciudad. Su madre, Eugénie Launois, provenía de una familia 
adinerada de Arrancy, una localidad de la región de Lorena. Allí la 
familia tenía una finca que fue su lugar de vacaciones y recreo 
durante muchos años. En esta casa de campo podían llegar ajun­
tarse hasta sesenta personas en tomo a la abuela materna de Poin­
caré, Euphrasie. Parece ser que la anciana estaba especialmente 
dotada para los juegos de cartas y el cálculo mental. 

Antes de que Poincaré naciera, su abuelo había establecido 
una farmacia en Nancy, y con el tiempo construyó una gran casa, 
que se convirtió a la vez en laboratorio de preparación de medica­
mentos, tienda y residencia. En esta mansión convivieron Henri, 
su hermana Aline, sus padres y sus abuelos. La casa estaba siempre 
llena de gente y no era extraño que algunos familiares vinieran a 
pasar allí varios días. Henri Poincaré gozó así de una infancia feliz, 
rodeado de sus padres, su hermana, sus abuelos y otros familiares 
y amigos que frecuentaban la casa familiar. 

Cuando tenía cinco años padeció un episodio de difteria, una 
enfermedad grave que aún lo era más por aquel entonces. Poinca­
ré sobrevivió, pero tuvo una larga convalecencia: durante dos me­
ses no pudo andar y tardó hasta nueve meses en recuperar el habla 
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RAYMOND POINCARÉ (1860-1934) 

Henri Poincaré tenía dos primos por par­
te de padre, Raymond y Lucien, ambos 
hijos del hermano mayor de su padre, 
Antoni. Raymond Poincaré nació en Bar­
le-Duc y estud ió Derecho en la Universi­
dad de París. A los treinta y tres años 
entró en el Gobierno y, a partir de enton­
ces, ocupó varias carteras, siendo primer 
ministro en cinco ocasiones. En 1913 fue 
elegido presidente de la República Fran­
cesa, cargo que ocupó hasta 1920. Diri­
gió el país, por tanto, durante la Primera 
Guerra Mundial y tuvo una participación 
destacada en las negociaciones de paz, 
mostrándose muy duro con Alemania en 
sus exigencias de reparación. Henri y su 
primo Raymond mantuvieron una estre­
cha relación. De estudiantes, les gustaba 
mantener largar conversaciones sobre filosofía. Cuando ya ambos eran per­
sonalidades respetadas, discutían sobre todo tipo de asuntos, incluidos los 
nombramientos y la concesión de distinciones. También coincidían esporádi­
camente en reuniones, actos o cenas de artistas e intelectuales franceses 
organizados por miembros destacados de la sociedad parisina de la época. 
Ambos fueron miembros de la Academia Francesa. 

completamente, ya que la difteria había producido una parálisis de 
laringe. Su hermana pequeña, Aline, fue un gran apoyo para él en 
esos meses y juntos inventaron un lenguaje de signos para poder 
comunicarse. Aline y él permanecieron muy unidos toda su vida. 

Henri no fue a la escuela hasta los ocho años. Hasta ese mo­
mento, un profesor privado amigo de la familia se encargó de su 
educación, así como la de su hermana y la de sus propios hijos. En 
esa época, era esta una práctica relativamente habitual entre las 
familias de buena posición. Las clases eran variadas y se centraban 
en la lectura y la escritura, principalmente. Cuando Henri ingre­
só en la escuela en 1862, inmediatamente se convirtió en el núme­
ro uno de su clase, algo que su tutor ya preveía. Tenía una memo­
ria prodigiosa y no tomaba apuntes, porque se acordaba de todo 
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lo que oía. Era capaz de leer un libro una sola vez y recordar luego 
en qué página aparecía una frase concreta. Se cuenta que, años 
después de hecho un viaje, era capaz de recitar de memoria el 
nombre de las estaciones en las que el tren había hecho parada. 

En la infancia de Henri no faltaron los viajes. En el verano de 
1866 visitó con su familia Frankfurt y Colonia En el verano de 1867 
los Poincaré acudieron a la Exposición Universal de París, y dos 
años después fueron a Londres. Los viajes terminaban siempre con 
una visita a la finca materna en Arrancy. 

Cuando Poincaré tenía dieciséis años, enjulio de 1870, estalló 
la guerra franco-prusiana. Las tropas alemanas invadieron su ciu­
dad natal. Henri ayudó a su padre, a quien habían puesto a cargo 
de una ambulancia, a atender a los heridos. La familia Poincaré 
permaneció en la Nancy ocupada y un oficial alemán fue alojado 
en la casa familiar. Henri aprovechó las circunstancias para mejo­
rar su alemán, idioma que llegó a hablar con fluidez. Con el tiempo, 
dominaría también el inglés. 

La guerra franco-prusiana tuvo grandes consecuencias para 
la historia de Francia y, muy especialmente, para la región donde 
Poincaré nació y se crió: Lorena. En el tratado de paz, que se firmó 
en 1871, Alsacia y gran parte de Lorena fueron cedidas a Alemania. 
Metz y Estrasburgo quedaron bajo el dominio alemán, aunque Nan­
cy siguió siendo francesa. La ocupación alemana de Metz y Estras­
burgo hizo que muchos franceses, a los que se permitió abandonar 
dichas ciudades, se refugiaran en Nancy. Como buena parte de 
esta población estaba compuesta por comerciantes, artesanos e 
intelectuales, Nancy vivió tras la guerra una época de especial 
dinamismo. La universidad de la ocupada Estrasburgo fue trans­
ferida a Nancy, y lo que había sido hasta entonces la Facultad de 
Medicina de Estrasburgo se fundió con la Escuela de Medicina 
de Nancy. El padre de Henri obtuvo una cátedra en la nueva insti­
tución en 1878. Otra consecuencia de la guerra, importante en la 
vida de Henri, fue la llegada a Nancy, como refugiado proveniente 
de Alsacia, del futuro matemático Paul Appell, con quien Poincaré 
mantuvo una gran amistad toda su vida. 

Durante la guerra Poincaré estudió en el liceo de Nancy para 
obtener el bachillerato en artes. En agosto de 1871 aprobó con 
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LA GUERRA FRANCO-PRUSIANA 

Napoleón 111 había accedido al poder a través de las elecciones a la presiden­
cia de la Segunda República en 1848. Poco después, en 1851, dio un golpe de 
Estado y proclamó el Segundo Imperio. A ello siguieron cerca de veinte años 
de gobierno autoritario en los que Francia emprendió su modernización y 
desarrolló una intensa política internacional : participó en la unificación de 
Italia, la guerra de Crimea y diversos conflictos más. Simultáneamente, se 
produjo la unificación de Alemania y la ascensión de Guil lermo 1, bajo la tute­
la de Otto von Bismarck. A finales de la década de 1860, ambas potencias 
rivalizaban por el dominio de la política europea. La confrontación militar 
parecía cada vez más probable, y el episodio que finalmente prendió la mecha 
fue el intento alemán de colocar a un miembro de la familia del emperador en 
el trono de España. Ante las protestas de Francia, Alemania retiró a su pre­
tendiente, el príncipe de Hohenzollern, pero la insistencia del ministro de Asun­
tos Exteriores francés, alentado por la emperatriz Eugenia, de que Alemania 
renunciara a toda pretensión en el futuro, empeoró la situación. El 19 de julio 
de 1870 Francia declaró la guerra a Aleman ia, pero esta no pudo serle menos 
favorable: el emperador Napoleón fue hecho prisionero y destituido, y Francia 
tuvo que renunciar a la región fronteriza de Alsacia y a gran parte de Lorena. 
Desde ese momento, y hasta la Primera Guerra Mundial, el ánimo de revancha 
estuvo presente en gran parte de la sociedad francesa. 

El general Reille entrega a Guillermo I la carta de rend ición de Napoleón 111, óleo de Carl Steffeck 
realizado en 1884. 
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buena nota, pero sin sobresalientes. Brilló especialmente en filo­
sofía y latín. En noviembre del mismo año, se examinó del bachi­
llerato en ciencias. Sus resultados fueron peores en este examen. 
Había llegado tarde al examen y, con las prisas, había interpretado 
mal el enunciado del primer problema, precisamente de matemá­
ticas, por lo que había sacado un cero en ese problema. A pesar de 
ello, los examinadores, sabiendo de la valía del joven Poincaré, le 
otorgaron el título. 

Tras obtener el bachillerato, Poincaré empezó a preparar el 
llamado concours, la prueba de acceso a las Grandes Écoles. El 
joven se sumergió en el estudio de varios libros de matemáticas, 
los cuales formaban un compendio de los conocimientos matemá­
ticos de la época. De entre todos ellos hubo uno que ejerció una 
notable influencia en Henri: La geometría superior, de Michel 
Chasles (1793-1880). Debido a la influencia de los grandes mate­
máticos franceses de la Revolución, la geometría francesa de la 
época estaba dominada por el álgebra y la geometría analítica, y 
existía cierto desprecio hacia la representación gráfica y los argu­
mentos cualitativos. 

En la introducción a su obra titulada Mecánica analítica, el 
gran físico y matemático francés Joseph-Louis de Lagrange (1736-
1813) escribía: 

No encontraremos ni una sola figura en esta obra. Los métodos que 
en ella expongo no requieren ni construcciones ni razonamientos 
geométricos ni mecánicos, sino solamente operaciones algebraicas, 
sujetas a un proceder regular y unifom1e. Aquellos que gustan del 
análisis verán con placer que la mecánica.se convierte en una nueva 
rama más de él, y me estarán agradecidos por haber extendido así 
este campo. 

Hay una düerencia radical en el aspecto de los libros del crea­
dor de la mecánica clásica, Isaac Newton (1643-1727), y la obra de 
Lagrange. Newton llenaba sus páginas de construcciones geomé­
tricas y resolvía mediante ellas todo tipo de problemas. La pro­
puesta de Lagrange, culminación de la obra de varios grandes 
matemáticos europeos del siglo XVIII, de los que cabría destacar a 
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Leonhard Euler (1707-1783), sistematizaba la forma en que se de­
bían aplicar las leyes de Newton a un problema cualquiera. El fí­
sico no dependía ya de su capacidad de visualización espacial y de 
sus dotes de dibujante para resolver los problemas. Incluso hoy 
en día el estudiante de física con dificultades para seguir los razo­
namientos geométricos y las figuras ve con alivio que la mecánica 
lagrangiana le libra de tales cuestiones. 

«La lógica y la intuición tienen cada una su propio papel 
necesario. Ambas son indispensables. La lógica, que es la única 
que puede dar certezas, es el instrumento de la demostración. 
La intuición es el instrumento de la invención.» 
- ÜENRI PoINCARÉ EN EL CONGRESO INTERNACIONAL DE MATEMÁTICAS DE P ARIS DE 1900. 
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Pero tal vez Lagrange había ido un poco demasiado lejos, y 
Chasles proponía que los dos tipos de razonamiento, el analítico 
y el gráfico, debían complementarse. Es difícil calibrar cómo de 
profunda fue la influencia de Chasles en Henri, pero no cabe duda 
de que uno de los rasgos más característicos del pensamiento ma­
temático de Poincaré iba a ser la combinación del argumento cua­
litativo y la imaginación espacial con el análisis matemático y la 
manipulación algebraica. Si, simplificando la evidencia científica, 
podemos decir que nuestro hemisferio cerebral izquierdo está es­
pecializado en los razonamientos secuenciales y analíticos, mien­
tras que el derecho lo está en encontrar patrones globales y la 
visualización espacial, Poincaré iba a sacar todo el partido al tra­
bajo cortjunto de sus dos hemisferios. 

Durante 1872 y parte de 1873 Henri preparó el concours. Fue 
en el liceo donde estudiaba donde conoció a Paul Appell. Este 
escribió años más tarde una biografía de su amigo y gracias a este 
texto tenemos una idea de cómo era el joven Poincaré. Tanto sus 
compañeros como profesores se sentían al principio un poco irri­
tados porque se sentaba en clase con una hoja de papel delante en 
la que apenas escribía un par de notas. Para colmo, ¡la hoja era 
siempre la misma! Pero pronto se dieron cuenta de que no lo hacía 
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PAUL APPELL (1855-1930) 

Appell nació en Estrasburgo, Alsacia. 
Cuando esta localidad fue anexionada 
por Alemania, su familia se mudó a Nan­
cy, donde conoció a Henri Poincaré. Ap­
pell estudió en la École Normale Supé­
rieure de París, donde se graduó con el 
primer puesto. En 1881 se casó con Amé­
lie Bertrand, sobrina de dos matemáticos, 
Joseph Bertrand y Charles Hermite. Este 
último sería un gran apoyo para Appell 
en su carrera científica y universitaria. En 
188S Appel l obtuvo la cátedra de Mecá­
nica en la Sorbona de París y en 1892 in­
gresó en la Academia de Ciencias. Escri­
bió cientos de artículos sobre análisis, 
geometría y mecánica, resolviendo los 
más variados problemas en estas disci­
pl inas. Su nombre está asociado a los 
polinomios de Appell para la resolución de ecuaciones diferenciales y a la 
ecuación de Gibbs-Appell en mecánica. Fue una de las mayores autoridades 
científicas en la Francia de su t iempo y detentó varios puestos de responsa­
bilidad en el gobierno universitario, siendo decano de la Facultad de Ciencias 
de la Sorbona y rector de esta universidad. Gran amigo de Poincaré, escribió 
una biografía de este en 192S. 

por suficiencia, sino de manera natural, y siempre estaba dispues­
to a ayudar a los demás. Appell contaba que Poincaré hablaba de 
manera entrecortada, y se sumía en sus pensamientos entre frase 
y frase. No era muy dado a dar explicaciones extensas y llegó in­
cluso a recibir alguna advertencia por parte de los profesores en 
el sentido de que en los exámenes podía llegar a no ser entendido. 
Este estilo excesivamente sintético fue luego un rasgo caracteris­
tico de sus escritos matemáticos. En esos años Appell y Henri 
mantenían largas conversaciones mientras volvían del liceo y ha­
blaban tanto de matemáticas como de filosofía o de política. Se 
forjó así una profunda amistad. 

Appell y Poincaré se presentaron en París enjulio de 1873 con 
el objetivo de realizar el examen de acceso a la École Normale 
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Supérieure. Paul Appell obtuvo el tercer puesto de entre todos los 
examinados y Poincaré quedó quinto. Se había equivocado en un 
dibujo y planteó la resolución del problema de forma no ortodoxa. 
En agosto se presentó al examen para la École Polytechrúque. Aquí 
sí que todo fue bien y Poincaré causó una honda impresión en el 
tribunal examinador, especialmente en el examen oral. En esta 
ocasión dio muestras de toda su capacidad como matemático. Ob­
tuvo el primer puesto. 

LAS MATEMÁTICAS ANTES DE POINCARÉ 

Henri Poincaré fue el mayor matemático francés de su generación. 
Su capacidad intelectual, unida a una entrega total a la ciencia, que 
constituyó el eje en torno al cual giró toda su vida, le hicieron 
trabajar en todas las ramas de las matemáticas e incluso contribuir 
a fundar alguna de ellas. Su interés no conocía límites, y por ello 
también trabajó en los diversos campos de la física de su tiempo. 
Es necesario, para comprender su obra, hacer un breve repaso a 
las matemáticas y la física de la segunda mitad del siglo XIX. 

LAS ECUACIONES DIFERENCIALES 

Isaac Newton y Gottfried Leibniz (1646-1716) son considerados 
los creadores del cálculo infinitesimal: el cálculo diferencial e in­
tegral. Pero Newton no expresó las leyes de la mecánica entera­
mente en ese lenguaje, sino que utilizó dibujos y argumentos 
geométricos para resolver los problemas mecánicos que planteaba. 
La sistematización matemática de las leyes de la mecánica fue obra 
de científicos posteriores, de entre los que cabe destacar a Euler 
y, como ya se ha apuntado, a Lagrange. 

Euler fue probablemente el matemático más prolífico de la 
historia. Trabajó en todos los campos de las matemáticas y una 
buena parte de la notación que usamos hoy en día se la debemos 
a él. La mayoría de los matemáticos que le siguieron aprendieron 
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cálculo diferencial e integral leyendo sus tratados. En lo que aquí 
nos interesa, él y Lagrange redujeron la mecánica newtoniana al 
planteanúento y resolución de ecuaciones diferenciales. 

Una ecuación diferencial es una ecuación en la que aparece 
como incógnita el ritmo al que cambia una magnitud determinada, 
lo que técnicamente se conoce como su derivada. Por ejemplo, 
imaginemos un depósito lleno de agua que vaciamos por medio de 
un grifo que hay en su base. La velocidad con la que sale el agua 
depende de su altura: cuanto mayor sea la altura del agua en el 
depósito, más rápida saldrá por el grifo. Si se quiere calcular cómo 
varía en el tiempo dicha altura, debe formularse una ecuación di­
ferencial: la derivada temporal de la altura ( el ritmo al que cambia 
el nivel del agua en el depósito) es una función de la altura. La 
resolución de la ecuación da el nivel del agua en el depósito en 
función del tiempo, y permite conocer la velocidad con la que sale 
el agua en cada instante y cuánto tardará el depósito en vaciarse. 

Los físicos y matemáticos del siglo xrx consiguieron formular 
en términos de ecuaciones diferenciales multitud de problemas 
prácticos. En particular, la segunda ley de Newton dice que la masa 
de un cuerpo por su aceleración es igual a la fuerza a la que está 
sometido. La aceleración de un cuerpo es el ritmo al que cambia su 
velocidad, es decir, la derivada de la velocidad con respecto al tiem­
po. A su vez, la velocidad de un cuerpo es el ritmo al que cambia su 
posición, su derivada. De esta forma, la segunda ley de Newton se 
traduce en una ecuación diferencial cuya resolución proporciona la 
posición del cuerpo en función del tiempo, esto es, su trayectoria 

El siglo xrx conoció un gran avance en la resolución de las 
ecuaciones diferenciales, porque su estudio era de capital impor­
tancia para varias áreas de la astrononúa, la física en general o la 
ingeniería. Una idea de la importancia que se daba a esta cuestión 
es el premio otorgado por la Academia de Ciencias de París en 1879 
al trabajo que mejor supusiera «un avance significativo en la teoría 
de las ecuaciones diferenciales lineales de una sola variable». El 
premio era una medalla valorada en 3 000 francos. Poincaré se pre­
sentó a esta convocatoria y, aunque no la ganó, fue el principio de 
una larga lista de trabajos sobre las ecuaciones diferenciales que 
le introducirían en la élite de las matemáticas europeas. 
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LA MECÁNICA CELESTE 

Pierre-Simon de Laplace (17 49-1827) dejó una profunda huella en 
la física y las matemáticas del siglo XIX, especialmente en Francia. 
Su Mecánica celeste constituyó durante años la obra fundamental 
de los astrónomos de Europa, ya que en este tratado se exponían 
los métodos para calcular y predecir la posición de los planetas 
del sistema solar. Aunque Newton había formulado su ley de gra­
vitación universal, y con ella explicado las leyes establecidas por 
J ohannes Kepler (15 71-1630) a propósito del movimiento planeta­
rio, muchos eran los problemas que dejó abiertos. Newton solo 
había podido resolver lo que se conoce como «el problema de los 
dos cuerpos»; esto es, dos astros en mutua atracción gravitatoria. 
Pero casos como el del movimiento de la Luna, en el que la atrac­
ción del Sol ejerce una fuerte perturbación sobre su órbita alrede­
dor de la Tierra, no pudieron ser completamente resueltos por el 
gigante inglés. El caso de la Luna es uno de los ejemplos del deno­
minado problema de los tres cuerpos: el Sol, la Tierra y la Luna, 
en mutua atracción gravitatoria. 

Como el Sol es tan grande, comparado con el resto de los cuer­
pos del sistema solar, cuando estudiamos la órbita de un planeta 
podemos ignorar, en principio, los demás cuerpos y considerar que 
el planeta está solamente sometido a la atracción del Sol. Las leyes 
de Newton predicen una órbita elíptica para los planetas y las ob­
servaciones, grosso modo, están de acuerdo con esta predicción. 
Pero una observación más detallada muestra enseguida que hay 
desviaciones apreciables de este comportamiento. Los matemáticos 
posteriores a Newton se preguntaban si estas desviaciones eran 
debidas a la atracción de los otros cuerpos y, si esto era así, si esas 
desviaciones podían finalmente expulsar a los planetas de sus ór­
bitas. Para ello era necesario resolver el problema de los tres cuer­
pos. Por ejemplo, las observaciones realizadas por Edmund Halley 
(1656-17 42) mostraban que Júpiter y Saturno no seguían sus órbitas 
a la velocidad exactamente predicha por las leyes de Kepler: Júpi­
ter parecía acelerarse a la vez que Saturno parecía frenarse . Para 
estudiar la órbita de Saturno era preciso tener en cuenta no solo la 
presencia del Sol, sino también la del planeta gigante Júpiter. 
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Aunque tanto Euler como Lagrange se interesaron por el pro­
blema de los tres cuerpos, no hicieron grandes progresos. Solo 
Lagrange consiguió algunas soluciones particulares, obteniendo 
determinadas órbitas especiales que hoy en día se usan para colo­
car satélites en determinadas posiciones privilegiadas (los llama­
dos «puntos de Lagrange» ). Fue Laplace el que consiguió idear 
métodos aproximados para encontrar la órbita de un planeta per­
turbado por la presencia de otro. Y Laplace encontró que, en ge­
neral, los movimientos medios de los planetas eran constantes. En 
el caso de Júpiter y Saturno, Laplace demostró que la aceleración 
del primero y la desaceleración del segundo eran consecuencia de 
su atracción mutua y, lo más importante, que su comportamiento 
era periódico: cada 450 años la situación se revertía y era Júpiter 
el que se frenaba y Saturno el que se aceleraba. A los 900 años 
ambos volvían a su posición inicial. 

De los trabajos de Laplace cabía sacar dos conclusiones. La 
primera era que todas las anomalías en el movimiento de los pla­
netas se podían explicar por la atracción gravitatoria de otros 
planetas. Esta idea llevó al descubrimiento de Neptuno en 1846, 
porque la órbita de Urano presentaba anomalías que indicaban 
que había otro cuerpo, desconocido, más alejado del Sol. La se­
gunda conclusión era que el sistema solar es estable. Laplace 
creyó demostrar que las órbitas de los planetas oscilaban en tor­
no a una trayectoria media que permanecía imperturbable por 
los siglos de los siglos. Pero esto no resultó ser del todo cierto. 
El primero que cuestionó esta afirmación fue el también francés 
Urbain Le Verrier (1811-1877), célebre por predecir la existencia 
de Neptuno. Le Verrier observó que en el método de Laplace se 
despreciaban cantidades que no siempre serían despreciables. 
Ello reabrió el debate de la estabilidad del sistema solar: la con­
clusión de Laplace de que el sistema era estable podía no ser 
cierta. 

En este contexto, en el verano de 1885 se invitó a todos los 
matemáticos europeos a participar en el concurso organizado con 
motivo del sexagésimo cumpleaños del rey Óscar II de Suecia y 
Noruega, el cual tendría lugar en 1889. Uno de los temas del con­
curso era avanzar en los métodos matemáticos que pudieran llevar 
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a la demostración de la estabilidad del sistema solar. A este premio 
se iba a presentar, y ganarlo, Henri Poincaré. 

LA GEOMETRÍA NO EUCLÍDEA 

En su obra Elementos de geometría, Euclides (ca. 325-265 a.C.) 
expuso sus cinco postulados, los axiomas de los que se deducen 
todos los teoremas de la geometria. Estos axiomas, verdades por 
sí mismas y que no necesitan demostración, son los siguientes: 

l. Dados dos puntos se puede trazar una y solo una recta que 
los una. 

2. Cualquier segmento se puede prolongar de manera continua 
en cualquier sentido. 

3. Es posible trazar una circunferencia con centro en un pun­
to cualquiera y con cualquier radio. 

4. Todos los ángulos rectos miden igual y se superponen por 
traslación. 

5. Por un punto exterior a una recta se puede trazar una única 
recta paralela a ella. 

El mismo Euclides ya pensaba que el quinto postulado tenía 
un estatus diferente a los demás y que, tal vez, se podía deducir de 
los otros cuatro. Los matemáticos, a lo largo de la historia, inten­
taron demostrarlo a partir de los cuatro anteriores sin conseguirlo. 
Pero a principios del siglo XIX varios matemáticos comprendieron 
que, en realidad, era un postulado especial y que se podía construir 
toda una geometria consistente, es decir, sin contradicciones ló­
gicas, sin imponer esa restricción. Fueron Carl Friedrich Gauss 
(1777-1855), Nikolái Lobachevski (1793-1856) y János Bolyai (1802-
1860) los que crearon, de manera independiente, las bases de la 
geometria no euclídea. 
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1 FIG.1 

El quinto postulado puede ser sustituido por otros enunciados 
equivalentes. Imaginemos un polígono de cuatro lados como el de 
la figura 1, de vértices ABCD. Supongamos que los ángulos DAB y 
ABC son rectos y que los lados AD y BC tienen la misma longitud. 
Usando el quinto postulado se puede demostrar que, si DAB y ABC 
son rectos, entonces ADC y BCD también lo son. De hecho el 
quinto postulado es equivalente a este otro enunciado: si un polí­
gono de cuatro lados ABCD con lados AC y BC iguales tiene los 
ángulos DAB y ABC rectos, entonces los otros ángulos también 
son rectos. A partir de este enunciado se puede invertir la demos­
tración anterior y obtener el enunciado de las paralelas. 

En el espacio tridimensional hay tres geometrías posibles, si 
admitimos el requisito adicional de que el espacio sea homogéneo. 
Una de ellas es la geometría euclídea, en la que los cuatro ángulos 
del rectángulo son rectos. Otra es la geometría elíptica, en la que 
si dos ángulos del cuadrilátero son rectos, los otros dos son obtu­
sos. La otra, descubierta por Lobachevski, es la hiperbólica, en la 
que los otros dos ángulos son agudos. 

Estas tres geometrías tienen fácil 
visualización en superficies bidimensio­

! 0 .-....---------,---,C nales. La geometría euclídea es la del 
plano normal y corriente. En ella se cum­
ple el quinto postulado de Euclides: solo 
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es posible trazar una recta paralela por 
un punto exterior a otro dado. También 
podemos decir que los cuatro ángulos de 
un rectángulo son rectos (figura 2), o, lo 
que constituye otra forma equivalente de 
ver el problema, que los ángulos de un 
triángulo suman 180°. Como un plano no 
está curvado, se dice que en esta 
geometría la curvatura es cero. 

La geometría elíptica es la que en­
contramos sobre la superficie de una 
esfera. Si trazamos un «cuadrilátero» 
sobre la esfera como en la figura 3, usan­
do círculos máximos, vemos que si dos 



ángulos son rectos, los otros dos 
son obtusos. Además, si formamos 
un triángulo -por ejemplo entre 
un polo y dos puntos del ecua­
dor-, este tendrá ángulos que su­
man más de 180°. Claramente, no 
se cumple el quinto postulado, por­
que por un punto exterior a una 
recta «no» es posible dibujar nin­
guna paralela, ya que todas las lí­
neas que dibujemos sobre la esfera 

FIG. 3 Mayor de 90º 

terminarán cortándose en algún 
punto. Como la superficie de la es-
fera está curvada y es convexa, se 
dice que esta geometría correspon­
de a una curvatura positiva. 

Por último, la geometría hiper­
bólica es la que encontramos en la 
superficie de un hiperboloide, o 
silla de montar, como la de la figu­
ra 4. Aquí hay más de una paralela 
por un punto exterior a una línea, 
y los ángulos de un triángulo su­
man menos de 180°. La curvatura 

FlG. 4 

A 

Geometría elíptica 

es negativa. Geometría hiperbólica 

Si en lugar de restringimos a 
una superficie, imaginamos las geo-
metrías posibles en el espacio tridimensional e imponemos la res­
tricción de que el espacio sea homogéneo, es decir, que tenga la 
misma curvatura' en todos los puntos, tenemos, de nuevo, estas tres 
posibilidades: curvatura cero ( espacio euclídeo), curvatura positi­
va ( espacio elíptico) y curvatura negativa ( espacio hiperbólico). 

El propio Gauss se preguntó si el espacio en que habitamos 
es realmente euclídeo o, por el contrario, tiene curvatu"a, aunque 
esta sea muy pequeña. Bernhard Riemann (1826-1866) elaboró aún 
más la teoría de los espacios no euclídeos inventando todo un 
formalismo matemático que permitía tratar espacios con curvatu-
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rano uniforme. Fue este formalismo el que utilizó años más tarde 
Albert Einstein para desarrollar su teoría general de la relatividad. 

En algún momento de su carrera, Poincaré estudió a fondo los 
escritos de Lobachevski. El uso de la geometría hiperbólica en sus 
estudios sobre las ecuaciones diferenciales fue una de sus aporta­
ciones más originales. 

TOPOLOGÍA 

La topología estudia lá forma de los objetos de manera menos 
restrictiva que la geometría. Un modo sencillo de visualizar la equi­
valencia topológica es pensar en un trozo de masa de hacer pizzas. 
Podemos deformar la masa para hacer un triángulo, un cuadrado, 
un polígono cualquiera o una pizza circular. Mientras no cortemos 
la masa y no le hagamos agujeros, todas las figuras que obtenga­
mos serán equivalentes para un topólogo, aunque no lo sean para 
un geómetra. ¿Qué caracteriza a estos objetos? ¿Qué tienen en 
común que los defina? En el caso de la masa de pizza que puede 
adquirir distintas formas, y a la que no hemos hecho agujeros, hay 
dos propiedades que saltan a la vista. La primera es que el contor­
no de la pizza define un adentro, donde hay masa, y un afuera, la 
mesa de trabajo sin pizza. Otra propiedad es que toda la masa está 
conectada entre sí. Usando un ejemplo muy querido de los mate­
máticos: una hormiga que se paseara por la pizza podría recorrer­
la toda ella sin tener que saltar o dar rodeos. Pues bien, la topolo­
gía se encarga de este tipo de propiedades, más generales que las 
propiedades geométricas de los objetos, pero también más sutiles. 

El primer resultado que nos interesa aquí lo obtuvo Leonhard 
Euler. El matemático suizo encontró que el número de caras C, 
aristas A y vértices V de un poliedro cualquiera estaban relaciona­
dos por la fórmula 

C-A+ V= 2. 

Por ejemplo, para un tetraedro, C vale 4, A vale 6 y V vale 4, 
cumpliéndose la fórmula de Euler. Para un cubo, tenemos C = 6, 
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A== 12 y V== 8. Para un objeto más 
complejo, como el dodecaedro, for­
mado por doce pentágonos regulares 
que forman una especie de balón de 
fútbol irregular, tenemos C == 12, 
A== 30 y V == 20. El lector puede com­
probar que la fórmula se cumple para 
cualquier poliedro, regular o irregu­
lar, que imagine. 

El también suizo Simon L'Huilier 
(1750-1840) se interesó por la fórmula 
de Euler y se dio cuenta de que había 
figuras geométricas que no la cum­
plían. Imaginemos, por ejemplo, el 
marco de un cuadro como el de la figura 5. Tiene 16 caras, 32 aris­
tas y 16 vértices, luego 

C-A+ V==0. 

Lo que distingue al cubo o al poliedro de esta nueva figura 
geométrica es que el marco tiene un agujero. L'Huilier se dio cuen­
ta de que la fórmula de Euler se podía generalizar a un objeto con 
un número cualquiera de agujeros g de la siguiente forma: 

C-A+ V==2 - 2g. 

Retomemos nuestra masa de pizza e imaginemos que hacemos 
con ella una bola. Podemos deformar esta bola, sin cortarla ni 
hacerle agujeros, hasta obtener cualquier poliedro que queramos: 
un cubo, un tetraedro, un icosaedro, etc. Todos estos objetos cum­
plen la ecuación de Euler y a todos les corresponde el mismo valor 
de g (g == O). Todos estos objetos, que se obtienen unos de otros por 
deformación continua, sin cortar ni pegar nada, son topológi­
camente equivalentes. El número g (o género de la figura) es lo 
que los matemáticos denominan un «invariante topológico» y to­
dos los objetos que podemos obtener por deformación de una es­
fera, la bola de la masa de pizza, tienen g == O. 
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Procedimiento 
para construir la 

banda de M6bius 
con una cinta . 

Hagamos ahora un agajero en nuestro trozo de masa y démos­
le la forma de una rosca. Los matemáticos llaman a esta forma un 
«toro». Podemos deformar el toro continuamente hasta obtener 
toda clase de poliedros, como el marco de un cuadro, y todos ellos 
tendrán un número g = l. Así, todos estos objetos son topológica­
mente equivalentes a un toro. Si hacemos dos agujeros tendremos 
objetos con g = 2, si tres, g = 3, y así sucesivamente. 

Un alumno de Gauss, Johann Listing (1808-1882), fue el primer 
matemático en utilizar el término «topología» ( del griego topos, 
«lugar») en su tratado _Lecciones de topología. Listing introdujo el 
concepto de banda de Mobius antes que el propio August Mobius 
( 1790-1868), que también era alumno de Gauss y que estudiaría las 
características de este objeto. La banda de Mobius se obtiene al 
pegar los extremos de una cinta que hemos doblado previamente 
(figura 6). 

Si en una cinta normal podemos definir los dos lados de ma­
nera independiente (por ejemplo, podemos poner la cinta horizon­
talmente y distinguir entre el lado de arriba y el de abajo), en una 
banda de Mobius tal distinción no existe, porque al recorrer la 
superficie de la cinta, al cabo de una vuelta la parte de arriba se 
convierte en la de abajo y viceversa. Mobius llamó a este tipo de 
superficie «no orientable», porque no es posible definir una direc­
ción sobre la superficie de manera no ambigua. En una esfera, que 
sí es una superficie orientable, puede establecerse un criterio da-

.--------------
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ro para asignar una orientación en 
todos los puntos. Por ejemplo, puede 
definirse en cada punto de la esfera la 
dirección hacia afuera como positiva, 
y negativa, la dirección hacia adentro. 
Al recorrer toda la superficie, la direc­
ción positiva se mantiene consistente­
mente de manera continua. En una 
banda de Mobius, como la de la figura 
7, no hay manera de hacer esta asig-
nación de manera consistente, porque 
al recorrer la cinta lo que era positivo 
en un principio coincide, al cabo de 
una vuelta, con lo definido como ne­
gativo previamente. 

De esta forma, a mediados del si­
glo xix Listing y sus colegas habían 
llegado a la conclusión de que existían 
dos familias de superficies desde el 
punto de vista topológico: las orienta­
bles y las no orientables. La superficie 
orientable, finita y sin fronteras más 
sencilla es la esfera, con g = O. Pegan­
do a la esfera g asas se consiguen to­
das las superficies orientables con g 
agujeros. De manera similar pueden 
conseguirse todas las superficies no 
orientables partiendo de la más senci-
lla y añadiendo asas. Un ejemplo muy 
conocido y singular de superficie no orientable con g = 1 es la bo­
tella de Klein, que se muestra en la figura 8. 

Poincaré trabajó en casi todos los campos de las matemáticas 
y de la física de su época. Es muy difícil decidir si alguno de sus 
trabajos tuvo más importancia que los otros, porque son muchos 
los que fueron importantes en su momento y su nombre está aso­
ciado a numerosos teoremas y conceptos matemáticos. Pero el 
discurrir de las matemáticas durante el siglo xx y los primeros años 
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Una cinta o banda 
de MObius (fig. 7) 
y una botella de 
Klein (fig. 8). 
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del siglo XXI ha llevado a que el nombre de Poincaré sea conocido 
sobre todo por estar asociado a la denominada «cor\jetura de Poin­
caré». Los mejores matemáticos del mundo dedicaron años de 
trabajo a esta hipótesis y su demostración final fue un aconteci­
miento tanto intelectual como periodístico. Dedicaremos un capí­
tulo entero a los hallazgos de Poincaré en el ámbito de la topología, 
pero dejemos aquí enunciada, de manera sencilla, la cor\jetura que 
lleva su nombre: «Toda superficie orientable de n dimensiones, 
finita, sin fronteras y sin agujeros, se puede deformar de manera 
continua hasta convertirla en unan-esfera». 

FÍS ICA MATEMÁTICA 

Henri Poincaré no solo fue un gran matemático, también fue un 
gran físico teórico. Aparte de la mecánica celeste, que en Francia 
era considerada una rama de las matemáticas, el otro gran foco de 
interés de Poincaré en el ámbito de la física fue el electromagne­
tismo. A mediados del siglo XIX las teorías del electromagnetismo 
estaban en una encrucijada. Gracias a la obra de Ampere, Faraday 
y otros físicos de la época, se había acumulado una serie impor­
tante de datos y leyes experimentales que habían demostrado la 
íntima relación existente entre la electricidad y el magnetismo, 
puesto que este último era consecuencia del movimiento de las 
cargas eléctricas. 

El físico francés André-Marie Ampere (1775-1836), haciendo 
gala de una genial intuición, postuló que las fuerzas magnéticas 
que producían los imanes tenían su origen en corrientes eléctricas 
microscópicas que residían en el interior de los imanes. Con ello 
se reducía la fuente de las fuerzas tanto eléctricas como magnéti­
cas a las cargas eléctricas. Las cargas estáticas producían fuerzas 
eléctricas y si se movían producían, además, fuerzas magnéticas. 
En estas circunstancias Michael Faraday (1791-1867) hizo uno de 
sus grandes descubrimientos: la inducción electromagnética. Fa­
raday demostró experimentalmente que un imán podía inducir 
corriente eléctrica en un conductor cercano. Para que ello fuera 
posible había que mover algo: o bien mover el imán, o bien mover 
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HERTZ, MARCONI Y LAS ONDAS ELECTROMAGNÉTICAS 

Heinrich Hertz (1857-1894) realizó entre 1886 y 1888 una serie de experimen­
tos que revelaron de forma inequívoca la existencia de las ondas electromag­
néticas, predichas. por la teoría de Maxwell. Hertz fue capaz de generar y re­
cibir ondas de unos 30 MHz (la unidad de frecuencia del sistema internacional, 
el hercio, debe su nombra a este científico alemán). Hertz realizó sus experi­
mentos con un interés puramente científico, pero no pasó mucho tiempo 
hasta que otros científicos encontraran en las ondas de Hertz una aplicación 
práctica. De entre todos ellos destacó el italiano Guglielmo Marconi (1874-
1937), que en diciembre de 1902 consiguió establecer una comunicación te­
legráfica por radio entre Inglaterra y Canadá. Marconi obtuvo el premio Nobel 
de Física en 1909. La multitud de problemas teóricos y prácticos a que dieron 
lugar las ondas electromagnéticas fueron del interés de ingenieros y científicos 
de la época, y, cómo no, objeto de estudio por parte de Poincaré. 

Heinrich Rudolf Hertz en un grabado de 1894. Retrato de Guglielmo Marconi en 1902. 

el conductor. La corriente aparecía siempre que hubiera un movi­
miento relativo entre el imán y el conductor. 

En su momento, estos fenómenos recibían dos explicaciones 
diferentes: la basada en la existencia de una acción a distancia y 
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Lineas de campo 
entre imanes. 
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la que abogaba por una teoría de campos. Wilhelm Eduard Weber 
(1804-1891), en Alemania, había propuesto una fórmula para ex­
plicar todas las fuerzas eléctricas y magnéticas, tanto estáticas 
como dinámicas, a partir de una acción a distancia entre las cargas 
eléctricas. Su fórmula era similar a la de la fuerza de gravedad 
entre dos cuerpos, pero con más términos, que dependían de la 
velocidad y la aceleración de las partículas. Con esta fórmula, W e­
ber podía deducir las fuerzas entre cargas eléctricas, las fuerzas 
magnéticas entre dos corrientes eléctricas y las leyes de la induc­
ción electromagnética descubiertas por Faraday. Aunque la fór­
mula de Weber explicaba correctamente todos los fenómenos 
electromagnéticos conocidos en su época, no estaba exenta de 
dificultades teóricas. Hermann von Helmholtz (1821-1894) demos­
tró en tomo a 1870 que la fórmula de Weber era inconsistente con 
la ley de conservación de la energía. 

La teoría de campos había nacido con Faraday. Faraday ima- . 
ginaba que el espacio alrededor de un imán estaba lleno de cuerdas 
invisibles, «líneas de fuerza» las llamaba él, cuya tensión era la 
responsable de las fuerzas de atracción o repulsión entre los polos. 
También imaginaba líneas de fuerza eléctricas que unían las cargas 
negativas con las positivas, provocando su atracción (figura 9). 
Aunque Faraday fue un gran experimentador, quizá el más grande 
de la historia de la ciencia, no tenía una formación matemática 
más allá de los fundamentos esenciales de álgebra y geometría. 
Fue el escocés James Clerk Maxwell (1831-1879) quien formuló 
matemáticamente las ideas de Faraday. 

Maxwell creó una teoría matemática unificada de todas las 
leyes de la electricidad y el magnetismo conocidas en su época. 

FIG. 9 
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La teoría de Maxwell era inicialmente una teoría mecánica. Supo­
nía que todo ocurría en un medio continuo, el éter, que lo llenaba 
todo. Este medio era una especie de fluido que podía moverse, 
pero que también se podía estirar y comprimir. Tenía, por tanto, 
inercia y elasticidad. Las ecuaciones de Maxwell del campo elec­
tromagnético no eran otra cosa que las ecuaciones mecánicas del 
movimiento del éter. Los fenómenos eléctricos eran consecuencia 
de que el éter se estiraba o se comprinúa. Los fenómenos magné­
ticos resultaban del movimiento, en forma de remolinos, del éter. 
Para Maxwell, siguiendo las intuiciones de Faraday, la fuerza entre 
dos cuerpos cargados eléctricamente se comunicaba a través del 
éter, un poco en la forma en que una goma elástica comunica una 
fuerza entre sus dos extremos. La fuerza entre dos imanes era 
debida a la interacción entre los remolinos de éter que se formaban 
en la línea que unía los dos imanes, como si entre ellos existiera 
una especie de tomado, invisible para nosotros. 

Pero la teoría de Maxwell iba un poco más lejos que la de 
Weber. No solo podía dar cuenta de los fenómenos conocidos más 
relevantes, sino que hacía una predicción: el éter podía transmitir 
ondas, de manera similar a como un sólido puede transmitir vibra­
ciones. Maxwell calculó la velocidad que tendrían esas ondas y 
encontró un valor cercano al de la velocidad de la luz. En sus pro­
pias palabras: «No podemos dejar de concluir que la luz consiste 
en las ondulaciones transversales del mismo medio que es la cau­
sa de los fenómenos eléctricos y magnéticos». 

Fue el discípulo de Helmholtz, Heinrich Hertz, quien inclinó 
definitivamente la balanza a favor de la teoría de Maxwell. Hertz 
fue capaz de producir ondas electromagnéticas de una longitud de 
onda muy diferente a la de la luz, y demostró que esas ondas tenían 
las mismas propiedades que la luz: se propagaban a la misma ve­
locidad, viajaban en línea recta, se reflejaban y, como la luz, podían 
polarizarse. El descubrimiento de Hertz causó una gran impresión 
en la comunidad científica de la época y tuvo repercusiones de dos 
tipos: teóricas, impulsando el estudio del electromagnetismo den­
tro de la física, y tecnológicas, con la aparición de la telegrafía sin 
hilos. A ambos aspectos iba Poincaré a dedicar su atención en sus 
años de madurez científica. 
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Pero la teoría de Maxwell también tenía sus dificultades. Al 
ser una teoría puramente de campos no podía explicar de modo 
consistente algunos fenómenos que mostraban la existencia de 
partículas cargadas, como la electrolisis o los rayos catódicos. Y 
había un problema aún mayor: la teoría parecía requerir un medio 
especial, el éter, cuya dinámica era la causa de todos los fenóme­
nos electromagnéticos. Cabía entonces preguntarse si había un 
sistema de referencia privilegiado, aquel en que el éter estaba en 
reposo, para las leyes del electromagnetismo. El mismo Hertz es­
tuvo entre los primeros en intentar elaborar una teoría de la elec­
trodinámica de los cuerpos en movimiento. 

«El pensamiento no es más que un relámpago en medio de una 
larga noche. Pero ese relámpago lo es todo·.» 
- HENRI PorNCARÉ. 
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Fue el holandés Hendrik Lorentz (1853-1928) quien realizó la 
síntesis definitiva entre las ideas de Maxwell y las de Weber. Lo­
rentz admitía la existencia de flujos de partículas cargadas, a la 
manera de Weber, pero mantenía la existencia del campo como 
medio de interacción entre las cargas, en lugar de la acción a dis­
tancia de Weber. Este proceder aseguraba los éxitos de la teoría 
de Maxwell, pero además añadía una comprensión plausible de 
la electrolisis y las descargas eléctricas en gases. Con Lorentz, la 
teoría electromagnética adquirió la forma aceptada hoy en día: los 
campos obedecen las ecuaciones de Maxwell, y las partículas, las 
leyes de la mecánica. 

La teoría de Lorentz, bien establecida a finales del siglo XIX, 

resolvía muchas contradicciones anteriores, pero creaba proble­
mas nuevos. Poincaré fue uno de los mayores admiradores de Lo­
rentz, y también su crítico más perspicaz. En 1902, en su libro 
Ciencia e hipótesis, acerca de la situación de la electrodinámica, 
Poincaré escribió: «Lo más satisfactorio que tenemos es la teoría 
de Lorentz. [ ... ] Sin embargo, tiene todavía un defecto grave, [ ... ] 
es contraria al principio de acción y reacción; o mejor, ese princi­
pio, a los ojos de Lorentz, no sería aplicable a la materia sola». 
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Estos puntos débiles de la teoría de Lorentz llevarían a refor­
mular, no el electromagnetismo, sino las leyes de la mecánica, 
dando lugar al nacimiento de la teoría especial de la relatividad. 
Poincaré fue protagonista, en primer plano, de esta primera revo­
lución de la física del siglo xx. 

LOS RASGOS DEL GENIO 

¿Con qué armas se enfrentó Poincaré a estos desafíos? Dos bió­
grafos que le conocieron muy de cerca nos aportan datos y anéc­
dotas. Uno es, como ya se ha apuntado, Paul Appell. El otro es 
Jean Gaston Darboux (1842-1917), que escribió una biografía de 
Poincaré poco después de la muerte de este. Según ambos biógra­
fos, Poincaré era un gran lector y reterúa con facilidad cuanto leía. 
Como era miope no veía bien la pizarra, por lo que desarrolló una 
especie de memoria auditiva que le hacía recordar la lección sin 
tomar notas. Aun no siendo buen dibujante, sí terúa una gran ca­
pacidad para la imaginación espacial, una poderosa visión interior, 
que le permitió adentrarse en las profundidades de la geometría y 
la topología. 

Cuando algún problema le interesaba, se abstraía totalmente, 
mostrando algunos rasgos de los que tópicamente se atribuyen a 
los sabios: nada parecía importarle e incluso a veces se olvidaba 
de comer. Era capaz de hacer sus cálculos mentalmente, mientras 
paseaba de un lado para otro, y solo acudía al papel cuando ya 
tenía claro qué había que hacer. 

Era un hombre impaciente y escribía con rapidez. Una vez que 
había comprendido o resuelto un problema se porúa a escribir de 
corrido la solución, sin apenas releer y repasar lo que había escri­
to. Esa forma de trabajar, que sería una característica suya duran­
te casi toda su vida, le trajo más de un disgusto, no solo en su 
época de estudiante, en la que su apresuramiento le costó alguna 
vez no alcanzar la máxima calificación, sino también en su vida 
científica, donde en alguno de sus artículos cometió errores im­
portantes. Este rasgo de su personalidad también quedó reflejado 

<RIGOR O INTUICIÓN? 41 



42 

en sus cartas, una buena parte de las cuales están disponibles en 
internet gracias a la Universidad de Lorena (aunque debe tenerse 
en cuenta que su letra no es de fácil lectura y la escritura parece 
realizada a toda prisa). 

Poincaré no destacaba por sus habilidades físicas y era bas­
tante incompetente en gimnasia, a pesar de lo cual, y sorprenden­
temente, era buen bailarín. Le interesaba la música, pero no pare­
ce que tuviera especiales dotes para interpretarla y no tocaba 
ningún instrumento. Desde muy pequeño sí se reveló como un 
buen escritor, y escribía obras de teatro que representaban sus 
familiares y amigos. Por otra parte, Poincaré no era hábil con las 
manos ni tenía dotes para el laboratorio. Siempre valoró y se inte­
resó por la física experimental, pero nunca realizó ningún experi­
mento original. 

Pero, sobre todo, Poincaré siempre destacó por su gran inteli­
gencia. Desde pequeño era capaz de resolver los problemas más 
difíciles. Durante el bachillerato y la preparación para el concours 
asombraba a sus compañeros por la facilidad y rapidez con que 
resolvía las cuestiones que se le proponían. Incluso hubo quien, 
para probarlo, le propuso un problema muy por encima del nivel 
exigido, que resolvió sin aparente dificultad. En un primer contac­
to, su ensimismamiento podía provocar la impresión de que era un 
joven estirado, pero pronto se hacía apreciar por sus compañeros, 
ya que siempre estaba dispuesto a ayudar a los demás cuando se 
atascaban en algún problema y era, en general, un buen camarada. 

Todas estas cualidades se pusieron de manifiesto cuando Hen­
ri Poincaré ingresó en la École Polytechnique en 1873. 
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CAPÍTULO 2 

Un genio se presenta 

Poincaré se dio a conocer en el panorama 
europeo de las matemáticas apenas comenzada 

su carrera académica. Sus primeras publicaciones 
estuvieron dedicadas a las ecuaciones diferenciales, tema 

en el que la potente escuela alemana de la época, con Klein 
a la cabeza, era pionera. Sus trabajos pronto le valieron 

el reconocimiento tanto dentro como fuera de su 
país, y también dieron lugar a alguna que otra 

controversia sobre la prioridad de los 
descubrimientos realizados. 





En otoño de 1873 Poincaré y Appell se fueron a vivir a París. El 
primero como alumno de la École Polytechnique y el segundo para 
ingresar en la École Normale Supérieure. La École Polytechnique 
fue fundada en 1794, durante la Revolución francesa, y era una 
institución militar, condición que mantuvo hasta 1970. Sus alumnos 
vestían uniforme y, junto con los estudios propios de un centro de 
enseñanza superior, recibían instrucción militar y tenían obliga­
ciones propias del ejército. Era, y sigue siendo, un centro muy 
selectivo, al que solo acudían los mejores estudiantes del país y en 
el que daban clase los mejores profesores. Una idea de este am­
biente selecto la da el hecho de que Charles Hermite y Pierre Bon­
net (1819-1892) estaban entre sus profesores. Y cuando Hermite 
cayó enfermo en una ocasión le sustituyó Edmond Laguerre (1834-
1886). Como puede verse por la categoría de sus profesores, las 
matemáticas estaban consideradas como uno de los pilares de una 
buena educación técnica. 

Durante su estancia en la École Polytechnique Poincaré escri­
bía con frecuencia a su madre, por lo que se dispone de un archivo 
extenso sobre su estado de ánimo y las peripecias que vivió en 
aquella época. Las cartas reflejan la total confianza entre madre e 
hijo. Poincaré no ocultaba nada a su madre y le hacía partícipe 
tanto de sus progresos como de sus contratiempos. Describía la 
escuela como un internado con disciplina militar en el que los 

UN GENIO SE PRESENTA 45 



46 

CHARLES HERMITE (1822-1901) 

Hermite fue una de las figuras más im­
portantes de las matemáticas francesas 
del siglo xIx. Especialmente dotado para 
las matemáticas, no lo estaba para los 
exámenes y tuvo muchas dificultades en 
conseguir superar las sucesivas pruebas 
a las que se sometió durante su adoles­
cencia y juventud. Solo gracias al apoyo 
de algunos de sus profesores, que veían 
en él sus indiscutibles aptitudes, fue ca­
paz de superar sus exámenes en el liceo, 
donde ya leía a Gauss pero tenía proble­
mas con las matemáticas elementales. 
Ingresó en la École Polytechnique, aun­
que había obtenido el puesto número 68 
en el examen de ingreso. Como padecía 
una cojera de nacimiento, fue dado por 
no apto un año después de ingresar en esta escuela, la cual tenía un fuerte 
componente militar con el que Hermite no podía cumplir. Gracias a la ayuda 
de los matemáticos Sturm y Bertrand, con cuya hermana Louise se casó, 
consiguió el certificado necesario para dedicarse a la enseñanza, y en 1848 
fue nombrado examinador, precisamente, de la École Polytechnique. Fue allí 
donde conoció, como alumno, a Poincaré. Hermite fue un matemático de gran 
originalidad y entre sus mayores hallazgos están la solución general de la 
ecuación de quinto grado o la demostración de la trascendencia del número 
e (esto es, e no es solución de ninguna ecuación algebraica con coeficientes 
enteros). Hermite llegó a tener gran influencia en el mundo académico francés 
de finales del siglo x1x y apoyó sin reservas a Paul Appell (quien se casó con 
una sobrina de su esposa), a Émile Picard (su yerno) y a Henri Poincaré. 

arrestos se sucedían tras alguna que otra gamberrada por parte de 
los internos. La competencia por ser el número uno de la promo­
ción era muy fuerte, y Poincaré daba cuenta a su madre no solo 
de las notas que obtenía en sus exámenes sino también de las que 
obtenían sus máximos competidores. Al final del año una pequeña 
dificultad en un examen de geometría hizo que Poincaré obtuviera 
menos puntos que sus contrincantes. El examinador le dio solo 10 
sobre 20 en uno de los exámenes. Poincaré fue a quejarse a Pierre 
Bonnet, el director de estudios, que comprendió que Poincaré no 
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había sido puntuado justamente, pero no conigió a su colega. Poin­
caré terúa problemas con el dibujo y el examinador fue especial­
mente duro en ese aspecto. Finalmente, quedó en segunda posi­
ción, detrás de un tal Bonnefoy y por delante de otro estudiante 
de apellido Petitdidier. Los tres acapararían las tres primeras po­
siciones durante los años que estudiaron juntos. 

En 1874 Henri Poincaré publicó su primer trabajo original en 
matemáticas: <<Démonstration nouvelle des propriétés de l'indica­
trice d'une surface» («Nueva demostración de las propiedades de 
la indicatriz de una superficie») en la revista especializada Nou­
velles annales de mathématiques. No era un trabajo de especial 
relevancia, pero demostraba que ya desde muy joven era capaz de 
hacer aportaciones originales. Durante su segundo y último año en 
la politécnica Poincaré tuvo algunos momentos de desaliento. La 
constante competencia por ser el número uno produjo en él cierta 
desazón. En alguna de sus cartas a su madre se mostraba inseguro 
y daba la sensación de sentirse incapaz de seguir rindiendo al mis­
mo nivel. En cualquier caso, acabó el segundo año igual que el 
primero: en segunda posición, por detrás de Bonnefoy. 

Pasados los dos años en la politécnica llegó el momento de 
seguir unos estudios más especializados. Tanto Poincaré como sus 
dos máximos competidores, Bonnefoy y Petitdidier, se decidieron 
por seguir sus estudios en la Escuela de Minas de París. Los inge­
nieros de minas pertenecían a un cuerpo de funcionarios del Es­
tado que estaba muy bien considerado y realizar esta carrera ase­
guraba a los estudiantes un buen futuro profesional. Y, aunque el 
interés fundamental de Poincaré seguían siendo las matemáticas, 
sabía que los estudios de ingeniería de minas le proporcionarían 
un buen trabajo. Durante los tres cursos en la Escuela de Minas 
Poincaré mantuvo el contacto con Bonnet, su profesor en la poli­
técnica. Con su consejo siguió estudiando matemáticas por su 
cuenta y en agosto de 1876 se examinó con éxito de matemáticas 
en la Universidad de la Sorbona. 

En 1878 Poincaré terminó sus estudios en la Escuela de Minas. 
Habiendo perdido el interés por competir para ser el número uno 
del ranking, quedó tercero en la evaluación final, por detrás de 
Bonnefoy y Petitdidier. El cuerpo de ingenieros de minas dependía 
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LA ÉCOLE POL YTECHNIQUE 

La École Polytechnique forma parte de 
las Grandes Écoles francesas, institucio­
nes de enseñanza superior que funcio­
nan de manera autónoma al s istema 

universitario y que forman a una buena 
parte de la élite intelectual y c ientífica de 
Francia. Se accede a ellas a través de 
una prueba especialmente difíci l, el con­
cours, para la que los alumnos más bri­
llantes se preparan una vez terminado el 
bachillerato. La École Polytechnique fue 
fundada en 1794 por el gobierno revolu­
cionario francés, a instancias del mate­
mático Gaspard Monge (1746-1818), casi 
al mismo tiempo que la École Normale 
Supérieure, otra de las grandes escuelas 
francesas. La intenc ión de los creadores 
de est as instituc io nes era la de formar 
ingenieros, científicos y profesores de 
alto nivel para servir a la nación. En con-

Grabado que ilustra la gran p ila 
voltaica construida en 1813 en la École 
Polytechnique por orden de Napoleón l. 

sonancia con el espíritu revolucionar io, se accedía a ellas a través de un duro 
examen de selección al que podían presentarse todos los jóvenes franceses, 
independientemente de su clase socia l o sus recursos económicos. Una vez 
admitidos en las escuelas los jóvenes alumnos tenían asegurado un alojamien­
to, manutención y un salario. En 1805 Napoleón dio a la École Polytechnique 
un estatus militar, que la institución mantiene hasta hoy, puesto que depen­
de del Ministerio de Defensa, si bien desde 1970 se rige por un estatuto civil. 
Desde mediados del siglo x1x, el d istintivo de la escuela es una X, cuyo origen 
es incierto, pues algunos la asocian con dos cañones cruzados y otros con la 
incógnita matemática. A los alumnos que han estud iado en ella se les asigna 
una X seguida del año en que ingresaron en la escuela. Así, a Henri Poincaré 
le correspondió la X1873. En la École Polytechnique estudiaron muchos ilus­
tres franceses como Henri Becquerel (Xl872), André Citróen (X1898), el pre­
mio Nobel de Economía Maurice A llais (Xl931) o el presidente de la Repúbli­
ca, Valéry Giscard d'Esta ing (Xl944), por citar solo algunos. 

directamente del Gobierno, que asignaba los puestos vacantes a 
los recién graduados, normalmente por orden de preferencia según 
el ranking. Los puestos disponibles estaban en las localidades de 
Clermont-Ferrand, Vesoul -ciudad próxima a Nancy-, Angers y 
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Bóne, en el norte de Argelia. Aunque inicialmente a Bonnefoy se 
le había asignado Clerrnont-Ferrand, este escribió a las autoridades 
mostrando su preferencia por Vesoul. Ante la posibilidad de que 
su hijo fuera destinado a Argelia, el padre de Poincaré hizo uso de 
ciertas amistades en el Ministerio de Obras Públicas, del que de­
pendía la asignación, para que se informara al ministro de que 
Poincaré no gozaba de muy buena salud y que además estaba pre­
parando su tesis doctoral en la Sorbona. También envió al minis­
terio un informe médico en el que se decía que Poincaré era deli­
cado de constitución y que una larga estancia en Argelia podía ser 
perjudicial para su salud. 

Finalmente, el 28 de marzo de 1879 Poincaré fue designado 
como ingeniero de minas de tercera clase en Vesoul. Bonnefoy fue 
asignado a Clermont-Ferrand y Petitdidier a Angers. Otro ingenie­
ro, Roche, fue enviado a Argelia. Desgraciadamente, Bonnefoy 
murió poco después en una explosión en la mina. Petitdidier terúa 
muy mala salud y murió de bronquitis en 1884. Por último Roche 
murió en un ataque de los tuaregs en febrero de 1881. 

Mientras terminaba sus estudios en la Escuela de Minas, Poin­
caré escribió su tesis doctoral en matemáticas, que tuvo por título 
«Las propiedades de las funciones definidas por ecuaciones en 
derivadas parciales». La memoria fue depositada a principios del 
año 1878 y no fue hasta agosto de 1879 que fue aceptada. Los tres 
miembros del tribunal examinador, los matemáticos Jean Gaston 
Darboux, Edmond Laguerre y Pierre Bonnet, su profesor en lapo­
litécnica, tuvieron bastantes dificultades en evaluar la memoria y 
exigieron numerosas correcciones a su autor. El estilo de Poinca­
ré era demasiado directo y había muchos puntos que no estaban 
explicados en detalle. En cualquier caso, como todo lo que Poin­
caré emprendería a partir de entonces, el trabajo habría nuevos 
caminos y conterúa muchos resultados originales e interesantes. 

El 3 de abril de 1879 Poincaré se incorporó a su puesto de 
ingeniero en las minas de Ronchamp, a 30 km de Vesoul y no muy 
lejos de su ciudad natal, Nancy. Trabajó como ingeniero de minas 
solo unos pocos meses, porque a principios de diciembre se incor­
poró como profesor de Matemáticas en Caen. El acontecimiento 
más relevante, y dramático, del paso de Poincaré por las minas 

UN GENIO SE PRESENTA 49 



50 

tuvo lugar el 1 de septiembre de 1879, cuando dieciséis mineros 
murieron en una explosión en el pozo Magny. El pozo había sido 
construido un año antes, se encontraba a 694 m de profundidad y 
era el más profundo de Francia por aquel entonces. Poincaré fue 
el encargado de investigar las causas del accidente y, como tal, 
tuvo que descender al fondo del pozo. 

UN INFORME 

El resultado de sus pesquisas fue un extenso informe en el cual se 
proponía reformar el sistema de ventilación de la mina. Poincaré 
reflejó en su escrito la magnitud de la tragedia: «Era desafortuna­
damente muy cierto que no encontraríamos nada más que cadáve­
res, y el estado de las primeras víctimas que descubrimos no deja­
ba dudas a este respecto». La causa del accidente fue una lámpara 
que había sido dañada por un error humano: 

Sospechamos que la lámpara 4 76 que fue encontrada en aquel lugar 
fue la causa de la ignición del gas y del desastre. El estado de la 
lámpara confirma radicalmente estas sospechas. De hecho, la frac­
tura que podemos ver en el fondo del cilindro metálico es muy clara 
y su forma, así como sus dimensiones, nos recuerda la sección de la 
piqueta que usan los trabajadores. [ .. . ] No encontramos ningún 
derrumbamiento en los alrededores que nos hiciera suponer que el 
agujero había sido producido por el golpe de una piedra caída del 
techo. 

El hecho de que una lámpara en malas condiciones causara la 
tragedia quedaría grabado en la mente del joven ingeniero duran­
te toda su vida. Se trataba de una lámpara de Davy, un tipo de 
lámpara de queroseno inventada en 1815 por el químico inglés sir 
Humphry Davy ( 1778-1829). La lámpara de Davy protegía la llama 
con una malla metálica, lo que evitaba su propagación en caso de 
contacto con el gas grisú, con frecuencia presente en las minas 
de carbón. 

UN GENIO SE PRESENTA 



Muchos años más tarde, en 1910, Poincaré escribió un artícu­
lo divulgativo sobre las minas de carbón para la revistaAu seuil 
de la vie ( «En el umbral de la vida»). Esta revista iba dirigida a los 
niños y de los capítulos que Poincaré escribió para ella el editor 
publicó un libro titulado Ce que disent les choses ( «Lo que dicen 
las cosas»). Probablemente recordando el desgraciado incidente 
del pozo Magny, Poincaré hacía hincapié en la utilidad de la lám­
para de Davy y su funcionamiento, describiendo la explosión de 
grisú del siguiente modo: 

Hay una mezcla explosiva de gas grisú y aire que llena toda la atmós­
fera de la mina e incluso los pulmones de los trabajadores. Solo se 
necesita una chispa para incendiar la mezcla, y desisto de tratar de 
describir el horror que sigue: cientos de desafortunados hombres 
muertos instantáneamente por la explosión, mientras que otros, aún 
más desgraciados, horrorosamente quemados y sobreyiviendo por 
unas pocas horas o unos pocos días; y otros, asfixiados por los pro­
ductos de la combustión. 

ECUACIONES DIFERENCIALES Y FUNCIONES 
AUTOMÓRFICAS 

En diciembre de 1879 Poincaré consiguió una plaza de profesor 
de Cálculo Diferencial e Integral en la Facultad de Ciencias de la 
Universidad de Caen. El sueldo que se le asignó era de 5 500 fran­
cos anuales. Previamente, el 19 de noviembre de 1879, solicitó al 
Ministerio de Obras Públicas la correspondiente comisión de ser­
vicios para poder abandonar su puesto en Vesoul. Poincaré perte­
neció al cuerpo de minas toda su vida, aunque, eso sí, nunca volvió 
a ejercer como ingeniero. Aun así, se mantuvo siempre atento a 
las cuestiones mineras y su trabajo de divulgación en Au seuil de 
la vie demuestra un conocimiento extenso del mundo de las minas. 

En Caen Poincaré conoció a la que se iba a convertir en su 
esposa, Louise Poulain d'Andecy. Los jóvenes se prometieron en 
febrero de 1881 y se casaron el 20 de abril de 1881. Tras la boda, 
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los novios disfrutaron de unas vacaciones de quince días. El ma­
trimonio tuvo tres niñas y un niño. 

«El azar no es más que la medida de la ignorancia del hombre.» 
- HENRI POINCARÉ. 

52 

El período que Poincaré vivió en Caen fue muy fructífero des­
de el punto de vista científico. Fue aquí donde elaboró varios de 
los conceptos sobre la teoría cualitativa de las ecuaciones diferen­
ciales ordinarias y empezó a trabajar sobre lo que él llamaba «fun­
ciones fuchsianas». 

Como ya se ha mencionado en el capítulo anterior, la Acade­
mia de Ciencias de París convocó en 1879 un premio para recom­
pensar el mejor trabajo sobre ecuaciones diferenciales lineales. 
Una ecuación diferencial expresa una relación entre una función 
y sus derivadas. Por ejemplo, si tenemos un bloque sujetado a un 
muelle como el de la figura 1, la segunda ley de Newton se expre­
sa diciendo que la fuerza ejercida sobre el bloque es igual a su masa 
por su aceleración: F = ma. 

La fuerza es proporcional al desplazamiento del muelle res­
pecto de su posición de equilibrio y se puede expresar por F=-kx. 
Aquí k es la constante del muelle; cuanto más grande sea k más 
costará estirar o comprimir el muelle. Si tiramos del bloque, el 
muelle se estira y ejerce una fuerza sobre el bloque intentando que 
vuelva a su posición de equilibrio. Si apretamos el bloque, compri­
miendo el muelle, se produce una fuerza que intenta descompri-

FIG. 1 
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mirlo, intentando devolver de nuevo el muelle a su posición de 
equilibrio. Por su parte, la aceleración es el ritmo al que la velo­
cidad cambia en el tiempo, esto es, la derivada en el tiempo de la 
velocidad. Y la velocidad es, a su vez, la derivada temporal de 
la posición, por lo que la ecuación se expresa del siguiente modo: 

d 2x 
-kx=m- . 

dt 2 

Supongamos, para simplificar, que la masa del bloque y la 
constante tienen valor unidad en las unidades escogidas. La ecua­
ción se puede expresar entonces diciendo: 

d 2x 
--2 +X=Ü. 
dt 

Esto es una ecuación diferencial y el objetivo del matemático 
es encontrar la posición en cualquier instante de tiempo x(t), en 
caso de que exista, que cumpla esta ecuación. La ecuación anterior 
es lineal, lo que significa que si hay dos funciones x

1
(t) y xz(t), la 

suma x
1
(t) +xz(t) es también una solución. Cualquiera de estas 

funciones multiplicadas por un número constante son asimismo 
solución. 

En el caso del muelle, las soluciones de la ecuación son el 
seno y el coseno y cualquier combinación lineal de ellas, es decir, 
cualquier función de la forma x ( t) = a cos t + b cos t. Las constantes 
a y b dependen de las condiciones iniciales. Por ejemplo, podemos 
tirar de la masa y soltarla desde un desplazamiento dado, o, darle 
un impulso desde su posición de equilibrio. El resultado, en cual­
quier caso, es que el bloque realiza un movimiento de oscilación 
alrededor del punto de equilibrio (figura 2, pág. siguiente). Se en­
tiende que todo ello se produce en ausencia de rozamiento. 

Las funciones seno y coseno tienen una propiedad muy im­
portante: son periódicas. Esto significa que su valor vuelve a repe­
tirse al cabo de un tiempo, llamado período. El período de las 
funciones seno y coseno es 2 n; así, cos ( t) = cos ( t + 2:rt ). Este hecho 
lo podemos expresar gráficamente asociando a las funciones tri­
gonométricas seno y coseno una serie de puntos sobre la recta, 
como vemos en la figura 3. La forma de la función dentro del seg-
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mento (0,2n) se repite en cada segmento (2nn, (2n+ l)n), para 
cualquier valor de n . 

La ecuación diferencial que corresponde al bloque ligado al 
muelle es una ecuación diferencial lineal de coeficientes constan­
tes. Su solución era bien conocida por los matemáticos del si­
glo xix, que de hecho sabían resolver ya ecuaciones bastante más 
difíciles. En concreto, se sabían resolver ciertas ecuaciones de la 
forma: 

d 2x dx 
P(t) - 2 +Q(t) - +R(t)x = O, 

dt dt 

donde P(t), Q (t) y R (t), son funciones polinómicas conocidas 
de t. Pero se buscaba, si no una solución general, sí un marco teó­
rico general. 

El 22 de marzo de 1880, estando ya en Caen, Poincaré presen­
tó un primer trabajo al premio convocado por la academia. La 
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primera memoria fue seguida por tres apéndices, que Poincaré 
envió entre junio y diciembre del mismo año. Poincaré, inspirado 
por los trabajos del matemático alemán Lazarus Fuchs (1833-1902), 
consideró las singularidades de este tipo de ecuaciones (las singu­
laridades son aquellos puntos en que los coeficientes se anulan). 

Grandes matemáticos del siglo, especialmente en Alemania, 
trabajaron en este problema y otros relacionados, logrando signi­
ficativos avances. El alemán Carl Gustav Jacobi (1804-1851) intro­
dujo las funciones que hoy se conocen como «funciones elípticas 
de Jacobi». Estas funciones describen, entre otros, el movimiento 
de un péndulo que oscile con gran amplitud. El movimiento de un 
péndulo cuando las oscilaciones son de pequeña amplitud es bien 
conocido y se corresponde con el mismo movimiento descrito por 
el bloque unido al muelle. De hecho, la ecuación de un péndulo para 
oscilaciones pequeñas es la misma que la que hemos visto anterior­
mente, y el movimiento del péndulo viene descrito por funciones 
sinusoidales. Sin embargo, cuando la amplitud de la oscilación no 
es pequeña (por ejemplo, si el péndulo se desplaza de la vertical un 
cuarto de vuelta), el comportamiento se desvía del sinusoidal, y la 
ecuación diferencial que lo describe tiene términos no lineales. Las 
funciones de Jacobi describen con exactitud este movimiento para 
una amplitud cualquiera, como por ejemplo la de la figura 4. Estas 
funciones dependen de un parámetro, m, que puede variar entre 
O y 1; para m = O se tiene el caso particular de las funciones trigo­
nométricas. Las funciones de Jacobi también sirven para describir 
las olas llamadas «cnoidales», cuya 
longitud de onda es muy larga en 
comparación con la profundidad 
del agua. La fotografía superior de 
la pág. 57 muestra una formación 
de este tipo de olas. 

Una propiedad importante de 
las funciones elípticas es que son 
doblemente periódicas. Pero esta 
doble periodicidad no se muestra 
si se las considera solo funciones 
de una variable real, sino cuando 

sn(x,m=0,9) 

,l 
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Retícula en el 
plano complejo. 
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se las considera funciones de variable compleja. Es decir, funcio­
nes de la forma F ( z) con z = x + i y, donde la letra i es la unidad 
imaginaria i = ~. Los números complejos z admiten una repre­
sentación gráfica en un plano, en el que el eje de abscisas es el eje 
real x y el eje de ordenadas es el eje imaginario y. 

En la figura 5 se muestra la red de periodicidad de las funcio­
nes elípticas en el plano complejo. De manera análoga a lo que 
ocurre con el seno o el coseno sobre la recta real, las funciones 
elípticas en cualquier rectángulo de esta red son una réplica de la 
función en el primer rectángulo. El también alemán Karl Weier­
strass (1815-1897) definió lo que se conocen corno «funciones elíp­
ticas de Weierstrass», que también poseen la doble periodicidad. 

Poincaré se dio cuenta de que la resolución general de las 
ecuaciones diferenciales lineales pasaba por generalizar estos con­
ceptos y considerar otro tipo de transformaciones, más allá de la 
simple periodicidad. Poincaré encontró que las funciones que eran 
invariantes ante transformaciones que tuvieran la siguiente forma 

az+b z---
cz+d 

permitían resolver un gran número de ecuaciones. En honor de 
Fuchs, cuyo trabajo admiraba, decidió llamar fuchsianas a estas 

- - - -----------------, 
FIG. 5 lm z 
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funciones. Pero halló una conexión aún más importante. Estas 
funciones definían una serie de polígonos que permitían hacer un 
teselado no uniforme de un disco. 

RELLENANDO UN DISCO 

Un teselado es un mosaico que rellena una superficie dada. Todos 
los días solemos ver un teselado uniforme del plano: el de la ducha 
de nuestro cuarto de baño. Los azulejos se disponen sobre la pared 
formando una red periódica. Puede variar el dibujo del motivo, 
pero, en el caso de los cuartos de baño o de la cocina de una casa, 
este se repite una y otra vez en las direcciones horizontal y vertical. 
La figura geométrica base en estos casos, en la que se inserta el 
motivo, es un cuadrado o un rectángulo. Los únicos polígonos 
regulares que cubren completamente una superficie plana son cua­
drados, triángulos y hexágonos. El caso de los cuadrados es el 
que solemos ver en casa; el recubrimiento por hexágonos es el que 
usan las abejas para construir el panal y un magnífico ejemplo de 
teselado triangular lo encontramos en algunos azulejos de la 
Alhambra de Granada (véase la fotografía de la página anterior). 

Pero puede ser interesante recubrir otras superficies. El ma­
temático alemán Hermann Schwarz (1843-1921) estudió las formas 

FIG.6 
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de recubrir una esfera y encontró que había varias maneras de 
hacerlo a base de triángulos esféricos. La figura 6 muestra dos 
ejemplos de teselados uniformes de la esfera a base de triángulos 
de Schwarz. Los triángulos esféricos que forman las teselas en 
estos recubrimientos son congruentes, es decir, tienen la misma 
forma y el mismo tamaño. 

Pero Schwarz encontró algo más: algunas funciones en el cam­
po complejo estaban asociadas a teselados no uniformes de un 
disco, en forma análoga a como las funciones elípticas están aso­
ciadas al teselado uniforme del plano. La figura 7 muestra este 
teselado del disco. 

Poincaré, que en el momento en que hizo este descubrimiento 
ignoraba los trabajos de Schwarz, halló que las funciones que él 
había llamado fuchsianas estaban asociadas a teselados no unifor­
mes del disco como puede verse en la figura 8. 

Y aquí llegó uno de sus grandes descubrimientos. En su libro 
La ciencia y el método, una reflexión sobre la forma en que se 
realizan los descubrimientos científicos, puede leerse el relato que 
él mismo hizo de su descubrimiento: 

Desde hacía quince días me esforzaba en demostrar que no podía 
existir ninguna función análoga a esas que luego llamé fuchsianas; 
en ese momento yo era completamente ignorante; todos los días me 
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FIG. 9 
sentaba a mi mesa de trabajo, me pa­

l __ 

saba así una o dos horas, probaba un 
gran número de combinaciones y no 
llegaba a ningún resultado. Una no­
che, me tomé un café solo, contraria­
mente a mi costumbre, y no pude dor­
mir: las ideas aparecían locamente; las 
sentía como chocar, hasta que dos de 
ellas se aproximaban, por así decirlo, 
para formar una combinación estable. 
Por la mañana había establecido la 
existencia de una clase de funciones 
fuchsianas, aquellas que se derivan de 
la serie hipergeométrica; no tenía más 
que redactar los resultados, lo que 
solo me llevó algunas horas. A conti­

Limite circular I 
(1958), de 
M.C. Escher. 
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nuación quise representar estas funciones como cociente de dos 
series; esta idea era perfectamente consciente y reflexionada; la ana­
logía con las funciones elípticas me guiaba. Me pregunté cuales de­
bían ser las propiedades de estas series, si es que existían, y llegué 
sin dificultad a construir las series que llamé theta-fuchsianas. 

En ese momento salí de Caen, donde vivía por entonces, para 
tomar parte en una excursión de geología organizada por la Escuela 
de Minas. Las peripecias del viaje me hicieron olvidar mis trabajos 
matemáticos; al llegar a Coutances, nos montamos en un ómnibus 
para no sé qué paseo; en el momento en que puse el pie sobre el 
escalón, me vino la idea, sin que ninguno de mis pensamientos ante­
riores pareciera prepararme para ello, de que las transfo1maciones 
que yo había usado para definir las funciones fuchsianas eran idén­
ticas a las de la geometría no euclídea. No hice la verificación; no 
hubiera tenido el tiempo necesario, porque nada más sentarme en 
el ómnibus, retomé la conversación que estaba teniendo, pero tuve 
de repente una certidumbre completa. De vuelta a Caen, verifiqué el 
resultado con calma para mayor tranquilidad. 

Lo que Poincaré había descubierto era que los triángulos que 
formaban su teselado del disco, y que no eran congruentes en la 
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geometría euclídea, porque tal y como puede verse en la figura 8 su 
tamaño va disminuyendo a medida que nos movemos hacia afuera, 
sí eran congruentes en la geometría no euclídea hiperbólica de 
Lobachevski. Era esta la primera vez en la historia de las matemá­
ticas en la que los conceptos de la geometría no euclídea eran uti­
lizados en un ámbito distinto del de la geometría. 

«Este es un camino fértil que el autor no ha recorrido en su 
totalidad, pero que pone de manifiesto un espíritu creativo y 

profundo. La comisión no puede más que animarle a continuar 
con su investigación, y llamar la atención de la Academia sobre 

el excelente talento de que da prueba.» 
- DEL INFORME DE LA COMISIÓN DEL PREMIO DE LA ACADEMIA DE 1880 

SOBRE EL TRABAJO DE POINCARÉ. 

Estos teselados del disco en geometría no euclídea inspiraron 
algunos de los dibujos del artista holandés Maurits Comelis Escher 
(1898-1972). En la figura 9 vemos uno de ellos. Los peces se repiten 
desde el centro del disco hacia su periferia formando un teselado 
que, en nuestro plano euclídeo, no es uniforme. La base del tese­
lado es un polígono de cuatro lados curvos. Los lados están forma­
dos por geodésicas, las líneas más cortas entre dos puntos y que son 
el equivalente de las líneas rectas en las geometrías no euclídeas. 

En marzo de 1881 la comisión encargada de otorgar el premio 
de la Academia hizo pública su decisión. El premio fue concedido 
finalmente al matemático Georges Halphen (1844-1889) por un 
trabajo extenso y muy completo que también se inspiraba en los 
de Fuchs. El trabajo de Poincaré recibió la distinción del tribunal. 

En los años siguientes Poincaré seguiría trabajando y publi­
cando sobre el tema, profundizando en sus ideas. En esta época, 
en concreto en el año 1881, Poincaré inició una relación epistolar 
con Gasta Mittag-Leffler, que se convirtió en uno de sus mayores 
admiradores y valedores. Este matemático sueco había estudiado 
con Hermite en París y con W eierstrass en Berlín. Siendo de un 
tercer país, sirvió de puente entre las comunidades matemáticas 

UN GENIO SE PRESENTA 61 



62 

GOSTA MITTAG-LEFFLER (1846-1927) 

Mittag-Leffler nació en Estocolmo y se 
doctoró en la Universidad de Upsala. 
Tras el doctorado estuvo en viaje de es­
tudios en París, Gotinga y Berlín, donde 

conoció a los matemáticos más impor­
tantes de la época, como Hermite o 
Weierstrass. Ocupó una cátedra de Ma­
temáticas en la Universidad de Helsinki 
para convertirse luego en catedrático de 
la Universidad de Estocolmo, de la que 
fue rector. En 1882 se casó con una fin­
landesa adinerada. Signe Lindfors. cuya 
fortuna le permitió establecer una valio­
sa biblioteca matemática. El matrimonio 
conoció a Poincaré y a su esposa en Pa­
rís, adonde viajaron durante su luna de 
miel. Mittag-Leffler desarrolló una gran 
actividad diplomática entre los matemá­
ticos europeos de su tiempo. A iniciativa 
suya, el rey de Suecia óscar 11 convocó un premio matemático con motivo de 
su sesenta cumpleaños. premio que ganaría Poincaré. Mittag-Leffler fundó, y 
dirigió durante varios años, la revista Acta Mathematica. 

de Alemania y Francia, un papel muy necesario en una época do­
minada por el resentimiento francés a causa de la derrota en la 
guerra franco-prusiana. La correspondencia entre Poincaré y 
Mittag-Leffler duró hasta la muerte de Poincaré, y ambos matemá­
ticos desarrollaron una respetuosa amistad, teniendo ocasión de 
encontrarse varias veces a lo largo de su vida. 

En 1882 Mittag-Leffler fundó la revista Acta Mathematica, pa­
trocinada por el rey de Suecia. Su idea era que esta publicación se 
convirtiera en una obra de referencia para las matemáticas euro­
peas y que en ella publicaran tanto alemanes como franceses. A 
instancias de Mittag-Leffler, Poincaré envió a Acta Mathematica 
cinco artículos sobre las funciones fuchsianas y una generalización 
de estas, que llamó «kleinianas», entre 1882 y 1884. Todos estos 
trabajos juntos sumaban un total de 390 páginas de la revista y en 
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ellos Poincaré completaba el programa que la Academia sugería 
en su valoración del trabajo presentado al premio de 1880. Entre 
otras cosas, Poincaré demostró que cualquier ecuación diferencial 
con coeficientes algebraicos podía resolverse con las funciones 
fuchsianas, kleinianas y otras relacionadas con estas. Hoy en día 
estas funciones se conocen con el nombre de «automórficas» y su 
teoría está lejos de estar desarrollada completamente. 

Se conoce una anécdota que evidencia la personalidad de 
Poincaré y el estado de concentración en que vivía cuando tenía 
entre manos un problema importante. Se trata del relato que hizo 
su compañero de la politécnica Léon Lecornu de una Nochevieja 
que pasaron juntos en Caen: 

En esa época él estaba más distraído que nunca. Yo le había invitado 
a cenar en casa de mis padres el 31 de diciembre de 1879, y todavía 
puedo verlo pasar la velada andando para arriba y para abajo, no 
escuchando nada de lo que se le decía o respondiendo apenas con 
monosílabos, y olvidando qué hora era, tanto que pasada la mediano­
che decidí recordarle amablemente que estábamos en 1880. En ese 
momento pareció volver a poner los pies en el suelo, y se despidió de 
nosotros. Unos días más tarde, nos encontramos en el puerto de Caen, 
y casualmente me dijo: «Ahora sé cómo integrar todas las ecuaciones 
diferenciales». Las funciones fuchsianas habían nacido, y supe enton­
ces en qué estaba él pensando cuando pasaba de 1879 a 1880. 

CONTROVERSIA CON KLEIN 

Cuando los primeros trabajos de Poincaré sobre las funciones fuch­
sianas aparecieron en la revista de la Academia de Ciencias, el 
matemático alemán Felix Klein escribió a Poincaré en la que fue la 
primera de un intercambio de más de veinte cartas. Una curiosidad 
de esta relación epistolar es que ambos escribían en su lengua: 
Poincaré escribía sus cartas en francés y Klein las suyas en alemán. 

Klein llevaba tiempo trabajando sobre las funciones elípticas 
y su generalización y relación con las ecuaciones diferenciales, y 
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FELIX KLEIN (1849-1925) 

Klein nació en Düsseldorf y fue profesor 
en las universidades de Erlangen, Mú­
nich, Leipzig y Gotinga, donde permane­
ció desde 1886 hasta su muerte. Trabajó 
en diversos campos de las matemáticas: 
teoría de grupos, geometría, ecuaciones 
diferenciales, etc. Pero fueron especial­
mente importantes sus contribuciones a 
la geometría no euclídea, ya que hizo 
patente que era posible construir geo­
metrías no euclídeas consistentes. Ideó 
la superficie que lleva el nombre de «bo­
tella de Klein», una superficie cerrada, 
pero que solo tiene un lado, por lo que 
no podemos asociarle una dirección ha­
cia adentro y otra hacia afuera. La bote­
lla de Klein, que podríamos imaginar 
como una aspiradora que se aspira a sí 
misma, no es realizable en nuestro espa­
cio tridimensional. 

Felix Klein retratado hacia los setenta 
años de edad. Obra del pintor y grabador 
alemán Max Liebermann. 

llamaba la atención de Poincaré sobre sus trabajos y los de la es­
cuela alemana, que Poincaré parecía conocer solo parcialmente. 
Poincaré respondió inmediatamente a la primera carta de Klein, 
agradeciendo la información que le proporcionaba, admitiendo 
que Klein había ya obtenido alguno de los resultados a los que el 
propio Poincaré había llegado y prometiendo que haría referencia 
a las contribuciones del alemán en sus siguientes trabajos. 

En estos primeros intercambios epistolares quedó claro que 
Poincaré no conocía toda la extensa bibliografía alemana sobre 
el tema, en particular algunos de los trabajos de Klein y Schwarz. 
Debe considerarse que en aquellos momentos el matemático fran­
cés era profesor en Caen, una universidad de provincias, por lo 
que no tenía acceso a todas las publicaciones que podían ser 
relevantes. De hecho, Poincaré en su primera carta a Klein pro­
metía que buscaría los volúmenes necesarios de la revista alema­
na M athematische Annalen, que no se encontraban en la biblio-
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teca de Caen. En aquellos tiempos, y eso ha sido así hasta la 
irrupción de intemet en nuestras vidas, era a veces difícil, y sobre 
todo costoso económicamente, tener acceso a todas las publica­
ciones que podían ser relevantes en un tema dado. 

Pero en su segunda carta Klein hizo notar algo que le había 
molestado especialmente. En sus propias palabras: 

Rechazo el apelativo de «funciones fuchsianas», aunque comprendo 
que ha sido a través del trabajo de Fuchs que usted llegó a estas 
ideas. [ ... ) No niego los grandes méritos del señor Fuchs en otras 
ramas de la teoría de ecuaciones diferenciales, pero exactamente en 
esta área su trabajo deja mucho que desear. 

Klein advertía a Poincaré en esa misma carta de que había 
otros matemáticos de la escuela de Riemann que colaboraban con 
él en la teoría de transformaciones similares a las que usaba Poin­
caré y que él llamaba fuchsianas. 

Como ya se ha apuntado, Poincaré no disponía de toda la in­
formación relevante. Pero su respuesta a Klein no dejaba de tener 
lógica: 

En cuanto al nombre de funciones fuchsianas, no lo cambiaré. El 
respeto que tengo por el señor Fuchs me prolube hacerlo. Aparte de 
eso, es cierto que el punto de vista del matemático de Heidelberg es 
completamente diferente del suyo y del mío. También es cierto que 
su trabajo me ha servido como punto de partida y la base para todo 
lo que he hecho en esta teoría. 

Cuando Poincaré fue teniendo más elementos de juicio fue 
cambiando de opinión. En otra carta a Klein puede leerse: 

Con respecto al señor Fuchs y al nombre de funciones fuchsianas, 
está claro que debería haber escogido otro nombre, si hubiera cono­
cido el trabajo de Schwarz. Pero he sabido de esto solo por las cartas 
de usted, después de la publicación de mis resultados, así que ya no 
puedo cambiar el nombre sin cometer una falta de consideración 
con el señor Fuchs. 
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El intercambio de cartas fue largo y profundo por ambas par­
tes, y no cabe duda de que los dos grandes matemáticos se influ­
yeron mutuamente en sus respectivas investigaciones, obteniendo, 
ambos, notables avances gracias a ese intercambio. En particular, 
Poincaré había estado usando las transformaciones del tipo 

az+b z---
cz+d 

sujetas a la condición de que una determinada circunferencia del 
plano complejo fuera invariante, es decir, que un punto de la 
circunferencia se transforme en otro punto de dicha circunf eren­
cia. Klein estaba explorando las posibilidades que no requerían 
esta condición y llamó la atención de Poincaré sobre este punto. 
En una comunicación a la revista de la Academia de Ciencias de 
1881, Poincaré analizó estas transformaciones, reconoció que 
Klein era quien le había dado la idea y propuso llamarlas kleinia­
nas, y llamar funciones kleinianas a las funciones a las que daba 
lugar. Aquello parecía un intento por desagraviar al alemán, y la 
respuesta de Klein no se hizo esperar. En una carta a Poincaré 
escribió: 

Me quedé en cierta forma sorprendido con el nombre que usted ha 
dado a esta clase de funciones. En cuanto a mí respecta no usaré el 
apelativo «Fuchs» ni «Klein», sino que seguiré llamándolas «funcio­
nes que contienen transformaciones lineales». 

Como ya se ha apuntado, Poincaré completó en estos meses 
su investigación sobre las funciones «fuchsianas» y «kleinianas» 
y su relación con la geometría no euclídea y las ecuaciones dife­
renciales. Klein fe licitó a Poincaré por sus logros y le pidió que 
escribiera un resumen de sus resultados para la revista alemana 
Mathematische Annalen, que él se encargaría de publicar con una 
nota suya. El artículo, de doce páginas, salió publicado a princi­
pios de 1882 y en él Poincaré, como era de esperar, denominaba 
a sus funciones fuchsianas y kleinianas. El artículo estaba escrito 
en francés y le seguía una nota de Klein, escrita en alemán. En 
ella, alababa el trabajo de Poincaré y lo ponía en contexto, pero 
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también era tajante respecto a los nombres escogidos para las 
funciones: 

Las investigaciones que el señor Schwarz y yo hemos publicado hace 
mucho tiempo tratan de las «funciones fuchsianas», acerca de las 
cuales el señor Fuchs no ha publicado nada. 

Ante esta oposición frontal a la elección del nombre, Poinca­
ré solicitó a Klein que le permitiera explicar en la misma revista 
sus razones. A lo que Klein accedió, pero advirtiendo que, a su vez, 
añadiría una corta nota suya reafirmando su posición, lo que así 
hizo. Con ello daba por terminada la discusión. Poincaré respondió 
citando, no sin ironía, a Goethe: «Name ist Schall und Rauch» 
(«Un nombre es sonido y humo»). Los dos dieron por concluido 
el asunto. Poincaré siguió llamando fuchsianas y kleinianas a sus 
funciones, y Klein y los suyos, no. Lo cierto es que el criterio de 
Klein es el que se impuso y hoy en día estas funciones son cono­
cidas con el nombre genérico de «automórficas». 

Aunque el debate sobre los nombres de las funciones tensó la 
relación entre los dos matemáticos no pasó de un debate educado 
y cortés. Probablemente todo escoció más del lado alemán. Klein 
era por entonces un matemático establecido y reconocido, con su 
cátedra en Leipzig, mientras que Poincaré había iniciado la discu­
sión siendo profesor en Caen ( aunque ya estaba en París cuando 
el debate concluyó). Que un joven francés advenedizo se atreviera 
a distribuir los méritos entre los matemáticos alemanes no le debió 
hacer mucha gracia. Pero Poincaré y Klein volvieron a cartearse y 
colaboraron más tarde en la organización de reuniones y congresos 
matemáticos, manteniendo siempre en sus contactos un tono cor­
tés y cordial. 
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CAPÍTULO 3 

Poincaré gana un concurso 

El rey de Suecia Óscar II convocó un 
concurso matemático al que Poincaré presentó 

un ensayo que resultó ser el ganador. En él Poincaré 
estudió una forma aproximada del llamado problema 

de los tres cuerpos: tres cuerpos masivos que se atraen 
mutuamente según la ley de la gravedad de Newton. Las 

ideas y los métodos que Poincaré utilizó en su ensayo 
forman parte de lo que hoy se conoce como teoría 

de los sistemas dinámicos. El premio le valió 
a Poincaré la fama universal, pero no 

sin cierta polémica. 





Pocos meses después de casarse, el 19 de octubre de 1881, Poin­
caré obtuvo una plaza de profesor en la Facultad de Ciencias en 
la Universidad de la Sorbona de París. Su puesto era el de maitre 
de coriferences, una figura que sigue existiendo hoy en día y que 
equivale a la de profesor titular. El término conf erences hace refe­
rencia a los grupos en los que se dividían los alumnos de una clase 
para la realización de problemas o ejercicios prácticos. El maitre 
de conferences era el encargado de estos grupos reducidos. 

La carrera de Poincaré en París fue meteórica. El 6 de noviem­
bre de 1883 obtuvo el puesto de tutor en la École Polytechnique, 
la institución donde inició sus estudios superiores, y el 16 de mar­
zo de 1885, la plaza de profesor suplente de Mecánica Física y 
Experimental en la Sorbona. Poco después, se postuló para la cá­
tedra de Física Matemática y Probabilidad, que obtuvo en el vera­
no de 1886. La rápida ascensión de Poincaré en París no se explica 
solo por sus indudables cualidades, reconocidas por todo el esta­
mento científico francés, sino también por sus contactos en el 
Ministerio de Educación -.Jules Duvaux, quien fue ministro entre 
agosto de 1882 y febrero de 1883, era de Nancy y había sido pa­
ciente de su padre- y, sobre todo, por el apoyo incondicional de 
su antiguo profesor Charles Hermite. Este último utilizó todos sus 
recursos e influencias para colocar en puestos de relevancia a sus 
tres protegidos: Émile Picard, su yerno, Paul Appell, su sobrino 
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político, y Henri Poincaré, su antiguo alumno. Ni que decir tiene 
que los tres terúan sobrados méritos para ocupar los puestos a los 
que accedieron, pero también parece claro que, sin ese apoyo, 
ninguno de ellos hubiera accedido tan pronto a una cátedra en 
París, al poco de cumplir los treinta años (la edad mínima para 
acceder a una cátedra en Francia en esa época). 

A principios de la década de 1880 la Facultad de Ciencias de 
la Sorbona vivió un notable relevo generacional. La generación 
a la que Hermite pertenecía, nacida en tomo a 1820 y que incluía 
a matemáticos de la talla de Liouville, estaba llegando al final de 
su vida activa. Por muerte o jubilación, varias cátedras de mate­
máticas quedaron vacantes estos años y se produjo una sorda 
batalla por ellas. De entre los más ilustres aspirantes que nunca 
llegarían a tener una cátedra en París merece la pena destacar, 
por sus contribuciones a la física matemática, a Émile Mathieu 
(1835-1890), que quedó por detrás de Poincaré en el concurso de 
acceso a la cátedra de Física Matemática y Probabilidad. 

Picard obtuvo su cátedra en Cálculo Diferencial e Integral a 
la vez que Poincaré la suya. Appell la había obtenido antes, en 
Mecánica Racional, justo con treinta años recién cumplidos. Si la 
asignación de las cátedras de Picard y Appell se correspondía con 
sus carreras anteriores, la designación de Poincaré para la cátedra 
de Física Matemática era más extraña. Hasta ese momento Poin­
caré no había trabajado en física, si se exceptúan sus primeros 
trabajos en mecánica celeste. Su designación para esta cátedra se 
debe, probablemente, a un interés personal por iniciar una carrera 
científica en este campo, y el devenir posterior de los aconteci­
mientos va en ese sentido, porque a partir de entonces Poincaré 
empezó a publicar trabajos en diversos problemas de física. Para 
obtener una plaza así, el apoyo de Hermite tuvo que ser esencial. 

EL PREMIO DEL REY ÓSCAR II DE SUECIA 

Como vimos en el capítulo anterior el estudio de las ecuaciones 
diferenciales y sus soluciones fue uno de los primeros temas que 
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interesaron a Poincaré. Si todo el trabajo desarrollado sobre las 
funciones fuchsianas tenía por objetivo final la resolución de un 
cierto tipo de ecuaciones diferenciales, pronto Poincaré compren­
dió que eso no era suficiente, que había problemas más generales 
que requerían un cambio de táctica. Nos referimos, por ejemplo, 
a las ecuaciones diferenciales que gobiernan el movimiento de los 
planetas del sistema solar. De hecho, cualquier sistema mecánico, 
ya sea un muelle, un péndulo, un sistema de péndulos o una peon­
za, se rige por ecuaciones diferenciales. En 1881, estando aún en 
Caen, Poincaré escribió un artículo sobre ecuaciones diferenciales 
en el que ya exploraba un nuevo camino que, andado el tiempo, 
llevaría a toda una nueva rama de las matemáticas: lo que hoy 
conocemos como teoría de los sistemas dinámicos. 

Las ecuaciones diferenciales que podían resolverse analítica­
mente, esto es, dando una expresión explícita de su solución, eran, 
y siguen siendo, muy pocas. Para Poincaré parecía necesario tener 
herramientas cualitativas para estudiar el comportamiento general 
de las soluciones de una ecuación diferencial, aun cuando no se 
fuera capaz de resolverla. Él mismo se refería a ello diciendo que 
era necesaria una comprensión cualitativa del tipo de soluciones 
que cabía esperar, para luego dar valores cuantitativos de ciertos 
casos especiales. Esa comprensión cualitativa iba de la mano de 
la geometría. 

Pongamos un ejemplo. En el capítulo anterior vimos que la 
ecuación 

rige el movimiento de un bloque atado a un muelle. Si tiramos del 
bloque y lo soltamos, este ejecuta un movimiento oscilatorio alre­
dedor de la posición de equilibrio. Podemos hacer una represen­
tación geométrica de este movimiento si trazamos dos ejes coor­
denados y en el eje de abscisas consignamos la posición del bloque, 
x, y en el de ordenadas, su velocidad: 

dx 
V=-. 

dt 
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Representación 
geométrica de 
las soluciones 
de la ecuación 

diferencial que 
describe el 

movimiento de 
un bloque atado 

a un muelle. 

FIG.1 

,...__ 
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La figura 1 muestra esta representación. En el momento de 
desplazar el bloque, la posición x es, pongamos, mayor que cero y 
su velocidad, justo al soltarlo, es cero. El bloque tirado por el mue­
lle se acelera, se acerca a la posición de equilibrio y su velocidad 
va aumentando. Cuando pasa por el equilibrio x = O la velocidad es 
máxima. Luego, el muelle empieza a comprimirse y va frenando al 
bloque, que termina parándose, pero al otro lado del punto de equi­
librio. El muelle se estira, acelerando al bloque hacia el otro lado y 
vuelve a pasar por el equilibrio, ahora con velocidad máxima pero 
de signo contrario, hasta que vuelve a la posición inicial. En el 
diagrama (x,v) el movimiento de ida y vuelta del muelle se repre­
senta con una línea cerrada (una elipse en este caso). Podemos 
imaginar ahora que repetimos la experiencia, pero con distintas 
elongaciones iniciales del muelle. Cada movimiento subsiguiente 
vendrá representado por una elipse diferente. Es posible, por lo 
tanto, representar en el diagrama todas las soluciones de la ecua­
ción, que en este caso se corresponden con curvas cerradas. 

El movimiento de la masa atada al muelle es particularmente 
sencillo, y el diagrama ( que en física matemática se suele deno­
minar «espacio de las fases») no aporta ninguna información adi­
cional a una solución que ya conocemos analíticamente y que es 
expresable, como hemos visto en el capítulo anterior, como com­
binación de funciones seno y coseno. 

V V 

--1 

X 
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Pero podemos imaginar un caso un poco más complicado. 
Consideremos un péndulo en el que una bola está sujeta al punto 
desde el que cuelga por una delgada barra rígida; se trata, pues, de 
un columpio idealizado. Podemos trazar un diagrama en el que en 
un eje anotamos la posición, y en el otro, la velocidad (figura 2). 
En este caso, la posición la da el ángulo que la barra forma con la 
vertical. 

Para oscilaciones pequeñas en tomo al punto de equilibrio 
las cosas son similares al caso del muelle, y un diagrama en el 
que representemos el ángulo en el eje de abscisas y la velocidad 
en el eje de ordenadas tiene un aspecto parecido al anterior. Pero 
si desplazamos el péndulo más y más cada vez, llega un momen­
to en que puede alcanzar el punto en el que la bola está por enci­
ma, en la vertical del punto del que cuelga. Si lanzamos el péndu­
lo con mucha fuerza, este empezará a rotar alrededor del eje si 
el punto de enganche lo permite. De un movimiento de oscilación 
pasamos a uno de rotación. Esto es lo que ocurre en un columpio 
si empujamos con demasiada fuerza. El diagrama posición-velo­
cidad tiene ahora un aspecto diferente, tal y como puede verse 
en la figura 3. 

Vemos que hay dos puntos interesantes en este diagrama: 8 = O 
y v = O, por un lado, y 8 = ±Jt y v = O por otro (los puntos 8 = ± Jt re­
presentan la misma posición del péndulo). Estos son puntos de 

FIG.2 
V 

Rotación horaria 

Rotación antihoraria 
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Clasificación de 
los puntos de 

equilibrio. 

FIG.4 

equilibrio del sistema, porque, si damos exactamente esos valores 
a las variables, el péndulo se queda justo ahí, sin moverse. Pero 
estos dos puntos, siendo los dos puntos de equilibrio, tienen un 
carácter düerente. El punto 8 = O y v = O, que corresponde a la bola 
del péndulo en la posición más baja, es lo que llamamos un equili­
brio estable. Si desplazamos un poco el péndulo de esa posición, 
tratará de volver a ella. En cambio, 8 = ±Jt y v = O, que corresponde 
a cuando la bola está arriba del todo, es un equilibrio inestable: 
cualquier pequeña perturbación hace que la bola se aleje de él, 
cayendo. Además, hay dos tipos de curvas cualitativamente distin­
tas en el diagrama: las curvas alrededor de 8 = O y v = O son cerradas, 
pero las curvas que representan movimiento de rotación, cuando 
superamos el punto superior de equilibrio, no lo son ( aunque en la 
dinámica real también representan un movimiento periódico). 

El movimiento general del péndulo es bastante más complejo 
que el del muelle, aunque también en este caso hay soluciones ana­
líticas, eso sí, mucho más complicadas. Podemos entrever ya que, 
para un sistema físico cualquiera, las cosas pueden ser muy farra­
gosas: pueden existir varios puntos de equilibrio, cada uno con un 
carácter düerente, o, sobre todo, haber varios cuerpos involucrados 
y con movimiento en todas las direcciones del espacio, por lo que 
el número de variables del problema puede llegar a ser muy grande. 
El enfoque cualitativo de Poincaré iba en ese sentido: en general, 
habrá ecuaciones, o sistemas de ecuaciones ( esto es, varias ecua­
ciones düerenciales acopladas entre ellas), que seamos incapaces 
de resolver para cualquier valor de las condiciones iniciales. Pero 
puede ser de mucha ayuda saber cuántos equilibrios hay, si hay 

Punto de silla Nodo Foco Centro 
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soluciones que unan esos puntos de equilibrios, si hay soluciones 
periódicas, si hay soluciones que se van al infinito, etc. En definiti­
va, tener una idea general de la estructura geométrica de las solu­
ciones. Poincaré pasó de hablar de funciones a hablar de curvas y 
de las superficies que formaban esas curvas. El mundo de las ecua­
ciones diferenciales se adentraba así en el de la geometría y, des­
pués y más sutilmente todavía, en el de la topología. 

Ya en su artículo de 1881 al que hemos hecho referencia, Poin­
caré introdltjo una clasificación de los puntos de equilibrio posibles 
en un sistema de ecuaciones diferenciales. Los clasificó en puntos · 
de silla, nodos, focos y centros (figura 4). Esa clasificación es la 
que se sigue usando hoy en día. 

El primer resultado interesante que dedltjo Poincaré se inspi­
raba en los trabajos anteriores de Maxwell sobre las líneas de nivel 
de un mapa, a las que se parecen las curvas de los diagramas de la 
figura 4. Poincaré estableció que el número de nodos más el de 
focos o centros es igual al número de puntos de silla más 2. Si 
llamamos N al número de nodos, F al de focos o centros, y S al de 
puntos de silla, tenemos: N + F = S + 2. Esta fórmula recuerda a la 
relación de Euler entre las caras, aristas y vértices de un poliedro, 
que vimos en el capítulo 1, y de hecho está íntimamente relacio­
nada con ella. 

La ecuación de Poincaré N + F = S + 2 es válida sobre una es­
fera, pero no sobre una superficie cualquiera. Al igual que ocurría 
con la fórmula de Euler, hay que generalizarla para incluir super­
ficies multiconexas, como el toro. 
Y la generalización es la misma 
que vimos en el capítulo l. Para 
una superficie con g agujeros la 
fórmula es N +F=S + 2 - 2g; así, 
por ejemplo, para un toro g = l, 
N+F=S. 

Este resultado llevó a Poinca­
ré a una conclusión ya conocida, 
pero ahora establecida rigurosa­
mente: sobre un toro es posible 
tener un conjunto de soluciones de 

✓-­/ ~ 

\~ -
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Flujo sobre un 
toro sin puntos 
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EL VUELO DE UNA CAJETILLA DE TABACO 

Si lanzamos una cajetilla de tabaco al aire, esta puede girar en torno a tres 
ejes. Todas las formas de giro posible se pueden representar mediante líneas 
en una esfera en la que marcamos los tres ejes de giro, tal y como puede 
verse en la figura. Por ejemplo, las líneas cerradas en torno al eje 1 representan 
un movimiento de rotación en torno a este eje. En este caso tenemos centros 
y puntos de silla, pero la fórmula de Poincaré impide que todos sean cen­
tros o todos puntos de silla. Si tenemos, como es el caso, cuatro centros, los 
dos pertenecientes al eje 1 y al eje 3, necesariamente los otros dos son puntos 
de silla. Este razonamiento cualitativo nos lleva a una interesante predicción 
que el lector puede comprobar por sí mismo experimentalmente: al lanzar la 
cajetilla de tabaco al aire vemos que gira establemente en torno a dos ejes, 
pero el giro en torno al tercero es necesariamente inestable. Este ejemplo 
muestra las posibilidades del enfoque cualitativo de Poincaré: podemos hacer 
predicciones sobre el comportamiento de las soluciones de un sistema de 
ecuaciones diferenciales sin resolverlo explícitamente. 

Eje 3 

Eje 1 / Eje2 

Ejes de rotación estables e inestables de una cajetilla de tabaco. 
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un sistema de ecuaciones diferenciales en el que no exista ningún 
equilibrio, tal y como muestra la figura 5 (pág. 77). 

Esto es imposible para una esfera, porque aun en ausencia de 
puntos de silla es necesario tener al menos nodos y focos en núme­
ro que sumen 2. Esa es la razón de que tengamos el remolino en la 
coronilla: no es posible peinar a una persona orientando el pelo 
siempre en la misma dirección sin tener un punto en el que el 
pelo se arremoline (un foco, en la terminología de Poincaré). Esta 
restricción no se aplica a las personas que tienen calva la coronilla, 
porque el dominio en el que hay pelo tiene ahora un agujero y en la 
fórmula de Poincaré hay que considerar g = 1 en ese caso. 

MITTAG-LEFFLER CONVENCE AL REY 

En la época en la que Poincaré se hallaba inmerso en este tipo de 
cuestiones, Gota Mittag-Leffler convenció al rey de Suecia Óscar II 
para que convocara un concurso científico. El rey era un amante 
de la ciencia y de las matemáticas y aceptó la propuesta del mate­
mático sueco. El concurso fue convocado en el verano de 1885 y la 
entrega del premio al vencedor tendría lugar el 21 de enero de 1889, 
coincidiendo con el sexagésimo cumpleaños del rey. El premio 
consistía en una medalla de oro con la efigie del monarca y una 
cantidad en metálico (2 500 coronas). Su convocatoria apareció en 
las revistas científicas de toda Europa y el plazo de entrega de los 
trabajos era el 1 de junio de 1888. 

La organización del concurso fue bastante complicada y Mittag­
Leffler tuvo que hacer uso de todas sus habilidades diplomáticas 
para que el evento no terminara en un escándalo. De entrada tuvo 
que renunciar a formar un jurado tan amplio como él hubiera que­
rido, porque parecía claro que no iba a ser fácil poner de acuerdo 
a grandes matemáticos de más de tres países en la elección de los 
temas y en acordar el veredicto final. Así, aunque en principio pen­
só incluir al ruso Pafnuty Chebyshev (1821-1894) o al británico 
Arthur Cayley (1821-1895), tuvo que reducir el jurado a tres perso­
nas: él mismo y los ya citados Karl Weierstrass y Charles Hermite. 
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Los participantes debían escoger entre cuatro temas, uno de 
los cuales parecía propuesto pensando en Poincaré: avanzar en la 
teoría de las funciones fuchsianas. Ya se ha comentado anterior­
mente que ese término era controvertido, pero la convocatoria del 
premio así las designaba. Sin embargo, tal vez para sorpresa de 
Mittag-Leffler y Hermite, Poincaré escogió para su trabajo otro 
de los temas propuestos, el primero, que versaba sobre la estabi­
lidad del sistema solar. 

Tal y como se vio en el capítulo 1, aunque Laplace creyó de­
mostrar que el sistema solar era estable, los trabajos de Le Verrier 
realizados a mediados del siglo XIX pusieron en cuestión esa con­
clusión. A final de siglo el problema seguía sin tener una solución 
satisfactoria. En la convocatoria del premio del rey de Suecia se 
hacía referencia a un rumor según el cual el gran matemático ale­
mán Lejeune Dirichlet (1805-1859) habría demostrado de manera 
rigurosa la estabilidad del sistema solar, siguiendo para ello un 
método de su invención. El premio se le otorgaría a la persona que 
diera con ese método y resolviera la cuestión. Pero también se 
aclaraba que, en caso de que nadie fuera capaz de dar una solución 
clara y definitiva al problema de la estabilidad, el premio se otor­
garía al trabajo en que se planteara y resolviera algún otro problema 
de mecánica relacionado. 

Y aquí fue donde Mittag-Leffler tuvo que hacer frente a otro 
conflicto diplomático. Leopold Kronecker (1823-1891), alumno de 
Dirichlet y colega de W eierstrass en Berlín, cargó contra la convo­
catoria: por un lado, sostenía que uno de los cuatro problemas ya 
había sido resuelto casi en su totalidad por él mismo años antes y, 
por otro, que él había estado con Dirichlet antes de la muerte de 
este y que no era cierto lo que se contaba de él en el preámbulo 
del primer problema. Como este preámbulo había sido escrito por 
W eierstrass, con quien Kronecker tenía malas relaciones, Hermite 
se lavó las manos, diciendo que era un asunto entre alemanes. 
Mittag-Leffler, mal que bien, paró los intentos de Kronecker de 
reventar la convocatoria y prometió resolver todas estas cuestio­
nes una vez el premio se hubiera otorgado. 

Al premio se presentaron doce trabajos; cinco de ellos trata­
ban sobre el problema que nos ocupa. Poincaré presentó una me-
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moria titulada: «Sobre el problema de los tres cuerpos y las ecua­
ciones de la dinámica». Las memorias debían ser anónimas y se 
presentaban con un seudónimo. Aun así, tanto Hermite como 
Mittag-Leffler sabían que Poincaré se iba a presentar al premio. 
Y, además, ambos conocían perfectamente no solo su estilo, sino 
también su letra, ya que se carteaban habitualmente. Todos estos 
detalles no favorecían, desde luego, la impresión de imparcialidad 
que el matemático de Estocolmo pretendía dar. 

Mittag-Leffler encargó a un joven matemático sueco, Lars Ed­
vard Phragmén (1863-1937), la lectura de los trabajos a fin de hacer 
una primera criba De los doce, Phragmén escogió tres, que fueron 
estudiados en detalle por la comisión. A la vista de las tres memorias 
la comisión decidió por unanimidad otorgar el premio al trabajo pre­
sentado por Poincaré y concedió un accésit a una segunda memoria 
cuyo autor no era otro que Paul Appell, el gran amigo de Poincaré. 

Pero los dolores de cabeza no habían terminado para Mittag­
Leffler. El anuncio del ganador y de los hallazgos realizados por él 
era tan escueto que el astrónomo Rugo Gyldén (1841-1946), que 
pertenecía a la Real Academia Sueca y era miembro del consejo 
editorial de la revista Acta Mathematica, protestó ante la Acade­
mia argumentando que él había resuelto esas cuestiones dos años 
antes. El mismo rey pidió explicaciones y Poincaré, a instancias 
de Mittag-Leffler, dejó claro todo lo que había de nuevo, que era 
mucho, en su trabajo. 

El rey Óscar II anunció el día de su cumpleaños la concesión 
del premio y la noticia tuvo un eco inmediato en la prensa france­
sa. El triunfo de dos matemáticos nacionales colmó los sentimien­
tos patrióticos de los franceses, más si cabe cuando se trataba de 
un premio europeo al que habían concurrido también matemáticos 
alemanes. Como muestra de agradecimiento, el Gobierno francés 
concedió a Appell y Poincaré la Legión de Honor. 

El trabajo presentado por Poincaré era de tal envergadura y 
profundidad que ni siquiera los tres miembros de la comisión -to­
dos ellos grandes matemáticos de la época- pudieron compren­
derlo en su totalidad en un primer momento. Además, el autor, fiel 
a su estilo, daba muchas cosas por sabidas y no completaba siem­
pre sus argumentos. 
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Estaba previsto que la memoria fuera publicada en la revista 
Acta Mathematica, de la que Mittag-Leffler era editor y que conta­
ba con el patrocinio del rey Óscar. Pero el mismo Mittag-Leffler 
pidió a Poincaré que añadiera explicaciones y aclaraciones a la 
memoria, para facilitar así una mejor comprensión. Mittag-Leffler 
encargó a Phragmén, el mismo matemático que había realizado la 
primera selección de los trabajos presentados al premio, que revi­
sara la memoria de Poincaré antes de enviarla a su publicación. 
Phragmén trabajó en ello con inusitada dedicación, y pidió a Poin­
caré cuantas aclaraciones consideró necesarias. El trabajo de 
Phragmén dio, como veremos más adelante, un fruto inesperado. 

«La memoria de Poincaré es de tan excepcional profundidad y 
creatividad que ciertamente abrirá una nueva era desde el punto 

de vista del análisis y sus consecuencias para la astronomía.» 
- CARTA DE HERMITE A MITTAG-LEFFLER SOBRE EL TRABAJO QUE POINCARÉ PRESENTÓ 

AL PREMIO DEL REY DE SUECIA. 

Finalmente el trabajo ganador fue publicado en Acta Mathe­
matica en enero de 1890; ocupaba 270 páginas del tomo correspon­
diente. En el mismo número se publicó el trabajo de Paul Appell. 

EL PROBLEMA DE LOS TRES CUERPOS 

Una buena parte del trabajo de Poincaré estaba dedicado a ana­
lizar el denominado «problema de los tres cuerpos». Considerar 
el sistema solar en su conjunto era una tarea imposible, aunque el 
análisis se restringiera solo a los planetas. Newton y sus segui­
dores habían estudiado a fondo el problema de dos cuerpos que 
se atraen mutuamente siguiendo la ley de la gravedad. Las tra­
yectorias posibles se clasificaban en elipses, parábolas e hipér­
bolas. El siguiente problema en complejidad era considerar tres 
cuerpos que se atrajeran mutuamente por la misma ley. Pero este 
problema, en su formulación general, ya era demasiado compli-
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cado. Así que Poincaré decidió estudiar lo que se conoce como 
el «problema de los tres cuerpos restringido». En él se supone 
que uno de los cuerpos tiene una masa despreciable comparada 
con las de los otros dos. Los dos cuerpos grandes se mueven 
como si el tercero no existiera y sus trayectorias son, por lo tan­
to, conocidas. El problema restringido consiste en encontrar la tra­
yectoria del tercer cuerpo. Puede parecer increíble, pero la com­
plejidad del problema de los tres cuerpos es tal que ni siquiera la 
versión restringida puede considerarse completamente resuelta 
hoy en día. 

Poincaré se centró en detalle en un problema aún más sim­
plificado. En el artículo publicado en Acta Mathematica lo des­
cribió así: 

Imaginemos dos cuerpos: el primero, de gran masa; el segundo, de 
masa finita, pero muy pequeña, y supongamos que estos dos cuerpos 
describen en torno a su centro de gravedad común una circunferen­
cia en un movimiento uniforme. Consideremos además un tercer 
cuerpo, de masa infinitamente pequeña, de forma que su movinlien­
to se ve afectado por la atracción de los dos primeros cuerpos, pero 
él no puede afectar la órbita de estos dos primeros cuerpos. Limité­
monos además al caso en que este tercer cuerpo se mueve en el 
plano de las circunferencias descritas por los dos primeros cuerpos. 
Este es el caso de un pequeño planeta que se mueve bajo la influen­
cia de Júpiter y del Sol cuando se desprecia la excentricidad de Jú­
piter y la inclinación de las órbitas. Este es el caso también de la 
Luna moviéndose bajo la influencia del Sol y de la Tierra cuando se 
desprecia la excentricidad de la Tierra y la inclinación de la órbita 
de la Luna respecto de la eclíptica. 

Y también es el caso, podríamos añadir hoy, de la trayectoria 
de una nave espacial que viaje, por ejemplo, entre la Tierra y la Luna 

El problema de los tres cuerpos restringido así planteado con­
duce a un sistema de cuatro ecuaciones diferenciales, y se mostró 
mucho más endiablado de lo que cualquiera podía esperar. El primer 
resultado importante al que llegó Poincaré es que, aparte de la ener­
gía, no existe otra cantidad invariante en el movimiento del cuerpo 

POINCARÉ GANA UN CONCURSO 



de masa despreciable. Esto equivale a decir que no podernos dar 
una expresión explícita que resuelva el problema de manera general. 
Y este resultado, además, es aplicable, excepto casos especiales, a 
todos los sistemas de ecuaciones diferenciales con tres o más ecua­
ciones. Este resultado respondía ya a la pregunta formulada en el 
premio, la de la estabilidad del sistema solar. Si no podemos resolver 
el problema de los tres cuerpos es imposible resolver el del sistema 
solar en su coajunto, así que el problema propuesto en el premio 
del rey no se podía resolver tal y corno estaba planteado. No hay que 
malinterpretar este hallazgo, ya que tampoco significa que el sistema 
solar sea inestable, sino que la cuestión de la estabilidad es muy 
complicada y tiene muchos matices. 

EL ETERNO RETORNO 

Uno de los resultados más famosos del trabajo de Poincaré para el 
premio del rey Óscar II de Suecia es su teorema de recurrencia. El 
matemático francés estableció que si un sistema de ecuaciones dife­
renciales da lugar a un movimiento que está restringido a una región 
del espacio, y si el movimiento es tal que el volumen de una re­
gión del espacio se mantiene constante cuando se mueve por curvas 
que son solución de dicho sistema, entonces casi todos los puntos 
de la región considerada vuelven una infinidad de veces a un punto 
tan cerca como se quiera del punto del que partieron. Este teorema, 
cuya demostración no es especialmente complicada, fue generali­
zado más tarde por el mismo Poincaré a un sistema con cualquier 
número de variables. Hablando en un lenguaje menos técnico, lo 
que el teorema viene a decir es que cualquier sistema que cumpla 
dichas condiciones volverá, después de un tiempo suficientemente 
largo, pero finito, a un estado muy parecido al estado inicial. 

El teorema de recurrencia parece tener consecuencias sor­
prendentes y paradójicas. Por ejemplo, cabría deducir de él que el 
lector volverá a leer este libro en el futuro infinitas veces o, al 
menos, que leerá uno muy parecido. O, lo que es peor, que ya lo 
ha leído en el pasado, ¡y una infinidad de veces! Ello contradice el 
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UN EJEMPLO DEL TEOREMA DE RECURRENCIA: LA APLICACIÓN 
DEL GATO DE ARNOLD 

Este conjunto de imágenes ilustra el teorema de recurrencia. En este caso, 
para pasar de una imagen a otra se usa no una ecuación diferencial, sino lo 
que los matemáticos llaman una aplicación, esto es, una regla definida para 
cambiar los píxeles que forman la foto de un sitio a otro. En concreto, aquí se 
usa una aplicación conocida como la aplicación del gato, que responde a la 
siguiente fórmula: 

x n+ l = xn + Yn mod(l) 
Yn+l = x n + 2yn mod(l) 

donde el contenido del píxel que se encuentra en la posición (xn,Y) en la 
iteración n-sima se transporta al píxel en la posición (xn. ,• Yn+i ) en la siguiente 
iteración. El teorema de recurrencia también se aplica en estos casos. Vemos 
que el retrato de Poincaré se desdibuja tras varias iteraciones, y ya en la quin­
ta parece totalmente perdido. Pero, sorprendentemente, se recompone en la 
iteración 192. 

POINCARÉ GANA UN CONCURSO 



segundo principio de la termodinámica, según el cual cualquier 
sistema cerrado evoluciona irreversiblemente hacia estados de 
mayor entropía; esto es, el calor pasa de los cuerpos calientes a 
los fríos, las cosas que se rompen no se recomponen solas, el azú­
car se disuelve en el café, etc. Si el teorema de Poincaré se aplica­
ra en estas situaciones veríamos que, pasado suficiente tiempo, el 
calor volvería del cuerpo frío al cuerpo caliente, que las cosas 
rotas se recompondrían solas o que el azúcar se cristalizaría es­
pontáneamente dentro del café. Esta contradicción entre el teore­
ma de recurrencia y el segundo principio de la termodinámica ha 
sido motivo de debate y discusión entre físicos y matemáticos 
desde que Poincaré enunció tal idea por primera vez. 

Los primeros en enfrentarse a esta contradicción fueron el 
matemático alemán Emst Zermelo (1871-1953) y el gran físico aus­
triaco Ludwig Boltzmann (1844-1906). Este último fue uno de los 
fundadores de la mecánica estadística. Dentro del marco teórico 
de la mecánica estadística todos los procesos termodinámicos se 
explican como el resultado de la dinámica microscópica de las 
moléculas. Ello significa que el calor y todos los fenómenos rela­
cionados con él no son más que una manifestación del movimien­
to microscópico de las moléculas que componen un cuerpo. Así, 
por ejemplo, la temperatura de un gas ideal está relacionada con 
la energía cinética promedio de las moléculas que lo componen. 
Boltzmann dedujo una expresión para la entropía de un sistema 
termodinámico a partir de sus propiedades microscópicas. Otro 
de sus grandes descubrimientos fue el conocido como «teorema 
H», en el cual definía una función de las coordenadas y velocidades 
de todas las partículas de un gas que evolucionaba irreversible­
mente en el tiempo. Para Boltzmann este teorema era equivalente 
a una formulación mecánica del segundo principio de la termodi­
námica. 

Boltzmann mantuvo una fuerte polémica con diversos cientí­
ficos alemanes que negaban la existencia real de las moléculas y 
que defendían que el segundo principio de la termodinámica no 
podía tener una explicación mecánica. Josef Loschmidt (1821-
1895), amigo personal de Boltzmann, fue el primero en apreciar 
una contradicción entre la irreversibilidad de la termodinámica y 
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la reversibilidad de la mecánica. Efectivamente, las ecuaciones de 
Newton de la mecánica son reversibles en el tiempo. Esto significa 
que tanto la solución que obtenemos con el tiempo hacia delante 
como con el tiempo hacia atrás son realizables en la práctica. Por 
ejemplo, si lanzamos una piedra, esta describe una parábola en el 
aire. La misma parábola, pero recorrida en sentido contrario, tam­
bién es una trayectoria realizable. Pero el segundo principio de la 
termodinámica no es simétrico en el tiempo: la entropía aumenta 
con el tiempo y no hay procesos naturales realizables en los que 
la entropía disminuya con el tiempo. Loschmidt se preguntaba: 
¿cómo es posible que las leyes reversibles de la mecánica den lugar 
a una ley irreversible como el segundo principio? 

En su primer artículo sobre el tema, escrito en 1896, Zermelo 
hacía uso del teorema de Poincaré para plantear que «en un siste­
ma de masas puntuales, una disposición particular de las masas, 
una vez dada, debe volver a darse». Si eso ocun1a, cualquier fun­
ción de las posiciones y velocidades de las masas consideradas 
debía volver a tomar el mismo valor inicial. Y concluía: «O bien el 
principio de Carnot-Clausius ( el segundo principio de la termodi­
námica) o la visión mecánico-estadística de la naturaleza deben 
reformularse». 

Boltzmann replicó inmediatamente a Zermelo en un artícu­
lo cuyo comienzo estaba cargado de ironía: «Este artículo de­
muestra que mis trabajos no han sido bien entendidos. Sin em­
bargo, me hace feliz porque es la primera evidencia de que mi 
trabajo ha recibido atención en Alemania». Boltzmann propuso, 
principalmente, dos líneas de argumentación. Por un lado, ad­
mitió que su función H presentaría oscilaciones, momentos en 
los que la entropía, por tanto, podría disminuir, aunque la pro­
babilidad de estos sucesos y su amplitud disminuye con el nú­
mero de moléculas y se vuelve despreciable en el límite en el 
que ese número es infinito. Por otra parte, está la cuestión del 
tiempo, y este segundo argumento es el que más frecuentemen­
te se aduce para resolver la paradoja. El teorema de Poincaré 
dice que el sistema volverá a un estado cercano al inicial, pero 
no dice cuándo. Intuitivamente se comprende que cuanto más 
grande sea el número de elementos que compongan el sistema, 
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mayor será ese tiempo. Boltzrnann hizo algunos números en su 
respuesta a Zerrnelo y concluyó que, para que el gas contenido 
en un volumen de 1 cm3 volviera a su estado inicial harían falta 
muchos millones de años. 

Esta controversia, que normalmente se considera resuelta a 
favor de Boltzmann, no deja de ser, corno el propio teorema, re­
currente. Y de vez en cuando vuelven a aparecer en la literatura 
científica artículos sobre el terna. 

UN ERROR QUE LLEVÓ MUY LEJOS 

Tal y corno ya se ha apuntado Lars Edvard Phragrnén estaba en­
cargado de revisar, para su publicación en Acta Mathematica, el 
trabajo de Poincaré que ganó el premio del rey de Suecia. Cuando 
todo ya estaba preparado para la publicación del artículo, Poinca­
ré aún meditaba un comentario que Phragrnén le había hecho y 
que le llevó a darse cuenta de que había cometido un error en sus 
cálculos. En una carta del 1 de diciembre de 1889 escribió a Mittag­
Leffler poniéndole al corriente de la situación: 

Mi querido amigo: escribí al señor Phragmén para hablarle de un 
error que yo había cometido y sin duda él os ha comunicado mi 
carta. Pero las consecuencias de este error son mucho más graves 
de lo que había creído en un principio. [ ... ] No le disimularé la pena 
que me causa este hallazgo. No sé de entrada si juzgarán todavía que 
los resultados que subsisten, a saber, la existencia de soluciones 
periódicas, la de soluciones asintóticas, la teoría de los exponentes 
característicos, la no existencia de integrales uniformes y la diver­
gencia de las series de Lindstedt, merecen la alta recompensa que 
ustedes han tenido a bien concederme. 

Poincaré citaba en esta carta los nombres técnicos de los ha­
llazgos ( de los cuales solo hemos discutido aquí una pequeña par­
te). El matemático francés se excusaba, pero también se reivindi­
caba. Mittag-Leffler respondió inmediatamente: 
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No le oculto que quedé extremadamente perplejo cuando supe ayer 
por el señor Phragmén la noticia que usted le había comunicado. No 
dudo de que su memoria será en todo caso vista como la obra de un 
genio por la mayoria de los geómetras y que será un punto de parti­
da para todos los esfuerzos que se hagan a partir de ahora en mecá­
nica celeste. No crea que me arrepiento del premio, que ha sido 
dignan1ente asignado. Pero he aquí una gran desgracia Su despacho 
ha llegado demasiado tarde y la memoria ha sido ya distribuida. 

Efectivamente, el número correspondiente de Acta Mathema­
tica estaba ya impreso. Para evitar un escándalo mayúsculo, y 
protegerse de los que ya le habían criticado por la forma en la que 
el premio se había otorgado, Mittag-Leffler propuso a Poincaré 
que escribiera un nuevo artículo con las modificaciones pertinen­
tes y que él retiraría los ejemplares in1presos de la circulación. Pero 
el matemático sueco necesitaba que Poincaré se hiciera cargo de 
los sobrecostes, cosa que Poincaré aceptó sin más. El dato curioso 
es que los costes de la segunda impresión eran de 3 500 coronas, es 
decir, ¡mil coronas más que lo que iba a recibir por el premio! 

Finalmente, el artículo definitivo salió publicado en Acta 
Mathematica a principios de 1890. En la introducción, Poincaré 
reconocía que había corregido un error que contenía la memoria 
original, el cual había detectado gracias a una indicación de Phrag­
mén. Pero, haciendo gala de la honradez y la sinceridad que le 
caracterizaron toda su vida, Poincaré también reconocía que esta­
ba lejos de haber resuelto en su totalidad el problema que él mismo 
se había propuesto. Para los críticos con todo lo que tenía que ver 
con el premio, esto no daba sino más motivos para las suspicacias. 

Pero volvamos a las matemáticas. ¿ Cuál era ese error y cómo 
se resolvió? Poincaré había estudiado lo que él mismo llamó «tra­
yectorias homoclinas». Estas son soluciones de las ecuaciones que 
salen y vuelven al mismo punto, tal y como muestra la figura 6. 

En su formulación del problema de los tres cuerpos, el segun­
do de ellos tenía una masa muy pequeña y una de las técnicas que 
Poincaré introdujo era la de estudiar el sistema cuando esa masa 
era cero y ver después cómo se modificaban las soluciones si la 
masa se consideraba distinta de cero. Poincaré había definido para 
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cada punto de equilibrio curvas que ten­
dían hacia a este punto cuando el tiempo 
se hacía tender a infinito hacia delante o 
hacia atrás. Estas soluciones asintóticas 
coincidían a veces, en lo que se conoce 
como «trayectoria homoclina»: la misma 
curva que sale vuelve al punto de equili­
brio. ¿Se mantendría esta trayectoria cuan­
do la masa del planeta no fuera cero? En 
un principio Poincaré creyó demostrar que 
las dos curvas asintóticas seguían siendo 
la misma: que la homoclina se mantenía 
como tal. Pero el comentario de Phragmén 
le hizo darse cuenta de que estaba equivo­
cado. Y él mismo encontró la verdadera 
respuesta: las dos curvas no coinciden, 
sino que se cortan una infinidad de veces. 

Durante los años posteriores Poincaré 
abordó la redacción de un gran tratado de 

FIG.6 

Homoclina sin perturbar 

FIG. 7 

mecánica celeste en el que retomó los problemas planteados en 
su ensayo inicial, los amplió y resolvió muchas otras cuestiones. 
El tratado se tituló Los nuevos métodos de la mecánica celeste y 
estaba compuesto por tres volúmenes que sumaban unas 1300 
páginas. En el tercero de ellos, escrito en 1899, Poincaré retomó 
la cuestión de la homoclina y explicó su hallazgo con más detalle: 

Esta figura está formada por dos curvas y sus intersecciones en nú­
mero infinito, cada una de las cuales corresponde a una solución 
doblemente asintótica. Estas intersecciones forman una especie de 
enrejado, de tela o malla infinitamente tupida; todas estas curvas no 
se cortan nunca consigo mismas, pero deben replegarse sobre sí 
mismas de manera muy compleja, para volver a cortar una infinidad 
de veces las fibras de la malla. 

Poincaré se confesó incapaz de dibujar semejante gráfica, que 
hoy en día es conocida como «enredo homoclino» y cuya estruc­
tura detallada solo ha podido ser desvelada en la segunda mitad 
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del siglo xx gracias al adveninúento de los ordenadores. La figura 
7 (pág. anterior) muestra un ejemplo esquemático de las dos cur­
vas asintóticas y los primeros de sus infinitos cruces. 

Este descubrimiento se avanzó a su tiempo. En la segunda mi­
tad del siglo xx el uso de los ordenadores permitió descubrir propie­
dades de las ecuaciones diferenciales que hasta entonces no habían 
sido completamente comprendidas. Una de ellas es lo que se ha 
dado en llamar «caos determinista»: el hecho de que algunas solu­
ciones de ciertas ecuaciones diferenciales no lineales pueden com­
portarse de manera errática El término «caos» se aplica a aquellas 
soluciones de ecuaciones que se comportan de forma caótica, aun­
que un estudio detallado revele cierta estructura subyacente. El 
calificativo «determinista>> quiere expresar el hecho de que las leyes 
que gobiernan el sistema, expresadas en ecuaciones diferenciales, 
son bien conocidas y determinan su evolución de manera unívoca. 

«Uno se queda impresionado por la complejidad de esta figura 
[la del enredo homoclino] que no intento siquiera dibujar. 
Nada es más apropiado para dar una idea de la complejidad 
del problema de los tres cuerpos.» 
- HENRI PolNCARÉ, Los NUEVOS MÉTODOS DE LA MECÁNICA CELESTE . 

92 

El error cometido por Poincaré y la forma en que fue corregi­
do dio lugar a cierta controversia, sobre todo, como cabía esperar, 
en Alemania. A pesar de que Mittag-Leffler había intentado mini­
mizar la importancia del error -y, en parte, también ocultarlo-, 
los hechos trascendieron. Poco después de la publicación del ar­
tículo de Poincaré, Weierstrass, que, al parecer, terminó arrepin­
tiéndose de haber sido miembro del jurado, escribió a Mittag­
Leffler: «Se ha debatido acaloradamente, con fundamento y no de 
la forma más amistosa, que en la memoria de Poincaré se han 
descubierto errores significativos, y de ahí la necesidad de revisar 
un párrafo bastante largo de lo que había sido escrito». Sin duda 
era difícil de entender que apareciera publicado un trabajo con la 
mención de «galardonado por el rey de Suecia» y que contuviera 
un apartado que no figuraba en el texto que había sido premiado. 
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CAOS EN EL SISTEMA SOLAR 

El enredo homoclino descubierto por Poincaré es uno de los ejemplos cono­
cidos de caos determinista. Las trayectorias que pasan cerca del punto de 
equil ibrio se comportan de manera caótica. Es uno de los mecanismos que 
pueden conducir al comportamiento caótico de los planetas del sis tema solar. 
El francés Jacques Laskar (n. 1955) es uno de los astrónomos que ha realiza­
do m inuciosas computaciones numéricas de la evolución del sistema solar a 
muy largo p lazo y ha demostrado que su comportamiento es caótico, pudien­
do darse el caso de que la trayectoria de Mercurio llegue a interceptar la de 
Venus o incluso la de la Tierra . Una característ ica del caos determin ista es la 
sensibil idad a las cond ic iones iniciales, de forma que diferencias de tan solo 
un metro en la posición actual del planeta pueden llevar a trayectorias com­
pletamente diferentes en el futuro. Pero no es un asunto preocupante, puesto 
que el lo solo podría ocurrir dentro de cientos de millones de años. 

En cualquier caso, fue el propio Poincaré quien descubrió el error, 
quien lo admitió ante Phragmén y Mittag-Leffler y quien, finalmen­
te, lo corrigió, haciendo entonces un descubrimiento mayúsculo, 
que dotaba a la memoria final de un valor superior al que ya tenía 
la inicial. De todas formas, la obtención del premio del rey de 
Suecia dio a Poincaré fama mundial y le convirtió en una de las 
personalidades más reconocidas de su país. 

POINCARÉ LLORA A SU MADRE 

La concesión del premio del rey de Suecia coincidió con el naci­
miento de la segunda hija de Poincaré, Yvonne. El padre de Poinca­
ré murió en 1892, y su madre, el 15 de julio de 1897. El matemático 
estaba muy unido a su madre y su muerte le afectó profundamente. 
En una carta escrita el 31 de julio a Mittag-Leffler, escribía: 

Mi querido amigo: las dolorosas circunstancias que acabo de atrave­
sar van a forzarme todavía más a retardar la redacción de mi artícu­
lo sobre Weierstrass. ( ... ] Iba a ponem1e al trabajo cuando llegó la 
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UNA NUEVA FORMA DE PENSAR 

La secuela del ensayo de Poincaré para 
el premio del rey de Suecia fue un traba­
jo publicado en tres tomos bajo el titulo 
de Los nuevos métodos de la mecánica 
celeste. Pero los métodos que Poincaré 
presentaba en su tratado trascendían el 
campo de la mecánica celeste, ya que 
eran aplicables a cualquier problema que 
se pueda formular en términos de ecua­
ciones diferenciales. Durante la segunda 
mitad del siglo xx los físicos y los mate­
máticos desarrollaron lo que se conoce 
de manera general como la teoría de sis­
temas dinámicos. Esta teoría proporcio­
na una serie de herramientas matemáti­
cas (analíticas, topológicas, geométricas 
y numéricas) que permite analizar de 
forma cualitativa y cuantitativa sistemas 
gobernados por ecuaciones diferencia­
les. Varias de estas herramientas t ienen 
su origen en los trabajos de Poincaré. 
Dada la generalidad de su planteamiento, 

mus 
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Portada del tercero de los volúmenes que 
recogieron las lecciones de Poincaré 
sobre mecánica celeste. 

hoy en día se aplican no solo a la mecánica celeste o a la física, sino también 
a la química, la biología o incluso la economía y la sociología. 

desgracia. He querido retomarlo hace unos días pero no me siento 
todavía en condiciones de trabajar de forma continuada. 

La amistad entre Mittag-Leffler y Poincaré quedó reflejada en 
estas cartas en las que, por debajo del tono formal y extremada­
mente cortés habitual en la época y en las formas epistolares fran­
cesas, se adivina una estrecha relación humana. Así, en la respues­
ta de Mittag-Leffler podemos leer: «Qué desgracia la que acaba de 
golpearos. No hace ni unas semanas que vi a vuestra madre en 
vuestra casa llena de vitalidad. Creed mi buen amigo en mi más 
vivo acompañamiento en vuestro dolor» . 

Mittag-Leffler le preguntaba también si le encontraría en Zú­
rich, en el primer Congreso Internacional de Matemáticas que se 
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iba a celebrar allí en agosto de aquel año. El congreso había sido 
organizado por Klein y el propio Mittag-Leffler, entre otros, y se 
esperaba que Poincaré pronunciara la conferencia inaugural bajo 
el título «Sobre las relaciones entre el análisis puro y la física ma­
temática», pero Poincaré, todavía sin ánimo para ello, no acudió. 
Su ponencia fue leída por un matemático suizo, Jéróme Franel 
(1859-1939). Poincaré era ya una figura consagrada en el panorama 
internacional. 

POINCARÉ GANA UN CONCURSO 95 





CAPÍTULO 4 

¿Cuán unida está una esfera? 

Poincaré está considerado uno de los 
fundadores de la topología. En una serie de 

artículos publicados entre 1895 y 1904, introdujo un 
conjunto de conceptos que hoy día son parte fundamental 

de esta disciplina. En el último de esos artículos enunció su 
famosa conjetura, que se convirtió en uno de los problemas 

de más difícil resolución de las matemáticas del siglo xx. 
A principios del siglo XXI fue demostrada por Grigori 

Perelman, un gran matemático con una 
personalidad muy peculiar. 





Henri Poincaré puede ser considerado como uno de los últimos 
universalistas, ya que pertenece a esa selecta categoría de mate­
máticos que hicieron notables contribuciones en todos los campos. 
En su caso, ello se debe, en parte, a que su agudo ingenio le hacía 
ver las conexiones existentes entre problemas en apariencia muy 
diferentes. Así, como ya hemos visto en capítulos anteriores, en­
contró que la teoría de las ecuaciones diferenciales estaba relacio­
nada con la geometría no euclídea. Otro de sus temas preferidos, 
el problema de los tres cuerpos, le llevó a reflexionar sobre la es­
tructura general de las superficies multidimensionales, y ello, a su 
vez, le introdujo en el campo de la topología, del que nos ocupamos 
en este capítulo. 

En el primer capítulo se explicó que la topología se encarga 
de estudiar los objetos desde un punto de vista más general que 
el de la geometría. La topología se pregunta si un objeto está com­
puesto de varias partes, si tiene agujeros, si se puede ir de un 
punto a otro por varios caminos distintos, etc. Los trabajos de 
Poincaré sobre ecuaciones diferenciales le hicieron ver la necesi­
dad de estudiar a fondo todos estos conceptos y, lo que es más 
in1portante, generalizarlos a espacios de más de tres dimensiones. 
En 1895 Poincaré publicó un artículo en el Journal de l'École Po­
litechnique, en el número conmemorativo del centenario de su 
antigua escuela. El artículo tenía 121 páginas y marcó un hito en 
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la historia de la topología. En él se presentaban numerosas ideas 
nuevas, sobre todo en el ámbito de las técnicas para abordar los 
problemas topológicos. 

Además de enunciar varios teoremas nuevos, Poincaré comen­
taba resultados ya conocidos. Como ya le había ocurrido anterior­
mente, y, como por otra parte, resulta habitual en los trabajos 
científicos de primera línea, el artículo también contenía impreci­
siones y algún error significativo. La comunidad matemática inter­
nacional, muy atenta ya a todo lo que venía de Poincaré, empezó 
a estudiar a fondo todo el material desde el mismo día de su pu­
blicación. Los comentarios y críticas y las peticiones de aclaracio­
nes le llevaron a volver una y otra vez sobre el tema, y Poincaré 
escribió hasta cinco complementos al primer artículo. El último 
de ellos apareció en 1904 en la revista italianaRendiconti del Cir­
colo Matematico di Palermo y tenía una extensión de nada más y 
nada menos que 66 páginas. Fue en este quinto complemento don­
de apareció el enunciado definitivo de lo que después se dio en 
llamar «conjetura de Poincaré», en el que el nombre del gran ma­
temático francés quedó asociado para siempre a una de las grandes 
hazañas intelectuales del siglo xx. 

El artículo del Journal de l 'École Politechnique de 1895 lleva­
ba por título «Analysis situs». En su introducción puede leerse: 

El analysis situs es la ciencia que nos da a conocer las propiedades 
cualitativas de las figuras geométlicas no solamente en el espacio 
ordinario, sino en el espacio de más de tres din1ensiones. El analysis 
situs de tres dimensiones es para nosotros un conocimiento casi 
intuitivo, el analysis situs de más de tres dimensiones presenta, por 
el contrario, dificultades enormes; es necesario, para superarlas, 
estar muy persuadido de la extrema importancia de esta ciencia. 

Analysis situs es el nombre que algunos daban por entonces 
a esta ran1a de las matemáticas. Esta denominación perdería poco 
a poco preferencia en favor del uso de la actual denominación, 
topología. En su artículo, Poincaré definió dos conceptos funda­
mentales de la topología moderna: la homología y la homotopía. 
Ambos conceptos tenían precedentes. 
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LA HOMOLOGÍA 

Vimos en el capítulo 1 que el suizo Simon L'Huilier había genera­
lizado la ecuación de Euler 

C-A+ V=2, 

que relaciona el número de caras C, aristas A y vértices V de un 
poliedro. L'Huilier encontró que para un objeto con un número 
cualquiera de agujeros g se tiene que 

C -A + V= 2 - 2g. 

Al número g se le conoce como género de la superficie. El 
matemático alemán Bernhard Riemann (1826-1866) y su amigo el 
italiano Enrico Betti (1823-1892) relacionaron g con la conectivi­
dad de la superficie en cuestión. Riemann definió la conectividad 

DEMOSTRACIÓN DE LA FÓRMULA DE EULER 

La fórmula de Euler C-A + V= 2 se puede demostrar con relativa facilidad 
utilizando lo que los matemáticos llaman el principio de inducción, un princi­
pio que para Poincaré era especialmente importante por sus implicaciones 
filosóficas en cuanto a los fundamentos últimos de las matemáticas. El prin­
cipio de inducción se puede expresar diciendo que si se cumplen las dos 
premisas siguientes: 

a) Una propiedad es válida para un valor particular den, por ejemplo n = O. 

b) Suponiendo que la propiedad es vál ida para un número n cualquiera, 
podemos demostrar que también es válida para n+l, 

entonces la propiedad en cuestión se cumple para todos los valores den. En 
cuanto a la fórmula de Euler, ya vimos en el capítulo 1 que se cumple para el 
poliedro con C= 4 caras, el tetraedro. Supongamos ahora que se cumple para 
un poliedro cualquiera con C caras, A aristas y V vértices. Elegimos una cual­
quiera de las caras y le añadimos una arista. El número de vértices permane­
ce invariable, el número de aristas ha aumentado en uno y el de caras también, 
por lo que la fórmula sigue cumpliéndose para este poliedro, que ahora tiene 
C+l caras. 
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Cualquier lazo que 
tracemos sobre 

una esfera la 
divide en dos 

zonas. Esto no 
ocurre siempre en 
el caso de un toro. 

FIG. 1 

p de una superficie como el número más pequeño de lazos que se 
pueden dibujar sobre ella, de forma que inevitablemente la divida 
en dos. Para la esfera este número es 1, porque cualquier lazo que 
dibujemos sobre ella la divide en dos. Para el toro es 3, porque dos 
cortes no siempre bastan. En general se tiene que p = 2g + l. Betti, 
por su parte, se dio cuenta de que g también se podía definir a 
partir del número máximo de lazos cualesquiera que no dividían 
la superficie. Este número es O para la esfera y 2 para el toro. 

Poincaré generalizó las ideas de Betti a superficies de una 
dimensión cualquiera. A estas superficies, que pueden, a su vez, 
estar compuestas de distintas superficies conectadas o desconec­
tadas, se les llama técnicamente variedades. Y ese es el término 
ya utilizado por Poincaré en sus trabajos. Para una variedad de 
dimensión m, Poincaré definió un conjunto de números pk con 
k = 1, .. . , m-1, que él denominó «números de Betti», de forma que 
pk está relacionado con el número de agujeros de dimensión k de 
la variedad. Para definir de manera rigurosa los números de Betti 
Poincaré utilizó el concepto de homología. 

Para una variedad de dimensión m, la homología considera si 

-1 
1 

.... - - . - . - - . 1 

una curva, superficie o variedad de dimensión 
inferior la divide o no, y cómo lo hace. Es senci­
llo entender el concepto en una superficie bidi­
mensional. Por ejemplo, en la figura 1 vernos que 
una línea cerrada sobre una esfera forma un 
contorno que encierra un trozo de ella; sin em­
bargo, para un toro esto no siempre es así. Las 
homologías de un toro y de una esfera no son 
iguales, y tampoco lo son sus números de Betti, 
que aquí se reducen, esencialmente, a uno, que 
está relacionado con g. A partir de estos concep­
tos Poincaré fue capaz de definir un álgebra en­
tre variedades de dimensión inferior a una dada 
(curvas, superficies, etc.) y construir lo que se 
conoce corno el «grupo» de sus homologías. e) . 
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Una forma muy útil de estudiar las superfi­
cies, y que se generaliza fácilmente a dimensio­
nes superiores, es imaginarlas como construidas 
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Cinta de Móbius Botella de Klein 

a partir de piezas planas flexibles, por ejemplo, rectángulos cuyos 
lados se pegan unos a otros siguiendo unas reglas determinadas. 
El caso sencillo de un toro se muestra en la figura 2. Las flechas 
indican la orientación con la que debemos pegar los extremos del 
rectángulo. También se puede construir de esta manera una banda 
de Mobius o una botella de Klein. 

En la figura 3 se representa simbólicamente la regla para obte­
ner una banda de Mobius: hay que doblar la cinta sobre sí misma y 
pegar el vértice A con el C y el B con el D, haciendo coincidir los 
lados AB y CD. La botella de Klein es un poco más abstrusa. La 
primera operación es similar a la realizada para obtener el toro, 
pero la segunda implica una torsión similar a la de la banda de 
Mobius. Las flechas con sentido opuesto indican que hay que doblar 
la superficie antes de pegarla, de forma que la parte de adentro se 
convierte en la de afuera. La superficie resultante no se puede vi­
sualizar en el espacio ordinario de tres dimensiones, porque este 
doblado no es realizable en el espacio ordinario. Cualquier repre­
sentación que hagamos en tres dimensiones parece dar a entender 
que es una superficie que se interseca consigo misma, pero la regla 
de construcción a partir del rectángulo muestra que esto no es así. 

Las flechas dibujadas en cada lado nos indican si debemos 
girar o no ese lado antes de pegarlo con el lado correspondiente. 

FIG. 3 

- -
FIG. 2 
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FIG. 4 
Para entender cómo las reglas de pe­

1 ______ 1 

r --~ 
gado representan la superficie imagi­
nemos que vamos andando por ella. 
Un camino en la superficie se repre­
senta por una línea en el rectángulo, 
tal y como muestra la figura 4. Cuan­
do la línea llega a un contorno del 
rectángulo, el pegado significa que 
aparecemos por el otro .lado. La fle-

Camino sobre 
una superficie 
bidimensional. 

Al sa lir por 
la derecha 

reaparecemos por 
la izquierda; las 
flechas indican 

que lo hacemos 
con la misma 

orientación. 
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cha indica si, al atravesar el pegado, 
seguimos moviéndonos en la misma 

dirección o el pegado es tal que cambiamos la orientación de nues­
tro movimiento. 

Cualquier superficie, orientable o no, se puede construir a par­
tir de un polígono de n lados con las adecuadas reglas de pegado. 
Si en lugar de un polígono usamos un poliedro de varias caras y 
damos reglas de pegado identificando unas caras con otras, si­
guiendo un patrón determinado, el objeto resultante no es ya una 
superficie bidimensional, sino una variedad de tres dimensiones 
que solo puede existir en un espacio de cuatro, porque el proceso 
de doblar el poliedro para pegar una cara con otra requiere, en 
general, de una dimensión adicional. 

En su artículo de 1895, y también en los escritos posteriores, 
Poincaré usó profusamente este método de construcción de varie­
dades y ello le permitió definir los grupos de homología y calcular 
los números de Betti de diversas variedades tridimensionales idea­
das por él. 

El matemático danés Poul Heegaard (1871-1948), en un libro 
escrito en 1898, llamó la atención sobre algunos de los resultados 
obtenidos por Poincaré sobre los números de Betti, demostrando 
que no eran del todo generales. Ello llevó a Poincaré a retomar el 
tema en un primer complemento a su «Analysis situs», que apare­
ció en 1899. En ese artículo el matemático francés afinó la defini­
ción de los números de Betti, dio una nueva demostración de un 
importante teorema e introdujo nuevos conceptos, entre ellos el de 
torsión de una variedad. Este concepto es una generalización del 
concepto de orientabilidad a espacios de dimensión mayor que 2. 
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Uno de los teoremas más importantes que Poincaré fue capaz 
de demostrar con todas estas técnicas fue la generalización de la 
fómmla de Euler a «poliedros» formados por vaiiedades de cual­
quier dimensión. Para un poliedro en un espacio de n dimensiones 
la fórmula de Poincai·é era la siguiente: 

NO - NI+ N2 -N3 + ... N,,_l = 1-(- 1)", 

donde N 0 es el número de vértices; N, el de aristas· N el de fron-
1 ' 2' 

teras bidimensionales; N 3, el de fronteras tridimensionales, etc. 
Paran = 3 el lector puede comprobar que se obtiene la fórmula de 
Euler. La forma en que este teorema fue demostrado por Poincaré 
en 1895 se reveló incorrecta más tarde, aunque el teorema es cier­
to y fue rigurosamente demostrado por otros matemáticos. 

HOMOTOPÍA 

En <<Analysis situs» Poincaré también construyó una forma in­
trínseca de definir la topología de una superficie diferente de la 
homología. Esta forma se denomina «intrínseca», porque permite 
estudiar la superficie desde dentro de la misma, de manera análo­
ga a como los topógrafos detemünaron en su día la forma de la 
Tierra haciendo medidas sobre su superficie. Lo que Poincaré de­
finió se conoce como «grupo de homotopía» y para ello se inspiró 
en los trabajos previos de Gauss y Camille Jordan. 

Consideremos primero el caso de una circunferencia e imagi­
nemos un ser puntual que vive en ella y quiere explorar su mundo. 
Este ser tiene un hilo largo que va soltando a medida que anda. 
Puede comenzar a andar en una dirección y verá que al cabo del 
tiempo ha dado una vuelta y se encuentra en el mismo sitio del que 
partió. Si da dos vueltas, vuelve al mismo sitio, pero el hilo da dos 
vueltas sobre sí mismo. Si da una vuelta en un sentido y luego da 
otra en sentido contrario, es como si no se hubiera movido, porque 
está en el mismo sitio y ha recogido todo el hilo que había soltado. 
Podemos considerar positiva una dirección, por ejemplo, la hora­
ria; y negativa la otra, por ejemplo, antihoraria. Dar cuatro vueltas 
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en una dirección es equivalente a dar cinco en esa dirección y 
una en dirección contraria. Tenemos así definida una serie de ac­
ciones, dar vueltas en un sentido o en otro, que podemos combinar. 

Esta estructura forma lo que los matemáticos llaman «un gru­
po». Si combinamos dos de estas acciones, por ejemplo, dar tres 
vueltas en un sentido y luego dar dos en el mismo sentido, obte­
nemos otra de las acciones posibles: dar cinco vueltas. Además, 
hay una acción nula, dar cero vueltas, que podemos hacer después 
de cualquier otra sin alterarla. Por último, cada acción tiene una 
contraria: dar el mismo número de vueltas en dirección contraria, 
lo que nos deja en el mismo lugar. Esta estructura se conoce como 
«grupo de homotopía»; en este caso, el grupo de homotopía aso­
ciado a la circunferencia. Como el lector ha podido intuir este 
grupo es idéntico al de los números enteros: ... ,-5, -4, -3, -2,-1, O, 
1, 2, 3, 4, ... con la suma habitual, grupo que se conoce en matemá­
ticas por el símbolo Z. Y toda esta estructura se mantiene aunque 
la curva en la que viviera este ser imaginario no fuera una circun­
ferencia, sino un lazo simple. Cualquier lazo simple se puede de­
formar para formar una circunferencia y su grupo de homotopía 
es el de los números enteros. 

«La ciencia son hechos; de la misma manera que las casas están 
hechas de piedras, la ciencia está hecha de hechos; pero un 
montón de piedras no es una casa y una colección de hechos 
no es necesariamente ciencia.» 
- HENRI POINCARÉ. 

Tomemos ahora otro ejemplo sencillo: el de una línea recta. 
Nuestro ser puntual imaginario puede ahora moverse sobre la línea 
hacia un lado o hacia otro, pero no puede dar una vuelta a nada. 
Como en topología podemos estirar y deformar los objetos, cual­
quier excursión de nuestro ser imaginario puede ser contrarresta­
da por un estiramiento o una contracción. En realidad, desde el 
punto de vista topológico, cualquier acción que haga este ser pun­
tual es equivalente a quedarse en el mismo sitio. El grupo de ho-

106 ¿cuAN UNIDA ESTÁ UNA ESFERA? 



motopía tiene ahora un solo elemento, que matemáticamente po­
demos identificar con el cero y que los matemáticos llaman el 
«grupo trivial». 

Para un toro nuestro ser imaginario tiene dos formas de dar 
vueltas: una alrededor del agujero central y otra alrededor de una 
sección. Si volvemos a usar el hilo, este puede ahora enrollarse de 
dos maneras posibles y desenrollarse de las dos maneras. Tenemos 
entonces que cualquier acción se reduce a un par de números en­
teros (m, n), donde m y n son enteros que representan el número 
neto de vueltas que se dan en un sentido o en otro de las dos for­
mas posibles. El grupo de homotopía del toro es, por tanto, el de 
los enteros repetido una vez, lo que los matemáticos escriben 
como ZxZ. 

El caso de una esfera de dos dimensiones en el espacio tridi­
mensional es especialmente sencillo: cualquier camino cerrado 
puede deformarse continuamente hasta hacer de él un punto, por 
lo que cualquier camino que recorra nuestro ser imaginario es equi­
valente, topológicamente hablando, a no moverse. El grupo de 
homotopía de la esfera solo tiene un elemento, por lo que de nue­
vo es el grupo trivial, representable por el cero u operación iden­
tidad. Poincaré generalizó el concepto de homotopía a espacios 
de dimensión cualquiera y llamó al grupo de homotopía de una 
variedad el «grupo fundamental». 

El matemático francés se interesó especialmente por el caso 
de la esfera de tres dimensiones. Una esfera en el espacio tridi­
mensional se define por el conjunto de puntos que equidistan de 
un punto dado, el centro de la esfera. En coordenadas cartesianas 
una esfera de radio unidad centrada en el origen viene dada por la 
ecuación 

:r+y2+z2=l. 

La esfera así definida es una superficie bidimensional, porque 
para situamos sobre ella es suficiente con dar dos números, ya que 
la ecuación anterior proporciona la tercera coordenada del punto 
correspondiente. En geografía, por ejemplo, basta con dar la lon­
gitud y la latitud de un lugar para situarnos con precisión sobre la 
superficie terrestre. 
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En un espacio de cuatro dimensiones (x, y, z, w) podríamos 
definir una «hipersuperficie» por la ecuación 

Esta hipersuperficie resulta ser un objeto 3-dimensional, por­
que para situarnos sobre ella necesitaríamos dar tres números. 

En su artículo de 1895 Poincaré creyó establecer que toda 
variedad de tres dimensiones que tenga el mismo grupo de homo­
logía que una esfera es topológicamente equivalente a una esfera. 
Es decir, que el grupo de homología de una variedad era suficien­
te para caracterizarla y determinaba también su grupo de homoto­
pía. Pero poco después se dio cuenta de que las cosas eran más 
complicadas. En un segundo complemento a su «Analysis situs», 
publicado en 1900, enunció una primera versión de su conjetura: 
«Todo poliedro orientable con todos sus números de Betti iguales 
a 1 es simplemente conexo, es decir, homeomorfo a una hiperes­
fera» (la palabra «homeomorfo» significa aquí que se puede defor­
mar de manera continua hasta conseguir una hiperesfera). 

Pero en el quinto complemento, que como ya se ha comentado 
se publicó en 1904, se desdijo de esta afirmación, porque se había 
dado cuenta de que no era completamente general. En ese artículo 
Poincaré presentaba una superficie, construida pegando dos toros 
sólidos de una forma bastante complicada, que tenía el mismo gru­
po de homología que una esfera, pero que no era topológicamente 
equivalente a ella. En la introducción al artículo se decía: 

Podríamos preguntarnos entonces si la consideración de estos coe­
ficientes es suficiente; si una variedad en la que todos los números 
de Betti y coeficientes de torsión son iguales a 1 es por ello simple­
mente conexa en el sentido propio del témúno, es decir, homeomor­
fa a la hiperesfera; o si, por el contrario, es necesario, antes de afir­

mar que una variedad es simplemente conexa, estudiar su grupo 
fundamental, que definí en el Journal de l'École Polytechnique. 

Es decir, ¿bastaba la homología para definir una variedad o 
había también que estudiar su grupo de homotopía? El propio Poin­
caré respondía a esa pregunta con un contraejemplo: 
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EL DODECAEDRO DE POINCARÉ 

La variedad que Poincaré construyó en su 
quinto complemento a su «Analysis situs» era 
un ejemplo de que la homología no era sufi­
ciente para determinar si una variedad n-di­
mensional es topológicamente equivalente a 
una n-esfera. La construcción de Poincaré es 
complicada de entender, pero veintiún años 
después de la muerte del gran matemático 
francés, Herbert Seifert y Constantin Weber 
demostraron que la misma variedad se podía 
construir a partir de un dodecaedro usando 
la técnica del pegado. El dodecaedro es uno 
de los cinco sólidos platónicos y consiste en un poliedro de doce caras todas 
ellas pentagonales (véase la figura). Para construir la var iedad de Poincaré 
hay que unir cada cara con la que está opuesta a ella, pero antes de pegar­
las hay que girar la cara lo justo para que un lado de una cara coincida con el 
de la cara opuesta. Esto hay que hacerlo con todas la caras, es decir, hay que 
realizar seis pegados. Como el interior del dodecaedro es un volumen de tres 
dimensiones, la variedad resultante es tridimensional. Obviamente, la opera­
ción de pegar todas las caras unas con otras no se puede realizar en el espacio 
ordinario. El dodecaedro de Poincaré solo existe en un espacio de cuatro di­
mensiones. 

Podernos ahora responder a esta cuestión: he construido un ejemplo 
de variedad en la que todos los coeficientes de torsión y todos los 
números de Betti son iguales a 1 y, sin embargo, no es simplemente 
conexa. 

Esta variedad tridimensional se conoce hoy en día como el 
dodecaedro de Poincaré, porque, tal y como demostraron Seüert 
y Weber varios años después de la muerte de Poincaré, se puede 
construir a partir de un dodecaedro, identificando las caras opues­
tas tras girarlas 36°. 

Al igual que había pasado años antes con la memoria realizada 
para el premio del rey de Suecia, la corrección de un error inicial 
acabó también aquí transformándose en una aportación matemá­
tica de primera línea, muy avanzada en su tiempo. En este quinto 
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complemento Poincaré describió en detalle la construcción de su 
dodecaedro y demostró que su grupo de homotopía no es el trivial 
(en realidad, tiene 120 elementos) y, por tanto, no puede ser ho­
meomorfo a una esfera. En la última página de este artículo figura 
la siguiente frase: 

¿Es posible que el grupo fundamental de una variedad V se reduzca 
a la sustitución identidad y, sin embargo, V no sea simplemente co­
nexa? 

Este es el enunciado de la conjetura de Poincaré tal y como 
él mismo lo propuso. Expuesto en estos términos no era realmen­
te una conjetura, sino una pregunta, y no tenemos razones para 
decidirnos a cuál de las dos respuestas (sí o no) daba Poincaré 
más opciones. El caso es que la afirmación positiva: «Toda varie­
dad cuyo grupo fµndamental es el trivial es simplemente conexa, 
es decir, homeomorfa a una hiperesfera» es la que los matemáticos 
pronto empezaron a valorar como cierta y lo que en realidad se 
debería haber llamado «el problema de Poincaré» pasó a llamarse 
su conjetura. 

Después de unas líneas con una pequeña discusión muy téc­
nica, el quinto complemento acaba diciendo: «Pero esta cuestión 
nos llevaría demasiado lejos». ¡Y tan lejos! Hizo falta un siglo de 
trabajo de algunos de los mejores matemáticos del mundo para 
resolverla. 

LA RESOLUCIÓN DE LA CONJETURA 

La expresión «variedad cuyo grupo fundamental es el trivial» sig­
nifica que toda línea cerrada que tracemos sobre la variedad puede 
deformarse continuamente hasta reducirla a un punto. La conje­
tura de Poincaré se puede expresar, por tanto, diciendo que toda 
«superficie» n-dimensional que sea finita, no tenga fronteras y en 
la cual todo lazo pueda reducirse a un punto, se puede deformar 
continuamente hasta convertirla en unan-esfera. Por finita en ten-
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demos que la podemos encerrar en un recinto. Por ejemplo, una 
circunferencia es finita, ya que podemos encerrarla en un cuadra­
do, pero un plano o una línea recta no lo son. Y el que no tenga 
fronteras significa que no hay una línea o superficie más allá de la 
cual la superficie no existe. Por ejemplo, un toro o una esfera no 
tienen fronteras: si andamos sobre ellos no llegamos nunca a un 
borde. Pero una banda de Mobius, la superficie de una mesa o 
un disco sí tienen fronteras: en todas estas superficies hay una lí­
nea que, si se traspasa, se sale de la superficie. 

La cortjetura de Poincaré es claramente cierta para dos dimen­
siones, aunque una prueba de esta afirmación aceptable para un 
matemático puede tener un aspecto sorprendente para alguien no 
acostumbrado a las demostraciones. En cualquier caso, es algo 
que puede comprobarse dibujando. Y ahí se quedó todo durante 
la mayor parte del siglo xx. No se dieron nuevos avances hasta 
1961, cuando el matemático americano Stephen Smale (n. 1930) 
demostró que la cortjetura era cierta para espacios de dimensión 
mayor o igual a 7. La demostración de Smale usa técnicas pura­
mente topológicas y parte de la idea de que un toro es topológica­
mente equivalente a una esfera a la que se la ha añadido un asa. 
Las ideas de Smale no se podían aplicar a espacios de menos di­
mensiones porque, hablando un poco tontamente, en estos «no 
hay sitio» para hacer las transformaciones necesarias. John Sta­
llings (1935-2008) y Christopher Zeeman (n. 1925) superaron los 
problemas de Smale y demostraron la cortjetura para seis y cinco 
dimensiones. Tomando un camino completamente diferente, en 
1982 Michael Freedman (n. 1951) consiguió demostrar la cortjetu­
ra para cuatro dimensiones. 

Y de nuevo vino el estancamiento. Todas las técnicas usadas 
para las dimensiones superiores eran inútiles para tratar el caso 
de dimensión tres. Esto es, el caso de una variedad, o «hipersu­
perficie» de tres dimensiones contenida en un espacio de cuatro 
dimensiones. El camino hacia la demostración de la cortjetura 
en tres dimensiones vino por terrenos totalmente distintos a los 
usados en las dimensiones anteriores. Un camino que, a buen 
seguro, hubiera sido muy del agrado de Henri Poincaré: la geo­
metría no euclídea. A lo largo de este libro ya hemos visto otra 
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conexión entre la geometría no euclídea y otras ramas de las 
matemáticas, ya que Poincaré la utilizó en su teoría de las ecua­
ciones diferenciales. 

En el capítulo 1 hablamos de las tres geometrías posibles en 
el espacio de tres dimensiones: la euclídea, cuya curvatura es 
cero; la elíptica, de curvatura positiva, y la hiperbólica, de curva­
tura negativa. Ejemplo de la primera es el plano, donde la línea 
más corta entre dos puntos es la recta, y los ángulos de un trián­
gulo suman 180º. La geometría elíptica se da en una esfera, donde 
los círculos máximos son las líneas más cortas entre dos puntos 
y los ángulos de un triángulo suman más de 180°. Por último, la 
geometría hiperbólica es la de una superficie como una silla de 
montar, donde los ángulos de un triángulo suman menos de 180°. 
Cualquier superficie bidimensional se puede deformar, aunque 
sea por trozos, en una superficie que tenga uno de estos tres tipos 
de geometría. Esta idea fue el punto de partida de los trabajos del 
matemático americano William Thurston (1946-2012). 

Thurston extendió esta clasificación a variedades de tres di­
mensiones y encontró que, en ese caso, hay ocho geometrías po­
sibles: las tres habituales, algunas combinaciones de ellas y otras 
geometrías más exóticas. El siguiente paso era comprobar si cual­
quier variedad tridimensional era clasificable dentro de una de las 
ocho geometrías posibles, y ahí las cosas se volvieron complicadas. 
Thurston no resolvió del todo el problema, pero en 1982 lanzó lo 
que pasó a llamarse la conjetura de geometrización: «Toda varie­
dad tridimensional admite una descomposición única en trozos, 
cada uno de los cuales coITesponde a una de las ocho geometrías 
posibles». Y lo que es más importante para lo que nos ocupa: 
Thurston demostró que la conjetura de Poincaré era una conse­
cuencia directa de su conjetura. Es decir, si su conjetura era cier­
ta, también lo era la de Poincaré. 

Nuestro siguiente protagonista es otro americano, Richard 
Hamilton (n. 1943), quien inventó lo que se conoce como «flujo de 
Ricci», la he1Tamienta matemática que, en última instancia, lleva­
ría a la demostración definitiva de la conjetura de Poincaré. El 
nombre de Ricci se refiere al matemático italiano Gregario Ricci­
Curbastro (1853-1925), que introdujo el tensor que lleva su nombre 
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en su contribución a la geometría no euclídea. El tensor de Ricci 
es un objeto matemático que caracteriza la curvatura de una su­
perficie o un espacio no euclídeo. Es uno de los elementos que 
aparece en la ecuación de Einstein de la teoría general de la rela­
tividad, que relaciona la curvatura del espacio-tiempo con su con- . 
tenido en masa-energía. 

Un concepto más sencillo, el flujo de curvatura, nos puede 
ayudar a entender el programa de Harnilton al inventar el flujo de 
Ricci. Supongamos que tenernos un lazo cerrado con una forma 
cualquiera. Empecemos a deformarlo de forma que aplastarnos las 
zonas convexas a un ritmo proporcional a su curvatura, mientras 
que tirarnos de las zonas cóncavas (figura 5). Poco a poco iremos 
alisando los salientes y reduciendo los entrantes hasta obtener una 
circunferencia. Podríamos hacer el proceso en dos dimensiones, 
corno se muestra en la figura 6 y convertir poco a poco una super­
ficie en forma de pera en una esfera. Parece intuitivo que, si apli­
camos este tipo de flujo a una superficie cualquiera, obtendremos 
al final una esfera si y solo si la superficie de partida es topológi­
carnente equivalente a una esfera. 

El flujo de Ricci es, en cierta forma, una generalización de 
estas ideas a espacios de dimensión mayor que 2. Harnilton definió 
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la forma de proceder, pero pronto encontró dificultades: el flujo 
podía desarrollar singularidades, es decir, puntos donde la super­
ficie colapsaba en un punto o el flujo divergía, y no estaba claro 
que estas singularidades fueran siempre manejables. Y es aquí 
cuando entra en escena el último héroe de esta historia: Grigori 
Perelman. 

EL GENIO DE SAN PETERSBURGO 

Grigori Perelman nació en 1966 en Leningrado (actual San Peters­
burgo ). Con quince años obtuvo el primer puesto en las olimpiadas 
de las matemáticas de su ciudad y, después, de toda la URSS. Tras 
graduarse en la Universidad Estatal de Leningrado ingresó en el 
Instituto de Matemáticas Steklov, también ubicado en su ciudad 
natal, un centro que durante la época soviética fue uno de los 
mejores institutos de matemáticas del mundo. En este período 
trabajó con grandes matemáticos rusos, como Aleksandr Aleksan­
drov (1912-1999). 

En 1992 Perelman consiguió una beca para realizar una estan­
cia en el Instituto Courant de Ciencias Matemáticas de Nueva York 
Allí conoció a Gang Tian (n. 1956), con quien a menudo alquilaba 
un coche para ir a Princeton o Stony Brook con el fin de asistir a 
las conferencias de los mejores matemáticos del mundo. En una 
de estas conferencias, Perelman conoció a Hamilton y mantuvo 
una conversación con él sobre los flujos de Ricci y sus ideas para 
demostrar la conjetura de Poincaré. 

Tras tres años en diversos centros de Estados Unidos, varias 
universidades ofrecieron a Perelman un puesto de profesor. Pero 
un día cayó en sus manos un artículo de Hamilton y se dio cuenta 
de que este se había atascado en su trabajo sobre la conjetura de 
Poincaré. Le escribió ofreciéndose a colaborar, pero Hamilton no 
respondió, con lo que entendió que podía trabajar solo en el pro­
blema. 

Perelman decidió entonces rechazar todas las ofertas y volver 
a San Petersburgo, ya que necesitaba tiempo y tranquilidad para 
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trabajar. A su vuelta a su ciudad natal, su padre se había marchado 
a Israel, a donde pronto le siguió su hermana, así que se quedó solo 
con su madre. Vivían los dos en diferentes apartamentos del mismo 
barrio. Perelman, que oficialmente era miembro del Instituto Ste­
klov al que presentaba informes puntualmente, se encerró a tra­
bajar en su casa, relacionándose solo con algunos colegas del 
instituto. 

En julio de 2000 el Instituto Clay de Matemáticas anunció los 
premios a los problemas del milenio. Este centro había sido fun­
dado en 1998 por un multimillonario norteamericano, Landon Clay, 
con la idea de contribuir al progreso de las matemáticas. En el año 
2000 varios matemáticos eligieron una lista de siete problemas, los 
problemas del milenio, y el instituto anunció una recompensa de 
un millón de dólares por la resolución de cada uno de ellos. La 
conjetura de Poincaré estaba en la lista. 

A estas alturas Perelman llevaba ya cinco años trabajando en 
ello. Solo salía a pasear y a algún concierto de música clásica. El 
11 de noviembre de 2002 envió a la web arXiv.org un trabajo titu­
lado The Entropy Formula far the Ricci Flow and its Geometric 
Applications ( «La fórmula de la entropía para el flujo de Ricci y 
sus aplicaciones geométricas»). Todo en Perelman era especial, 
porque lo habitual en la comunidad científica hubiera sido enviar 
un trabajo de semejante calado a una revista científica reconoci­
da. Es cierto que, a veces, se cuelga en arXiv.org una primera 
versión de un trabajo importante, con la intención de publicarlo 
después en una revista reconocida. Pero en el caso de Perelman 
él envió a arXiv.org el trabajo definitivo, que no envió a ningún 
sitio más. De hecho, su artículo sigue disponible íntegramente 
para todos, aunque en realidad muy poca gente en el mundo pue­
de entenderlo. 

El artículo tiene 40 páginas y está firmado por Grisha Perel­
man (Grisha es el diminutivo de Grigori en ruso). A pie de página 
hay una nota que contiene esta singular aclaración: 

Me he financiado parcialmente con los ahorros acumulados durante 
mis visitas al Instituto Courant en otoño de 1992, al SUNY en Stony 
Brook en la primavera de 1993 y a la Universidad de California en 
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Berkeley como Miller Fellow en 1993-1995. Quisiera expresar mi 
agradecimiento a todos los que trabajaron para darme estas oportu­
nidades. 

El texto inicial fue seguido por dos complementos más en 
marzo y julio de 2003, en los que se aclaraban y extendían algunos 
conceptos. En estos tres artículos Perelman presenta su teoría 
general para resolver las singularidades del flujo de Ricci y com­
pletar el programa de Hamilton, demostrando la conjetura de geo­
metrización de Thurston y, en consecuencia, la conjetura de Poin­
caré. En realidad, los resultados presentados van más allá de la 
demostración de la conjetura de Thurston. Son trabajos especial­
mente difíciles, ya que hacen uso de campos muy diferentes de las 
matemáticas. Y, curiosamente, en ninguno de ellos se nombra a 
Poincaré ni a su conjetura. 

Gang Tian, su colega del Instituto Courant, llevaba siete años 
sin oír hablar de él cuando, de buenas a primeras, recibió un correo 
electrónico de Perelman, en el que le contaba sus progresos y le 
explicaba que había publicado sus resultados en arXiv.org. Tian 
invitó a Perelman a Estados Unidos para dar charlas sobre su tra­
bajo, invitación que Perelman, deseoso de discutir e intercambiar 
ideas con sus colegas, aceptó inmediatan1ente. De esta forma, Pe­
relman volvió a Estados Unidos en 2003, invitado a dar charlas y 
seminarios en las mejores universidades del país. Él no aceptaba 
cámaras, ni periodistas, ni grabaciones. De hecho es relativamen­
te difícil encontrar imágenes suyas en intemet. En las charlas no 
nombraba la conjetura siquiera, porque era solo uno de los coro­
larios de su teoría. 

Durante este viaje varias universidades volvieron a ofrecerle 
un puesto de profesor, pero Perelman rechazó todas las ofertas y 
regresó de nuevo a San Petersburgo. La comprobación de que Pe­
relman había demostrado la conjetura de Poincaré llevó años, 
porque nadie tenía conocimientos lo suficientemente profundos 
en campos tan diferentes como para diseccionarla. La comunidad 
matemática internacional está bastante acostumbrada a que al­
guien anuncie la demostración de un teorema famoso y después 
la demostración sea falsa o incompleta, incluso cuando el que hace 
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el anuncio es un matemático de reconocida valía, como era el caso 
de Perelman. Por ello los máximos expertos mantuvieron un sano 
escepticismo, mientras diseccionaban punto por punto los trabajos 
del matemático ruso. 

«No me interesa la geometria, me interesa la moral.» 
- ALEKSANDR ALEKSANDROV, MATEMÁTICO RUSO PROFESOR DE PERELMAN. 
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Pero Perelman pareció cansarse de esperar y en diciembre de 
2005 dimitió de su instituto, en un gesto que solo se podía inter­
pretar como que abandonaba las matemáticas. En 2006 los dos 
grupos que trabajaban independientemente en la comprobación 
de la teoría de Perelman anunciaron que la prueba era correcta y 
el nombre de Perelman saltó a los periódicos de todo el mundo. 
Pero también saltó un escándalo. Dos matemáticos chinos anun­
ciaron que Perelman solo había hecho una parte del trabajo, un 
25%, y que ellos habían terminado la demostración. Perelman res­
pondió a estas insinuaciones diciendo que los matemáticos chinos, 
en realidad, ·no habían entendido su trabajo y que no aportaban 
nada nuevo. 

En el mismo año la Unión Matemática Internacional otorgó a 
Perelman la medalla Fields, el más in1portante galardón mundial 
en el campo de las matemáticas. Esta medalla se otorga cada cua­
tro años a cuatro matemáticos menores de cuarenta años. Pero 
Perelman rechazó el premio. A estas alturas ya parecía creer que 
todo estaba conupto y que los matemáticos msos no le defendían 
suficientemente. Los años de espera y el asunto de la autoría, que 
los chinos habían puesto en duda, habían hecho mella en su ánimo 
probablemente. Para Perelman las matemáticas no eran solo la 
primera de las ciencias, sino también una ciencia moral. 

Las medallas Fields del año 2006 se entregaron en el Congre­
so Internacional de Matemáticas de Mad1id. El rey Juan Carlos I 
de España entregó las medallas. Los otros tres matemáticos pre­
miados recibieron solemnemente las suyas y hablaron sobre sus 
logros en ponencias plenarias, pero Perelman no apareció. Cuando 
el presidente de la Unión Matemática Internacional anunció su 
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nombre y admitió que, lamentablemente, el gran matemático ruso 
había declinado asistir y rechazaba el premio, hubo un momento 
de desconcierto entre los asistentes, que no sabían si aplaudir o 
guardar silencio. 

A partir de entonces Perelman rompió con todos. Ya no con­
testaba los correos electrónicos. John Morgan (n. 1946) y su anti­
guo colega Gang Tian, dos de los expertos que habían estado es­
tudiando su trabajo, publicaron un libro con sus conclusiones y le 
enviaron un ejemplar para que lo evaluase. Perelman les devolvió 
el libro sin abrirlo. 

El Instituto Clay tardó hasta el año 2010 en hacer pública su 
conclusión definitiva: la prueba de la conjetura de Poincaré era 
correcta y su autor era Perelman y nadie más. En el comité que 
había estudiado la situación estaban todos los grandes expertos 
mundiales sobre el tema. El instituto concedió a Perelrnan el mi­
llón de dólares del premio del milenio. 

Pero habían pasado ocho años desde que Perelrnan envió su 
artículo a internet. Perelman respondió que tenía que pensárselo, 
y tardó unos meses en responder. El 1 de julio de 2010 rechazó 
definitivan1ente el premio, porque no le parecía justo. Parece ser 
que Perelman pensaba que Hamilton también era merecedor del 
premio y, en cualquier caso, no estaba de acuerdo con la comuni­
dad matemática, ya no se sentía parte de ella. 

A lo largo de toda su carrera Perelman huyó de las cámaras y 
de los periodistas. No quería notmiedad ni fama. Paradójican1ente 
su actitud le convirtió en un personaje mediático. Ninguno de los 
otros tres galardonados con la medalla Fields en Madrid en 2006 es 
conocido por el gran público. Son personas respetadas por su tra­
bajo dentro de la comunidad matemática, pero pasan desapercibi­
dos fuera de ella. Justo lo que Perelman hubiera querido para sí 
mismo. Pero su negativa a aceptar el premio, y más aún, su negati­
va a aceptar el premio del milenio, le convirtieron en un mito. Al­
gunos ven en sus gestos un desafío al establishment, otros un ges­
to anticapitalista, otros la reivindicación de una forma romántica 
de hacer matemáticas, muchos lo ven simplemente como la acción 
de un loco extravagante. Lo único cierto es que el mundo de las 
matemáticas perdió con todo ello a uno de sus mayores genios. 

lCUÁN UNIDA ESTÁ UNA ESFERA? 119 



POINCARÉ FIGURA PÚBLICA 

Desde 1881 hasta el final de su vida, Poincaré vivió en París. Apar­
te de su actividad científica y universitaria tuvo una activa vida 
social y conocía y frecuentaba a lo más granado de la sociedad 
parisina. Por ejemplo, conoció a la divulgadora del psicoanálisis 
en Francia, Marie Napoleón, hija de Roland Bonaparte y nieta de 
Frarn;ois Blanc, el fundador del Casino de Montecarlo. Roland era 
un científico que llegó a presidir la Sociedad de Geografía y la 
Academia de Ciencias. De hecho, su palacio en el número 10 de 
la Avenue d'Iéna fue la sede de la Sociedad de Geografía y es hoy 
un gran hotel. Poincaré cenó en esa casa varias veces, a la que 
acudían intelectuales y artistas de la época. Las cartas de Marie 
Napoleón a Poincaré dejan constancia de la admiración que ella 
sentía por el gran matemático francés. 

Con tan solo treinta y dos años, en enero de 1887, Poincaré 
fue nombrado miembro de la Academia de Ciencias, en su sección 
de geometría. Como suele ser habitual en este tipo de instituciones, 
el número de académicos es fijo y solo se puede optar a una plaza 
cuando se ha producido una vacante, normalmente por deceso. 
Los miembros de la Academia son elegidos entre los candidatos 
propuestos por votación de los miembros activos. El matemático 
Edmond Laguerre, que había sido uno de los profesores de Poin­
caré en la Politécnica, murió en agosto de 1886, dejando vacante 
su puesto en la Academia. Para reemplazarle se postularon Poin­
caré, Mannheim, Appell, Goursart, Humbert y Picard. Mannheim 
había sido profesor de Poincaré en la Politécnica y era mucho 
mayor que él - Poincaré había tenido algunos problemas con él 
por sus calificaciones en dibujo durante su época de estudiante- . 
A la votación decisiva llegaron Poincaré y Mannheim. Poincaré 
salió elegido por 31 votos frente a los 25 de su rival. Una vez más 
Hemüte, que era el decano de la sección de geometría, había sido 
el mentor de Poincaré en esta elección. Tanto Appell como Picard, 
los otros protegidos de Hemüte, fueron elegidos para la Academia, 
en la misma sección, poco después. Picard lo fue en 1889 y Appell 
en 1892. Lo que para muchos científicos era un reconocimiento 
por toda su carrera que se obtenía en la etapa ya madura de su vida 
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LA ACADÉMIE FRAN~AISE 

La Academia Francesa fue fundada en 
1635 por el cardena l Richel ieu durante 
el reinado de Luis XIII de Francia. El 
cometido de la Academia es estable­
cer las reglas por las que se rige la 
lengua francesa, así como promover 
su desarrollo. La Academia consta de 
cuarenta miembros, que ocupan su 
puesto de manera vitalicia. A la muer­
te de un académico se elige a su sus­
tituto por votación de los demás aca­
démicos. Sus miembros son conocidos 
como los inmortales, aunque este so­
brenombre se debe a que el lema de 
la Academia es «A la inmortalidad» y 
se refiere, lógicamente, a la lengua 
francesa , y no a los académicos. A la 
Academia han pertenecido no solo 
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Portada de la sexta edición del diccionario 
de la Academia Francesa, que fue publicada 

grandes poetas, filósofos y escritores en 
1835
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franceses, sino también muchos cien-
tíficos, como es el caso de Poincaré. 
La Academia Francesa sirvió de modelo para la fundación de instituciones 
similares en otros países europeos. 

intelectual, para Poincaré llegaba cuando todavía no había culmi­
nado ni la mitad de su ingente producción científica. 

En 1896 Poincaré accedió a la cátedra de Astronomía Mate­
mática y Mecánica Celeste. En 1906 fue elegido presidente de la 
Academia de Ciencias y en 1908 miembro de la Académie Fran<;ai­
se, el equivalente de la Real Academia Española de la Lengua. Para 
entonces los escritos de Poincaré habían trascendido el ámbito de 
la física y las matemáticas para adentrarse también en el terreno 
de la filosofía. La Academia Francesa es una institución más ex­
quisita, si cabe, que la Academia de Ciencias, ya que solo consta 
de cuarenta miembros, cuyo cometido es establecer las reglas de 
uso de la lengua francesa. La elección de Poincaré no fue un hecho 
excepcional para la Academia, porque, como él mismo se encargó 
de señalar en su discurso de aceptación, la Academia solía contar 
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entre sus miembros con científicos de primera línea para que apor­
taran su conocimiento en la labor de admitir nuevos vocablos den­
tro de la lengua. Con su nombran1iento Poincaré se unió a la lista 
de científicos que habían formado parte de la Academia, como 
D'Alembert, Bertrand o Pasteur. Sí es más llamativo que Poincaré 
viniera a sustituir a un poeta, Sully Prudhornrne, a quien dedicó su 
discurso de entrada en la Academia. 
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CAPÍTULO 5 

Poincaré y la teoría 
de la relatividad 

Henri Poincaré puede ser considerado, junto 
con Hendrik Lorentz y Albert Einstein, uno de 

los fundadores de la temía especial de la relatividad. 
Su interés por los problemas asociados a la teoría del 

electromagnetismo, en particular a la teoría de Lorentz, 
le llevaron a ref ormular los principios de la mecánica. 

Por otra parte, sus reflexiones sobre la inexistencia 
del espacio absoluto y sus escritos sobre la 
naturaleza del tiempo dejaron una notable 

huella en el joven Einstein. 





Henri Poincaré era un hombre de costun1bres regulares. Desayu­
naba a las ocho, almorzaba a las doce y cenaba a las siete. Corno 
él mismo contaba en La ciencia y el método, no solía tornar café 
después de cenar. Se acostaba a las diez y se levantaba a las siete 
de la mañana. Le gustaba pasear, pero no hacía otro tipo de ejer­
cicio. Ni era fumador ni le gustaba que la gente fumara. Medía 
1,65 rn y, hacia 1909, pesaba unos 70 kg. Conocernos estos detalles 
porque el doctor Étienne Toulouse, director del laboratorio de 
psicología experimental de la École des Hautes Études de París, 
realizó un estudio psicológico del personaje. Por él también sabe­
rnos que, aunque fue religioso en su infancia y adolescencia, dejó 
de ser creyente cuando tenía dieciocho años. Simpatizaba con las 
ideas políticas de su primo Rayrnond Poincaré, un conservador 
moderado, pero mantenía posiciones progresistas en ternas corno 
la educación o la participación de la mujer en la vida política. 
Desconfiaba de la Iglesia católica por sus posiciones anti-intelec­
tuales y su continuo interés en influir en la vida social y política 
del país. Quizá corno consecuencia de la guerra franco-prusiana 
siempre mantuvo una posición patriótica. Ello no le impidió man­
tener un intercambio franco y abierto con los científicos alemanes 
de su época, pero, si podía, prefería citar o resaltar los méritos de 
sus colegas franceses. Poincaré era un claro exponente de lo que 
podríamos llamar «la moral laica» de la República Francesa. Para 
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él, la honradez, la sinceridad, la lealtad, el servicio a la sociedad y 
la búsqueda del bien común eran valores supremos y universales. 

DEBER DE FUNCIONARIO: EL CASO DREYFUS 

Como servidor del Estado que era, Henri Poincaré se vio tangen­
cialmente envuelto en el caso Dreyfus, un asunto que dividió pro­
fundamente a la sociedad francesa del cambio de siglo. Alfred 
Dreyfus (1859-1935) era un capitán del ejército francés de origen 
judío que, en 1893, había sido destinado al Estado Mayor. Su nom­
bramiento no estuvo exento de polémica, ya que el antisemitismo 
estaba presente entre la jerarquía militar francesa de la época, 
como lo estaba, en general, en toda Europa. Su candidatura fue 
rechazada, en primera instancia, por el hecho de ser judío. Dreyfus 
presentó una protesta formal y, finalmente, fue admitido para el 
puesto. 

La guerra franco-prusiana había dejado huella en el estamen­
to militar francés y a finales de siglo se organizó un servicio de 
espionaje y contraespionaje cuyo objetivo principal era obtener 
información del ejército alemán y facilitarle información falsa. En 
este contexto los espías franceses encontraron en 1894 un docu­
mento, con información clasificada del ejército francés, entre las 
pertenencias de un oficial alemán adscrito a la embajada alemana 
en París. Corno la información tenía que venir del Estado Mayor, 
las· sospechas recayeron en el personal allí destinado. Sin haberse 
realizado una verdadera investigación, Dreyfus, que además era 

· alsaciano, la región que estaba en el centro del conflicto con Ale­
mania, fue acusado de aquel delito sin más pruebas que su origen 
y su carácter, más bien reservado. El asunto tomó un cariz esper­
péntico cuando se compararon la caligrafía de la nota intercepta­
da y la de Dreyfus. Aunque había diferencias sustanciales, el co­
mandante Du Paty de Clam dio por sentado que el autor de la nota 
era Dreyfus y así lo comunicó al general Mercier. Este, a su vez, 
encargó al fan10so policía Alphonse Bertillon que estudiara en de­
talle ambas caligrafías. Bertillon, ante las claras diferencias entre 
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la escritura de Dreyfus y la nota interceptada, inventó la teoría 
de que Dreyfus había cambiado su escritura conscientemente para 
que no pudiera acusársele. 

Dreyfus fue juzgado y condenado por alta traición. Se le des­
pojó de todos sus grados militares y fue deportado, en principio 
de por vida, a una prisión militar en la Guayana Francesa. Inme­
diatamente su hermano Mathieu y su familia iniciaron una campa­
ña para probar su inocencia. En 1896 el teniente coronel Picquart 
descubrió al verdadero culpable, Ferdinand Walsin Esterhazy, que, 
acuciado por las deudas que su aristocrático ritmo de vida le ge­
neraban, había estado vendiendo información a los alemanes. Es­
terhazy, de origen noble, era un hombre resentido con Francia y 
los judíos. En lugar de ser recompensado por su investigación, 
Picquart fue destinado a Túnez por el Estado Mayor, en un intento 
de mantenerle apartado del caso. Pero la persistencia de la fami­
lia de Dreyfus y del propio Picquart consiguió el favor de parte del 

ÉMILE ZOLA: «J'ACCUSE» 

La absolución de Esterhazy, el verdade­
ro culpable de los delitos de los que se 
acusaba a Dreyfus, llevó al escritor Émi­
le Zola (1840-1902) a publicar en el diario 
L 'Aurore en enero de 1898 una carta 
abierta al presidente de la República. En 
ella denunciaba las irregularidades del 
caso y acusaba a los militares involucra­
dos de urdir pruebas falsas y de conde­
nar a Dreyfus a sabiendas de su inocen­
cia . Zola fue juzgado y condenado por 
ello, y se exilió a Londres. Pero su carta 
abierta ahondó en la división de la socie­
dad francesa. La derecha católica, el cle­
ro y los estamentos militares se alinearon 
contra Dreyfus y llegaron a producirse 
manifestaciones multitudinarias en París 

"'0-~.'::-.:-:-L'A u-·R ORE "!""'....,,.. 
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LETTRE AU Pll51DEIIT DE LA eaitllUIUE 

P ar ÉMILE ZOLA 

contra él. La misma absolución de Esterhazy fue rec ibida con alborozo por una 
masa de seguidores antisemitas. En el otro bando, estaban los radicales y la 
izquierda en general. 
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senado y de una parte de la, cada vez más polarizada, opinión 
pública. En enero de 1898 Esterhazy fue arrestado, juzgado por un 
tribunal militar y, sorprendentemente, absuelto. 

«Yo acuso a los tres expertos grafólogos de haber redactado 
informes falsos y fraudulentos, a menos que un tribunal médico 
les declare afectados por una enfermedad de la vista y del 
juicio.» 

- ÉMILE ZOLA EN LA CARTA ABIERTA AL PRESIDENTE DE LA REPÚBLICA PUBLICADA EN EL DIARIO 

L'AURORE. 
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Ante la acumulación de evidencias favorables a Dreyfus el 
caso se reabrió y se celebró un segundo juicio en Rennes en sep­
tiembre de 1899. El matemático Paul Painlevé (1863-1933) se en­
contraba entre los convencidos de la inocencia de Dreyfus, y se 
prestó a declarar en el nuevo juicio. Painlevé, por otra parte, era 
amigo del gran matemático Jacques Hadamard (1865-1963), quien 
también se implicó en el caso. Hadamard, que tan1bién era de ori­
gen judío, tenía vínculos fanilliares con Dreyfus, ya que su padre 
y el padre de la esposa del militar eran primos. 

Una de las líneas argumentales de la defensa de Dreyfus era 
la inconsistencia del informe del jefe de policía Bertillon, que había 
afirmado que el militar era el autor de la nota interceptada compa­
rando el texto de este escrito con la caligrafía de Dreyfus. Aunque 
Bertillon era un pionero en la incorporación de técnicas científicas 
a la investigación policial, no era un científico profesional y había 
incluido en su argumentación cálculos de probabilidad que eran 
claramente erróneos. Painlevé pidió a Poincaré, que como ya se 
ha mencionado había sido catedrático de Física Matemática y Pro­
babilidades en la Sorbona, un informe en que desmontara los ar­
gumentos de Bertillon. De esta forma, Painlevé, cuya amistad con 
Hadamard era conocida por el tribunal, evitaba presentar sus pro­
pias conclusiones, y aprovechaba el prestigio incontestable de 
Poincaré para defender su causa. En el juicio de Rennes, Painlevé 
leyó una carta escrita por Poincaré en la que este explicaba los 
detalles del cálculo de probabilidades aplicado a la comparación 
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de los documentos en cuestión. Al inicio de la misma el matemá­
tico dejaba clara su neutralidad en el asunto que se juzgaba: 

Mi querido amigo, me pide usted mi opinión sobre el sistema Bertillon. 
Sobre el fondo del asunto, claro está, no me pronuncio. No tengo luces 
y no puedo sino remitirme a aquellos que tienen más que yo. Tampoco 
soy grafólogo, y no he tenido tiempo de verificar las medidas realiza­
das. Ahora bien, si usted quiere saber solamente si, en los razonamien­
tos en los que el señor Bertillon aplica el cálculo de probabilidades, 
esta aplicación es correcta, puedo darle mi opinión. 

A continuación Poincaré desmontaba el cálculo real.izado por 
Bertillon, explicando que este había aplicado incorrectamente las 
leyes de la probabilidad. El matemático concluía su carta diciendo: 

No sé si el acusado será condenado, pero si lo es, lo será en base a 
otras pruebas. Es imposible que una argumentación como esta [la 
presentada por los acusadores] haga impresión alguna sobre hom­
bres sin un partido tomado de antemano y que hayan recibido una 
sólida educación científica. 

Si los miembros del jurado habían recibido una sólida educa­
ción científica lo ignoramos, pero parece claro que tenían el vere­
dicto tomado de antemano, porque Dreyfus fue, de nuevo, decla­
rado culpable. 

Dreyfus apeló al presidente de la República, por entonces 
Émile Franc;ois Loubet, que le otorgó el indulto ese mismo año. 
La familia y los partidarios de Dreyfus siguieron luchando por 
lograr su total rehabilitación, y en 1904 el caso fue estudiado de 
nuevo por el Tribunal de Casación. Entre otras actuaciones, este 
tribunal solicitó a Poincaré, Appell ( que entonces era decano de 
la Facultad de Ciencias) y Darboux (secretario permanente de la 
Academia de Ciencias) un informe pericial sobre las pruebas de 
grafología que se habían usado en los juicios anteriores. 

El porqué de la elección de Poincaré tiene varias explicaciones. 
Si en 1899 Poincaré ya tenía un alto estatus en la ciencia francesa, 
su posición en 1906 era indiscutible. Durante diez años había sido 
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catedrático de Probabilidad y Física Matemática, siendo autor de 
un tratado sobre probabilidades que era utilizado en toda Francia. 
Además era conocido por el público en general. El informe que los 
tres matemáticos remitieron al tribunal tenía unas cien páginas y 
consistía en un análisis detallado de los informes grafológicos pre­
vios. Todo parece indicar que fue escrito, en su mayor parte, por 
Poincaré, ya que en este documento se mantienen las tesis funda­
mentales planteadas en la carta a Painlevé. 

Una buena parte del escrito parece más bien un tratado sobre 
la teoria de probabilidades, ya que en él se explican en detalle los 
conceptos de esta rama de las matemáticas relevantes para el caso. 
Aunque el informe entraba de lleno en los detalles técnicos de los 
cálculos presentados por la acusación, también hacía algunas con­
sideraciones de contenido moral que dan una idea de los valores 
humanos que defendían sus autores: Para poder hacer el cálculo 
era necesario saber la probabilidad a priori de que ocurrieran coin­
cidencias en la caligrafía (hay que recordar que Bertillon acusaba 
a Dreyfus de tratar de falsear su propia letra), cosa realmente im­
posible de saber, por lo que los autores del informe manifestaban: 

Ahora bien, esta probabilidad a priori, en cuestiones como esta que 
nos ocupa, está únicamente formada de elementos morales que es- . 
capan absolutamente al cálculo, y si, como acabamos de ver, no 
podemos calcular nada sin conocerla, todo cálculo resulta imposible. 
Por eso, Auguste Comte dijo con toda razón que la aplicación del 
cálculo de probabilidades a las ciencias morales era un escándalo 
para las matemáticas. Querer sustituir los elementos morales por 
cifras es tan peligroso como vano. 

Esta afirmación de Poincaré no deberia pasarnos desaperci­
bida ni siquiera hoy en día. Y una vez dejado claro que no creían 
que tuviera sentido aplicar el cálculo de probabilidades al caso, 
los autores del informe se sumergían en él de manera detallada, 
no por convencimiento, sino por obligación, y desmontaban punto 
por punto la teoria de Bertillon y los demás acusadores. 

El 12 de julio de 1906 la condena de Dreyfus fue anulada y el 
militar fue rehabilitado en su puesto en el ejército. Hasta qué pun-
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to tuvo influencia el informe de Poincaré es difícil de valorar. Lo 
cierto es que, por aquel entonces, ya era el matemático de mayor 
prestigio de Francia, formaba parte del establishment y no se ha­
bía pronunciado en público ni a favor ni en contra de Dreyfus, por 
lo que su opinión podía considerarse como verdaderamente im­
parcial y respetuosa con el Estado y el ejército franceses. 

LA CÁTEDRA DE FÍSICA 

La incorporación de Poincaré a la cátedra de Física Matemática y 
Probabilidades en 1886 coincidió con el inicio de su interés por los 
problemas de física de la época. En 1890 se editó, en forma de 
manual, el primer tomo de los apuntes de clase de las lecciones 
de electricidad y óptica que Poincaré había dado en el segundo 
semestre del curso 1888-1889, dentro de su asignatura de física 
matemática. Un segundo tomo, publicado en 1891, estaba dedica­
do a las teorías de Helmholtz y los experimentos de Hertz sobre 
las ondas electromagnéticas. 

En su curso, Poincaré explicaba a sus alumnos las diferentes 
teorías del electromagnetismo existentes en la época, con especial 
atención a la de Maxwell. Este había expuesto su teoría en su obra 
Tratado de electricidad y magnetismo (1873). En ella unificaba 
las leyes de la electricidad y del magnetismo bajo un único con­
junto de ecuaciones, conocido como «ecuaciones de Maxwell», y 
predecía la existencia de ondas electromagnéticas, de las cuales 
la luz sería un caso particular. 

La teoría de Maxwell tenía aceptación en Gran Bretaña, donde 
era continuadora de la obra de William Thomson, lord Kelvin, y, 
sobre todo, de Michael Faraday, pero no estaba tan aceptada en 
Europa. En Alemania convivía con las secuelas de teorías alterna­
tivas como la de Weber, o formulaciones más o menos equivalen­
tes, como la de Helmholtz. En Francia no había tenido mucha 
aceptación, ya que los físicos estaban netamente divididos entre 
los experimentales y los teóricos que, como Poincaré, eran mate­
máticos o tenían una fuerte formación matemática. El estilo de 
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Maxwell, que describía los fenómenos a la vez que exponía las 
ideas físicas y las matemáticas necesarias, no había sido suficien­
temente apreciado y era tachado de poco riguroso. En este sentido, 
Poincaré comenzaba su curso con estas palabras: 

La primera vez que un lector francés abre el libro de Maxwell, un 
sentimiento de malestar, y a veces incluso de desconfianza, se mez­
cla de entrada con su admiración. No es hasta después de una aten­
ción prolongada y al precio de muchos esfuerzos que este sentimien­
to se disipa Algunos espíritus eminentes lo conservan todavía ¿Por 
qué las ideas del sabio inglés tienen tanta dificultad en aclimatarse 
entre nosotros? Es sin duda porque la educación recibida por la 
mayoría de los franceses ilustrados les dispone al gusto por la pre­
cisión y la lógica por encima de cualquier otra calidad. 

Poincaré, con sus lecciones de electricidad y óptica, iba a ter­
minar de abrir paso en Francia a las ideas de Maxwell, desempe­
ñando un papel similar al que Boltzmann, también maxwelliano, 
había desempeñado en el ámbito germano. 

La teoría de Maxwell era lo que se conoce como una «teoría 
de campos», expresión que había sido introducida por Faraday 
para designar a una zona del espacio en que se ponían de mani­
fiesto fuerzas eléctricas o magnéticas. Pero era también una ex­
plicación mecánica del electromagnetismo. Como ya se expuso 
en el primer capítulo, para Maxwell los fenómenos eléctricos 
eran la manifestación de las expansiones y compresiones de un 
fluido, el éter, que lo impregnaba todo. Los fenómenos magnéti­
cos eran la consecuencia del movimiento del éter, que formaba 
torbellinos, de forma análoga a los que se observan en un fluido 
turbulento. Así como unas tensiones descompensadas pueden 
generar movimiento, los campos eléctricos variables pueden ge­
nerar campos magnéticos. Si el movimiento puede generar ten­
siones mecánicas, el campo magnético variable puede, a su vez, 
generar un campo eléctrico. La teoría unificaba los fenómenos 
eléctricos y magnéticos en una descripción conjunta. Pero tam­
bién predecía la existencia de ondas en el éter. Estas ondas serían 
en cierta forma análogas a las que se propagan por una cuerda 
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tensa y Maxwell dedujo sus propiedades y su velocidad de sus 
ecuaciones. Como la velocidad calculada era próxima a la de la 
luz, Maxwell concluyó que la luz era una de estas ondas, una onda 
electromagnética. 

Entre 1886 y 1888 Hertz realizó una serie de experimentos que 
demostraron la existencia de ondas electromagnéticas de longitud 
mucho más grande que la de la luz. El descubrimiento de Hertz dio 
un espaldarazo definitivo a la teoría de Maxwell y fue la clave para 
que terminara imponiéndose sobre las teorías rivales. Pero la teo­
ría no estaba exenta de dificultades, algunas de ellas reconocidas 
por el propio Maxwell en su tratado. 

MAXWELL EN DIFICULTADES 

Las principales dificultades de la teoría de Maxwell tenían que ver 
con la naturaleza de la carga eléctrica. Para Maxwell, como antes 
para Faraday, las cargas eléctricas no tenían existencia indepen­
diente, sino que eran singularidades o discontinuidades en las ten­
siones del éter. Esto contrastaba cada vez más con la evidencia 
experimental, porque cada vez estaba más claro que los rayos ca­
tódicos, uno de los temas más en boga a finales del siglo XIX entre 
los físicos experimentales, estaban compuestos de diminutas par­
tículas cargadas (nuestro electrón de hoy en día). La electrolisis 
también parecía indicar la existencia de partículas cargadas, en 
este caso los iones. 

Varios científicos tanto en Inglaterra como en Alemania con­
tribuyeron a desarrollar la teoría de Maxwell, depurando sus des­
cripciones matemáticas, simplificando la notación, reduciendo el 
número total de ecuaciones necesarias y distinguiendo entre ellas 
dos jerarquías: ecuaciones fundamentales y ecuaciones que depen­
dían del material tratado. Pero, aparte de los problemas con la 
existencia de cargas individuales, también surgieron otras dificul­
tades. En concreto, empezó a ser necesaria una descripción cohe­
rente de los fenómenos electromagnéticos cuando había materia­
les en movimiento, y esto era especialmente importante en la 
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descripción de los fenómenos luminosos. El problema fundamen­
tal era saber si la velocidad de la luz dependía del movimiento del 
cuerpo emisor, del receptor, del medio en que se encontraba o de 
todo a la vez. En la teoría de Maxwell parecía claro que la veloci­
dad de la luz calculada (los conocidos casi 300 000 km/s) se refería 
al sistema de referencia en que el éter se encuentra en reposo. Ello 
daba lugar a preguntas como estas: ¿se movía la Tierra respecto 
al éter?, si un medio estaba en movimiento, por ejemplo el agua 
circulando por un canal, ¿arrastraba al éter con él? 

El fenómeno conocido como aberración estelar parecía indi­
car que, efectivamente, la Tierra se movía respecto al éter y las 
medidas de Hippolyte Fizeau (1819-1896) sobre la velocidad de la 

LA ABERRACIÓN ESTELAR 

El astrónomo inglés James Bradley 
(1693-1762) descubrió que la traslac ión 
de la Tierra alrededor del Sol afectaba a 
la posición aparente de las estrellas. 
Bradley detectó que las estrellas situadas 
cerca del polo norte describían a lo largo 
del año una pequeña elipse, que tenía la 
m isma amplitud para todas ellas. El as­
trónomo dedujo que este movimiento 
aparente era debido a que la posic ión de 
la estrella cambiaba según la velocidad 
de la Tierra. El efecto se produce porque 
la trayectoria de la luz se ve afectada por 
el movimiento terrestre, y la luz parece 
venir, parcialmente, del lugar hacia donde 
nos dirigimos. El fenómeno es análogo a 
lo que ocurre con las gotas de lluvia 
cuando vamos andando rápido o corrien­
do: aunque las gotas caigan verticalmen­
te, vistas por nosotros parecen caer incl i-
nadas y debemos inclinar el paraguas 

Posición de 
la estrella 

* 
/ 

/ 

Posición 
aparente 

* 

para no mojarnos. La aberración estelar, nombre que recibió el efecto, parecía 
indicar que la Tierra se movía respecto del éter. La teoría de la relatividad 
explica claramente el fenómeno. En particular, la reg la relativista de ad ición 
de velocidades predice exactamente la magnitud del efecto observado. 
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luz en el agua en movimiento parecían indicar que esta arrastraba 
parcialmente al éter. Pero, por otra parte, Albert Abraham Michel­
son (1852-1931) y Edward Morley (1838-1923), en un famoso ex­
perimento, demostraron que la luz se movía a la misma velocidad 
independientemente de si el rayo se movía en la misma dirección 
que la Tierra o en una dirección perpendicular. En definitiva, era 
como si el éter estuviera pegado a la Tierra, o, simplemente, como 
si el éter no existiera. En fin, cada uno de estos fenómenos apor­
taba evidencias contradictorias entre sí. 

LORENTZ AL RESCATE 

El holandés Hendrik Lorentz abordó los problemas de la teoría de 
Maxwell y resolvió algunos de ellos. Su teoría era una síntesis 
de las ideas de Maxwell y de algunas otras al estilo de Weber. Para 
Lorentz existían partículas con masa y carga eléctrica, los elec­
trones y los iones. Estas partículas creaban a su alrededor un 
campo eléctrico. Si estaban en movimiento, creaban también 
un campo magnético. Estos campos cumplían las ecuaciones de 
Maxwell y actuaban, a su vez, sobre cualquier otra partícula car­
gada que estuviera en su seno. La fuerza que estos campos ejercían 
sobre cualquier otra partícula cargada tenía la siguiente expresión: 

F=q(E+vxB), 

expresión que hoy día se conoce como «fuerza de Lorentz». En 
esta fórmula q es la carga de la partícula; v, su velocidad; E, el 
campo eléctrico; B, el campo magnético, y x denota el producto 
vectorial. 

Estos conceptos son familiares hoy en día en las teorías físi­
cas; la división del problema entre partículas, por un lado, y cam­
pos, por otro, es común no solo al electromagnetismo, sino tam­
bién a las otras fuerzas fundamentales de la naturaleza. Einstein, 
muchos años más tarde, en 1953 y en elogio de Lorentz, decía lo 
siguiente: 
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Los físicos de nuestra época no tienen, en general, plena conciencia 
del papel decisivo que jugó Lorentz en la estructuración de las ideas 
fundamentales de la física teórica. La razón de este extraño hecho 
es que las ideas básicas de Lorentz han llegado a ser tan familiares 
que resulta difícil advertir lo audaces que fueron y hasta qué punto 
han simplificado los fundamentos de la física. 

También Lorentz en 1892 encontró una transformación de 
coordenadas que dejaba invariantes la ecuación de las ondas elec­
tromagnéticas. La propiedad más importante de estas transforma­
ciones era que la velocidad de la luz permanecía inalterada al apli­
car las. Esto es, si para pasar de un observador a otro en 
movimiento respecto del primero aplicamos las transformaciones 
de coordenadas descubiertas por Lorentz, ambos observadores 
asignarán el mismo valor a la velocidad de la luz. Poincaré llamó 
más tarde a este cambio de coordenadas «transformaciones de 
Lorentz», nombre con el que se conocen hoy en día. Una de las 
características más llamativas de las transformaciones de Lorentz 
es que asignan un tiempo diferente a cada observador, tiempo que 
Lorentz llamaba «tiempo local», porque su valor dependía del pun­
to de observación. 

Poincaré volvió a dar su curso sobre electricidad y óptica en 
1899 y los apuntes de este curso fueron publicados en 1901 bajo 
el título Electricidad y óptica, segunda edición. Esta edición con­
tenía lo esencial de la anterior y añadía una descripción detallada 
de las teorías de la electrodinámica de cuerpos en movimiento de 
Hertz, Larmor y Lorentz. Estos tres científicos basaban sus teorías 
en las ecuaciones de Maxwell, aunque las adaptaban de manera 
diferente al caso de cuerpos en movimiento, tratando de explicar 
los hechos experimentales conocidos. 

De todas ellas Poincaré contemplaba la teoría de Lorentz 
como la más plausible. En ella se explicaban los experimentos de 
Fizeau y la aberración estelar. En la edición de Electricidad y 
óptica de 1901 Poincaré, a la hora de discutir el problema de la 
aberración estelar, utilizaba el concepto de tiempo local que Lo­
rentz había introducido en 1892. Este tiempo dependía de las coor­
denadas, por lo que era diferente para diferentes puntos del espa-
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cio. Pero la teoría tenía dos graves problemas a los ojos de 
Poincaré: no respetaba el principio de acción y reacción y tampo­
co estaba de acuerdo con el principio de relatividad. Estos dos 
puntos fueron analizados en detalle en un artículo escrito por 
Poincaré en 1900, con motivo del vigésimo quinto aniversario del 
doctorado de Lorentz. 

El principio de acción y reacción es la tercera ley de Newton: 
si un cuerpo ejerce una fuerza sobre otro, este último ejerce una 
fuerza igual y de signo contrario sobre el primero. El incumplimien­
to de este principio abría la puerta a situaciones paradójicas, como 
la posibilidad de construir un móvil perpetuo. En su artículo, Poin­
caré demostraba que la expresión usada por Lorentz para la fuerza 
sobre una partícula en movimiento no respetaba, en general, este 
principio. Y concluía: «En la teoría de Lorentz el principio de ac­
ción y reacción no debe aplicarse a la materia sola». Poincaré sos­
tenía que había que incluir al éter en este balance de fuerzas. A la 
postre, esta sería la clave para la solución del problema 

El segundo punto conflictivo era el principio de relatividad. 
Según este, las leyes de la mecánica deben ser las mismas para 
todos los observadores independientemente de si se mueven uni­
formemente unos respecto de otros, lo que se conoce como «ob­
servadores inerciales». Galileo, a quien debemos este principio, lo 
expuso en los siguientes términos: si estamos en la bodega de un 
barco refugiado en un puerto seremos incapaces de decidir, por 
experimentos ñsicos, si el barco está amarrado al muelle o si se 
mueve por las aguas quietas con velocidad uniforme. Es decir, no 
hay un sistema de referencia privilegiado. Poincaré estaba conven­
cido de la validez de este principio para todos los fenómenos ñsi­
cos, ya que, como veremos en el próximo capítulo, desdeñaba el 
concepto de espacio absoluto. 

La fuerza de Lorentz F = q(E + v x B) no parecía respetar este 
principio. La dificultad estaba en que Lorentz, al mezclar en ella 
los conceptos de partícula y campo, mezclaba dos ñsicas diferen­
tes. El lado de la izquierda de la ecuación sigue las leyes de la 
mecánica de Newton. En ellas se cumple el principio de relativi­
dad, y no hay un sistema de referencia - un observador- privile­
giado: la fuerza es la misma para todos los observadores. El lado 
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EL EXPERIMENTO DE FIZEAU 

Fizeau diseñó y realizó en 1851 un expe­
rimento para medir la velocidad de la luz 
por un tubo por el que circulaba agua a 
gran velocidad. Fizeau encontró que la 
velocidad de la luz en el agua en movi­
miento era: 

e' = ~ + u(l - -2..) 
n n2 

' 

donde n es el índice de refracción del 
agua y u su velocidad. Este resultado tra­
jo de cabeza a los mejores físicos de la 
segunda mitad del siglo x1x. Por un lado, 
si el movimiento del agua no afectaba al 
éter para nada, el resultado que cabría 
esperar era c/n, la velocidad de la luz en 
el agua en reposo . Por otro, si el agua 
arrastraba al éter en su movimiento el 

Hippolyte Fizeau. 

resultado debía ser la suma de las dos velocidades c/n + u. La fórmula de Fi­
zeau no respondía a ninguna de las opciones, sino que daba un resu ltado in­
termedio. Los físicos empezaron a especular que el agua arrastraba «parcial­
mente» al éter. Este resultado no fue explicado correctamente hasta que 
Lorentz introdujo algunos conceptos relativistas. La regla de adición relativis­
ta de las velocidades da perfecta cuenta de él. 

de la derecha contiene los campos eléctricos y magnéticos, que 
son propiedades mecánicas del éter y, por tanto, parece que esos 
campos deben cambiar de expresión al cambiar de referencia, por­
que no serán lo mismo si estamos en reposo respecto del éter o 
nos movemos respecto de él. 

Lorentz y Poincaré se cartearon sobre este asunto y no cabe 
duda de que ese intercambio influyó notablemente en la forma en 
que ambos enfrentaron estas dificultades. En particular, Lorentz 
fue despojando al éter de entidad: el éter no sentía tensiones ni 
podía ponerse en movimiento por ninguna reacción de la materia 
ponderable. El éter de Lorentz terminaría teniendo, en su última 
versión, las mismas propiedades que el vacío. Poincaré se fue con­
venciendo poco a poco de que lo que había que modificar no era 
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la ecuación de la fuerza de Lorentz, sino el modo de tratar al lado 
izquierdo de la ecuación o, lo que es lo mismo, las leyes de la me­
cánica de Newton. 

En el umbral del siglo xx, cuando Poincaré escribió la segunda 
edición de sus apuntes de clase para el curso de física teórica, 
Lorentz había conseguido dar una explicación unificada a un am­
plio conjunto de fenómenos. Por todo ello obtuvo en 1902, junto 
a Pieter Zeernan (1865-1943), el premio Nobel de Física. Poincaré 
no fue ajeno a este hecho, ya que él y Mittag-Leffler promovieron 
la candidatura del insigne físico holandés. 

EL NACIMIENTO DE LA TEORÍA DE LA RELATIVIDAD 

Antes de 1905, viviendo en Berna, Einstein y dos colegas suyos 
solían leer libros de filosofía y discutían a menudo sobre lo leído. 
Uno de los libros que leyeron y discutieron era el ensayo de Poin­
caré Ciencia e hipótesis. Einstein contaba así el impacto que les 
causó la lectura: «Este libro nos impresionó profundamente y nos 
mantuvo sin aliento durante semanas». En el próximo capítulo 
volveremos sobre este libro, en el que Poincaré repasaba el estado 
de las matemáticas y la física de principios del siglo xx. Por ahora 
baste decir que, entre otras cosas, Poincaré cuestionaba la exis­
tencia de un espacio y un tiempo absolutos: «No hay espacio ab­
soluto y no concebirnos sino movimientos relativos». Y también: 
«No hay tiempo absoluto; decir que dos duraciones son iguales es 
una afirmación que por sí misma no tiene ningún sentido y que no 
puede adquirirse sino convencionalmente». Aún más importante, 
y algo que sin duda dio mucho que pensar al joven Einstein: «No 
solo no tenernos intuición directa de la igualdad de dos duraciones, 
sino que no tenernos siquiera la de la simultaneidad de dos sucesos 
que se producen en lugares diferentes». 

Los años 1904 a 1906 pueden ser considerados corno los fun­
dacionales de la teoría especial de la relatividad. En 1904 Lorentz 
publicó un artículo en Actas de la Academia de Ciencias de Ams­
terdam titulado «Fenómenos electromagnéticos en un sistema que 
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se mueve con una velocidad menor que la de la luz». En 1905 Eins­
tein publicó en la revista alemanaAnnalen der Physik su artículo 
«Sobre la electrodinámica de cuerpos en movimiento». Y en 1906 
Poincaré publicó en la revista del Circolo Matematico di Palermo 
un artículo titulado «Sobre la dinámica del electrón». Estos tres 
artículos suponen una ruptura con la mecánica newtoniana e ini­
cian una de las revoluciones conceptuales más profundas de la 
historia de la física. 

«Es difícil separar el problema cualitativo de la simultaneidad 
del problema cuantitativo de la medida del tiempo. Porque tanto 

si nos servimos de un cronómetro, como si tenemos en cuenta 
una velocidad de transmisión, como la de la luz, no sabríamos 

medir tal velocidad sin medir el tiempo.» 
- ÜENRI POINCARÉ EN EL VALOR DE LA CIENCIA. 

En su artículo de 1904 Lorentz demostró que sus transforma­
ciones de las coordenadas espaciales y del tiempo no alteraban la 
forma de las ecuaciones de Maxwell. Es decir, si utilizarnos estas 
transformaciones para definir las coordenadas espaciales y tem­
porales en un nuevo sistema de referencia que se mueve a una 
velocidad constante respecto del inicial, las ecuaciones de los 
campos eléctrico y magnético, en este nuevo sistema, tienen la 
misma forma que en el sistema inicial. Lorentz también encontró 
cómo se transforman los campos, las cargas y las corrientes al 
pasar de un sistema a otro. Estas transformaciones se conocen 
hoy corno «transformaciones relativistas de los campos y de sus 
fuentes». Lorentz explicaba con su teoría el resultado negativo de 
varios experimentos que intentaban detectar el éter, corno el de 
Michelson y Morley. Por último, dedujo la ecuación de movimien­
to de un electrón, que difería de la que se obtiene aplicando la 
mecánica de Newton, y hacía predicciones sobre la deflexión que 
sufre un electrón en presencia de campos eléctricos y magnéticos. 
Uno de los efectos relativistas más notables, la contracción de los 
objetos en la dirección de movimiento, era introducido por Lorentz 
corno hipótesis, demostrando que era consistente con el resto de 
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LA FÓRMULA E=mc 2 

En un artículo publicado en 1900 con la ocasión del aniversario del doctora­
do de Lorentz, Poincaré analizó si el principio de acción y reacción y el prin­
cipio de relatividad se cumplían en la teoría del físico holandés. En la prime­
ra parte del artículo Poincaré demostró que el principio de acción y reacción 
debía aplicarse a la materia y al éter (esto es, a la radiación emitida) si se 
quería mantener como principio. Para analizar el principio de relatividad Poin­
caré propuso una situación idealizada: un sistema emite luz durante un inter­
valo de tiempo dado en una dirección. Como consecuencia de lo establecido 
para el principio de acción y reacción era necesario que el emisor sufriera un 
retroceso. Al analizar este retroceso desde el sistema de referencia inicial y 
desde el sistema de referencia en el que la partícula emisora está en reposo 
después de la emisión, Poincaré encontró una discordancia en la cantidad de 
movimiento que vale, en notación actual, 

donde E es la energía emitida en forma de luz; e, la ve locidad de la luz, y v, la 
velocidad de retroceso. Recordemos que la expresión clásica para la cantidad 
de movimiento de una partícula es p = m v. Poincaré concluía su artículo pre­
guntándose si era necesario modificar profundamente las ideas de la electro­
dinámica. Einstein, por su parte, analizaba un proceso similar en un breve 
artículo titulado «¿Depende la inercia de un cuerpo de su contenido en ener­
gía?», que fue publicado en 1905, justo después de su artículo fundacional 
sobre la teoría de la relatividad. Einstein abordó el siguiente caso: un sistema 
emite una cierta cantidad de luz, pero ahora lo hace en los dos sentidos, de 
forma que no hay retroceso. Al analizar el proceso desde un sistema en que 
la partícula está en reposo y otro en que la partícula está en movimiento, 
Einstein encontró una discrepancia entre la energía cinética inicial y final de 
la partícula dada por 

1 2 
Comparando con la expresión clásica de la energía cinética 2mv , Einstein 
concluía que «la masa de un cuerpo es una medida de su contenido en ener­
gía; si la energía cambia en E, la masa cambia en el mismo sentido en E/c 2». 
Ambos físicos, usando argumentos parecidos, llegaron a la misma expresión, 
pero la diferencia de interpretación llevó a Einstein a hacer una predicción 
que se corroboró experimentalmente casi treinta años más tarde. Su fórmula 
es quizá la más famosa de toda la física. 

POINCARÉ Y LA TEORÍA DE LA RELATIVIDAD 



la teoría. Por otro lado, al referirse al tiempo definido en el nuevo 
sistema de referencia hablaba siempre de «tiempo local». 

El artículo de Einstein de 1905 es el más claro y fácil de leer 
de los tres. Einstein introdujo en él los dos postulados de la teoría 
especial de la relatividad: el postulado de relatividad: todos los 
fenómenos físicos son los mismos para dos observadores en mo­
vimiento relativo uniforme; y el postulado de constancia de la ve­
locidad de la luz: la luz se propaga siempre en el espacio vacío con 
una velocidad definida que es independiente del estado de movi­
miento del cuerpo emisor. 

«La introducción de un éter lumínico se mostrará superflua, 
puesto que la idea que se va a desarrollar aquí no requerirá de un 
espacio en reposo absoluto, dotado de propiedades especiales.» 

- ALBERT EINSTEIN EN « SOBRE LA ELECTRODINÁMICA DE CUERPOS EN MOVIMIENTO» (1905). 

Estos dos postulados son contradictorios solo en apariencia. 
Einstein dedujo de ellos las transformaciones de Lorentz, y esta 
es quizá su aportación más original. En su artículo, Einstein enun­
ciaba diversas consecuencias de los dos postulados y de las trans­
formaciones de Lorentz: 

l. La simultaneidad de dos sucesos es relativa. Cosas que suceden 
simultáneamente para un observador no lo son para otro en mo­
vimiento respecto del primero. 

2. La contracción de los objetos en la dirección de movimiento. La 
magnitud de esta contracción es la misma que la deducida por 
Lorentz y hoy en día es conocida como «contracción de Lorentz­
Fitzgerald». 

3. La dilatación del tiempo. Los relojes del segundo sistema de refe­
rencia se retrasan respecto del sistema inicial. 

En la interpretación de estos efectos es donde Einstein difería 
de Lorentz y Poincaré. Para Einstein el tiempo medido para el 
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obseivador en movimiento es «el tiempo» sin calificativos; es el 
tiempo que medirá un reloj bien construido. No es un tiempo apa­
rente, ni local, ni de ningún otro tipo. En su artículo, Einstein decía 
explícitamente que un reloj se retrasaría respecto de otro al mo­
verse. En 1905 era imposible comprobar esta afirmación, porque 
el efecto es sumamente pequeño, pero a lo largo del siglo :xx ello 
ha sido comprobado en numerosas ocasiones. 

Einstein también dedajo en su artículo la regla de adición de 
velocidades relativistas. Otros de sus resultados fueron la invarian­
cia de las ecuaciones de Maxwell ( en una demostración idéntica a 
la de Lorentz), la transformación relativista de los campos (igual 
a la obtenida por Lorentz), la transformación relativista de las den­
sidades de carga y corriente ( aquí hay una leve diferencia con Lo­
rentz, que había cometido un pequeño error), la fórmula para la 
aberración estelar y el efecto Doppler, y las ecuaciones de movi­
miento del electrón (presentadas de manera un poco diferente, pero 
equivalentes a las de Lorentz). 

Poincaré escribió su artículo en el verano de 1905 y presentó 
entonces un resumen de sus resultados a la Academia de Ciencias 
de Palis. El artículo completo apareció publicado en 1906. El ma­
temático francés resolvía en él las contradicciones de la teolia de 
Lorentz: la teolia no viola el principio de relatividad si todas las 
fuerzas se transforman de manera similar a las fuerzas electro­
magnéticas, es decir, de forma consistente con las transforma­
ciones de Lorentz. Poincaré no dedujo las transformaciones de 
Lorentz de los dos postulados, pero sí demostró que las transfor­
maciones no contradicen el principio de relatividad e implican la 
constancia de la velocidad de la luz para todos los obseivadores. 
De forma similar a como hizo Einstein, Poincaré dedujo también 
la regla de adición de las velocidades. En cuanto al campo elec­
tromagnético, los resultados de Poincaré son idénticos a los de 
Einstein: obtuvo las transformaciones relativistas de los campos 
y de las fuentes, corrigiendo también el pequeño error de Lorentz. 
Poincaré dedujo igualmente las ecuaciones de movimiento, de 
forma especialmente elegante, utilizando el llamado «principio de 
mínima acción». Estas ecuaciones eran las mismas que había de­
ducido Lorentz. 
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LA SUMA RELATIVISTA DE VELOCIDADES 

El segundo postulado de la relatividad dice que la velocidad de la luz es la 
misma para todos los observadores. Este postulado parece absurdo desde el 
punto de vista clásico. Imaginemos a un hombre subido en un tren en marcha 
y a una mujer que observa todo desde el andén de una estación por la que el 
tren pasa sin parar (véase la figura). Llamemos va la velocidad del tren y e a 
la velocidad de la luz. Si el hombre enciende una linterna apuntando en la 
dirección de movimiento del tren, la mujer debería observar que la luz de 
la linterna va a una velocidad e+ v. Al menos este sería el resultado que cabría 
esperar si aplicamos la física clásica. Pero ello sería contrario al segundo pos­
tulado. Si la nueva mecánica se debe ajustar al segundo postulado es nece­
sario cambiar la regla de adición de las velocidades. Einstein y Poincaré ob­
tuvieron, de forma independiente, la regla relativista de adición de velocidades. 
En el ejemplo anterior, la nueva regla dice que si el hombre ve a un objeto 
moverse a una velocidad u, la mujer ve al objeto moverse con una velocidad 
dada por: 

_ u+v 
U=--

, uv 
+­c2 

Esta regla se reduce a la regla clásica (u+ v) para velocidades pequeñas com­
paradas con la de la luz. Si en la fórmula sustituimos u por e obtenemos ü = e, 
de acuerdo con el segundo postulado de la relatividad. 

r--------
V 

e 

--- ---------- --

En su artículo de 1906 Poincaré hizo un primer intento de 
adecuar la ley de Newton de la gravitación universal a la nueva 
mecánica. Propuso una fórmula para el potencial gravitatorio 
que se transformaba correctamente bajo las transformaciones 
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de Lorentz. Como sabemos, la teoría relativista de la gravedad 
iba a ser algo mucho más complejo, y fue la gran obra de Albert 
Einstein. 

A partir de 1901, Walter Kaufmann (1871-1947) realizó una 
serie de experimentos sobre la deflexión de los electrones por 
campos eléctricos y magnéticos. Este físico alemán usaba los elec­
trones emitidos por la radiación del radio, que eran más energéti­
cos que los que se podían obtener por entonces con un tubo de 
rayos catódicos. Sus velocidades eran, por tanto, más próximas a 
la de la luz y era de esperar que los efectos relativistas fueran más 
notables. En 1905 Kaufmann mejoró su equipo y obtuvo medidas 
aparentemente precisas. El análisis detallado de estas medidas in­
validaba las predicciones realizadas por las ecuaciones de Ein­
stein, Lorentz y Poincaré. Al conocer los resultados, Lorentz escri­
bió una carta a Poincaré, fechada en marzo de 1906, en la que no 
ocultaba su desánimo y, casi, desesperación: 

Desgraciadamente mi hipótesis de la contracción del electrón está 
en contradicción con los resultados de los nuevos experimentos del 
señor Kaufmann y creo que estoy obligado a abandonarla; ya no 
comprendo nada [ «je suis done au bout de man latin», en el original 
en francés]. Sería muy feliz si usted llegara a aclarar las dificultades 
que surgen de nuevo. 

La actitud de Lorentz contrastaba con la de Einstein, que con­
templaba la nueva teoría con tanta confianza, dada su coherencia 
y su acuerdo con otros hechos conocidos, que dudaba de los re­
sultados de Kaufmann. El tiempo dio a Einstein la razón. 

LA RELACIÓN ENTRE TRES GENIOS 

Poincaré y Lorentz se conocieron personalmente, tuvieron una 
relación cordial y se admiraban mutuamente, como demuestran 
los artículos de ambos y el tono de las cartas que intercambiaron. 
Einstein, por su parte, adoraba a Lorentz y ambos tuvieron una 
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muy buena relación hasta la muerte del físico holandés en 1928; 
se intercambiaron numerosas cartas y se encontraron en diversas 
ocasiones. Hay que decir que debía ser difícil llevarse mal con 
Lorentz. Este unía a su inteligencia y sabiduría una gran presencia 
de carácter: sabía discutir sin alterarse ni irritar al oponente. Era 
el perfecto organizador para un encuentro científico, ya que dirigía 
con habilidad las discusiones. Sirva de ejemplo el detalle de que, 
como dominaba varios idiomas, escribía a los franceses en francés, 
a los ingleses en inglés y a los alemanes en alemán. Todo el mundo 
le admiraba y le respetaba. 

Más difícil de calibrar es la relación entre Poincaré y Einstein. 
Tal vez la temprana muerte de Poincaré impidió un mayor acer­
camiento entre ellos. Lo cierto es que en sus escritos posteriores 
a 1906 ambos se ignoraron mutuamente. Ni Einstein citó nunca a 
Poincaré en sus artículos sobre relatividad ni Poincaré citó a Eins­
tein. En contraste, ambos citaron a Lorentz repetidamente. El bió­
grafo de Einstein Abraham Pais cuenta que Einstein no leyó el 
artículo de Poincaré de 1906 hasta muchos años después de su 
publicación, cuando el físico alemán ya vivía en Estados Unidos y 
estaba casi jubilado. Pero, como hemos visto, Einstein sí había 
leído a Poincaré antes de 1905 y conocía sus ideas sobre la simul­
taneidad y la inexistencia del espacio absoluto. Einstein y Poinca­
ré se encontraron una sola vez, con motivo del primer Congreso 
Solvay, celebrado poco antes de la muerte del matemático francés. 

Lo único que sabemos de cómo Poincaré valoraba a Einstein 
es lo que está recogido en una carta dirigida al físico francés Pierre 
Weiss (1865-1940), director del Instituto de Física de Zúrich, en 
noviembre de 1911, relativa a la posible contratación de Einstein 
como profesor en la institución suiza ( contratación que se produ­
jo unos meses después). La cita, aunque un poco larga, merece la 
pena por dos cosas: por un lado, queda claro que Poincaré tenía a 
Einstein en gran estima, al menos desde el punto de vista científi­
co; por otro, nos ayuda a entender cómo concebía Poincaré la 
ciencia. La carta dice así: 

El señor Einstein es uno de los espíritus más originales que he co­
nocido; a pesar de su juventud, ha alcanzado ya un puesto muy ho-
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norable entre los primeros sabios de su tiempo. Lo que más debemos 
admirar en él es la facilidad con la que se adapta. a los nuevos con­
ceptos y sabe extraer todas las consecuencias. No se queda aferrado 
a los principios clásicos, y, en presencia de un problema físico, es 
rápido en considerar todas las posibilidades. Ello se traduce inme­
diata.mente en su espíritu en la predicción de fenómenos nuevos, 
susceptibles de ser un día verificados por la experiencia. No quiero 
decir que todas estas predicciones superen el control de la experien­
cia el día que ese control sea posible. Como busca en todas las di­
recciones, debemos, al contrario, esperar que la mayor parte de esas 
vías que emprende sean callejones sin salida; pero debemos esperar 
al mismo tiempo que una de las direcciones indicadas sea la buena; 
eso es suficiente. Es así como se debe proceder. El papel de la física 
matemática es realmente el de hacer preguntas, y no es sino la ex­
periencia quien puede responderlas. El futuro mostrará cada vez más 
cuál es el valor del señor Einstein, y la universidad que sepa vincu­
larse a este joven maestro tiene asegurado obtener de ello muchos 
honores. 

Con la perspectiva que da el tiempo no podemos sino admirar 
la perspicacia de Henri Poincaré. 
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CAPÍTULO 6 

Filósofo y autor de éxito 

Henri Poincaré mantuvo siempre 
un vivo interés por la filosofía de la ciencia. 

Escribió no pocos artículos en los que reflexionaba 
sobre la creatividad en matemáticas, los fundamentos 

de la geometría o el futuro de la física. En aquella época, 
a finales del siglo XIX y principios del xx, varias escuelas 
empiristas dominaban el panorama filosófico. Poincaré, 

aunque cercano a las ideas de uno de los empiristas 
más reconocidos, Ernst Mach, creó su 

propia línea de pensamiento. 





El año 1900 fue un año muy especial en París. Con motivo del 
cambio de siglo se celebraron multitud de encuentros y activida­
des. Henri Poincaré participó entonces en tres grandes reuniones 
científicas, que tuvieron lugar, casi simultáneamente, a principios 
de agosto: el Congreso Internacional de Filósofos, el Congreso 
Internacional de Física y el Congreso Internacional de Matemáti­
cas, del que era presidente. Poincaré expuso en estos encuentros 
sus ideas generales sobre la filosofía de la ciencia y las bases del 
conocimiento matemático. 

Desde el principio de su carrera científica Poincaré se interesó 
por la filosofía de la ciencia y por la fundamentación de los concep­
tos matemáticos. También le interesó la divulgación científica y 
publicaba con cierta regularidad en periódicos y revistas dirigidos 
a un público más amplio que el estrictamente académico. Por ini­
ciativa de Gustave Le Bon (1841-1931), los editores Emest y Camille 
flammarion llegaron a un acuerdo con él para recopilar en una 
serie de libros sus ensayos. Estos cuatro libros fueron Ciencia e 
hipótesis (1902), El valor de la ciencia (1905), Ciencia y método 
(1908) y Sabios y escritores (1910); a ellos debe añadirse Últimos 
pensamientos, publicado póstumamente en 1913. Henri Poincaré 
se reveló en estos libros como un gran ensayista, con una prosa 
directa y elegante. La colección obtuvo un gran éxito de ventas. 
Desde el día de su publicación y hasta 1914 se vendieron, por ejem-
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plo, 20 900 ejemplares de Ciencia e hipótesis, 21000 de El valor de 
la ciencia, 12 000 de Ciencia y método ... Los libros fueron traduci­
dos a varios idiomas, y siguen vendiéndose hoy en día. Los herma­
nos Flammarion ganaron una fortuna con la serie y Poincaré au­
mentó notablemente su patrimonio con los derechos de autor. 

«Sucede que justamente en la demostración de los teoremas 
más elementales es donde los autores de tratados clásicos 
han desplegado menos precisión y rigor.» 
- HENRI POINCARÉ, EN CIENCIA E HIPÓTESIS. 

152 

La filosofía de Poincaré ha recibido el nombre de convencio­
nalismo. En el convencionalismo de Poincaré las matemáticas 
ocupan un lugar especial, y se diferencian del resto de las ciencias. 
En matemáticas, Poincaré sostenía que los axiomas o hipótesis 
son convenciones que adoptamos por simple elección. Un ejemplo 
muy utilizado por él para explicar este concepto era el de las geo­
metrías no euclídeas. La geometría de Euclides está construida 
sobre cinco axiomas. El quinto es el axioma de las paralelas: por 
un punto exterior a una recta se puede trazar una única recta pa­
ralela a ella. Este axioma se puede reemplazar por otro, de forma . 
que se obtiene una geometría no euclídea que, como demostraron 
Lobachevski y Bolyai, es totalmente consistente. Para Poincaré 
una geometría no es más verdadera que otra, y que adoptemos el 
quinto postulado de Euclides o uno diferente depende de la elec­
ción que hagamos. La única imposición es que la geometría resul­
tante esté libre de contradicciones. 

En cuanto a la geometría del espacio físico, lo único que cabe 
preguntarse es: ¿qué geometría es más conveniente? En prin_cipio 
la geometría euclídea es más simple y está de acuerdo con nuestra 
experiencia cotidiana sobre la forma de los objetos rígidos. Pero 
si una medida astronómica muestra, por ejemplo, que los ángulos 
de un triángulo no suman 180 grados, podemos sacar dos conclu­
siones alternativas: o bien la geometría del espacio deja de ser 
euclídea o bien la luz no se mueve en línea recta entre dos puntos. 
En el momento en que escribía esto, Poincaré concluyó que, pues-
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INTERCAMBIO CON RUSSELL 

El matemático y filósofo Bertrand Russell 
(1872-1970) ganó el premio Nobel de Lite­
ratura en 1950 por su obra de marcado ca­
rácter humanista. Entre 1910 y 1913 publicó, 
junto con Alfred Whitehead (1861-1947), los 
Principia Mathematica. Esta obra era un in­
tento de dotar a todo el edificio de las ma­
temáticas de la época de una estructura 
perfectamente lógica. Russell mantuvo un 
debate filosófico con Poincaré sobre la na­
turaleza del pensamiento matemático y, en 
particular, sobre los fundamentos lógicos 
de la geometría. El debate entre ambos es­
tuvo siempre presidido por la intachable 
honradez intelectual que les caracterizaba. 
Ninguno de los dos tenía reparos en admi-
tir los argumentos del otro o corregir los Bertrand Russell en un óleo del pintor 

errores propios. Habiendo Russell recono- inglés Roger Fry C1923 l-

cido que Poincaré llevaba razón en algunas 
de sus críticas a un articulo suyo, Poincaré 
contestó con un artículo en la publicación francesa Revista de metafísica y de 
moral. El artículo empezaba así: «En la respuesta del señor Russell admiro una 
cualidad más rara de lo que se piensa, una perfecta lealtad científica». 

to que los científicos elegirían sin duda la segunda opción, la geo­
metría euclídea no tenía que temer una refutación experimental. 
Este razonamiento de Poincaré ha quedado superado por la teoría 
general de la relatividad, en la cual la luz se mueve a lo largo de 
las líneas más cortas, geodésicas, de un espacio curvado. Y la cur­
vatura del espacio es una cantidad accesible, en principio, al ex­
perimentador. 

En otro orden de cosas, a finales del siglo XIX y principios del xx 
las matemáticas vivían una cierta tendencia hacia la sistematización 
lógica de todo el edificio construido. El matemático alemán David 
Hilbert (1862-1943) era uno de los promotores de esta visión de las 
matemáticas. Bertrand Russell, en Inglaterra, era otro de los líderes 
de esta corriente de sistematización. Poincaré mantuvo varias con­
troversias con ambos sobre los fundamentos de las matemáticas, 
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mostrando siempre una fume posición a favor de la intuición como 
uno de los pilares del pensamiento creativo en matemáticas. 

El convencionalismo de Poincaré terúa un matiz distinto cuan­
do se trataba de las ciencias físicas. En El valor de la ciencia ana­
lizaba, como ejemplo, el cálculo de la velocidad de la luz a partir de 
las observaciones del astrónomo danés Ole R0mer (1644-1710). 
R0mer se sirvió de los eclipses de las lunas de Júpiter para calcular 
la velocidad de la luz. Observó que los eclipses, que se producían a 
inteivalos regulares, se iban retrasando a lo largo del año, a medida 
que la Tierra se alejaba de Júpiter, para luego adelantarse cuando 
la Tierra se acercaba a Júpiter. R0mer supuso que el retraso se debía 
a que la luz terúa que recorrer una distancia cada vez mayor, por lo 
que tardaba más en llegar a la Tierra. De sus observaciones dedujo 
que la luz tardaba 22 minutos en recorrer la órbita terrestre. El neer­
landés Christiaan Huygens (1629-1695) se sirvió de este dato para, 
unos años más tarde, calcular la velocidad de la luz. 

Poincaré llamaba la atención sobre el hecho de que este proce­
dimiento requiere dos hipótesis: que la luz viaja a una velocidad que 
es la misma durante toda su trayectoria y que las leyes de Newton 
determinan el tiempo de la órbita de los satélites de Júpiter en tomo 
al planeta. Otra elección de las hipótesis podria dar cuenta del fenó­
meno obseivado, pero la constancia de la velocidad de la luz es una 
hipótesis más conveniente. Las reglas, sosterúa Poincaré, no se nos 
imponen, y podriamos divertirnos en inventamos otras. Sin embargo, 
no sabríamos salir adelante con esas reglas inventadas sin complicar 
en exceso las leyes de la física, la mecánica o la astrononúa Pero es 
fácil malinterpretar a Poincaré y, de hecho, una interpretación erró­
nea de sus palabras dio lugar a una famosa controversia 

¿GIRA LA TIERRA EN TORNO A SÍMISMA? 

Como ya se ha apuntado, Poincaré fue uno de los ponentes del 
Congreso Internacional de Filosofía que se celebró en París con 
motivo de la Exposición Universal de 1900. En su conferencia, ti­
tulada «Sobre los principios de la mecánica», defendió su posición, 
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ya conocida, de que no existe un espacio absoluto y que solo de­
tectamos el movimiento relativo. Para explicar sus ideas puso el 
ejemplo del movimiento de la Tierra. No tiene sentido decir que la 
Tierra gira sobre sí misma porque no tenemos una referencia abso­
luta respecto de la cual podamos comprobar que se mueve. Y decía 
más: «Las dos proposiciones, "la Tierra gira sobre sí misma" y "es 
más conveniente suponer que la Tierra gira sobre sí misma", tienen 
el mismo significado». Esta frase dio lugar a una larga controversia, 
en especial con el filósofo Édouard Le Roy (1870-1954). Ambos 
sabios coincidieron y debatieron en una reunión en la Sociedad 
Filosófica de Francia. En un momento dado de su intervención Le 
Roy dijo: «El hecho científico es creado por el sabio», un razona­
miento muy en la línea de su predecesor en el Colegio de Francia, 
el filósofo Henri Bergson (1859-1941). Poincaré preguntó: «Sea 
usted más exacto, ¿qué entiende por hecho?». Le Roy contestó: 
«Un hecho es, por ejemplo, la rotación de la Tierra», a lo que Poin­
caré replicó: «No, un hecho, por definición, es algo que puede pro­
barse por un experimento directo. Por esta razón, la rotación de 
la Tierra no es un hecho». Y esta frase, sacada de contexto, iba a 
ser repetida una y otra vez en la prensa y en otros foros públicos. 
En particular, la prensa ultracatólica la entendió como una discul­
pa de la actitud de la Iglesia en el proceso contra Galileo. 

A principios de 1904 se produjo en Francia una gran contro­
versia entre católicos y laicos. Un libro titulado El Evangelio y la 
Iglesia, escrito por el teólogo Alfred Loisy (1857-1940), había sido 
condenado por el Santo Oficio por cuestionar los dogmas de Roma 
Mientras los periódicos católicos atacaban a Loisy, los laicos le 
defendían. Y algunos escritores laicos evocaron el juicio de Galileo 
y la condena de la Iglesia a su tesis sobre el movimiento de la Tierra 
Hubo una cadena de reacciones por los dos bandos, y apareció un 
artículo del periodista Édouard Drumont (1844-1917) en el que se 
apelaba a la autoridad de Poincaré y ponía en su boca la siguiente 
frase a propósito de la rotación de la Tierra: «Es una hipótesis 
atractiva y conveniente para explicar la formación y evolución de 
los mundos, pero después de todo, es una hipótesis que no puede 
ser confirmada ni refutada por ninguna evidencia objetiva». Dru­
mont, conocido por su antisemitismo y miembro de la facción más 
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reaccionaria del periodismo francés, no solo malinterpretaba a 
Poincaré, sino que ni siquiera le citaba literalmente. El periódico 
Le Fígaro se hizo eco del artículo de Drumont, reinterpretando a 
su vez las palabras de Poincaré que, según el periódico, «sin afirmar 
que la Tierra no gira, afirma que nada prueba que lo haga». Las re­
ferencias periodísticas a la controversia se multiplicaron. 

«La experiencia es la única fuente de la verdad: solo ella puede 
enseñarnos algo nuevo, solo ella puede darnos la certeza.» 
- HENRI POINCARÉ, EN CIENCIA E HIPÓTESIS. 
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Poincaré se vio obligado a explicarse, y envió una carta abier­
ta al astrónomo Camille Flammarion (1842-1925) que fue publica­
da en el Boletín de la Sociedad Astronómica de Francia en mayo 
de 1904. En ella Poincaré recordaba el marco de la controversia 
con Le Roy y que el contexto de sus frases era el de una discusión 
filosófica, en el que el lenguaje tiene un significado muy preciso. 

Poincaré volvió sobre el tema en El valor de la ciencia. En 
este ensayo repitió la frase ya citada de «Las dos proposiciones, 
"la Tierra gira sobre sí misma" y "es más conveniente suponer que 
la Tierra gira sobre sí misma", tienen el mismo significado». Tras 
explicar el sentido filosófico de esta afirmación añadía: 

Pero aún hay más; en el mismo lenguaje se puede muy bien decir: 
estas dos proposiciones, «el mundo exterior existe» o «es más có­
modo suponer que el mundo exterior existe», tienen uno solo y mis­
mo significado. Así la hipótesis de la rotación de la Tierra conserva 
el mismo grado de certeza que la existencia de los objetos exteriores. 

Para no dejar lugar a dudas sobre la certeza de la rotación de 
la Tierra, Poincaré repasaba luego todos los fenómenos observa­
dos que se explican por esta rotación. Que una hipótesis sea con­
veniente no quiere decir que sea arbitraria. Los experimentos de­
terminan qué hipótesis es más conveniente que otra. Y la hipótesis 
de la rotación de la Tierra explica toda una serie de fenómenos 
que, de otra forma, no estarían relacionados. 
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Los argumentos de Poincaré iban en el sentido de la tradición 
empirista. En la misma obra recuerda su controversia con Le Roy 
y aclara que para él «un hecho» es la percepción sensible de las 
cosas; lo demás son interpretaciones convenientes de las cosas. 
Por ejemplo, si observamos la desviación de un galvanómetro con 
la ayuda de un espejo móvil que proyecta una imagen luminosa 
sobre una regla graduada, el hecho bruto es que vemos desplazar­
se la luz sobre la escala; el hecho científico es que pasa corriente 
por un circuito eléctrico. El científico no inventa el hecho bruto, 
lo interpreta de la manera más conveniente. 

POINCARÉ ENTRA EN LA HISTORIA DE LA MECÁNICA 
CUÁNTICA 

Muy poco antes de su inesperada muerte, Poincaré hizo una última 
aportación valiosa a la física del siglo xx. Habiendo participado en 
la revolución relativista, su genio no podía pasar sin dejar su hue­
lla en la otra gran revolución de la física del siglo xx, la revolución 
cuántica. Esta tuvo su origen en diciembre de 1900, cuando Max 
Planck dio a conocer su teoría de la radiación térmica. En ella 
Planck introdujo lo que se dio en llamar «la hipótesis cuántica». 
Unos meses antes Planck había encontrado, de forma semiempí­
rica, una fórmula que reproducía las medidas experimentales lle­
vadas a cabo por Heinrich Rubens (1865-1922) y Ferdinand Kurl­
baum (1857-1927) en el Instituto Imperial de Física y Tecnología 
de Berlín. 

La ley de Planck describe cómo varía la intensidad de la radia­
ción emitida por un cuerpo caliente con la longitud de onda de la 
radiación emitida. En particular, la ley de Planck se centra en el caso 
de un cuerpo negro ideal: aquel que absorbe y ernite con igual efica­
cia a todas las longitudes de onda. La fórmula de Planck se puede 
escribir como: 

81th v3 

Uv = C3 ehvlkT - 1' 
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POINCARÉ EN EL BUREAU DES LONGITUDES 

Desde 1893 Poincaré perteneció al Bureau des Longitudes, la oficina francesa 
encargada de calcular las efemérides astronómicas, una cuestión que tenía 
una importancia capital para la navegación de aquella época. Poincaré parti­
cipó regularmente en las actividades del Bureau y lo presidió en tres ocasiones. 
Fue un ardiente defensor de la misión francesa que se ocupó desde 1898 de 
la medida del meridiano terrestre que pasa por Quito (Ecuador). La misión 
tuvo que hacer frente a muchas dificultades y sufrió diversos retrasos. Poin­
caré informó sobre ella en varias ocasiones e insistió una y otra vez en su 
importancia ante el Gobierno de la nación. En julio de 1907 el matemático 
comunicó el éxito definitivo de la misión. Por otra parte, Poincaré presidió el 
comité interministerial que propuso la adhesión definitiva de Francia a la toma 
del meridiano de Greenwich como referencia del origen de las longitudes 
geográficas y de los husos horarios. En una ocasión, comentó al respecto: 
«Hemos recibido una comunicación del director del observatorio de México 
que tengo el placer de referir aquí: "Hay en Francia una ciudad, dice este as­
trónomo, que tiene precisamente el mismo meridiano que Greenwich, es Ar­
gentan. Adopten en Francia la hora de Argentan, y el amor propio francés 
estará a salvo", he aquí una solución», concluyó Poincaré entre risas. 

~---- -- - - -
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donde uves la densidad de energía electromagnética radiada; v, la 
frecuencia; e, la velocidad de la luz; k, la constante de Boltzmann; T, 
la temperatura del cuerpo radiante, y h, una constante que hoy en 
día lleva el nombre de constante de Planck. Para cada temperatura 
la radiación es máxima a una frecuencia dada ( o su longitud de onda 
correspondiente). Así, a los 100 ºC de un radiador doméstico el máxi­
mo de la intensidad se encuentra en una longitud de onda de 8 mi­
cras, que corresponde al infrarrojo. Para el hierro fundido, a 1535 ºC, 
el máximo está todavía en el infrarrojo cercano, pero una buena 
cantidad de la radiación se produce en el visible. Para 5 505 ºC, la 
temperatura de la superficie del Sol, el máximo está en el amarillo. 

Max Planck intentó deducir su fórmula a partir de las leyes 
generales de la física. Imaginó que la radiación era emitida por un 
conjunto de cargas oscilantes que radiaban energía electromagné­
tica de acuerdo con las leyes del electromagnetismo formuladas 
por Maxwell. Utilizó las ideas de Boltzmann respecto a la interpre­
tación probabilística del calor y, en particular, del concepto de 
entropía. E introdujo una hipótesis ad hoc: que la energía de los 
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osciladores no podía tener un valor cualquiera, sino que solo podía 
valer un número entero de veces una cantidad discreta, un cuanto, 
de valor E = hv. Planck introdujo esta hipótesis sin plena conscien­
cia de lo que representaba, corno un artificio matemático que le 
conducía a la ley que, sabía, era experimentalmente correcta. 

Los años que siguieron a la publicación del artículo de Planck 
fueron de gran discusión entre los físicos teóricos de la época. 
Algunos se dieron cuenta pronto de que era una hipótesis ajena a 
la física clásica, ya que esta no ponía ninguna restricción a los 
valores que pudiera tener la energía de un oscilador, menos aún 
obligar a que estuviera relacionada con la frecuencia. Pero la hi­
pótesis cuántica había venido para quedarse. En 1905 Albert Ein­
stein la aplicó a otros fenómenos relacionados con la emisión y 
absorción de la luz, en especial al problema del efecto fotoeléctri­
co. La teoría del efecto fotoeléctrico le valió a Einstein, años más 
tarde, en 1921, el premio Nobel de Física. 

En este estado de cosas el físico y químico alemán W alther 
Nernst (1864-1941) organizó, con el patrocinio del químico y millo­
nario belga Ernest Solvay (1838-1922), un encuentro de los líderes 
de la física europea para discutir diversos aspectos de la teoría cuán­
tica. La reunión, primera de una serie de encuentros que han entra­
do a formar parte de fa historia mítica de la física del siglo xx, se 
celebró entre el 30 de octubre y el 3 de noviembre de 1911 en el 
Hotel Metropole de Bruselas. Según la convocatoria, el primer Con­
greso Solvay, que ese fue el nombre que recibió el simposio, estaba 
dedicado al estudio de «la teoría de la radiación y los quanta». A él 
asistieron, entre otros, Albert Einstein, Max: Planck, Hendrik Lorentz, 
Walther Nernst, Marie Curie, Ernest Rutherford, Arnold Sornrnerfeld 
y Wilhelrn Wien. También asistió Henri Poincaré. Allí conoció a Ein­
stein, siendo la única vez que ambos coincidieron en persona. 

Uno de los ternas de discusión del momento era hasta qué 
punto la hipótesis cuántica era esencial para obtener la ley de 
Planck de la radiación de cuerpo negro. Lorentz, Einstein y el mis­
mo Planck habían deducido la ley de varias formas diferentes, pero 
siempre tenían que introducir la hipótesis cuántica para llegar al 
resultado correcto. Otros físicos, corno sir James Jeans (1877-1946) 
o John Strutt, barón de Rayleigh (1842-1919), habían deducido fór-
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MAX PLANCK (1858-1947) 

Planck enunció en 1900 la hipótesis 
cuántica, según la cual la energía mecá­
nica de un oscilador microscópico no 
puede tener un valor cua lquiera, sino que 
está limitada a una serie de valores dis­
cretos. Esta hipótesis abrió el camino al 
desarrollo de la física cuántica, la teoría 
física del mundo atómico y subatómico. 
Planck tuvo una gran influencia en la fí­
sica alemana de la primera m itad del si ­
glo xx . Promovió el estudio de la física 
teórica y ayudó y promocionó a los gran­
des físicos del ámbito alemán de la épo­
ca como Einstein, Meitner o Schrodinger. 
Durante la ascensión del nazismo man­
tuvo una dura pugna con los sectores 
antisemitas de la física alemana por el 
control de las instituc iones científicas e intentó limitar las repercusiones ne­
gativas de la política de Hitler para la ciencia alemana. En la actua lidad, la 
mayor institución científica de Alemania lleva su nombre. 

mulas alternativas basándose exclusivamente en argumentos clá­
sicos, pero sus fórmulas no se ajustaban a los resultados experi­
mentales. La pregunta que estaba en el aire era: ¿es la hipótesis 
cuántica imprescindible para explicar la radiación térmica? Dicho 
de otra forma, ¿existe alguna deducción alternativa de la ley de 
Planck que no recurra a la cuantificación? En el lenguaje matemá­
tico al uso podriamos plantear el problema diciendo que la hipó­
tesis cuántica era condición suficiente para la ley de Planck de la 
radiación, pero ¿era también condición necesaria? 

Poincaré, que hasta entonces no había sentido especial interés 
por los problemas en tomo a la hipótesis cuántica, se interesó 
inmediatamente por el problema. Especialmente por dilucidar la 
necesidad de la hipótesis cuántica. Y una vez más dio muestras de 
su gran capacidad como físico teórico. Al volver a Paris, se puso 
inmediatamente a trabajar sobre el problema de la radiación de 
cuerpo negro. Tan solo un mes más tarde, presentó sus conclusio-
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nes a la Academia de Ciencias de París, y en enero apareció en la 
revista Journal de Physique Théorique et Appliquée un artículo 
con todos los detalles. 

El artículo tenía 34 páginas y era un alarde de técnica mate­
mática. Poincaré demostró rigurosamente que una ley continua 
para el movimiento, no solo no podía reproducir la fórmula de 
Planck, sino que no daría ni siquiera una energía finita para todo 
el conjunto. Algunas de las técnicas usadas por Poincaré eran nue­
vas en el campo de la mecánica estadística y serían usadas poste­
riormente por otros físicos teóricos como el propio Planck, pasan­
do a formar parte de las técnicas estándar en mecánica estadística. 

La conclusión del artículo de Poincaré era la misma a la que 
ya habían llegado otros físicos como Paul Ehrenfest (1880-1933), 
pero la forma en que Poincaré la presentaba era especialmente 
convincente: la física clásica no podía dar cuenta de la teoría de 
la radiación del cuerpo negro; la hipótesis cuántica era inevitable. 

POINCARÉ Y LA ENSEÑANZA DE LAS MATEMÁTICAS 

En su libro La ciencia y el método Poincaré dedicó un capítulo a la enseñanza 
de las matemáticas. En él, sin desdeñar la importancia de la lógica en la cons­
trucción de las matemáticas, recalcó la necesidad de utilizar la intuición y los 
conceptos cotidianos para enseñar esta ciencia. Poincaré se preguntaba qué 
era una buena definición. La respuesta no puede ser la misma para un mate­
mático o un filósofo que cuando hablamos de enseñar. Así, escribía, al refe­
rirse a la enseñanza: «Una buena definición es aquella que es comprendida 
por los alumnos». Y añadía: «¿Cómo es que hay tantos espíritus que se niegan 
a comprender las matemáticas?[ ... ] Una ciencia que no utiliza sino los princi-
pios fundamentales de la lógica, [ ... ] de los que no podríamos despojarnos sin 
dejar de pensar, y ihay gente que los encuentra oscuros! iY además son la 
mayoría!». Al repasar la evolución de los últimos años del siglo x1x Poincaré 
reconocía que las matemáticas habían ganado en rigor lógico, pero ese rigor 
se conseguía a base de ir construyendo unos conceptos sobre otros previos 
y el conjunto resultaba incomprensible para los alumnos principiantes. Poin­
caré defendía que había que tomar, en la enseñanza, un camino más parecido 
a la evolución histórica de las matemáticas, empezando por los conceptos 
presentados de forma intuitiva, aunque no fuera un proceder riguroso, para 
ir edificando poco a poco el edificio. 
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El artículo de Poincaré tuvo una considerable repercusión. 
Tras su publicación, ya no podía quedar en Europa ningún escép­
tico al respecto de la hipótesis cuántica. Especialmente Jeans, en 
Inglaterra, se convenció de la necesidad de la hipótesis cuántica y 
cambió la actitud de los británicos frente al cuanto. En Francia, el 
artículo de Poincaré puso a la teoría cuántica en el centro de la 
agenda de los físicos teóricos y correspondió a un francés, Louis 
de Broglie (1892-1987), dar, unos años más tarde, un paso decisivo 
en la construcción de la teoría cuántica. 

POINCARÉ MUERE EN PARÍS 

Durante el Congreso Matemático Internacional de 1908, celebrado 
en Roma, la hipertrofia de próstata que Poincaré padecía desde 
hacía algún tiempo se agravó, lo que le obligó a someterse a una 
operación de urgencia. Fue operado en Roma por cirujanos italia­
nos. Al principio pudo recuperar toda su actividad, pero pronto 
recayó. En marzo de 1909, en una carta a David Hilbert, a propó­
sito de la invitación que el matemático alemán le había realizado · 
para visitar Gotinga, Poincaré advertía lo siguiente: 

Hay un punto sobre el que desearla llamar su atención. Todavía estoy 
bajo el golpe del accidente que me afectó el año pasado en Roma y 
estoy imperiosamente obligado a ciertas precauciones. No puedo 
beber ni vino ni ceIVeza, solamente agua. No puedo asistir a un ban­
quete, ni a una comida prolongada. Esta circunstancia me ha hecho 
dudar de aceptar su invitación, pero he pensado que usted sabrá 
disponer las cosas en consecuencia. 

La situación siguió empeorando y ya en diciembre de 1911, con­
fesaba a Giovanni Battista Guccia, editor de la revista italiana Ren­
diconti del Circolo MatRmatico di Palermo, que, a su edad, quizá 
no tuviera tiempo de terminar sus últimas investigaciones sobre el 
problema de los tres cuerpos. El sábado 6 de julio de 1912, tras una 
reunión en la facultad sobre la teoría de grupos, le dijo a su amigo 
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Paul Appell: «Mañana ingreso en el hospital para la operación». Le 
operaron el día 9 y, al principio, todo pareció ir bien. Le dieron de 
alta en el hospital y volvió a su casa para recuperarse. Sin embargo, 
el día 17 de julio murió de una embolia durante una cura rutinaria 

UN ENTIERRO DE ESTADO 

Henri Poincaré fue enterrado el 19 de julio de 1912 en un ambien­
te de consternación nacional. El cortejo fúnebre salió de su casa 
hacia la iglesia de Saint-Jacques du Haut-Pas y de allí se dirigió al 
cementerio de Montparnasse. Varias personalidades públicas 
acompañaban al féretro, entre ellas, el presidente de la Academia 
Francesa y el Ministro de Instrucción Pública y Bellas Artes. El 
ministro rindió homenaje a Poincaré con estas retóricas palabras: 

La muerte de Henri Poincaré, que une en un común sentinúento de 
pesar a la élite intelectual de todos los países, es para nosotros un 
duelo público. Al unirse a él, el Gobierno es el intérprete de la nación 
entera, dolorosamente afectada. Porque, a pesar de que los trabajos 
del matemático solo son accesibles a un pequeño número de personas, 
todos saben que Henri Poincaré representaba lo que la genialidad de 
Francia tiene de más puro y de más desinteresado, lo mejor de sí 
misma. 

También su amigo de toda la vida, y decano entonces de la 
Facultad de Ciencias, Paul Appell, acompañaba el féretro. Appell 
escribiría años más tarde: 

La vida de Poincaré fue una meditación intensa e ininterrumpida. 
Estuvo exclusivamente dedicada al trabajo científico y a la familia. 
Su persona será siempre objeto de admiración y un ejemplo para la 
juventud de Francia. 

En el quinto Congreso Internacional de Matemáticas, que tuvo 
lugar en agosto de 1912 en Cambridge, pocas semanas después de 
su muerte, Poincaré fue homenajeado por sus colegas de toda 
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Europa. El presidente del congreso, sir George H. Darwin (1845-
1912), hijo del célebre naturalista, pronunció estas palabras en la 
inauguración: 

Fue en Roma hace cuatro años cuando la primera sombra de oscu-
1idad de esa enfermedad, que ha terminado ahora tan mortalmente, 
cayó sobre nosotros. Todos ustedes recuerdan la consternación que 
se apoderó de todos nosotros cuando las primeras palabras pasaron 
de hombre a hombre: «Poincaré está enfermo». Habíamos esperado 
que pudiéramos oír de nuevo de su boca alguna ponencia tan ilumi­
nadora como la que dio en Roma; pero no fue así, y la pérdida de 
Francia con su muerte afecta al mundo entero. 

EPÍLOGO 

En torno a 1912 Europa se dirigía inadvertida pero inexorablemen­
te hacia la catástrofe. Los odios generados en conflictos anteriores, 
el auge de los nacionalismos, el militarismo rampante, la carrera 
de armamentos, la lucha por la expansión colonial y otros factores 
adicionales condujeron a las potencias europeas a la guerra. El 18 
de febrero de 1913 Raymond Poincaré, que había ganado las elec­
ciones, accedió a la presidencia de la República, cargo que ejerce­
ría durante toda la guerra. Henri Poincaré no vivió para ver a su 
primo en la más alta magistratura del Estado ni tampoco para 
padecer las penalidades de la guerra. Pero sí era consciente de los 
males que amenazaban a su país y a Europa, y dejo oír su autori­
zada voz en un discurso ante la Liga de la Educación Moral el 26 
de junio de 1912, tan solo unas semanas antes de su muerte: 

Verdaderamente el odio es una fuerza, y una fuerza muy poderosa. 
Pero no podemos servimos de ella, porque rebaja, porque es como 
unos anteojos, en los que solo se ven los grandes trazos; porque el 
odio es nefasto y no hace verdaderos héroes. No sé si al otro lado de 
ciertas fronteras hay gente dispuesta a alimentar el patriotismo con 
odio, pero sí que sé bien que entre nosotros semejante método sería 
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totalmente contrario a nuestro temperamento, a nuestras tradicio­
nes, a nuestras aspiraciones. Los ejércitos franceses se han batido 
siempre por alguien o por algo, y no contra alguien, y creo que no 
han luchado peor por ello. [ ... ] Eso es todo de lo que el odio es capaz 
y es eso lo que no queremos. Acerquémonos, aprendamos a cono­
cernos y, por ello, a estimarnos, para perseguir un ideal común. 
Guardémonos de imponer medios uniformes, eso es irrealizable, 
además de indeseable. La uniformidad es la muerte, porque cierra la 
puerta a todo progreso. Además, toda coacción es estéril y odiosa. 

Pero los Gobiernos y los jefes milita.res de Europa ya habían 
realizado su apuesta. Las palabras de Poincaré, como las de los 
pocos intelectuales de toda Europa que se opusieron a la guerra, 
cayeron en saco roto. 

La familia de Poincaré anunció su muerte en una esquela en 
la que se podía leer: 

Henri Poincaré, miembro de la Academia Francesa y de la Academia 
de Ciencias, miembro del Bureau des Longitudes, Inspector General 
de Minas, profesor de la Facultad de Ciencias, profesor honorario de 
la Escuela Politécnica, miembro del Consejo del Observatorio de Pa­
ris y del Consejo de los Observatorios de Provincias, miembro aso­
ciado de la Academia de Stanislas de Nancy, miembro extra.ajero de 
la Real Sociedad de Londres, de la Academia dei Lincei, de las Aca­
demias de Estocolmo, Copenhague, Budapest, Gotinga, Upsala, Bu­
carest, etc., miembro honorado extra.ajero de las Academias de Vie­
na, Edimburgo, Dublín, etc., miembro asociado de las Academias de 
Bruselas, Washington, etc., miembro correspondiente de las Acade­
nlias de Berlín, San Petersburgo, Ámsterdam, Múnich, etc., coman­
dante de la Legión de Honor, oficial de Instrucción Pública, co­
mandante de ptimera clase de la Estrella Polar de Suecia 

Como se ve, Poincaré había alcanzado las más altas distincio­
nes y los mayores reconocimientos en todo el mundo. 

Henri Poincaré escribió decenas de libros y cientos de artícu­
los. La extensión de su obra es tan inabarcable como su profundi- . 
dad. El último de los universalistas, en palabras del matemático 
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Eric Temple Bell (1883-1960), investigó en todas las ramas de las 
matemáticas y de la física teórica de su tiempo. En este libro nos 
hemos acercado a sus descubrimientos sobre las funciones auto­
mórficas, el problema de los tres cuerpos, la topología y la relati­
vidad. También hemos glosado su obra como filósofo. Pero además 
de todo ello, Poincaré hizo notables aportaciones a la teoría de 
números, la teoría de grupos, la teoría de funciones, la telegrafía 
sin hilos, el cálculo de probabilidades y la cosmología. Todo ello 
haciendo gala siempre de una inquebrantable honradez intelectual 
y de un compromiso leal con su país y la sociedad en la que vivió. 
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