

Warm-up

Before class, find videos of the first animated films, such as *Steamboat Willie* featuring Mickey Mouse, *Minnie the Moocher*, *Smoky Joe*, or *Betty Boop*. Then, show a segment of the movie in class. Afterward, ask students to work in small groups to identify the key differences between current and original animation films. Finally, ask volunteers to share their opinions with the rest of the class.

Teaching Tip**For Take It on the Road!**

First, tell students that to promote a workshop, they must invite and inform potential students of its contents. Then, encourage students to make a flyer or brochure advertising the class. Next, ask volunteers to share their flyers with the rest of the class. Afterward, tell students to work with a classmate to discuss the following questions: *What is lost when filmmakers rely solely on technology to make movies? What is gained by using technology in the making of movies? How can filmmakers find a balance between traditional and newer techniques?*

Based on the previous discussion, tell students to design a storyboard for an illustrated movie that combines traditional and newer movie-making techniques. Finally, ask volunteers to share their storyboards with the rest of the class.

Differentiation Strategy**For Exercise 2**

Go to the Differentiation Strategies Bank and adapt this exercise using Strategy 2g.

4.4**You Can't Teach an Old Dog New Tricks**

The original animated films were drawn by hand, frame by frame, by talented artists at major studios. Each of them was painstakingly illustrated and then sent to a colorist to add color. Finally, a camera joined all the shots, moving through them quickly enough to make it appear like the characters were moving through largely static landscapes. The use of technology and artificial intelligence (AI) is changing the world of animation. Now, major studios use large teams of digital animators to create mostly realistic characters that move through backgrounds that morph with the characters. While the films can be enjoyed worldwide, the people capable of creating such masterpieces are presumably to be younger. This is because younger people worldwide are more likely to have or be in training than adults over 25. In fact, the UN calculates that globally, only three percent of adults between the ages of 25 and 55 are engaged in any education or training, meaning that they are at a greater disadvantage regarding awareness of technological advances. This is worrying because, in a global market, many employers looking to hire for more sophisticated and well-paid jobs need employees who have the right skills and training. Without up-to-date technological knowledge, many adults will be left with more basic, lesser-paid positions, thus less able to provide for their families.

DO**Flip Books**

In this Maker, you will make an animation in a flip book. Before the advent of CGI and VFX, people relied on old-fashioned techniques to create animation. Nowadays, there is a concern about the overuse of technology by young people. Given an overreliance on AI, educators and parents fear youngsters will lose interest in building fine motor skills and creativity, such as drawing and crafts. Striking a balance between technology and old-fashioned know-how is healthier, especially when the brain is still developing.

1. Cut 30-40 rectangles (approx. 5x10 cm). Staple them together into a book.
2. Draw a simple illustration on the first page, such as a ball or a tree.
3. Move the illustration slightly or make it bigger on subsequent pages. For example, the ball could move to one side, or the tree could get slightly larger.
4. Continue modifying the illustration on all book pages until it ends in the final position.
5. To view your flipbook, thumb through the pages quickly, in approximately two seconds, to see how the original animators created hand-drawn animation.

Teaching Tip

For Exercise 2

After Exercise 2, write two sample ideas on the board, one specific and one vague and general. Then, ask students to read the ideas and identify which is which. Next, tell students that the more specific their ideas for Exercise 2 are, the more likely they are to follow through. Afterward, encourage students to make the general example more specific. Then, elicit examples of the modification. Finally, tell students to review their ideas and modify any that are very vague. For example: Vague and general: *I will learn more about comets.* Specific: *I will read a text about comets on the NASA page to determine their size.*

Wrap-up

After completing Exercise 2, tell students to work with a classmate with similar answers. Then, ask students to brainstorm ways to continue exploring the topics and write them on a post-it note. Afterward, tell students to read the statements aloud and raise their hands if they would like to try the ideas.

BE Aware of Your Progress

01 It's time for your assessment. First, ask a classmate to help you assess your performance during this week (Peer Assessment). Allow your classmate to provide you with some feedback. Later, assess yourself (Self-assessment) based on how you felt during this week.

VG – Very Good

G – Good

N – Need to Improve

I can...

understand the importance of setting boundaries.

distinguish between stars and other celestial bodies.

reflect on the social consequences of the Industrial Revolution.

examine the use of technology in the cinema as a form of art.

use different forms of **Conditional** structures to express imaginary or unlikely situations (2nd, 3rd, and Mixed).

Peer Assessment

Self-assessment

02 Write five things you learned while completing this week. Then, number them from most "1" to least "5" likely to continue exploring independently.

Answers will vary.

UNO*i*

<input type="text"/>	<input type="text"/>

WHAT WOULD YOU NAME A STAR
IF YOU DISCOVERED ONE?

