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Introduccion

En la ciudad francesa de Nancy, en la esquina entre la Grand Rue
y la Rue de Guise, hay una pequeifia farmacia. Este establecimien-
to ocupa hoy en dia, tal y como lo hacia hace mas de 150 afios, los
bajos de un edificio de tres plantas, el Hotel Martigny. En la facha-
da que da a la Grand Rue, a la altura del primer piso, hay una
placa conmemorativa que dice: «En esta casa nacié el 29 de abril
de 1854 Henri Poincaré, miembro de la Academia Francesa y de la
Academia de Ciencias, muerto en Paris el 17 de julio de 1912».

No muy lejos de alli, en la Rue de la Visitation, se encuentra
el Liceo Henri Poincaré, llamado asi en honor del ilustre hijo de la
ciudad. Y andando por la fachada principal de esta institucién en
direccién a la Grand Rue se llega a la calle Henri Poincaré. Casi
paralela a esta tltima, discurre otra calle mas ancha y mas larga,
la calle Raymond Poincaré, dedicada a su primo, el presidente
de la Repiiblica Francesa durante la Primera Guerra Mundial. La
ciudad honra asi a sus ciudadanos mas distinguidos. En Francia,
la figura del politico parece ser méas valorada que la del matemati-
co, a juzgar por la importancia de las calles que les dedican, pero
Henri Poincaré pertenecio a esa clase de hombres cuyo legado
traspasa todas las fronteras, las espaciales y las temporales.

A pesar de que Poincaré vio su ciudad natal invadida por las
tropas alemanas siendo adolescente, el resto de su vida transcurri6é
en un periodo de paz, el comprendido entre la guerra franco-pru-



siana de 1870-1871 y el comienzo de la Primera Guerra Mundial en
1914, de la que ya no fue testigo. En el plano politico, la Tercera
Republica, instaurada tras la caida del emperador Napole6n III y
el fracaso de la Comuna de Paris, consiguié sobrevivir gracias a
una Constitucién flexible que permitio la alternancia en el poder
de gobiernos de distinto signo. Poincaré nunca ejercié una activi-
dad politica, pero siempre estuvo bien relacionado con el poder y
no solo por la buena sintonia que mantuvo con su primo.

Fue esta una época de un trepidante crecimiento econémico
e industrial. Y, al igual que en Alemania, la ciencia —elemento
fundamental para el desarrollo tecnol6gico— era promovida y
financiada tanto estatal como privadamente. En los ltimos afios
del siglo xix se produjo la electrificacién de buena parte de Euro-
pa, asi como la difusién del telégrafo. En los primeros afios del
siglo xx surgio la telegrafia sin hilos. Estos avances planteaban
problemas, tanto teéricos como practicos, que interesaron a cien-
tificos e ingenieros de todos los paises avanzados.

En Francia, al igual que en Alemania, a finales del siglo xix se
consolidé un sistema de ensefianza piiblico a todos los niveles
educativos. Las Grandes Ecoles, que databan de la época de la
Revolucion, se consolidaron como centros de élite de la ensefian-
za superior y en ellas estudiaron los hombres més brillantes de la
época, ya fueran ingenieros, matematicos, economistas o politicos.
Poincaré se formé en uno de estos centros.

Paris, donde Poincaré vivié la mayor parte de su vida, sufrié
una gran remodelacioén a finales del siglo xx. En 1889, con motivo
de la Exposicién Universal de ese afio, finalizé la construccién de
la Torre Eiffel. Durante la Exposicién Universal de 1900 se cons-
truyd la primera linea del metro. La ciudad se modernizé y expan-
dio, convirtiéndose en una de las grandes urbes mundiales. Era La
Belle Epoque, un periodo caracterizado, al menos en apariencia,
por el optimismo, la expansién econémica y social, la confianza
en la ciencia y el progreso. También fue una época de renovacién
artistica, en la que surgieron movimientos estéticos que siguen
siendo admirados hoy en dia.

Poincaré se distinguié desde pequeiio por una excepcional
capacidad para las matematicas. En el otofio de 1873 ingresé en
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la Ecole Polytechnique, una de las Grandes Ecoles, y de allf pas6
a la Escuela de Minas de Paris. Se licencié como ingeniero de
minas en 1878, pero su principal interés eran las mateméticas y,
por este motivo, simultane6 los estudios de ingenieria con los de
matematicas en la Sorbona. Ejercié algunos meses como inge-
niero de minas en Vesoul, durante los cuales fue testigo de los
estragos causados por un terrible accidente. A finales de 1879
obtuvo una plaza de profesor en la Universidad de Caen. A partir
de ese momento ya se dedicé en exclusiva a las matematicas y
la ciencia.

El primero de los grandes trabajos de Poincaré estuvo centra-
do en el estudio de las ecuaciones diferenciales. Inventé unas fun-
ciones, que €l llamé «fuchsianas» y que hoy en dia se conocen
como «automorficas», que servian para resolver ecuaciones dife-
renciales muy generales. Este trabajo le vali6 el reconocimiento
de los matematicos franceses —en especial de Charles Hermite,
que habia sido profesor suyo en la escuela politécnica y que le
apoyaria durante el resto de su carrera— y también le dio a cono-
cer en el 4mbito internacional. Asi, el matemético sueco Gosta
Mittag-Leffler se fijé en sus trabajos, iniciAndose entonces una re-
lacién profesional y de amistad que seria muy provechosa para
ambos.

Pero el nombre de Henri Poincaré salt6 a la fama mundial
cuando en enero de 1889 gané un concurso matemaético convoca-
do por el rey Oscar II de Suecia. El trabajo presentado por Poin-
caré trataba sobre el problema de los tres cuerpos: encontrar la
trayectoria de tres cuerpos sometidos a su mutua atraccién gravi-
tatoria. Aunque la concesién del premio no estuvo exenta de difi-
cultades —Poincaré cometi6 un error en la memoria original que
él mismo detect6 y corrigio—, lo cierto es que este trabajo repre-
senta una de las mayores aportaciones de Poincaré a la historia de
las matematicas. Al ser el problema de los tres cuerpos de una
enorme complejidad, Poincaré no intenté una resolucién general,
sino que buscé una comprensién cualitativa de la estructura gene-
ral de las soluciones. En su trabajo desarrollé toda una serie de
conceptos y herramientas matematicas nuevas que hoy en dia se
usan en lo que se conoce como teoria de los sistemas dindmicos.

INTRODUCCION



10

Esta teoria matematica se aplica a campos tan diversos como la
fisica, la biologia, la quimica o la economia.

Poincaré ocup6 diversas citedras de Fisica y Mateméticas
en Paris a partir de 1881. El premio del rey de Suecia le convirtié en
uno de los hombres de ciencia mas conocidos de Francia y sus
trabajos posteriores no hicieron sino acrecentar su fama. Entre
estos trabajos se encuentran los dedicados a la topologia, de la que
es considerado como uno de sus fundadores. La topologia es la
rama de las matemaéticas que trata especialmente de la continuidad
y de otros conceptos méis generales originados de ella, como las
propiedades de las figuras con independencia de su tamaifio o for-
ma. En topologia, dos objetos son equivalentes si podemos defor-
mar uno de ellos de manera continua, sin hacer cortes ni agujeros,
hasta convertirlo en el otro. Para un topdélogo, un tridngulo y un
cuadrado son la misma cosa. La topologia estudia propiedades mas
generales que las que estudia la geometria. Se trata de caracterizar
un objeto sabiendo de cudntas partes estd compuesto, si tiene
agujeros, si posee una frontera definida, si es finito o, en cambio,
se extiende sin fin, etc. Poincaré se interesé por la topologia a
partir de sus trabajos con las ecuaciones diferenciales y el proble-
ma de los tres cuerpos. Y ello le llevé a la necesidad de generalizar
los conceptos y las herramientas matematicas de la topologia a
espacios de mas de tres dimensiones.

El nombre de Poincaré volvié a aparecer en los medios de
comunicacién a principios del siglo xx1 con motivo de la resoluciéon
de un problema topolégico que él enuncié cien afios antes, proble-
ma que se conoce como «la conjetura de Poincaré». Convertida ya
en teorema desde que fue resuelta, esta afirma, en un lenguaje no
demasiado técnico, que «toda superficie de n dimensiones que sea
finita, no tenga agujeros y no esté retorcida, la podemos deformar
continuamente hasta convertirla en una esfera». En el capitulo
cuatro daremos un enunciado més riguroso, e introduciremos los
conceptos matematicos necesarios para hacerlo. Poincaré no pro-
puso la conjetura como tal, sino que lo hizo a modo de pregunta,
aunque todos los matematicos posteriores a él esperaban que la
respuesta fuera positiva. El problema se revel6 tan dificil de resol-
ver que en el aiio 2000 el Instituto Clay lo incluyé entre uno de los
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problemas del milenio, y prometié un millén de délares a quien lo
resolviera. La demostracion final fue obra del matematico ruso
Grigori Perelman (n. 1966), quien, tras varios afios de trabajo en
solitario, lo resolvié a inicios del presente siglo. Perelman se hizo
por ello merecedor de la medalla Fields, uno de los mayores reco-
nocimientos que puede recibir un matematico, y del premio de los
problemas del milenio, pero rechazé ambos.

Henri Poincaré fue también uno de los fisicos tedricos mas
importantes de su tiempo. Especialmente crucial fue su contribu-
cién a la teoria especial de la relatividad, de la que es, junto a Lo-
rentz y Einstein, uno de sus fundadores. Ya en torno a 1900 Poin-
caré apostaba por mantener el principio de relatividad como un
principio bésico de la fisica. Este principio se puede enunciar di-
ciendo que las leyes de la fisica son las mismas para todos los
observadores, independientemente de si estdn 0 no en movimien-
to. El espacio absoluto no existe y es, por tanto, imposible detectar
el movimiento de un objeto respecto de este espacio absoluto. Solo
es posible detectar el movimiento relativo entre dos objetos. Ade-
mas, Poincaré también admitia la constancia de la velocidad de la
luz, aunque como una convencion inevitable. Recordemos que
estos dos principios, el principio de relatividad y la constancia de
la velocidad de la luz, son los dos postulados que introdujo Ein-
stein en su primer articulo sobre la relatividad.

Entre los hallazgos de Poincaré estaba el hecho de que la sin-
cronizacién mediante rayos luminosos llevaba a que la simultanei-
dad de dos sucesos era relativa, ya que dependia del observador.
Un hecho este que la teoria de la relatividad pondria sobre bases
firmes. En 1905 Poincaré escribié el articulo «Sobre la dindmica
del electrén», cuyo contenido es en gran parte similar al articulo
«Sobre la electrodindmica de los cuerpos en movimiento» que Al-
bert Einstein publicé ese mismo afio, y que se considera el articu-
lo fundacional de la teoria de la relatividad. Las predicciones cuan-
titativas de ambos cientificos para el movimiento de un electrén
sometido a campos eléctricos y magnéticos son iguales, y también
son iguales a las que ya habia deducido Lorentz. La diferencia
entre estos articulos es, sobre todo, de interpretacién. En la inter-
pretacion de las consecuencias cinematicas de las transformacio-
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nes de las distancias y los tiempos —las transformaciones de Lo-
rentz— Einstein es mas audaz que Lorentz y Poincaré, y rompe de
una manera mas explicita con los antiguos conceptos de espacio
y tiempo.

Henri Poincaré también destaco por sus reflexiones filoséfi-
cas, especialmente en el campo de la epistemologia o filosofia de
la ciencia. Publicé muchos articulos sobre este tema y se convirtié
en autor de éxito con una coleccién de ensayos dirigidos al gran
publico, en los que combinaba la disquisicién filoséfica con la di-
vulgacién cientifica. Poincaré formé parte de muchas academias
y sociedades cientificas y fue un hombre social y profesionalmen-
te muy reconocido. Su prestigio, no solo en Francia, era enorme y
ello le permitia frecuentar los circulos més selectos de la vida in-
telectual y politica de la época. Falleci6 por una complicacién
inesperada tras una operacién de préstata. A su entierro acudieron
grandes personalidades de la cultura y la politica francesas y su
muerte fue lamentada por todos los cientificos del momento, den-
tro y fuera de Francia.
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1854 El 29 de abril nace en Nancy Jules
Henri Poincaré.

1862 Ingresa en el liceo de Nancy, hoy
llamado en su honor Lycée Henri
Poincaré. Su educacion primaria
la recibi6 de un profesor particular.

1873 Ingresa en la Ecole Polytechnique.
En paralelo a sus estudios de
ingenieria, estudia matemdticas.

1874 Publica su primer trabajo original
en matematicas.

1876 Se examina de matematicas, con éxito,
en la Universidad de la Sorbona.

1878 Se licencia como Ingeniero de Minas.

1879 En marzo es designado ingeniero de
minas de tercera clase en Vesoul.
En agosto obtiene su doctorado en
Matemdticas por la Universidad de
Paris. En septiembre se produce el
accidente en la mina Magny y tiene
que elaborar un detallado informe.
En diciembre obtiene una plaza de
profesor de Calculo Diferencial e
Integral en la Facultad de Ciencias
de la Universidad de Caen.

1881 El 20 de abril contrae matrimonio con
Louise Poulain d’Andecy. En octubre
obtiene una plaza en la Facultad
de Ciencias de la Sorbona, en Paris.

1883 Obtiene el puesto de tutor en la Ecole
Polytechnique.

1886 Obtiene la cdtedra de Fisica
Matemética y Probabilidad.

1887 Es elegido miembro de la Academia
de Ciencias.

1889 Obtiene el premio del rey de Suecia por
su trabajo «Sobre el problema de los
tres cuerpos y las ecuaciones
de la dinamica».

1895 Publica en el Journal de l'Ecole
Polytechnigue el articulo «Analysis
situs», el primero de sus trabajos
dedicados a la topologia.

1899 Envia una carta sobre el caso Dreyfus,
que es leida en el segundo juicio al que
fue sometido el militar.

1904 Enuncia la conjetura que lleva su
nombre.

1905 Presenta a la Academia de Ciencias
un resumen de su articulo «Sobre
la dindmica del electron», que sera
publicado en 1906.

1908 Es elegido miembro de la Academia
Francesa.

1911 Asiste, junto con Einstein, Planck
y Lorentz, entre otros cientificos,
al primer Congreso Solvay, celebrado
en Bruselas.

1912 Muere en Paris el 17 de julio como
consecuencia de las complicaciones
derivadas de una operacién de préstata.
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CAPITULO 1

JRigor o intuicion?

Durante todo el siglo xix las matematicas
experimentaron un gran impulso. Los grandes
matematicos como Gauss, Cauchy o Riemann

resolvieron muchos problemas antiguos y, sobre todo,
abrieron el camino a nuevos métodos e ideas, como la
geometria no euclidea. Francia gozo de una prestigiosa
escuela matematica que incluia grandes nombres como
el propio Cauchy, Laplace, Lagrange y Hermite.
En este contexto, Henri Poincaré qued6é muy
pronto cautivado por la disciplina
que le haria famoso.






Jules Henri Poincaré nacié en Nancy el 29 de abril de 1854. Su
padre, Emile Léon Poincaré, era médico y también ejercia de pro-
fesor de Anatomia y Fisiologia en la Escuela de Medicina de aque-
lla ciudad. Su madre, Eugénie Launois, provenia de una familia
adinerada de Arrancy, una localidad de la regién de Lorena. Alli la
familia tenia una finca que fue su lugar de vacaciones y recreo
durante muchos afos. En esta casa de campo podian llegar a jun-
tarse hasta sesenta personas en torno a la abuela materna de Poin-
caré, Euphrasie. Parece ser que la anciana estaba especialmente
dotada para los juegos de cartas y el calculo mental.

Antes de que Poincaré naciera, su abuelo habia establecido
una farmacia en Nancy, y con el tiempo construy6 una gran casa,
que se convirti6 a la vez en laboratorio de preparacion de medica-
mentos, tienda y residencia. En esta mansién convivieron Henri,
su hermana Aline, sus padres y sus abuelos. La casa estaba siempre
llena de gente y no era extrafio que algunos familiares vinieran a
pasar alli varios dias. Henri Poincaré goz6 asf de una infancia feliz,
rodeado de sus padres, su hermana, sus abuelos y otros familiares
y amigos que frecuentaban la casa familiar.

Cuando tenia cinco afios padeci6 un episodio de difteria, una
enfermedad grave que atin lo era més por aquel entonces. Poinca-
ré sobrevivid, pero tuvo una larga convalecencia: durante dos me-
ses no pudo andar y tard6 hasta nueve meses en recuperar el habla
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RAYMOND POINCARE (1860-1934)

Henri Poincaré tenia dos primos por par-
te de padre, Raymond y Lucien, ambos
hijos del hermano mayor de su padre,
Antoni. Raymond Poincaré nacié en Bar-
le-Duc y estudioé Derecho en la Universi-
dad de Paris. A los treinta y tres afios
entrd en el Gobierno vy, a partir de enton-
ces, ocupo varias carteras, siendo primer
ministro en cinco ocasiones. En 1913 fue
elegido presidente de la Replblica Fran-
cesa, cargo que ocupod hasta 1920. Diri-
gi¢ el pais, por tanto, durante la Primera
Guerra Mundial y tuvo una participacion
destacada en las negociaciones de paz,
mostrandose muy duro con Alemania en
sus exigencias de reparacion. Henri y su
primo Raymond mantuvieron una estre-
cha relacién. De estudiantes, les gustaba
mantener largar conversaciones sobre filosofia. Cuando ya ambos eran per-
sonalidades respetadas, discutian sobre todo tipo de asuntos, incluidos los
nombramientos y la concesién de distinciones. También coincidian esporadi-
camente en reuniones, actos o cenas de artistas e intelectuales franceses
organizados por miembros destacados de la sociedad parisina de la época.
Ambos fueron miembros de la Academia Francesa.

completamente, ya que la difteria habia producido una parilisis de
laringe. Su hermana pequeiia, Aline, fue un gran apoyo para él en
esos meses y juntos inventaron un lenguaje de signos para poder
comunicarse, Aline y él permanecieron muy unidos toda su vida.
Henri no fue a la escuela hasta los ocho afios. Hasta ese mo-
mento, un profesor privado amigo de la familia se encargé de su
educacién, asi como la de su hermana y la de sus propios hijos. En
esa época, era esta una practica relativamente habitual entre las
familias de buena posicién. Las clases eran variadas y se centraban
en la lectura y la escritura, principalmente. Cuando Henri ingre-
s6 en la escuela en 1862, inmediatamente se convirtio en el niime-
ro uno de su clase, algo que su tutor ya preveia. Tenia una memo-
ria prodigiosa y no tomaba apuntes, porque se acordaba de todo
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lo que ofa. Era capaz de leer un libro una sola vez y recordar luego
en qué pagina aparecia una frase concreta. Se cuenta que, afios
después de hecho un viaje, era capaz de recitar de memoria el
nombre de las estaciones en las que el tren habia hecho parada.

En la infancia de Henri no faltaron los viajes. En el verano de
1866 visit6 con su familia Frankfurt y Colonia. En el verano de 1867
los Poincaré acudieron a la Exposicién Universal de Paris, y dos
afios después fueron a Londres. Los viajes terminaban siempre con
una visita a la finca materna en Arrancy.

Cuando Poincaré tenia dieciséis afios, en julio de 1870, estall6
la guerra franco-prusiana. Las tropas alemanas invadieron su ciu-
dad natal. Henri ayudé a su padre, a quien habian puesto a cargo
de una ambulancia, a atender a los heridos. La familia Poincaré
permanecié en la Nancy ocupada y un oficial aleman fue alojado
en la casa familiar. Henri aproveché las circunstancias para mejo-
rar su alemén, idioma que llegé a hablar con fluidez. Con el tiempo,
dominaria también el inglés.

La guerra franco-prusiana tuvo grandes consecuencias para
la historia de Francia y, muy especialmente, para la regién donde
Poincaré nacié y se crié: Lorena. En el tratado de paz, que se firmé
en 1871, Alsacia y gran parte de Lorena fueron cedidas a Alemania.
Metz y Estrasburgo quedaron bajo el dominio aleman, aunque Nan-
cy sigui6 siendo francesa. La ocupacién alemana de Metz y Estras-
burgo hizo que muchos franceses, a los que se permitié abandonar
dichas ciudades, se refugiaran en Nancy. Como buena parte de
esta poblacién estaba compuesta por comerciantes, artesanos e
intelectuales, Nancy vivié tras la guerra una época de especial
dinamismo. La universidad de la ocupada Estrasburgo fue trans-
ferida a Nancy, y lo que habia sido hasta entonces la Facultad de
Medicina de Estrasburgo se fundié con la Escuela de Medicina
de Nancy. El padre de Henri obtuvo una citedra en la nueva insti-
tucién en 1878. Otra consecuencia de la guerra, importante en la
vida de Henri, fue la llegada a Nancy, como refugiado proveniente
de Alsacia, del futuro matematico Paul Appell, con quien Poincaré
mantuvo una gran amistad toda su vida.

Durante la guerra Poincaré estudié en el liceo de Nancy para
obtener el bachillerato en artes. En agosto de 1871 aprobé con
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LA GUERRA FRANCO-PRUSIANA

Napoleon Il habia accedido al poder a través de las elecciones a la presiden-
cia de la Segunda Republica en 1848. Poco después, en 1851, dio un golpe de
Estado y proclamo el Segundo Imperio. A ello siguieron cerca de veinte afios
de gobierno autoritario en los que Francia emprendié su modernizacién y
desarrollé una intensa politica internacional: participé en la unificacion de
Italia, la guerra de Crimea y diversos conflictos mas. Simultdneamente, se
produjo la unificacién de Alemania y la ascensién de Guillermo |, bajo la tute-
la de Otto von Bismarck. A finales de la década de 1860, ambas potencias
rivalizaban por el dominio de la politica europea. La confrontacion militar
parecia cada vez mas probable, vy el episodio que finalmente prendié la mecha
fue el intento aleman de colocar a un miembro de la familia del emperador en
el trono de Espafa. Ante las protestas de Francia, Alemania retird a su pre-
tendiente, el principe de Hohenzollern, pero la insistencia del ministro de Asun-
tos Exteriores francés, alentado por la emperatriz Eugenia, de que Alemania
renunciara a toda pretension en el futuro, empeoro la situacion. El 19 de julio
de 1870 Francia declard la guerra a Alemania, pero esta no pudo serle menos
favorable: el emperadar Napoledn fue hecho prisionero y destituido, y Francia
tuvo que renunciar a la region fronteriza de Alsacia y a gran parte de Lorena.
Desde ese momento, y hasta la Primera Guerra Mundial, el animo de revancha
estuvo presente en gran parte de la sociedad francesa.

El general Reille entrega a Guillermo | la carta de rendicién de Napoledn I, éleo de Carl Steffeck
realizado en 1884.
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buena nota, pero sin sobresalientes. Brill6 especialmente en filo-
sofia y latin. En noviembre del mismo afio, se examiné del bachi-
llerato en ciencias. Sus resultados fueron peores en este examen.
Habia llegado tarde al examen y, con las prisas, habia interpretado
mal el enunciado del primer problema, precisamente de matema-
ticas, por lo que habia sacado un cero en ese problema. A pesar de
ello, los examinadores, sabiendo de la valia del joven Poincaré, le
otorgaron el titulo.

Tras obtener el bachillerato, Poincaré empez6 a preparar el
llamado concours, la prueba de acceso a las Grandes Ecoles. El
joven se sumergié en el estudio de varios libros de matematicas,
los cuales formaban un compendio de los conocimientos matema-
ticos de la época. De entre todos ellos hubo uno que ejercié una
notable influencia en Henri: La geometria superior, de Michel
Chasles (1793-1880). Debido a la influencia de los grandes mate-
maticos franceses de la Revolucién, la geometria francesa de la
época estaba dominada por el dlgebra y la geometria analitica, y
existia cierto desprecio hacia la representacion grafica y los argu-
mentos cualitativos.

En la introduccion a su obra titulada Mecdnica analitica, el
gran fisico y matemitico francés Joseph-Louis de Lagrange (1736-
1813) escribia:

No encontraremos ni una sola figura en esta obra. Los métodos que
en ella expongo no requieren ni construcciones ni razonamientos
geométricos ni mecénicos, sino solamente operaciones algebraicas,
sujetas a un proceder regular y uniforme. Aquellos que gustan del
analisis veran con placer que la mecanica se convierte en una nueva
rama mas de €él, y me estaridn agradecidos por haber extendido asi
este campo.

Hay una diferencia radical en el aspecto de los libros del crea-
dor de la mecénica clasica, Isaac Newton (1643-1727), y la obra de
Lagrange. Newton llenaba sus paginas de construcciones geomé-
tricas y resolvia mediante ellas todo tipo de problemas. La pro-
puesta de Lagrange, culminacién de la obra de varios grandes
matematicos europeos del siglo xvin, de los que cabria destacar a
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Leonhard Euler (1707-1783), sistematizaba la forma en que se de-
bian aplicar las leyes de Newton a un problema cualquiera. El fi-
sico no dependia ya de su capacidad de visualizacién espacial y de
sus dotes de dibujante para resolver los problemas. Incluso hoy
en dia el estudiante de fisica con dificultades para seguir los razo-
namientos geométricos y las figuras ve con alivio que la mecéanica
lagrangiana le libra de tales cuestiones.

«La légica y la intuicién tienen cada una su propio papel
necesario. Ambas son indispensables. La l6gica, que es la tinica
que puede dar certezas, es el instrumento de la demostracion.
La intuicion es el instrumento de la invencion.»

— HEengi PoiNCARE EN EL CONGRESO INTERNACIONAL DE MATEMATICAS DE PARis DE 1900.

22

Pero tal vez Lagrange habia ido un poco demasiado lejos, y
Chasles proponia que los dos tipos de razonamiento, el analitico
y el grafico, debian complementarse. Es dificil calibrar cémo de
profunda fue la influencia de Chasles en Henri, pero no cabe duda
de que uno de los rasgos mas caracteristicos del pensamiento ma-
tematico de Poincaré iba a ser la combinacién del argumento cua-
litativo y la imaginacion espacial con el analisis matematico y la
manipulacion algebraica. Si, simplificando la evidencia cientifica,
podemos decir que nuestro hemisferio cerebral izquierdo esté es-
pecializado en los razonamientos secuenciales y analiticos, mien-
tras que el derecho lo estd en encontrar patrones globales y la
visualizacién espacial, Poincaré iba a sacar todo el partido al tra-
bajo conjunto de sus dos hemisferios.

Durante 1872 y parte de 1873 Henri prepard el concours. Fue
en el liceo donde estudiaba donde conocié a Paul Appell. Este
escribi6 afios més tarde una biografia de su amigo y gracias a este
texto tenemos una idea de cé6mo era el joven Poincaré. Tanto sus
compaiieros como profesores se sentian al principio un poco irri-
tados porque se sentaba en clase con una hoja de papel delante en
la que apenas escribia un par de notas. Para colmo, jla hoja era
siempre la misma! Pero pronto se dieron cuenta de que no lo hacia
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PAUL APPELL (1855-1930)

Appell nacié en Estrasburgo, Alsacia.
Cuando esta localidad fue anexionada
por Alemania, su familia se mudé a Nan-
cy, donde conocié a Henri Poincaré. Ap-
pell estudié en la Ecole Normale Supé-
rieure de Paris, donde se gradud con el
primer puesto. En 1881 se casd con Ameé-
lie Bertrand, sobrina de dos matematicos,
Joseph Bertrand y Charles Hermite. Este
ultimo seria un gran apoyo para Appell
en su carrera cientifica y universitaria. En
1885 Appell obtuvo la cétedra de Meca-
nica en la Sorbona de Paris y en 1892 in-
greso en la Academia de Ciencias. Escri-
bio cientos de articulos sobre analisis,
geometria y mecanica, resolviendo los
mas variados problemas en estas disci-
plinas. Su nombre esta asociado a los
polinomios de Appell para la resolucién de ecuaciones diferenciales y a la
ecuacion de Gibbs-Appell en mecanica. Fue una de las mayores autoridades
cientificas en la Francia de su tiempo y detentd varios puestos de responsa-
bilidad en el gobierno universitario, siendo decano de la Facultad de Ciencias
de la Sorbona y rector de esta universidad. Gran amigo de Poincaré, escribio
una biografia de este en 1925.

por suficiencia, sino de manera natural, y siempre estaba dispues-
to a ayudar a los demaés. Appell contaba que Poincaré hablaba de
manera entrecortada, y se sumia en sus pensamientos entre frase
y frase. No era muy dado a dar explicaciones extensas y llegé in-
cluso a recibir alguna advertencia por parte de los profesores en
el sentido de que en los exiAmenes podia llegar a no ser entendido.
Este estilo excesivamente sintético fue luego un rasgo caracteris-
tico de sus escritos mateméticos. En esos afios Appell y Henri
mantenian largas conversaciones mientras volvian del liceo y ha-
blaban tanto de matematicas como de filosofia o de politica. Se
forjé asi una profunda amistad.

Appell y Poincaré se presentaron en Paris en julio de 1873 con
el objetivo de realizar el examen de acceso a la Ecole Normale
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Supérieure. Paul Appell obtuvo el tercer puesto de entre todos los
examinados y Poincaré quedd quinto. Se habia equivocado en un
dibujo y planted la resolucién del problema de forma no ortodoxa.
En agosto se present6 al examen para la Ecole Polytechnique. Aqui
si que todo fue bien y Poincaré causé una honda impresién en el
tribunal examinador, especialmente en el examen oral. En esta
ocasion dio muestras de toda su capacidad como matematico. Ob-
tuvo el primer puesto.

LAS MATEMATICAS ANTES DE POINCARE

Henri Poincaré fue el mayor matemaético francés de su generacién.
Su capacidad intelectual, unida a una entrega total a la ciencia, que
constituyé el eje en torno al cual giré toda su vida, le hicieron
trabajar en todas las ramas de las matematicas e incluso contribuir
a fundar alguna de ellas. Su interés no conocia limites, y por ello
también trabajé en los diversos campos de la fisica de su tiempo.
Es necesario, para comprender su obra, hacer un breve repaso a
las matematicas y la fisica de la segunda mitad del siglo xix.

LAS ECUACIONES DIFERENCIALES

Isaac Newton y Gottfried Leibniz (1646-1716) son considerados
los creadores del cilculo infinitesimal: el cdlculo diferencial e in-
tegral. Pero Newton no expreso las leyes de la mecénica entera-
mente en ese lenguaje, sino que utilizé dibujos y argumentos
geométricos para resolver los problemas mecénicos que planteaba.
La sistematizacion matematica de las leyes de la mecénica fue obra
de cientificos posteriores, de entre los que cabe destacar a Euler
y, como ya se ha apuntado, a Lagrange.

Euler fue probablemente el mateméatico mas prolifico de la
historia. Trabajé en todos los campos de las matematicas y una
buena parte de la notacién que usamos hoy en dia se la debemos
a él. La mayoria de los matematicos que le siguieron aprendieron
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célculo diferencial e integral leyendo sus tratados. En lo que aqui
nos interesa, €l y Lagrange redujeron la mecénica newtoniana al
planteamiento y resolucién de ecuaciones diferenciales.

Una ecuacién diferencial es una ecuacién en la que aparece
como incognita el ritmo al que cambia una magnitud determinada,
lo que técnicamente se conoce como su derivada. Por ejemplo,
imaginemos un depésito lleno de agua que vaciamos por medio de
un grifo que hay en su base. La velocidad con la que sale el agua
depende de su altura: cuanto mayor sea la altura del agua en el
depdsito, mas rapida saldra por el grifo. Si se quiere calcular c6mo
varia en el tiempo dicha altura, debe formularse una ecuacién di-
ferencial: la derivada temporal de la altura (el ritmo al que cambia
el nivel del agua en el depdsito) es una funcién de la altura. La
resolucion de la ecuacién da el nivel del agua en el depdsito en
funcion del tiempo, y permite conocer la velocidad con la que sale
el agua en cada instante y cuanto tardara el depésito en vaciarse.

Los fisicos y matematicos del siglo xix consiguieron formular
en términos de ecuaciones diferenciales multitud de problemas
pricticos. En particular, 1a segunda ley de Newton dice que la masa
de un cuerpo por su aceleracion es igual a la fuerza a la que esta
sometido. La aceleracién de un cuerpo es el ritmo al que cambia su
velocidad, es decir, la derivada de la velocidad con respecto al tiem-
po. A su vez, la velocidad de un cuerpo es el ritmo al que cambia su
posicién, su derivada. De esta forma, la segunda ley de Newton se
traduce en una ecuacién diferencial cuya resolucion proporciona la
posicién del cuerpo en funcién del tiempo, esto es, su trayectoria.

El siglo xix conocié un gran avance en la resolucién de las
ecuaciones diferenciales, porque su estudio era de capital impor-
tancia para varias dreas de la astronomia, la fisica en general o la
ingenieria. Una idea de la importancia que se daba a esta cuestién
es el premio otorgado por la Academia de Ciencias de Paris en 1879
al trabajo que mejor supusiera «un avance significativo en la teoria
de las ecuaciones diferenciales lineales de una sola variable». El
premio era una medalla valorada en 3000 francos. Poincaré se pre-
sent6 a esta convocatoria y, aunque no la gand, fue el principio de
una larga lista de trabajos sobre las ecuaciones diferenciales que
le introducirian en la élite de las matematicas europeas.
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LA MECANICA CELESTE

Pierre-Simon de Laplace (1749-1827) dej6 una profunda huella en
la fisica y las matematicas del siglo xix, especialmente en Francia.
Su Mecdnica celeste constituyé durante afios la obra fundamental
de los astrénomos de Europa, ya que en este tratado se exponian
los métodos para calcular y predecir la posicién de los planetas
del sistema solar. Aunque Newton habia formulado su ley de gra-
vitacién universal, y con ella explicado las leyes establecidas por
Johannes Kepler (1571-1630) a propésito del movimiento planeta-
rio, muchos eran los problemas que dejé abiertos. Newton solo
habia podido resolver lo que se conoce como «el problema de los
dos cuerpos»; esto es, dos astros en mutua atraccion gravitatoria.
Pero casos como el del movimiento de la Luna, en el que la atrac-
cién del Sol ejerce una fuerte perturbacién sobre su érbita alrede-
dor de la Tierra, no pudieron ser completamente resueltos por el
gigante inglés. El caso de la Luna es uno de los ejemplos del deno-
minado problema de los tres cuerpos: el Sol, la Tierra y la Luna,
en mutua atraccién gravitatoria.

Como el Sol es tan grande, comparado con el resto de los cuer-
pos del sistema solar, cuando estudiamos la érbita de un planeta
podemos ignorar, en principio, los demds cuerpos y considerar que
el planeta estd solamente sometido a la atraccién del Sol. Las leyes
de Newton predicen una 6rbita eliptica para los planetas y las ob-
servaciones, grosso modo, estan de acuerdo con esta prediccion.
Pero una observacién mas detallada muestra enseguida que hay
desviaciones apreciables de este comportamiento. Los matemaéticos
posteriores a Newton se preguntaban si estas desviaciones eran
debidas a la atraccién de los otros cuerpos y, si esto era asi, si esas
desviaciones podian finalmente expulsar a los planetas de sus 6r-
bitas. Para ello era necesario resolver el problema de los tres cuer-
pos. Por ejemplo, las observaciones realizadas por Edmund Halley
(1656-1742) mostraban que Jupiter y Saturno no seguian sus érbitas
a la velocidad exactamente predicha por las leyes de Kepler: Jupi-
ter parecia acelerarse a la vez que Saturno parecia frenarse. Para
estudiar la érbita de Saturno era preciso tener en cuenta no solo la
presencia del Sol, sino también la del planeta gigante Jupiter.
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Aunque tanto Euler como Lagrange se interesaron por el pro-
blema de los tres cuerpos, no hicieron grandes progresos. Solo
Lagrange consiguié algunas soluciones particulares, obteniendo
determinadas 6rbitas especiales que hoy en dia se usan para colo-
car satélites en determinadas posiciones privilegiadas (los llama-
dos «puntos de Lagrange»). Fue Laplace el que consiguié idear
métodos aproximados para encontrar la érbita de un planeta per-
turbado por la presencia de otro. Y Laplace encontré6 que, en ge-
neral, los movimientos medios de los planetas eran constantes. En
el caso de Jupiter y Saturno, Laplace demostré que la aceleracion
del primero y la desaceleracién del segundo eran consecuencia de
su atraccién mutua y, lo méas importante, que su comportamiento
era periédico: cada 450 afios la situacién se revertia y era Jupiter
el que se frenaba y Saturno el que se aceleraba. A los 900 afios
ambos volvian a su posicién inicial.

De los trabajos de Laplace cabia sacar dos conclusiones. La
primera era que todas las anomalias en el movimiento de los pla-
netas se podian explicar por la atraccién gravitatoria de otros
planetas. Esta idea llev6 al descubrimiento de Neptuno en 1846,
porque la 6rbita de Urano presentaba anomalias que indicaban
que habia otro cuerpo, desconocido, mas alejado del Sol. La se-
gunda conclusién era que el sistema solar es estable. Laplace
crey6 demostrar que las 6rbitas de los planetas oscilaban en tor-
no a una trayectoria media que permanecia imperturbable por
los siglos de los siglos. Pero esto no result6 ser del todo cierto.
El primero que cuestion6 esta afirmacion fue el también francés
Urbain Le Verrier (1811-1877), célebre por predecir la existencia
de Neptuno. Le Verrier observé que en el método de Laplace se
despreciaban cantidades que no siempre serian despreciables.
Ello reabrio el debate de la estabilidad del sistema solar: la con-
clusion de Laplace de que el sistema era estable podia no ser
cierta.

En este contexto, en el verano de 1885 se invité a todos los
matematicos europeos a participar en el concurso organizado con
motivo del sexagésimo cumpleaiios del rey Oscar II de Suecia y
Noruega, el cual tendria lugar en 1889. Uno de los temas del con-
curso era avanzar en los métodos matematicos que pudieran llevar
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ala demostracion de la estabilidad del sistema solar. A este premio
se iba a presentar, y ganarlo, Henri Poincaré.

LA GEOMETRIA NO EUCLIDEA

En su obra Elementos de geometria, Euclides (ca. 325-265 a.C.)
expuso sus cinco postulados, los axiomas de los que se deducen
todos los teoremas de la geometria. Estos axiomas, verdades por
si mismas y que no necesitan demostracién, son los siguientes:

1. Dados dos puntos se puede trazar una y solo una recta que
los una.

2. Cualquier segmento se puede prolongar de manera continua
en cualquier sentido.

3. Es posible trazar una circunferencia con centro en un pun-
to cualquiera y con cualquier radio.

4. Todos los dngulos rectos miden igual y se superponen por
traslacién.

5. Por un punto exterior a una recta se puede trazar una tinica
recta paralela a ella.

El mismo Euclides ya pensaba que el quinto postulado tenia
un estatus diferente a los demds y que, tal vez, se podia deducir de
los otros cuatro. Los matematicos, a lo largo de la historia, inten-
taron demostrarlo a partir de los cuatro anteriores sin conseguirlo.
Pero a principios del siglo xix varios matematicos comprendieron
que, en realidad, era un postulado especial y que se podia construir
toda una geometria consistente, es decir, sin contradicciones 16-
gicas, sin imponer esa restriccién. Fueron Carl Friedrich Gauss
(1777-1855), Nikolai Lobachevski (1793-1856) y Janos Bolyai (1802-
1860) los que crearon, de manera independiente, las bases de la
geometria no euclidea.
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El problema

del poligono de
cuatro lados
(fig. Dyel
planteamiento
realizado por la
geometria
euclidea (fig. 2).

FIG. 1

El quinto postulado puede ser sustituido por otros enunciados
equivalentes. Imaginemos un poligono de cuatro lados como el de
la figura 1, de vértices ABCD. Supongamos que los dngulos DAB'y
ABC son rectos y que los lados AD y BC tienen la misma longitud.
Usando el quinto postulado se puede demostrar que, si DABy ABC
son rectos, entonces ADC y BCD también lo son. De hecho el
quinto postulado es equivalente a este otro enunciado: si un poli-
gono de cuatro lados ABCD con lados AC y BC iguales tiene los
angulos DAB y ABC rectos, entonces los otros dngulos también
son rectos. A partir de este enunciado se puede invertir la demos-
tracién anterior y obtener el enunciado de las paralelas.

En el espacio tridimensional hay tres geometrias posibles, si
admitimos el requisito adicional de que el espacio sea homogéneo.
Una de ellas es la geometria euclidea, en la que los cuatro angulos
del rectangulo son rectos. Otra es la geometria eliptica, en la que
si dos angulos del cuadrilatero son rectos, los otros dos son obtu-
sos. La otra, descubierta por Lobachevski, es la hiperbélica, en la
que los otros dos angulos son agudos.

Estas tres geometrias tienen facil
visualizacién en superficies bidimensio-
c nales. La geometria euclidea es la del

plano normal y corriente. En ella se cum-
ple el quinto postulado de Euclides: solo
es posible trazar una recta paralela por
un punto exterior a otro dado. También
podemos decir que los cuatro dngulos de

8 un rectangulo son rectos (figura 2), o, lo
que constituye otra forma equivalente de

ver el problema, que los dngulos de un

20°

—

tridngulo suman 180°. Como un plano no
estd curvado, se dice que en esta
geometria la curvatura es cero.

La geometria eliptica es la que en-
contramos sobre la superficie de una
esfera. Si trazamos un «cuadrilatero»

90°

90°
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Geometria euclidea

sobre la esfera como en la figura 3, usan-
do circulos maximos, vemos que si dos
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angulos son rectos, los otros dos
son obtusos. Ademas, si formamos
un tridngulo —por ejemplo entre
un polo y dos puntos del ecua-
dor—, este tendr4 dngulos que su-
man més de 180°. Claramente, no
se cumple el quinto postulado, por-
que por un punto exterior a una
recta «no» es posible dibujar nin-
guna paralela, ya que todas las li-
neas que dibujemos sobre la esfera
terminaran cortdndose en algin
punto. Como la superficie de la es-
fera estd curvada y es convexa, se
dice que esta geometria correspon-
de a una curvatura positiva.

Por tltimo, la geometria hiper-
bélica es la que encontramos en la
superficie de un hiperboloide, o
silla de montar, como la de la figu-
ra 4. Aqui hay mas de una paralela
por un punto exterior a una linea,
y los angulos de un tridngulo su-
man menos de 180°. La curvatura
es negativa.

Si en lugar de restringirnos a
una superficie, imaginamos las geo-

FIG. 3

FIG 4

Mayor de 90°

Geometria eliptica

Angulo menor de 90°

[~/ c

Geometria hiperbdlica

metrias posibles en el espacio tridimensional e imponemos la res- I planteamiento

del poligone

triccién de que el espacio sea homogéneo, es decir, que tenga la  de cuatro

misma curvatura en todos los puntos, tenemos, de nuevo, estas tres

lados segun
la geometria

posibilidades: curvatura cero (espacio euclideo), curvatura positi- eliptica (fig. 3

y la hiperbdlica

va (espacio eliptico) y curvatura negativa (espacio hiperbolico). (fig. 4).
El propio Gauss se pregunté si el espacio en que habitamos

es realmente euclideo o, por el contrario, tiene curvatura, aunque

esta sea muy pequefia. Bernhard Riemann (1826-1866) elabor6 atin

mas la teoria de los espacios no euclideos inventando todo un

formalismo matematico que permitia tratar espacios con curvatu-
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ra no uniforme. Fue este formalismo el que utilizé afios m4s tarde
Albert Einstein para desarrollar su teoria general de la relatividad.

En algin momento de su carrera, Poincaré estudi6 a fondo los
escritos de Lobachevski. El uso de la geometria hiperbélica en sus
estudios sobre las ecuaciones diferenciales fue una de sus aporta-
ciones mas originales.

TOPOLOGIA

La topologia estudia la forma de los objetos de manera menos
restrictiva que la geometria. Un modo sencillo de visualizar la equi-
valencia topoldgica es pensar en un trozo de masa de hacer pizzas.
Podemos deformar la masa para hacer un tridngulo, un cuadrado,
un poligono cualquiera o una pizza circular. Mientras no cortemos
la masa y no le hagamos agujeros, todas las figuras que obtenga-
mos seran equivalentes para un topélogo, aunque no lo sean para
un geémetra. ;Qué caracteriza a estos objetos? ;Qué tienen en
comiin que los defina? En el caso de la masa de pizza que puede
adquirir distintas formas, y a la que no hemos hecho agujeros, hay
dos propiedades que saltan a la vista. La primera es que el contor-
no de la pizza define un adentro, donde hay masa, y un afuera, la
mesa de trabajo sin pizza. Otra propiedad es que toda la masa esta
conectada entre si. Usando un ejemplo muy querido de los mate-
maticos: una hormiga que se paseara por la pizza podria recorrer-
la toda ella sin tener que saltar o dar rodeos. Pues bien, la topolo-
gia se encarga de este tipo de propiedades, mas generales que las
propiedades geométricas de los objetos, pero también maés sutiles.

El primer resultado que nos interesa aqui lo obtuvo Leonhard
Euler. El matematico suizo encontré que el nimero de caras C,
aristas A y vértices V de un poliedro cualquiera estaban relaciona-
dos por la férmula

C-A+V=2.

Por ejemplo, para un tetraedro, C vale 4, A vale 6 y Vvale 4,
cumpliéndose la férmula de Euler. Para un cubo, tenemos C =6,
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A=12y V=8. Para un objeto més
complejo, como el dodecaedro, for-
mado por doce pentagonos regulares
que forman una especie de balén de
fitbol irregular, tenemos C =12,
A=30y V=20. El lector puede com-
probar que la férmula se cumple para
cualquier poliedro, regular o irregu-
lar, que imagine.

El también suizo Simon L'Huilier
(1750-1840) se interesé por la férmula
de Euler y se dio cuenta de que habia
figuras geométricas que no la cum- -
plian. Imaginemos, por ejemplo, el
marco de un cuadro como el de la figura 5. Tiene 16 caras, 32 aris-
tas y 16 vértices, luego

C-A+V=0.

Lo que distingue al cubo o al poliedro de esta nueva figura
geométrica es que el marco tiene un agujero. L'Huilier se dio cuen-
ta de que la férmula de Euler se podia generalizar a un objeto con
un nimero cualquiera de agujeros g de la siguiente forma:

C-A+V=2-2g.

Retomemos nuestra masa de pizza e imaginemos que hacemos
con ella una bola. Podemos deformar esta bola, sin cortarla ni
hacerle agujeros, hasta obtener cualquier poliedro que queramos:
un cubo, un tetraedro, un icosaedro, etc. Todos estos objetos cum-
plen la ecuacion de Euler y a todos les corresponde el mismo valor
de g (9=0). Todos estos objetos, que se obtienen unos de otros por
deformacién continua, sin cortar ni pegar nada, son topolégi-
camente equivalentes. El nimero g (o género de la figura) es lo
que los mateméticos denominan un «invariante topolégico» y to-
dos los objetos que podemos obtener por deformacion de una es-
fera, la bola de la masa de pizza, tienen g =0.
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Procedimiento
para construir la
banda de M&bius
con una cinta.

FIG. &

Hagamos ahora un agujero en nuestro trozo de masa y démos-
le la forma de una rosca. Los matematicos llaman a esta forma un
«toro». Podemos deformar el toro continuamente hasta obtener
toda clase de poliedros, como el marco de un cuadro, y todos ellos
tendran un niimero g = 1. Asi, todos estos objetos son topolégica-
mente equivalentes a un toro. Si hacemos dos agujeros tendremos
objetos con g=2, si tres, g=3, y asi sucesivamente.

Un alumno de Gauss, Johann Listing (1808-1882), fue el primer
matematico en utilizar el término «topologia» (del griego topos,
«lugar») en su tratado Lecciones de topologia. Listing introdujo el
concepto de banda de Mébius antes que el propio August Mobius
(1790-1868), que también era alumno de Gauss y que estudiaria las
caracteristicas de este objeto. La banda de Mdbius se obtiene al
pegar los extremos de una cinta que hemos doblado previamente
(figura 6).

Si en una cinta normal podemos definir los dos lados de ma-
nera independiente (por ejemplo, podemos poner la cinta horizon-
talmente y distinguir entre el lado de arriba y el de abajo), en una
banda de Mdébius tal distincién no existe, porque al recorrer la
superficie de la cinta, al cabo de una vuelta la parte de arriba se
convierte en la de abajo y viceversa. Mébius llamé a este tipo de
superficie «no orientable», porque no es posible definir una direc-
cién sobre la superficie de manera no ambigua. En una esfera, que
si es una superficie orientable, puede establecerse un criterio cla-
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ro para asignar una orientacién en
todos los puntos. Por ejemplo, puede
definirse en cada punto de la esfera la
direccion hacia afuera como positiva,
y negativa, la direccién hacia adentro.
Al recorrer toda la superficie, la direc-
cién positiva se mantiene consistente-
mente de manera continua. En una
banda de Mébius, como la de 1a figura
7, no hay manera de hacer esta asig-
nacién de manera consistente, porque
al recorrer la cinta lo que era positivo
en un principio coincide, al cabo de
una vuelta, con lo definido como ne-
gativo previamente.

De esta forma, a mediados del si-
glo xix Listing y sus colegas habian
llegado a la conclusién de que existian
dos familias de superficies desde el
punto de vista topolégico: las orienta-
bles y las no orientables. La superficie
orientable, finita y sin fronteras mas
sencilla es la esfera, con g=0. Pegan-
do a la esfera g asas se consiguen to-
das las superficies orientables con g
agujeros. De manera similar pueden
conseguirse todas las superficies no
orientables partiendo de la mas senci-
lla y anadiendo asas. Un ejemplo muy

conocido y singular de superficie no orientable con g=1 es la bo-
tella de Klein, que se muestra en la figura 8.

Poincaré trabajé en casi todos los campos de las matemaéticas
y de la fisica de su época. Es muy dificil decidir si alguno de sus
trabajos tuvo mas importancia que los otros, porque son muchos
los que fueron importantes en su momento y su nombre estd aso-
ciado a numerosos teoremas y conceptos matematicos. Pero el
discurrir de las matematicas durante el siglo xx y los primeros afos
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Una cinta o banda
de Mdbius (fig. 7)
v una botella de
Klein (fig. 8).
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del siglo xx1 ha llevado a que el nombre de Poincaré sea conocido
sobre todo por estar asociado a la denominada «conjetura de Poin-
caré». Los mejores matematicos del mundo dedicaron afios de
trabajo a esta hipétesis y su demostracién final fue un aconteci-
miento tanto intelectual como periodistico. Dedicaremos un capi-
tulo entero a los hallazgos de Poincaré en el ambito de la topologia,
pero dejemos aqui enunciada, de manera sencilla, la conjetura que
lleva su nombre: «Toda superficie orientable de n dimensiones,
finita, sin fronteras y sin agujeros, se puede deformar de manera
continua hasta convertirla en una n-esfera».

FISICA MATEMATICA

Henri Poincaré no solo fue un gran matematico, también fue un
gran fisico tedrico. Aparte de la mecénica celeste, que en Francia
era considerada una rama de las matematicas, el otro gran foco de
interés de Poincaré en el ambito de la fisica fue el electromagne-
tismo. A mediados del siglo xix las teorias del electromagnetismo
estaban en una encrucijada. Gracias a la obra de Ampere, Faraday
y otros fisicos de la época, se habia acumulado una serie impor-
tante de datos y leyes experimentales que habian demostrado la
intima relacion existente entre la electricidad y el magnetismo,
puesto que este ultimo era consecuencia del movimiento de las
cargas eléctricas.

El fisico francés André-Marie Ampere (1775-1836), haciendo
gala de una genial intuicién, postulé que las fuerzas magnéticas
que producian los imanes tenian su origen en corrientes eléctricas
microscopicas que residian en el interior de los imanes. Con ello
se reducia la fuente de las fuerzas tanto eléctricas como magnéti-
cas a las cargas eléctricas. Las cargas estaticas producian fuerzas
eléctricas y si se movian producian, ademas, fuerzas magnéticas.
En estas circunstancias Michael Faraday (1791-1867) hizo uno de
sus grandes descubrimientos: la induccién electromagnética. Fa-
raday demostré experimentalmente que un iman podia inducir
corriente eléctrica en un conductor cercano. Para que ello fuera
posible habia que mover algo: o bien mover el imén, o bien mover
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HERTZ, MARCONI Y LAS ONDAS ELECTROMAGNETICAS

Heinrich Hertz (1857-1894) realizé entre 1886 y 1888 una serie de experimen-
tos que revelaron de forma inequivoca la existencia de las ondas electromag-
néticas, predichas por la teoria de Maxwell. Hertz fue capaz de generar y re-
cibir ondas de unos 30 MHz (la unidad de frecuencia del sistema internacional,
el hercio, debe su nombra a este cientifico aleman). Hertz realizé sus experi-
mentos con un interés puramente cientifico, pero no pasé mucho tiempo
hasta que otros cientificos encontraran en las ondas de Hertz una aplicacion
practica. De entre todos ellos destacd el italiano Guglielmo Marconi (1874-
1937), que en diciembre de 1902 consiguié establecer una comunicacion te-
legréafica por radio entre Inglaterra y Canada. Marconi obtuvo el premio Nobel
de Fisica en 1909. La multitud de problemas tedricos y practicos a que dieron
lugar las ondas electromagnéticas fueron del interés de ingenieros y cientificos
de la época, y, como no, objeto de estudio por parte de Poincaré.

Heinrich Rudolf Hertz en un grabado de 1894. Retrato de Guglieimo Marconi en 1902,

el conductor. La corriente aparecia siempre que hubiera un movi-
miento relativo entre el iman y el conductor.

En su momento, estos fenémenos recibian dos explicaciones
diferentes: la basada en la existencia de una accién a distancia y
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Lineas de campo
entre imanes.
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la que abogaba por una teoria de campos. Wilhelm Eduard Weber
(1804-1891), en Alemania, habia propuesto una férmula para ex-
plicar todas las fuerzas eléctricas y magnéticas, tanto estéticas
como dinamicas, a partir de una accién a distancia entre las cargas
eléctricas. Su férmula era similar a la de la fuerza de gravedad
entre dos cuerpos, pero con mas términos, que dependian de la
velocidad y la aceleraci6n de las particulas. Con esta férmula, We-
ber podia deducir las fuerzas entre cargas eléctricas, las fuerzas
magnéticas entre dos corrientes eléctricas y las leyes de la induc-
cion electromagnética descubiertas por Faraday. Aunque la f6r-
mula de Weber explicaba correctamente todos los fenémenos
electromagnéticos conocidos en su época, no estaba exenta de
dificultades teéricas. Hermann von Helmholtz (1821-1894) demos-
tré en torno a 1870 que la férmula de Weber era inconsistente con
la ley de conservacién de la energia.

La teoria de campos habia nacido con Faraday. Faraday ima- .
ginaba que el espacio alrededor de un imén estaba lleno de cuerdas
invisibles, «lineas de fuerza» las llamaba él, cuya tensién era la
responsable de las fuerzas de atraccién o repulsion entre los polos.
También imaginaba lineas de fuerza eléctricas que unian las cargas
negativas con las positivas, provocando su atraccién (figura 9).
Aunque Faraday fue un gran experimentador, quiz4 el més grande
de la historia de la ciencia, no tenia una formacién matematica
mas alla de los fundamentos esenciales de dlgebra y geometria.
Fue el escocés James Clerk Maxwell (1831-1879) quien formulé
matematicamente las ideas de Faraday.

Maxwell creé una teoria matematica unificada de todas las
leyes de la electricidad y el magnetismo conocidas en su época.
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La teoria de Maxwell era inicialmente una teorfa mecanica. Supo-
nia que todo ocurria en un medio continuo, el éter, que lo llenaba
todo. Este medio era una especie de fluido que podia moverse,
pero que también se podia estirar y comprimir. Tenia, por tanto,
inercia y elasticidad. Las ecuaciones de Maxwell del campo elec-
tromagnético no eran otra cosa que las ecuaciones mecanicas del
movimiento del éter. Los fenémenos eléctricos eran consecuencia
de que el éter se estiraba o se comprimia. Los fen6menos magné-
ticos resultaban del movimiento, en forma de remolinos, del éter.
Para Maxwell, siguiendo las intuiciones de Faraday, la fuerza entre
dos cuerpos cargados eléctricamente se comunicaba a través del
éter, un poco en la forma en que una goma elastica comunica una
fuerza entre sus dos extremos. La fuerza entre dos imanes era
debida a la interaccion entre los remolinos de éter que se formaban
en la linea que unia los dos imanes, como si entre ellos existiera
una especie de tornado, invisible para nosotros.

Pero la teoria de Maxwell iba un poco mas lejos que la de
Weber. No solo podia dar cuenta de los fenémenos conocidos mas
relevantes, sino que hacia una prediccién: el éter podia transmitir
ondas, de manera similar a como un sélido puede transmitir vibra-
ciones. Maxwell calculé la velocidad que tendrian esas ondas y
encontré un valor cercano al de la velocidad de la luz. En sus pro-
pias palabras: «No podemos dejar de concluir que la luz consiste
en las ondulaciones transversales del mismo medio que es la cau-
sa de los fenémenos eléctricos y magnéticos».

Fue el discipulo de Helmholtz, Heinrich Hertz, quien inclin6
definitivamente la balanza a favor de la teoria de Maxwell. Hertz
fue capaz de producir ondas electromagnéticas de una longitud de
onda muy diferente a la de 1a luz, y demostré que esas ondas tenian
las mismas propiedades que la luz: se propagaban a la misma ve-
locidad, viajaban en linea recta, se reflejaban y, como la luz, podian
polarizarse. El descubrimiento de Hertz causé una gran impresién
en la comunidad cientifica de la época y tuvo repercusiones de dos
tipos: tedricas, impulsando el estudio del electromagnetismo den-
tro de la fisica, y tecnolégicas, con la aparicién de la telegrafia sin
hilos. A ambos aspectos iba Poincaré a dedicar su atencién en sus
anos de madurez cientifica.
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Pero la teoria de Maxwell también tenia sus dificultades. Al
ser una teoria puramente de campos no podia explicar de modo
consistente algunos fenémenos que mostraban la existencia de
particulas cargadas, como la electrolisis o los rayos catédicos. Y
habia un problema aiin mayor: la teoria parecia requerir un medio
especial, el éter, cuya dindmica era la causa de todos los fenéme-
nos electromagnéticos. Cabia entonces preguntarse si habia un
sistema de referencia privilegiado, aquel en que el éter estaba en
reposo, para las leyes del electromagnetismo. El mismo Hertz es-
tuvo entre los primeros en intentar elaborar una teoria de la elec-
trodinamica de los cuerpos en movimiento.,

«El pensamiento no es mas que un relimpago en medio de una
larga noche. Pero ese relampago lo es todo.»

— HENRI POINCARE,

40

Fue el holandés Hendrik Lorentz (1853-1928) quien realizé la
sintesis definitiva entre las ideas de Maxwell y las de Weber. Lo-
rentz admitia la existencia de flujos de particulas cargadas, a la
manera de Weber, pero mantenia la existencia del campo como
medio de interaccién entre las cargas, en lugar de la accién a dis-
tancia de Weber. Este proceder aseguraba los éxitos de la teoria
de Maxwell, pero ademads afiadia una comprension plausible de
la electrolisis y las descargas eléctricas en gases. Con Lorentz, la
teoria electromagnética adquirié6 la forma aceptada hoy en dia: los
campos obedecen las ecuaciones de Maxwell, y las particulas, las
leyes de la mecénica.

La teoria de Lorentz, bien establecida a finales del siglo xix,
resolvia muchas contradicciones anteriores, pero creaba proble-
mas nuevos. Poincaré fue uno de los mayores admiradores de Lo-
rentz, y también su critico méas perspicaz. En 1902, en su libro
Ciencia e hipdtesis, acerca de la situacion de la electrodinamica,
Poincaré escribié: «Lo més satisfactorio que tenemos es la teoria
de Lorentz. [...] Sin embargo, tiene todavia un defecto grave, [...]
es contraria al principio de accién y reaccién; o mejor, ese princi-
pio, a los ojos de Lorentz, no seria aplicable a la materia sola».
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Estos puntos débiles de la teoria de Lorentz llevarian a refor-
mular, no el electromagnetismo, sino las leyes de la mecénica,
dando lugar al nacimiento de la teoria especial de la relatividad.
Poincaré fue protagonista, en primer plano, de esta primera revo-
lucién de la fisica del siglo xx.

LOS RASGOS DEL GENIO

;Con qué armas se enfrenté Poincaré a estos desafios? Dos bié-
grafos que le conocieron muy de cerca nos aportan datos y anéc-
dotas. Uno es, como ya se ha apuntado, Paul Appell. El otro es
Jean Gaston Darboux (1842-1917), que escribié una biografia de
Poincaré poco después de la muerte de este. Segiin ambos bi6gra-
fos, Poincaré era un gran lector y retenia con facilidad cuanto lefa.
Como era miope no veia bien la pizarra, por lo que desarroll6 una
especie de memoria auditiva que le hacia recordar la leccién sin
tomar notas. Aun no siendo buen dibujante, si tenia una gran ca-
pacidad para la imaginacién espacial, una poderosa visién interior,
que le permiti6 adentrarse en las profundidades de la geometria y
la topologia.

Cuando algiin problema le interesaba, se abstraia totalmente,
mostrando algunos rasgos de los que tépicamente se atribuyen a
los sabios: nada parecia importarle e incluso a veces se olvidaba
de comer. Era capaz de hacer sus calculos mentalmente, mientras
paseaba de un lado para otro, y solo acudia al papel cuando ya
tenia claro qué habia que hacer.

Era un hombre impaciente y escribia con rapidez. Una vez que
habfa comprendido o resuelto un problema se ponia a escribir de
corrido la solucién, sin apenas releer y repasar lo que hab{a escri-
to. Esa forma de trabajar, que seria una caracteristica suya duran-
te casi toda su vida, le trajo mas de un disgusto, no solo en su
época de estudiante, en la que su apresuramiento le costé alguna
vez no alcanzar la maxima calificacion, sino también en su vida
cientifica, donde en alguno de sus articulos cometi6 errores im-
portantes. Este rasgo de su personalidad también quedé reflejado
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en sus cartas, una buena parte de las cuales estan disponibles en
internet gracias a la Universidad de Lorena (aunque debe tenerse
en cuenta que su letra no es de facil lectura y la escritura parece
realizada a toda prisa).

Poincaré no destacaba por sus habilidades fisicas y era bas-
tante incompetente en gimnasia, a pesar de lo cual, y sorprenden-
temente, era buen bailarin. Le interesaba la miisica, pero no pare-
ce que tuviera especiales dotes para interpretarla y no tocaba
ningun instrumento. Desde muy pequefio si se revel6 como un
buen escritor, y escribia obras de teatro que representaban sus
familiares y amigos. Por otra parte, Poincaré no era habil con las
manos ni tenia dotes para el laboratorio. Siempre valoré y se inte-
resé por la fisica experimental, pero nunca realizé ningiin experi-
mento original.

Pero, sobre todo, Poincaré siempre destacé por su gran inteli-
gencia. Desde pequeiio era capaz de resolver los problemas més
dificiles. Durante el bachillerato y la preparacién para el concours
asombraba a sus compafieros por la facilidad y rapidez con que
resolvia las cuestiones que se le proponian. Incluso hubo quien,
para probarlo, le propuso un problema muy por encima del nivel
exigido, que resolvio sin aparente dificultad. En un primer contac-
to, su ensimismamiento podia provocar la impresién de que era un
joven estirado, pero pronto se hacia apreciar por sus compaiieros,
ya que siempre estaba dispuesto a ayudar a los demas cuando se
atascaban en algiin problema y era, en general, un buen camarada.

Todas estas cualidades se pusieron de manifiesto cuando Hen-
ri Poincaré ingresé en la Ecole Polytechnique en 1873.
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CAPITULO 2

Un genio se presenta

Poincaré se dio a conocer en el panorama
europeo de las matematicas apenas comenzada
su carrera académica. Sus primeras publicaciones
estuvieron dedicadas a las ecuaciones diferenciales, tema
en el que la potente escuela alemana de la época, con Klein
a la cabeza, era pionera. Sus trabajos pronto le valieron
el reconocimiento tanto dentro como fuera de su
pais, y también dieron lugar a alguna que otra
controversia sobre la prioridad de los
descubrimientos realizados.






En otofio de 1873 Poincaré y Appell se fueron a vivir a Paris. El
primero como alumno de la Ecole Polytechnique y el segundo para
ingresar en la Ecole Normale Supérieure. La Ecole Polytechnique
fue fundada en 1794, durante la Revolucién francesa, y era una
institucién militar, condicién que mantuvo hasta 1970. Sus alumnos
vestian uniforme y, junto con los estudios propios de un centro de
ensefianza superior, recibian instruccién militar y tenfan obliga-
ciones propias del ejército. Era, y sigue siendo, un centro muy
selectivo, al que solo acudian los mejores estudiantes del pais y en
el que daban clase los mejores profesores. Una idea de este am-
biente selecto la da el hecho de que Charles Hermite y Pierre Bon-
net (1819-1892) estaban entre sus profesores. Y cuando Hermite
cay6 enfermo en una ocasion le sustituyé Edmond Laguerre (1834-
1886). Como puede verse por la categoria de sus profesores, las
matematicas estaban consideradas como uno de los pilares de una
buena educacién técnica.

Durante su estancia en la Ecole Polytechnique Poincaré escri-
bia con frecuencia a su madre, por lo que se dispone de un archivo
extenso sobre su estado de 4nimo y las peripecias que vivié en
aquella época. Las cartas reflejan la total confianza entre madre e
hijo. Poincaré no ocultaba nada a su madre y le hacia participe
tanto de sus progresos como de sus contratiempos. Describia la
escuela como un internado con disciplina militar en el que los
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CHARLES HERMITE (1822-1901)

Hermite fue una de las figuras mas im-
portantes de las matematicas francesas
del siglo xix. Especialmente dotado para
las matematicas, no lo estaba para los
examenes y tuvo muchas dificultades en
conseguir superar las sucesivas pruebas
a las que se sometié durante su adoles-
cencia y juventud. Solo gracias al apoyo
de algunos de sus profesores, que veian
en él sus indiscutibles aptitudes, fue ca-
paz de superar sus examenes en el liceo,
donde ya leia a Gauss pero tenia proble-
mas con las matematicas elementales.
Ingresé en la Ecole Polytechnique, aun-
que habia obtenido el puesto nimero 68
en el examen de ingreso. Como padecia
una cojera de nacimiento, fue dado por
no apto un afio después de ingresar en esta escuela, la cual tenia un fuerte
componente militar con el que Hermite no podia cumplir. Gracias a la ayuda
de los matematicos Sturm y Bertrand, con cuya hermana Louise se caso,
consiguio el certificado necesario para dedicarse a la ensefianza, y en 1848
fue nombrado examinador, precisamente, de la Ecole Polytechnigue. Fue alli
donde conocio, como alumno, a Poincaré. Hermite fue un matematico de gran
originalidad y entre sus mayores hallazgos estan la solucién general de la
ecuacion de quinto grado o la demostracién de la trascendencia del nimero
e (esto es, e no es solucion de ninguna ecuacion algebraica con coeficientes
enteros). Hermite llegd a tener gran influencia en el mundo académico francés
de finales del siglo xix y apoyo sin reservas a Paul Appell (quien se caso con
una sobrina de su esposa), a Emile Picard (su yerno) y a Henri Poincaré.

arrestos se sucedian tras alguna que otra gamberrada por parte de
los internos. La competencia por ser el nimero uno de la promo-
cién era muy fuerte, y Poincaré daba cuenta a su madre no solo
de las notas que obtenia en sus exdmenes sino también de las que
obtenian sus maximos competidores. Al final del afio una pequenia
dificultad en un examen de geometria hizo que Poincaré obtuviera
menos puntos que sus contrincantes. El examinador le dio solo 10
sobre 20 en uno de los examenes. Poincaré fue a quejarse a Pierre
Bonnet, el director de estudios, que comprendié que Poincaré no
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habia sido puntuado justamente, pero no corrigié a su colega. Poin-
caré tenia problemas con el dibujo y el examinador fue especial-
mente duro en ese aspecto. Finalmente, quedé en segunda posi-
cién, detrés de un tal Bonnefoy y por delante de otro estudiante
de apellido Petitdidier. Los tres acapararian las tres primeras po-
siciones durante los afios que estudiaron juntos.

En 1874 Henri Poincaré public6 su primer trabajo original en
mateméticas: «Démonstration nouvelle des propriétés de l'indica-
trice d’une surface» («<Nueva demostracion de las propiedades de
la indicatriz de una superficie») en la revista especializada Nou-
velles annales de mathématiques. No era un trabajo de especial
relevancia, pero demostraba que ya desde muy joven era capaz de
hacer aportaciones originales. Durante su segundo y tltimo afio en
la politécnica Poincaré tuvo algunos momentos de desaliento. La
constante competencia por ser el nimero uno produjo en él cierta
desazoén. En alguna de sus cartas a su madre se mostraba inseguro
y daba la sensacién de sentirse incapaz de seguir rindiendo al mis-
mo nivel. En cualquier caso, acabé el segundo afio igual que el
primero: en segunda posicién, por detrds de Bonnefoy.

Pasados los dos aiios en la politécnica llegé el momento de
seguir unos estudios més especializados. Tanto Poincaré como sus
dos maximos competidores, Bonnefoy y Petitdidier, se decidieron
por seguir sus estudios en la Escuela de Minas de Paris. Los inge-
nieros de minas pertenecian a un cuerpo de funcionarios del Es-
tado que estaba muy bien considerado y realizar esta carrera ase-
guraba a los estudiantes un buen futuro profesional. Y, aunque el
interés fundamental de Poincaré seguian siendo las matematicas,
sabia que los estudios de ingenieria de minas le proporcionarian
un buen trabajo. Durante los tres cursos en la Escuela de Minas
Poincaré mantuvo el contacto con Bonnet, su profesor en la poli-
técnica. Con su consejo siguié estudiando matemaéticas por su
cuenta y en agosto de 1876 se examiné con éxito de matematicas
en la Universidad de la Sorbona.

En 1878 Poincaré terminé sus estudios en la Escuela de Minas.
Habiendo perdido el interés por competir para ser el nimero uno
del ranking, quedé tercero en la evaluacion final, por detras de
Bonnefoy y Petitdidier. El cuerpo de ingenieros de minas dependia
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LA ECOLE POLYTECHNIQUE

La Ecole Polytechnigue forma parte de
las Grandes Ecoles francesas, institucio-
nes de ensefianza superior que funcio-
nan de manera autdnoma al sistema
universitario y que forman a una buena
parte de la élite intelectual y cientifica de
Francia. Se accede a ellas a través de
una prueba especialmente dificil, el con-
cours, para la que los alumnos mas bri-
llantes se preparan una vez terminado el
bachillerato. La Ecole Polytechnigue fue
fundada en 1794 por el gobierno revolu-
cionario francés, a instancias del mate-
matico Gaspard Monge (1746-1818), casi
al mismo tiempo que la Ecole Normale
Supérieure, otra de las grandes escuelas
francesas. La intencion de los creadores G’?tb?ﬂ" q""t“"?:: i :;15; P“IB -

QQ estas instituciones era la de formar ;:!:t::h;‘i’::e’:'or :r';m d:::pofw: i
ingenieros, cientificos y profesores de

alto nivel para servir a la nacién. En con-

sonancia con el espiritu revolucionario, se accedia a ellas a través de un duro
examen de seleccidn al que podian presentarse todos los jovenes franceses,
independientemente de su clase social o sus recursos econdmicos. Una vez
admitidos en las escuelas los jévenes alumnos tenian asegurado un alojamien-
to, manutencién y un salario. En 1805 Napoledn dio a la Ecole Polytechnique
un estatus militar, que la institucién mantiene hasta hoy, puesto que depen-
de del Ministeric de Defensa, si bien desde 1970 se rige por un estatuto civil.
Desde mediados del siglo xix, el distintivo de la escuela es una X, cuyo origen
es incierto, pues algunos la asocian con dos cafiones cruzados y otros con la
incognita matematica. A los alumnos que han estudiado en ella se les asigna
una X seguida del afio en que ingresaron en la escuela. Asi, a Henri Poincaré
le correspondid la X1873. En la Ecole Polytechnique estudiaron muchos ilus-
tres franceses como Henri Becquerel (X1872), André Citréen (X1898), el pre-
mio Nobel de Economia Maurice Allais (X1931) o el presidente de la Republi-
ca, Valéry Giscard d’Estaing (X1944), por citar solo algunos.

directamente del Gobierno, que asignaba los puestos vacantes a
los recién graduados, normalmente por orden de preferencia segin
el ranking. Los puestos disponibles estaban en las localidades de
Clermont-Ferrand, Vesoul —ciudad préxima a Nancy—, Angers y
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Béne, en el norte de Argelia. Aunque inicialmente a Bonnefoy se
le habia asignado Clermont-Ferrand, este escribi6 a las autoridades
mostrando su preferencia por Vesoul. Ante la posibilidad de que
su hijo fuera destinado a Argelia, el padre de Poincaré hizo uso de
ciertas amistades en el Ministerio de Obras Publicas, del que de-
pendia la asignacién, para que se informara al ministro de que
Poincaré no gozaba de muy buena salud y que adem4s estaba pre-
parando su tesis doctoral en la Sorbona. También envié al minis-
terio un informe médico en el que se decia que Poincaré era deli-
cado de constitucién y que una larga estancia en Argelia podia ser
perjudicial para su salud.

Finalmente, el 28 de marzo de 1879 Poincaré fue designado
como ingeniero de minas de tercera clase en Vesoul. Bonnefoy fue
asignado a Clermont-Ferrand y Petitdidier a Angers. Otro ingenie-
ro, Roche, fue enviado a Argelia. Desgraciadamente, Bonnefoy
murié poco después en una explosién en la mina. Petitdidier tenia
muy mala salud y murié de bronquitis en 1884. Por tltimo Roche
murié en un ataque de los tuaregs en febrero de 1881.

Mientras terminaba sus estudios en la Escuela de Minas, Poin-
caré escribi6 su tesis doctoral en matematicas, que tuvo por titulo
«Las propiedades de las funciones definidas por ecuaciones en
derivadas parciales». La memoria fue depositada a principios del
afio 1878 y no fue hasta agosto de 1879 que fue aceptada. Los tres
miembros del tribunal examinador, los matematicos Jean Gaston
Darboux, Edmond Laguerre y Pierre Bonnet, su profesor en la po-
litécnica, tuvieron bastantes dificultades en evaluar la memoria y
exigieron numerosas correcciones a su autor. El estilo de Poinca-
ré era demasiado directo y habia muchos puntos que no estaban
explicados en detalle. En cualquier caso, como todo lo que Poin-
caré emprenderia a partir de entonces, el trabajo habria nuevos
caminos y contenia muchos resultados originales e interesantes.

El 3 de abril de 1879 Poincaré se incorporo a su puesto de
ingeniero en las minas de Ronchamp, a 30 km de Vesoul y no muy
lejos de su ciudad natal, Nancy. Trabajé como ingeniero de minas
solo unos pocos meses, porque a principios de diciembre se incor-
poré como profesor de Matematicas en Caen. El acontecimiento
mas relevante, y dramatico, del paso de Poincaré por las minas
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tuvo lugar el 1 de septiembre de 1879, cuando dieciséis mineros
murieron en una explosién en el pozo Magny. El pozo habia sido
construido un afo antes, se encontraba a 694 m de profundidad y
era el mas profundo de Francia por aquel entonces. Poincaré fue
el encargado de investigar las causas del accidente y, como tal,
tuvo que descender al fondo del pozo.

UN INFORME

El resultado de sus pesquisas fue un extenso informe en el cual se
proponia reformar el sistema de ventilacién de la mina. Poincaré
reflej6 en su escrito la magnitud de la tragedia: «Era desafortuna-
damente muy cierto que no encontrariamos nada mas que cadéive-
res, y el estado de las primeras victimas que descubrimos no deja-
ba dudas a este respecto». La causa del accidente fue una ldmpara
que habfa sido dafiada por un error humano:

Sospechamos que la lampara 476 que fue encontrada en aquel lugar
fue la causa de la ignicién del gas y del desastre. El estado de la
ldmpara confirma radicalmente estas sospechas. De hecho, la frac-
tura que podemos ver en el fondo del cilindro metélico es muy clara
y su forma, asi como sus dimensiones, nos recuerda la seccion de la
piqueta que usan los trabajadores. [...] No encontramos ningin
derrumbamiento en los alrededores que nos hiciera suponer que el
agujero habia sido producido por el golpe de una piedra caida del
techo.

El hecho de que una lJampara en malas condiciones causara la
tragedia quedaria grabado en la mente del joven ingeniero duran-
te toda su vida. Se trataba de una lampara de Davy, un tipo de
lampara de queroseno inventada en 1815 por el quimico inglés sir
Humphry Davy (1778-1829). La ldmpara de Davy protegia la llama
con una malla metélica, lo que evitaba su propagacién en caso de
contacto con el gas grisu, con frecuencia presente en las minas
de carbon.
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Muchos afios mas tarde, en 1910, Poincaré escribi6 un articu-
lo divulgativo sobre las minas de carbén para la revista Au sewil
de la vie («En el umbral de la vida»). Esta revista iba dirigida a los
nifios y de los capitulos que Poincaré escribié para ella el editor
publicé un libro titulado Ce que disent les choses («Lo que dicen
las cosas»). Probablemente recordando el desgraciado incidente
del pozo Magny, Poincaré hacia hincapié en la utilidad de la 14m-
para de Davy y su funcionamiento, describiendo la explosién de
grisu del siguiente modo:

Hay una mezcla explosiva de gas grisi y aire que llena toda la atmds-
fera de la mina e incluso los pulmones de los trabajadores. Solo se
necesita una chispa para incendiar la mezcla, y desisto de tratar de
describir el horror que sigue: cientos de desafortunados hombres
muertos instantdneamente por la explosién, mientras que otros, atin
més desgraciados, horrorosamente quemados y sobreviviendo por
unas pocas horas o unos pocos dias; y otros, asfixiados por los pro-
ductos de la combustién.

ECUACIONES DIFERENCIALES Y FUNCIONES
AUTOMORFICAS

En diciembre de 1879 Poincaré consigui6é una plaza de profesor
de Célculo Diferencial e Integral en la Facultad de Ciencias de la
Universidad de Caen. El sueldo que se le asigné era de 5500 fran-
cos anuales. Previamente, el 19 de noviembre de 1879, solicité al
Ministerio de Obras Piblicas la correspondiente comisién de ser-
vicios para poder abandonar su puesto en Vesoul. Poincaré perte-
neci6 al cuerpo de minas toda su vida, aunque, eso si, nunca volvié
a ejercer como ingeniero. Aun asi, se mantuvo siempre atento a
las cuestiones mineras y su trabajo de divulgacién en Au sewil de
la vie demuestra un conocimiento extenso del mundo de las minas.

En Caen Poincaré conocié a la que se iba a convertir en su
esposa, Louise Poulain d’Andecy. Los jévenes se prometieron en
febrero de 1881 y se casaron el 20 de abril de 1881. Tras la boda,
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los novios disfrutaron de unas vacaciones de quince dias. El ma-
trimonio tuvo tres nifias y un nifio.

«El azar no es mas que la medida de la ignorancia del hombre.»

— HENRI POINCARE.

52

El periodo que Poincaré vivi6 en Caen fue muy fructifero des-
de el punto de vista cientifico. Fue aqui donde elaboré varios de
los conceptos sobre la teoria cualitativa de las ecuaciones diferen-
ciales ordinarias y empezo0 a trabajar sobre lo que él llamaba «fun-
ciones fuchsianas».

Como ya se ha mencionado en el capitulo anterior, la Acade-
mia de Ciencias de Paris convoco en 1879 un premio para recom-
pensar el mejor trabajo sobre ecuaciones diferenciales lineales.
Una ecuacidén diferencial expresa una relacién entre una funcién
y sus derivadas. Por ejemplo, si tenemos un bloque sujetado a un
muelle como el de la figura 1, la segunda ley de Newton se expre-
sa diciendo que la fuerza ejercida sobre el bloque es igual a su masa
por su aceleracién: F=ma.

La fuerza es proporcional al desplazamiento del muelle res-
pecto de su posicién de equilibrio y se puede expresar por F'=—kx.
Aqui k es la constante del muelle; cuanto més grande sea k més
costard estirar o comprimir el muelle. Si tiramos del bloque, el
muelle se estira y ejerce una fuerza sobre el bloque intentando que
vuelva a su posicién de equilibrio. Si apretamos el bloque, compri-
miendo el muelle, se produce una fuerza que intenta descompri-

FiG. 1

Posicion de
equilibrio
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mirlo, intentando devolver de nuevo el muelle a su posicién de
equilibrio. Por su parte, la aceleracién es el ritmo al que la velo-
cidad cambia en el tiempo, esto es, la derivada en el tiempo de la
velocidad. Y la velocidad es, a su vez, la derivada temporal de
la posicién, por lo que la ecuacion se expresa del siguiente modo:
—-kx = md_x !
at®

Supongamos, para simplificar, que la masa del bloque y la
constante tienen valor unidad en las unidades escogidas. La ecua-
cion se puede expresar entonces diciendo:

2
gy +x=0.
dt?

Esto es una ecuacién diferencial y el objetivo del matemaético
es encontrar la posicién en cualquier instante de tiempo x(t), en
caso de que exista, que cumpla esta ecuacion. La ecuacién anterior
es lineal, lo que significa que si hay dos funciones x,(t) y x,(?), la
suma x,(f) +,(t) es también una solucién. Cualquiera de estas
funciones multiplicadas por un niimero constante son asimismo
solucion.

En el caso del muelle, las soluciones de la ecuacién son el
seno y el coseno y cualquier combinacién lineal de ellas, es decir,
cualquier funcién de la forma x (f) =a cost + b cost. Las constantes
a y b dependen de las condiciones iniciales. Por ejemplo, podemos
tirar de la masa y soltarla desde un desplazamiento dado, o, darle
un impulso desde su posicién de equilibrio. El resultado, en cual-
quier caso, es que el bloque realiza un movimiento de oscilacion
alrededor del punto de equilibrio (figura 2, pag. siguiente). Se en-
tiende que todo ello se produce en ausencia de rozamiento.

Las funciones seno y coseno tienen una propiedad muy im-
portante: son periédicas. Esto significa que su valor vuelve a repe-
tirse al cabo de un tiempo, llamado periodo. El periodo de las
funciones seno y coseno es 2m; asi, cos(t) = cos (¢ +2x). Este hecho
lo podemos expresar graficamente asociando a las funciones tri-
gonomeétricas seno y coseno una serie de puntos sobre la recta,
como vemos en la figura 3. La forma de la funcién dentro del seg-
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FIG. 2
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mento (0,2 xt) se repite en cada segmento (2nx, (2n + 1) x), para
cualquier valor de 7.

La ecuacién diferencial que corresponde al bloque ligado al
muelle es una ecuacién diferencial lineal de coeficientes constan-
tes. Su solucién era bien conocida por los matematicos del si-
glo xix, que de hecho sabian resolver ya ecuaciones bastante mas
dificiles. En concreto, se sabian resolver ciertas ecuaciones de la
forma:

2
P(t)i—f+Q(£)%+ R(t)x =0,
donde P (1), Q(¢) y R(t), son funciones polinémicas conocidas
de ¢. Pero se buscaba, si no una solucién general, sf un marco teé-
rico general.

El 22 de marzo de 1880, estando ya en Caen, Poincaré presen-

té un primer trabajo al premio convocado por la academia. La
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primera memoria fue seguida por tres apéndices, que Poincaré
envid entre junio y diciembre del mismo afio. Poincaré, inspirado
por los trabajos del matematico alemén Lazarus Fuchs (1833-1902),
consider6 las singularidades de este tipo de ecuaciones (las singu-
laridades son aquellos puntos en que los coeficientes se anulan).

Grandes matematicos del siglo, especialmente en Alemania,
trabajaron en este problema y otros relacionados, logrando signi-
ficativos avances. El aleman Carl Gustav Jacobi (1804-1851) intro-
dujo las funciones que hoy se conocen como «funciones elipticas
de Jacobi». Estas funciones describen, entre otros, el movimiento
de un péndulo que oscile con gran amplitud. El movimiento de un
péndulo cuando las oscilaciones son de pequeiia amplitud es bien
conocido y se corresponde con el mismo movimiento descrito por
el blogue unido al muelle. De hecho, la ecuacién de un péndulo para
oscilaciones pequefias es la misma que la que hemos visto anterior-
mente, y el movimiento del péndulo viene descrito por funciones
sinusoidales. Sin embargo, cuando la amplitud de 1a oscilacién no
es pequeia (por ejemplo, si el péndulo se desplaza de la vertical un
cuarto de vuelta), el comportamiento se desvia del sinusoidal, y la
ecuacién diferencial que lo describe tiene términos no lineales. Las
funciones de Jacobi describen con exactitud este movimiento para
una amplitud cualquiera, como por ejemplo la de la figura 4. Estas
funciones dependen de un pardmetro, m, que puede variar entre
0y 1; para m =0 se tiene el caso particular de las funciones trigo-
nométricas. Las funciones de Jacobi también sirven para describir
las olas llamadas «cnoidales», cuya
longitud de onda es muy larga en
comparacién con la profundidad \
del agua. La fotografia superior de L —
la pag. 57 muestra una formacion
de este tipo de olas.

Una propiedad importante de 0

sn(x,m=0,9)

Funcién eliptica
snix).

FIG. 4 |

las funciones elipticas es que son
doblemente peri6dicas. Pero esta
doble periodicidad no se muestra
si se las considera solo funciones
de una variable real, sino cuando

UN GENIO SE PRESENTA

55



Reticula en el
plano complejo.

56

se las considera funciones de variable compleja. Es decir, funcio-
nes de la forma F'(2) con 2=x + 1y, donde la letra ¢ es la unidad
imaginaria i = J-1. Los niimeros complejos 2 admiten una repre-
sentacién grafica en un plano, en el que el eje de abscisas es el eje
real x y el eje de ordenadas es el eje imaginario y.

En la figura 5 se muestra la red de periodicidad de las funcio-
nes elipticas en el plano complejo. De manera analoga a lo que
ocurre con el seno o el coseno sobre la recta real, las funciones
elipticas en cualquier rectangulo de esta red son una réplica de la
funcién en el primer rectangulo. El también aleméan Karl Weier-
strass (1815-1897) defini6 lo que se conocen como «funciones elip-
ticas de Weierstrass», que también poseen la doble periodicidad.

Poincaré se dio cuenta de que la resolucién general de las
ecuaciones diferenciales lineales pasaba por generalizar estos con-
ceptos y considerar otro tipo de transformaciones, més alld de la
simple periodicidad. Poincaré encontré que las funciones que eran
invariantes ante transformaciones que tuvieran la siguiente forma

az+b
cz+d

permitian resolver un gran nimero de ecuaciones. En honor de
Fuchs, cuyo trabajo admiraba, decidi6 llamar fuchsianas a estas
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FOTO SUPERIOR:
Bombarderos
estadounidenses
sobrevuelan el
océano cerca de
Panama en 1933.
Las crestas de

las olas estan
separadas por una
gran distancia y el
mar es casi plano
entre ellas, Estas
ondas se conocen
como ondas
cnoidales y se
describen por las
funciones elipticas
de Jacobi cn(x).

FOTO INFERIOR:
Los azulejos de
la Alhambra

de Granada
son un ejemplo
de teselado
triangular.
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Teselados de
Schwarz de la
esfera.

funciones. Pero hallé una conexién ain més importante, Estas
funciones definian una serie de poligonos que permitian hacer un
teselado no uniforme de un disco.

RELLENANDO UN DISCO

Un teselado es un mosaico que rellena una superficie dada. Todos
los dias solemos ver un teselado uniforme del plano: el de la ducha
de nuestro cuarto de bafio. Los azulejos se disponen sobre la pared
formando una red periédica. Puede variar el dibujo del motivo,
pero, en el caso de los cuartos de baifio o de la cocina de una casa,
este se repite una y otra vez en las direcciones horizontal y vertical.
La figura geométrica base en estos casos, en la que se inserta el
motivo, es un cuadrado o un rectangulo. Los tinicos poligonos
regulares que cubren completamente una superficie plana son cua-
drados, tridngulos y hexigonos. El caso de los cuadrados es el
que solemos ver en casa; el recubrimiento por hexéagonos es el que
usan las abejas para construir el panal y un magnifico ejemplo de
teselado triangular lo encontramos en algunos azulejos de la
Alhambra de Granada (véase la fotografia de la pigina anterior).
Pero puede ser interesante recubrir otras superficies. El ma-
temético aleman Hermann Schwarz (1843-1921) estudio las formas

]
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de recubrir una esfera y encontré que habia varias maneras de
hacerlo a base de tridngulos esféricos. La figura 6 muestra dos
ejemplos de teselados uniformes de la esfera a base de tridngulos
de Schwarz. Los tridngulos esféricos que forman las teselas en
estos recubrimientos son congruentes, es decir, tienen la misma
forma y el mismo tamaifio.

Pero Schwarz encontré algo mas: algunas funciones en el cam-
po complejo estaban asociadas a teselados no uniformes de un
disco, en forma andloga a como las funciones elipticas estian aso-
ciadas al teselado uniforme del plano. La figura 7 muestra este
teselado del disco.

Poincaré, que en el momento en que hizo este descubrimiento
ignoraba los trabajos de Schwarz, hallé que las funciones que é1
habia llamado fuchsianas estaban asociadas a teselados no unifor-
mes del disco como puede verse en la figura 8.

Y aqui llegé uno de sus grandes descubrimientos. En su libro
La ciencia y el método, una reflexiéon sobre la forma en que se
realizan los descubrimientos cientificos, puede leerse el relato que
él mismo hizo de su descubrimiento:

Desde hacia quince dias me esforzaba en demostrar que no podia

existir ninguna funcién aniloga a esas que luego llamé fuchsianas;
en ese momento yo era completamente ignorante; todos los dias me
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Schwarz del
disco (fig. 7)
¥y teselado de
Poincaré del
disco (fig. 8).
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FIG. 9

Limite circular |
(1958), de
M.C. Escher.
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sentaba a mi mesa de trabajo, me pa-
saba asf una o dos horas, probaba un
gran nimero de combinaciones y no
llegaba a ningtin resultado. Una no-
che, me tomé un café solo, contraria-
mente a mi costumbre, y no pude dor-
mir: las ideas aparecian locamente; las
sentia como chocar, hasta que dos de
ellas se aproximaban, por asf decirlo,
para formar una combinacion estable.
Por la mafiana habia establecido la
existencia de una clase de funciones
fuchsianas, aquellas que se derivan de
la serie hipergeométrica; no tenia mas
que redactar los resultados, lo que
solo me llevé algunas horas. A conti-
nuacién quise representar estas funciones como cociente de dos
series; esta idea era perfectamente consciente y reflexionada; la ana-
logia con las funciones elipticas me guiaba. Me pregunté cuales de-
bian ser las propiedades de estas series, si es que existian, y llegué
sin dificultad a construir las series que llamé theta-fuchsianas.

En ese momento sali de Caen, donde vivia por entonces, para
tomar parte en una excursion de geologia organizada por la Escuela
de Minas. Las peripecias del viaje me hicieron olvidar mis trabajos
matematicos; al llegar a Coutances, nos montamos en un émnibus
para no sé qué paseo; en el momento en que puse el pie sobre el
escalén, me vino la idea, sin que ninguno de mis pensamientos ante-
riores pareciera prepararme para ello, de que las transformaciones
que yo habfa usado para definir las funciones fuchsianas eran idén-
ticas a las de la geometria no euclidea. No hice la verificacion; no
hubiera tenido el tiempo necesario, porque nada més sentarme en
el 6mnibus, retomé la conversacién que estaba teniendo, pero tuve
de repente una certidumbre completa. De vuelta a Caen, verifiqué el
resultado con calma para mayor tranquilidad.

Lo que Poincaré habia descubierto era que los tridngulos que

formaban su teselado del disco, y que no eran congruentes en la
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geometria euclidea, porque tal y como puede verse en la figura 8 su
tamario va disminuyendo a medida que nos movemos hacia afuera,
st eran congruentes en la geometria no euclidea hiperbdlica de
Lobachevski. Era esta la primera vez en la historia de las matema-
ticas en la que los conceptos de la geometria no euclidea eran uti-
lizados en un dmbito distinto del de la geometria.

«Este es un camino fértil que el autor no ha recorrido en su
totalidad, pero que pone de manifiesto un espiritu creativo y
profundo. La comisién no puede mas que animarle a continuar
con su investigacion, y llamar la atencién de la Academia sobre
el excelente talento de que da prueba.»

— DEL INFORME DE LA COMISION DEL PREMIO DE LA ACADEMIA DE 1880
SOBRE EL TRABAJO DE POINCARE.

Estos teselados del disco en geometria no euclidea inspiraron
algunos de los dibujos del artista holandés Maurits Cornelis Escher
(1898-1972). En la figura 9 vemos uno de ellos. Los peces se repiten
desde el centro del disco hacia su periferia formando un teselado
que, en nuestro plano euclideo, no es uniforme. La base del tese-
lado es un poligono de cuatro lados curvos. Los lados estdn forma-
dos por geodésicas, las lineas mas cortas entre dos puntos y que son
el equivalente de las lineas rectas en las geometrias no euclideas.

En marzo de 1881 la comisién encargada de otorgar el premio
de la Academia hizo piblica su decision. El premio fue concedido
finalmente al matemético Georges Halphen (1844-1889) por un
trabajo extenso y muy completo que también se inspiraba en los
de Fuchs. El trabajo de Poincaré recibi6 la distincién del tribunal.

En los arios siguientes Poincaré seguiria trabajando y publi-
cando sobre el tema, profundizando en sus ideas. En esta época,
en concreto en el afio 1881, Poincaré inicié una relacién epistolar
con Gosta Mittag-Leffler, que se convirtié en uno de sus mayores
admiradores y valedores. Este matematico sueco habia estudiado
con Hermite en Paris y con Weierstrass en Berlin. Siendo de un
tercer pais, sirvié de puente entre las comunidades matemaéticas
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GOSTA MITTAG-LEFFLER (1846-1927)

Mittag-Leffler nacié en Estocolmo vy se
doctord en la Universidad de Upsala.
Tras el doctorado estuvo en viaje de es-
tudios en Paris, Gotinga y Berlin, donde
conocio a los matematicos mas impor-
tantes de la época, como Hermite o
Weierstrass. Ocupé una catedra de Ma-
tematicas en la Universidad de Helsinki
para convertirse luego en catedratico de
la Universidad de Estocolmo, de la que
fue rector. En 1882 se casé con una fin-
landesa adinerada, Signe Lindfors, cuya
fortuna le permitié establecer una valio-
sa biblioteca matematica. El matrimonio
conocid a Poincaré y a su esposa en Pa-
ris, adonde viajaron durante su luna de
miel. Mittag-Leffler desarrollé una gran
actividad diplomatica entre los matema- &
ticos europeos de su tiempo. A iniciativa
suya, el rey de Suecia Oscar Il convocd un premio matematico con motivo de
su sesenta cumpleafos, premio que ganaria Poincaré. Mittag-Leffler fundo, y
dirigié durante varios anos, la revista Acta Mathematica.

de Alemania y Francia, un papel muy necesario en una época do-
minada por el resentimiento francés a causa de la derrota en la
guerra franco-prusiana. La correspondencia entre Poincaré y
Mittag-Leffler duré hasta la muerte de Poincaré, y ambos matema-
ticos desarrollaron una respetuosa amistad, teniendo ocasién de

encontrarse varias veces a lo largo de su vida.

En 1882 Mittag-Leffler fundo la revista Acta Mathematica, pa-
trocinada por el rey de Suecia. Su idea era que esta publicacién se
convirtiera en una obra de referencia para las matematicas euro-
peas y que en ella publicaran tanto alemanes como franceses. A
instancias de Mittag-Leffler, Poincaré envié a Acta Mathematica
cinco articulos sobre las funciones fuchsianas y una generalizacion
de estas, que llamé «kleinianas», entre 1882 y 1884. Todos estos
trabajos juntos sumaban un total de 390 paginas de la revista y en
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ellos Poincaré completaba el programa que la Academia sugeria
en su valoracion del trabajo presentado al premio de 1880. Entre
otras cosas, Poincaré demostré que cualquier ecuacién diferencial
con coeficientes algebraicos podia resolverse con las funciones
fuchsianas, kleinianas y otras relacionadas con estas. Hoy en dia
estas funciones se conocen con el nombre de «automérficas» y su
teoria est4 lejos de estar desarrollada completamente.

Se conoce una anécdota que evidencia la personalidad de
Poincaré y el estado de concentracién en que vivia cuando tenia
entre manos un problema importante. Se trata del relato que hizo
su compaiiero de la politécnica Léon Lecornu de una Nochevieja
que pasaron juntos en Caen:

En esa época él estaba mas distraido que nunca. Yo le habia invitado
a cenar en casa de mis padres el 31 de diciembre de 1879, y todavia
puedo verlo pasar la velada andando para arriba y para abajo, no
escuchando nada de lo que se le decia o respondiendo apenas con
monosilabos, y olvidando qué hora era, tanto que pasada la mediano-
che decidi recordarle amablemente que estibamos en 1880. En ese
momento parecié volver a poner los pies en el suelo, y se despidi6 de
nosotros. Unos dias mis tarde, nos encontramos en el puerto de Caen,
y casualmente me dijo: «Ahora sé cémo integrar todas las ecuaciones
diferenciales». Las funciones fuchsianas habian nacido, y supe enton-
ces en qué estaba él pensando cuando pasaba de 1879 a 1880.

CONTROVERSIA CON KLEIN

Cuando los primeros trabajos de Poincaré sobre las funciones fuch-
sianas aparecieron en la revista de la Academia de Ciencias, el
matematico aleméan Felix Klein escribié a Poincaré en la que fue la
primera de un intercambio de més de veinte cartas. Una curiosidad
de esta relacién epistolar es que ambos escribian en su lengua:
Poincaré escribia sus cartas en francés y Klein las suyas en aleman.

Klein llevaba tiempo trabajando sobre las funciones elipticas
y su generalizacién y relacién con las ecuaciones diferenciales, y
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FELIX KLEIN (1849-1925)

Klein nacié en Disseldorf y fue profesor
en las universidades de Erlangen, Mu-
nich, Leipzig y Gotinga, donde permane-
cié desde 1886 hasta su muerte. Trabajé
en diversos campos de las matematicas:
teoria de grupos, geometria, ecuaciones
diferenciales, etc. Pero fueron especial-
mente importantes sus contribuciones a
la geometria no euclidea, ya que hizo
patente que era posible construir geo-
metrias no euclideas consistentes. Ided
la superficie que lleva el nombre de «bo-
tella de Klein», una superficie cerrada,
pero que solo tiene un lado, por lo que
no podemos asociarle una direccidn ha-
cia adentro y otra hacia afuera. La bote-
lla de Klein, que podriamos imaginar
como una aspiradora que se aspira a si

; 2 Felix Klein retratado hacia los setenta
misma, no es realizable en nuestro espa-  asos de edad. Obra del pintor y grabador

cio tridimensional. alemén Max Liebermann.

llamaba la atencién de Poincaré sobre sus trabajos y los de la es-
cuela alemana, que Poincaré parecia conocer solo parcialmente.
Poincaré respondié inmediatamente a la primera carta de Klein,
agradeciendo la informacién que le proporcionaba, admitiendo
que Klein habia ya obtenido alguno de los resultados a los que el
propio Poincaré habia llegado y prometiendo que haria referencia
a las contribuciones del aleman en sus siguientes trabajos.

En estos primeros intercambios epistolares quedé claro que
Poincaré no conocia toda la extensa bibliografia alemana sobre
el tema, en particular algunos de los trabajos de Klein y Schwarz.
Debe considerarse que en aquellos momentos el matematico fran-
cés era profesor en Caen, una universidad de provincias, por lo
que no tenia acceso a todas las publicaciones que podian ser
relevantes. De hecho, Poincaré en su primera carta a Klein pro-
metia que buscaria los voliimenes necesarios de la revista alema-
na Mathematische Annalen, que no se encontraban en la biblio-
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teca de Caen. En aquellos tiempos, y eso ha sido asi hasta la
irrupcién de internet en nuestras vidas, era a veces dificil, y sobre
todo costoso econémicamente, tener acceso a todas las publica-
ciones que podian ser relevantes en un tema dado.

Pero en su segunda carta Klein hizo notar algo que le habia
molestado especialmente. En sus propias palabras:

Rechazo el apelativo de «funciones fuchsianas», aunque comprendo
que ha sido a través del trabajo de Fuchs que usted llegé a estas
ideas. [...] No niego los grandes méritos del sefior Fuchs en otras
ramas de la teoria de ecuaciones diferenciales, pero exactamente en
esta drea su trabajo deja mucho que desear.

Klein advertia a Poincaré en esa misma carta de que habia
otros matematicos de la escuela de Riemann que colaboraban con
él en la teoria de transformaciones similares a las que usaba Poin-
caré y que él llamaba fuchsianas.

Como ya se ha apuntado, Poincaré no disponia de toda la in-
formacién relevante. Pero su respuesta a Klein no dejaba de tener
légica:

En cuanto al nombre de funciones fuchsianas, no lo cambiaré. El
respeto que tengo por el sefior Fuchs me prohibe hacerlo. Aparte de
eso, es cierto que el punto de vista del matemético de Heidelberg es
completamente diferente del suyo y del mio. También es cierto que
su trabajo me ha servido como punto de partida y la base para todo
lo que he hecho en esta teoria.

Cuando Poincaré fue teniendo mas elementos de juicio fue
cambiando de opinién. En otra carta a Klein puede leerse:

Con respecto al sefior Fuchs y al nombre de funciones fuchsianas,
estd claro que deberia haber escogido otro nombre, si hubiera cono-
cido el trabajo de Schwarz. Pero he sabido de esto solo por las cartas
de usted, después de la publicacién de mis resultados, asi que ya no
puedo cambiar el nombre sin cometer una falta de consideracién
con el sefior Fuchs.
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El intercambio de cartas fue largo y profundo por ambas par-
tes, y no cabe duda de que los dos grandes matemaéticos se influ-
yeron mutuamente en sus respectivas investigaciones, obteniendo,
ambos, notables avances gracias a ese intercambio. En particular,
Poincaré habia estado usando las transformaciones del tipo

az+b
cz+d

e

sujetas a la condicién de que una determinada circunferencia del
plano complejo fuera invariante, es decir, que un punto de la
circunferencia se transforme en otro punto de dicha circunferen-
cia. Klein estaba explorando las posibilidades que no requerian
esta condicién y llamé la atencion de Poincaré sobre este punto.
En una comunicacién a la revista de la Academia de Ciencias de
1881, Poincaré analiz6 estas transformaciones, reconocié que
Klein era quien le habia dado la idea y propuso llamarlas kleinia-
nas, y llamar funciones kleinianas a las funciones a las que daba
lugar. Aquello parecia un intento por desagraviar al aleman, y la
respuesta de Klein no se hizo esperar. En una carta a Poincaré
escribié:

Me quedé en cierta forma sorprendido con el nombre que usted ha
dado a esta clase de funciones. En cuanto a mi respecta no usaré el
apelativo «Fuchs» ni «Klein», sino que seguiré llamédndolas «funcio-
nes que contienen transformaciones lineales».

Como ya se ha apuntado, Poincaré complet6 en estos meses
su investigacion sobre las funciones «fuchsianas» y «kleinianas»
y su relacién con la geometria no euclidea y las ecuaciones dife-
renciales. Klein felicité a Poincaré por sus logros y le pidié que
escribiera un resumen de sus resultados para la revista alemana
Mathematische Annalen, que él se encargaria de publicar con una
nota suya. El articulo, de doce paginas, salié publicado a princi-
pios de 1882 y en él Poincaré, como era de esperar, denominaba
a sus funciones fuchsianas y kleinianas. El articulo estaba escrito
en francés y le seguia una nota de Klein, escrita en aleman. En
ella, alababa el trabajo de Poincaré y lo ponia en contexto, pero
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también era tajante respecto a los nombres escogidos para las
funciones:

Las investigaciones que el sefior Schwarz y yo hemos publicado hace
mucho tiempo tratan de las «funciones fuchsianas», acerca de las
cuales el sefior Fuchs no ha publicado nada.

Ante esta oposicién frontal a la eleccién del nombre, Poinca-
ré solicité a Klein que le permitiera explicar en la misma revista
sus razones. A lo que Klein accedié, pero advirtiendo que, a su vez,
afiadiria una corta nota suya reafirmando su posicion, lo que asi
hizo. Con ello daba por terminada la discusién. Poincaré respondié
citando, no sin ironia, a Goethe: «Name ist Schall und Rauch»
(«Un nombre es sonido y humo»). Los dos dieron por concluido
el asunto. Poincaré sigui6 llamando fuchsianas y kleinianas a sus
funciones, y Klein y los suyos, no. Lo cierto es que el criterio de
Klein es el que se impuso y hoy en dia estas funciones son cono-
cidas con el nombre genérico de «automérficas».

Aunque el debate sobre los nombres de las funciones tensé la
relacién entre los dos matemaéticos no pasé de un debate educado
y cortés. Probablemente todo escocié mas del lado aleman. Klein
era por entonces un matematico establecido y reconocido, con su
catedra en Leipzig, mientras que Poincaré habia iniciado la discu-
sion siendo profesor en Caen (aunque ya estaba en Paris cuando
el debate concluyd). Que un joven francés advenedizo se atreviera
a distribuir los méritos entre los matematicos alemanes no le debié
hacer mucha gracia. Pero Poincaré y Klein volvieron a cartearse y
colaboraron mas tarde en la organizacién de reuniones y congresos
matematicos, manteniendo siempre en sus contactos un tono cor-
tés y cordial.
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CAPITULO 3

Poincaré gana un concurso

El rey de Suecia Oscar II convocé un
concurso matematico al que Poincaré present6
un ensayo que resultoé ser el ganador. En él Poincaré
estudié una forma aproximada del llamado problema
de los tres cuerpos: tres cuerpos masivos que se atraen
mutuamente seguin la ley de la gravedad de Newton. Las
ideas y los métodos que Poincaré utiliz6 en su ensayo
forman parte de lo que hoy se conoce como teoria
de los sistemas dindmicos. El premio le vali6
a Poincaré la fama universal, pero no
sin cierta polémica.






Pocos meses después de casarse, el 19 de octubre de 1881, Poin-
caré obtuvo una plaza de profesor en la Facultad de Ciencias en
la Universidad de la Sorbona de Paris. Su puesto era el de maitre
de conferences, una figura que sigue existiendo hoy en dia y que
equivale a la de profesor titular. El término conferences hace refe-
rencia a los grupos en los que se dividian los alumnos de una clase
para la realizacién de problemas o ejercicios practicos. El maitre
de conferences era el encargado de estos grupos reducidos.

La carrera de Poincaré en Paris fue metedrica. El 6 de noviem-
bre de 1883 obtuvo el puesto de tutor en la Ecole Polytechnique,
la institucién donde inici6 sus estudios superiores, y el 16 de mar-
zo de 1885, la plaza de profesor suplente de Mecanica Fisica y
Experimental en la Sorbona. Poco después, se postulé para la cé-
tedra de Fisica Matematica y Probabilidad, que obtuvo en el vera-
no de 1886. La rdpida ascension de Poincaré en Paris no se explica
solo por sus indudables cualidades, reconocidas por todo el esta-
mento cientifico francés, sino también por sus contactos en el
Ministerio de Educacién —Jules Duvaux, quien fue ministro entre
agosto de 1882 y febrero de 1883, era de Nancy y habia sido pa-
ciente de su padre— y, sobre todo, por el apoyo incondicional de
su antiguo profesor Charles Hermite. Este tltimo utilizé todos sus
recursos e influencias para colocar en puestos de relevancia a sus
tres protegidos: Emile Picard, su yerno, Paul Appell, su sobrino
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politico, y Henri Poincaré, su antiguo alumno. Ni que decir tiene
que los tres tenian sobrados méritos para ocupar los puestos a los
que accedieron, pero también parece claro que, sin ese apoyo,
ninguno de ellos hubiera accedido tan pronto a una catedra en
Paris, al poco de cumplir los treinta afos (la edad minima para
acceder a una citedra en Francia en esa época).

A principios de la década de 1880 la Facultad de Ciencias de
la Sorbona vivié un notable relevo generacional. La generacién
a la que Hermite pertenecia, nacida en torno a 1820 y que incluia
a matematicos de la talla de Liouville, estaba llegando al final de
su vida activa. Por muerte o jubilacién, varias catedras de mate-
maticas quedaron vacantes estos afos y se produjo una sorda
batalla por ellas. De entre los mas ilustres aspirantes que nunca
llegarian a tener una catedra en Paris merece la pena destacar,
por sus contribuciones a la fisica matematica, a Emile Mathieu
(1835-1890), que quedo por detras de Poincaré en el concurso de
acceso a la catedra de Fisica Matematica y Probabilidad.

Picard obtuvo su catedra en Célculo Diferencial e Integral a
la vez que Poincaré la suya. Appell la habia obtenido antes, en
Mecanica Racional, justo con treinta afios recién cumplidos. Sila
asignacion de las citedras de Picard y Appell se correspondia con
sus carreras anteriores, la designacién de Poincaré para la catedra
de Fisica Matematica era més extraiia. Hasta ese momento Poin-
caré no habia trabajado en fisica, si se exceptiian sus primeros
trabajos en mecéanica celeste. Su designacién para esta catedra se
debe, probablemente, a un interés personal por iniciar una carrera
cientifica en este campo, y el devenir posterior de los aconteci-
mientos va en ese sentido, porque a partir de entonces Poincaré
empez6 a publicar trabajos en diversos problemas de fisica. Para
obtener una plaza asi, el apoyo de Hermite tuvo que ser esencial.

EL PREMIO DEL REY OSCAR Il DE SUECIA

Como vimos en el capitulo anterior el estudio de las ecuaciones
diferenciales y sus soluciones fue uno de los primeros temas que
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interesaron a Poincaré. Si todo el trabajo desarrollado sobre las
funciones fuchsianas tenia por objetivo final la resolucién de un
cierto tipo de ecuaciones diferenciales, pronto Poincaré compren-
di6 que eso no era suficiente, que habia problemas més generales
que requerian un cambio de tactica. Nos referimos, por ejemplo,
a las ecuaciones diferenciales que gobiernan el movimiento de los
planetas del sistema solar. De hecho, cualquier sistema mecénico,
ya sea un muelle, un péndulo, un sistema de péndulos o una peon-
za, se rige por ecuaciones diferenciales. En 1881, estando atin en
Caen, Poincaré escribi6 un articulo sobre ecuaciones diferenciales
en el que ya exploraba un nuevo camino que, andado el tiempo,
llevaria a toda una nueva rama de las matematicas: lo que hoy
conocemos como teoria de los sistemas dindmicos.

Las ecuaciones diferenciales que podian resolverse analitica-
mente, esto es, dando una expresién explicita de su solucién, eran,
y siguen siendo, muy pocas. Para Poincaré parecia necesario tener
herramientas cualitativas para estudiar el comportamiento general
de las soluciones de una ecuacién diferencial, aun cuando no se
fuera capaz de resolverla. El mismo se referia a ello diciendo que
era necesaria una comprension cualitativa del tipo de soluciones
que cabia esperar, para luego dar valores cuantitativos de ciertos
casos especiales. Esa comprensién cualitativa iba de la mano de
la geometria.

Pongamos un ejemplo. En el capitulo anterior vimos que la
ecuacion

2
d—%— +x=0
dt

rige el movimiento de un bloque atado a un muelle. Si tiramos del
bloque y lo soltamos, este ejecuta un movimiento oscilatorio alre-
dedor de la posicién de equilibrio. Podemos hacer una represen-
tacion geométrica de este movimiento si trazamos dos ejes coor-
denados y en el eje de abscisas consignamos la posicion del bloque,
2, y en el de ordenadas, su velocidad:

dx
vV=—,
dt

POINCARE GANA UN CONCURSO

73



Representacion
geométrica de
las soluciones
de la ecuacién
diferencial que
describe el
movimiento de
un bloque atado
a un muelle.

FiG.1

La figura 1 muestra esta representacion. En el momento de
desplazar el bloque, la posicién x es, pongamos, mayor que cero y
su velocidad, justo al soltarlo, es cero. El bloque tirado por el mue-
lle se acelera, se acerca a la posicién de equilibrio y su velocidad
va aumentando. Cuando pasa por el equilibrio 2 =0 la velocidad es
méaxima. Luego, el muelle empieza a comprimirse y va frenando al
bloque, que termina parandose, pero al otro lado del punto de equi-
librio. El muelle se estira, acelerando al bloque hacia el otro lado y
vuelve a pasar por el equilibrio, ahora con velocidad maxima pero
de signo contrario, hasta que vuelve a la posicién inicial. En el
diagrama (,v) el movimiento de ida y vuelta del muelle se repre-
senta con una linea cerrada (una elipse en este caso). Podemos
imaginar ahora que repetimos la experiencia, pero con distintas
elongaciones iniciales del muelle. Cada movimiento subsiguiente
vendra representado por una elipse diferente. Es posible, por lo
tanto, representar en el diagrama todas las soluciones de la ecua-
cién, que en este caso se corresponden con curvas cerradas.

El movimiento de la masa atada al muelle es particularmente
sencillo, y el diagrama (que en fisica matematica se suele deno-
minar «espacio de las fases») no aporta ninguna informacién adi-
cional a una solucién que ya conocemos analiticamente y que es
expresable, como hemos visto en el capitulo anterior, como com-
binacién de funciones seno y coseno.

v v
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Pero podemos imaginar un caso un poco mas complicado.
Consideremos un péndulo en el que una bola est4 sujeta al punto
desde el que cuelga por una delgada barra rigida; se trata, pues, de
un columpio idealizado. Podemos trazar un diagrama en el que en
un eje anotamos la posicién, y en el otro, la velocidad (figura 2).
En este caso, la posicién la da el angulo que la barra forma con la
vertical.

Para oscilaciones pequefias en torno al punto de equilibrio
las cosas son similares al caso del muelle, y un diagrama en el
que representemos el angulo en el eje de abscisas y la velocidad
en el eje de ordenadas tiene un aspecto parecido al anterior. Pero
si desplazamos el péndulo mas y més cada vez, llega un momen-
to en que puede alcanzar el punto en el que la bola esta por enci-
ma, en la vertical del punto del que cuelga. Si lanzamos el péndu-
lo con mucha fuerza, este empezara a rotar alrededor del eje si
el punto de enganche lo permite. De un movimiento de oscilacién
pasamos a uno de rotacion. Esto es lo que ocurre en un columpio
si empujamos con demasiada fuerza. El diagrama posicién-velo-
cidad tiene ahora un aspecto diferente, tal y como puede verse
en la figura 3.

Vemos que hay dos puntos interesantes en este diagrama: 6=0
y v=0, por un lado, y 6=+x y v=0 por otro (los puntos 0=+n re-
presentan la misma posiciéon del péndulo). Estos son puntos de

FIG. 2

\‘\ Rotacidn horaria

FIG. 3

Rotacion antihoraria
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Clasificacién de

los puntos de

equilibrio.

FIG. 4

equilibrio del sistema, porque, si damos exactamente esos valores
a las variables, el péndulo se queda justo ahi, sin moverse. Pero
estos dos puntos, siendo los dos puntos de equilibrio, tienen un
cardcter diferente. El punto 6=0 y v=0, que corresponde a la bola
del péndulo en la posicién més baja, es lo que llamamos un equili-
brio estable. Si desplazamos un poco el péndulo de esa posicién,
tratara de volver a ella. En cambio, 8= +x y v=0, que corresponde
a cuando la bola estd arriba del todo, es un equilibrio inestable:
cualquier pequefia perturbacién hace que la bola se aleje de él,
cayendo. Ademas, hay dos tipos de curvas cualitativamente distin-
tas en el diagrama: las curvas alrededor de 6=0 y v=0 son cerradas,
pero las curvas que representan movimiento de rotacién, cuando
superamos el punto superior de equilibrio, no lo son (aunque en la
dindmica real también representan un movimiento periédico).

El movimiento general del péndulo es bastante mas complejo
que el del muelle, aunque también en este caso hay soluciones ana-
liticas, eso si, mucho mas complicadas. Podemos entrever ya que,
para un sistema fisico cualquiera, las cosas pueden ser muy farra-
gosas: pueden existir varios puntos de equilibrio, cada uno con un
caricter diferente, o, sobre todo, haber varios cuerpos involucrados
y con movimiento en todas las direcciones del espacio, por lo que
el niimero de variables del problema puede llegar a ser muy grande.
El enfoque cualitativo de Poincaré iba en ese sentido: en general,
habra ecuaciones, o sistemas de ecuaciones (esto es, varias ecua-
ciones diferenciales acopladas entre ellas), que seamos incapaces
de resolver para cualquier valor de las condiciones iniciales. Pero
puede ser de mucha ayuda saber cuantos equilibrios hay, si hay

%O

Punto de silla Nodo Foco Centro
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soluciones que unan esos puntos de equilibrios, si hay soluciones
periddicas, si hay soluciones que se van al infinito, etc. En definiti-
va, tener una idea general de la estructura geométrica de las solu-
ciones. Poincaré pasé de hablar de funciones a hablar de curvas y
de las superficies que formaban esas curvas. El mundo de las ecua-
ciones diferenciales se adentraba asi en el de la geometria y, des-
pués y mas sutilmente todavia, en el de la topologia.

Ya en su articulo de 1881 al que hemos hecho referencia, Poin-
caré introdujo una clasificacién de los puntos de equilibrio posibles
en un sistema de ecuaciones diferenciales. Los clasific en puntos
de silla, nodos, focos y centros (figura 4). Esa clasificacién es la
que se sigue usando hoy en dia.

El primer resultado interesante que dedujo Poincaré se inspi-
raba en los trabajos anteriores de Maxwell sobre las lineas de nivel
de un mapa, a las que se parecen las curvas de los diagramas de la
figura 4. Poincaré estableci6 que el nimero de nodos mas el de
focos o centros es igual al niimero de puntos de silla mas 2. Si
llamamos N al niimero de nodos, F'al de focos o centros, y S al de
puntos de silla, tenemos: N+ F=8+2. Esta férmula recuerda a la
relacion de Euler entre las caras, aristas y vértices de un poliedro,
que vimos en el capitulo 1, y de hecho esté intimamente relacio-
nada con ella.

La ecuacién de Poincaré N + F'=S5 + 2 es valida sobre una es-
fera, pero no sobre una superficie cualquiera. Al igual que ocurria
con la férmula de Euler, hay que generalizarla para incluir super-
ficies multiconexas, como el toro.
Y la generalizacién es la misma
que vimos en el capitulo 1. Para
una superficie con g agujeros la
férmula es N+ F=8+2-2g; asi,
por ejemplo, para un toro g=1,
N+ F=S8.

Este resultado llevé a Poinca-
ré a una conclusion ya conocida,
pero ahora establecida rigurosa-
mente: sobre un toro es posible
tener un conjunto de soluciones de
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EL VUELO DE UNA CAJETILLA DE TABACO

Si lanzamos una cajetilla de tabaco al aire, esta puede girar en torno a tres
ejes. Todas las formas de giro posible se pueden representar mediante lineas
en una esfera en la que marcamos los tres ejes de giro, tal y como puede
verse en la figura. Por ejemplo, las lineas cerradas en torno al eje 1 representan
un movimiento de rotacion en torno a este eje. En este caso tenemos centros
y puntos de silla, pero la férmula de Poincaré impide que todos sean cen-
tros o todos puntos de silla. Si tenemos, como es el caso, cuatro centros, los
dos pertenecientes al eje 1y al eje 3, necesariamente los otros dos son puntos
de silla. Este razonamiento cualitativo nos lleva a una interesante prediccion
que el lector puede comprobar por si mismo experimentalmente: al lanzar la
cajetilla de tabaco al aire vemos que gira establemente en torno a dos ejes,
pero el giro en torno al tercero es necesariamente inestable. Este ejemplo
muestra las posibilidades del enfoque cualitativo de Poincaré: podemos hacer
predicciones sobre el comportamiento de las soluciones de un sistema de
ecuaciones diferenciales sin resolverlo explicitamente.

Eje 3

Ejel

Ejes de rotacion estables e inestables de una cajetilla de tabaco.
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un sistema de ecuaciones diferenciales en el que no exista ningiin
equilibrio, tal y como muestra la figura 5 (pag. 77).

Esto es imposible para una esfera, porque aun en ausencia de
puntos de silla es necesario tener al menos nodos y focos en niime-
ro que sumen 2. Esa es la razén de que tengamos el remolino en la
coronilla: no es posible peinar a una persona orientando el pelo
siempre en la misma direccién sin tener un punto en el que el
pelo se arremoline (un foco, en la terminologia de Poincaré). Esta
restriccién no se aplica a las personas que tienen calva la coronilla,
porque el dominio en el que hay pelo tiene ahora un agujero y en la
formula de Poincaré hay que considerar g=1 en ese caso.

MITTAG-LEFFLER CONVENCE AL REY

En la época en la que Poincaré se hallaba inmerso en este tipo de
cuestiones, Gota Mittag-Leffler convencié al rey de Suecia Oscar IT
para que convocara un concurso cientifico. El rey era un amante
de la ciencia y de las matematicas y acept6 la propuesta del mate-
matico sueco. El concurso fue convocado en el verano de 1885y la
entrega del premio al vencedor tendria lugar el 21 de enero de 1889,
coincidiendo con el sexagésimo cumpleafios del rey. El premio
consistia en una medalla de oro con la efigie del monarca y una
cantidad en metélico (2500 coronas). Su convocatoria aparecio en
las revistas cientificas de toda Europa y el plazo de entrega de los
trabajos era el 1 de junio de 1888.

La organizacion del concurso fue bastante complicada y Mittag-
Leffler tuvo que hacer uso de todas sus habilidades diplomaticas
para que el evento no terminara en un escéndalo. De entrada tuvo
que renunciar a formar un jurado tan amplio como él hubiera que-
rido, porque parecia claro que no iba a ser facil poner de acuerdo
a grandes matemaiticos de més de tres paises en la eleccién de los
temas y en acordar el veredicto final. Asi, aunque en principio pen-
s6 incluir al ruso Pafnuty Chebyshev (1821-1894) o al britdnico
Arthur Cayley (1821-1895), tuvo que reducir el jurado a tres perso-
nas: él mismo y los ya citados Karl Weierstrass y Charles Hermite.
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Los participantes debian escoger entre cuatro temas, uno de
los cuales parecia propuesto pensando en Poincaré: avanzar en la
teoria de las funciones fuchsianas. Ya se ha comentado anterior-
mente que ese término era controvertido, pero la convocatoria del
premio asi las designaba. Sin embargo, tal vez para sorpresa de
Mittag-Leffler y Hermite, Poincaré escogié para su trabajo otro
de los temas propuestos, el primero, que versaba sobre la estabi-
lidad del sistema solar.

Tal y como se vio en el capitulo 1, aunque Laplace creyé de-
mostrar que el sistema solar era estable, los trabajos de Le Verrier
realizados a mediados del siglo xix pusieron en cuestién esa con-
clusién. A final de siglo el problema seguia sin tener una solucién
satisfactoria. En la convocatoria del premio del rey de Suecia se
hacia referencia a un rumor segun el cual el gran matematico ale-
méan Lejeune Dirichlet (1805-1859) habria demostrado de manera
rigurosa la estabilidad del sistema solar, siguiendo para ello un
método de su invencién. El premio se le otorgaria a la persona que
diera con ese método y resolviera la cuestion. Pero también se
aclaraba que, en caso de que nadie fuera capaz de dar una solucién
clara y definitiva al problema de la estabilidad, el premio se otor-
garia al trabajo en que se planteara y resolviera algin otro problema
de mecénica relacionado.

Y aqui fue donde Mittag-Leffler tuvo que hacer frente a otro
conflicto diplomaético. Leopold Kronecker (1823-1891), alumno de
Dirichlet y colega de Weierstrass en Berlin, cargé contra la convo-
catoria: por un lado, sostenia que uno de los cuatro problemas ya
habia sido resuelto casi en su totalidad por él mismo afios antes y,
por otro, que €l habia estado con Dirichlet antes de la muerte de
este y que no era cierto lo que se contaba de él en el preAmbulo
del primer problema. Como este preAmbulo habia sido escrito por
Weierstrass, con quien Kronecker tenia malas relaciones, Hermite
se lavé las manos, diciendo que era un asunto entre alemanes.
Mittag-Leffler, mal que bien, paré los intentos de Kronecker de
reventar la convocatoria y prometié resolver todas estas cuestio-
nes una vez el premio se hubiera otorgado.

Al premio se presentaron doce trabajos; cinco de ellos trata-
ban sobre el problema que nos ocupa. Poincaré presentd una me-
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moria titulada: «Sobre el problema de los tres cuerpos y las ecua-
ciones de la dindmica». Las memorias debian ser anénimas y se
presentaban con un seudénimo. Aun asi, tanto Hermite como
Mittag-Leffler sabian que Poincaré se iba a presentar al premio.
Y, ademas, ambos conocian perfectamente no solo su estilo, sino
también su letra, ya que se carteaban habitualmente. Todos estos
detalles no favorecian, desde luego, la impresion de imparcialidad
que el matematico de Estocolmo pretendia dar.

Mittag-Leffler encargé a un joven matematico sueco, Lars Ed-
vard Phragmén (1863-1937), la lectura de los trabajos a fin de hacer
una primera criba. De los doce, Phragmén escogi6 tres, que fueron
estudiados en detalle por la comisién. A la vista de las tres memorias
la comision decidié por unanimidad otorgar el premio al trabajo pre-
sentado por Poincaré y concedié un accésit a una segunda memoria
cuyo autor no era otro que Paul Appell, el gran amigo de Poincaré.

Pero los dolores de cabeza no habian terminado para Mittag-
Leffler. El anuncio del ganador y de los hallazgos realizados por €l
era tan escueto que el astrénomo Hugo Gyldén (1841-1946), que
pertenecia a la Real Academia Sueca y era miembro del consejo
editorial de la revista Acta Mathematica, protesté ante la Acade-
mia argumentando que €l habia resuelto esas cuestiones dos afos
antes. El mismo rey pidié explicaciones y Poincaré, a instancias
de Mittag-Leffler, dejé claro todo lo que habia de nuevo, que era
mucho, en su trabajo.

El rey Oscar II anunci6 el dia de su cumpleaiios la concesién
del premio y la noticia tuvo un eco inmediato en la prensa france-
sa. El triunfo de dos matemaéticos nacionales colmé los sentimien-
tos patridticos de los franceses, més si cabe cuando se trataba de
un premio europeo al que habian concurrido también matemaéticos
alemanes. Como muestra de agradecimiento, el Gobierno francés
concedi6 a Appell y Poincaré la Legion de Honor.

El trabajo presentado por Poincaré era de tal envergadura y
profundidad que ni siquiera los tres miembros de la comisién —to-
dos ellos grandes mateméticos de la época— pudieron compren-
derlo en su totalidad en un primer momento. Ademas, el autor, fiel
a su estilo, daba muchas cosas por sabidas y no completaba siem-
pre sus argumentos.
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Estaba previsto que la memoria fuera publicada en la revista
Acta Mathematica, de la que Mittag-Leffler era editor y que conta-
ba con el patrocinio del rey Oscar. Pero el mismo Mittag-Leffler
pidié a Poincaré que afiadiera explicaciones y aclaraciones a la
memoria, para facilitar asf una mejor comprensién. Mittag-Leffler
encarg6 a Phragmén, el mismo matematico que habia realizado la
primera seleccién de los trabajos presentados al premio, que revi-
sara la memoria de Poincaré antes de enviarla a su publicacién.
Phragmén trabajé en ello con inusitada dedicacion, y pidi6 a Poin-
caré cuantas aclaraciones consider6 necesarias. El trabajo de
Phragmén dio, como veremos mas adelante, un fruto inesperado.

«La memoria de Poincaré es de tan excepcional profundidad y
creatividad que ciertamente abrird una nueva era desde el punto
de vista del andlisis y sus consecuencias para la astronomia.»

— CarTA DE HERMITE A MITTAG-LEFFLER SOBRE EL TRABAJO QUE POINCARE PRESENTO
AL PREMIO DEL REY DE SUECIA.

Finalmente el trabajo ganador fue publicado en Acta Mathe-
matica en enero de 1890; ocupaba 270 paginas del tomo correspon-
diente. En el mismo niimero se publicé el trabajo de Paul Appell.

EL PROBLEMA DE LOS TRES CUERPOS

Una buena parte del trabajo de Poincaré estaba dedicado a ana-
lizar el denominado «problema de los tres cuerpos». Considerar
el sistema solar en su conjunto era una tarea imposible, aunque el
andlisis se restringiera solo a los planetas. Newton y sus segui-
dores habian estudiado a fondo el problema de dos cuerpos que
se atraen mutuamente siguiendo la ley de la gravedad. Las tra-
yectorias posibles se clasificaban en elipses, pardbolas e hipér-
bolas. El siguiente problema en complejidad era considerar tres
cuerpos que se atrajeran mutuamente por la misma ley. Pero este
problema, en su formulacién general, ya era demasiado compli-
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cado. Asi que Poincaré decidié estudiar lo que se conoce como
el «problema de los tres cuerpos restringido». En él se supone
que uno de los cuerpos tiene una masa despreciable comparada
con las de los otros dos. Los dos cuerpos grandes se mueven
como si el tercero no existiera y sus trayectorias son, por lo tan-
to, conocidas. El problema restringido consiste en encontrar la tra-
yectoria del tercer cuerpo. Puede parecer increible, pero la com-
plejidad del problema de los tres cuerpos es tal que ni siquiera la
version restringida puede considerarse completamente resuelta
hoy en dia.

Poincaré se centrd en detalle en un problema ain mas sim-
plificado. En el articulo publicado en Acta Mathematica lo des-
cribié asi:

Imaginemos dos cuerpos: el primero, de gran masa; el segundo, de
masa finita, pero muy pequefia, y supongamos que estos dos cuerpos
describen en torno a su centro de gravedad comin una circunferen-
cia en un movimiento uniforme. Consideremos ademas un tercer
cuerpo, de masa infinitamente pequenia, de forma que su movimien-
to se ve afectado por la atraccion de los dos primeros cuerpos, pero
él no puede afectar la érbita de estos dos primeros cuerpos. Limité-
monos ademas al caso en que este tercer cuerpo se mueve en el
plano de las circunferencias descritas por los dos primeros cuerpos.
Este es el caso de un pequeiio planeta que se mueve bajo la influen-
cia de Jupiter y del Sol cuando se desprecia la excentricidad de Ju-
piter y la inclinacion de las érbitas. Este es el caso también de la
Luna moviéndose bajo la influencia del Sol y de la Tierra cuando se
desprecia la excentricidad de la Tierra y la inclinacién de la érbita
de la Luna respecto de la ecliptica.

Y también es el caso, podriamos anadir hoy, de la trayectoria
de una nave espacial que viaje, por ejemplo, entre la Tierra y la Luna.

El problema de los tres cuerpos restringido asi planteado con-
duce a un sistema de cuatro ecuaciones diferenciales, y se mostré
mucho més endiablado de lo que cualquiera podia esperar. El primer
resultado importante al que llegé Poincaré es que, aparte de la ener-
gia, no existe otra cantidad invariante en el movimiento del cuerpo
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de masa despreciable. Esto equivale a decir que no podemos dar
una expresion explicita que resuelva el problema de manera general.
Y este resultado, ademas, es aplicable, excepto casos especiales, a
todos los sistemas de ecuaciones diferenciales con tres o mas ecua-
ciones. Este resultado respondia ya a la pregunta formulada en el
premio, la de la estabilidad del sistema solar. Si no podemos resolver
el problema de los tres cuerpos es imposible resolver el del sistema
solar en su conjunto, asi que el problema propuesto en el premio
del rey no se podia resolver tal y como estaba planteado. No hay que
malinterpretar este hallazgo, ya que tampoco significa que el sistema
solar sea inestable, sino que la cuestién de la estabilidad es muy
complicada y tiene muchos matices.

EL ETERNO RETORNO

Uno de los resultados mas famosos del trabajo de Poincaré para el
premio del rey Oscar II de Suecia es su teorema de recurrencia. El
matematico francés estableci6 que si un sistema de ecuaciones dife-
renciales da lugar a un movimiento que est4 restringido a una regién
del espacio, y si el movimiento es tal que el volumen de una re-
gion del espacio se mantiene constante cuando se mueve por curvas
que son solucién de dicho sistema, entonces casi todos los puntos
de la regién considerada vuelven una infinidad de veces a un punto
tan cerca como se quiera del punto del que partieron. Este teorema,
cuya demostracion no es especialmente complicada, fue generali-
zado mas tarde por el mismo Poincaré a un sistema con cualquier
nimero de variables. Hablando en un lenguaje menos técnico, lo
que el teorema viene a decir es que cualquier sistema que cumpla
dichas condiciones volverd, después de un tiempo suficientemente
largo, pero finito, a un estado muy parecido al estado inicial.

El teorema de recurrencia parece tener consecuencias sor-
prendentes y paradéjicas. Por ejemplo, cabria deducir de él que el
lector volvera a leer este libro en el futuro infinitas veces o, al
menos, que leerd uno muy parecido. O, lo que es peor, que ya lo
ha leido en el pasado, jy una infinidad de veces! Ello contradice el
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UN EJEMPLO DEL TEOREMA DE RECURRENCIA: LA APLICACION
DEL GATO DE ARNOLD

Este conjunto de imagenes ilustra el teorema de recurrencia. En este caso,
para pasar de una imagen a otra se usa no una ecuacion diferencial, sino lo
que los matematicos llaman una aplicacién, esto es, una regla definida para
cambiar los pixeles que forman la foto de un sitio a otro. En concreto, aqui se
usa una aplicacién conocida como la aplicacion del gato, que responde a la
siguiente férmula:

x_ ., =x +y mod(l)
Yo = X, + 2y, mod(1)

donde el contenido del pixel que se encuentra en la posicién (x,y,) en la
iteracién n-sima se transporta al pixel en la posicién (x_,,, v,,,) en la siguiente
iteracion. El teorema de recurrencia también se aplica en estos casos. Vemos
que el retrato de Poincaré se desdibuja tras varias iteraciones, y ya en la quin-
ta parece totalmente perdido. Pero, sorprendentemente, se recompone en la
iteracion 192.
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segundo principio de la termodinamica, segin el cual cualquier
sistema cerrado evoluciona irreversiblemente hacia estados de
mayor entropia; esto es, el calor pasa de los cuerpos calientes a
los frios, las cosas que se rompen no se recomponen solas, el azi-
car se disuelve en el café, etc. Si el teorema de Poincaré se aplica-
ra en estas situaciones veriamos que, pasado suficiente tiempo, el
calor volveria del cuerpo frio al cuerpo caliente, que las cosas
rotas se recompondrian solas o que el azicar se cristalizaria es-
pontdneamente dentro del café. Esta contradiccién entre el teore-
ma de recurrencia y el segundo principio de la termodindmica ha
sido motivo de debate y discusién entre fisicos y matematicos
desde que Poincaré enunci6 tal idea por primera vez.

Los primeros en enfrentarse a esta contradiccién fueron el
matematico alemdn Ernst Zermelo (1871-1953) y el gran fisico aus-
triaco Ludwig Boltzmann (1844-1906). Este tltimo fue uno de los
fundadores de la mecanica estadistica. Dentro del marco teérico
de la mecanica estadistica todos los procesos termodindmicos se
explican como el resultado de la diniAmica microscépica de las
moléculas. Ello significa que el calor y todos los fenémenos rela-
cionados con él no son més que una manifestacién del movimien-
to microscépico de las moléculas que componen un cuerpo. Asi,
por ejemplo, la temperatura de un gas ideal est4 relacionada con
la energia cinética promedio de las moléculas que lo componen.
Boltzmann dedujo una expresion para la entropia de un sistema
termodindmico a partir de sus propiedades microscépicas. Otro
de sus grandes descubrimientos fue el conocido como «teorema
H», en el cual definia una funcion de las coordenadas y velocidades
de todas las particulas de un gas que evolucionaba irreversible-
mente en el tiempo. Para Boltzmann este teorema era equivalente
a una formulacién mecénica del segundo principio de la termodi-
namica.

Boltzmann mantuvo una fuerte polémica con diversos cienti-
ficos alemanes que negaban la existencia real de las moléculas y
que defendian que el segundo principio de la termodindmica no
podia tener una explicacién mecanica. Josef Loschmidt (1821-
1895), amigo personal de Boltzmann, fue el primero en apreciar
una contradiccion entre la irreversibilidad de la termodinamica y
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la reversibilidad de la mecénica. Efectivamente, las ecuaciones de
Newton de la mecéanica son reversibles en el tiempo. Esto significa
que tanto la solucién que obtenemos con el tiempo hacia delante
como con el tiempo hacia atras son realizables en la préctica. Por
ejemplo, si lanzamos una piedra, esta describe una pardbola en el
aire. La misma pardbola, pero recorrida en sentido contrario, tam-
bién es una trayectoria realizable. Pero el segundo principio de la
termodindmica no es simétrico en el tiempo: la entropia aumenta
con el tiempo y no hay procesos naturales realizables en los que
la entropia disminuya con el tiempo. Loschmidt se preguntaba:
;como es posible que las leyes reversibles de la mecénica den lugar
a una ley irreversible como el segundo principio?

En su primer articulo sobre el tema, escrito en 1896, Zermelo
hacia uso del teorema de Poincaré para plantear que «en un siste-
ma de masas puntuales, una disposicion particular de las masas,
una vez dada, debe volver a darse». Si eso ocurria, cualquier fun-
cion de las posiciones y velocidades de las masas consideradas
debia volver a tomar el mismo valor inicial. Y concluia: «O bien el
principio de Carnot-Clausius (el segundo principio de la termodi-
namica) o la visiéon mecanico-estadistica de la naturaleza deben
reformularse».

Boltzmann replicé inmediatamente a Zermelo en un articu-
lo cuyo comienzo estaba cargado de ironia: «Este articulo de-
muestra que mis trabajos no han sido bien entendidos. Sin em-
bargo, me hace feliz porque es la primera evidencia de que mi
trabajo ha recibido atencién en Alemania». Boltzmann propuso,
principalmente, dos lineas de argumentacién. Por un lado, ad-
mitié que su funcién H presentaria oscilaciones, momentos en
los que la entropia, por tanto, podria disminuir, aunque la pro-
babilidad de estos sucesos y su amplitud disminuye con el nu-
mero de moléculas y se vuelve despreciable en el limite en el
que ese nimero es infinito. Por otra parte, estd la cuestion del
tiempo, y este segundo argumento es el que més frecuentemen-
te se aduce para resolver la paradoja. El teorema de Poincaré
dice que el sistema volvera a un estado cercano al inicial, pero
no dice cudndo. Intuitivamente se comprende que cuanto mas
grande sea el nimero de elementos que compongan el sistema,
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mayor sera ese tiempo. Boltzmann hizo algunos nimeros en su
respuesta a Zermelo y concluyé que, para que el gas contenido
en un volumen de 1 cm?® volviera a su estado inicial harian falta
muchos millones de afios.

Esta controversia, que normalmente se considera resuelta a
favor de Boltzmann, no deja de ser, como el propio teorema, re-
currente. Y de vez en cuando vuelven a aparecer en la literatura
cientifica articulos sobre el tema.

UN ERROR QUE LLEVO MUY LEJOS

Tal y como ya se ha apuntado Lars Edvard Phragmén estaba en-
cargado de revisar, para su publicacién en Acta Mathematica, el
trabajo de Poincaré que gané el premio del rey de Suecia. Cuando
todo ya estaba preparado para la publicacién del articulo, Poinca-
ré atin meditaba un comentario que Phragmén le habia hecho y
que le llevé a darse cuenta de que habia cometido un error en sus
cédlculos. En una carta del 1 de diciembre de 1889 escribi6 a Mittag-
Leffler poniéndole al corriente de la situacion:

Mi querido amigo: escribi al sefior Phragmén para hablarle de un
error que yo habia cometido y sin duda €l os ha comunicado mi
carta. Pero las consecuencias de este error son mucho mas graves
de lo que habia creido en un principio. [...] No le disimularé la pena
que me causa este hallazgo. No sé de entrada si juzgaran todavia que
los resultados que subsisten, a saber, la existencia de soluciones
periddicas, la de soluciones asintéticas, la teoria de los exponentes
caracteristicos, la no existencia de integrales uniformes y la diver-
gencia de las series de Lindstedt, merecen la alta recompensa que
ustedes han tenido a bien concederme.

Poincaré citaba en esta carta los nombres técnicos de los ha-
llazgos (de los cuales solo hemos discutido aqui una pequeiia par-
te). El matematico francés se excusaba, pero también se reivindi-
caba. Mittag-Leffler respondié inmediatamente:
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No le oculto que quedé extremadamente perplejo cuando supe ayer
por el sefior Phragmén la noticia que usted le habia comunicado. No
dudo de que su memoria serd en todo caso vista como la obra de un
genio por la mayoria de los geémetras y que serd un punto de parti-
da para todos los esfuerzos que se hagan a partir de ahora en meca-
nica celeste. No crea que me arrepiento del premio, que ha sido
dignamente asignado. Pero he aqui una gran desgracia. Su despacho
ha llegado demasiado tarde y la memoria ha sido ya distribuida.

Efectivamente, el niimero correspondiente de Acta Mathema-
tica estaba ya impreso. Para evitar un escandalo mayusculo, y
protegerse de los que ya le habian criticado por la forma en la que
el premio se habia otorgado, Mittag-Leffler propuso a Poincaré
que escribiera un nuevo articulo con las modificaciones pertinen-
tes y que él retiraria los ejemplares impresos de la circulacién. Pero
el matematico sueco necesitaba que Poincaré se hiciera cargo de
los sobrecostes, cosa que Poincaré acepté sin mas. El dato curioso
es que los costes de la segunda impresién eran de 3500 coronas, es
decir, jmil coronas més que lo que iba a recibir por el premio!

Finalmente, el articulo definitivo sali6 publicado en Acta
Mathematica a principios de 1890. En la introduccién, Poincaré
reconocia que habia corregido un error que contenia la memoria
original, el cual habia detectado gracias a una indicacién de Phrag-
mén. Pero, haciendo gala de la honradez y la sinceridad que le
caracterizaron toda su vida, Poincaré también reconocia que esta-
ba lejos de haber resuelto en su totalidad el problema que él mismo
se habia propuesto. Para los criticos con todo lo que tenia que ver
con el premio, esto no daba sino mas motivos para las suspicacias.

Pero volvamos a las matematicas. ;Cudl era ese error y como
se resolvié? Poincaré habia estudiado lo que é1 mismo llamé «tra-
yectorias homoclinas». Estas son soluciones de las ecuaciones que
salen y vuelven al mismo punto, tal y como muestra la figura 6.

En su formulacién del problema de los tres cuerpos, el segun-
do de ellos tenia una masa muy pequeiia y una de las técnicas que
Poincaré introdujo era la de estudiar el sistema cuando esa masa
era cero y ver después como se modificaban las soluciones si la
masa se consideraba distinta de cero. Poincaré habia definido para
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cada punto de equilibrio curvas que ten-
dian hacia a este punto cuando el tiempo
se hacia tender a infinito hacia delante o
hacia atras. Estas soluciones asintéticas
coincidian a veces, en lo que se conoce
como «trayectoria homoclina»: la misma
curva que sale vuelve al punto de equili-
brio. ;Se mantendria esta trayectoria cuan-
do la masa del planeta no fuera cero? En
un principio Poincaré crey6 demostrar que
las dos curvas asintéticas seguian siendo
la misma: que la homoclina se mantenia
como tal. Pero el comentario de Phragmén
le hizo darse cuenta de que estaba equivo-
cado. Y él mismo encontré la verdadera
respuesta: las dos curvas no coinciden,
sino que se cortan una infinidad de veces.

Durante los afios posteriores Poincaré
abordé la redaccién de un gran tratado de
mecanica celeste en el que retomé los problemas planteados en
su ensayo inicial, los amplié y resolvié muchas otras cuestiones.
El tratado se tituldé Los nuevos métodos de la mecdnica celeste y
estaba compuesto por tres volimenes que sumaban unas 1300
péginas. En el tercero de ellos, escrito en 1899, Poincaré retomé
la cuestion de la homoclina y explicé su hallazgo con mas detalle:

FiG. 6

Homoclina sin perturbar

Enredo homoclino

Esta figura esta formada por dos curvas y sus intersecciones en ni-
mero infinito, cada una de las cuales corresponde a una solucién
doblemente asintética. Estas intersecciones forman una especie de
enrejado, de tela o malla infinitamente tupida; todas estas curvas no
se cortan nunca consigo mismas, pero deben replegarse sobre si
mismas de manera muy compleja, para volver a cortar una infinidad
de veces las fibras de la malla.

Poincaré se confesé incapaz de dibujar semejante gréfica, que

hoy en dia es conocida como «enredo homoclino» y cuya estruc-
tura detallada solo ha podido ser desvelada en la segunda mitad
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del siglo xx gracias al advenimiento de los ordenadores. La figura
7 (pag. anterior) muestra un ejemplo esquematico de las dos cur-
vas asintéticas y los primeros de sus infinitos cruces.

Este descubrimiento se avanz6 a su tiempo. En la segunda mi-
tad del siglo xx el uso de los ordenadores permitié descubrir propie-
dades de las ecuaciones diferenciales que hasta entonces no habian
sido completamente comprendidas. Una de ellas es lo que se ha
dado en llamar «caos determinista»: el hecho de que algunas solu-
ciones de ciertas ecuaciones diferenciales no lineales pueden com-
portarse de manera erratica. El término «caos» se aplica a aquellas
soluciones de ecuaciones que se comportan de forma cadtica, aun-
que un estudio detallado revele cierta estructura subyacente. El
calificativo «determinista» quiere expresar el hecho de que las leyes
que gobiernan el sistema, expresadas en ecuaciones diferenciales,
son bien conocidas y determinan su evoluciéon de manera univoca.

«Uno se queda impresionado por la complejidad de esta figura
[la del enredo homoclino] que no intento siquiera dibujar.
Nada es mas apropiado para dar una idea de la complejidad
del problema de los tres cuerpos.»

— HEeNRI PoiNCARE, LoS NUEVOS METODOS DE LA MECANICA CELESTE.
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El error cometido por Poincaré y la forma en que fue corregi-
do dio lugar a cierta controversia, sobre todo, como cabia esperar,
en Alemania. A pesar de que Mittag-Leffler habia intentado mini-
mizar la importancia del error —y, en parte, también ocultarlo—,
los hechos trascendieron. Poco después de la publicacién del ar-
ticulo de Poincaré, Weierstrass, que, al parecer, terminé arrepin-
tiéndose de haber sido miembro del jurado, escribi6é a Mittag-
Leffler: «Se ha debatido acaloradamente, con fundamento y no de
la forma mas amistosa, que en la memoria de Poincaré se han
descubierto errores significativos, y de ahi 1a necesidad de revisar
un parrafo bastante largo de lo que habia sido escrito». Sin duda
era dificil de entender que apareciera publicado un trabajo con la
mencién de «galardonado por el rey de Suecia» y que contuviera
un apartado que no figuraba en el texto que habia sido premiado.
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CAOS EN EL SISTEMA SOLAR

El enredo homoclino descubierto por Poincaré es uno de los ejemplos cono-
cidos de caos determinista. Las trayectorias que pasan cerca del punto de
equilibrio se comportan de manera caética. Es uno de los mecanismos que
pueden conducir al comportamiento cadtico de los planetas del sistema solar.
El francés Jacques Laskar (n. 1955) es uno de los astrénomos que ha realiza-
do minuciosas computaciones numéricas de la evolucién del sistema solar a
muy largo plazo y ha demostrado que su comportamiento es cadtico, pudien-
do darse el caso de que la trayectoria de Mercurio llegue a interceptar la de
Venus o incluso la de la Tierra. Una caracteristica del caos determinista es la
sensibilidad a las condiciones iniciales, de forma que diferencias de tan solo
un metro en la posicién actual del planeta pueden llevar a trayectorias com-
pletamente diferentes en el futuro. Pero no es un asunto preocupante, puesto
que ello solo podria ocurrir dentro de cientos de millones de anos.

En cualquier caso, fue el propio Poincaré quien descubri6 el error,
quien lo admitié ante Phragmén y Mittag-Leffler y quien, finalmen-
te, lo corrigié, haciendo entonces un descubrimiento mayusculo,
que dotaba a la memoria final de un valor superior al que ya tenia
la inicial. De todas formas, la obtencién del premio del rey de
Suecia dio a Poincaré fama mundial y le convirtié en una de las
personalidades més reconocidas de su pais.

POINCARE LLORA A SU MADRE

La concesién del premio del rey de Suecia coincidié con el naci-
miento de la segunda hija de Poincaré, Yvonne. El padre de Poinca-
ré murié en 1892, y su madre, el 15 de julio de 1897. El matematico
estaba muy unido a su madre y su muerte le afecté profundamente.
En una carta escrita el 31 de julio a Mittag-Leffler, escribia:

Mi querido amigo: las dolorosas circunstancias que acabo de atrave-
sar van a forzarme todavia més a retardar la redaccién de mi articu-
lo sobre Weierstrass. [...] Iba a ponerme al trabajo cuando llegé la

POINCARE GANA UN CONCURSO

93



Fum:m—'—.w}eu = e e R
||

!; UNA NUEVA FORMA DE PENSAR
La secuela del ensayo de Poincaré para
el premio del rey de Suecia fue un traba-
jo publicado en tres tomos bajo el titulo
de Los nuevos métodos de la mecédnica
celeste. Pero los métodos que Poincaré
presentaba en su tratado trascendian el
1 campo de la mecanica celeste, ya que
eran aplicables a cualquier problema que
se pueda formular en términos de ecua-
ciones diferenciales. Durante la segunda
mitad del siglo xx los fisicos y los mate-
maticos desarrollaron lo que se conoce
de manera general como la teoria de sis-
temas dindmicos. Esta teoria proporcio-
na una serie de herramientas matemati-
cas (analiticas, topoldgicas, geométricas
y numéricas) que permite analizar de
forma cualitativa y cuantitativa sistemas
gobernados por ecuaciones diferencia-
les. Varias de estas herramientas tienen  sobre mecanica celeste.

su origen en los trabajos de Poincaré.

Dada la generalidad de su planteamiento,

hoy en dia se aplican no solo a la mecanica celeste o a la fisica, sino también
a la quimica, la biologia o incluso la economia y la sociologia.

o

E

Portada del tercero de los volumenes que
recogieron las lecci de Poincaré

|
/

Bremrea— o= —me=mear,

desgracia. He querido retomarlo hace unos dias pero no me siento
todavia en condiciones de trabajar de forma continuada.

La amistad entre Mittag-Leffler y Poincaré quedd reflejada en
estas cartas en las que, por debajo del tono formal y extremada-
mente cortés habitual en la época y en las formas epistolares fran-
cesas, se adivina una estrecha relacién humana. Asi, en la respues-
ta de Mittag-Leffler podemos leer: «Qué desgracia la que acaba de
golpearos. No hace ni unas semanas que vi a vuestra madre en
vuestra casa llena de vitalidad. Creed mi buen amigo en mi més
vivo acompafiamiento en vuestro dolor».

Mittag-Leffler le preguntaba también si le encontraria en Zu-
rich, en el primer Congreso Internacional de Matematicas que se

94 POINCARE GANA UN CONCURSO



iba a celebrar alli en agosto de aquel afio. El congreso habia sido
organizado por Klein y el propio Mittag-Leffler, entre otros, y se
esperaba que Poincaré pronunciara la conferencia inaugural bajo
el titulo «Sobre las relaciones entre el anélisis puro y la fisica ma-
tematica», pero Poincaré, todavia sin 4nimo para ello, no acudié.
Su ponencia fue leida por un matematico suizo, Jérome Franel
(1859-1939). Poincaré era ya una figura consagrada en el panorama
internacional.
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CAPITULO 4

;,Cuan unida esta una esfera?

Poincaré esta considerado uno de los
fundadores de la topologia. En una serie de
articulos publicados entre 1895 y 1904, introdujo un
conjunto de conceptos que hoy dia son parte fundamental
de esta disciplina. En el ultimo de esos articulos enunci6 su
famosa conjetura, que se convirtié en uno de los problemas
de mas dificil resolucion de las matematicas del siglo xx.
A principios del siglo xx1 fue demostrada por Grigori
Perelman, un gran matematico con una
personalidad muy peculiar.






Henri Poincaré puede ser considerado como uno de los tltimos
universalistas, ya que pertenece a esa selecta categoria de mate-
maticos que hicieron notables contribuciones en todos los campos.
En su caso, ello se debe, en parte, a que su agudo ingenio le hacfa
ver las conexiones existentes entre problemas en apariencia muy
diferentes. Asi, como ya hemos visto en capitulos anteriores, en-
contré que la teoria de las ecuaciones diferenciales estaba relacio-
nada con la geometria no euclidea. Otro de sus temas preferidos,
el problema de los tres cuerpos, le llevé a reflexionar sobre la es-
tructura general de las superficies multidimensionales, y ello, a su
vez, le introdujo en el campo de la topologia, del que nos ocupamos
en este capitulo.

En el primer capitulo se explicé que la topologia se encarga
de estudiar los objetos desde un punto de vista mas general que
el de la geometria. La topologia se pregunta si un objeto esta com-
puesto de varias partes, si tiene agujeros, si se puede ir de un
punto a otro por varios caminos distintos, etc. Los trabajos de
Poincaré sobre ecuaciones diferenciales le hicieron ver la necesi-
dad de estudiar a fondo todos estos conceptos y, lo que es mas
importante, generalizarlos a espacios de mas de tres dimensiones.
En 1895 Poincaré publicé un articulo en el Journal de l’Ecole Po-
litechnique, en el nimero conmemorativo del centenario de su
antigua escuela. El articulo tenia 121 paginas y marcé un hito en

SCUAN UNIDA ESTA UNA ESFERA?

99



100

la historia de la topologia. En él se presentaban numerosas ideas
nuevas, sobre todo en el &mbito de las técnicas para abordar los
problemas topolégicos.

Ademas de enunciar varios teoremas nuevos, Poincaré comen-
taba resultados ya conocidos. Como ya le habia ocurrido anterior-
mente, y, como por otra parte, resulta habitual en los trabajos
cientificos de primera linea, el articulo también contenia impreci-
siones y algun error significativo. La comunidad matematica inter-
nacional, muy atenta ya a todo lo que venia de Poincaré, empez6
a estudiar a fondo todo el material desde el mismo dia de su pu-
blicacién. Los comentarios y criticas y las peticiones de aclaracio-
nes le llevaron a volver una y otra vez sobre el tema, y Poincaré
escribié hasta cinco complementos al primer articulo. El altimo
de ellos aparecio en 1904 en la revista italiana Rendiconti del Cir-
colo Matematico di Palermo y tenia una extension de nada mas y
nada menos que 66 paginas. Fue en este quinto complemento don-
de aparecio el enunciado definitivo de lo que después se dio en
llamar «conjetura de Poincaré», en el que el nombre del gran ma-
tematico francés quedo asociado para siempre a una de las grandes
hazanas intelectuales del siglo xx.

El articulo del Journal de l’Ecole Politechnigue de 1895 lleva-
ba por titulo «Analysis situs». En su introduccién puede leerse:

El analysis situs es la ciencia que nos da a conocer las propiedades
cualitativas de las figuras geométricas no solamente en el espacio
ordinario, sino en el espacio de mas de tres dimensiones. El analysis
situs de tres dimensiones es para nosotros un conocimiento casi
intuitivo, el analysis situs de mas de tres dimensiones presenta, por
el contrario, dificultades enormes; es necesario, para superarlas,
estar muy persuadido de la extrema importancia de esta ciencia.

Analysis situs es el nombre que algunos daban por entonces
a esta rama de las matematicas. Esta denominacion perderia poco
a poco preferencia en favor del uso de la actual denominacion,
topologia. En su articulo, Poincaré definié dos conceptos funda-
mentales de la topologia moderna: la homologia y la homotopia.
Ambos conceptos tenian precedentes.
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LA HOMOLOGIA

Vimos en el capitulo 1 que el suizo Simon L’Huilier habia genera-
lizado la ecuacién de Euler

CuAe Vel

que relaciona el nimero de caras C, aristas A y vértices V de un
poliedro. L'Huilier encontré que para un objeto con un nimero
cualquiera de agujeros g se tiene que

C-A+V=2-2g.

Al niimero g se le conoce como género de la superficie. El
matematico alemédn Bernhard Riemann (1826-1866) y su amigo el
italiano Enrico Betti (1823-1892) relacionaron g con la conectivi-
dad de la superficie en cuestién. Riemann definié la conectividad

DEMOSTRACION DE LA FORMULA DE EULER

La formula de Euler C- A+ V=2 se puede demostrar con relativa facilidad
utilizando lo que los matematicos llaman el principio de induccion, un princi-
pio que para Poincaré era especialmente importante por sus implicaciones
filosoficas en cuanto a los fundamentos ultimos de las matematicas. El prin-
cipio de induccion se puede expresar diciendo que si se cumplen las dos
premisas siguientes:

a) Una propiedad es valida para un valor particular de n, por ejemplo n=0.

b) Suponiendo que la propiedad es valida para un niumero n cualquiera,
podemos demostrar que también es valida para n+1,

entonces la propiedad en cuestion se cumple para todos los valores de n. En
cuanto a la férmula de Euler, ya vimos en el capitulo 1 que se cumple para el
poliedro con C=4 caras, el tetraedro. Supongamos ahora que se cumple para
un poliedro cualquiera con C caras, A aristas y V/ vértices. Elegimos una cual-
quiera de las caras y le afadimos una arista. El nimero de vértices permane-
ce invariable, el numero de aristas ha aumentado en uno y el de caras también,
por lo que la formula sigue cumpliéndose para este poliedro, que ahora tiene
C+1caras.
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Cualquier lazo que
tracemos sobre
una esfera la
divide en dos
zonas. Esto no
ocurre siempre en
el caso de un toro.

FIG.1
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p de una superficie como el niimero méas pequefio de lazos que se
pueden dibujar sobre ella, de forma que inevitablemente la divida
en dos. Para la esfera este niimero es 1, porque cualquier lazo que
dibujemos sobre ella la divide en dos. Para el toro es 3, porque dos
cortes no siempre bastan. En general se tiene que p =2g + 1. Betti,
por su parte, se dio cuenta de que g también se podia definir a
partir del niimero mdximo de lazos cualesquiera que no dividian
la superficie. Este niimero es 0 para la esfera y 2 para el toro.

Poincaré generaliz6 las ideas de Betti a superficies de una
dimensién cualquiera. A estas superficies, que pueden, a su vez,
estar compuestas de distintas superficies conectadas o desconec-
tadas, se les llama técnicamente variedades. Y ese es el término
ya utilizado por Poincaré en sus trabajos. Para una variedad de
dimension m, Poincaré definié un conjunto de nimeros p, con
k=1,...,m~-1, que él denominé «nimeros de Betti», de forma que
p, estd relacionado con el niimero de agujeros de dimensi6n k de
la variedad. Para definir de manera rigurosa los niimeros de Betti
Poincaré utilizé el concepto de homologia.

Para una variedad de dimension m, la homologia considera si
una curva, superficie o variedad de dimensién
inferior la divide o no, y cémo lo hace. Es senci-
llo entender el concepto en una superficie bidi-
mensional. Por ejemplo, en la figura 1 vemos que
una linea cerrada sobre una esfera forma un
contorno que encierra un trozo de ella; sin em-
bargo, para un toro esto no siempre es asi. Las
homologias de un toro y de una esfera no son
iguales, y tampoco lo son sus nimeros de Betti,
que aqui se reducen, esencialmente, a uno, que
esté relacionado con g. A partir de estos concep-
tos Poincaré fue capaz de definir un dlgebra en-
tre variedades de dimensién inferior a una dada
(curvas, superficies, etc.) y construir lo que se
conoce como el «grupo» de sus homologias.

Una forma muy 1til de estudiar las superfi-
cies, y que se generaliza ficilmente a dimensio-
nes superiores, es imaginarlas como construidas
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Cinta de Mébius Botella de Klein

a partir de piezas planas flexibles, por ejemplo, rectdngulos cuyos
lados se pegan unos a otros siguiendo unas reglas determinadas.
El caso sencillo de un toro se muestra en la figura 2. Las flechas
indican la orientacién con la que debemos pegar los extremos del
rectangulo. También se puede construir de esta manera una banda
de Mobius o una botella de Klein.

En la figura 3 se representa simbélicamente la regla para obte-
ner una banda de Mébius: hay que doblar la cinta sobre si misma y
pegar el vértice A con el C'y el B con el D, haciendo coincidir los
lados AB y CD. La botella de Klein es un poco maés abstrusa. La
primera operacién es similar a la realizada para obtener el toro,
pero la segunda implica una torsién similar a la de la banda de
Mobius. Las flechas con sentido opuesto indican que hay que doblar
la superficie antes de pegarla, de forma que la parte de adentro se
convierte en la de afuera. La superficie resultante no se puede vi-
sualizar en el espacio ordinario de tres dimensiones, porque este
doblado no es realizable en el espacio ordinario. Cualquier repre-
sentacién que hagamos en tres dimensiones parece dar a entender
que es una superficie que se interseca consigo misma, pero laregla
de construccion a partir del rectdngulo muestra que esto no es asi.

Las flechas dibujadas en cada lado nos indican si debemos
girar o no ese lado antes de pegarlo con el lado correspondiente.
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FIG. 4

Para entender como las reglas de pe-
gado representan la superficie imagi-

nemos que vamos andando por ella.
i A Un camino en la superficie se repre-

—ar senta por una linea en el rectangulo,
——————————————— - tal y como muestra la figura 4. Cuan-

= do la linea llega a un contorno del
rectangulo, el pegado significa que

Camino sobre
una superficie
bidimensional.
Al salir por

la derecha
reaparecemos por
la izquierda; las
flechas indican
que lo hacemos
con la misma
orientacién.
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aparecemos por el otro lado. La fle-
cha indica si, al atravesar el pegado,
seguimos moviéndonos en la misma
direccién o el pegado es tal que cambiamos la orientacién de nues-
tro movimiento.

Cualquier superficie, orientable o no, se puede construir a par-
tir de un poligono de n lados con las adecuadas reglas de pegado.
Si en lugar de un poligono usamos un poliedro de varias caras y
damos reglas de pegado identificando unas caras con otras, si-
guiendo un patrén determinado, el objeto resultante no es ya una
superficie bidimensional, sino una variedad de tres dimensiones
que solo puede existir en un espacio de cuatro, porque el proceso
de doblar el poliedro para pegar una cara con otra requiere, en
general, de una dimensién adicional.

En su articulo de 1895, y también en los escritos posteriores,
Poincaré us6 profusamente este método de construccién de varie-
dades y ello le permitié definir los grupos de homologia y calcular
los niimeros de Betti de diversas variedades tridimensionales idea-
das por él.

El matematico danés Poul Heegaard (1871-1948), en un libro
escrito en 1898, llamé la atencion sobre algunos de los resultados
obtenidos por Poincaré sobre los ntiimeros de Betti, demostrando
que no eran del todo generales. Ello llev6 a Poincaré a retomar el
tema en un primer complemento a su «Analysis situs», que apare-
ci6 en 1899. En ese articulo el matematico francés afiné la defini-
cién de los nimeros de Betti, dio una nueva demostracioén de un
importante teorema e introdujo nuevos conceptos, entre ellos el de
torsion de una variedad. Este concepto es una generalizacion del
concepto de orientabilidad a espacios de dimensiéon mayor que 2.
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Uno de los teoremas mas importantes que Poincaré fue capaz
de demostrar con todas estas técnicas fue la generalizacion de la
férmula de Euler a «poliedros» formados por variedades de cual-
quier dimensién. Para un poliedro en un espacio de n dimensiones
la férmula de Poincaré era la siguiente:

No—N; + N,-N;+ ... N_, =1-(-1)",

donde N, es el nimero de vértices; N, el de aristas; N,, el de fron-
teras bidimensionales; N,, el de fronteras tridimensionales, etc.
Para n =3 el lector puede comprobar que se obtiene la férmula de
Euler. La forma en que este teorema fue demostrado por Poincaré
en 1895 se revel6 incorrecta mas tarde, aunque el teorema es cier-
to y fue rigurosamente demostrado por otros mateméticos.

HOMOTOPIA

En «Analysis situs» Poincaré también construyé una forma in-
trinseca de definir la topologia de una superficie diferente de la
homologia. Esta forma se denomina «intrinseca», porque permite
estudiar la superficie desde dentro de la misma, de manera analo-
ga a como los topégrafos determinaron en su dia la forma de la
Tierra haciendo medidas sobre su superficie. Lo que Poincaré de-
fini6 se conoce como «grupo de homotopia» y para ello se inspiré
en los trabajos previos de Gauss y Camille Jordan.

Consideremos primero el caso de una circunferencia e imagi-
nemos un ser puntual que vive en ella y quiere explorar su mundo.
Este ser tiene un hilo largo que va soltando a medida que anda.
Puede comenzar a andar en una direccion y vera que al cabo del
tiempo ha dado una vuelta y se encuentra en el mismo sitio del que
partid. Si da dos vueltas, vuelve al mismo sitio, pero el hilo da dos
vueltas sobre si mismo. Si da una vuelta en un sentido y luego da
otra en sentido contrario, es como si no se hubiera movido, porque
estd en el mismo sitio y ha recogido todo el hilo que habia soltado.
Podemos considerar positiva una direccién, por ejemplo, la hora-
ria; y negativa la otra, por ejemplo, antihoraria. Dar cuatro vueltas
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en una direccion es equivalente a dar cinco en esa direccién y
una en direccién contraria. Tenemos asi definida una serie de ac-
ciones, dar vueltas en un sentido o en otro, que podemos combinar.

Esta estructura forma lo que los matematicos llaman «un gru-
po». Si combinamos dos de estas acciones, por ejemplo, dar tres
vueltas en un sentido y luego dar dos en el mismo sentido, obte-
nemos otra de las acciones posibles: dar cinco vueltas. Ademés,
hay una accién nula, dar cero vueltas, que podemos hacer después
de cualquier otra sin alterarla. Por tltimo, cada accién tiene una
contraria: dar el mismo niimero de vueltas en direccion contraria,
lo que nos deja en el mismo lugar. Esta estructura se conoce como
«grupo de homotopia»; en este caso, el grupo de homotopia aso-
ciado a la circunferencia. Como el lector ha podido intuir este
grupo es idéntico al de los niimeros enteros: ...,—5, -4, -3, -2,~1, 0,
1,2, 3,4,... con la suma habitual, grupo que se conoce en matema-
ticas por el simbolo Z. Y toda esta estructura se mantiene aunque
la curva en la que viviera este ser imaginario no fuera una circun-
ferencia, sino un lazo simple. Cualquier lazo simple se puede de-
formar para formar una circunferencia y su grupo de homotopia
es el de los nimeros enteros.

«La ciencia son hechos; de la misma manera que las casas estian
hechas de piedras, la ciencia esta hecha de hechos; pero un
monton de piedras no es una casa y una coleccion de hechos
no es necesariamente ciencia.»

— HENRI POINCARE.
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Tomemos ahora otro ejemplo sencillo: el de una linea recta.
Nuestro ser puntual imaginario puede ahora moverse sobre la linea
hacia un lado o hacia otro, pero no puede dar una vuelta a nada.
Como en topologia podemos estirar y deformar los objetos, cual-
quier excursion de nuestro ser imaginario puede ser contrarresta-
da por un estiramiento o una contraccién. En realidad, desde el
punto de vista topolégico, cualquier accién que haga este ser pun-
tual es equivalente a quedarse en el mismo sitio. El grupo de ho-
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motopia tiene ahora un solo elemento, que mateméaticamente po-
demos identificar con el cero y que los mateméticos llaman el
«grupo trivial».

Para un toro nuestro ser imaginario tiene dos formas de dar
vueltas: una alrededor del agujero central y otra alrededor de una
seccion. Si volvemos a usar el hilo, este puede ahora enrollarse de
dos maneras posibles y desenrollarse de las dos maneras. Tenemos
entonces que cualquier accién se reduce a un par de niimeros en-
teros (m,n), donde m y n son enteros que representan el nimero
neto de vueltas que se dan en un sentido o en otro de las dos for-
mas posibles. El grupo de homotopia del toro es, por tanto, el de
los enteros repetido una vez, lo que los matematicos escriben
como Zx Z.

El caso de una esfera de dos dimensiones en el espacio tridi-
mensional es especialmente sencillo: cualquier camino cerrado
puede deformarse continuamente hasta hacer de él un punto, por
lo que cualquier camino que recorra nuestro ser imaginario es equi-
valente, topolégicamente hablando, a no moverse. El grupo de
homotopia de la esfera solo tiene un elemento, por lo que de nue-
vo es el grupo trivial, representable por el cero u operacién iden-
tidad. Poincaré generalizé el concepto de homotopia a espacios
de dimensién cualquiera y llamoé al grupo de homotopia de una
variedad el «grupo fundamental».

El matemadtico francés se interesé especialmente por el caso
de la esfera de tres dimensiones. Una esfera en el espacio tridi-
mensional se define por el conjunto de puntos que equidistan de
un punto dado, el centro de la esfera. En coordenadas cartesianas
una esfera de radio unidad centrada en el origen viene dada por la
ecuacion

P+yPr+2E=1

La esfera asi definida es una superficie bidimensional, porque
para situarnos sobre ella es suficiente con dar dos nimeros, ya que
la ecuacién anterior proporciona la tercera coordenada del punto
correspondiente. En geografia, por ejemplo, basta con dar la lon-
gitud y la latitud de un lugar para situarnos con precisién sobre la
superficie terrestre.
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En un espacio de cuatro dimensiones (x, y, 2, w) podriamos
definir una «hipersuperficie» por la ecuacion

x2+yi+e2irwi=1.

Esta hipersuperficie resulta ser un objeto 3-dimensional, por-
que para situarnos sobre ella necesitariamos dar tres nimeros.

En su articulo de 1895 Poincaré crey6 establecer que toda
variedad de tres dimensiones que tenga el mismo grupo de homo-
logia que una esfera es topol6gicamente equivalente a una esfera.
Es decir, que el grupo de homologia de una variedad era suficien-
te para caracterizarla y determinaba también su grupo de homoto-
pia. Pero poco después se dio cuenta de que las cosas eran mas
complicadas. En un segundo complemento a su «Analysis situs»,
publicado en 1900, enuncié una primera versién de su conjetura:
«Todo poliedro orientable con todos sus niimeros de Betti iguales
a 1 es simplemente conexo, es decir, homeomorfo a una hiperes-
fera» (la palabra «<homeomorfo» significa aqui que se puede defor-
mar de manera continua hasta conseguir una hiperesfera).

Pero en el quinto complemento, que como ya se ha comentado
se publicé en 1904, se desdijo de esta afirmacién, porque se habia
dado cuenta de que no era completamente general. En ese articulo
Poincaré presentaba una superficie, construida pegando dos toros
soOlidos de una forma bastante complicada, que tenia el mismo gru-
po de homologia que una esfera, pero que no era topolégicamente
equivalente a ella. En la introduccién al articulo se decia:

Podriamos preguntarnos entonces si la consideracion de estos coe-
ficientes es suficiente; si una variedad en la que todos los niimeros
de Betti y coeficientes de torsion son iguales a 1 es por ello simple-
mente conexa en el sentido propio del término, es decir, homeomor-
fa a la hiperesfera; o si, por el contrario, es necesario, antes de afir-
mar que una variedad es simplemente conexa, estudiar su grupo
fundamental, que defini en el Journal de I’Ecole Polytechnique.

Es decir, ;bastaba la homologia para definir una variedad o

habia también que estudiar su grupo de homotopia? El propio Poin-
caré respondia a esa pregunta con un contraejemplo:
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EL DODECAEDRO DE POINCARE

La variedad que Poincaré construyé en su

quinto complemento a su «Analysis situs» era

un ejemplo de que la homologia no era sufi-

ciente para determinar si una variedad n-di-

mensional es topoldgicamente equivalente a P el

una n-esfera. La construccion de Poincaré es Al

complicada de entender, pero veintitin afos

después de la muerte del gran matematico T f
francés, Herbert Seifert y Constantin Weber ,q =l 1
demostraron que la misma variedad se podia h
construir a partir de un dodecaedro usando

la técnica del pegado. El dodecaedro es uno

de los cinco sélidos platénicos y consiste en un poliedro de doce caras todas
ellas pentagonales (véase la figura). Para construir la variedad de Poincaré
hay que unir cada cara con la que estd opuesta a ella, pero antes de pegar-
las hay que girar la cara lo justo para que un lado de una cara coincida con el
de la cara opuesta. Esto hay que hacerlo con todas la caras, es decir, hay que
realizar seis pegados. Como el interior del dodecaedro es un volumen de tres
dimensiones, la variedad resultante es tridimensional. Obviamente, la opera-
cion de pegar todas las caras unas con otras no se puede realizar en el espacio
ordinario. El dodecaedro de Poincaré solo existe en un espacio de cuatro di-

mensiones.

Podemos ahora responder a esta cuestién: he construido un ejemplo
de variedad en la que todos los coeficientes de torsion y todos los
nimeros de Betti son iguales a 1 y, sin embargo, no es simplemente
conexa.

Esta variedad tridimensional se conoce hoy en dia como el
dodecaedro de Poincaré, porque, tal y como demostraron Seifert
y Weber varios afios después de la muerte de Poincaré, se puede
construir a partir de un dodecaedro, identificando las caras opues-
tas tras girarlas 36°.

Al igual que habia pasado afios antes con la memoria realizada
para el premio del rey de Suecia, la correccién de un error inicial
acab6 también aqui transformindose en una aportacién matema-
tica de primera linea, muy avanzada en su tiempo. En este quinto
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complemento Poincaré describié en detalle la construccién de su
dodecaedro y demostré que su grupo de homotopia no es el trivial
(en realidad, tiene 120 elementos) y, por tanto, no puede ser ho-
meomorfo a una esfera. En la tltima pagina de este articulo figura
la siguiente frase:

;Es posible que el grupo fundamental de una variedad V se reduzca
a la sustitucién identidad y, sin embargo, V no sea simplemente co-
nexa?

Este es el enunciado de la conjetura de Poincaré tal y como
é]l mismo lo propuso. Expuesto en estos términos no era realmen-
te una conjetura, sino una pregunta, y no tenemos razones para
decidirnos a cual de las dos respuestas (si o no) daba Poincaré
mds opciones. El caso es que la afirmacién positiva: «Toda varie-
dad cuyo grupo fundamental es el trivial es simplemente conexa,
es decir, homeomorfa a una hiperesfera» es la que los matematicos
pronto empezaron a valorar como cierta y lo que en realidad se
deberia haber llamado «el problema de Poincaré» pasé a llamarse
su conjetura.

Después de unas lineas con una pequeiia discusion muy téc-
nica, el quinto complemento acaba diciendo: «Pero esta cuestién
nos llevaria demasiado lejos». ;Y tan lejos! Hizo falta un siglo de
trabajo de algunos de los mejores mateméticos del mundo para
resolverla.

LA RESOLUCION DE LA CONJETURA

La expresion «variedad cuyo grupo fundamental es el trivial» sig-
nifica que toda linea cerrada que tracemos sobre la variedad puede
deformarse continuamente hasta reducirla a un punto. La conje-
tura de Poincaré se puede expresar, por tanto, diciendo que toda
«superficie» n-dimensional que sea finita, no tenga fronteras y en
la cual todo lazo pueda reducirse a un punto, se puede deformar
continuamente hasta convertirla en una n-esfera. Por finita enten-
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demos que la podemos encerrar en un recinto. Por ejemplo, una
circunferencia es finita, ya que podemos encerrarla en un cuadra-
do, pero un plano o una linea recta no lo son. Y el que no tenga
fronteras significa que no hay una linea o superficie mas all4 de la
cual la superficie no existe. Por ejemplo, un toro o una esfera no
tienen fronteras: si andamos sobre ellos no llegamos nunca a un
borde. Pero una banda de Mébius, la superficie de una mesa o
un disco si tienen fronteras: en todas estas superficies hay una li-
nea que, si se traspasa, se sale de la superficie.

La conjetura de Poincaré es claramente cierta para dos dimen-
siones, aunque una prueba de esta afirmacién aceptable para un
matemaético puede tener un aspecto sorprendente para alguien no
acostumbrado a las demostraciones. En cualquier caso, es algo
que puede comprobarse dibujando. Y ahi se quedé todo durante
la mayor parte del siglo xx. No se dieron nuevos avances hasta
1961, cuando el matemético americano Stephen Smale (n. 1930)
demostré que la conjetura era cierta para espacios de dimension
mayor o igual a 7. La demostracién de Smale usa técnicas pura-
mente topolégicas y parte de la idea de que un toro es topolégica-
mente equivalente a una esfera a la que se la ha afiadido un asa.
Las ideas de Smale no se podian aplicar a espacios de menos di-
mensiones porque, hablando un poco tontamente, en estos «no
hay sitio» para hacer las transformaciones necesarias. John Sta-
llings (1935-2008) y Christopher Zeeman (n. 1925) superaron los
problemas de Smale y demostraron la conjetura para seis y cinco
dimensiones. Tomando un camino completamente diferente, en
1982 Michael Freedman (n. 1951) consiguié demostrar la conjetu-
ra para cuatro dimensiones.

Y de nuevo vino el estancamiento. Todas las técnicas usadas
para las dimensiones superiores eran initiles para tratar el caso
de dimensién tres. Esto es, el caso de una variedad, o «hipersu-
perficie» de tres dimensiones contenida en un espacio de cuatro
dimensiones. El camino hacia la demostracién de la conjetura
en tres dimensiones vino por terrenos totalmente distintos a los
usados en las dimensiones anteriores. Un camino que, a buen
seguro, hubiera sido muy del agrado de Henri Poincaré: la geo-
metria no euclidea. A lo largo de este libro ya hemos visto otra
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conexién entre la geometria no euclidea y otras ramas de las
matemadticas, ya que Poincaré la utilizé en su teoria de las ecua-
ciones diferenciales.

En el capitulo 1 hablamos de las tres geometrias posibles en
el espacio de tres dimensiones: la euclidea, cuya curvatura es
cero; la eliptica, de curvatura positiva, y 1a hiperbélica, de curva-
tura negativa. Ejemplo de la primera es el plano, donde la linea
més corta entre dos puntos es la recta, y los 4ngulos de un tridn-
gulo suman 18(°. La geometria eliptica se da en una esfera, donde
los circulos méximos son las lineas més cortas entre dos puntos
y los dngulos de un tridngulo suman mas de 180°. Por iltimo, la
geometria hiperbélica es la de una superficie como una silla de
montar, donde los dngulos de un tridngulo suman menos de 180°.
Cualquier superficie bidimensional se puede deformar, aunque
sea por trozos, en una superficie que tenga uno de estos tres tipos
de geometria. Esta idea fue el punto de partida de los trabajos del
matematico americano William Thurston (1946-2012).

Thurston extendi6 esta clasificacién a variedades de tres di-
mensiones y encontré que, en ese caso, hay ocho geometrias po-
sibles: las tres habituales, algunas combinaciones de ellas y otras
geometrias mas exoticas. El siguiente paso era comprobar si cual-
quier variedad tridimensional era clasificable dentro de una de las
ocho geometrias posibles, y ahi las cosas se volvieron complicadas.
Thurston no resolvié del todo el problema, pero en 1982 lanzé lo
que pasé a llamarse la conjetura de geometrizacién: «Toda varie-
dad tridimensional admite una descomposicién tnica en trozos,
cada uno de los cuales corresponde a una de las ocho geometrias
posibles». Y lo que es mas importante para lo que nos ocupa:
Thurston demostré que la conjetura de Poincaré era una conse-
cuencia directa de su conjetura. Es decir, si su conjetura era cier-
ta, también lo era la de Poincaré.

Nuestro siguiente protagonista es otro americano, Richard
Hamilton (n. 1943), quien inventd lo que se conoce como «flujo de
Ricci», la herramienta matematica que, en dltima instancia, lleva-
ria a la demostracion definitiva de la conjetura de Poincaré. El
nombre de Ricci se refiere al matematico italiano Gregorio Ricci-
Curbastro (1853-1925), que introdujo el tensor que lleva su nombre
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Flujo de curvatura

FIG.S en un lazo (fig. 5)
¥ en una
superficie con
forma de pera
(fig. 6).
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en su contribucién a la geometria no euclidea. El tensor de Ricci
es un objeto matematico que caracteriza la curvatura de una su-
perficie o un espacio no euclideo. Es uno de los elementos que
aparece en la ecuacion de Einstein de la teoria general de la rela-
tividad, que relaciona la curvatura del espacio-tiempo con su con-
tenido en masa-energia.

Un concepto mas sencillo, el flujo de curvatura, nos puede
ayudar a entender el programa de Hamilton al inventar el flujo de
Ricci. Supongamos que tenemos un lazo cerrado con una forma
cualquiera. Empecemos a deformarlo de forma que aplastamos las
ZONas convexas a un ritmo proporcional a su curvatura, mientras
que tiramos de las zonas céncavas (figura 5). Poco a poco iremos
alisando los salientes y reduciendo los entrantes hasta obtener una
circunferencia. Podriamos hacer el proceso en dos dimensiones,
como se muestra en la figura 6 y convertir poco a poco una super-
ficie en forma de pera en una esfera. Parece intuitivo que, si apli-
camos este tipo de flujo a una superficie cualquiera, obtendremos
al final una esfera si y solo si la superficie de partida es topolégi-
camente equivalente a una esfera.

El flujo de Ricci es, en cierta forma, una generalizacién de
estas ideas a espacios de dimensién mayor que 2. Hamilton definié
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la forma de proceder, pero pronto encontré dificultades: el flujo
podia desarrollar singularidades, es decir, puntos donde la super-
ficie colapsaba en un punto o el fluyjo divergia, y no estaba claro
que estas singularidades fueran siempre manejables. Y es aqui
cuando entra en escena el ltimo héroe de esta historia: Grigori
Perelman.

EL GENIO DE SAN PETERSBURGO

Grigori Perelman nacié en 1966 en Leningrado (actual San Peters-
burgo). Con quince afios obtuvo el primer puesto en las olimpiadas
de las matemadticas de su ciudad y, después, de toda la URSS. Tras
graduarse en la Universidad Estatal de Leningrado ingresoé en el
Instituto de Matemaéticas Steklov, también ubicado en su ciudad
natal, un centro que durante la época soviética fue uno de los
mejores institutos de matematicas del mundo. En este periodo
trabajé con grandes matematicos rusos, como Aleksandr Aleksan-
drov (1912-1999).

En 1992 Perelman consiguié una beca para realizar una estan-
cia en el Instituto Courant de Ciencias Matematicas de Nueva York.
Alli conoci6 a Gang Tian (n. 1956), con quien a menudo alquilaba
un coche para ir a Princeton o Stony Brook con el fin de asistir a
las conferencias de los mejores matematicos del mundo. En una
de estas conferencias, Perelman conocié a Hamilton y mantuvo
una conversaciéon con él sobre los flyjos de Ricci y sus ideas para
demostrar la conjetura de Poincaré.

Tras tres afnos en diversos centros de Estados Unidos, varias
universidades ofrecieron a Perelman un puesto de profesor. Pero
un dia cay6 en sus manos un articulo de Hamilton y se dio cuenta
de que este se habia atascado en su trabajo sobre la conjetura de
Poincaré. Le escribié ofreciéndose a colaborar, pero Hamilton no
respondié, con lo que entendié que podia trabajar solo en el pro-
blema.

Perelman decidié entonces rechazar todas las ofertas y volver
a San Petersburgo, ya que necesitaba tiempo y tranquilidad para
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trabajar. A su vuelta a su ciudad natal, su padre se habia marchado
aIsrael, a donde pronto le sigui6 su hermana, asi que se quedd solo
con su madre. Vivian los dos en diferentes apartamentos del mismo
barrio. Perelman, que oficialmente era miembro del Instituto Ste-
klov al que presentaba informes puntualmente, se encerré a tra-
bajar en su casa, relacionandose solo con algunos colegas del
instituto.

En julio de 2000 el Instituto Clay de Matematicas anuncié6 los
premios a los problemas del milenio. Este centro habia sido fun-
dado en 1998 por un multimillonario norteamericano, Landon Clay,
con la idea de contribuir al progreso de las matematicas. En el afio
2000 varios matematicos eligieron una lista de siete problemas, los
problemas del milenio, y el instituto anuncié una recompensa de
un millén de délares por la resolucién de cada uno de ellos. La
conjetura de Poincaré estaba en la lista.

A estas alturas Perelman llevaba ya cinco afos trabajando en
ello. Solo salia a pasear y a algiin concierto de miisica clasica. El
11 de noviembre de 2002 envid a la web arXiv.org un trabajo titu-
lado The Entropy Formula for the Ricci Flow and its Geometric
Applications («La férmula de la entropia para el flujo de Ricci y
sus aplicaciones geométricas»). Todo en Perelman era especial,
porque lo habitual en la comunidad cientifica hubiera sido enviar
un trabajo de semejante calado a una revista cientifica reconoci-
da. Es cierto que, a veces, se cuelga en arXiv.org una primera
version de un trabajo importante, con la intencién de publicarlo
después en una revista reconocida. Pero en el caso de Perelman
él envi6 a arXiv.org el trabajo definitivo, que no envié a ningin
sitio mas. De hecho, su articulo sigue disponible integramente
para todos, aunque en realidad muy poca gente en el mundo pue-
de entenderlo.

El articulo tiene 40 paginas y esta firmado por Grisha Perel-
man (Grisha es el diminutivo de Grigori en ruso). A pie de pagina
hay una nota que contiene esta singular aclaracién:

Me he financiado parcialmente con los ahorros acumulados durante |
mis visitas al Instituto Courant en otofio de 1992, al SUNY en Stony
Brook en la primavera de 1993 y a la Universidad de California en |
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Berkeley como Miller Fellow en 1993-1995. Quisiera expresar mi
agradecimiento a todos los que trabajaron para darme estas oportu-
nidades.

El texto inicial fue seguido por dos complementos més en
marzo y julio de 2003, en los que se aclaraban y extendian algunos
conceptos. En estos tres articulos Perelman presenta su teoria
general para resolver las singularidades del flujo de Ricci y com-
pletar el programa de Hamilton, demostrando la conjetura de geo-
metrizacién de Thurston y, en consecuencia, la conjetura de Poin-
caré. En realidad, los resultados presentados van mads alld de la
demostracién de la conjetura de Thurston. Son trabajos especial-
mente dificiles, ya que hacen uso de campos muy diferentes de las
matematicas. Y, curiosamente, en ninguno de ellos se nombra a
Poincaré ni a su conjetura.

Gang Tian, su colega del Instituto Courant, llevaba siete afios
sin oir hablar de él cuando, de buenas a primeras, recibié un correo
electrénico de Perelman, en el que le contaba sus progresos y le
explicaba que habia publicado sus resultados en arXiv.org. Tian
invité a Perelman a Estados Unidos para dar charlas sobre su tra-
bajo, invitacién que Perelman, deseoso de discutir e intercambiar
ideas con sus colegas, acepté inmediatamente. De esta forma, Pe-
relman volvié a Estados Unidos en 2003, invitado a dar charlas y
seminarios en las mejores universidades del pais. El no aceptaba
camaras, ni periodistas, ni grabaciones. De hecho es relativamen-
te dificil encontrar imigenes suyas en internet. En las charlas no
nombraba la conjetura siquiera, porque era solo uno de los coro-
larios de su teoria.

Durante este viaje varias universidades volvieron a ofrecerle
un puesto de profesor, pero Perelman rechazé todas las ofertas y
regres6 de nuevo a San Petersburgo. La comprobacién de que Pe-
relman habia demostrado la conjetura de Poincaré llevé afios,
porque nadie tenia conocimientos lo suficientemente profundos
en campos tan diferentes como para diseccionarla. La comunidad
matematica internacional estd bastante acostumbrada a que al-
guien anuncie la demostracién de un teorema famoso y después
la demostracion sea falsa o incompleta, incluso cuando el que hace
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el anuncio es un matematico de reconocida valia, como era el caso
de Perelman. Por ello los maximos expertos mantuvieron un sano
escepticismo, mientras diseccionaban punto por punto los trabajos
del matematico ruso.

«No me interesa la geometria, me interesa la moral.»

— ALEKSANDR ALEKSANDROV, MATEMATICO RUSO PROFESOR DE PERELMAN.

ns

Pero Perelman parecié cansarse de esperar y en diciembre de
2005 dimiti6 de su instituto, en un gesto que solo se podia inter-
pretar como que abandonaba las matematicas. En 2006 los dos
grupos que trabajaban independientemente en la comprobacién
de la teoria de Perelman anunciaron que la prueba era correcta y
el nombre de Perelman salto a los periédicos de todo el mundo.
Pero también salt6 un escandalo. Dos matematicos chinos anun-
ciaron que Perelman solo habia hecho una parte del trabajo, un
256%, y que ellos habian terminado la demostracién. Perelman res-
pondi6 a estas insinuaciones diciendo que los matematicos chinos,
en realidad, no habian entendido su trabajo y que no aportaban
nada nuevo.

En el mismo afio la Unién Matematica Internacional otorgé a
Perelman la medalla Fields, el mas importante galardén mundial
en el campo de las matemaéticas. Esta medalla se otorga cada cua-
tro afios a cuatro matematicos menores de cuarenta anos. Pero
Perelman rechazé el premio. A estas alturas ya parecia creer que
todo estaba corrupto y que los matematicos rusos no le defendian
suficientemente. Los afios de espera y el asunto de la autoria, que
los chinos habian puesto en duda, habian hecho mella en su d&nimo
probablemente. Para Perelman las matemadticas no eran solo la
primera de las ciencias, sino también una ciencia moral.

Las medallas Fields del afio 2006 se entregaron en el Congre-
so Internacional de Matematicas de Madrid. El rey Juan Carlos I
de Espaiia entregé las medallas. Los otros tres matematicos pre-
miados recibieron solemnemente las suyas y hablaron sobre sus
logros en ponencias plenarias, pero Perelman no aparecié. Cuando
el presidente de la Unién Matematica Internacional anuncié su
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nombre y admitié que, lamentablemente, el gran mateméatico ruso
habia declinado asistir y rechazaba el premio, hubo un momento
de desconcierto entre los asistentes, que no sabian si aplaudir o
guardar silencio.

A partir de entonces Perelman rompi6 con todos. Ya no con-
testaba los correos electrénicos. John Morgan (n. 1946) y su anti-
guo colega Gang Tian, dos de los expertos que habian estado es-
tudiando su trabajo, publicaron un libro con sus conclusiones y le
enviaron un ejemplar para que lo evaluase. Perelman les devolvié
el libro sin abrirlo.

El Instituto Clay tardé hasta el afio 2010 en hacer publica su
conclusién definitiva: la prueba de la conjetura de Poincaré era
correcta y su autor era Perelman y nadie més. En el comité que
habia estudiado la situacién estaban todos los grandes expertos
mundiales sobre el tema. El instituto concedié a Perelman el mi-
116n de délares del premio del milenio.

Pero habian pasado ocho afos desde que Perelman envié su
articulo a internet. Perelman respondié que tenia que pensarselo,
y tard6 unos meses en responder. El 1 de julio de 2010 rechazé
definitivamente el premio, porque no le parecia justo. Parece ser
que Perelman pensaba que Hamilton también era merecedor del
premio y, en cualquier caso, no estaba de acuerdo con la comuni-
dad matematica, ya no se sentia parte de ella.

Alo largo de toda su carrera Perelman huy6 de las camaras y
de los periodistas. No queria notoriedad ni fama. Paraddjicamente
su actitud le convirtié en un personaje mediatico. Ninguno de los
otros tres galardonados con la medalla Fields en Madrid en 2006 es
conocido por el gran piiblico. Son personas respetadas por su tra-
bajo dentro de la comunidad matematica, pero pasan desapercibi-
dos fuera de ella. Justo lo que Perelman hubiera querido para si
mismo. Pero su negativa a aceptar el premio, y mas aiin, su negati-
va a aceptar el premio del milenio, le convirtieron en un mito. Al-
gunos ven en sus gestos un desafio al establishment, otros un ges-
to anticapitalista, otros la reivindicacién de una forma roméantica
de hacer matematicas, muchos lo ven simplemente como la accion
de un loco extravagante. Lo tinico cierto es que el mundo de las
matematicas perdié con todo ello a uno de sus mayores genios.
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POINCARE FIGURA PUBLICA

Desde 1881 hasta el final de su vida, Poincaré vivi6 en Parfs. Apar-
te de su actividad cientifica y universitaria tuvo una activa vida
social y conocia y frecuentaba a lo mas granado de la sociedad
parisina. Por ejemplo, conoci6 a la divulgadora del psicoanalisis
en Francia, Marie Napoleén, hija de Roland Bonaparte y nieta de
Francois Blanc, el fundador del Casino de Montecarlo. Roland era
un cientifico que llegé a presidir la Sociedad de Geografia y la
Academia de Ciencias. De hecho, su palacio en el nimero 10 de
la Avenue d'Iéna fue la sede de la Sociedad de Geografia y es hoy
un gran hotel. Poincaré cend en esa casa varias veces, a la que
acudian intelectuales y artistas de la época. Las cartas de Marie
Napoleén a Poincaré dejan constancia de la admiracién que ella
sentia por el gran matematico francés.

Con tan solo treinta y dos afios, en enero de 1887, Poincaré
fue nombrado miembro de la Academia de Ciencias, en su seccién
de geometria. Como suele ser habitual en este tipo de instituciones,
el nimero de académicos es fijo y solo se puede optar a una plaza
cuando se ha producido una vacante, normalmente por deceso.
Los miembros de la Academia son elegidos entre los candidatos
propuestos por votacion de los miembros activos. El matemético
Edmond Laguerre, que habia sido uno de los profesores de Poin-
caré en la Politécnica, muri6 en agosto de 1886, dejando vacante
su puesto en la Academia. Para reemplazarle se postularon Poin-
caré, Mannheim, Appell, Goursart, Humbert y Picard. Mannheim
habia sido profesor de Poincaré en la Politécnica y era mucho
mayor que él —Poincaré habia tenido algunos problemas con él
por sus calificaciones en dibujo durante su época de estudiante—.
A la votacién decisiva llegaron Poincaré y Mannheim. Poincaré
sali6 elegido por 31 votos frente a los 25 de su rival. Una vez mas
Hermite, que era el decano de la seccién de geometria, habia sido
el mentor de Poincaré en esta eleccién. Tanto Appell como Picard,
los otros protegidos de Hermite, fueron elegidos para la Academia,
en la misma seccién, poco después. Picard lo fue en 1889 y Appell
en 1892. Lo que para muchos cientificos era un reconocimiento
por toda su carrera que se obtenia en la etapa ya madura de su vida
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LA ACADEMIE FRANCAISE

ISETITUT BE FRAND l.'*

La Academia Francesa fue fundada en
1635 por el cardenal Richelieu durante

el reinado de Luis Xl de Francia. El m m

cometido de la Academia es estable- b el

cer las reglas por las que se rige la Fablibe su 1855,
lengua francesa, asi como promover TOME PHEMIER,

su desarrollo. La Academia consta de
cuarenta miembros, que ocupan su
puesto de manera vitalicia. A la muer-
te de un académico se elige a su sus-
tituto por votacion de los demas aca-
démicos. Sus miembros son conocidos
como /os inmortales, aunque este so- -
brenombre se debe a que el lema de Trin =
la Academia es «A la inmortalidad» y
se refiere, l6gicamente, a la lengua
francesa, y no a los académicos. A la

1834,

Academia han pertenecido no solo Portada de la sexta edicién del diccionario
de la Academia Francesa, que fue publicada

grandes poetas, filésofos y escritores
franceses, sino también muchos cien-
tificos, como es el caso de Poincaré,

en 1835.

La Academia Francesa sirvié de modelo para la fundacidon de instituciones

similares en otros paises europeos.

intelectual, para Poincaré llegaba cuando todavia no habia culmi-
nado ni la mitad de su ingente produccién cientifica.

En 1896 Poincaré accedio a la catedra de Astronomia Mate-
matica y Mecénica Celeste. En 1906 fue elegido presidente de la
Academia de Ciencias y en 1908 miembro de la Académie Francai-
se, el equivalente de la Real Academia Espafiola de la Lengua. Para
entonces los escritos de Poincaré habian trascendido el ambito de
la fisica y las matematicas para adentrarse también en el terreno
de la filosofia. La Academia Francesa es una institucién més ex-
quisita, si cabe, que la Academia de Ciencias, ya que solo consta
de cuarenta miembros, cuyo cometido es establecer las reglas de
uso de la lengua francesa. La eleccién de Poincaré no fue un hecho
excepcional para la Academia, porque, como €]l mismo se encargé
de senalar en su discurso de aceptacion, la Academia solia contar
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entre sus miembros con cientificos de primera linea para que apor-
taran su conocimiento en la labor de admitir nuevos vocablos den-
tro de la lengua. Con su nombramiento Poincaré se uni6 a la lista
de cientificos que habian formado parte de la Academia, como
D’Alembert, Bertrand o Pasteur. Si es mas llamativo que Poincaré
viniera a sustituir a un poeta, Sully Prudhomme, a quien dedic6 su
discurso de entrada en la Academia.
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CAPITULO 5

Poincaré y la teoria
de la relatividad

Henri Poincaré puede ser considerado, junto
con Hendrik Lorentz y Albert Einstein, uno de
los fundadores de la teoria especial de la relatividad.
Su interés por los problemas asociados a la teoria del
electromagnetismo, en particular a la teoria de Lorentz,
le llevaron a reformular los principios de la mecanica.
Por otra parte, sus reflexiones sobre la inexistencia
del espacio absoluto y sus escritos sobre la
naturaleza del tiempo dejaron una notable
huella en el joven Einstein.






Henri Poincaré era un hombre de costumbres regulares. Desayu-
naba a las ocho, almorzaba a las doce y cenaba a las siete. Como
él mismo contaba en La ciencia y el método, no solia tomar café
después de cenar. Se acostaba a las diez y se levantaba a las siete
de la mafana. Le gustaba pasear, pero no hacia otro tipo de ejer-
cicio. Ni era fumador ni le gustaba que la gente fumara. Media
1,66 m y, hacia 1909, pesaba unos 70 kg. Conocemos estos detalles
porque el doctor Etienne Toulouse, director del laboratorio de
psicologia experimental de la Ecole des Hautes Etudes de Paris,
realizé un estudio psicolégico del personaje. Por él también sabe-
mos que, aunque fue religioso en su infancia y adolescencia, dejé
de ser creyente cuando tenia dieciocho afios. Simpatizaba con las
ideas politicas de su primo Raymond Poincaré, un conservador
moderado, pero mantenia posiciones progresistas en temas como
la educacién o la participaciéon de la mujer en la vida politica.
Desconfiaba de la Iglesia catélica por sus posiciones anti-intelec-
tuales y su continuo interés en influir en la vida social y politica
del pais. Quizd como consecuencia de la guerra franco-prusiana
siempre mantuvo una posicioén patriética. Ello no le impidié man-
tener un intercambio franco y abierto con los cientificos alemanes
de su época, pero, si podia, preferia citar o resaltar los méritos de
sus colegas franceses. Poincaré era un claro exponente de lo que
podriamos llamar «la moral laica» de la Repiiblica Francesa. Para
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él, la honradez, la sinceridad, la lealtad, el servicio a la sociedad y
la biisqueda del bien comiin eran valores supremos y universales.

DEBER DE FUNCIONARIO: EL CASO DREYFUS

Como servidor del Estado que era, Henri Poincaré se vio tangen-
cialmente envuelto en el caso Dreyfus, un asunto que dividi6 pro-
fundamente a la sociedad francesa del cambio de siglo. Alfred
Dreyfus (1859-1935) era un capitan del ejército francés de origen
judio que, en 1893, habia sido destinado al Estado Mayor. Su nom-
bramiento no estuvo exento de polémica, ya que el antisemitismo
estaba presente entre la jerarquia militar francesa de la época,
como lo estaba, en general, en toda Europa. Su candidatura fue
rechazada, en primera instancia, por el hecho de ser judio. Dreyfus
presenté una protesta formal y, finalmente, fue admitido para el
puesto.

La guerra franco-prusiana habia dejado huella en el estamen-
to militar francés y a finales de siglo se organizé un servicio de
espionaje y contraespionaje cuyo objetivo principal era obtener
informacién del ejército alemén y facilitarle informacién falsa. En
este contexto los espias franceses encontraron en 1894 un docu-
mento, con informacion clasificada del ejército francés, entre las
pertenencias de un oficial alemén adscrito a la embajada alemana
en Paris. Como la informacién tenfa que venir del Estado Mayor,
las sospechas recayeron en el personal alli destinado. Sin haberse
realizado una verdadera investigacién, Dreyfus, que ademas era

~ alsaciano, la regién que estaba en el centro del conflicto con Ale-

mania, fue acusado de aquel delito sin mas pruebas que su origen
y su caricter, méas bien reservado. El asunto tomé un cariz esper-
péntico cuando se compararon la caligrafia de la nota intercepta-
da y la de Dreyfus. Aunque habia diferencias sustanciales, el co-
mandante Du Paty de Clam dio por sentado que el autor de la nota
era Dreyfus y asi lo comunic6 al general Mercier. Este, a su vez,
encarg6 al famoso policia Alphonse Bertillon que estudiara en de-
talle ambas caligrafias. Bertillon, ante las claras diferencias entre
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la escritura de Dreyfus y la nota interceptada, invent6 la teoria
de que Dreyfus habia cambiado su escritura conscientemente para
que no pudiera acusdrsele.

Dreyfus fue juzgado y condenado por alta traicién. Se le des-
pojo de todos sus grados militares y fue deportado, en principio
de por vida, a una prisién militar en la Guayana Francesa. Inme-
diatamente su hermano Mathieu y su familia iniciaron una campa-
na para probar su inocencia. En 1896 el teniente coronel Picquart
descubrid al verdadero culpable, Ferdinand Walsin Esterhazy, que,
acuciado por las deudas que su aristocratico ritmo de vida le ge-
neraban, habia estado vendiendo informacién a los alemanes. Es-
terhazy, de origen noble, era un hombre resentido con Franciay
los judios. En lugar de ser recompensado por su investigacién,
Picquart fue destinado a Tiinez por el Estado Mayor, en un intento
de mantenerle apartado del caso. Pero la persistencia de la fami-
lia de Dreyfus y del propio Picquart consiguié el favor de parte del
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EMILE ZOLA: «J’ACCUSE»

L

La absolucién de Esterhazy, el verdade-
| ro culpable de los delitos de los que se
I acusaba a Dreyfus, llevé al escritor Emi-
le Zola (1840-1902) a publicar en el diario
L’Aurore en enero de 1898 una carta
abierta al presidente de la Republica. En
ella denunciaba las irregularidades del
caso y acusaba a los militares involucra-
dos de urdir pruebas falsas y de conde-
4 nar a Dreyfus a sabiendas de su inocen-
cia. Zola fue juzgado y condenado por
ello, y se exilid a Londres. Pero su carta
abierta ahondd en la division de la socie-
dad francesa. La derecha catdlica, el cle-
{ ro y los estamentos militares se alinearon
contra Dreyfus y llegaron a producirse
manifestaciones multitudinarias en Paris
contra él. La misma absolucion de Esterhazy fue recibida con alborozo por una
masa de seguidores antisemitas. En el otro bando, estaban los radicales y la
izquierda en general.

LAt e
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senado y de una parte de la, cada vez mas polarizada, opinion
publica. En enero de 1898 Esterhazy fue arrestado, juzgado por un
tribunal militar y, sorprendentemente, absuelto.

«Yo acuso a los tres expertos grafélogos de haber redactado
informes falsos y fraudulentos, a menos que un tribunal médico
les declare afectados por una enfermedad de la vista y del

Jjuicio.»

— EMILE ZOLA EN LA CARTA ABIERTA AL PRESIDENTE DE LA REPUBLICA PUBLICADA EN EL DIARIO

L’Aurore.
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Ante la acumulacién de evidencias favorables a Dreyfus el
caso se reabri6 y se celebré un segundo juicio en Rennes en sep-
tiembre de 1899. El matematico Paul Painlevé (1863-1933) se en-
contraba entre los convencidos de la inocencia de Dreyfus, y se
prestd a declarar en el nuevo juicio. Painlevé, por otra parte, era
amigo del gran matematico Jacques Hadamard (1865-1963), quien
también se implicé en el caso. Hadamard, que también era de ori-
gen judio, tenia vinculos familiares con Dreyfus, ya que su padre
y el padre de la esposa del militar eran primos.

Una de las lineas argumentales de la defensa de Dreyfus era
la inconsistencia del informe del jefe de policia Bertillon, que habia
afirmado que el militar era el autor de la nota interceptada compa-
rando el texto de este escrito con la caligrafia de Dreyfus. Aunque
Bertillon era un pionero en la incorporacién de técnicas cientificas
a la investigacion policial, no era un cientifico profesional y habia
incluido en su argumentacion calculos de probabilidad que eran
claramente erréneos. Painlevé pidié a Poincaré, que como ya se
ha mencionado habia sido catedratico de Fisica Matematica y Pro-
babilidades en la Sorbona, un informe en que desmontara los ar-
gumentos de Bertillon. De esta forma, Painlevé, cuya amistad con
Hadamard era conocida por el tribunal, evitaba presentar sus pro-
pias conclusiones, y aprovechaba el prestigio incontestable de
Poincaré para defender su causa. En el juicio de Rennes, Painlevé
ley6é una carta escrita por Poincaré en la que este explicaba los
detalles del célculo de probabilidades aplicado a la comparacién
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de los documentos en cuestion. Al inicio de la misma el matema-
tico dejaba clara su neutralidad en el asunto que se juzgaba:

Mi querido amigo, me pide usted mi opini6n sobre el sistema Bertillon.
Sobre el fondo del asunto, claro est4, no me pronuncio. No tengo luces
¥ no puedo sino remitirme a aquellos que tienen més que yo. Tampoco
soy grafélogo, y no he tenido tiempo de verificar las medidas realiza-
das. Ahora bien, si usted quiere saber solamente si, en los razonamien-
tos en los que el sefior Bertillon aplica el célculo de probabilidades,
esta aplicacion es correcta, puedo darle mi opinién.

A continuacién Poincaré desmontaba el célculo realizado por
Bertillon, explicando que este habia aplicado incorrectamente las
leyes de la probabilidad. El matematico concluia su carta diciendo:

No sé si el acusado sera condenado, pero si lo es, lo serd en base a
otras pruebas. Es imposible que una argumentacion como esta [la
presentada por los acusadores] haga impresion alguna sobre hom-
bres sin un partido tomado de antemano y que hayan recibido una
s6lida educacion cientifica.

Si los miembros del jurado habian recibido una sélida educa-
ci6n cientifica lo ignoramos, pero parece claro que tenian el vere-
dicto tomado de antemano, porque Dreyfus fue, de nuevo, decla-
rado culpable.

Dreyfus apel6 al presidente de la Republica, por entonces
Emile Francois Loubet, que le otorgé el indulto ese mismo afio.
La familia y los partidarios de Dreyfus siguieron luchando por
lograr su total rehabilitacién, y en 1904 el caso fue estudiado de
nuevo por el Tribunal de Casacién. Entre otras actuaciones, este
tribunal solicité a Poincaré, Appell (que entonces era decano de
la Facultad de Ciencias) y Darboux (secretario permanente de la
Academia de Ciencias) un informe pericial sobre las pruebas de
grafologia que se habian usado en los juicios anteriores.

El porqué de la eleccion de Poincaré tiene varias explicaciones.
Si en 1899 Poincaré ya tenia un alto estatus en la ciencia francesa,
su posicién en 1906 era indiscutible. Durante diez afios habia sido
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catedratico de Probabilidad y Fisica Matematica, siendo autor de
un tratado sobre probabilidades que era utilizado en toda Francia.
Ademés era conocido por el piiblico en general. El informe que los
tres matematicos remitieron al tribunal tenia unas cien paginas y
consistia en un anilisis detallado de los informes grafolégicos pre-
vios. Todo parece indicar que fue escrito, en su mayor parte, por
Poincaré, ya que en este documento se mantienen las tesis funda-
mentales planteadas en la carta a Painlevé.

Una buena parte del escrito parece més bien un tratado sobre
la teoria de probabilidades, ya que en él se explican en detalle los
conceptos de esta rama de las matematicas relevantes para el caso.
Aungue el informe entraba de lleno en los detalles técnicos de los
célculos presentados por la acusacién, también hacia algunas con-
sideraciones de contenido moral que dan una idea de los valores
humanos que defendian sus autores. Para poder hacer el cdlculo
era necesario saber la probabilidad a priori de que ocurrieran coin-
cidencias en la caligrafia (hay que recordar que Bertillon acusaba
a Dreyfus de tratar de falsear su propia letra), cosa realmente im-
posible de saber, por lo que los autores del informe manifestaban:

Ahora bien, esta probabilidad a priori, en cuestiones como esta que
nos ocupa, estd tinicamente formada de elementos morales que es-
capan absolutamente al cdlculo, y si, como acabamos de ver, no
podemos calcular nada sin conocerla, todo cdlculo resulta imposible.
Por eso, Auguste Comte dijo con toda razén que la aplicacién del
célculo de probabilidades a las ciencias morales era un escdndalo
para las matematicas. Querer sustituir los elementos morales por
cifras es tan peligroso como vano.

Esta afirmacién de Poincaré no deberia pasarnos desaperci-
bida ni siquiera hoy en dia. Y una vez dejado claro que no crefan
que tuviera sentido aplicar el cdlculo de probabilidades al caso,
los autores del informe se sumergian en él de manera detallada,
no por convencimiento, sino por obligacién, y desmontaban punto
por punto la teoria de Bertillon y los demés acusadores.

El 12 de julio de 1906 la condena de Dreyfus fue anulada y el
militar fue rehabilitado en su puesto en el ejército. Hasta qué pun-
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to tuvo influencia el informe de Poincaré es dificil de valorar. Lo
cierto es que, por aquel entonces, ya era el mateméatico de mayor
prestigio de Francia, formaba parte del establishment y no se ha-
bia pronunciado en ptblico ni a favor ni en contra de Dreyfus, por
lo que su opinién podia considerarse como verdaderamente im-
parcial y respetuosa con el Estado y el ejército franceses.

LA CATEDRA DE FiSICA

La incorporacién de Poincaré a la catedra de Fisica Matematica y
Probabilidades en 1886 coincidié con el inicio de su interés por los
problemas de fisica de la época. En 1890 se editd, en forma de
manual, el primer tomo de los apuntes de clase de las lecciones
de electricidad y 6ptica que Poincaré habia dado en el segundo
semestre del curso 1888-1889, dentro de su asignatura de fisica
matematica. Un segundo tomo, publicado en 1891, estaba dedica-
do a las teorias de Helmholtz y los experimentos de Hertz sobre
las ondas electromagnéticas.

En su curso, Poincaré explicaba a sus alumnos las diferentes
teorias del electromagnetismo existentes en la época, con especial
atencion a la de Maxwell. Este habia expuesto su teoria en su obra
Tratado de electricidad y magnetismo (1873). En ella unificaba
las leyes de la electricidad y del magnetismo bajo un tinico con-
junto de ecuaciones, conocido como «ecuaciones de Maxwell», y
predecia la existencia de ondas electromagnéticas, de las cuales
la luz seria un caso particular.

La teoria de Maxwell tenia aceptacién en Gran Bretafia, donde
era continuadora de la obra de William Thomson, lord Kelvin, y,
sobre todo, de Michael Faraday, pero no estaba tan aceptada en
Europa. En Alemania convivia con las secuelas de teorias alterna-
tivas como la de Weber, o formulaciones mas o menos equivalen-
tes, como la de Helmholtz. En Francia no habia tenido mucha
aceptacion, ya que los fisicos estaban netamente divididos entre
los experimentales y los tedricos que, como Poincaré, eran mate-
maticos o tenfan una fuerte formacién matematica. El estilo de
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Maxwell, que describia los fenémenos a la vez que exponia las
ideas fisicas y las matemaéticas necesarias, no habia sido suficien-
temente apreciado y era tachado de poco riguroso. En este sentido,
Poincaré comenzaba su curso con estas palabras:

La primera vez que un lector francés abre el libro de Maxwell, un
sentimiento de malestar, y a veces incluso de desconfianza, se mez-
cla de entrada con su admiracién. No es hasta después de una aten-
cion prolongada y al precio de muchos esfuerzos que este sentimien-
to se disipa. Algunos espiritus eminentes lo conservan todavia. ;Por
qué las ideas del sabio inglés tienen tanta dificultad en aclimatarse
entre nosotros? Es sin duda porque la educacién recibida por la
mayoria de los franceses ilustrados les dispone al gusto por la pre-
cision y la légica por encima de cualquier otra calidad.

Poincaré, con sus lecciones de electricidad y éptica, iba a ter-
minar de abrir paso en Francia a las ideas de Maxwell, desempe-
fiando un papel similar al que Boltzmann, también maxwelliano,
habia desempenado en el &mbito germano.

La teoria de Maxwell era lo que se conoce como una «teoria
de campos», expresion que habia sido introducida por Faraday
para designar a una zona del espacio en que se ponian de mani-
fiesto fuerzas eléctricas o magnéticas. Pero era también una ex-
plicacién mecédnica del electromagnetismo. Como ya se expuso
en el primer capitulo, para Maxwell los fenémenos eléctricos
eran la manifestacion de las expansiones y compresiones de un
fluido, el éter, que lo impregnaba todo. Los fenémenos magnéti-
cos eran la consecuencia del movimiento del éter, que formaba
torbellinos, de forma andloga a los que se observan en un fluido
turbulento. Asi como unas tensiones descompensadas pueden
generar movimiento, los campos eléctricos variables pueden ge-
nerar campos magnéticos. Si el movimiento puede generar ten-
siones mecanicas, el campo magnético variable puede, a su vez,
generar un campo eléctrico. La teoria unificaba los fenémenos
eléctricos y magnéticos en una descripcién conjunta. Pero tam-
bién predecia la existencia de ondas en el éter. Estas ondas serian
en cierta forma andlogas a las que se propagan por una cuerda
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tensa y Maxwell dedujo sus propiedades y su velocidad de sus
ecuaciones. Como la velocidad calculada era préxima a la de la
luz, Maxwell concluyé que la luz era una de estas ondas, una onda
electromagnética.

Entre 1886 y 1888 Hertz realiz6 una serie de experimentos que
demostraron la existencia de ondas electromagnéticas de longitud
mucho més grande que la de la luz. El descubrimiento de Hertz dio
un espaldarazo definitivo a la teoria de Maxwell y fue la clave para
que terminara imponiéndose sobre las teorias rivales. Pero la teo-
ria no estaba exenta de dificultades, algunas de ellas reconocidas
por el propio Maxwell en su tratado.

MAXWELL EN DIFICULTADES

Las principales dificultades de la teoria de Maxwell tenian que ver
con la naturaleza de la carga eléctrica. Para Maxwell, como antes
para Faraday, las cargas eléctricas no tenian existencia indepen-
diente, sino que eran singularidades o discontinuidades en las ten-
siones del éter. Esto contrastaba cada vez més con la evidencia
experimental, porque cada vez estaba mas claro que los rayos ca-
tédicos, uno de los temas més en boga a finales del siglo xix entre
los fisicos experimentales, estaban compuestos de diminutas par-
ticulas cargadas (nuestro electrén de hoy en dia). La electrolisis
también parecia indicar la existencia de particulas cargadas, en
este caso los iones.

Varios cientificos tanto en Inglaterra como en Alemania con-
tribuyeron a desarrollar la teoria de Maxwell, depurando sus des-
cripciones matematicas, simplificando la notacién, reduciendo el
nimero total de ecuaciones necesarias y distinguiendo entre ellas
dos jerarquias: ecuaciones fundamentales y ecuaciones que depen-
dian del material tratado. Pero, aparte de los problemas con la
existencia de cargas individuales, también surgieron otras dificul-
tades. En concreto, empezo a ser necesaria una descripcion cohe-
rente de los fenémenos electromagnéticos cuando habia materia-
les en movimiento, y esto era especialmente importante en la

POINCARE Y LA TEORIA DE LA RELATIVIDAD




descripcién de los fenémenos luminosos. El problema fundamen-
tal era saber si la velocidad de la luz dependia del movimiento del
cuerpo emisor, del receptor, del medio en que se encontraba o de
todo a la vez. En la teorfa de Maxwell parecia claro que la veloci-
dad de la luz calculada (los conocidos casi 300000 kn/s) se referia
al sistema de referencia en que el éter se encuentra en reposo. Ello
daba lugar a preguntas como estas: ;se movia la Tierra respecto
al éter?, si un medio estaba en movimiento, por ejemplo el agua
circulando por un canal, ;arrastraba al éter con é1?

El fenémeno conocido como aberracién estelar parecia indi-
car que, efectivamente, la Tierra se movia respecto al éter y las
medidas de Hippolyte Fizeau (1819-1896) sobre la velocidad de la

¥ i
F

LA ABERRACION ESTELAR

la posicién aparente de las estrellas.
B Bradley detectd que las estrellas situadas
cerca del polo norte describian a lo largo
del ano una pequernia elipse, que tenia la
misma amplitud para todas ellas. El as-
trénomo dedujo que este movimiento
L aparente era debido a que la posicién de
la estrella cambiaba segun la velocidad
de la Tierra. El efecto se produce porque
la trayectoria de la luz se ve afectada por
el movimiento terrestre, y la luz parece
venir, parcialmente, del lugar hacia donde
nos dirigimos. El fenémeno es andlogo a
lo que ocurre con las gotas de lluvia
cuando vamos andando rapido o corrien-
do: aunque las gotas caigan verticalmen-
te, vistas por nosotros parecen caer incli-
nadas y debemos inclinar el paraguas

El astrénomo inglés James Bradley Posicién de
(1693-1762) descubrié que la traslacion la estrella Posicion
de la Tierra alrededor del Sol afectaba a * aparente

para no mojarnos. La aberracién estelar, nombre que recibié el efecto, parecia
indicar que la Tierra se movia respecto del éter. La teoria de la relatividad
explica claramente el fenémeno. En particular, la regla relativista de adicion
de velocidades predice exactamente la magnitud del efecto observado.

e e e R R TN
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luz en el agua en movimiento parecian indicar que esta arrastraba
parcialmente al éter. Pero, por otra parte, Albert Abraham Michel-
son (1852-1931) y Edward Morley (1838-1923), en un famoso ex-
perimento, demostraron que la luz se movia a la misma velocidad
independientemente de si el rayo se movia en la misma direccién
que la Tierra o en una direccién perpendicular. En definitiva, era
como si el éter estuviera pegado a la Tierra, o, simplemente, como
si el éter no existiera. En fin, cada uno de estos fenémenos apor-
taba evidencias contradictorias entre si.

LORENTZ AL RESCATE

El holandés Hendrik Lorentz abordé los problemas de la teorfa de
Maxwell y resolvié algunos de ellos. Su teoria era una sintesis
de las ideas de Maxwell y de algunas otras al estilo de Weber. Para
Lorentz existian particulas con masa y carga eléctrica, los elec-
trones y los iones. Estas particulas creaban a su alrededor un
campo eléctrico. Si estaban en movimiento, creaban también
un campo magnético. Estos campos cumplian las ecuaciones de
Maxwell y actuaban, a su vez, sobre cualquier otra particula car-
gada que estuviera en su seno. La fuerza que estos campos ejercian
sobre cualquier otra particula cargada tenia la siguiente expresion:

F=Q(E+;X§)s

expresion que hoy dia se conoce como «fuerza de Lorentz». En
esta férmula g es la carga de la particula; v, su velocidad,; E, el
campo eléctrico; B, el campo magnético, y x denota el producto
vectorial.

Estos conceptos son familiares hoy en dia en las teorias fisi-
cas; la divisién del problema entre particulas, por un lado, y cam-
pos, por otro, es comiin no solo al electromagnetismo, sino tam-
bién a las otras fuerzas fundamentales de la naturaleza. Einstein,
muchos afios més tarde, en 1953 y en elogio de Lorentz, decia lo
siguiente:
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Los fisicos de nuestra época no tienen, en general, plena conciencia
del papel decisivo que jugé Lorentz en la estructuracién de las ideas
fundamentales de la fisica teérica. La razén de este extrafio hecho
es que las ideas basicas de Lorentz han llegado a ser tan familiares
que resulta dificil advertir lo audaces que fueron y hasta qué punto
han simplificado los fundamentos de la fisica.

También Lorentz en 1892 encontré una transformaciéon de
coordenadas que dejaba invariantes la ecuacién de las ondas elec-
tromagnéticas. La propiedad mas importante de estas transforma-
ciones era que la velocidad de la luz permanecia inalterada al apli-
carlas. Esto es, si para pasar de un observador a otro en
movimiento respecto del primero aplicamos las transformaciones
de coordenadas descubiertas por Lorentz, ambos observadores
asignaran el mismo valor a la velocidad de la luz. Poincaré llamé
mas tarde a este cambio de coordenadas «transformaciones de
Lorentz», nombre con el que se conocen hoy en dia. Una de las
caracteristicas méas llamativas de las transformaciones de Lorentz
es que asignan un tiempo diferente a cada observador, tiempo que
Lorentz llamaba «tiempo local», porque su valor dependia del pun-
to de observacion.

Poincaré volvié a dar su curso sobre electricidad y 6ptica en
1899 y los apuntes de este curso fueron publicados en 1901 bajo
el titulo Electricidad y dptica, segunda edicion. Esta edicién con-
tenia lo esencial de la anterior y afiadia una descripcion detallada
de las teorias de la electrodindmica de cuerpos en movimiento de
Hertz, Larmor y Lorentz. Estos tres cientificos basaban sus teorias
en las ecuaciones de Maxwell, aunque las adaptaban de manera
diferente al caso de cuerpos en movimiento, tratando de explicar
los hechos experimentales conocidos.

De todas ellas Poincaré contemplaba la teoria de Lorentz
como la més plausible. En ella se explicaban los experimentos de
Fizeau y la aberracion estelar. En la edicién de Electricidad y
dptica de 1901 Poincaré, a la hora de discutir el problema de la
aberracion estelar, utilizaba el concepto de tiempo local que Lo-
rentz habia introducido en 1892. Este tiempo dependia de las coor-
denadas, por lo que era diferente para diferentes puntos del espa-
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cio. Pero la teoria tenfa dos graves problemas a los ojos de
Poincaré: no respetaba el principio de accién y reaccién y tampo-
co estaba de acuerdo con el principio de relatividad. Estos dos
puntos fueron analizados en detalle en un articulo escrito por
Poincaré en 1900, con motivo del vigésimo quinto aniversario del
doctorado de Lorentz.

El principio de accién y reaccién es la tercera ley de Newton:
si un cuerpo ejerce una fuerza sobre otro, este dltimo ejerce una
fuerza igual y de signo contrario sobre el primero. El incumplimien-
to de este principio abria la puerta a situaciones paradéjicas, como
la posibilidad de construir un mévil perpetuo. En su articulo, Poin-
caré demostraba que la expresion usada por Lorentz para la fuerza
sobre una particula en movimiento no respetaba, en general, este
principio. Y concluia: «<En la teoria de Lorentz el principio de ac-
cién y reaccién no debe aplicarse a la materia sola». Poincaré sos-
tenia que habfa que incluir al éter en este balance de fuerzas. A la
postre, esta seria la clave para la solucion del problema.

El segundo punto conflictivo era el principio de relatividad.
Segun este, las leyes de la mecénica deben ser las mismas para
todos los observadores independientemente de si se mueven uni-
formemente unos respecto de otros, lo que se conoce como «ob-
servadores inerciales». Galileo, a quien debemos este principio, lo
expuso en los siguientes términos: si estamos en la bodega de un
barco refugiado en un puerto seremos incapaces de decidir, por
experimentos fisicos, si el barco estd amarrado al muelle o si se
mueve por las aguas quietas con velocidad uniforme. Es decir, no
hay un sistema de referencia privilegiado. Poincaré estaba conven-
cido de la validez de este principio para todos los fenémenos fisi-
cos, ya que, como veremos en el préximo capitulo, desdefiaba el
concepto de espacio absoluto.

La fuerza de Lorentz F = g(E +v x B) no parecia respetar este
principio. La dificultad estaba en que Lorentz, al mezclar en ella
los conceptos de particula y campo, mezclaba dos fisicas diferen-
tes. El lado de la izquierda de la ecuacion sigue las leyes de la
mecéanica de Newton. En ellas se cumple el principio de relativi-
dad, y no hay un sistema de referencia —un observador— privile-
giado: la fuerza es la misma para todos los observadores. El lado

POINCARE Y LA TEORIA DE LA RELATIVIDAD



EL EXPERIMENTO DE FIZEAU

Fizeau disefid y realizd en 1851 un expe-
rimento para medir la velocidad de la luz
por un tubo por el que circulaba agua a
gran velocidad. Fizeau encontro que la
velocidad de la luz en el agua en movi-
miento era:

o= £+u(1-— iz) ;
n n

donde n es el indice de refraccion del
agua y u su velocidad. Este resultado tra-
jo de cabeza a los mejores fisicos de la
segunda mitad del siglo xix. Por un lado,
si el movimiento del agua no afectaba al
éter para nada, el resultado que cabria
esperar era c/n, la velocidad de la luz en
el agua en reposo. Por otro, si el agua Hippolyte Fizeau.
arrastraba al éter en su movimiento el

resultado debia ser la suma de las dos velocidades ¢/n+u. La féormula de Fi-
zeau no respondia a ninguna de las opciones, sino que daba un resultado in-
termedio. Los fisicos empezaron a especular que el agua arrastraba «parcial-
mente» al éter. Este resultado no fue explicado correctamente hasta que
Lorentz introdujo algunos conceptos relativistas. La regla de adicién relativis-

ta de las velocidades da perfecta cuenta de él.

de la derecha contiene los campos eléctricos y magnéticos, que
son propiedades mecdanicas del éter y, por tanto, parece que esos
campos deben cambiar de expresion al cambiar de referencia, por-
que no seran lo mismo si estamos en reposo respecto del éter o
nos movemos respecto de él.

Lorentz y Poincaré se cartearon sobre este asunto y no cabe
duda de que ese intercambio influyé notablemente en la forma en
que ambos enfrentaron estas dificultades. En particular, Lorentz
fue despojando al éter de entidad: el éter no sentia tensiones ni
podia ponerse en movimiento por ninguna reaccién de la materia
ponderable. El éter de Lorentz terminaria teniendo, en su ultima
version, las mismas propiedades que el vacio. Poincaré se fue con-
venciendo poco a poco de que lo que habia que modificar no era
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la ecuacion de la fuerza de Lorentz, sino el modo de tratar al lado
izquierdo de la ecuacién o, lo que es lo mismo, las leyes de la me-
cdnica de Newton.

En el umbral del siglo xx, cuando Poincaré escribi6 la segunda
edicion de sus apuntes de clase para el curso de fisica tedrica,
Lorentz habia conseguido dar una explicacién unificada a un am-
plio conjunto de fenémenos. Por todo ello obtuvo en 1902, junto
a Pieter Zeeman (1865-1943), el premio Nobel de Fisica. Poincaré
no fue ajeno a este hecho, ya que él y Mittag-Leffler promovieron
la candidatura del insigne fisico holandés.

EL NACIMIENTO DE LA TEORIA DE LA RELATIVIDAD

Antes de 1905, viviendo en Berna, Einstein y dos colegas suyos
solian leer libros de filosofia y discutian a menudo sobre lo leido.
Uno de los libros que leyeron y discutieron era el ensayo de Poin-
caré Ciencia e hipdtesis. Einstein contaba asi el impacto que les
causo la lectura: «Este libro nos impresion6 profundamente y nos
mantuvo sin aliento durante semanas». En el préximo capitulo
volveremos sobre este libro, en el que Poincaré repasaba el estado
de las matematicas y la fisica de principios del siglo xx. Por ahora
baste decir que, entre otras cosas, Poincaré cuestionaba la exis-
tencia de un espacio y un tiempo absolutos: «No hay espacio ab-
soluto y no concebimos sino movimientos relativos». Y también:
«No hay tiempo absoluto; decir que dos duraciones son iguales es
una afirmacién que por si misma no tiene ningin sentido y que no
puede adquirirse sino convencionalmente». Alin mas importante,
y algo que sin duda dio mucho que pensar al joven Einstein: «No
solo no tenemos intuicién directa de la igualdad de dos duraciones,
sino que no tenemos siquiera la de la simultaneidad de dos sucesos
que se producen en lugares diferentes».

Los afios 1904 a 1906 pueden ser considerados como los fun-
dacionales de la teorfa especial de la relatividad. En 1904 Lorentz
publicé un articulo en Actas de la Academia de Ciencias de Ams-
terdam titulado «Fendmenos electromagnéticos en un sistema que
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se mueve con una velocidad menor que la de la luz». En 1905 Eins-
tein publicé en la revista alemana Annalen der Physik su articulo
«Sobre la electrodindmica de cuerpos en movimiento». Y en 1906
Poincaré publicé en la revista del Circolo Matematico di Palermo
un articulo titulado «Sobre la dindmica del electrén». Estos tres
articulos suponen una ruptura con la mecénica newtoniana e ini-
cian una de las revoluciones conceptuales mas profundas de la
historia de la fisica.

«Es dificil separar el problema cualitativo de la simultaneidad
del problema cuantitativo de la medida del tiempo. Porque tanto
si nos servimos de un cronémetro, como si tenemos en cuenta
una velocidad de transmisién, como la de la luz, no sabriamos
medir tal velocidad sin medir el tiempo.»

— HENRI POINCARE EN EL VALOR DE LA CIENCIA.

En su articulo de 1904 Lorentz demostré que sus transforma-
ciones de las coordenadas espaciales y del tiempo no alteraban la
forma de las ecuaciones de Maxwell. Es decir, si utilizamos estas
transformaciones para definir las coordenadas espaciales y tem-
porales en un nuevo sistema de referencia que se mueve a una
velocidad constante respecto del inicial, las ecuaciones de los
campos eléctrico y magnético, en este nuevo sistema, tienen la
misma forma que en el sistema inicial. Lorentz también encontré
cémo se transforman los campos, las cargas y las corrientes al
pasar de un sistema a otro. Estas transformaciones se conocen
hoy como «transformaciones relativistas de los campos y de sus
fuentes». Lorentz explicaba con su teoria el resultado negativo de
varios experimentos que intentaban detectar el éter, como el de
Michelson y Morley. Por tltimo, dedujo la ecuacién de movimien-
to de un electrén, que diferia de la que se obtiene aplicando la
mecanica de Newton, y hacia predicciones sobre la deflexion que
sufre un electrén en presencia de campos eléctricos y magnéticos.
Uno de los efectos relativistas mas notables, la contraccién de los
objetos en la direccién de movimiento, era introducido por Lorentz
como hipétesis, demostrando que era consistente con el resto de
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LA FORMULA E=mc?

En un articulo publicado en 1900 con la ocasion del aniversario del doctora-
do de Lorentz, Poincaré analizd si el principio de accidn y reaccién y el prin-
cipio de relatividad se cumplian en la teoria del fisico holandés. En la prime-
ra parte del articulo Poincaré demostré gue el principio de accién vy reaccidn
debia aplicarse a la materia y al éter (esto es, a la radiacién emitida) si se
queria mantener como principio. Para analizar el principio de relatividad Poin-
caré propuso una situacién idealizada: un sistema emite luz durante un inter-
valo de tiempo dado en una direccién. Como consecuencia de lo establecido
para el principio de accion y reaccion era necesario que el emisor sufriera un
retroceso. Al analizar este retroceso desde el sistema de referencia inicial v
desde el sistema de referencia en el que la particula emisora esta en reposo
después de la emision, Poincaré encontré una discordancia en la cantidad de
movimiento que vale, en notacion actual,

p=LEy
ek

donde E es la energia emitida en forma de luz; ¢, la velocidad de la luz, y v, la
velocidad de retroceso. Recordemos que la expresion clasica para la cantidad
de movimiento de una particula es p=mv. Poincaré concluia su articulo pre-
guntandose si era necesario modificar profundamente las ideas de la electro-
dindmica. Einstein, por su parte, analizaba un proceso similar en un breve
articulo titulado «éDepende la inercia de un cuerpo de su contenido en ener-
gia?», que fue publicado en 1905, justo después de su articulo fundacional
sobre la teoria de la relatividad. Einstein abord¢ el siguiente caso: un sistema
emite una cierta cantidad de luz, pero ahora lo hace en los dos sentidos, de
forma que no hay retroceso. Al analizar el proceso desde un sistema en que
la particula esta en reposo y otro en que la particula esta en movimiento,
Einstein encontré una discrepancia entre la energia cinética inicial y final de
la particula dada por

1

Comparando con la expresion clasica de la energia cinética 5"“"2. Einstein
concluia gue «la masa de un cuerpo es una medida de su contenido en ener-
gia; si la energia cambia en E, la masa cambia en el mismo sentido en E/c2».
Ambos fisicos, usando argumentos parecidos, llegaron a la misma expresion,
pero la diferencia de interpretacion llevé a Einstein a hacer una prediccion
que se corroboré experimentalmente casi treinta afios mas tarde. Su férmula
es quiza la mas famosa de toda la fisica.

POINCARE Y LA TEORIA DE LA RELATIVIDAD




la teoria. Por otro lado, al referirse al tiempo definido en el nuevo
sistema de referencia hablaba siempre de «tiempo local».

El articulo de Einstein de 1905 es el méas claro y facil de leer
de los tres. Einstein introduyjo en él los dos postulados de la teoria
especial de la relatividad: el postulado de relatividad: todos los
fen6menos fisicos son los mismos para dos observadores en mo-
vimiento relativo uniforme; y el postulado de constancia de la ve-
locidad de la luz: 1a luz se propaga siempre en el espacio vacio con
una velocidad definida que es independiente del estado de movi-
miento del cuerpo emisor.

«La introduccién de un éter luminico se mostrara superflua,
puesto que la idea que se va a desarrollar aqui no requerira de un
espacio en reposo absoluto, dotado de propiedades especiales.»

— ALBERT EINSTEIN EN «SOBRE LA ELECTRODINAMICA DE CUERPOS EN MOVIMIENTO» (1905).

Estos dos postulados son contradictorios solo en apariencia.
Einstein dedujo de ellos las transformaciones de Lorentz, y esta
es quizi su aportacién mas original. En su articulo, Einstein enun-
ciaba diversas consecuencias de los dos postulados y de las trans-
formaciones de Lorentz:

1. La simultaneidad de dos sucesos es relativa. Cosas que suceden
simultineamente para un observador no lo son para otro en mo-
vimiento respecto del primero.

2. La contraccién de los objetos en la direccién de movimiento. La
magnitud de esta contraccion es la misma que la deducida por
Lorentz y hoy en dia es conocida como «contraccién de Lorentz-
Fitzgerald».

3. La dilatacién del tiempo. Los relojes del segundo sistema de refe-
rencia se retrasan respecto del sistema inicial.

En la interpretacion de estos efectos es donde Einstein diferia
de Lorentz y Poincaré. Para Einstein el tiempo medido para el
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observador en movimiento es «el tiempo» sin calificativos; es el
tiempo que medira un reloj bien construido. No es un tiempo apa-
rente, ni local, ni de ningtin otro tipo. En su articulo, Einstein decia
explicitamente que un reloj se retrasaria respecto de otro al mo-
verse. En 1905 era imposible comprobar esta afirmacién, porque
el efecto es sumamente pequefio, pero a lo largo del siglo xx ello
ha sido comprobado en numerosas ocasiones.

Einstein también dedujo en su articulo la regla de adicién de
velocidades relativistas. Otros de sus resultados fueron la invarian-
cia de las ecuaciones de Maxwell (en una demostracién idéntica a
la de Lorentz), la transformacion relativista de los campos (igual
ala obtenida por Lorentz), la transformacién relativista de las den-
sidades de carga y corriente (aqui hay una leve diferencia con Lo-
rentz, que habia cometido un pequefio error), la férmula para la
aberracion estelar y el efecto Doppler, y las ecuaciones de movi-
miento del electrén (presentadas de manera un poco diferente, pero
equivalentes a las de Lorentz).

Poincaré escribi6 su articulo en el verano de 1905 y present6
entonces un resumen de sus resultados a la Academia de Ciencias
de Paris. El articulo completo aparecié publicado en 1906. El ma-
tematico francés resolvia en él las contradicciones de la teoria de
Lorentz: la teoria no viola el principio de relatividad si todas las
fuerzas se transforman de manera similar a las fuerzas electro-
magnéticas, es decir, de forma consistente con las transforma-
ciones de Lorentz. Poincaré no dedujo las transformaciones de
Lorentz de los dos postulados, pero si demostré que las transfor-
maciones no contradicen el principio de relatividad e implican la
constancia de la velocidad de la luz para todos los observadores.
De forma similar a como hizo Einstein, Poincaré dedujo también
la regla de adicion de las velocidades. En cuanto al campo elec-
tromagnético, los resultados de Poincaré son idénticos a los de
Einstein: obtuvo las transformaciones relativistas de los campos
y de las fuentes, corrigiendo también el pequeiio error de Lorentz.
Poincaré dedujo igualmente las ecuaciones de movimiento, de
forma especialmente elegante, utilizando el llamado «principio de
minima accién». Estas ecuaciones eran las mismas que habia de-
ducido Lorentz.

POINCARE Y LA TEORIA DE LA RELATIVIDAD



LA SUMA RELATIVISTA DE VELOCIDADES

El segundo postulado de la relatividad dice que la velocidad de la luz es la
misma para todos los observadores. Este postulado parece absurdo desde el
punto de vista clasico. Imaginemos a un hombre subido en un tren en marcha
Y @ una mujer que observa todo desde el andén de una estacién por la que el
tren pasa sin parar (véase la figura). Llamemos v a la velocidad del tren y c a
la velocidad de la luz. Si el hombre enciende una linterna apuntando en la
direccion de movimiento del tren, la mujer deberia observar que la luz de
la linterna va a una velocidad c+v. Al menos este seria el resultado que cabria
esperar si aplicamos la fisica clasica. Pero ello seria contrario al segundo pos-
tulado. Si la nueva mecanica se debe ajustar al segundo postulado es nece-
sario cambiar la regla de adicion de las velocidades. Einstein y Poincaré ob-
tuvieron, de forma independiente, la regla relativista de adicién de velocidades.
En el ejemplo anterior, la nueva regla dice que si el hombre ve a un objeto
moverse a una velocidad u, la mujer ve al objeto moverse con una velocidad
dada por:

u+v

1
CZ

0=

Esta regla se reduce a la regla clasica (u+v) para velocidades pequefias com-
paradas con la de la luz. Si en la férmula sustituimos v por ¢ obtenemos 4 =c,
de acuerdo con el segundo postulado de la relatividad.

En su articulo de 1906 Poincaré hizo un primer intento de
adecuar la ley de Newton de la gravitacion universal a l1a nueva
mecéanica. Propuso una férmula para el potencial gravitatorio
que se transformaba correctamente bajo las transformaciones
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de Lorentz. Como sabemos, la teoria relativista de la gravedad
iba a ser algo mucho méas complejo, y fue la gran obra de Albert
Einstein.

A partir de 1901, Walter Kaufmann (1871-1947) realizé una
serie de experimentos sobre la deflexién de los electrones por
campos eléctricos y magnéticos. Este fisico aleman usaba los elec-
trones emitidos por la radiacion del radio, que eran mas energéti-
cos que los que se podian obtener por entonces con un tubo de
rayos catédicos. Sus velocidades eran, por tanto, mas préximas a
la de laluz y era de esperar que los efectos relativistas fueran mas
notables. En 1905 Kaufmann mejoré su equipo y obtuvo medidas
aparentemente precisas. El anilisis detallado de estas medidas in-
validaba las predicciones realizadas por las ecuaciones de Ein-
stein, Lorentz y Poincaré. Al conocer los resultados, Lorentz escri-
bi6é una carta a Poincaré, fechada en marzo de 1906, en la que no
ocultaba su desanimo y, casi, desesperacion:

Desgraciadamente mi hipétesis de la contraccién del electrén esta
en contradiccién con los resultados de los nuevos experimentos del
sefior Kaufmann y creo que estoy obligado a abandonarla; ya no
comprendo nada [«je suis donc au bout de mon latin», en el original
en francés]. Seria muy feliz si usted llegara a aclarar las dificultades
que surgen de nuevo.

La actitud de Lorentz contrastaba con la de Einstein, que con-
templaba la nueva teoria con tanta confianza, dada su coherencia
y su acuerdo con otros hechos conocidos, que dudaba de los re-
sultados de Kaufmann. El tiempo dio a Einstein la razon.

LA RELACION ENTRE TRES GENIOS

Poincaré y Lorentz se conocieron personalmente, tuvieron una
relacién cordial y se admiraban mutuamente, como demuestran
los articulos de ambos y el tono de las cartas que intercambiaron.
Einstein, por su parte, adoraba a Lorentz y ambos tuvieron una
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muy buena relacién hasta la muerte del fisico holandés en 1928;
se intercambiaron numerosas cartas y se encontraron en diversas
ocasiones. Hay que decir que debfa ser dificil llevarse mal con
Lorentz. Este unia a su inteligencia y sabiduria una gran presencia
de caracter: sabfa discutir sin alterarse ni irritar al oponente. Era
el perfecto organizador para un encuentro cientifico, ya que dirigia
con habilidad las discusiones. Sirva de ejemplo el detalle de que,
como dominaba varios idiomas, escribia a los franceses en francés,
alos ingleses en inglés y a los alemanes en aleméan. Todo el mundo
le admiraba y le respetaba.

Mas dificil de calibrar es la relacion entre Poincaré y Einstein.
Tal vez la temprana muerte de Poincaré impidié un mayor acer-
camiento entre ellos. Lo cierto es que en sus escritos posteriores
a 1906 ambos se ignoraron mutuamente. Ni Einstein cité nunca a
Poincaré en sus articulos sobre relatividad ni Poincaré cit6 a Eins-
tein. En contraste, ambos citaron a Lorentz repetidamente. El bi6-
grafo de Einstein Abraham Pais cuenta que Einstein no leyé el
articulo de Poincaré de 1906 hasta muchos afios después de su
publicacién, cuando el fisico aleman ya vivia en Estados Unidos y
estaba casi jubilado. Pero, como hemos visto, Einstein si habia
leido a Poincaré antes de 1905 y conocia sus ideas sobre la simul-
taneidad y la inexistencia del espacio absoluto. Einstein y Poinca-
ré se encontraron una sola vez, con motivo del primer Congreso
Solvay, celebrado poco antes de la muerte del matematico francés.

Lo tnico que sabemos de c6mo Poincaré valoraba a Einstein
es lo que estd recogido en una carta dirigida al fisico francés Pierre
Weiss (18656-1940), director del Instituto de Fisica de Zirich, en
noviembre de 1911, relativa a la posible contratacion de Einstein
como profesor en la institucién suiza (contratacién que se produ-
jo unos meses después). La cita, aunque un poco larga, merece la
pena por dos cosas: por un lado, queda claro que Poincaré tenia a
Einstein en gran estima, al menos desde el punto de vista cientifi-
co; por otro, nos ayuda a entender c6mo concebia Poincaré la
ciencia. La carta dice asi:

El sefior Einstein es uno de los espiritus mas originales que he co-
nocido; a pesar de su juventud, ha alecanzado ya un puesto muy ho-
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norable entre los primeros sabios de su tiempo. Lo que mis debemos
admirar en él es la facilidad con la que se adapta a los nuevos con-
ceptos y sabe extraer todas las consecuencias. No se queda aferrado
a los principios clasicos, y, en presencia de un problema fisico, es
répido en considerar todas las posibilidades. Ello se traduce inme-
diatamente en su espiritu en la prediccién de fenémenos nuevos,
susceptibles de ser un dia verificados por la experiencia. No quiero
decir que todas estas predicciones superen el control de la experien-
cia el dia que ese control sea posible. Como busca en todas las di-
recciones, debemos, al contrario, esperar que la mayor parte de esas
vias que emprende sean callejones sin salida; pero debemos esperar
al mismo tiempo que una de las direcciones indicadas sea la buena;
eso es suficiente. Es asf como se debe proceder. El papel de la fisica
matemadtica es realmente el de hacer preguntas, y no es sino la ex-
periencia quien puede responderlas. El futuro mostrara cada vez mas
cudl es el valor del sefior Einstein, y la universidad que sepa vincu-
larse a este joven maestro tiene asegurado obtener de ello muchos
honores.

Con la perspectiva que da el tiempo no podemos sino admirar

la perspicacia de Henri Poincaré.
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CAPITULO 6

Filosofo y autor de éxito

Henri Poincaré mantuvo siempre
un vivo interés por la filosofia de la ciencia.
Escribié no pocos articulos en los que reflexionaba
sobre la creatividad en matematicas, los fundamentos

de la geometria o el futuro de la fisica. En aquella época,
a finales del siglo xix y principios del xx, varias escuelas
empiristas dominaban el panorama filosé6fico. Poincaré,

aunque cercano a las ideas de uno de los empiristas

mas reconocidos, Ernst Mach, creé su
propia linea de pensamiento.






El afio 1900 fue un afio muy especial en Paris. Con motivo del
cambio de siglo se celebraron multitud de encuentros y activida-
des. Henri Poincaré particip6 entonces en tres grandes reuniones
cientificas, que tuvieron lugar, casi simultaneamente, a principios
de agosto: el Congreso Internacional de Filésofos, el Congreso
Internacional de Fisica y el Congreso Internacional de Matemati-
cas, del que era presidente. Poincaré expuso en estos encuentros
sus ideas generales sobre la filosofia de la ciencia y las bases del
conocimiento matematico.

Desde el principio de su carrera cientifica Poincaré se interesé
por la filosofia de la ciencia y por la fundamentacién de los concep-
tos matematicos. También le interesé la divulgacion cientifica y
publicaba con cierta regularidad en periédicos y revistas dirigidos
a un publico més amplio que el estrictamente académico. Por ini-
ciativa de Gustave Le Bon (1841-1931), los editores Ernest y Camille
Flammarion llegaron a un acuerdo con él para recopilar en una
serie de libros sus ensayos. Estos cuatro libros fueron Ciencia e
hipdtesis (1902), El valor de la ciencia (1905), Ciencia y método
(1908) y Sabios y escritores (1910); a ellos debe afiadirse Ultimos
pensamientos, publicado péstumamente en 1913. Henri Poincaré
se reveld en estos libros como un gran ensayista, con una prosa
directa y elegante. La coleccién obtuvo un gran éxito de ventas.
Desde el dia de su publicacién y hasta 1914 se vendieron, por ejem-
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plo, 20900 ejemplares de Ciencia e hipétesis, 21000 de El valor de
la ciencia, 12000 de Ciencia y método... Los libros fueron traduci-
dos a varios idiomas, y siguen vendiéndose hoy en dia. Los herma-
nos Flammarion ganaron una fortuna con la serie y Poincaré au-
menté notablemente su patrimonio con los derechos de autor.

«Sucede que justamente en la demostracién de los teoremas
mas elementales es donde los autores de tratados clasicos
han desplegado menos precisién y rigor.»

— HENRI PoOINCARE, EN CIENCIA E HIPOTESIS.
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La filosofia de Poincaré ha recibido el nombre de convencio-
nalismo. En el convencionalismo de Poincaré las matematicas
ocupan un lugar especial, y se diferencian del resto de las ciencias.
En matematicas, Poincaré sostenia que los axiomas o hipétesis
son convenciones que adoptamos por simple eleccién. Un ejemplo
muy utilizado por él para explicar este concepto era el de las geo-
metrias no euclideas. La geometria de Euclides esta construida
sobre cinco axiomas. El quinto es el axioma de las paralelas: por
un punto exterior a una recta se puede trazar una tnica recta pa-
ralela a ella. Este axioma se puede reemplazar por otro, de forma
que se obtiene una geometria no euclidea que, como demostraron
Lobachevski y Bolyai, es totalmente consistente. Para Poincaré
una geometria no es mas verdadera que otra, y que adoptemos el
quinto postulado de Euclides o uno diferente depende de la elec-
cién que hagamos. La tinica imposicién es que la geometria resul-
tante esté libre de contradicciones.

En cuanto a la geometria del espacio fisico, lo tinico que cabe
preguntarse es: ;qué geometria es mas conveniente? En principio
la geometria euclidea es mas simple y esta de acuerdo con nuestra
experiencia cotidiana sobre la forma de los objetos rigidos. Pero
si una medida astronémica muestra, por ejemplo, que los angulos
de un tridngulo no suman 180 grados, podemos sacar dos conclu-
siones alternativas: o bien la geometria del espacio deja de ser
euclidea o bien la luz no se mueve en linea recta entre dos puntos.
En el momento en que escribia esto, Poincaré concluyé que, pues-
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INTERCAMBIO CON RUSSELL

El matematico y filésofo Bertrand Russell
(1872-1970) gano el premio Nobel de Lite-
ratura en 1950 por su obra de marcado ca-
racter humanista. Entre 1910 y 1913 publicd,
junto con Alfred Whitehead (1861-1947), los
Principia Mathematica. Esta obra era un in-
tento de dotar a todo el edificio de las ma-
tematicas de la época de una estructura
perfectamente logica. Russell mantuvo un
debate filosofico con Poincaré sobre la na-
turaleza del pensamiento matematico v, en
particular, sobre los fundamentos légicos
de la geometria. El debate entre ambos es-
tuvo siempre presidido por la intachable
honradez intelectual que les caracterizaba.
Ninguno de los dos tenia reparos en admi-

tir los argumentos del otro o corregir los Bertrand Russell en un éleo del pintor

errores propios. Habiendo Russell recono-  inglés Roger Fry (1923).

cido que Poincaré llevaba razén en algunas
de sus criticas a un articulo suyo, Poincaré

contestd con un articulo en la publicacién francesa Revista de metafisica y de
moral. El articulo empezaba asi: «En la respuesta del sefior Russell admiro una

cualidad mas rara de lo que se piensa, una perfecta lealtad cientifica».

RS T CETE = e avergs —

to que los cientificos elegirian sin duda la segunda opcién, la geo-
metria euclidea no tenia que temer una refutacién experimental.
Este razonamiento de Poincaré ha quedado superado por la teoria
general de la relatividad, en la cual la luz se mueve a lo largo de
las lineas mas cortas, geodésicas, de un espacio curvado. Y la cur-
vatura del espacio es una cantidad accesible, en principio, al ex-
perimentador.

En otro orden de cosas, a finales del siglo xix y principios del xx
las matematicas vivian una cierta tendencia hacia la sistematizacién
légica de todo el edificio construido. El matemaético aleman David
Hilbert (1862-1943) era uno de los promotores de esta vision de las
matematicas. Bertrand Russell, en Inglaterra, era otro de los lideres
de esta corriente de sistematizacion. Poincaré mantuvo varias con-
troversias con ambos sobre los fundamentos de las matematicas,
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mostrando siempre una firme posicién a favor de la intuicién como
uno de los pilares del pensamiento creativo en matematicas.

El convencionalismo de Poincaré tenia un matiz distinto cuan-
do se trataba de las ciencias fisicas. En El valor de la ciencia ana-
lizaba, como ejemplo, el célculo de la velocidad de la luz a partir de
las observaciones del astrénomo danés Ole Rgmer (1644-1710).
Rgmer se sirvié de los eclipses de las lunas de Jupiter para calcular
la velocidad de la luz. Observé que los eclipses, que se producian a
intervalos regulares, se iban retrasando a lo largo del afio, a medida
que la Tierra se alejaba de Jupiter, para luego adelantarse cuando
la Tierra se acercaba a Jupiter. Remer supuso que el retraso se debia
a que la luz tenia que recorrer una distancia cada vez mayor, por lo
que tardaba mas en llegar a la Tierra. De sus observaciones dedujo
que la luz tardaba 22 minutos en recorrer la 6rbita terrestre. El neer-
landés Christiaan Huygens (1629-1695) se sirvié de este dato para,
unos aros mas tarde, calcular la velocidad de la luz.

Poincaré llamaba la atencién sobre el hecho de que este proce-
dimiento requiere dos hipétesis: que la luz viaja a una velocidad que
es la misma durante toda su trayectoria y que las leyes de Newton
determinan el tiempo de la érbita de los satélites de Jupiter en torno
al planeta. Otra eleccion de las hipétesis podria dar cuenta del fené-
meno observado, pero la constancia de la velocidad de la luz es una
hipétesis mas conveniente. Las reglas, sostenia Poincaré, no se nos
imponen, y podriamos divertirnos en inventarnos otras. Sin embargo,
no sabriamos salir adelante con esas reglas inventadas sin complicar
en exceso las leyes de la fisica, la mecanica o la astronomia. Pero es
facil malinterpretar a Poincaré y, de hecho, una interpretacién err6-
nea de sus palabras dio lugar a una famosa controversia.

¢GIRA LA TIERRA EN TORNO A Si MISMA?

Como ya se ha apuntado, Poincaré fue uno de los ponentes del
Congreso Internacional de Filosofia que se celebr6 en Paris con
motivo de la Exposicién Universal de 1900. En su conferencia, ti-
tulada «Sobre los principios de la mecanica», defendio su posicion,
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ya conocida, de que no existe un espacio absoluto y que solo de-
tectamos el movimiento relativo. Para explicar sus ideas puso el
ejemplo del movimiento de la Tierra. No tiene sentido decir que la
Tierra gira sobre s{ misma porque no tenemos una referencia abso-
luta respecto de la cual podamos comprobar que se mueve. Y decia
mas: «Las dos proposiciones, “la Tierra gira sobre sf misma” y “es
mads conveniente suponer que la Tierra gira sobre s{ misma”, tienen
el mismo significado». Esta frase dio lugar a una larga controversia,
en especial con el filésofo Edouard Le Roy (1870-1954). Ambos
sabios coincidieron y debatieron en una reunién en la Sociedad
Filoséfica de Francia. En un momento dado de su intervencion Le
Roy dijo: «El hecho cientifico es creado por el sabio», un razona-
miento muy en la linea de su predecesor en el Colegio de Francia,
el filésofo Henri Bergson (1859-1941). Poincaré pregunt6: «Sea
usted més exacto, ;qué entiende por hecho?». Le Roy contest6:
«Un hecho es, por ejemplo, la rotacion de la Tierra», a lo que Poin-
caré replicé: «No, un hecho, por definicién, es algo que puede pro-
barse por un experimento directo. Por esta razén, la rotacién de
la Tierra no es un hecho». Y esta frase, sacada de contexto, iba a
ser repetida una y otra vez en la prensa y en otros foros pblicos.
En particular, la prensa ultracatélica la entendié como una discul-
pa de la actitud de la Iglesia en el proceso contra Galileo.

A principios de 1904 se produjo en Francia una gran contro-
versia entre catélicos y laicos. Un libro titulado El Evangelio y la
Iglesia, escrito por el te6logo Alfred Loisy (1857-1940), habia sido
condenado por el Santo Oficio por cuestionar los dogmas de Roma.
Mientras los periédicos catélicos atacaban a Loisy, los laicos le
defendian. Y algunos escritores laicos evocaron el juicio de Galileo
y la condena de la Iglesia a su tesis sobre el movimiento de la Tierra.
Hubo una cadena de reacciones por los dos bandos, y apareci6 un
articulo del periodista Edouard Drumont (1844-1917) en el que se
apelaba a la autoridad de Poincaré y ponia en su boca la siguiente
frase a propésito de la rotacién de la Tierra: «<Es una hipétesis
atractiva y conveniente para explicar la formacién y evolucién de
los mundos, pero después de todo, es una hipétesis que no puede
ser confirmada ni refutada por ninguna evidencia objetiva». Dru-
mont, conocido por su antisemitismo y miembro de la faccién mas
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reaccionaria del periodismo francés, no solo malinterpretaba a
Poincaré, sino que ni siquiera le citaba literalmente. El periédico
Le Figaro se hizo eco del articulo de Drumont, reinterpretando a
su vez las palabras de Poincaré que, segtin el periédico, «sin afirmar
que la Tierra no gira, afirma que nada prueba que lo haga». Las re-
ferencias periodisticas a la controversia se multiplicaron.

«La experiencia es la tinica fuente de la verdad: solo ella puede
ensefiarnos algo nuevo, solo ella puede darnos la certeza.»

— HENRI POINCARE, EN CIENCIA E HIPOTESIS.
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Poincaré se vio obligado a explicarse, y envi6 una carta abier-
ta al astrénomo Camille Flammarion (1842-1925) que fue publica-
da en el Boletin de la Sociedad Astrondmica de Francia en mayo
de 1904. En ella Poincaré recordaba el marco de la controversia
con Le Roy y que el contexto de sus frases era el de una discusién
filoséfica, en el que el lenguaje tiene un significado muy preciso.

Poincaré volvié sobre el tema en El valor de la ciencia. En
este ensayo repiti6 la frase ya citada de «Las dos proposiciones,
“la Tierra gira sobre si misma” y “es mas conveniente suponer que
la Tierra gira sobre si misma”, tienen el mismo significado». Tras
explicar el sentido filoséfico de esta afirmacion afiadia:

Pero aiin hay més; en el mismo lenguaje se puede muy bien decir:
estas dos proposiciones, «el mundo exterior existe» 0 «es mis c6-
modo suponer que el mundo exterior existe», tienen uno solo y mis-
mo significado. Asi la hip6tesis de la rotacién de la Tierra conserva
el mismo grado de certeza que la existencia de los objetos exteriores.

Para no dejar lugar a dudas sobre la certeza de la rotacién de
la Tierra, Poincaré repasaba luego todos los fenémenos observa-
dos que se explican por esta rotacién. Que una hipétesis sea con-
veniente no quiere decir que sea arbitraria. Los experimentos de-
terminan qué hipétesis es méis conveniente que otra. Y la hipétesis
de la rotacién de la Tierra explica toda una serie de fenémenos
que, de otra forma, no estarian relacionados.
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Los argumentos de Poincaré iban en el sentido de la tradicién
empirista. En la misma obra recuerda su controversia con Le Roy
y aclara que para €l «un hecho» es la percepcién sensible de las
cosas; lo demads son interpretaciones convenientes de las cosas.
Por ejemplo, si observamos la desviacién de un galvanémetro con
la ayuda de un espejo mévil que proyecta una imagen luminosa
sobre una regla graduada, el hecho bruto es que vemos desplazar-
se la luz sobre la escala; el hecho cientifico es que pasa corriente
por un circuito eléctrico. El cientifico no inventa el hecho bruto,
lo interpreta de la manera mas conveniente.

POINCARE ENTRA EN LA HISTORIA DE LA MECANICA
CUANTICA

Muy poco antes de su inesperada muerte, Poincaré hizo una iltima
aportacién valiosa a la fisica del siglo xx. Habiendo participado en
la revolucién relativista, su genio no podia pasar sin dejar su hue-
lla en la otra gran revolucién de la fisica del siglo xx, la revolucién
cudntica. Esta tuvo su origen en diciembre de 1900, cuando Max
Planck dio a conocer su teoria de la radiacién térmica. En ella
Planck introdujo lo que se dio en llamar «la hip6tesis cudntican.
Unos meses antes Planck habia encontrado, de forma semiempi-
rica, una férmula que reproducia las medidas experimentales lle-
vadas a cabo por Heinrich Rubens (1865-1922) y Ferdinand Kurl-
baum (1857-1927) en el Instituto Imperial de Fisica y Tecnologia
de Berlin.

La ley de Planck describe c6mo varia la intensidad de la radia-
cién emitida por un cuerpo caliente con la longitud de onda de la
radiacion emitida. En particular, 1a ley de Planck se centra en el caso
de un cuerpo negro ideal: aquel que absorbe y emite con igual efica-
cia a todas las longitudes de onda. La féormula de Planck se puede
escribir como:

8nth Vv

——
v C3 ehv.-f.i.i" _1
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POINCARE EN EL BUREAU DES LONGITUDES

Desde 1893 Poincaré pertenecié al Bureau des Longitudes, la oficina francesa
encargada de calcular las efemérides astrondmicas, una cuestion que tenia
una importancia capital para la navegacién de aquella época. Poincaré parti-
cipé regularmente en las actividades del Bureau y lo presidié en tres ocasiones.
Fue un ardiente defensor de la misidn francesa que se ocupd desde 1898 de
la medida del meridiano terrestre que pasa por Quito (Ecuador). La misién
tuvo que hacer frente a muchas dificultades y sufrié diversos retrasos. Poin-
caré informo sobre ella en varias ocasiones e insistié una y otra vez en su
importancia ante el Gobierno de la nacién. En julio de 1907 el matemético
comunicé el éxito definitivo de la misiéon. Por otra parte, Poincaré presidio el
comité interministerial que propuso la adhesion definitiva de Francia a la toma
del meridiano de Greenwich como referencia del origen de las longitudes
geogréficas y de los husos horarios. En una ocasion, comentd al respecto:
«Hemos recibido una comunicacion del director del observatorio de México
qgue tengo el placer de referir aqui: "Hay en Francia una ciudad, dice este as-
trénomo, que tiene precisamente el mismo meridiano que Greenwich, es Ar-
gentan. Adopten en Francia la hora de Argentan, y el amor propio francés
estara a salvo”, he aqui una solucién», concluyé Poincaré entre risas.

donde u, es la densidad de energia electromagnética radiada; v, la
frecuencia; ¢, la velocidad de la luz; k, la constante de Boltzmann; 7,
la temperatura del cuerpo radiante, y k, una constante que hoy en
dia lleva el nombre de constante de Planck. Para cada temperatura
la radiacién es maxima a una frecuencia dada (o su longitud de onda
correspondiente). Asi, a los 100 °C de un radiador doméstico el maxi-
mo de la intensidad se encuentra en una longitud de onda de 8 mi-
cras, que corresponde al infrarrojo. Para el hierro fundido, a 1535 °C,
el maximo estd todavia en el infrarrojo cercano, pero una buena
cantidad de la radiacién se produce en el visible. Para 5505 °C, la
temperatura de la superficie del Sol, el maximo est4 en el amarillo.
Max Planck intenté deducir su férmula a partir de las leyes
generales de la fisica. Imaginé que la radiacién era emitida por un
conjunto de cargas oscilantes que radiaban energia electromagné-
tica de acuerdo con las leyes del electromagnetismo formuladas
por Maxwell. Utilizé las ideas de Boltzmann respecto a la interpre-
tacién probabilistica del calor y, en particular, del concepto de
entropia. E introdujo una hipétesis ad hoc: que la energia de los
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osciladores no podia tener un valor cualquiera, sino que solo podia
valer un niimero entero de veces una cantidad discreta, un cuanto,
de valor E'=hv. Planck introdujo esta hipétesis sin plena conscien-
cia de lo que representaba, como un artificio matematico que le
conducia a la ley que, sabia, era experimentalmente correcta.

Los afios que siguieron a la publicacién del articulo de Planck
fueron de gran discusion entre los fisicos teéricos de la época.
Algunos se dieron cuenta pronto de que era una hipétesis ajena a
la fisica clésica, ya que esta no ponia ninguna restriccién a los
valores que pudiera tener la energia de un oscilador, menos aiin
obligar a que estuviera relacionada con la frecuencia. Pero la hi-
potesis cudntica habia venido para quedarse. En 1905 Albert Ein-
stein la aplicé a otros fenémenos relacionados con la emisién y
absorcién de la luz, en especial al problema del efecto fotoeléctri-
co. La teoria del efecto fotoeléctrico le valié a Einstein, afios mis
tarde, en 1921, el premio Nobel de Fisica.

En este estado de cosas el fisico y quimico aleman Walther
Nernst (1864-1941) organizd, con el patrocinio del quimico y millo-
nario belga Ernest Solvay (1838-1922), un encuentro de los lideres
de la fisica europea para discutir diversos aspectos de la teoria cuan-
tica. La reunién, primera de una serie de encuentros que han entra-
do a formar parte de la historia mitica de la fisica del siglo xx, se
celebré entre el 30 de octubre y el 3 de noviembre de 1911 en el
Hotel Metropole de Bruselas. Segin la convocatoria, el primer Con-
greso Solvay, que ese fue el nombre que recibi6 el simposio, estaba
dedicado al estudio de «la teoria de la radiacién y los quanta». A él
asistieron, entre otros, Albert Einstein, Max Planck, Hendrik Lorentz,
Walther Nernst, Marie Curie, Ernest Rutherford, Arnold Sommerfeld
y Wilhelm Wien. También asistié Henri Poincaré. Alli conoci6 a Ein-
stein, siendo la tinica vez que ambos coincidieron en persona.

Uno de los temas de discusién del momento era hasta qué
punto la hipétesis cuantica era esencial para obtener la ley de
Planck de la radiacién de cuerpo negro. Lorentz, Einstein y el mis-
mo Planck habfan deducido la ley de varias formas diferentes, pero
siempre tenian que introducir la hipétesis cudntica para llegar al
resultado correcto. Otros fisicos, como sir James Jeans (1877-1946)
o John Strutt, barén de Rayleigh (1842-1919), habian deducido f6r-

FILOSOFO Y AUTOR DE EXITO

159



160

MAX PLANCK (1858-1947)

Planck enuncié en 1900 la hipotesis
cuantica, segun la cual la energia meca-
nica de un oscilador microscépico no
puede tener un valor cualquiera, sino que
estd limitada a una serie de valores dis-
cretos. Esta hipétesis abrié el camino al
desarrollo de la fisica cuantica, la teoria
fisica del mundo atémico y subatémico.
Planck tuvo una gran influencia en la fi-
sica alemana de la primera mitad del si-
glo xx. Promovio el estudio de la fisica
tedrica y ayudo y promociond a los gran-
des fisicos del ambito aleman de la épo-
ca como Einstein, Meitner o Schrédinger.
Durante la ascensién del nazismo man-
tuvo una dura pugna con los sectores
antisemitas de la fisica alemana por el
control de las instituciones cientificas e intento limitar las repercusiones ne-
gativas de la politica de Hitler para la ciencia alemana. En la actualidad, la
mayor institucién cientifica de Alemania lleva su nombre.

mulas alternativas basiandose exclusivamente en argumentos cla-
sicos, pero sus férmulas no se ajustaban a los resultados experi-
mentales. La pregunta que estaba en el aire era: ;es la hipétesis
cuantica imprescindible para explicar la radiacién térmica? Dicho
de otra forma, ;existe alguna deduccién alternativa de la ley de
Planck que no recurra a la cuantificacién? En el lenguaje matema-
tico al uso podriamos plantear el problema diciendo que la hip6-
tesis cuantica era condicion suficiente para la ley de Planck de la
radiacién, pero ;era también condicién necesaria?

Poincaré, que hasta entonces no habia sentido especial interés
por los problemas en torno a la hip6tesis cudntica, se interesé
inmediatamente por el problema. Especialmente por dilucidar la
necesidad de la hipétesis cuantica. Y una vez mas dio muestras de
su gran capacidad como fisico teérico. Al volver a Paris, se puso
inmediatamente a trabajar sobre el problema de la radiacién de
cuerpo negro. Tan solo un mes mas tarde, presento sus conclusio-
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nes a la Academia de Ciencias de Paris, y en enero apareci6 en la
revista Journal de Physique Théorique et Appliquée un articulo
con todos los detalles.

El articulo tenia 34 pdginas y era un alarde de técnica mate-
matica. Poincaré demostré rigurosamente que una ley continua
para el movimiento, no solo no podia reproducir la férmula de
Planck, sino que no daria ni siquiera una energia finita para todo
el conjunto. Algunas de las técnicas usadas por Poincaré eran nue-
vas en el campo de la mecénica estadistica y serian usadas poste-
riormente por otros fisicos teéricos como el propio Planck, pasan-
do a formar parte de las técnicas estdndar en mecénica estadistica.

La conclusién del articulo de Poincaré era la misma a la que
ya habian llegado otros fisicos como Paul Ehrenfest (1880-1933),
pero la forma en que Poincaré la presentaba era especialmente
convincente: la fisica clasica no podia dar cuenta de la teoria de
la radiacion del cuerpo negro; la hipétesis cuantica era inevitable.

POINCARE Y LA ENSENANZA DE LAS MATEMATICAS

En su libro La ciencia y el método Poincaré dedicé un capitulo a la ensefianza
de las matematicas. En él, sin desdefiar la importancia de la Iégica en la cons-
truccion de las matematicas, recalcd la necesidad de utilizar la intuicion y los
conceptos cotidianos para ensefiar esta ciencia. Poincaré se preguntaba qué
era una buena definicién. La respuesta no puede ser la misma para un mate-
matico o un fildsofo que cuando hablamos de ensefar. Asi, escribia, al refe-
rirse a la ensefianza: «Una buena definicién es aquella que es comprendida
por los alumnos». Y afadia:; «¢Como es que hay tantos espiritus que se niegan
a comprender las matematicas? [...] Una ciencia que no utiliza sino los princi-
pios fundamentales de la légica, [...] de los que no podriamos despojarnos sin
dejar de pensar, y ihay gente que los encuentra oscuros! iY ademas son la
mayorial». Al repasar la evolucion de los ultimos afios del siglo xix Poincaré
reconocia que las matematicas habian ganado en rigor légico, pero ese rigor
se conseguia a base de ir construyendo unos conceptos sobre otros previos
y el conjunto resultaba incomprensible para los alumnos principiantes. Poin-
caré defendia que habia que tomar, en la ensefianza, un camino mas parecido
a la evolucion histdrica de las matematicas, empezando por los conceptos
presentados de forma intuitiva, aunque no fuera un proceder riguroso, para

ir edificando poco a poco el edificio.
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El articulo de Poincaré tuvo una considerable repercusion.
Tras su publicacién, ya no podia quedar en Europa ningtin escép-
tico al respecto de la hipétesis cuantica. Especialmente Jeans, en
Inglaterra, se convencié6 de la necesidad de la hip6tesis cuéntica y
cambif la actitud de los britanicos frente al cuanto. En Francia, el
articulo de Poincaré puso a la teoria cuantica en el centro de la
agenda de los fisicos tedricos y correspondié a un francés, Louis
de Broglie (1892-1987), dar, unos afos més tarde, un paso decisivo
en la construccion de la teoria cuédntica.

POINCARE MUERE EN PARIS

Durante el Congreso Matemaético Internacional de 1908, celebrado
en Roma, la hipertrofia de préstata que Poincaré padecia desde
hacia algin tiempo se agravé, lo que le obligé a someterse a una
operacion de urgencia. Fue operado en Roma por cirujanos italia-
nos. Al principio pudo recuperar toda su actividad, pero pronto
recay6. En marzo de 1909, en una carta a David Hilbert, a prop6-
sito de la invitacién que el matemético aleman le habia realizado
para visitar Gotinga, Poincaré advertia lo siguiente:

Hay un punto sobre el que desearia llamar su atencion. Todavia estoy
bajo el golpe del accidente que me afect6 el afio pasado en Roma y
estoy imperiosamente obligado a ciertas precauciones. No puedo
beber ni vino ni cerveza, solamente agua. No puedo asistir a un ban-
quete, ni a una comida prolongada. Esta circunstancia me ha hecho
dudar de aceptar su invitacién, pero he pensado que usted sabra
disponer las cosas en consecuencia.

La situacién siguié empeorando y ya en diciembre de 1911, con-
fesaba a Giovanni Battista Guccia, editor de la revista italiana Ren-
diconti del Circolo Matematico di Palermo, que, a su edad, quiza
no tuviera tiempo de terminar sus tltimas investigaciones sobre el
problema de los tres cuerpos. El sdbado 6 de julio de 1912, tras una
reunién en la facultad sobre la teorfa de grupos, le dijo a su amigo
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Paul Appell: «<Mafiana ingreso en el hospital para la operacién». Le
operaron el dia 9 y, al principio, todo pareci6 ir bien. Le dieron de
alta en el hospital y volvi6 a su casa para recuperarse. Sin embargo,
el dia 17 de julio murié de una embolia durante una cura rutinaria.

UN ENTIERRO DE ESTADO

Henri Poincaré fue enterrado el 19 de julio de 1912 en un ambien-
te de consternacién nacional. El cortejo fiinebre salié de su casa
hacia la iglesia de Saint-Jacques du Haut-Pas y de alli se dirigi6 al
cementerio de Montparnasse. Varias personalidades piblicas
acompaiiaban al féretro, entre ellas, el presidente de la Academia
Francesa y el Ministro de Instrucciéon Piblica y Bellas Artes. El
ministro rindié homenaje a Poincaré con estas retéricas palabras:

La muerte de Henri Poincaré, que une en un comiin sentimiento de
pesar a la élite intelectual de todos los paises, es para nosotros un
duelo priblico. Al unirse a él, el Gobierno es el intérprete de la nacién
entera, dolorosamente afectada. Porque, a pesar de que los trabajos
del matematico solo son accesibles a un pequefio niimero de personas,
todos saben que Henri Poincaré representaba lo que la genialidad de
Francia tiene de més puro y de mas desinteresado, lo mejor de si
misma.

También su amigo de toda la vida, y decano entonces de la
Facultad de Ciencias, Paul Appell, acompaiiaba el féretro. Appell
escribiria afios mas tarde:

La vida de Poincaré fue una meditacién intensa e ininterrumpida.
Estuvo exclusivamente dedicada al trabajo cientifico y a la familia.
Su persona serd siempre objeto de admiracién y un ejemplo para la
juventud de Francia.

En el quinto Congreso Internacional de Matematicas, que tuvo

lugar en agosto de 1912 en Cambridge, pocas semanas después de
su muerte, Poincaré fue homenajeado por sus colegas de toda
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Europa. El presidente del congreso, sir George H. Darwin (1845-
1912), hijo del célebre naturalista, pronuncié estas palabras en la
inauguracién:

Fue en Roma hace cuatro afios cuando la primera sombra de oscu-
ridad de esa enfermedad, que ha terminado ahora tan mortalmente,
cay6 sobre nosotros. Todos ustedes recuerdan la consternacién que
se apoder6 de todos nosotros cuando las primeras palabras pasaron
de hombre a hombre: «Poincaré estd enfermo». Habiamos esperado
que pudiéramos ofr de nuevo de su boca alguna ponencia tan ilumi-
nadora como la que dio en Roma; pero no fue asi, y la pérdida de
Francia con su muerte afecta al mundo entero.

EPILOGO

En torno a 1912 Europa se dirigia inadvertida pero inexorablemen-
te hacia la catastrofe. Los odios generados en conflictos anteriores,
el auge de los nacionalismos, el militarismo rampante, la carrera
de armamentos, 1a lucha por la expansién colonial y otros factores
adicionales condujeron a las potencias europeas a la guerra. El 18
de febrero de 1913 Raymond Poincaré, que habia ganado las elec-
ciones, accedi6 a la presidencia de la Repiiblica, cargo que ejerce-
ria durante toda la guerra. Henri Poincaré no vivi6 para ver a su
primo en la mis alta magistratura del Estado ni tampoco para
padecer las penalidades de la guerra. Pero si era consciente de los
males que amenazaban a su pais y a Europa, y dejo oir su autori-
zada voz en un discurso ante la Liga de la Educacién Moral el 26
de junio de 1912, tan solo unas semanas antes de su muerte:

Verdaderamente el odio es una fuerza, y una fuerza muy poderosa.
Pero no podemos servirnos de ella, porque rebaja, porque es como
unos anteojos, en los que solo se ven los grandes trazos; porque el
odio es nefasto y no hace verdaderos héroes. No sé si al otro lado de
ciertas fronteras hay gente dispuesta a alimentar el patriotismo con
odio, pero si que sé bien que entre nosotros semejante método seria
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totalmente contrario a nuestro temperamento, a nuestras tradicio-
nes, a nuestras aspiraciones. Los ejércitos franceses se han batido
siempre por alguien o por algo, y no contra alguien, y creo que no
han luchado peor por ello. [...] Eso es todo de lo que el odio es capaz
y es eso lo que no queremos. Acerquémonos, aprendamos a cono-
cernos y, por ello, a estimarnos, para perseguir un ideal comin.
Guardémonos de imponer medios uniformes, eso es irrealizable,
ademads de indeseable. La uniformidad es la muerte, porque cierra la
puerta a todo progreso. Ademas, toda coaccion es estéril y odiosa.

Pero los Gobiernos y los jefes militares de Europa ya habian
realizado su apuesta. Las palabras de Poincaré, como las de los
pocos intelectuales de toda Europa que se opusieron a la guerra,
cayeron en saco roto.

La familia de Poincaré anuncié su muerte en una esquela en
la que se podia leer:

Henri Poincaré, miembro de la Academia Francesa y de la Academia
de Ciencias, miembro del Bureau des Longitudes, Inspector General
de Minas, profesor de la Facultad de Ciencias, profesor honorario de
la Escuela Politécnica, miembro del Consejo del Observatorio de Pa-
ris y del Consejo de los Observatorios de Provincias, miembro aso-
ciado de la Academia de Stanislas de Nancy, miembro extranjero de
la Real Sociedad de Londres, de la Academia dei Lincei, de las Aca-
demias de Estocolmo, Copenhague, Budapest, Gotinga, Upsala, Bu-
carest, etc., miembro honorario extranjero de las Academias de Vie-
na, Edimburgo, Dublin, etc., miembro asociado de las Academias de
Bruselas, Washington, etc., miembro correspondiente de las Acade-
mias de Berlin, San Petersburgo, Amsterdam, Miinich, etc., coman-
dante de la Legion de Honor, oficial de Instruccién Piblica, co-
mandante de primera clase de la Estrella Polar de Suecia.

Como se ve, Poincaré habia alcanzado las més altas distincio-
nes y los mayores reconocimientos en todo el mundo.

Henri Poincaré escribio decenas de libros y cientos de articu-
los. La extensién de su obra es tan inabarcable como su profundi-
dad. El dltimo de los universalistas, en palabras del matematico
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Eric Temple Bell (1883-1960), investig6 en todas las ramas de las
matematicas y de la fisica teérica de su tiempo. En este libro nos
hemos acercado a sus descubrimientos sobre las funciones auto-
morficas, el problema de los tres cuerpos, la topologia y la relati-
vidad. También hemos glosado su obra como filé6sofo. Pero ademas
de todo ello, Poincaré hizo notables aportaciones a la teoria de
nimeros, la teoria de grupos, la teoria de funciones, la telegrafia
sin hilos, el cédlculo de probabilidades y la cosmologia. Todo ello
haciendo gala siempre de una inquebrantable honradez intelectual
y de un compromiso leal con su pais y la sociedad en la que vivi6.
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