

How are electromagnetic waves organized?

01 Choose one of the devices in the list and explain everything you know about how it works to a classmate.

X-ray scanner

UV light

Thermal camera

02 Read "Riding the Waves" and write the real-world applications of the EM waves.

1. Infrared waves: _____

2. UV light: _____

3. X-rays: _____

03 Answer the following questions.

1. Which of the three EM waves described has the shortest wavelengths?

2. What is the relationship between wavelength and energy?

3. Which EM wave is the most dangerous? Why?

Riding the Waves

Good afternoon, junior scientists, and welcome to the Science Centre. This presentation is about electromagnetic (EM) waves. There are many different EM waves, generally categorized by **wavelength**, energy, and **frequency**, more on that later. The three exhibits we'll look at focus on light and heat.

First, the thermal camera detects **infrared** waves (all objects **emit** them) and displays heat signatures of the infrared radiation emitted. As a result, these cameras or detectors help technicians identify overheating cables or circuits and detect medical problems. You may have seen this in movies or TV series; it's like night vision but only shows heat. Longer than visible light, infrared waves are shorter than microwaves used to make popcorn.

Next, moving on to the UV light display. **Ultraviolet** or UV light is what the Sun emits. It has a shorter wavelength than visible light, more energy, and a higher frequency. While humans can't see it, some insects, such as bumblebees, can. Aren't bees awesome? Other than sunburns, some real-life applications of UV light include detecting counterfeit bills and gel manicures. UV light readers can see things we can't.

Finally, there is the **X-ray** scanner, which will be familiar if you've ever been through an airport or had a broken bone. Of the three, X-rays have the shortest wavelengths and the highest frequency and energy. X-rays can pass through or penetrate objects—such as your backpack—to see what's inside through ionizing radiation, which is only safe at low doses.

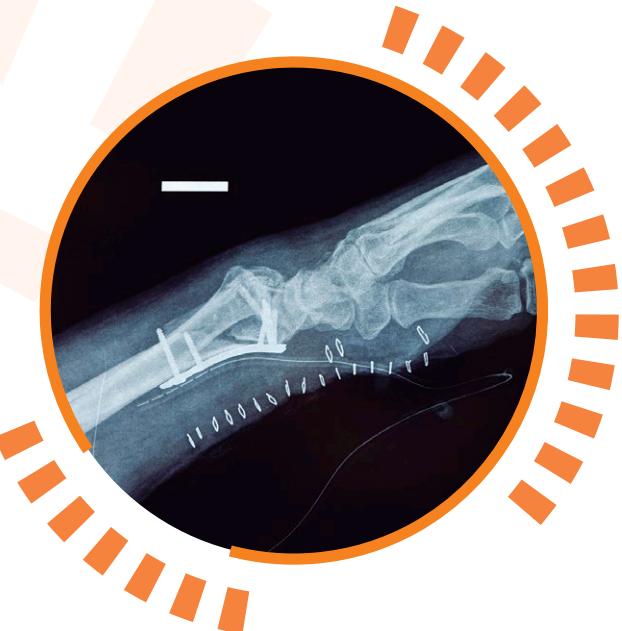
I hope you enjoyed this introduction to the classification of EM waves; remember, the shorter the wave, the higher the energy and frequency.

04 Work with a classmate. Write three more questions about classifying EM waves. Then, take turns asking and answering your questions in a group of six students.

05

Match to create logical sentences. Then, underline the linking adverbials.

1. X-rays have high frequency and energy; nevertheless,
2. Radio waves travel at the same speed as other EM waves, yet
3. Gamma rays have extremely short wavelengths, as a result
4. Infrared waves are just below visible light in frequency; therefore
5. Microwaves have lower frequencies than visible light, and in contrast


- a. they carry the highest energy in the EM spectrum.
- b. they are used for communication and heating.
- c. they are helpful in thermal imaging.
- d. their much longer wavelengths make them ideal for broadcasting.
- e. they can penetrate most materials, making them useful in medicine.

06

For each sentence, choose the ONE linking adverbial that does not correctly complete the sentence.

Electromagnetic waves can be classified by their wavelength, frequency, and energy. Radio waves have the longest wavelengths; **therefore / besides / so**, they also have the lowest frequency and energy. Visible light, **on the other hand / as a result / however**, falls in the middle of the spectrum and has more energy than infrared radiation. X-rays and gamma rays, **furthermore / in contrast / however**, have extremely short wavelengths and very high frequencies.

Consequently / Therefore / In addition, these waves carry the most energy and can pass through many materials.

07

Write a question to ask about EM waves. Then, exchange your question with another classmate. Use the space below to answer your classmate's question using the linking adverbials from Exercises 5 and 6.

08

Work with a classmate to create another real-world application for one of the EM waves on the spectrum. Answer the questions. Then, present your idea to the rest of the class.

- › What is the real-world application?
- › What type of EM wave does it use?
- › Why this one?
- › What are the benefits of the application?

